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ABSTRACT

This dissertation addresses high Reynolds number turbulent boundary layers flows
with different inhomogeneous surface roughness distributions using large eddy sim-
ulations. The stretched vortex subgrid scale model for the outer flow LES is coupled
with a virtual-wall model for the friction velocity with a correction accounting for
local roughness effects.

A semi-empirical model that describes a fully developed rough-walled turbulent
boundary layer with sand-grain roughness length-scale ks = αx that varies linearly
with streamwise distance is first developed, with α a dimensionless constant. For
large Rex and a free-stream velocity U∞ ∝ xm, a simple log-wake model of the
local turbulent mean-velocity profile is used that contains a standard mean-velocity
correction for the asymptotic, fully rough regime. A two parameter (α,m) family of
solutions is obtained forwhichU+∞ (or equivalentlyC f ) and boundary-layermeasures
can be calculated. These correspond to perfectly self-similar boundary-layer growth
in the streamwise direction with similarity variable z/(α x) where z is the wall-
normal co-ordinate. Results over a range of α are discussed for cases including the
zero-pressure gradient (m = 0) and sink-flow (m = −1) boundary layers. Model
trends are supported by high Re wall-modeled LES. Linear streamwise growth of
boundary layer measures is confirmed, while for each α, mean-velocity profiles and
streamwise turbulent stresses are shown to collapse against z/(α x). Inner scaled
velocity defects are shown to collapse against z/∆, where ∆ is the Rotta-Clauser
parameter. The present results suggest that these flows may be interpreted as the
fully-rough limit for boundary layers in the presence of small-scale, linear roughness.

Next, an LES study of a flat-plate turbulent boundary layer at high Re under non-
equilibrium flow conditions due to the presence of abrupt changes in surface rough-
ness is presented. Two specific cases, smooth-rough (SR) and rough-smooth (RS)
transition are examined in detail. Streamwise developing velocity and turbulent
stress profiles are considered and sharp departures from equilibrium flow properties
with subsequent relaxation are shown downstream. Relaxation trends are studied
using integral parameters and higher-order mean flow statistics with emphasis on
Reτ and k+s dependence. Results are compared with RS experiments at matched
Reτ, and show good agreement in terms of recovery rates.

Finally, the case of static, impulsive wall-roughness in flows at high Re is addressed
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using the same LES framework. The initial perturbation from smooth-to-rough
appears to dominate the flow behaviour with the length of the impulsive patch
showing little effect on recovery rates at matched Reτ and k+s . The resulting trends
show good agreement with low Re experiments and support the wall-modeled LES
framework as a suitable method for analysing high Re flows in practical applications.
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C h a p t e r 1

INTRODUCTION

1.1 Turbulent boundary layers
Turbulent flows are characterised by irregular, time-varying yet often distinguishable
features with statistics determined by fluctuations about a mean state. An early
visualisation of turbulence was presented by Reynolds in his 1883 experiments
[67], broadly categorising the behaviour of pipe flow as either ‘direct’ (laminar)
or ‘sinuous’ (turbulent). Often, one considers the concept of eddies, a description
of structures within flows, which occupy distinct length-scales. Richardson’s [68]
notion is a particularly useful one when visualising the effects of turbulence - that the
larger eddies eventually break up and result in the formation of smaller eddies, in an
energy transfermechanism to smaller scales that is elegantly described as the ‘energy
cascade’. The range of scales involved in turbulent flows through this cascade [62],
from the largest inertial scales to the smallest ones dominated by viscous forces and
dissipation, present interesting challenges from both experimental and numerical
perspectives.

Practical flows often occur adjacent to wall boundaries and in confined geometries.
Prandtl [64] introduced the concept of the boundary layer through his idea that
viscous effects are confined locally to a thin wall-parallel layer adjacent to a solid
body, assuming the ‘no-slip’ condition due to frictional effects. Boundary layer
flows, given their prevalence in engineering applications such as airfoils, engines,
pipe flows, ducts and channels have naturally been subject to detailed analysis and
experimental studies. Significant contributions were made by von Kármán [87]
and Millikan [48], through the idea of the log-law for mean velocity profiles and
its associated multiplicative constant κ now named after him. Coles [20] further
extended this idea by introducing the law of the wake to complete the presently
accepted description of the mean velocity profiles in turbulent boundary layers,
which we shall explore in the following pages.

The structure of the boundary layer moving away from the wall can be considered
(in the mean sense) as follows. In the near wall region known classically as the
viscous sublayer, the velocity u+ = u/uτ scales linearly with z+, the inner-scaled
wall normal coordinate. The limit of this region has been shown to be around z+ ≈ 5
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through various experimental programs. The overlap region between this viscous
sublayer and the logarithmic profile identified by Kármán is known as the buffer
layer, where the effect of viscosity diminishes. The log-law itself, as stated by von
Kármán can be expressed as (1.1),

u
uτ
=

1
κ

(
ln

zuτ
ν
+ C

)
(1.1)

with the friction velocity uτ =
√

τw
ρ , z the wall normal coordinate, and a constant C

which is a consequence of the specific geometry. The addition of a wake-function
(1.1) in the outer part of the boundary layer [20] then completes the classical
description of the turbulent boundary layer mean velocity.

u
uτ
=

1
κ

ln
( zuτ
ν

)
+ const. +

Π

κ
W

( z
δ

)
(1.2)

where W(z/δ) is the wake-function, and Π, the Coles wake factor, may vary with
the streamwise coordinate in non-equilibrium flows. In his 1956 manuscript, Coles
also provides a physical interpretation of the law of the wake making reference to
large-scale mixing processes with stronger inertial influence than viscous influence.
The imposition of the no-slip wall condition then necessarily modifies the exterior
of the boundary layer to what we now know as the wake-region of the boundary
layer.

Logarithmic dependence of streamwise Reynolds stresses on z/δ was proposed by
Townsend [86] and has been observed in experiments by Marusic and Kunkel [45]
and Squire et al. [82]. Recent boundary layer experiments have provided evidence
for the onset of log-law behaviour at z+ = 200 [59, 56]. Boundary layers have
been shown to require both inner (via the lengthscale ν/uτ) and outer scaled (via
the boundary layer thickness δ) quantities for a full description of the mean velocity
and Reynolds stress ρu′iu

′
i statistics, where u′i represent turbulent fluctuating velocity

components. Key integral parameters describing the growth of a turbulent boundary
layer include the displacement thickness δ∗, momentum thickness θ, skin-friction
C f and the shape-factor H = δ∗/θ. Power-law behaviour has been suggested by

Barenblatt and Prostokishin [5], such that u
uτ
= C1

(
zuτ
ν

)b
; while this question remains

under investigation, there is compelling evidence through computational solutions
and experiments for the log-law behaviour at high Reynolds numbers [11, 82].
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Techniques such as hot-wire anemometry, particle image velocimetry, floating ele-
ment balances, Preston-tube methods and oil-film interferometry have been devel-
oped to enable observations and analysis of specific parameters, length and time
scales to inform detailed mathematical modeling and predictive capabilities for a
range of turbulent flow conditions. The efficacy of various measurement techniques
is tied to specific flow configurations. Marusic et al. [46] provide a review of key
developments and questions that require careful investigation in high Re turbulence.
The issue of accurate wall-shear stress measurements is identified as an important
step towards enabling strong conclusions about parameter dependence at high Re.
In internal flows such as pipes and channels, ‘equilibrium’ is said to have been
achieved with streamwise invariance in the mean velocity and turbulence quantities.
Marusic et al. [46] refer to the strict definition of Rotta [69], requiring invariance
in streamwise quantities with respect to the local length and velocity scales; the re-
quirement for two similarity measures in boundary layer flows (based on zuτ/ν and
z/δ) drives their suggestion for a definition of equilibrium based on the relaxation
of velocity deficit in the outer region.

1.2 Roughness in engineering applications
This section provides a broad overview of roughness in practical flows, with refer-
ences to key studies. A detailed discussion of rough-wall effects specific to boundary
layer flows follows in chapter 2. Wall roughness effects can be deliberate and de-
sirable, as in the use of shark-skin riblets with specific geometric parameters to
reduce drag [22], or an undesirable, natural result of deterioration in engineering
materials, such as that observed in piping, aerospace and naval applications. Even
with advanced manufacturing techniques, it has been shown that roughness effects
appear in nominally smooth wall flows at high Reynolds numbers [47]. Mckeon
et al. [47] found that their pipe flow measurements did not display roughness effects
until ReD > 13.6 × 106, where ReD is the Reynolds number based on pipe diam-
eter. Flows with internal and external geometries are known to behave differently
compared with the canonical smooth-walled scenario under, firstly, the mere pres-
ence of roughness, and secondly the specific type of roughness involved. Turbulent
flows modified by roughness are demonstrable in atmospheric and oceanic bound-
ary layer flows, with forest canopies, urban architecture [89] and ocean-land surface
topography [6] representing significant modifications to the flow from the ideal
smooth surface. In many applications this represents a direct impact on operational
costs [77] due to an increase in drag, providing further incentives for an improved
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understanding of rough-wall turbulent flows.

Rough walls present themselves in a variety of geometries, from the classical sand-
grain roughness studied by Nikuradse [57] to riblet [22], cuboidal block elements
[7] and sinusoidal roughness elements [44] studied more recently. Each of these
roughness geometries can be defined by various measures including, but not limited
to the maximum roughness crest height, the root-mean-square value of individ-
ual peaks, or by using the Hama [29] roughness function to assign an equivalent
sand-grain roughness measure ks. Given the complexity of the roughness scales
and geometries involved, the flat plate turbulent boundary layer, with allowances
for roughness and modified surface finishes offers a platform using which we can
study, both experimentally and numerically, the main characteristics of rough-wall
flows to inform detailed modelling and predictive capabilities over more compli-
cated boundary geometries. Rough-walled flat plate TBL with sand-grain type
roughness of lengthscale ks (as introduced by Nikuradse (1933) in his pipe-flow ex-
periments) have been studied experimentally by Prandtl and Schlichting (1934) and
in a similarity scaling analysis by Granville (1958). Jiménez [35] has identified δ/ks

as an important parameter in determining the influence of roughness on turbulent
boundary layers, where δ is the boundary layer thickness and ks is the equivalent
sand-grain roughness. The wall-normal extent to which each form of roughness
affects the boundary layer is then dependent on the regime (smooth, transitionally
rough or asymptotically rough) in which k+s = ksuτ/ν and δ/ks lie. Colebrook
[19], Nikuradse [57] and Moody [52] contributed greatly to early research through
experiments and empirical modeling. The Moody diagram for pipe flow friction
factors [51] is one of the best known tools for characterising the roughness in a form
amenable to a simple calculation of skin-friction. Modern experiments [24, 82]
have generated vast datasets on the fundamental boundary layer roughness problem,
and are a promising step towards developing advanced modeling techniques.

1.3 Overview of dissertation
The overarching subject of this dissertation is the computational study, using large-
eddy simulations, of zero pressure gradient (ZPG) turbulent boundary layer (TBL)
flows with spatially varying roughness, which represent an interesting class of prob-
lems in engineering applications. We have begun the discussion with notes on the
broader topics of turbulent boundary layers and wall roughness in this introductory
chapter. Rough-wall theory and existing experimental studies are reviewed in chap-
ter 2, followed by a description in chapter 3 of the numerical methods and code used
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in this dissertation. An interesting class of flows with constant skin-friction is then
addressed in chapter 4 by means of semi-empirical model development and LES
using the stretched vortex subgrid-scale model with wall-modeling that incorporates
a term accounting for surface roughness. This is followed by a study of flat plate
TBLwith isotropic, spatially varying roughness in chapter 5, where non-equilibrium
flows owing to transitions between smooth-rough and rough-smooth surfaces are
studied using large-eddy simulations over a range of Reτ and k+s . Chapter 6 then
explores the effects of a static patch of roughness that extends a short distance in
the streamwise direction, across the entire spanwise extent of the computational
domain, on an otherwise smooth walled boundary layer flow at high Re. A final
summary of the results, and concluding remarks are presented in chapter 7.
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C h a p t e r 2

BACKGROUND

2.1 Governing equations
The governing equations for flows considered in this dissertation are the incom-
pressible (M << 1 , M = Mach number) Navier-Stokes equations (2.1).

∂ui

∂t
+ u j

∂ui

∂x j
= −1

ρ

∂p
∂xi
+ ν

∂2ui

∂x2
j

,
∂ui

∂xi
= 0, (2.1)

ui denotes the velocity field, xi represent spatial coordinates, ν is the kinematic
viscosity, ρ the density. These equations describe the conservation of mass and
momentum within the flow field.

2.2 Rough-walled TBL
The theory behind the effect of wall roughness is briefly highlighted in this section
as a precursor to the classification of roughness elements based on flow properties.
We begin with the logarithmic velocity profile in turbulent boundary layers with a
velocity deficit ∆U+ due to roughness (2.2), as stated by Clauser [17].

u
uτ
=

1
κ

ln
( zuτ
ν

)
+ A − ∆U+

( ksuτ
ν

)
(2.2)

where, for simplicity of exposition, the Coles wake function has been omitted. Here
uτ represents the friction velocity, which is related to the wall shear stress τw such
that τw = ρu2

τ where ρ is the density, A is a constant offset parameter. Henceforth,
the application of inner scaling via uτ/ν will be denoted by a + superscript, for
example, k+s = ksuτ/ν, where ks is the equivalent roughness lengthscale of the
‘k-type’ (a discussion of this terminology follows). Studies have shown [61] the
need for an offset parameter ε to capture the effect of flow displacement relative to
the wall due to roughness.

u
uτ
=

1
κ

ln
( (z + ε)uτ

ν

)
+ A − ∆U+

( ksuτ
ν

)
(2.3)
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Figure 2.1 presents the idea of the log-layer velocity deficit using LES mean profiles
for purely smooth and purely rough-walled turbulent boundary layers. The example
presented uses a virtual-wall model, which, through a slip velocity prescription
based on the vorticity dynamics negates the requirement for DNS-like resolution in
the near-wall region. Thus the first point demonstrated in this case is in the log-layer
(the buffer layer 10 ≤ z+ ≤ 100 and the viscous sub-layer for z+ / 5 [62] are not
explicitly resolved on the computational grid).

Figure 2.1: Typical inner-scaledmean velocity plots showing log-layer deficit∆U+ =
f (k+s ) in rough-wall flow. Annotations describe filled symbol curves. Sample data
from wall-modeled LES performed as part of this dissertation. Dashed lines show
log-law dependence on inner scaled wall units z+.

In (2.2) the form of ∆U+ is not specified. The image reproduced in figure 2.2 [35]
compiles experimentally determined ∆U+ from the hydrodynamically smooth to
the fully rough regimes, and highlights that each surface type requires individual
treatment if we wish to successfully model the mean-flow effects over a large range
of k+s . A priori determination of ks remains an interesting question, and techniques
such as minimal-channel DNS [44] have been developed to allow rapid calculation
of ∆U+ and therefore a determination of ks from the mean velocity log-layer for
various roughness geometries.

Typically ∆U+, measured from experiments, allows ks to be calculated using the
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Figure 2.2: Reproduction of Figure 3 from Jiménez [35]. Log-law velocity deficit
∆U+ as a function of k+s∞, the Reynolds number based on the equivalent sand-grain
roughness ks. Symbols and broken lines represent specific types of roughness, detail
in Jiménez [35]. Solid line represents Colebrook’s full-range interpolation formula
∆U+ = κ−1 log(1 + 0.26k+s∞)

asymptotic roughness assumption; ks is not directly tied to a geometric rough-
ness measurement (but is representative of the roughness height k rather than the
boundary layer δ )[82], and in this dissertation is used as the equivalent sand-grain
roughness parameter [57]. Attempts have beenmade to tie ks to measured geometric
quantities - Flack and Schultz [24] identify the roughness root-mean-square height
krms and skewness sk as important measures that correlate the roughness function
in the fully-developed regime, suggesting (2.4). In their study, k+s > 75 is taken as
the asymptotically rough regime.

ks ≈ 4.43krms(1 + sk)1.37 (2.4)

We also note the work of Simpson [79] in the development of correlations for three-
dimensional roughness patterns, including the recognition that large k/δ would
result in roughness effects visible across the extent of the boundary layer.
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In the sense used here, we classify the sand-grain type roughness as the ‘k-type’
roughness as stated by Jiménez [35], such that δ/ks is large, with k+ >> 1. An
alternative class of roughness perturbations is the ‘d-type’, and the roughness height
relative to the boundary layer thickness δ is large (low δ/ks), such that the roughness
influence extends much further into the boundary layer than with k-type roughness.
d-type walls consist of grooves in between individual roughness elements, where
sheltering behaviour is observed such that the outer flow is isolated from the groove
resulting in partial slip-wall boundary conditions [35].

Townsend’s hypothesis is an important consideration in rough-walled TBL; he
stated that [86] at high Re, the structure of turbulence in a boundary layer remains
unaffected by the exact nature of the roughness, rather through a boundary condi-
tion effect in the viscous sublayer. The wall-normal extent of the direct influence
of roughness elements is termed the roughness sublayer. Studies with ‘k-type’
elements have supported this hypothesis [76, 66, 78, 26], and departures from the
Townsend hypothesis have been attributed to low values of δ/ks, typically when two-
dimensional roughness effects become significant. Schultz and Flack [76] studied
the rough-wall boundary layer, providing evidence for Townsend’s wall similarity
hypothesis and concluding that with sufficient separation between the roughness
scale and the largest turbulence scales, the outer layer remains unaffected except for
a boundary condition prescription via δ and uτ, the friction velocity. In terms of ex-
periment design, Jiménez [35] suggests that experiments be conducted at k+s > 100,
with δ/ks > 40 for roughness to affect less than half the log-layer extent. Flack et.
al [25] have experimentally shown that the rough element influence extends up to
three times the sand-grain equivalent height, with the potential for disruption of the
near-wall cycle as this value is approached.

Hama [29] showed the universality of the log wake law (2.2) through experiments
on pipe, channel and zero-pressure gradient boundary layer flow. The Colebrook
[19] interpolated form of the roughness function captures both transitional and fully-
rough regimes, and offers a simple model amenable to practical flow problems, and
in computational solutions to capture statistics in complex wall-bounded turbulence.

The specific geometry of roughness, despite resulting in the same ∆U+ has been
experimentally shown to have some effect on the turbulent parameters such as the
Reynolds stresses [2]. One must therefore exact caution when applying the ∆U+

formulation to arbitrarily complex roughness element geometries. Equilibriumflows
over uniformly rough and smooth walls have been studied in great detail recently
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by Squire et al. [82], who presented a detailed comparison between smooth and
rough walls for 26 ≤ k+s ≤ 155 and 2890 ≤ δ+99 ≤ 29900. Schultz and Flack [76]
considered rough-walled boundary layer flows up to Reθ = U∞θ/ν = 27100, θ being
the momentum thickness, determining that ∆U+ exhibits inflectional behaviour
when plotted against k+s in the case of three-dimensional Gaussian roughness.

2.3 Computational studies of turbulent boundary layers
The abundance of boundary layer flows in physical applications necessitates the
development and evaluation of numerical solutions of the equations of fluid motion.
Of these, Direct Numerical Simulation (DNS) provides the most accurate (and the
most computationally expensive) solution to flow problems. Other methods include
Reynolds Averaged Navier-Stokes (RANS), Large Eddy Simulation (LES), and
hybrid RANS-LES. RANS and hybrid RANS-LES approaches are typically found
in commercial applications. In the context of this dissertation, we only discuss DNS
and LES in greater detail.

2.3.1 Direct Numerical Simulations (DNS)
The method offering the highest fidelity (subject to appropriate understanding and
application of numerical stability issues, order of accuracy of differential equation
solvers, and mesh-design) in computational results is referred to as DNS. The
computational cost, in terms of the number of nodes required scales as Re6

λ where
λ represents the Taylor lengthscale. It can be shown that the majority of modes
resolved through DNS lie in the dissipative range [62], motivating the pursuit of
methods which focus on the larger, more tractable scales which dominate the energy
spectrum while modeling the effect of the smallest, dissipative scales. DNS has
been applied to problems such as transition to turbulence [74], channel flows at low
Re [38], turbulent boundary layer flow at Reθ up to 940 [88]. Given our focus on
high Re flow solutions in this dissertation, we highlight the work of Lee and Moser
[41], whose DNS of channel flow at Reτ = 5200 is (as of July 2018) the highest
achieved Reτ carried out on petascale computer architectures, representing months
of wall-clock time.

2.3.2 Large Eddy Simulations (LES)
LES can further be classified into wall-resolved (WRLES) and wall-modelled (WM-
LES) formulations. Recent work has demonstrated the efficacy of LES in complex
flow phenomena; examples include flows with transition to turbulence [75], wall-
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resolved boundary layer flows with separation and re-attachment [12] and flow over
grooved cylinders (WRLES) at high Reynolds numbers [10]. WMLES has been
used to study high-Re effects in turbulent boundary layer, channel and pipe flows
[16, 31, 72]. An opportunity exists to develop the capability to carry out LES in
complex flow scenarios with the ultimate goal of providing a viable alternative to
DNS while expanding the problem scope and minimally compromising solution
accuracy. Figure 2.3 presents a visual representation of the scale interactions in
turbulence using an image of storm clouds on Jupiter (retrieved from NASAAPOD,
7/26/2018). We present the main idea of the presence of multiple lengthscales in
turbulent flows, and schematically demonstrate the grid-requirements for LES and
DNS by considering visually discernible eddy lengthscales in figure 2.3. Interac-
tions of flows with wall boundaries introduces added complexities through vorticity
generation near walls (not shown in the image).

Figure 2.3: Schematic representation of turbulent scales on Jupiter storm clouds.
Red boxes highlight eddies of various lengthscales. White boxes highlight examples
of grids that may be used in computations. DNS resolves smaller scales, LES
requires additional equations to model their effects. Image reproduced from NASA-
APOD, annotated for purposes of this dissertation.
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C h a p t e r 3

SUBGRID-SCALE MODELLING AND NUMERICAL METHOD

3.1 Overview
The present LES uses the stretched vortex (SV) subgrid scale (SGS) model in the
outer flow developed by Misra and Pullin [50], with extensions by Chung and Pullin
[16] for smooth-walled turbulent boundary layer flows. In this model SGSs are
assumed to be comprised of vortices with orientation determined by the resolved
scale velocity field. The outer flow LES is coupled to the near-wall model through
an ODE for the friction velocity uτ obtained via the wall-normal integration of the
wall-parallel filtered streamwise momentum equation. Information from the outer
LES serves as an input to this ODE. This ODE incorporates a dynamic value for
the Kármán constant, and is not restricted to a specific form of inner scaling for
the unsteady terms. Detailed descriptions of the model have been compiled by
Inoue and Pullin [31], Saito, Pullin, and Inoue [71], Chung [14]. The following
sections discuss the numerical method, subgrid scale and wall-modelling techniques
in some detail. This chapter captures the common aspects of the LES and numerical
techniques applied to the flows in chapters 4, 5 and 6.

3.2 Large-eddy simulation with wall modelling
Expressing the velocity field ui(x, y, z, t) in terms of the filtered scale ũi(x, y, z, t) and
fluctuating components u′i(x, y, z, t), such that ui(x, y, z, t) = ũi(x, y, z, t)+u′i(x, y, z, t)
allows us to write the formally filtered Navier-Stokes (NS) equations

∂ũi

∂t
+
∂ũiũ j

∂x j
= − ∂ p̃

∂x j
+ ν

∂2ũi

∂x2
j

−
∂Ti j

∂x j
,

∂ũi

∂xi
= 0, (3.1)

for the filtered velocity field ũi(x, y, z, t), where Ti j ≡ ũiu j − ũiũ j is the subgrid
stress tensor and where subscripted variables denote three Cartesian components in
the x (streamwise), y (span-wise) and z (wall-normal) directions respectively with
corresponding velocity components u, v and w. (̃ ) denotes filtered quantities as
described in Chung and Pullin [16], presently viewed as a strictly formal construc-
tion. Henceforth we make the assumption that the formally filtered velocity ũi can
be identified with the resolved velocity in the LES.
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3.2.1 Stretched vortex SGS model
We apply the the stretched vortex (SV) subgrid-scale (SGS) model [49, 16, 31]
in the present work. This is a structure-based approach in which we assume that
the subgrid turbulent motion in each cell is given by approximately axisymmetric
tubes in every computational cell. The orientation of these vortices is given by the
eigenvectors of the local resolved scale strain-rate tensor. Considering ev as the
vortex orientation, the subgrid stress is modelled as

Ti j =
(
δi j − evi evj

)
K, (3.2)

where the model for the subgrid energy, and energy spectrum, is obtained using
the approach of Lundgren [43] on the stretched spiral vortex local solution to the
equations of fluid motion.

K =
∫ ∞

kc
E(k)dk, E(k) = K0ε

2/3k−5/3 exp
(
−2k2ν

3|ã|

)
, (3.3)

where kc = π/∆c represents the cut-off wavenumber, ∆c =
(
∆x∆y∆z

)1/3, it is tied to
the grid spacing given by the subscripted Cartesian coordinates, and a = S̃i j evi evj
gives the projection of the resolved-scale strain-rate onto the SGS vortex direction.
Integration gives

K =
1
2
K′0Γ[−

1
3
, κ2

c ], Γ[s, t] =
∫ ∞

t
us−1 exp(−u)du. (3.4)

K′0 = K0ε
2/3λ2/3

v is a group constant obtained by matching structure functions to
the local resolved-scale flow [16, 31], with λv = (2ν/3|a|)1/2, and κc = kcλv. In the
present implementation evi is aligned with the principal extensional eigenvector of
S̃i j . The advantage of such a model is that the local cell-size is the main adjustable
parameter (The model is still subject to some assumptions in its derivation).

3.3 Wall model with roughness: friction velocity uτ
3.3.1 General discussion
In wall-resolved LES, the viscous length scale ν/uτ is resolved or partially resolved
near the wall. By “partially resolved” we mean that the viscous length scale is
resolved in the wall-normal direction but may not be fully resolved in the wall-
parallel directions. Wall-normal resolution usually requires the use of a stretched
mesh that has higher resolution near the wall. A recent example is the work
of Cheng et al. [13] who use wall-modelled LES for flow past a cylinder up to
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Reynolds number ReD based on the cylinder diameter and the free-stream velocity
up to ReD = 8.5 × 105.

In wall-modelled LES, a specific wall model is used to represent both the effect
of the wall itself and also the anisotropic character of near-wall eddies. The wall
viscous scale is not resolved and in fact may be orders of magnitude smaller than
the local mesh size in any co-ordinate direction. In particular the Chung & Pullin
wall model introduces a “raised” virtual wall at height h0 above the actual wall.
As will be seen, in the rough-wall extension [71], the wall roughness scale, for
example the sand-grain roughness scale, must be smaller than h0. If this condition
is not satisfied, the roughness would begin to be of the order of the wall-normal
cell spacing, which would require specific modelling of its geometry. In this sense,
the present wall model is limited by the constraint that the roughness scale must be
subgrid.

We apply the virtual-wall model (VWM) [16, 31, 12] and include within it a
correction that is determined by the local distribution of roughness on the wall
boundary as shown by Saito, Pullin, and Inoue [71]. The key assumption used
within this wall-model is the presence of near wall vortices whose size scales with
distance away from the wall. Two key aspects of the VWMare highlighted here. The
wall-parallel streamwise momentum equation is first combined with the assumption
of inner scaling on uτ and ν/uτ as velocity and length scales for the near-wall
subgrid, streamwise velocity. For the canonical flat plate we arrive at an ordinary
differential equation (ODE) for the friction velocity uτ(x, y, t) =

√
τw(x,y,t)

ρ at each
wall point. ODE coefficients are obtained dynamically through coupling with the
outer LES at the first few wall-normal grid points. The locally determined uτ is then
combined with a log-linear approximation to a slip velocity at a raised or virtual
wall plane at a specified distance h0 from the wall. h0 is thus a model parameter and
is subgrid in the sense that h0 < h, where h ≡ ∆z is first wall-normal grid position.
The virtual-wall concept leads to the idea of an “interface” at z = h0 between the
outer LES and the wall-modelled region z ≤ h0. In the [16] approach the outer
LES informs the wall model by supplying some information in the form of resolved-
scale flow quantities and the wall model responds by supplying a slip velocity as an
effective Dirichlet boundary condition for the outer LES. The two major elements
of the model are an ODE to calculate uτ and the subsequent evaluation of both a
slip and a wall-normal velocity using a local wall-equilibrium based on Townsend’s
attached-eddy hypothesis.
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The effect of h0 on the turbulent mean velocity profiles has been explored by Chung
[15], and is presently linked to the wall-normal cell size such that h0 = 0.18∆z.
Reynolds-averagedNavier-Stokes equations are not necessary in the near-wall region
with uτ(x, y, t), and therefore h+0 ≡ h0 ν/uτ is calculated dynamically. Cheng,
Pullin, and Samtaney [12] develop a two-dimensional wall-model and demonstrate
its efficacy in the case of boundary layer flows with separation.

3.3.2 Ordinary differential equation for uτ.
The focus of this dissertation is on attached flows, hence the one-dimensional
version based on the streamwise equation of the virtual wall model is used in the
numerical setup. In both wall-modelling approaches, the flow is assumed to be in
local equilibrium when developing the equation for uτ. The present development
of the wall model follows the detailed derivation given by Saito, Pullin, and Inoue
[71]. We denote streamwise, spanwise and wall-normal coordinates, respectively by
x, y, and z while u, v, and w are the corresponding velocity components. Following
Saito [70] wall-parallel filtering and wall-normal integration operators are defined
by

φ̃ (x, y, z, t) =
∫ ∫

φ (x′, y, z′, t)G (x − x′;∆c)G (y − y′;∆c) dx′dy′, (3.5)

〈φ̃〉 (x, y) = 1
h − k (x, y)

∫ h

k(x,y)
φ̃ (x, y, z) dz, (3.6)

where φ̃ denotes wall-parallel filtering and 〈φ〉 denotes a wall-normal average, and
∆c is the filter cutoff length given by the SGS model.

We now obtain the ODE for the friction velocity uτ. Let the wall shape be y = k(x, z)
with k(x, y) = 0 and define f (x, y) ≡ k(x, y)− z. The object ( ) represents a filtering
with some length scale (of order the wall-parallel grid size) over the wall-parallel
plane. We denote the wall-normal (into the wall) by n = ∇ f /|∇ f | on f = 0.
Attention is now focused on a small control volume at the channel wall with x,
y dimensions given by the local wall-parallel grid sizes ∆x, ∆y (the local grid
size), and wall-normal dimension of scale h, which at this stage is arbitrary. The
subgrid roughness assumption is that all scales ∆x, ∆y and h are much larger than
the maximum roughness scale which can be taken as max |k(x, y)|. Of the control
surface that surrounds the control volume, four wall-normal surfaces intersect the
wall while the wall itself is the bottom surface. We now apply top-hat filtering in the
wall-normal direction and averaging as defined above to the streamwise momentum
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equation to give an integral form over the control volume

∂

∂t

y
udV = −

{
n.

(
u u +

p
ρ
I − τ

ρ

)
dS, (3.7)

where τ = 2νS and S is the strain-rate tensor. In (3.7) the right-hand side is the
momentum flux through the planes defining the control volume. The exterior forces
are pressure, and viscous terms.

For a non-planar wall the wall pressure contribution is finite. Since the roughness
is subgrid with unknown detailed shape, then both the integrated pressure and
viscous terms are generally unknown at the level of wall-modeling. We proceed
by aggregating all flux contributions, including unknown terms, and interpret flux
differences between parallel wall-normal surfaces by using wall-parallel derivatives.
This then gives, for the cell-averaged streamwise momentum equation

∂〈ũ〉
∂t
+
∂〈ũu〉
∂x

+
∂〈ũv〉
∂y

+
1
h

ũw |h = −
∂ p̃/ρ
∂x

����
h
+
ν

h
∂ũ
∂z

����
h

− 1
h

[
1

∆x ∆y

x

w

p
ρ

nx dS − ν

∆x ∆y

x

w

n.∇u dS

]
.

(3.8)

In this equation, the streamwise component of the wall normal unit vector is nx ands
w denotes an integral over the wall. The unknown pressure and viscous terms due

to roughness are now characterised by the definition of the wall- friction velocity uτ

u2
τ =

1
∆x ∆y

x

w

p
ρ

nx dS − ν

∆x ∆y

x

w

n.∇u dS =
1
ρ
τw, (3.9)

where τw is now the total surface drag force per unit projected area and ( ) now
refers to an average over the intersection of the control volume (cell) and the wall.
Equation (3.8) can now be written as

∂〈ũ〉
∂t
+
∂〈ũu〉
∂x

+
∂〈ũv〉
∂y

+
1
h

ũw |h = −
1
ρ

∂ p̃
∂x

����
h
+
ν

h
∂ũ
∂z

����
h
− 1

h
u2
τ . (3.10)

It is recognised that τw contains both pressure and viscous contributions and so
represents a pressure-viscous force per unit area rather than a pure viscous force as
for the smooth-wall case. The smooth-wall case is recovered with k(x, y) ≡ 0 and
n = (0, 1, 0).
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3.3.3 Inner scaling ansatz
Following [16] the unsteady term in Equation (3.10) is now treated with a general
form of inner scaling combined with an empirical roughness correction to represent
the additional momentum deficit, and increased surface drag, produced by the
roughness elements. This downward shift is presently modelled using a general
roughness function ∆U+. This can be included in the inner-scaling ansatz as

ũ(x, y, z, t) = uτ(x, y, t)
(
F1

(
z+

)
− ∆U+

(
k+s

) )
, (3.11)

where z+ = z uτ/ν and k+s = uτks/ν. In (3.11), F1 (z+) appears for smooth and rough
walls, whilst ∆U+

(
k+s

)
is the roughness correction function expressed in terms of

an equivalent sand roughness, ks and k+s ≡ ks uτ/ν. Using this and now applying a
the wall-normal average we obtain

∂

∂t
〈ũ〉 = d

dt

(
uτ
h

∫ h

0

[
F1

(
z+

)
− ∆U+

(
k+s

) ]
dz

)
(3.12)

Here uτ = uτ (x, z, t) and so varies both temporally and from point-to-point across
the wall. Differentiating (3.11) with respect to uτ then gives

∂ũ
∂uτ
= F1(z+) + z+F′1(z

+) − ∆U+
(
k+s

)
− k+s ∆U′+

(
k+s

)
=

d(z+F)
dz+

−
d(k+s ∆U+)

dk+s
.

(3.13)
Appling wall-normal averaging as defined by (3.6) then leads to

∂〈ũ〉
∂uτ

=
ũ|h
uτ
− k+s

∂∆U+

∂k+s
. (3.14)

Where ũ|h is interpreted as the right-hand side of (3.11). Subsequently this will be
replaced or identified with the streamwise velocity obtained from the LES at the
first grid point away from the wall. Equation (3.12) can then be written in the form

∂

∂t
〈ũ〉 = ∂〈ũ〉

∂uτ

∂uτ
∂t
=
∂uτ
∂t

(
ũ |h
uτ
− k+s

∂∆U+

∂k+s

)
. (3.15)

We remark that (3.15) follows from (3.11) - (3.12) for arbitrary F1(z+) and ∆U+(k+s ).
It is particularly useful that integrals of F1(z+) do not appear in equation (3.15) owing
to cancellation. Hence, perhaps surprisingly, this function need not be known in
detail for the operation of the wall model.

We can now obtain an ordinary differential equation (ODE) for uτ at each wall
grid-point by substituting (3.15) into (3.10) and by making a simple approximation
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of the filtered-averaged nonlinear terms as values at y = h (one-point estimates).
This gives

duτ
dt
=

−∂ũu
∂x

����
h
− ∂ũv
∂y

����
h
− ∂P̃
∂x

����
h
− 1

h
ũw |h +

ν

h
∂ũ
∂z

����
h
− 1

h
u2
τ

ũ |h
uτ
− k+s

∂∆U+

∂k+s

. (3.16)

The wall-normal height h is arbitrary. Previous experience ([16, 70, 13]) indicates
that a good choice for h should correspond to the first or second grid cell of the LES
domain. Surface roughness appears in (3.16) as the derivative of ∆U+ with respect
to k+s . Note that since uτ is dynamic then both k+s and this derivative will also be
a dynamic part of the right-hand side of the ODE. We also remark that (3.16) can
be used for boundary layer flows in the presence of pressure gradient (the present
focus is still on the zero pressure gradient case). As pointed out by Saito, Pullin,
and Inoue [71] (3.16) can in principle be extended to two wall-parallel co-ordinates
and also to wall curvature effects. Generalisation to arbitrary roughness functions
with multiple scales and horizontal distributions ∆U+(k+(1)s , k+(2)s , k+(3)s , ...) is also
possible.

3.3.4 Slip velocity at a virtual wall
A summary of the derivation of the slip velocity is given by Inoue & Pullin [31].
This is not given presently in detail. But the main idea is to utilize the attached-eddy
hypothesis by assuming that in the wall-modeled region 0 ≤ z ≤ h0, the near-wall
eddies are attached and almost parallel to the wall, while in the outer LES the
eddies are detached and have no knowledge of the wall save for the effect of uτ as
incorporated in the slip velocity at y = h0. For smooth walls this gives a log-relation
for the slip velocity above smooth walls as

ũ = uτ

(
1
K1

log
(
z+

)
+ A

)
, (3.17)

where

K1 = −
γI I K1/2

2 (−Txz)
, (3.18)

is a dynamically calculated von Kárman “constant”. In (3.18), Txz is an estimate of
the Reynolds stress obtained from the outer LES at the first grid point and the vertical
momentum mixing constant is given by γI I = 0.45 has been calculated by matching
model Reynolds stresses from both the outer LES and the wall-modelled region at
z = h0 using the Townsend attached-eddy model [16]. The quantity K is a measure
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of the local subgrid turbulent kinetic energy obtained from the stretched-vortex
model as described above. This can be extended to rough surfaces by incorporation
of the roughness correction ∆U+

(
k+s

)
. This leads to the model profile in the overlap

layer above rough surfaces as

ũ = uτ

(
1
K1

log
(
z+

)
+ A − ∆U+

(
k+s

) )
. (3.19)

Equation (3.19) is now used to calculate a slip-velocity boundary condition at the
flat, lifted virtual wall at h0 > k(x, z). This requires that the roughness be subgrid.
The slip velocity can then be expressed as

ũ |h0= uτ

(
1
K1

log
(
h+0

)
+ A − ∆U+

(
k+s

) )
, (3.20)

Typically, the height of the virtual wall h0 is determined as some fraction of the first
grid size, and presently h0 = 0.18∆y is used following [16].

To implement the wall model, (3.16) is solved for uτ. Then the log-relation in
Equation (3.20) is used to obtain the slip velocity at the lifted virtual wall at y = h0.
Coupling with the outer LES occurs because some terms (3.16), as well as the shear
stress Txy needed for evaluating K1, are supplied by the outer LES. In turn the wall
model supplies the slip velocity for the outer LES. Any roughness type for which a
model of ∆U+(k+s ) is known can be incorporated.

3.3.5 Wall-normal velocity boundary condition
We have yet to discuss the wall-normal velocity at the lifted wall. The filtered
continuity equation is

∂ũ
∂x
+
∂ṽ

∂y
+
∂w̃

∂z
= 0. (3.21)

Integrating (3.21) in 0 − h0 and assuming zero filtered span-wise velocity gives the
wall-normal velocity as

w̃ |h0= −h0
∂〈ũ〉
∂x

. (3.22)

Again using an inner-scaling argument for the derivative leads to the wall-normal
velocity boundary condition,

w̃ |h0= −h0
∂uτ
∂x

(
ũ |h0

uτ
− k+s

∂∆U+

∂k+s

)
. (3.23)
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3.3.6 Example of roughness function
Jiménez [35] gives an extensive discussion of roughness functions for various sur-
faces. A particular ∆U+ will generally be determined by the specific surface type
through either theory, experiment or perhaps DNS at moderate Reynolds number. It
is considered an input to the present wall model. As a specific example that will be
used in the present work, we discuss briefly the Colebrook empirical formula that
spans smooth walls (k+s ≤ 5) through the roughness transition regime to the fully
rough limit k+s > 100

∆U+ =
1
K1

log
(
1 + β k+s

)
. (3.24)

where β is a defined constant. Equation (3.16) then becomes

k+s
∂∆U+

∂k+s
=

1
K1

β k+s
1 + β k+s

, (3.25)

while (3.20) is then

ũ |h0= uτ

(
1
K1

log
(
h+0

)
+ A − 1

K1
log

(
1 + β k+s

) )
. (3.26)

It will be evident from the above discussion and development that the present wall
model effectively assumes that, in the wall-modelled region, the flow is in a state of
local equilibrium with the wall state be this either smooth or rough. In the present
applications, this will constitute a rather thin slab of order 0.5 ∼ 1% of the local
boundary-layer thickness δ99 (the exact value varies with grid resolution). The use
of Townsend’s hypothesis is an essential statement that the wall surface state is
communicated to the outer flow through the friction velocity. However there is two-
way inner-outer coupling in the sense that the outer LES information also affects the
local wall state in determining uτ.

Due to the local, dynamic nature of the present wall model, uτ is a spatially and
temporally varying function. Consequently, both k+s and thus ∆U+(k+s ) also vary
spatially and temporally on the wall. In referring to LES results that follow, we use
the notation uτ to refer to either time or spatially averaged values but, for simplicity,
redefine u+ = u/uτ, U+∞ = U∞/uτ.

The inclusion of the wall-model with a roughness correction ∆U+[k+s ] only modifies
the near-wall behaviour, and the outer LES, coupled through the ODE for uτ in the
wall-model, is modified only through interaction with the modelled inner dynamics.
This is consistent with the notion of outer flow modification due to changes in
boundary condition through the inclusion of surface roughness in a physical sense.
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3.3.7 Details of the numerical method
The numerical method implemented for LES of boundary-layer flow in this disser-
tation is described in detail in publications [31, 12, 83], with key aspects presented
here. The discrete form of the Navier Stokes equations (incompressible) are given
as follows,

un+1 − un

dt
= −Gp −

(3
2

Nun − 1
2

Nun−1
)
+

1
2Re

(
Lun+1 + bn+1

1 + Lun + bn
1

)
(3.27)

with the discretised divergence free condition given by

Dun+1 = bn+1
2 (3.28)

In (3.27) and (3.28), N represents the convective operator, D is the divergence oper-
ator, L is the Laplacian operator, G is the gradient operator, b1 and b2 represent the
boundary condition vectors for the momentum equation and divergence-free equa-
tions respectively, u is the discretised velocity field. We can define an operator A to
implicitly represent the advection-diffusion component of the momentum conserva-
tion equation. The specific form of A is tied to the numerical approximation in the
time-stepping, and discussed shortly hereafter. A three-stage low-storage Runge-
Kutta method [81] is used to integrate (3.1) and (3.16) in time with the inclusion of
the fractional-step method [60] at each stage. We summarise the equations of this
temporal scheme specific to the present implementation here,

Au∗n+1 = rn + βnb1, A = I − βndt
Re

L (3.29)

dt(αn + βn)DGp = (Du ∗n+1 +b2) (3.30)

un+1 = u ∗n+1 −dt(αn + βn)Gp (3.31)

rn = dt
[
− γnNun − ζnNun−1 + αn(Lun + bn

1)
]

(3.32)

Constants αn, βn, γn, ζn for n = 0, 1, 2 are detailed in Spalart, Moser, and Rogers [81],
and we do not list them here for brevity. The formulation presented in (3.29)-(3.32)
serve as an approximate solution of the matrix-vector (LU diagonalised) form of
(3.27). By treating the wall-normal viscous term implicitly, we obtain a modified
Helmholtz equation for the velocity update together with a pressure Poisson equation
followed by the velocity correction step [31]. Solving the pressure Poisson equation
facilitates the projection of the intermediate velocity field (which is not necessarily
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divergence free) onto a divergence-free field while keeping its vorticity constant.
The time step is constrained by the CFL number, with the maximum allowable value
determined by the velocity field such that max(|u|/∆x, |v |/∆y, |w |/∆z)dt ≤ 1.

For spatial discretisation, a fourth-order accurate finite-difference scheme is utilised
in the x and z-directions while Fourier-series expansions of the velocity and pressure
terms are employed in the y-direction, since we assume spanwise periodic flow.
A staggered grid is used, following the scheme of Morinishi et al. [53] in the
streamwise/wall-normal (x−z) planewhere the (u,w) velocity components are stored
at the centers of (x, z) cell faces with cell-centered storage in the y direction.. The
skew-symmetric form of convective terms is utilised to improve energy conservation
and de-aliasing behaviour. To ensure the usage of a consistent stencil in the interior,
ghost points are utilised in the exterior of the domain (in the non-periodic directions
of the flow), with boundary conditions in the v and uv terms determined by the
discretised continuity and momentum conservation conditions respectively. The
Poisson equation for pressure reduces to a sequence of one-dimensional equations
in the wall-normal z-direction through a combination of spectral representation
in the spanwise y coordinate with a fast-cosine transform in x (hence we term
this framework a pseudo-spectral code). The overall numerical method has been
validated using low Reθ direct numerical simulations [31] of the turbulent boundary
layer.

The base flow is span-wise (y) periodic, has a prescribed velocity wtop derived from
the zero-vorticity condition with an inviscid outer flow at the upper boundary of the
computational domain and a convective boundary condition at the streamwise exit
plane as follows,

wtop = U∞
dδ∗

dx
,

∂u
∂t
= Uc(z)

∂u
∂x
, (3.33)

where Uc(z) is the mean streamwise exit velocity and the displacement thickness is
given by

δ∗ =

∫ Lz

0

(
1 − u

U∞

)
dz (3.34)

The value dδ∗/dx is represented by a single streamwise average [31]. A turbulent
initial condition is used, and turbulent flow is sustained through an inflow condition
generated by a recycling method specific to the domain formulation, but based on
the work of Lund, Wu, and Squires [42], and described in greater detail in chapters
4 and 5.



23

C h a p t e r 4

SEMI-EMPIRICAL MODEL FOR TBL WITH LINEAR
VARIATION IN SURFACE ROUGHNESS

This chapter includes results and discussions adapted from

[1] A. Sridhar, D. I. Pullin, andW.Cheng. “Rough-wall turbulent boundary layers
with constant skin friction”. In: Journal of Fluid Mechanics 818 (2017),
pp. 26–45. doi: 10.1017/jfm.2017.132.

4.1 Overview
In this chapter, we examine an interesting class of turbulent boundary layer flows
with constant skin-friction. In adhering to the overall theme of this dissertation,
we identify, based on previous experimental data [37] and similarity analysis [85],
a class of equilibrium turbulent boundary layer flows which occur when the wall
comprises of a linearly increasing equivalent sand-grain roughness measure ks.
Skin-friction typically represents an important metric in engineering analyses and
practical applications, and it is therefore of interest to examine these flows in greater
detail. We focus on zero pressure gradient flows in this chapter, but briefly comment
on the results for Falkner-Skan and sink flows.

4.2 Background
Turbulent wall-bounded flows with streamwise constant skin-friction coefficient
C f comprise an interesting class of turbulent flows with mean-flow self-similarity.
Examples for internal flows are turbulent pipe flow and open channel flow that exhibit
streamwise statistical invariance. For fully developed turbulent flow in a pipe of
diameter D with statistically uniform sand-grain type surface roughness whose
length scale ks satisfies ks/D << 1 and where k+s ≡ ks uτ/ν is sufficiently large,
the experiments of Nikuradse [57] showed that the average wall-friction coefficient
C f = 2 τw/(ρ u2

b), (τw is the average wall shear stress and ub the bulk flow speed)
becomes independent of Reynolds number Reb ≡ ub D/ν when this is sufficiently
large, and depends only on ks/D. This is referred to as the “fully-rough” regime
(see Jiménez [35] for a discussion) where the dominant near-wall physics length

http://dx.doi.org/10.1017/jfm.2017.132
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scale is ks rather than the viscous scale ν/uτ, where u2
τ = τw/ρ is the square of the

wall friction velocity. Using a roughness correction suggested by Colebrook [19],
Moody [52] developed an empirical characterisation of C f (Reb, ks/D) known as the
Moody diagram that covered part of the transitionally-rough regime (where both
Reb and ks/D effects are present), and the fully-rough regime.

The flow of a zero-pressure-gradient turbulent boundary layer (ZPGTBL) at large
Reynolds number over a plate covered with sand-grain type roughness of streamwise
constant ks was considered by Prandtl and Schlichting [65] and Granville [28]. For
a plate of length L, when ReL = U∞ L/ν becomes large, Granville developed
a model showing that if ks/L << 1 is held constant, then the total steam-wise-
integrated frictional drag coefficient CD becomes independent of ReL at sufficiently
large values and depends only on ks/L. Here the local skin-friction coefficient
C f (ReL, ks/L, x/L) also becomes independent of ReL but is not streamwise constant.

A class of boundary-layer flows with spatially constant skin-friction coefficient was
discussed by Rotta [69] who gave quantitative arguments for the hypothesis that, for
the ratio of the local outer flow speed to the skin-friction velocity to be spatially
invariant, surface roughness whose sand-grain-type scale ks varies linearly with
streamwise distance must be present. Specific parameterisations or calculations
were not provided. Kameda et al. [37] measured the wall skin friction for a flat-plate
boundary layer over a wall in the presence of a two-dimensional k-type roughness
with length scale that varied linearly with distance x from the leading edge. They
observed that U+∞ was nearly constant in x and that the layer thickness increased
linearly with x. This idea was developed further by Talluru et al. [85] who used a
self-preserving analysis based on the equations of motion to argue that the data of
Kameda et al. [37] support self-similarity of the ZPGTBL when ks ∼ x.

In this chapter we first develop a simple semi-empirical model for high Reynolds
number turbulent boundary-layer flowswith streamwise spatially-varying, nominally
sand-grain-type surface roughness in the presence of an outer flow whose velocity
varies asU∞ = P xm where P is a dimensional constant. Themodelmakes use of the
log-wake law with assumed streamwise constant parameters combined with a fully-
rough representation of the streamwise velocity roughness correction, and further
utilises the von Kármán boundary-layer integral equation under the assumption that
all terms are constant in the streamwise direction. This shows that ks proportional
to streamwise distance x is required for closed, self-similar solutions. Several
cases of interest are discussed and comparisons with the results of Kameda et al.
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[37] are made. The main focus is the zero-pressure gradient turbulent boundary
layer. Large-eddy simulations (LES) of this flow using a wall-model with linearly-
varying streamwise roughness are presented. The LES utilises the stretched-vortex
subgrid-scale model of Misra and Pullin [49] combined with the virtual-wall model
(VWM) [16, 31] for high-Reynolds number turbulent flow that incorporatesmodeled
subgrid wall roughness [71]. It is found that, at sufficiently large Reynolds number,
U+∞ = U∞/uτ becomes independent of Rex and depends only on the dimensionless
parameter α that characterises the roughness growth. Comparisons of LES results
with model predictions are discussed.

4.3 Flows with linear roughness
4.3.1 Mean velocity profile
We consider turbulent boundary layers with power-law wall-roughness ks = K xn

where ks is the local surface roughness height at the streamwise co-ordinate x with
an origin such that both ks and all measures of the boundary layer thickness are
zero at x = 0. The length-scale of streamwise roughness variation is K1/(1−n). A
Reynolds number Rex ≡ U∞(x) x/ν is considered sufficiently large that flow is fully
turbulent. It is assumed that the velocity profile within the boundary layer at any
streamwise station is given by the classical log-wake relationship

u(z)
uτ
=

1
κ

(
log

(
(z + ε) uτ

ν

)
+ ΠW

( z
δ

))
− ∆U+

(
ks uτ
ν

)
+ A, (4.1)

where κ is the Kármán constant, z a suitably defined wall-normal distance, A an
offset constant, W the wake function with W(1) = 2 [20], Π the Coles wake factor
and ε a roughness offset parameter. The latter is often used to account for an overall
wall-normal shift of the logarithmic region in the presence of wall roughness: see
Squire et al. [82] for discussion. It is expected that ε = O(ks). In the LES to
be described, first, the roughness is considered subgrid with ks smaller than the
near-wall cell size, and second, we will mainly consider flows for which δ/ks >> 1.
Hence this correction is presently neglected by taking ε = 0.

In (4.1) ∆U+(k+s ) is a roughness function that quantifies the effect of surface rough-
ness on the mean velocity profile. Various forms of ∆U+(k+s ) are discussed in
Jiménez [35]. An implicit present assumption is that the streamwise variation of
∆U(k+s ) is sufficiently slow that the developing boundary layer can adjust to local
roughness conditions. We assume a standard form for fully rough conditions

∆U+(k+s ) =
1
κ

log
(
k+s

)
+ A − B, (4.2)



26

where k+s = ks uτ/ν, where B ≈ 8.5 is a constant. In (4.2) ks is to be interpreted as
the equivalent sand-grain roughness of the surface in the sense of Nikuradse [57].
This gives

u(z)
uτ
=


1
κ

(
log

(
z
ks

)
+ ΠW

( z
δ

))
+ B, z < δ,

U∞
uτ
, z > δ,

(4.3)

where the length scale δ is defined such that

U+∞ ≡
U∞
uτ
=

1
κ

(
log

(
δ

ks

)
+ 2Π

)
+ B. (4.4)

We utilize a simple model for the wake function [63].

W
( z
δ

)
= 2 sin2

(π z
2 δ

)
. (4.5)

The displacement thickness δ∗ and the momentum thickness θ can now be obtained
as

δ∗ =

∫ δ

0

(
1 − u

U∞

)
dz,

= δ
1 + Π

κ B + 2Π + log(δ/ks)
, (4.6)

θ =

∫ δ

0

u
U∞

(
1 − u

U∞

)
dz,

= δ
Π2 − 4 + 2 κ B (1 + Π) + 2 (1 + Π) log(δ/ks) − 4ΠQ/π

2 (κ B + 2Π + log(δ/ks))2
, (4.7)

where
Q = Si(π) ≡

∫ π

0

sin z
z

dz = 1.85194. (4.8)

In both (4.6) and (4.7) the log-wake profile is used down to z = 0. This gives
integrable singularities at z = 0. Since at large Reynolds number with δ >> ks, the
roughness sub-layer can be expected to make negligible contributions to the overall
mass and momentum transport across the boundary layer, the error incurred is small
while the analytical simplification is substantial. Also, it can be seen in (4.6) and
(4.7) that both δ∗ and θ show a nonlinear dependence onΠ. The possible dependence
of Π on surface roughness conditions has been discussed in the literature [40, 37].
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In the following model it will be required that Π be streamwise constant and so this
approximation will be used subsequently.

The Rotta-Clauser parameter, sometimes used as a measure of the outer scale of the
boundary layer is defined as ∆ ≡ U+∞δ

∗. Using (4.4) and (4.6) it follows that

∆

δ
=

1 + Π
κ

. (4.9)

This is independent of the following model development.

4.3.2 Two-parameter model
The Kármán integral relation can be written as

d θ
d x
=

(
uτ
U∞

)2
− θ

U∞

dU∞
dx

(
2 +

δ∗

θ

)
, (4.10)

where U∞ = U∞(x), uτ = uτ(x). We now consider conditions under which all terms
of (4.10) are constant. This immediately implies that uτ/U∞ is independent of x,
and that θ ∼ x. It then follows from (4.4) that δ/ks is independent of x and so
δ ∼ ks(x). If it is assumed that all of κ, B,Π are independent of x, then, since θ ∼ x,
it follows from (4.6) and (4.7) that both δ ∼ x and δ∗ ∼ x. Since δ ∼ ks(x) then
the only possibility is ks ∼ x in agreement with Rotta [69], Kameda et al. [37],
and Talluru et al. [85] for the zero-pressure gradient boundary layer where U∞ is
constant. Since n = 1 then the flow does not contain a finite length scale associated
with the streamwise variation of roughness and, at large Rex , is therefore fully self
similar with similarity variable proportional to z/x. Hence we put

ks = α x, (4.11)

where α is a dimensionless constant. For power law outer velocity profiles U∞ =

P xm where P is a dimensional constant it can now be seen that the second term on
the right-side of (4.10) is constant for arbitrary m.

Next we put δ = ε x, where ε is to be determined. Hence δ/ks = ε/α. Substituting
(4.4), (4.6) and (4.7) into (4.10) and simplifying then gives

−2 κ2 π + ε (−4 − 8 m + 2 B κ (1 + 3m)(1 + Π) + Π(Π + m (4 + 6Π))) π
− 4 ε (1 + 2m)ΠQ + 2 ε (1 + 3m)(1 + Π) π log(ε/α) = 0. (4.12)

The above can be summarised as follows: Wefix κ, B,Π as given numerical constants
(independent of x) giving a two-parameter (m, α) model. For given (m, α), (4.12)
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is then a transcendental equation for ε that can be solved numerically. We note in
passing that, for given ε , (4.12) can be in fact be solved analytically for α(ε) giving
closed form solutions. But we prefer to fix α as the physical control parameter and
so proceed numerically. Once ε is known U∞/uτ follows from (4.4) while δ∗/x ≡
Reδ∗/Rex and θ/x ≡ Reθ/Rex can be obtained from (4.6) and (4.7) respectively.
For general m, and at finite viscosity ν, there exists a length scale (ν/P)1/(m+1) and
a streamwise Reynolds number Rex = P x1+m/ν. The case m = 0 corresponds to
the ZPGTBL with P = U∞ for which the length scale is the inverse of the unit
Reynolds number U∞/ν. An exception is m = −1 where no length-scale exists and
the Reynolds number is independent of x.

Asymptotic behaviour when α→ 0

If log(ε) is neglected compared with log(α) in (4.12), an asymptotic form for ε when
α→ 0 can be obtained. For illustrative purposes we display this for m = 0 only as

ε =
2 κ2 π

(−4 + Π2 + 2 B κ (1 + Π)) π − 4ΠQ − 2 (1 + Π) π log[α]
+ HOT . (4.13)

When α→ 0 so that | log[α]| >> 1, this becomes

ε ≡ δ

x
= − κ2

(1 + Π) log[α] + HOT . (4.14)

Substitution into (4.6) and (4.7) gives

δ∗

x
=

(
κ

log[α]

)2
+ HOT,

θ

x
=

(
κ

log[α]

)2
+ HOT . (4.15)

Substitution of (4.13) into (4.4) then shows that

U+∞ = −
1
κ

log(α) +O (log(− log(α))) , α→ 0, (4.16)

and is singular in this limit. It can be verified that (4.9) is satisfied to leading order
and further, that when α → 0, H ≡ δ∗/θ → 1. The model is not asymptotic to
smooth-wall flow when α → 0. Smooth-wall flow always requires a description of
Reynolds number effects which are not included in the analysis.

4.3.3 Self-similar mean-velocity profiles
If the outer flow is given by fixing m, the only remaining parameter is the roughness
slope α, and so all quantities are then functions of α. For α fixed, the mean velocity



29

profile can now be written in a self similar form with similarity variable η ≡ z/(α x)

u(z)
uτ
=


1
κ

(
log (η) + 2Π sin2

(
π α

2 ε(α) η
))
+ B, η < ε(α)/α

U+∞, η > ε(α)/α.

(4.17)

Using continuity, the wall-normal velocity component is

w(z)
uτ
=


1
κ

[
α η

(
1 − Π cos

(
π α

ε(α) η
))
+
ε(α)Π
π

sin
(
π α

ε(α) η
) ]
, η < ε(α)/α

ε(α)(1 + Π)
κ

, η > ε(α)/α.
(4.18)

The streamline slope at z = δ = ε(α) x is(
dz
dx

)
z=δ
=

ε(α) (1 + Π)
B κ + 2Π + log(ε(α)/α) . (4.19)

The above model can easily be formulated with α replaced by a specified value of
ks/δ as the independent parameter. While this is somewhat closer to the concept
of the fully-rough limit of the Moody diagram, with here ks/δ playing the role of
ks/D for a pipe flow, we nonetheless retain α as the parameter because this will be
defined by a given roughness profile.

4.4 Some special cases
Three cases of interest are:

4.4.1 Falkner-Skan flows
For Falkner-Skan type boundary layer flows, m = β/(2 π − β) where β > 0 is a
wedge double angle. Here the streamwise co-ordinate x has an origin at the start of
the boundary layer and m > 0. The pressure gradient is favourable and it may be
expected that Π is approximately constant. This case is not discussed further.

4.4.2 The zero-pressure-gradient turbulent boundary layer m = 0
Here x > 0where x = 0 is the virtual origin of the boundary-layer growth. Tables 4.1
and 4.2 show the model parameters calculated numerically for four values of α. First
numerical values of κ, B,Π are specified with m = 0. For several values of α, (4.12)
is then solved numerically for ε = δ/x. The quantity δ/ks = (δ/x)/(ks/x) = ε/α can
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Table 4.1: Numerical results for boundary layer with m = 0, ks = α x, x > 0.
κ = 0.384, B = 8.5,Π = 0.55 using the model of §4.3.2. Values of α specified with
other quantities calculated from model as described in §4.4.2.

α U+∞
θ
x

δ∗

x ε = δ
x

δ
ks

10−7 40.46 6.08×10−4 7.36×10−4 7.40×10−3 7.40 × 104

10−6 35.03 8.15×10−4 1.02×10−3 8.86×10−3 8.86 × 103

10−5 29.60 1.14×10−3 1.49×10−3 1.10×10−2 1.10 × 103

10−4 24.30 1.69×10−3 2.39×10−3 1.44×10−2 1.43 × 102

10−3 19.22 2.71×10−3 4.28×10−3 2.04×10−2 2.04 × 101

Table 4.2: Numerical results for boundary layer with m = 0, ks = α x, x > 0.
κ = 0.384, B = 8.5,Π = 0.36 using the model of §4.3.2. Values of α specified with
other quantities calculated from model as described in §4.4.2.

α U+∞
θ
x

δ∗

x ε = δ
x

δ
ks

10−7 39.91 6.23×10−4 7.48×10−4 8.42×10−3 8.42 × 104

10−6 34.38 8.45×10−4 1.04×10−3 1.01×10−2 1.01 × 104

10−5 28.95 1.19×10−3 1.53×10−3 1.25×10−2 1.25 × 103

10−4 23.65 1.79×10−3 2.45×10−3 1.63×10−2 1.63 × 102

10−3 18.56 2.96×10−3 4.42×10−3 2.32×10−2 2.32 × 101

Table 4.3: Comparison of present model of §4.3.2 with experiments of Kameda
et al. [37]: α = 0.0055, m = 0, κ = 0.384, B = 8.5. ∆R−C = δ∗U∞/uτ is the
Rotta-Clauser parameter. Values of H for experiment obtained using an average of
δ∗, θ tabulated in Talluru et al. [85].

Case Π U+∞
θ

x
δ99

k
∆R−C

k
H =

δ∗

θ
Model 0.70 16.21 0.00380 16.66 92.64 1.88

0.55 15.67 0.00407 18.26 92.86 1.82
E xpt . 15.56 0.00477 19.43 78.33 1.83

Table 4.4: Numerical results boundary layer sink flow with m = −1, ks = α x,
x < 0. κ = 0.384, B = 8.5,Π = 0 using model of §4.3.2. Values of α specified
with other quantities calculated from model.

α U+∞
θ
(−x)

δ∗

(−x) −ε = δ
(−x)

δ
ks

β

−10−7 36.97 3.38×10−4 3.94×10−4 5.59×10−3 5.59 × 104 −0.538
−10−6 31.43 4.61×10−4 5.52×10−4 6.66×10−3 6.66 × 103 −0.545
−10−5 25.98 6.58×10−4 8.24×10−4 8.21×10−3 8.21 × 102 −0.556
−10−4 20.65 1.00×10−3 1.34×10−3 1.06×10−2 1.06 × 102 −0.572
−10−3 15.53 1.65×10−3 2.49×10−3 1.49×10−2 1.49 × 101 −0.600
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then be calculated which enables calculation of U∞/uτ using (4.4). Finally δ∗/x ≡
Reδ∗/Rex and θ/x ≡ Reθ/Rex are calculated using (4.6) and (4.7) respectively.

We fix κ = 0.384, B = 8.5 which are standard values ( we note that these cannot be
independently selected). The value of Π is somewhat uncertain. We use a standard
value Π = 0.55. Solving (4.9) for Π gives Π = κ (∆/δ) − 1. In the LES to be
described it was found that for the higher resolution runs, ∆/δ99 = 3.54 independent
of α. If we identify δ99 (LES) = δ (model), then we calculate Π = 0.36 which
will be taken as an alternative value. These values are used in Tables 4.1 and 4.2
respectively which can be taken to show the effect of Π on the calculated results.
Calculations were also done (not shown) using an alternative algebraic form of the
wake function W(z/δ) (see Jones, Marusic, and Perry [36]) with small effect on
calculated quantities for the same specified κ, B,Π. In the tables it may be seen
that as α increases, U∞/uτ decreases meaning that C f increases with increasing
roughness in qualitative agreement with rough-wall pipe flow.

The roughness elements used by Kameda et al. [37] for the ZPGTBL were of two-
dimensional riblet-like form with rectangular cross section. Their height k to width
w ratio was k/w = 1 while the element separation was (b + w)/k = 4. The local
root-mean square roughness height is σ =

√
3/4 k and the riblet height increased

linearly as dk/dx = 0.00125. In order to compare results of the present model
with Kameda et al. [37], the equivalent sand-grain roughness ks for the rectangular
roughness elements must be determined. We estimate this at a single station and
assume a linear dependence on the distance x from the leading edge. From Figures
7 and 9 of Kameda et al. [37], ∆U+ ≈ 13.2 at x = 3.340 m while from their Figure
4, C f = 0.00826 gives U+ = 15.56. Using k+s ≡ ks (U∞/ν)/U+, their unit Reynolds
number ofU∞/ν = 6.24×105 m−1 and substituting into (4.2)with κ = 0.384, B = 8.5
then gives ks ≈ 0.018m at x = 3.340 m. This gives α = ks/x = 0.0055 which is
3.7 times the growth in k given by dk/dx = 0.00125 [37]and more than 8 times
the rms value of the surface roughness. Values of equivalent sand-grain roughness
that are substantially larger than the physical roughness scale have been observed
previously. For example Squire et al. [82] report that the equivalent ks for a specific
sand-paper roughness is about 13 times the measured wall-normal root-mean-square
length scale of the surface profile.

Results from the present model with α = 0.0055 are shown in Table 4.3 for two
values of Π = 0.70, the value suggested by Kameda et al. [37], and Π = 0.55. In
making a comparison with experiment we have identified δ = δ99. The present
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model assumes the existence of a log regime. Jiménez [35] remarks that δ/k ≥ 40
is needed in order to produce a finite log layer, otherwise the log-layer may be
suppressed by the wall-normal extent of the viscous roughness sublayer. Kameda
et al. [37] find δ/k ≈ 19.4. Since we have

k+s =
(
δ99

ks

)−1
Reτ, (4.20)

then large k+s > 100 (asymptotically rough regime) coupled with large δ99/ks

requires large Reτ. In Kameda et al. [37], Reτ ∼ 2200 − 4030 which is on the low
side for this.

4.4.3 Boundary-layer sink flow m = −1
Boundary layer sink flow given by m = −1. Here, to a good approximation we
may take Π = 0 [21, 36]. For this case x < 0 with the origin of x at the sink.
Hence ε < 0, α < 0. The calculated parameters for this flow are given in Table
4.4. These parameters can be seen to be qualitatively similar to the zero-pressure
gradient case. Pure sink flow exhibits some special features. First, Rex = P/ν is
constant; the Reynolds numbers at all streamwise stations are the same, and so there
exists a family of sink flows with parameter P/ν. In other words, with P and ν fixed,
large Reynolds number cannot be achieved with a sufficiently long plate. Second,
the boundary layer for pure sink flow for the smooth-wall case is of equilibrium
form and is self-similar [21]. As a result, the present model applied to sink flow
with linearly reducing roughness can in fact be mapped into the smooth wall case.
Calculation shows that the equivalence is (uτ/U∞)α→ ν/P. So for pure sink flow,
both the smooth-wall flow and the sink flow with linearly decreasing roughness at
large Reynolds number are self similar.

While the Clauser parameter β = δ∗/τw dp/dx is useful mainly for flows with
adverse pressure gradients [18], it is interesting that this is exactly constant for the
present class of rough-wall flows. It is straightforward to show that

β = −m
(
U∞
uτ

)2
δ∗

x
(4.21)

and is negative for flows with favourable pressure gradients. Values for m = −1 are
given in Table 4.4. These can be seen to be small in magnitude.

4.4.4 Recycling
For generating the inflow, we refer to the recyclingmethod by Lund,Wu, and Squires
[42], in which the components of inflow velocity, including mean and fluctuation
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parts, are mapped from the flow field at an internal plane. This mapping idea
originates from the scaling-similarity property of boundary layer flow. Similar
to the classical scaling, the recycling method recognises an inner region and an
outer region. In the original recycling method for zero-pressure-gradient turbulent
boundary layer flow, velocity components in the inner region are mapped using the
law of wall, which means the scaled coordinate is z+ = z/l+ with l+ = ν/uτ. In
the outer region, velocity components are recycled using the defect law, where the
scaled coordinate is η = z/δ with δ some measure of the boundary layer thickness.
For the entire recycling process, velocity components are scaled using uτ.

The formula used for the recycling method can thus be summarised as follows:

φinn
in = φ

inn
re , φout

in = φ
out
re , (4.22)

where φ denotes the velocity component, either the mean streamwise velocity u(z),
the meanwall-normal velocityw(z), or three fluctuation components u′(y, z), v′(y, z)
and w′(y, z) . The subscripts “in” and “re” for the inlet plane and recycling plane
indicate the position where velocity components are evaluated. The superscripts
“inn” and “out” denote different scaled coordinate as discussed above.

In generating the inflow velocity, a weighted function is defined to combine the
velocity components in inner region and outer region. This procedure closely
follows the original recycling method, and its detailed description is not repeated
here. In the implementation of the recycling procedure, the mirroring method by
Jewkes et al. [34], which serves to almost remove the spatially quasi-periodic effect,
is used.

4.4.5 LES performed
TheLESwere performed on a rectangular domain. Parameters for the LES discussed
are summarised in Table 4.5. In what follows we refer to two streamwise co-
ordinates x and x′ related by x′ = x − x0. The co-ordinate x′ has origin x′ = 0
at the domain inlet while the origin of x is the nominal flat-plate leading edge.
Each individual LES was performed on a rectangular domain with inlet at x =

x0, x′ = 0 where the determination of x0 is to be discussed. At the domain inlet,
in computational co-ordinates, δ99, the 99% boundary layer thickness is set to unit
length. With ν specified and U∞ = 1 this fixes the nominal inlet Reynolds number
Reδ99 = δ99 U∞/ν. For each LES the fixed parameters are then δ99, U∞, ν and
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the streamwise roughness growth rate α. We note that ks = α x and denote by
ks,0 = α x0 the roughness height at the domain inlet x = x0.

For given α, denote the value of δ/ks given by the empirical model (see Table 4.1)
by (δ/ks)model . Then identifying δ99 = δ, an initial estimate of x0 is

x0 =
1
α

(
δ

ks

)−1

model
. (4.23)

With x0 known, LES is then performed with fixed parameters and with ks calculated
as ks(x) = α x = α (x′ + x0). It was found that, following the usual transient
to statistically steady flow, θ(x) obtained from the LES showed a strong linear
correlation with x′ downstream of the recycling region, but that its virtual origin
was near to but not at the present x0. An updated x0 was then calculated using
linear extrapolation of θ in x′ to determine a virtual leading-edge origin x′ = −x0.
For each fixed α and Reδ99 , an iterative process was then used until a converged
x0 was obtained. For 1% accuracy, usually 1-3 individual LES runs were required.
We remark that (4.23) is used only as an initial guess for x0 in the iterative process
and is then abandoned. In this sense the present LES results are independent of the
empirical model.

In this way, LES were performed for α = (10−4, 10−5, 10−6, 10−7), each with several
values of Rex . The case α = 1.25 × 10−3 was not considered because a log-layer
is not expected for this α. The only physical length scale available for these LES is
ν/U∞. Hence mean flow results in the physical (x, y) plane are presented as either
(Rex, Reθ) = (U∞ x/ν,U∞ θ/ν) or as scaled versions of these co-ordinates.

4.5 Results and discussion
Figure 4.1 shows U+∞ versus Rex for a series of higher-resolution (BH,CH,DH) LES
runs at different α and at different inlet Reynolds numbers. Three ranges of Rex

- lower, intermediate and higher - are shown for each α. For all cases, the results
displayed begin at the recycling plane and extend downstream. For all runs, some
effect of the recycling region 0 ≤ x/Lx ≤ 0.2, can be seen just downstream of the
recycling plane. As Rex increases, U+∞ remains almost constant for each α but at
levels that varywith α. In this sense these figures can be interpreted as essentially the
fully-rough, large-Reynolds number limit for the zero-pressure gradient boundary
layer flowing over roughness whose scale increases linearly with x.

The corresponding variation of Reθ with distance x is displayed in Figure 4.2 in both
linear-log (a) and log-log (b) form. Figure 4.2(a) indicates that all curves appear to
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Figure 4.1: Velocity ratio U+∞ for a range of Rex: Results represent individual LES
over different Rex . Results plotted are for cases BH, CH, DH. Line key: ,
α = 10−4; , α = 10−5; , α = 10−6; , α = 10−7. Note
increasing U+∞ with decreasing α.
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Figure 4.2: Reθ versus Rex with linear-linear (top) and log-log (bottom) axes. Cases
BH, CH, DH. Results represent individual LES over different Rex for cases BH,
CH, DH. See Fig. 4.1 for key. : Reθ ∼ Rex .
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Table 4.5: Summary of zero pressure gradient LES with linear roughness: Numbers
represent the particular case of α, letters represent different inflow Rex , H represents
a high-resolution simulation. Letters represent order of magnitude of Rex - B : 108,
C : 109, D : 1010

Case α Rex Nx Ny Nz
Lx

δ0

Ly

δ0

Lz

δ0

1B 10−4 1.01− 2.45× 108 192 32 64 90 6 12
1C 10−4 1.01− 2.16× 109 192 32 64 72 6 12
1D 10−4 1.01−2.45×1010 192 32 64 90 6 12
1BH 10−4 1.01− 2.45× 108 384 64 128 90 6 12
1CH 10−4 1.01− 2.16× 109 384 64 128 90 6 12
1DH 10−4 1.01−2.45×1010 384 64 128 90 6 12
2B 10−5 1.26− 2.70× 108 192 32 64 90 6 7
2C 10−5 1.26− 2.70× 109 192 32 64 90 6 7
2D 10−5 1.26−2.70×1010 192 32 64 90 6 7
2BH 10−5 1.01− 2.70× 108 384 64 128 90 6 7
2CH 10−5 1.01− 2.70× 109 384 64 128 90 6 7
2DH 10−5 1.01−2.70×1010 384 64 128 90 6 7
3B 10−6 1.44− 2.88× 108 192 32 64 90 6 7
3C 10−6 1.44− 2.88× 109 192 32 64 90 6 7
3D 10−6 1.44−2.88×1010 192 32 64 90 6 7
3BH 10−6 1.01− 2.88× 108 384 64 128 90 6 7
3CH 10−6 1.01− 2.88× 109 384 64 128 90 6 7
3DH 10−6 1.01−2.88×1010 384 64 128 90 6 7
4B 10−7 1.60− 3.04× 108 192 32 64 90 6 7
4C 10−7 1.60− 3.04× 109 192 32 64 90 6 7
4D 10−7 1.60−3.04×1010 192 32 64 90 6 7
4BH 10−7 1.60− 3.04× 108 384 64 128 90 6 7
4CH 10−7 1.60− 3.04× 109 384 64 128 90 6 7
4DH 10−7 1.60−3.04×1010 384 64 128 90 6 7

Table 4.6: Symbol key for plots with multiple streamwise stations. Stations identi-
fied by Rex/109

α �  N H
10−4 2.15 2.11 2.08 2.04
10−5 2.63 2.58 2.53 2.49
10−6 2.81 2.77 2.72 2.68
10−7 2.97 2.93 2.88 2.84

converge to the same virtual leading edge, independent of α. A plot of Reδ∗ versus
Rex (not shown) shows similar trends. In Figure 4.2 some domain end effects can
be seen for all LES. These are most pronounced for the largest value of α. Both
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Figure 4.3: Friction velocity ratio U+∞ versus α. �, HR-LES; ©, LR-LES. Solid
line; model of §4.3.2 with κ = 0.384, B = 8.5, Π = 0.55. Dashed line; Model with
κ = 0.384, B = 8.5, Π = 0.36 . Symbols indicate values obtained from LES via
averaging from x′/Lx = 0.2 to x′/Lx = 0.90 in order to avoid effects of the outlet
boundary condition. Cases CH, DH.

plots clearly indicate an approximately linear growth of Reθ with slopes that depend
on α but that appear sensibly independent of Rex . Together, these plots indicate
an asymptotic state of the boundary layer at large Rex that depends on the single
parameter α.

In the following comparisons all model calculations use κ = 0.384, B = 8.5 and
Π = 0.36, 0.55. Plots of average values of U+∞ and θ/x and δ99/x obtained from
the LES are displayed in Figures 4.3 and 4.4 respectively. Both high resolution
and low resolution runs are shown for cases C, D (intermediate and large Rex

range). The LES values shown as symbols were obtained by streamwise averaging
from x′/Lx = 0.2 to x′/Lx = 0.90 in order to avoid effects of the outlet boundary
condition. In each figure, the solid and dashed lines indicates values derived from
the model of §4.3.2 over a continuous range of α for the parameter values shown in
the caption. In Figure 4.3, both the lower and higher resolution LES shows good
agreement for U+∞ with the model predictions for both values of Π. The agreement
between the model and LES results for θ/x in Figure 4.4(a) is also good. In Figure
4.4(b) we have plotted δ99/x for the LES and δ defined by the log-wake law for
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Figure 4.5: Mean velocity profiles u+ versus z/ks = z/(α x) at four streamwise
stations for each α. Results plotted are for cases CH. Values of α as shown.
Symbols represent different streamwise stations. See Table 4.6 for key. Solid line;
(4.17) with κ = 0.384, B = 8.5, Π = 0.55

the model. We note that Squire et al. [82] suggest δ = 1.26 δ99 but this is not used
presently. Overall, Figures 4.1-4.4 indicate that the LES shows similar trends with
acceptable quantitative agreement with the semi-empirical model. At large Rex ,
decreasing α leads to increased U+∞ but slower streamwise boundary-layer growth.

Figure 4.5 shows mean-velocity profiles u(z)/uτ versus z/(α x) for α = 10−4, 10−5,
10−6, 10−7. For each value of α, four velocity profiles at streamwise stations indi-
cated in the figure caption are plotted. Reasonable collapse at each α is indicated.
The LES show small near-wall effects in the final three near-wall grid points. Also
shown in each subfigure is the model mean-velocity profile (4.17). These use the
values of α shown together with κ = 0.384, B = 8.5 and Π = 0.55. The model
profile shows slightly higher U∞/uτ than the LES profile for each α consistent with
the differences between results from the semi-empirical model and the LES shown
in Figure 4.3.
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Figure 4.6: Velocity defect (U∞−u)/uτ for a range of roughness slopes α: versus the
wall-normal coordinate z. Single streamwise station for each α shown for clarity. (a)
Versus z/δ99. (b) Versus z/∆ with Rotta-Clauser parameter ∆ = U∞δ∗/uτ . Symbol
key: �, α = 10−4;  ,α = 10−5; N,α = 10−6; H,α = 10−7.
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In Figure 4.6 the defect velocity (u −U∞)/uτ is plotted against both z/δ99 and z/∆.
One profile for each of the four values of α is plotted. Equations (4.3) and (4.4)
together suggest that U+∞ − u+ is a function of z/δ99 independent of α provided
we identify δ = δ99. This is because the − log(ks)/κ terms cancel. That U+∞ − u+

can also be expressed as a function of z/∆ independent of α is suggested by the
constancy of the ratio ∆/δ99 = 3.54 across all α in the LES and also from the model
equation (4.9) that does not depend explicitly on α. Figure 4.6(b) shows reasonable
collapse against z/∆. The collapse is not as good against z/δ99 in 4.6(a) where small
effects of α can be seen.

Streamwise velocity variances < u′+2 >≡ u′2/u2
τ obtained from the LES are shown

in Figures 4.7 and 4.8. In Figure 4.7, these are plotted against z/(α x). Again four
streamwise stations are shown in each plot. The three near-wall points are probably
affected by the wall modeling and cannot be considered accurate. While the effect
of α can clearly be seen in the separation of the profiles when plotted against z/ks =
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z/(α x), each profile appears to have approximately the same slope in linear-log co-
ordinates. For the turbulent boundary layer over a uniformly rough wall, Squire et
al. [82] find an approximately logarithmic profile for streamwise velocity variances
with slope A1 ≈ 1.27. Figure 4.7 suggests the form < u′+2 >= B1(α)− A1 log(z/ks)
where A1 is independent of α. The light solid line in the figure has slope A1 ≈ 1.60.
In Figure 4.8 < u′+2 > is plotted against z/∆, with some degree of collapse over the
outer region. The profiles shown in both Figures 4.7 and 4.8 comprise the sum of
the resolved-scale component plus the sub-grid component obtained from the SGS
model. The latter are shown in Figure 4.8, where they are small but not negligible.

The constant skin-friction turbulent boundary layer has thus been identified as a
promising candidate for further study given the observed self-similarity and linear
boundary layer growth measures, as emphasised in this chapter with the zero-
pressure-gradient constant free-stream velocity (m = 0) case. The simplicity of
the LES model suggests its utility in examining similar flows of the Falkner-Skan
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type - results suggest the existence of an (α,m) family of curves for skin-friction
that give a Moody-like diagram for turbulent boundary-layers. Contact with low Re

experiments is restricted by the requirement of subgrid roughness max(ks) < h0.
An appropriate experimental assessment of the ability to control the roughness
slope might lead to desirable skin-friction characteristics in applications. This is
made more relevant by the increasing prominence of small-scale manufacturing
techniques. While we have assumed that the origin of the boundary layer growth is
consistent with the origin of the linearly increasing roughness-scale; an opportunity
exists for the examination of a flow transition from the equilibrium smooth-walled
boundary layer to a fully rough boundary layer. The successful application of the
local velocity deficit correction ∆U+(k+s ) to the virtual-wall model suggests the
possibility for the exploration of abrupt roughness changes. We address the latter
subject in chapter 5.
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C h a p t e r 5

LES OF TURBULENT BOUNDARY LAYERS WITH ABRUPT
SPATIAL CHANGES IN ROUGHNESS

5.1 Overview
In this chapter, we extend our analysis of turbulent boundary layers with spatially
varying roughness to non-equilibrium flows. The non-equilibrium behaviour is
introduced to the flow by considering cases with abrupt streamwise changes in
boundary surface condition, for both smooth-rough and rough-smooth flows. This
type of flow has wide-ranging applications, particularly in the areas of atmospheric
boundary layers. Understanding the development of velocity and stress profiles
provides a basis for improved flow modelling and perhaps to applications in manip-
ulating drag characteristics.

5.2 Background
5.2.1 Implications of spatially varying roughness
A natural extension to the rough-wall boundary layer flow discussed in chapters 1
and 2, and the linear roughness variation studied in chapter 4 is the introduction of
abrupt changes in the roughness distribution. Such flows have been considered in
the context of atmospheric boundary layers by Chamorro and Porté-Agel [8], for
instance in the case of flow from oceans to landmasses, where the ocean is con-
sidered ‘smooth’ and the land ‘rough’. Localised patches of bio-fouling or forest
distributions also present physically realistic examples of flows with spatially vary-
ing roughness. The distribution of rough elements on a surface can be classified
as homogeneous, heterogeneous, isotropic or anisotropic. Homogeneous roughness
specifies uniformity in the spatial and temporal description of roughness over the
entire domain of interest, such as in Nikuradse’s (1933) sand-grain pipe flow exper-
iments. Anisotropy identifies directional bias due to the arrangement of roughness
elements, such as that present in the case of riblet surfaces at non-zero yaw angles
relative to the impingent flow [22, 58]. Smits andWood [80] propose a classification
based on the severity of the perturbation relative to the upstream flow and the extent
of the validity of the boundary layer approximation in the developing downstream
flow. In this manuscript, we focus on isotropic, inhomogeneous sand-grain type
roughness with an abrupt streamwise transition from a smooth to rough condition
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and vice versa.

One of the key studies investigating the effect of roughness transition inwall-bounded
flows is attributed to Antonia and Luxton [3, 4]. They conducted experiments of
rough-smooth and smooth-rough wall transition, using Preston tube measurements
to examine the streamwise development of skin-friction and mean velocity profiles.
More recently, the abrupt roughness variation problem has been studied by various
authors experimentally [23, 30] and using direct numerical simulations [32]. Saito
and Pullin [72] recently studied turbulent channel flows with smooth-rough-smooth
wall boundary transitions using large eddy simulations (LES), examining first and
second order flow statistics in addition to the growing internal boundary layer (IBL).

Studies of internal boundary layers have been conducted by several authors, in-
cluding Antonia and Luxton [3, 4], followed by Ghosal [27] and reviewed in detail
by Savelyev and Taylor [73]. The IBL serves as a demarcation between the flow
immediately next to the wall affected by the new surface condition, and the outer
region which adjusts to the new wall condition over several boundary layer thick-
nesses downstream. Savelyev and Taylor [73] comprehensively summarise various
growth formulae for internal boundary layers in the case of TBL transition between
two surfaces with differing roughness scales. We note that in the present research
we consider transitions between ideally smooth and rough surfaces. Variation in
surface roughness has immediate consequences on the near wall behaviour and drag
characteristics of wall-bounded flows, and a detailed understanding of these param-
eters is critical to the development of models and simulation tools for engineering
applications.

5.2.2 Scope of present study
The present approach utilizes wall-modelled large eddy simulations (LES) of zero
pressure gradient flat plate turbulent boundary layers with modelled sand-grain type
roughness as a tool tomitigate the computational costs associatedwithDNS,wherein
grid requirements scale as O(Re9/4), allowing us to study the abrupt roughness
transition problem at high frictionReynolds numbers Reτ. We study distinct physical
scenarios - smooth-to-rough (SR) and rough-to-smooth (RS) transitions primarily
in the asymptotically rough regime such that k+s ≥ 100 over the rough wall regions
and Reτ is in the range 104 to 106. Reτ is chosen as the measure of interest due to
its relevance to the skin-friction through uτ.
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5.3 SV, SGS LES with wall modelling
We refer to chapter 3 for a detailed description of the numerical method. The same
filtered NS equations, stretched vortex subgrid scale model and virtual wall model
(with a roughness correction) described therein and are applied to this problem.
Chapter 3 contains a detailed description of the wall-model with roughness.

5.3.1 Wall model with roughness correction: ODE for friction velocity uτ
In the present computational framework we use the virtual-wall model [16, 31,
12] with the roughness correction ∆U+ proposed by Hama [29]. The roughness
function ∆U+(k+s ) is a model specific roughness correction that may vary across
the wall. In this chapter, we use the full-range interpolation formula of Colebrook
[19] which covers both the transitional and asymptotically rough regions, and allows
k+s = k+s (x, y) on the wall:

∆U+ =
1
K1

log(1 + β k+s ) (5.1)

where presently, β = 0.26. (In chapter 4 we used the asymptotically rough form of
∆U+). We refrain from referring to this as the ‘universal’ interpolation formula due
to the implication that this is valid for all engineering surfaces. Most LES reported
here have k+s > 100 which places the local flow in the fully rough regime where
∆U+ take the asymptotic form

∆U+ =
1
κ

log(k+s ) + A − B (5.2)

where A and B are constants and β = exp (κ (A − B)). We note that (5.2) is given
for completeness and is not explicity utilised in the computations presented in this
chapter. Since uτ is dynamically space and time dependent, both k+s and ∆U+(k+s )
also vary spatially and temporally on the wall. In the present study, we are primarily
concerned with statistically stationary turbulence at large particle transit times in
the streamwise direction.

5.3.2 Inflow and Boundary Conditions
A general description of the flat plate TBL problem has been presented in § 3.3.7.
The inclusion of spatially varying ∆U+ in the wall velocities enables us to focus
on two distinct boundary layer flows, each describing the specific nature of the het-
erogeneity in the wall-roughness condition. These are smooth-to-rough (henceforth
referred to as SR) and rough-to-smooth (RS). The transition to a new wall condition
occurs abruptly over a single streamwise grid cell to simulate existing experimen-
tal investigations closely. Application of smoothing functions also introduces free
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parameters related to the extent over which the roughness transition occurs. Each
domain comprises of a recycling region, a development region (smooth or rough),
an instantaneous streamwise change in roughness which introduces heterogeneity,
and a uniformly smooth or rough zone thereafter for flow recovery. Usage of the
wall model of Chung and Pullin [16] in the case of abrupt roughness transitions is
based on the assumption that the flow adjusts immediately, within a single grid cell
in the streamwise coordinate, to the downstream surface change up to z < h0. Here,
with u+ = (1/κ) log(z/zr) where zr = 1.02 × 10−4 is the aerodynamic roughness
lengthscale in the restrictive case, the estimated streamwise adjustment length of the
roughness sublayer according to Cheng and Castro [9] is 160zr = 0.016, which in
the present case is 5 times lower than the streamwise grid extent.

Turbulent inflow is generated using the recycling method described in chapter 3.
In this section we address parts of the inflow generation recycling and bottom wall
boundary conditions that are unique to the spatially varying turbulent boundary
layer problem.

Smooth-Rough (SR): Recycling and bottom boundary

Figure 5.1 summarises the domain setup for the SR wall transition. We employ a
recycling region to generate realistic smooth wall turbulent inflow upstream of the
SR transition. For the SR case, the recycling scheme described by Lund, Wu, and
Squires [42] is applied using a plane 14.4δin downstream of the inlet (δin is the 99%
boundary layer thickness at the inlet) and modified with the mirroring method of
Jewkes, Chung, and Carpenter [34] to remove spatial quasi-periodic effects. This
method has been tested in smooth-wall boundary layer flows at large Re by Inoue
and Pullin [31]. In discussing the results, δSR is the boundary layer thickness at the
location of transition, and we shift our streamwise coordinate origin to the location
of transition, such that xSR = 0 at this point.

Velocities are first decomposed into mean Ui and fluctuating u′i components, and
again into the inner (superscript inn) and outer layers (superscript out) in the wall-
normal coordinate. The composite inlet velocity profile ui,inlet is then given by
(5.3)

(ui)inlet = [(Ui)inn
inlet + (u

′
i)inn

inlet][1−W(ηinlet)]+ [(Ui)out
inlet + (u

′
i)out

inlet][W(ηinlet)] (5.3)
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Figure 5.1: Flow visualisation using instantaneous streamwise velocity field to
demonstrate domain setup for SR transition- Vertical lines demarcate key regions in
the flow; dark shaded zone represents recycled inflow development, vertical dotted
line denotes location of SR transition, S denotes smooth wall, R denotes constant
roughness region. Note that true extent of z/δin = 8.0. Not to scale.

W(η) is a weighting function detailed in Lund, Wu, and Squires [42]. The recycling
method requires the momentum thickness θ and the friction velocity uτ to form (5.4)

uτ,inlet

uτ,rec
=

( θrec

θinlet

) 1
2(n−1) (5.4)

where subscript rec indicates the recycling plane and n = 5.

We denote the streamwise location of this transition xSR such that the roughness
function is given by

∆U+ =


0, x < xSR

1
K1

log(1 + 0.26 ksuτ
ν ), x > xSR

(5.5)

The roughness parameter ks is kept finite and constant in the rough section.

Rough-Smooth (RS): Recycling and bottom boundary

For the RS flow (visualised in figure 5.2), we use the fact that our analysis lies in the
asymptotically rough regime when generating the recycled turbulent inflow. The
recycling region R(L) features a linearly increasing roughness measure ks = αx, for
which it has been shown that uτ must be a constant determined by the slope α [84],
followed by a development region R(C) with constant ks. The formula used for the
recycling method can thus be summarised as follows,

φinn
in = φ

inn
re , φout

in = φ
out
re , (5.6)
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Figure 5.2: Schematic of computational setup for RS flow - Vertical lines demarcate
key regions in the flow; dashed vertical line represents recycling plane, R(L) denotes
fully rough-wall with linearly increasing roughness, R(C) denotes fully rough wall
with constant roughness ks, S denotes smooth wall. Dashed line along horizontal
coordinate emphasises rough regions. Note that true extent of z/δ0 = 8.0. Not to
scale.

where φ denotes the velocity component, either the mean streamwise velocity u(z),
the meanwall-normal velocityw(z), or three fluctuation components u′(y, z), v′(y, z)
and w′(y, z). The subscripts “in” and “re” for the inlet plane and recycling plane
indicate the streamwise plane where velocity components are evaluated. The su-
perscripts “inn” and “out” denote inner and outer scales respectively. This allows
the boundary layer to develop slowly over the spatially increasing roughness from
ks = 0 at a virtual leading edge to the constant value used in the fully rough domain
at the end of the recycling region. Previous investigations have shown that a return
to equilibrium flow after RS transition is expected to occur over greater streamwise
distances than SR transition [23, 3, 4]. Hence our domain is modified accordingly
by adjusting the inlet boundary layer thickness such that x/δ0 is larger than for the
SR case.

∆U+ =


1
K1

log(1 + 0.26 ksuτ
ν ), x < xRS

0, x > xRS

(5.7)

Inner scaling is given by the law of the wall z+ = z/l+ = zuτ, whereas outer scaling
is governed by the defect law using η = y/δ. δ represents somemeasure of boundary
layer thickness, and in this chapter, we distinguish between the 99% boundary layer
thickness δ99 and the internal boundary layer δI . In this recycling method, velocity
components are scaled by the inner measure uτ.
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5.4 Model validation
5.4.1 Equilibrium flows
We apply the SGS and wall model equations with the recycling technique (§ 5.3
and 5.3.2) to verify the computational framework against purely smooth and rough-
walled flows in equilibrium. The roughness in this test case is homogeneous and
isotropic sand-grain type roughness, constant ks everywhere in the domain. The
purely smooth and rough cases, being self-preserving forms of boundary layers, are
less restrictive to the grid spacing than the transitional roughness cases.

Squire et al. [82] used a series of wind tunnel experiments to characterize the
effect of roughness measure k+s and Reynolds number δ+99 = δ99uτ/ν on streamwise
velocities and turbulence intensities over fully smooth and fully rough walls with
random sand-paper roughness distribution. Their reported equivalent sand-grain
roughness is ks = 1.96mm. They observed outer layer collapse of streamwise
velocity variance in rough wall flows for δ+99 ≥ 14000. They also present a novel
method of determining the friction velocity uτ which does not require the assumption
of logarithmic behaviour in themean velocity profiles. While a range of experimental
conditions are reported, we target their fully smooth measurements at Reτ = 9830,
and fully rough measurements at Reτ = 13130, k+s = 106, with the results shown in
figure 5.3. The flow conditions in the present LES have been iterated to match these
parameters closely. In both the smooth and rough wall cases, the expected value for
U+∞ and the log-layer behaviour are captured faithfully by the LES when compared
with the experimental campaign of Squire et al. [82]. The simple model using the
Hama roughness correction for ∆U+ is shown to be able to capture the log-layer
velocity deficit to a reasonable extent.

5.4.2 Grid sensitivity

Case Nx Ny Nz LSR/Lx Lx/δ0 Ly/δ0 Lz/δ0
V1 512 192 96 0.35 80 13.2 8.0
V2 768 256 128 0.35 80 13.2 8.0
V3 960 320 160 0.35 80 13.2 8.0

Table 5.1: Summary of parameters for grid resolution verification. k+s = 55, Reτ =
18000

The sensitivity of the numerical solution to changes in grid resolution is studied
using SR transition as the canonical flow. We investigate the grid independence of
the solution by considering skin friction, and mean velocity profiles at streamwise
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Figure 5.3: Comparison of mean velocity profiles in uniformly smooth and rough
flows against experiments of Squire et al. [82]

stations immediately upstream, and a few boundary layer thicknesses downstream
of the roughness transition, since experimental evidence from Antonia and Luxton
[3] and Efros and Krogstad [23] suggests that this represents the region with the
highest streamwise gradients. We test our code against the SR transition case, as
this is expected to have higher streamwise gradients than the RS transition case, and
hence is more restrictive.

While we do not define a strict, or formal measure of the order of grid convergence
in LES, we use successively finer grid resolutions referred to as V1, V2 and V3
summarised in table 5.1 to verify that any differences in flow statistics are sufficiently
small and inconsequential to the overall results. Figures 5.4 and 5.5 present evidence
of a sufficiently converged grid resolution for the purposes of a detailed study of the
wall-roughness transition problem using the LES framework described in §5.3. The
maximum discrepancy in U+∞ is shown to be 2.9% for the cases considered. Perhaps
most importantly, good agreement is shown in figure 5.4 when comparing the peak
values of the C f overshoot between the different cases. Based on the results, we
choose case V2 as our grid for detailed computations. We note a near wall effect
in the first three wall-normal points in the mean velocity profiles shown in figure
5.3. Good agreement is still observed in the log-layer velocities and the peak skin
friction at similar Re. we again show these points in 5.5, where we compare the
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mean velocities in the fully smooth, and developing rough-wall flows for cases V1,
V2 and V3, but do not discuss them in greater detail in the results that follow.

Figure 5.4: Grid resolution effect on streamwise development of skin-friction in SR
transition. k+s = 55, Reτ = 18000.

Figure 5.5: Grid resolution effect on streamwise development of mean velocity
profiles in SR transition. k+s = 55, Reτ = 18000. Dashed lines represent rough
wall flow at x/δSR = 10.9, solid lines represent smooth wall flow at x/δSR = −2.75.
Symbols represent resolution cases - square: V1; circle: V2; diamond: V3.
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5.5 Results: Smooth to rough (SR) transition
5.5.1 Summary of LES parameters
In this section we present the results from simulations of turbulent boundary layer
flowwith an abrupt SR change in the surface condition. A summary of the simulation
parameters is presented in table 5.2. The values of k+s = ksuτ/ν reported are
taken with uτ immediately upstream of the roughness transition. We note that
k+s > 100 for all cases considered, thus the results presented here are valid in the
asymptotically rough regime. All detailed results presented in this section, including
figures, are with respect to case S0 for brevity. The qualitative trends in streamwise
development described herein for case S0 also apply to cases S1 and S2. We
summarise the parameter set studied in the SR transition case in table 5.2 and focus
our computational study on the effect of increasing Reτ while maintaining constant
ks, such that k+s immediately upstream of the transition agrees to within 2.4%. In
the results that follow we shift the origin and define x/δSR = 0 at the SR transition.

Case Reτ k+s δ99/ks x/δin y/δin z/δin Lrec/δin LS→R/δin

S0 2.8 × 104 131 214 80 13.2 8.0 14.4 28
S1 8.4 × 104 128 644 80 13.2 8.0 14.4 28
S2 1.3 × 105 128 1218 80 13.2 8.0 14.4 28

Table 5.2: Summary of LES parameters for SR transition. δin is the 99% boundary
layer thickness at the inlet plane

5.5.2 Skin-friction
The skin friction coefficient C f and dimensionless friction velocity U+∞ = U∞/uτ
are shown in figures 5.6a and 5.6b. Also shown are the Coles-Fernholz 2 empirical
fits for each of the cases, calculated as a function of Reθ = U∞θ/ν as compiled by
Nagib, Chauhan, and Monkewitz [55]

C f = 2
[1
κ

log(Reθ) + C
]−2

(5.8)

where κ = 0.384 and C = 4.127. The spanwise averaged momentum thickness is
determined at every streamwise location from the numerically calculated velocity
fields, which allows us to determine Reθ = U∞θ/ν. ∆U+ is calculated using (5.1),
and is non-zero for x/δSR > 0 due to constant ks in this region. In figure 5.6a
the skin-friction C f = 2τw/(ρU2

∞) = 2/U+2
∞ with u2

τ = τw/ρ first deviates from the
reference self-preserving smooth-wall value around five boundary layer thicknesses
upstream of the transition location denoted by x/δSR = 0, where δSR is the thickness
of the boundary layer at the location of the abrupt change in surface roughness. A
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gradual decrease in skin friction in figure 5.6a (conversely an increase inU+∞ in figure
5.6b) is shown leading up to a prominent overshoot in C f at x/δSR = 0, followed
by an undershoot when compared with the equilibrium rough-wall value at matched
k+s . C f subsequently relaxes to the equilibrium rough-wall value several boundary
layer thicknesses downstream. The downstream distance at which C f relaxes to
the equilibrium rough-wall values shows a dependence on Reτ and is quantitatively
studied in §5.5.6. Efros and Krogstad [23] studied the development of the boundary
layer with a smooth-rough wall boundary transition with particular focus on changes
in outer layer structure. The present LES model is not applied in direct comparison
to their experimental observations at Reτ = 4500 where its efficacy is somewhat
compromised. Thus, the focus in the present study is on moderate to high Reynolds
numbers.

5.5.3 Mean velocities and defects
Inner scaled velocity profiles u+ = u/uτ, where the ( ) represents spanwise av-
eraged quantities (presently with no time averaging), are plotted against the inner
scaled wall-normal coordinate z+ = zuτ/ν, firstly for x/δSR < 0 in figure 5.7
followed by the non-equilibrium development for x/δSR > 0 in figure 5.8, with
sub-figures 5.8a and 5.8b showing profiles at multiple streamwise stations with
0 ≤ x/δSR ≤ 4.49 and x/δSR ≥ 4.49 respectively. Examining the upstream smooth-
wall velocity profiles presented in figure 5.7 indicates that the LES with SV-SGS
and wall-modelling is more consistent with the theoretical log-law prediction at
higher Reynolds numbers. This effect is consistent with previous smooth-wall in-
vestigations using this particular SGS wall-modelling approach [31]. We note a
near wall effect in the first three grid points adjacent to the bottom wall. In figure
5.8a, the mean velocity profile log-region exhibits an immediate departure in the
non-equilibrium rough-wall flow from the κ = 0.384 line. Figure 5.8b shows that the
flow gradually relaxes towards the equilibrium rough flow condition and develops a
log-region corresponding to κ ≈ 0.384.

Outer scaled velocity profiles in the developing region are also shown in figure 5.9.
We see that approaching the fully-rough and fully-smooth limits essentially forms an
envelope within which the developing flow lies, and provides a method of assessing
the internal boundary layer by considering the merging points of two adjacent mean
velocity profiles as discussed by Chamorro and Porté-Agel [8] and Antonia and
Luxton [3]. We also consider the velocity defect as a measure of the flow relaxation
to the downstream fully-rough state. The inner scaled velocity defect reveals, in
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(a) Skin-friction coefficient Cf

(b) Non-dimensional friction velocity U+∞

Figure 5.6: Skin-friction and friction velocity parameter U+∞ in SR transition. Line
descriptions: dashed = S0; dash-dotted = S1; solid = S2. Cases identified in Table
5.2. Solid lines are theoretical curves from Nagib, Chauhan, and Monkewitz [55]
Coles-Fernholz 2 fit (equation (5.8)) with the Colebrook roughness correction ∆U+

from (equation (5.1))
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figure 5.10b, departure from a collapse against z/δ99 between 0.15 ≤ δ99 ≤ 0.6 in
the developing region downstream of the SR surface change.

Figure 5.7: Reynolds number dependence of mean velocity profiles in LES (SR case
shown here). Cases summarised in Table 5.2. Lines indicate smooth-wall profiles
at varied Reτ. Station symbols, in x/δSR units: circle: -6.5; plus: -6.1, star: -5.6;
square: -5.3, diamond: -4.9. Lines indicate Reτ range. Cases S0, S1, S2 in order of
increasing u/uτ. Dashed grey line shows κ = 0.384 in log-wake law.

5.5.4 Turbulence intensities
We note that the first three grid-points nearest to the slip wall at z = h0 in the
computational domain display a near wall effect due to the implementation of the
SV SGS modelling technique. Hence we display, but neglect these points in the
results and discussions that follow. Streamwise Reynolds stresses u′+2 scaled by the
local uτ ≡ uτ values are presented at various streamwise stations in figure 5.11. In
figure 5.11a, for x/δSR < −5, the turbulent stresses are shown to collapse against
z/δ99, confirming fully developed smooth-wall flow. The upstream influence of the
rough wall condition is observed thereafter at the x/δSR = −0.32 station, with lower
normalised Reynolds stresses than the smooth wall flow. Immediately downstream
of the SR jump, for x/δSR > 0 we expect uτ to increase as shown in §5.5.2. Thus the
turbulence levels normalised by the locally calculated u2

τ rapidly decrease near the
location of transition. A rapid decrease following the initial overshoot in turbulence
levels normalised by u2

τ is observed in figure 5.11b immediately downstream of
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(a) Developing flow, downstream stations with x/δSR ≤ 4.49

(b) Downstream stations with x/δSR ≥ 4.49

Figure 5.8: Mean velocity development downstream of SR wall transition; Case S0
examined in detail.

the SR surface change, where uτ overshoots the equilibrium rough-wall value,
followed by a merging of the inner and outer distributions of the Reynolds stress
towards the equilibrium rough-wall state. The increasing trend in the merging point
z/δ99 suggests that the increasing turbulence level due to wall roughness is gradually
transported perpendicular to the wall until the entire flow exhibits turbulence stresses
consistent with the rough-wall flow. We quantify this systematically using the
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Figure 5.9: Outer scaled spanwise averaged velocity profiles u/U∞ plotted against
z/δ99 in SR transition. Case S0. Symbols indicate streamwise progression.

internal boundary layer in the following section. Previous studies of smooth-walled
TBL with the SV-SGS and wall-modelling technique have shown that the log-layer
slopes in streamwise turbulent intensities appear flatter than values observed in
experiments at comparable Reτ [31].

We compare our results to the experimental data of Efros and Krogstad [23] in SR

flow in figure 5.12 to demonstrate that the present LES captures the structure of the
turbulence reasonably well. An interesting observation from their results is that the
stress ratios between rough and smooth walls are comparable in the outer layer, with
major differences in the ratio of turbulent stresses noted at distances of z/k = 2 to
4. Given the implementation of the wall-model and the near-wall effect in the LES,
we are unable to comment directly on the turbulent stress ratios at these wall normal
distances.

5.5.5 Internal boundary layer growth
The internal boundary layer (IBL), denoted herein by δI(x) serves as a demarcation
in the wall-normal extent of the flow affected by the modified roughness condition.
We consider two possible representations of the internal boundary layer growth.
The first considers the method of Efros and Krogstad [23] based on streamwise
velocity intensities, while the second utilizes a method of merging velocity profiles
similar to that suggested by Antonia and Luxton [3], who plotted profiles against a
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(a) Fully smooth region

(b) Transitionally rough region

Figure 5.10: Development of velocity defect downstream of SR transition. Down-
stream progression in x/δSR is represented with lighter line colours and the symbol
key embedded in the figures.

z1/2 scaling using the following the SR transition based on dimensional arguments.

Inner-layer growth determined from u′+2 profiles

This method itself defines two related measures of internal-layer growth

δI(x)
δ99(x)

= A1

( x
δSR

)b1
(5.9)
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(a) Reynolds stress profiles in the immediate vicinity of the SR transi-
tion. Case S0

(b) Transitionally rough region

Figure 5.11: Development of streamwise Reynolds stresses near SR transition. Case
S0. Downstream progression is represented with lighter line colours.

δI(x)
δSR

= A2

( x
δSR

)b2
(5.10)

where δSR = δ99 at the origin. In (5.9) δ99(x) is incorporated, while in the second in
(5.10) the absolute growth δI(x)/δSR = A2(x/δSR)b2 is recognised. The dimensional
form, such that δI ∝ xb is reported by Antonia and Luxton [3, 4] and Efros and
Krogstad [23].
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Figure 5.12: Comparison of turbulent stress ratios, wall-normal and streamwise
components w′+2/u′+2 with experimental results of Efros and Krogstad [23].

To define the extent of the internal boundary layer and determine the coefficients
A1, A2, b1, b2, we first consider the method proposed by Efros and Krogstad [23],
who locate a ‘knee’ point in the u′+2 wall-normal profiles using the intersection of
linear, least squares fits to the inner and outer regions at multiple stations to define
δI(x). Figure 5.13 demonstrates Efros and Krogstad’s method with the present result
from Case S0 at four streamwise stations. For a particular profile at a given x/δSR

(where x/δSR = 0 corresponds to the location of roughness transition) we visually
identify the inner and outer distributions of the u′+2 profiles. For the SR transition,
the inner layer will exhibit higher turbulence stresses such that ∂u′+2/∂(z/δ99) has
a greater absolute slope. Several points are then selected by defining the inner
and outer layer bounds with respect to z/δ99. We exclude points very near the
wall, near the blending region, and points near the outer limit δ99 of the boundary
layer. Least-squares, straight line fits are then calculated for each region, and the
point of intersection of the two lines defines the edge of the internal boundary
layer at the given x/δSR. From this method we obtain values of δI/δ99 at several
streamwise locations x/δSR. Corresponding values for δ99/δSR and the absolute IBL
edge δI(x) are also recorded and are directly obtainable from the LES. Figure 5.14
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summarises the IBL growth rates normalised by δSR with the parameters stated in
table 5.2. Experimental data from Antonia and Luxton [3] and Efros and Krogstad
[23] suggests the validity of a power-law growth of δI , hence we fit power law
curves using a least squares approximation to the IBL for the SR case. We report
both growth rates δI/δ99 and δI/δSR in table 5.3.

(a) x/δSR = 5.54 (b) x/δSR = 8.97

(c) x/δSR = 12.41 (d) x/δSR = 15.84

Figure 5.13: Determination of internal boundary layer position viamethod described
by Efros and Krogstad for SR transition. (a)-(d) indicate downstream progression.
Dashed lines show inner and outer slopes. Filled squares mark intersection of inner
and outer slopes at the known x/δSR station, and therefore determines δI/δ. Case
S0.

Internal boundary layer growth using merge points of outer-scale normalised
velocity profiles

To define a measure of ‘merging’ between adjacent velocity profiles, we consider
the outer scaled velocity defect D = (U∞ − u)/U∞ = 1 − u/U∞, where U∞ is
constant. We consider D = D(z/δ99, x/δSR) with x dependency only in the second
independent variable. The quantity ∂D/∂x with z/δ99 fixed can then be defined
and depends also on z/δ99, x/δSR. From the LES, the discrete difference between
adjacent stations is calculable, providing an approximation proportional to ∂D/∂x.
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(a) Growth of IBL δI/δ99

(b) Growth of IBL δI/δSR

Figure 5.14: Internal boundary layer thickness measures in SR flow inferred from
identification of inner and outer regions in streamwise Reynolds stress plots detailed
in §5.5.5. Symbols are from LES, lines are least square power-law fits shown in
table 5.3. Circles and solid line: S0; squares and dashed line: S1, diamonds and
dash-dotted line: S2.

Considering adjacent equispaced streamwise stations with indices denoted by n and
n + 1, we have Dn+1 − Dn = (un − un+1)/U∞. Our interest is in the merging point
between adjacent outer scaled velocity profiles, so defining the relative change in D,
defined by Dr = (un−un+1)/un allows identification (within some tolerance margin)
of values of z/δ99 at which the merger effectively occurs as the isoline Dr = 0 in
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Figure 5.15: Contour plots of Dr(x/δSR, z/δ99) = (un − un+1)/un where n denotes
streamwise station index, SR flow. Percentage change in mean velocity profiles in
x/δSR. Symbols and dashed lines reproduce non-dimensional power law curves
shown in figure 5.14a. Top to bottom indicates cases S0, S1, S2. Dash-dotted line
indicates 10% increment in power law exponents. First three wall-normal points
omitted due to near wall effect.

the z/δ99 − x/δSR) plane. We consider this a useful method of determining the IBL
since it does not require a known ‘reference’ field at the same Re (which, while
obtainable computationally, is potentially difficult to secure in practical situations
particularly at atmospheric scales). In practice a tolerance of 0.02% is used to
capture numerical effects. We note that the inner scaled velocity defects U+∞ − u+

provides a more universal collapse of mean velocity profiles over both rough and
smooth walls. But if this measure is used, it is found that the sharp overshoot in
uτ immediately downstream of x/δSR = 0 appears to mask the merge zone over
x/δSR < 5 (contours of the inner scaled deficit are presently not shown). Hence
we consider the outer scaled relative velocities a more robust visualisation of the
internal boundary layer growth.

Color-contours of Dr are plotted for the SR transition in figure 5.15 where figures
5.15a, 5.15b and 5.15c correspond to cases S0, S1 and S2 respectively. The contours
identify constant levels of Dr as a function of z/δ99 and x/δSR, and therefore provide
a measure of the IBL growth in a similar sense to Antonia and Luxton [3] with their
velocity profile ‘merge’ method. A brief investigation into the sensitivity of δI to this
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Case Reτ k+s A1 b1 A2 b2
S0 2.8 × 104 131 0.085 0.60 0.066 0.728
S1 8.4 × 104 128 0.069 0.61 0.058 0.714
S2 1.3 × 105 128 0.062 0.61 0.052 0.716

Table 5.3: Parameters for power-law fit to internal boundary layer in smooth-rough
transition. δI/δ99 = A1(x/δSR)b1 and δI/δSR = A2(x/δSR)b2

subjective tolerance suggests that a 25% variation does not result in an appreciable
difference in the location of the IBL. A direct comparison with δI/δ99 obtained
from (5.9) with A1, b1 from table 5.3 is also included in the in the contour plots,
suggesting a good match between the two methods while noting a general trend
of under predicted δI/δ99 with the knee point method. Antonia and Luxton [3]
observed a notable difference when considering the IBL growth rates with each of
the two methods. An upper bound, such that the power-law exponent is 10% greater
than that determined by the knee-point method is also included to emphasize the
effect of the exponent on the apparent relaxation distance.

5.5.6 Relaxation length
We now estimate measures of the relaxation length, defined as the streamwise length
from the SR transition, to the approximate streamwise station where the boundary
layer has reached a fully rough-wall equilibrium state. Two such measures are
considered, the first from the streamwise relaxation ofC f to downstream rough-wall
equilibrium values at matched Reτ and k+s , and the second from the IBL growth
rates. For the skin-friction relaxation length we define C f 0(x) as the reference
skin-friction coefficient from LES of the fully rough-wall boundary layer using
the roughness correction from equation (5.1) with matched Reτ and k+s . We then
compute the ratioC f (x)/C f 0(x)whereC f (x) from the non-equilibrium LES. A ratio
C f (x)/C f 0(x) = 1 would indicate a perfect match between the non-equilibrium and
equilibrium LES. Ratios for the three SR LES cases have been plotted in figure
5.16a. It can be seen from both figures 5.6a and 5.16a that the SR LES shows a
small offset from unity towards the end of the plotted range. A local minimum
value, interpreted as a slight undershoot, also appears as a distinctive feature of the
C f (x)/C f 0(x) variation in all the SR cases.

In figure 5.16b, the correction to the friction velocity U+∞,SR obtained from the non-
equilibriumLES required tomatchU+∞,R calculated from fully rough LES atmatched
Reτ and k+s is shown. We define a corrective term∆U+c in the non-equilibrium region
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so that the free-stream velocity normalised by the friction velocity is given by the
following form of the classical log-wake relation

U+∞,SR =
1
κ

[
log

(
δ99uτ
ν

)
+ 2Π

]
− ∆U+(k+s ) + ∆U+c + A. (5.11)

In (5.5.6), setting∆U+c = 0 returns the equilibrium values for normalised free-stream
velocity U+∞,SR = U+∞,R with ∆U+ non-zero in the rough-wall region as defined in
(5.1). To calculate the correction ∆U+c at a given station x/δSR, U+∞,SR and the first
term on the right-hand side are evaluated from the LES , ∆U+(k+s ) is computed from
(5.1) with k+s calculated from the LES and the constants Π = 0.55, κ = 0.384, A =

8.5 are used. All terms in except∆U+c are known and the latter can then be calculated.
We then define (x/δSR)1 to be the streamwise location at which |∆U+c | = 0.01 first
occurs, neglecting the local maxima in ∆U+c unique to the SR transition cases.

For the IBL measure, we put δI/δ99 = 1 in (5.9) and solve for (x/δSR)2 as(
x
δSR

)
2
=

(
1
A1

)1/b1

(5.12)

These relaxation measures are summarised in table 5.4 for the three SR cases
considered. We note that both measures of relaxation length have systematic sources
of uncertainty. For the IBL measure, in obtaining (5.12) we are extrapolating (5.9)
well beyond the range of the least-square fit shown in figure 5.14a. For the skin-
friction estimates, subjective values of asymptotic zero-value estimates are used,
introducing uncertainties in our results. Nonetheless, it is clearly evident from
table 5.4 that the IBL relaxation length is consistently a factor of about five longer
than the measure associated with relaxation of the skin-friction. This is probably
because the streamwise velocity gradient at the wall is strongly conditioned by
near-wall dynamics that reach local equilibrium relatively quickly. On the other
hand the relaxation of the outer part of the boundary layer requires the dissipation
of energetic turbulence produced by roughness and contained in very-long scale
motions (VLSMs) [39]. According to the LES, this takes a surprisingly long
streamwise length.

5.5.7 Effect of varied k+s at matched Reτ
We briefly present results from a study on the effect of k+s on the relaxation of
the skin-friction measure (x/δSR)2 in our study. For this, the intermediate Reτ
case S1 has been used as the reference, and two values of k+s in addition to the
previously presented case (see Table 5.2) are included. Table 5.5 summarizes the
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Case Reτ k+s (x/δSR)1 (x/δSR)2
S0 2.8 × 104 131 13 61
S1 8.4 × 104 128 18 77
S2 1.3 × 105 128 20 93

Table 5.4: Relaxation length estimates in SR transition: (x/δSR)1 from recovery
of skin-friction coefficient; (x/δSR)2 from extrapolation of internal boundary layer
power law curves in table 5.3

Case k+s (x/δSR)1
S1L 48 18
S1 128 18
S1H 304 18

Table 5.5: Relaxation length estimates in SR transition: from skin-friction recovery
measure

roughness conditions examined in this section. We note that the case denoted
by S1L includes a calculation in the transitionally rough regime. Figures 5.17a
and 5.17b show the streamwise development of the skin-friction based relaxation
measures. There is a noticeable trend of increasing peak C f (overshoot relative
to equilibrium rough value immediately downstream of the surface transition) with
increasing k+s . Remarkably, the relaxation lengths in each instance at matched Reτ
remains approximately constant. Increasing k+s increases the prominence of the
local minimum in C f /C f 0.
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(a) Skin friction ratio, where Cf 0 is the rough wall equilibrium value

(b) Correction to ∆U+ required to match LES friction velocity. ∆U+ = 0
represents equilibrium rough-wall value.

Figure 5.16: Relaxation measures for SR transition. Line descriptions: dashed =
S0; dash-dotted = S1; solid = S2
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(a) Skin friction ratio, where Cf 0 is the rough wall equilibrium value

(b) Correction to ∆U+ required to match LES friction velocity. ∆U+ = 0
represents equilbrium rough-wall value.

Figure 5.17: Relaxation measures for SR transition, examining k+s effects. Line
descriptions: dashed = S1; dash-dotted = S1L; solid = S1H
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5.6 Results: Rough to smooth (RS) transition
5.6.1 Summary of LES parameters
Weconsider the case of RS wall transition using the computational domain described
in §5.3.2 to study the streamwise development of the turbulent boundary layer from
a fully-rough to a fully-smooth profile. The descriptions of fully-rough and fully-
smooth flows are informed by self similarity in the variable z/δ99 in the streamwise
development of Reynolds stresses in each of the distinct wall boundary regions, such
that the entire wall-normal extent of the boundary layer has adjusted to the new wall
condition. Detailed descriptions and flow statistics shown henceforth are focused
on case R0. A summary of the RS numerical simulations has been included in table
5.6. We focus the computational study on constant ks cases such that k+s = 115
immediately upstream of the RS transition for a range of Reτ between 1.8 × 104 to
8.8 × 104 as shown in table 5.6. The structure of this section closely follows that of
the preceding section on SR flow development.

Case Reτ k+s δ99/ks x/δin y/δin z/δin Lrec/δin LR→S/δin

R0 1.8 × 104 115 144 133 22 13.3 10.67 20
R1 4.8 × 104 115 416 133 22 13.3 10.67 20
R2 8.8 × 104 115 1040 133 22 13.3 10.67 20

Table 5.6: Summary of parameters in RS simulations

5.6.2 Skin-friction
The skin-friction C f and non-dimensional friction velocity U+∞ are considered as
measures of streamwise development of RS non-equilibrium flow in figures 5.18a
and 5.18b respectively. The LES in the RS section uses (5.7) for the roughness
correction. We again plot both the results from the LES and the expected smooth
and rough-wall values using (5.8) with the roughness correction given by (5.2). In
figure 5.18a, the skin-friction is shown to undershoot the equilibrium smooth-wall
value immediately downstream of the RS transition located at x/δRS = 0, where
δRS = δ99

��
x/δRS=0. The skin-friction coefficients, and therefore the wall shear stress

then gradually recover to the equilibrium smoothwall value between 12-24 x/δRS. A
dependence on Reτ is also apparent from the figures, and is addressed quantitatively
in §5.6.6. The skin-friction in the recovered, or equilibrium smooth-wall flow appear
to overshoot the equilibrium value calculated using the Coles-Fernholz empirical
relation (5.8). Proceeding further downstream the rate of change of C f appears
consistent with that predicted by equation (5.8). Figure 5.18b presents the alternative
representation of the skin-friction in terms of U+∞, as in §5.5.2. These parameters
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show trends consistent with observed data in the experimental studies of boundary
layers with streamwise heterogeneity in roughness [30, 4].

5.6.3 Streamwise development of mean velocities
Mean velocity profiles are plotted in inner scaled units for RS transition in figures
5.19a and 5.19b. Figure 5.19a shows that the velocity profiles for x/δRS < 0 collapse
against z+. Immediately downstream of the jump at x/δRS = 0.497, we observe, in
figure 5.19b, an abrupt overshoot in u+ across the vertical extent of the boundary
layer. A comparison of figures 5.19a and 5.19b suggests that the non-equilibrium
flow for x/δRS > 0 departs from the expected slope of κ = 0.384 for equilibrium
smooth and rough-wall flow. The jump in friction velocities, and therefore U+∞ is
reflected in Figure 5.19. The results suggest that the upstream influence of the new
smooth-wall condition is confined to −2 < x/δRS < 0, in contrast to the SR case
where the rough-wall influence is seen for approximately 5 x/δSR upstream. The
RS transition exhibits slower development to the downstream wall condition than
the SR cases. Beyond the initial abrupt undershoot, the velocity profiles gradually
relax towards the equilibrium smooth wall value by x/δRS = 57 as shown in figure
5.20.

Outer scaled velocity profiles are shown in figure 5.21, and demonstrate the gradual
merging of profiles closer towards the smooth-wall profile downstream, this suggests
one possible diagnostic tool for determining the extent of the internal boundary layer,
similar to the SR cases. Velocity defects are shown in figures 5.22a and 5.22b and
exhibit an overshoot with gradual relaxation with streamwise progression. The
inner-scaled defect appears to adjust more rapidly to the equilibrium profile at
z/δ99 > 0.4. Mulhearn [54] studied mean velocity profiles and the influence of the
relative positions of roughness crests to the downstream smooth wall origin at low
Re. In this study the roughness geometry is not resolved directly and the effect of
surface origin adjustment on velocity profiles is not discussed.

5.6.4 Turbulence intensities
The streamwise development of the turbulent intensities for case R0 (detailed in
table 5.6) are shown in figures 5.23 and 5.24. Figure 5.23a and 5.23b focus attention
on the immediate vicinity of the RS transition, whereas figure 5.24 emphasises the
non-equilibrium nature of the developing smooth-wall flow. The upstream flow
state is consistent with that of a fully-rough wall equilibrium flow, showing good
collapse against the outer scaledwall-normal coordinate z/δ99. The inner normalised
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(a) Skin friction, Cf

(b) U∞/uτ

Figure 5.18: Skin friction, C f , and non-dimensionalised friction velocity U+∞ =
U∞/uτ in turbulent boundary layers with RS wall transition. Darker lines correspond
to LES, while lighter lines correspond to theoretical values using Coles-Fernholz 2
(Nagib et al) (5.8) with the ∆U+ equation (5.2) correction. Solid lines: Case R0,
dashed lines: Case R1, dash-dotted lines: Case R2.
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(a) u+ for x/δRS < 0

(b) u+ for 0 ≤ x/δRS ≤ 2.5

Figure 5.19: Spanwise averaged, normalised velocities u+ = u/uτ in RS transition
at near x/δRS = 0. Symbols represent different streamwise stations described in the
embedded key. Dark to light colour gradient indicates a downstream progression.
Case R0.
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Figure 5.20: Spanwise averaged normalised velocities u+ = u/uτ in RS transition at
large x/δRS. Embedded symbol key describes streamwise location at large x/δRS.
Case R0.

Figure 5.21: Outer scaled spanwise averaged velocity profiles u/U∞ plotted against
z/δ99 for RS flow. Symbols indicate streamwise progression. Color progression
from dark to light is in the downstream direction.
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(a) Velocity defects near x/δRS = 0

(b) Velocity defects for x/δRS > 0

Figure 5.22: Development of velocity defect near RS transition. Downstream
progression is represented with lighter line colours. Symbol keys are embedded in
the respective figures and represent streamwise stations x/δRS for the data plotted.
δRS = δ99 at the location of wall-surface transition
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streamwise Reynolds stress increases sharply in the downstream vicinity of the jump
at x/δRS ≤ 0.11 since uτ decreases abruptly at x/δRS > 0, before gradually relaxing
to the fully equilibrium smooth wall value by x/δRS = 79. From figure 5.24 we note
that it is difficult to identify the internal boundary layer location using the inner-outer
layer descriptions of Efros and Krogstad [23] for x/δRS ≤ 4.56. The IBL becomes
apparent further downstream at x/δRS ≥ 7.25 with the presence of two distinct
slopes in the streamwise turbulent intensities. Comparison between the velocity
and turbulence intensity plots 5.20 and 5.24 suggests that the turbulence intensities
exhibit a slower relaxation rate when compared to the mean velocity profiles.

5.6.5 Internal boundary layer growth
We consider instantaneous, spanwise averaged growth of the internal layer. By ap-
plying least-square, linear fits to the inner and outer regions of streamwise Reynolds
stress u′+2 with x/δRS > 10, we generate estimates for the internal boundary layer
growth rates for the RS cases in a method consistent with that used in the determi-
nation of IBLs in the SR case. Figure 5.25 shows an example of this ‘knee-point’
method applied to RS transition. Antonia and Luxton [4] provide experimental ev-
idence of the growth of the internal layer in RS flow development, with an estimate
for the power law growth δI ∝ x0.43.

Ismail, Zaki, and Durbin [32] found δI ∝ x0.41, whereas Hanson and Ganapathisub-
ramani [30] suggest δI ∝ x0.49 and δI ∝ x0.46 for their mesh and grit roughness
experiments respectively. A summary of results from the present LES is included in
table 5.7. The present results suggest a dimensional growth rate such that δI ∝ xb2

with b2 between 0.42 and 0.53. By keeping k+s constant, we study the Reynolds
number dependence of the internal boundary layer. In the case of RS wall transition,
the self-preserving smooth wall boundary layer Reynolds stresses are recovered at
x/δRS ≈ 80. We first present in figure 5.26 the power law growth estimates for the
RS case. We note that the trend shown in the increasing Re cases from R0 − R2
are not self consistent when using the Reynolds stresses to determine the extent of
the IBL. Hanson and Ganapathisubramani [30] state that the method of line-fits to
the inner and outer layers in the turbulent stress curves is only appropriate for use
with the SR transition case, perhaps this is accentuated at higher Re. It is clear from
figure 5.27 that the IBL growth obtained via the turbulent stresses overpredicts the
value suggested by the velocity profile merge-points. As in the SR section, contour
plots of Dr , the relative velocity between adjacent streamwise stations, are shown
in figure 5.27 to provide an additional measure of the IBL edge, with the results
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(a) u′+2, x/δRS < 0 (equilibrium)

(b) u′+2 for 0 ≤ x/δRS ≤ 1.73 (non-equilibrium)

Figure 5.23: Development of streamwise Reynolds stresses near RS transition.
Downstream progression is represented by dark→light color gradients and detailed
with symbols indicating streamwise locations x/δRS.
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(a) Transitionally smooth region

(b) Approach to fully smooth region

Figure 5.24: Development of streamwise Reynolds stresses downstream of RS tran-
sition. Square symbols indicate stations upstream of RS transition, circle symbols
indicate stations downstream of RS transition
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Figure 5.25: Demonstration of method using the inner and outer layer slopes to
estimate the position of the internal boundary layer δI(x) in RS flow. Examples of
IBL edge determination at four stations at 10 ≤ x/δRS ≤ 20 presented.

of the knee point method superimposed. We observe that the knee point estimate
using 10 ≤ x/δRS ≤ 22 show agreement with the trends in IBL growth identified
by the relative velocity measure, with the indication of over-prediction in δI using
the knee-point method for all three cases, and particularly emphasised in the R2
case. Hanson and Ganapathisubramani [30] plot

√
u2/u against u/U∞ as a diag-

nostic measure for the intermediate region that exhibits composite rough-smooth
behaviour.

Hanson and Ganapathisubramani [30] studied RS transition at Reτ = 4500 and 7000
with k+s = 167 and 1046 respectively. They used Preston tube measurements with a
buffer-layer fit to determine the skin friction, and the velocity profile ‘merge’ tech-
nique (as did Antonia and Luxton [4]) to estimate the edge of the IBL. The present
LES framework with the wall model is intended for higher orders of magnitude of
Reτ: hence a direct comparison of the RS transition with the experiments of Hanson
and Ganapathisubramani [30] is not given here. A discernible trend with increasing
Reτ is observed in the power law exponent for RS transition, whereas the effect of
the leading multiplicative constant is not as clear as in the SR case. Hanson and
Ganapathisubramani [30] suggest two distinct growth rates about x/δRS = 1.5; this
is presently not investigated.



81

(a) Growth of IBL δI/δ99

(b) Growth of IBL δI/δSR

Figure 5.26: Internal boundary layer thickness measures inferred from identification
of inner and outer regions in streamwise Reynolds stress plots detailed in section
5.5.5. RS flow. Symbols are from LES, lines are least square power-law fits shown
in table 5.3. squares and dash-dotted line: R0; circles and dotted line: R1, diamonds
and dashed line: R2.
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Figure 5.27: Contour plots of Dr(x/δRS, z/δ99) = (un − un+1)/un. Percentage
change in mean velocity profiles in x/δRS. Symbols and dashed lines reproduce
non-dimensional power law curves shown in figure 5.26. Top to bottom indicates
cases R0, R1, R2. Dash-dotted line indicates 10% reduction in power law exponents
with the same leading constants. First three wall-normal points omitted due to near
wall effect.

Case Reτ k+s A1 b1 A2 b2
R0 1.8 × 104 115 0.19 0.35 0.15 0.53
R1 4.8 × 104 115 0.20 0.29 0.15 0.48
R2 8.8 × 104 115 0.25 0.24 0.18 0.44

Table 5.7: Parameters for power-law fit to internal boundary layer in rough-smooth
transition. δI/δ99 = A1(x/δ99)b1 and δI/δRS = A2(x/δRS)b2

5.6.6 Relaxation length
As in the SR cases in section 5.5.6, we consider the relaxation of the skin friction C f

to equilibrium smooth wall values in addition to the internal boundary layer growth
estimated by the power law fits with the same measures (x/δRS)1,2. The relaxation
measures defined in §5.5.6 are then used to allow direct comparison between the SR

and RS flow cases. Here,

U+∞,RS =
1
κ

[
log

(δuτ
ν

)
+ 2Π

]
− ∆U+ + ∆U+c + A (5.13)

so that U+∞,RS = U+∞,S when the friction velocity has relaxed to equilibrium smooth
values as the corrective term ∆U+c relaxes to zero. ∆U+ = 0 in the smooth-wall
region as defined in (5.2). Figures 5.28 summarises the skin-friction relaxation
measures using the methods suggested in §5.5.6.
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In RS transition, the difference in (x/δRS)1 and (x/δRS)2 appears to be an order of
magnitude. We interpret these results with caution due to the discrepancy noted in
case R2, and the fact that the estimated equilibrium flow lies beyond the horizontal
extent of the computational domain. The relaxation distance is shown to increase
with Reτ for identical k+s values. Table 5.8 presents a comparative summary of the
two measures. We note that the local minima in the non-equilibrium C f /C f 0 for the
SR cases is not observed in the RS cases. The reference boundary layer thickness
δRS is the value immediately upstream of the sudden jump from the rough to smooth
surface.

Case Reτ k+s (x/δRS)1 (x/δRS)2
R0 1.8 × 104 115 17 114
R1 4.8 × 104 115 20 224
R2 8.8 × 104 115 24 322

Table 5.8: Relaxation length estimates in RS transition: (x/δRS)1 from recovery of
skin-friction. (x/δRS)2 from extrapolation using internal boundary layer power law
fits.

5.6.7 Effect of varied k+s at matched Reτ
We consider the effect of varying k+s in the case of RS transition, the skin-friction
relaxation measure at matched Reτ using case R1 as a reference. Table 5.9 sum-
marises the k+s parameters tested in this series of simulations. As in the SR transition
case, we note that one of the instances R1L lies in the transitionally rough regime.
Figures 5.29a and 5.29b indicate a stronger dependence of the relaxation length on
the upstream Reτ value than on the roughness scale k+s . Again, we see that the peak
undershoot in C f downstream of the RS transition shows a strong dependence on
k+s .

Case k+s (x/δRS)1
R1L 56 20
R1 115 20
R1H 324 21

Table 5.9: Relaxation length estimates in RS transition:(x/δRS)1 from skin-friction
relaxation measures

5.7 Discussion
The qualitative trends in results presented in the previous sections show good agree-
ment with the experiments of Antonia and Luxton [3, 4], Efros and Krogstad [23]
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(a) Cf compared against equilibrium values.

(b) Correction to velocity deficit in RS transition, ∆U+c obtained from LES and
required to recover non-equilibrium value using empirical form of ∆U+.

Figure 5.28: Relaxation measures for SR transition. Line descriptions: dashed =
R0; dash-dotted = R1; solid = R2
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(a) Skin friction ratio with varying k+s for RS cases, where Cf 0 is the smooth
wall equilibrium value

(b) Correction to ∆U+ required to match LES friction velocity. ∆U+ = 0 represents
equilbrium smooth-wall value.

Figure 5.29: Relaxation measures for SR transition case R1 with varying k+s , exam-
ining k+s effects. Line descriptions: dashed = R1L; dash-dotted = R1; solid = R1H.
Cases summarised in table 5.9
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and Hanson and Ganapathisubramani [30]. The flat plate turbulent boundary layer
is shown to experience slower adjustment (defined by skin-friction relaxation to the
equivalent fully rough or smooth walled flow, and by the development of turbulent
stress profiles such that the inner layer influenced by the new boundary condition
merges completely with the outer flow) to the downstream wall surface in the case
of RS transition when compared to the SR case. This is supported by the relaxation
lengths defined in §5.5.6 and §5.6.6.

In SR transition, the effect of the newwall condition is first observed in the deviation
of the C f value from upstream equilibrium up to x/δSR ≈ −5, whereas the upstream
influence appears minimal in the case of RS transition, confined to within x/δRS ≈
−2. We note that the current simulations consider an abrupt, discontinuous change
in the surface condition, and this is reflected to some extent in the appearance of
oscillations in the skin-friction up to three grid points immediately downstream of
the surface change.

In SR transition, the oncoming smooth-wall flow experiences a sudden increase
in turbulent energy production over the abrupt rough surface change, which is
then diffused through the internal boundary layer to the outer flow. In RS flow, a
sudden decrease in energy production occurs at the location of the transition, with
the upstream high intensity turbulence advected over the rough wall surface. This
diffusion of turbulent energy over the smooth wall comparedwith the advection from
the upstream state in RS flow is a less efficient process than the energy production
and outward diffusion over the rough-wall in SR flow, and provides an explanation
for the generally longer recovery lengths in the RS cases. This interpretation is also
supported by the study of Antonia and Luxton [4] who state that the larger proportion
of turbulent energy in the outer layer offers an explanation of long recovery lengths
in RS flow. Figures 5.30a and 5.30b show the distribution of turbulent kinetic
energy in the non-equilibrium flow. We see that in each case the outer layer retains
‘memory’ of the upstream wall condition, but the plots support the suggestion that
the influence of the outer layer in determining the IBL growth rate is greater in the
RS case. Comparison of the contour plots of outer-scaled velocity defect measure
Dr in figures 5.15 and 5.27 also suggests a stronger influence of the outer layer flow
on the growth of the internal boundary layer in RS transition.

An alternative viewpoint of the relaxation length based on the friction velocity
is seen by considering a defined turbulent timescale Tt ∝ δ99/uτ which can be
interpreted as a measure of boundary layer turnover, and comparing it with the
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mean flow timescale given by Tm ∝ x/U∞, where x is the streamwise coordinate.
Nagib, Chauhan, and Monkewitz [55] consider this to be a criterion for ‘well-
behaved’ interactions between turbulent and mean-flow scales. ‘Well-behaved’ can
be interpreted as a comment on flow equilibrium, and suggests that a ratio of these
timescales, Tt/Tm ∝ δU+∞/x may lead to insights on the recovery length. From
previous experimental observations and the present LES study, we see that the
most severe change in parameters across the SR or RS transition occurs in uτ.
The corresponding lengthscale for the flow is given by L = U∞Tt/δ, such that the
normalised relaxation parameter scales as L ∝ U+∞. This is supported by the plots of
relaxation length against U+∞ in figure 5.31, where proportionality between U+∞ (and
therefore the Reynolds number) and relaxation to equilibrium is seen. For matched
U+∞ downstream, we see that relaxation in RS flow is slower and hence agrees with
this scaling argument. In figure 5.32 we focus attention on the RS cases only, with
U+∞ measured downstream. We note that the LES data is obtained at x/δRS = 25
while the experimental data is obtained at x/δRS = 12.17. Nevertheless, the simple
scaling argument presented here is supported by this plot.

(a) Contours of normalised turbulent kinetic energy, SR, with upstream Reτ = 84000

(b) Contour of normalised turbulent kinetic energy, RS, with upstream Reτ = 88000

Figure 5.30: Contours of q+2 = u′+2 + v
′+2 + w

′+2. uτ overshoots in SR and
undershoots in RS compared with downstream equilibrium values.

Figure 5.33 suggests the possibility of multiplicative scaling based on Reτ as the
power law exponents are roughly the same. Using the downstream Reτ calculated
at x/δSR = 20 as a normalising parameter, we see an indication of the IBL growth
rates collapsing in figure 5.33 to within 8.4% in the least-squares power-law fit for
the smooth-rough internal boundary layer growth. This selection is to some extent
supported by the uτ0 scale definition by Hanson and Ganapathisubramani [30]
and the choice of scaling parameter in internal flows as determined by Saito and
Pullin [72] for channel flows. A similar collapse scaling has not been considered
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(a)

Figure 5.31: Dependence of relaxation measure (x/δSR,RS)1 on U+∞. Open symbols:
LES values calculated at x/δ = −5 (upstream), x/δ = 0 (at transition) and x/δ =
25 (downstream). Red: RS, blue: SR. Filled symbols (experiments, private
communication) show oil-film interferometry results of M. Li using case H0 with
U+∞ calculated at x/δRS = 0.17 (transition) and x/δRS = 12.17 (downstream).

Figure 5.32: Examination of friction-velocity recovery using downstream states in
RS transition (open symbols), comparison with available experimental data (filled
symbol).
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for the RS case due to the anomalous scatter in the R2 case (highest Reynolds
number) simulation. In Figure 5.34, we demonstrate the possibility of a power
law dependence of the relaxation lengths based on Reτ. We recall the discrepancy
observed in case R2, and therefore interpret the results with caution for the RS cases.
Experimental data at low Reτ is required to examine this effect over the full range
of Reτ.

Figure 5.33: SR case IBL thickness scaled by Reτ at x/δSR = 20. Symbol and line
descriptions as in Figure 5.14

Using the method of Andreopoulos and Wood [1], we define the rough and smooth
lengthscales zr and zs respectively with the perturbation strength M = log(zr/zs)
such that zr = ks exp(κ(D − A)) for a rough wall and zs = ν/uτ exp(−κA) for a
smooth wall with D = −4.0, A = 4.5, κ = 0.384. Considering the specific case
S0, the downstream lengthscale is that of the rough wall, zd = 1.02 × 10−4 and
zu = 4.4× 10−6, suggesting a perturbation strength of M = 3.14. Similarly, for case
R0 we obtain M = −2.86.

5.7.1 Comparison with RS experiments at low Reynolds number
We briefly compare the skin-friction recovery behaviour to experimental measure-
ments made in the High Reynolds Number Boundary Layer Wind Tunnel (HRN-
BLWT) at the University of Melbourne. The investigation of Li et al (private
communication) focuses on obtaining accurate measurements of non-equilibrium
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Figure 5.34: Reynolds number dependence of relaxation lengths in both SR and RS
transition. (Red) Squares: SR, power law fit ∝ 4.7Re0.25

τ ; (Blue) Circles: RS, power
law fit ∝ 0.22Re0.64

τ

wall shear stresses using oil-film interferometry. We note that the wall-model
in the present LES is designed for high Re. Their experimental design maintains
Reτ = 3500 for comparison against existing data while keeping the roughness height
equal to 3% of the boundary layer thickness at location of roughness transition. In
running the simulation at low Re at the experimental value of ks, we note that present
conditions would require ks > 3h0, which violates the assumption of subgrid rough-
ness in the model development. In running the simulation for the condition with
high ks, we note that numerical instabilities quickly develop in the result, causing
large grid-scale oscillations, particularly in the rough-wall extent of the domain; we
do not believe the model to be effective at extremely low values of Reτ/k+s . Hence
we restrict the comparison shown in figure 5.35 to the low Reτ = 3730 case in the
transitionally rough regime with k+s = 28.

In figure 5.35, the skin-friction is normalised against the last data point x/δRS

available in the experimental results and compared with the oil-film interferometry
of Li and Hutchins. Items H0 − H3 refer to the relative position of the maximum
rough element heights to the smooth-wall ‘zero’ coordinate. In H0 the smooth wall
is 2.85 mm below the sandpaper roughness crests, while in H3 the smooth wall is
above the sandpaper by 0.06mm. The experimental investigations revealed a marked
influence of the crests of the roughness elements relative to the downstream smooth
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Figure 5.35: Comparison of low Reynolds number RS case, identified as RL against
experimental data at Reτ = 3500 (Li, Hutchins, private communication). Note
k+s = 28 in computation. LES upstream Reτ = 3730, normalised against C f 0 at
x/δRS = 12.25. H0−H3 denote deviation of rough-wall crest from smooth surface.
H0 = −2.85mm, H1 = −1.94mm, H2 = −0.98mm, H3 = 0.06mm (Positive values
mean smooth wall is higher)

surface, and the present low Re LES show good agreement with the H0 case. The
relative origin effect is not explicitly captured in the LES; the wall model does not
take into account the influence of the ‘true’ origin in the wall-normal coordinate
in the presence of roughness elements. We also note a degree of uncertainty
introduced by the choice of x/δSR = 12.25 as the downstream reference station.
The IBL merges with the outer layer (for case H3) at x/δRS ≈ 25 (Li and Hutchins,
private communication). The present LES study of high Re RS transition supports
the use of x/δ = 12.25 as the reference location for skin-friction through the finding
that the C f relaxes at a much faster rate than the IBL.
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C h a p t e r 6

LES OF TBL WITH SHORT, ABRUPT PATCH OF ROUGHNESS

6.1 Introduction
In this chapter we consider the development of a turbulent boundary layer over
a nominally smooth wall with a patch of roughness that extends a short distance
in the streamwise coordinate and spans the entire spanwise distance of the bottom
wall. The non-equilibrium flow over a short rough patch has previously been studied
experimentally at lowReynolds numbers byAndreopoulos andWood [1], Jacobi and
McKeon [33], and computationally by Bou-Zeid, Meneveau, and Parlange [6]. Bou-
Zeid, Meneveau, and Parlange [6] approached the problem with a Lagrangian scale-
dependent subgrid model with a dynamic Smagorinsky coefficient. Their work also
differs in that it considers transitions between rough-walls of different aerodynamic
roughness measures, whereas the present research considers transitions between
hydrodynamically smooth (∆U+ = 0) and rough surfaces.

The present work uses the SV SGS model which does not contain a wall function
in the outer LES, and prescribes Dirichlet boundary conditions at the virtual wall.
A static (time-invariant) ‘impulsive’ roughness patch is applied to an upstream
equilibrium smooth-walled flow to generate non-equilibrium flow downstream. A
numerical simulation of this problem mitigates, to some extent, the difficulties
in obtaining measurements over the short rough wall extent. The length of the
roughness patch is designed such that the skin-friction (previously shown to relax
more rapidly than the Reynolds stresses) does not equilibrate to the rough-wall
conditions before the wall boundary becomes abruptly smooth.

Andreopoulos and Wood [1] (henceforth AW) consider an extent of roughness less
than than 10δ0 to be sufficient for an ‘impulsive’ roughness patch, choosing to study
a patch of length 3δ0, and the experimental investigation of Jacobi and McKeon
[33] (henceforth JM) considers a patch length of 1.5δ0, where δ0 represents the
99% boundary layer thickness at the onset of the patch. The study is essentially
one of the interaction of two internal boundary layers, and presents useful insights
into physical scenarios with multiple roughness transitions, and the development of
multiple IBLs in turbulent flows.

Results, primarily related to the wall shear stress characteristics are presented first,
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Case Reτ k+s (C f /C f ,re f )max (C f /C f ,re f )min

I1L 8.1 × 104 58 2.33 0.70
I1 8.1 × 104 103 3.05 0.65
I1H 8.1 × 104 326 4.98 0.53

Table 6.1: Summary of key parameters at constant Reτ with varying equivalent
roughness

Case Reτ k+s (C f /C f ,re f )max (C f /C f ,re f )min

I0 2.8 × 104 104 3.40 0.68
I1 8.1 × 104 103 3.05 0.65
I2 1.3 × 105 103 2.88 0.60

Table 6.2: Summary of key parameters for varying Reτ with nominally constant k+s

including a comparison with the SR transition case presented in chapter 5. The
present LES framework allows the simple case described above to be extended to
an arbitrary distribution of patches in the streamwise extent specifically in high Re

regimes. We first study the effect of k+s keeping Reτ constant, and then proceed to
briefly examine effects of Reynolds numbers and strip length at matched ks on the
integrated flow statistics.

6.2 Problem description and numerical method
The domain setup is identical to that of the SR transition case presented in chapter
5, with the exception that the rough-wall is of a shorter streamwise length x/δSR = 3
and x/δSR = 1.5, ending well before the exit plane in the computational domain.
The numerical methods, including boundary conditions and the SV-SGS model are
described in detail in chapter 3.

6.3 Results
Tables 6.1 and 6.2 summarise the simulation parameters. Reτ and k+s values are
reported immediately upstream of the SR transition. C f has been normalised against
the smooth-wall skin friction upstream of the SR jump at x/δSR = −1, denoted by
C f ,re f . The tabulated summary supports the broader trends from the previous SR

transition section with respect to the effect of k+s and Reτ on the maximum overshoot
or undershoot and the relaxation lengths respectively. Reτ has a larger effect on the
relaxation length, while the peak overshoots and undershoots in C f show stronger
dependence on the k+s values.

We begin with an analysis of the skin-friction relaxation in non-equilibrium tran-
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sition. Figure 6.1 considers matched upstream Reτ subject to a range of k+s as
summarised in table 6.2. The raw (figure 6.1a) and normalised (figure 6.1b) skin-
friction coefficients are presented. Values are normalised by C f ,re f which is the
skin-friction coefficient at (x/δSR = −1). For a roughness patch length consistent
with that studied by AW, we observe a larger departure from the equilibrium values
in C f due to the initial SR perturbation with increasing k+s . The higher roughness
patch is shown to experience faster recovery in C f , with the general trend consistent
with the SR flow studied in chapter 5. Subsequent downstream transition due to the
RS perturbation at x/δSR = 3 also follows this trend, with increasing k+s leading to
larger departures from the smooth wall equilibrium for x/δSR > 3. An examination
of the peak overshoot due to the initial roughness impulse in figure 6.2 suggests a
power law dependence of the normalised skin-friction coefficient on k+s at matched
Reτ. A similar power-law trend is noted in figure 6.3 considering the undershoot
at the RS transition. We note that the power law fit (least-squared) has a greater
coefficient of determination R2 value when using the C f value at x/δSR = 3 as the
reference for the RS transition, since this accounts for the difference in upstream
Reτ in the rough-wall region.

In figure 6.4, we compare strip widths of x/δSR = 1.5 and x/δSR = 3.0, at the same
Reτ, with the same values for the equivalent sand-grain roughness ks. We note that
the SR transition dominates the skin-friction characteristics, with the peak overshoot
and recovery rates being remarkably similar (within 2.5%) until x/δSR = 1.5, at
which point the flow over the shorter strip transitions. A comparison with an
equivalent transition between the fully-smooth to fully-rough surfaces in figure 6.5
indicates comparable relaxation rates, with a higher initial slope owing to the higher
peak in ks. This scenario is still distinctly different from the SRS case, since the
upstream velocity and turbulent stress profiles are modified (and not in equilibrium)
when the wall boundary returns to the smooth-wall case.

In figure 6.6, the boundary layer shape factor H = δ∗/θ for matched Reτ is shown for
various k+s , where δ∗ and θ represent the displacement and momentum thicknesses
respectively. This series of curves also highlights the upstream influence of the
perturbation, which is shown to be abrupt at the onset of the roughness patch near
x/δSR ≈ 0, with gradual recovery downstream of the RS transition. AW indicate
some uncertainty in their values of θ, and hence H; the LES provides a clear,
consistent description of the shape factor over the rough patch, albeit at higher Re.
The initial decrease of H at x/δSR = 0, the rapid increase over the rough patch
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(a) Cf development in SRS transition

(b) Normalised Cf , Cf ,re f is given by skin-friction coefficient immediately upstream of
transition to rough surface.

Figure 6.1: Skin-friction coefficient, raw and normalised against upstream state
in TBL with impulsive roughness patch. Patch length is 3δSR as in the study of
Andreopoulos andWood [1]. Solid line: I1L; dash-dotted line: I1, dashed line: I1H
in order of increasing k+s at matched Reτ



96

Figure 6.2: Effect of varying k+s on maximum C f deviation from upstream flow at
matched Reτ on a log-log plot. LES and power law fits shown (Lines offset for
clarity)

Figure 6.3: Effect of varying k+s on maximum C f deviation from upstream flow at
matched Reτ on a log-log plot. LES and power law ∝ C1(k+s )0.44 shown. Least-
squares power law fit to C1 = 0.39
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Figure 6.4: Comparison with differing strip widths, x/δSR = 1.5 (red) and x/δSR =

3.0 (blue). k+s and Reτ as in table 6.1

Figure 6.5: Comparison with differing strip widths, including that with a pure SR
transition, x/δSR = 1.5 (red) and x/δSR = 3.0 (blue). k+s and Reτ as in table 6.1

extent, and the subsequent downstream relaxation appear as distinct features of the
LES result which match the general trend in H shown by AW.

In figure 6.7, we consider Reynolds number effects by plotting the shape factor
H at matched equivalent sand-grain roughness ks. Increasing H with decreasing
Reτ is apparent, and the growth rate of H over the rough patch shows consistent
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(a) LES results at matched Reτ

(b) Comparison with low Re experiment [1]. Circles are data points listed in AW (Table 1
in AW).

Figure 6.6: Boundary layer shape factor H = δ∗/θ for SRS transition. Solid line:
I1L; dash-dotted line: I1, dashed line: I1H in order of increasing k+s at matched Reτ
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Figure 6.7: Reτ effects on boundary layer shape factor in static impulsive roughness
patch. Solid: I0; dash-dot: I1; dashed: I2, in order of increasing Reτ. Rough patch
length 3δSR

trends amongst the three cases, verifying a strong dependence on k+s . In each of the
non-equilibrium flows considered, we note that the effect of the roughness elements
on the buffer layer, which is proportional to k+s , increases at the SR transition due to
rapid changes in uτ beyond the expected values at equilibrium (conversely decreases
at the RS transition). Reynolds number effects are perhaps best illustrated by a
considering the effect of increasing Reθ at constant k+s as shown in figure 6.8.
Combined with figures 6.2, 6.3, this supports the idea that at high Re, the overshoot
and undershoot characteristics are functions of k+s only. Agreement of smooth wall
values within 2.4% of the asymptotic Coles-Fernholz 2 expression is achieved with
the present model.

6.4 Discussion
The impulsive roughness study suggests that the first perturbation from S − R

dominates the flow development by determining the peak overshoot of C f at a given
Reτ and k+s value. Faster relaxation is observed at higher ks, but the length of the
rough patch has little effect on the development of C f directly over the patch at
matched Reτ. Comparing the impulsive static roughness problem to the transition
from a fully-smooth to fully-rough surface suggests a difference in the underlying
dynamics due to the increase in upstream C f at the location of the SR transition in
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Figure 6.8: Reθ dependence of normalised friction velocity U+∞, with upper and
lower bounds on ∆U+ = 8, lower bound is ∆U+ = −17 relative to the nominal
smooth wall value. Solid line: I0; dash-dot: I1; dash:I2.

the latter case. While we suggest a power law dependence of the peak overshoot on
k+s at high Re, any extrapolation must be carefully assessed due to the δ/ks > 40
constraint at which point the specific roughness geometry may alter the behaviour of
the boundary layer significantly. The results presented in this chapter help mitigate
some of the difficulty with measuring ∆U+ directly over the roughness patch.

With flow manipulation via designed roughness a possible motivation, we suggest
one potential extension to this problem through a combination of the ideas pre-
sented in chapters 4, 5 and 6 by initiating a turbulent flow over a smooth-wall
followed by gradual linear increment in the roughness up to k+s = ksuτ/ν in the
asymptotically rough regime. This also allows us to verify the numerical effect of
the roughness discontinuity visualised through oscillations in skin-friction imme-
diately downstream of the change in boundary conditions. We include the case of
inhomogeneous roughness distribution from a smooth-walled boundary to a linearly
increasing roughness distribution in figure 6.9. The initial smooth flow Reθ matches
that of case S1. For a range of slopes α consistent with the results presented in
chapter 4, we expect, at large Reθ , that the equilibrium U+∞ value is a function of α
only. The feasibility of manufacturing a surface with such a controlled roughness
profile perhaps merits more studies, with the potential for the linear-roughness case
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to be used as the canonical flow in studies of equilibrium rough-wall flows.

Figure 6.9: Transition from smooth to linearly increasing roughness distribution.
Solid line: α = 10−4, dashed line: α = 10−5, dash-dot line: α = 10−6, dot line:
α = 10−7
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C h a p t e r 7

CONCLUSIONS

7.1 Summary of findings
Turbulent boundary layers are present in a variety of engineering applications, and
present a challenging class of problems whose detailed understanding will help
to improve predictive capabilities, enabling the study of more complicated flow
structures, perhaps leading to informed manipulation of desirable flow features. In
this dissertation, we focus our attention on the canonical flat plate turbulent boundary
layer flow modified by sand-grain type surface roughness subject to varied spatial
distribution. To enable the study of such flows, we use large eddy simulations with
the stretched vortex subgrid scale model in the outer flow LES, coupled with a
virtual-wall model that has built in information on the local roughness geometry
through a log-layer velocity deficit function ∆U+.

InChapter 4, we introduce an interesting class of self-similar, equilibrium rough-wall
flows which exist in the presence of linearly varying surface roughness ks = αx. For
fixed values of the Kármán constant, the Coles wake factor and the offset parameter,
the model contains two parameters. The first is the exponent m in the outer-flow
velocity profile, while the second is the dimensionless slope of the roughness-scale
variation with distance α. The model is predicated on the ansatz that all terms
in the von Kármán integral relationship are constant in the streamwise direction.
This is found to be consistent with constant U+∞ (therefore constant skin-friction,
since the two parameters are algebraically linked) and with all defined measures of
the boundary layer thickness growing linearly with streamwise distance. For given
m, α, both the streamwise and the wall-normal component of the mean velocity
depend only on the single similarity variable z/(α x). Two interesting flows that
approximately satisfy the model conditions are the zero-pressure gradient boundary
layer, m = 0 and pure sink flow m = −1.

Large-eddy simulations have been performed for the zero-pressure gradient boundary-
layer flow using a wall-modelled region that incorporates a simple semi-empirical
model of subgrid wall roughness. This roughness model is local and allows linear
growth of the roughness scale with streamwise distance. Utilising a recycling tech-
nique for creating appropriate turbulent inflow boundary conditions and employing
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an iteration method to ensure that the virtual origin of both the boundary-layer
growth and the roughness-scale variation coincide, for given α, the LES produces
a statistically steady boundary-layer flow. At sufficiently large Reynolds number
Rex , the displacement, momentum and the ninety-nine percent velocity thicknesses
all grow approximately linearly with streamwise distance while U+∞ becomes con-
stant. Comparison of the LES and semi-empirical model results for some mean
measures of the boundary-layer development show similar qualitative and quan-
titative trends. Both the mean-velocity profiles and the streamwise mean-square
velocity-fluctuations obtained from the LES show self-similar scaling on the length
scale ks = α x with dependence on α. The velocity defect profiles show reason-
able collapse using the Rotta-Clauser length scale independent of α. In the sense
that U+∞, or equivalently the surface skin-friction coefficient, remains streamwise
constant, both the semi- empirical model and the LES can be interpreted as repre-
senting the fully-rough limit of a Moody-like diagram for the zero-pressure gradient
boundary-layer flow. Since the present model indicates a range of admissible values
of m, the present work suggests that existence of a class of Moody-like diagrams
for turbulent boundary-layer flows in the presence of linear streamwise variation in
surface roughness.

In Chapter 5, we extend the analysis of Chapter 4 to the study of turbulent bound-
ary layer development subject to an abrupt change in the streamwise roughness
distribution. We consider both smooth-rough and rough-smooth transitions. LES
with wall-modelling to capture near-wall small scale behaviour and the response to
sand-grain type roughness, have been used to study the development of turbulent
boundary layers over a flat plate with abrupt spatial variations in surface roughness
over a range of Re and ks parameters. The present wall-model allows a direct calcu-
lation of the friction velocity uτ based on local roughness perturbations, suitable for
non-equilibrium flow conditions. Measures of turbulent flow recovery downstream
of a step transition in SR and RS flows are obtained, and are shown to have growth
rates with trends consistent with previous experimental results. Recovery lengths
are shown to be larger in the case of RS transition than in SR with fitted power
law curves. Integral parameters such as skin-friction are shown to relax faster than
mean velocities and turbulent stresses. Power law dependence of the peak skin-
friction departure from equilibrium is shown. Examination of streamwise velocity
development contours identifies the internal boundary layer near the wall which is
affected by the abrupt roughness modifications; this region is apparent from both
the first and second order statistics. The power law growth rates for the IBL in SR
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transition exhibit collapse based on Re downstream of the transition. Outer scaled
velocity measures provide a better estimate of the IBL edge than inner scaled values,
since the abrupt overshoots, undershoots and subsequent relaxation of uτ mask the
magnitude of the jump at low x/δ downstream of the transition.

An extension of the high-Re non-equilibrium TBL flow is then presented in chapter
6 with an investigation of SRS transition focusing on integral parameters. Spatially
impulsive roughness patches are investigated, with two cases presented for com-
parison with the low Re experiments of Andreopoulos and Wood [1] (patch length
3δSR) and Jacobi and McKeon [33] (patch length 1.5δSR). The numerical analysis
provides insights into the flow field development at high Reynolds numbers through
consistent trends in skin-friction variation including its departure from equilibrium
and recovery, including flow statistics directly over and in the immediate vicinity of
the short rough-patch where the non-equilibrium effects are strongest. Peak over-
shoots and undershoots show a power law dependence on the roughness Reynolds
number k+s . An empirically determined collapse is observed in the boundary layer
shape factor over the high-Re range considered at approximately the same k+s . The
results demonstrate that the present computational framework, with the stretched
vortex subgrid-scale model in the outer LES coupled with a near-wall model with
a simple roughness correction for ∆U+ are a viable method of studying flows at
high-Re under non-equilibrium conditions.

7.2 Outlook
The work presented in this dissertation supports the use of the wall-modeled large
eddy simulation framework in boundary layer flows at high Reynolds numbers. Flow
manipulation using roughness has been suggested as one possible motivation for in-
vestigations into rough-walled boundary layer flows. Constant skin-friction flows
with development dependent only on a single parameter (roughness slope) perhaps
merit investigations in greater detail due to implications on passive flow control;
this is particularly relevant with improved small scale manufacturing capabilities.
The particular LES framework described in this work suggests an opportunity for
extensions to codes designed for engineering applications, maybe reducing the need
for LES-RANS hybrid modeling. One of the more enticing features is that the code
reproduces observed roughness effects with a very simple mean-velocity correc-
tion, with no requirement for forcing functions or explicit resolution of roughness
elements.
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A p p e n d i x A

NUMERICAL STABILITY WITH MARGINALLY SUBGRID
ROUGHNESS

A brief comment is included here on the suitability of the virtual-wall stretched
vortex subgrid scale model at low Reynolds numbers. In chapter 5 we attempted
a comparison with the low Reynolds number experiments (Reτ = 3500) of our
collaborators at the University of Melbourne. If we require the criteria determined
by Jiménez [35] (for rough-wall flow rather than flow over obstacles) δ/ks > 40
at low Re, we require that, with the present mesh configuration, ks approaches the
vertical grid size ∆z. At this point we can no longer consider the roughness to be
strictly subgrid, since we define h0 = 0.18∆z as the vertical extent of the virtual wall.
In running simulations at such low Re, two issues presented themselves. Either the
code crashes within 1-2 particle transition times, or large fluctuations inC f upstream
of the roughness transition are observed. Attempting the calculation at an equivalent
Reτ for case RL while keeping k+s > 100 violates the subgrid assumption, and the
measure ks > 3h0, where h0 is the virtual wall height in the wall-modelled LES.
We note rapid deterioration of the solution via numerical instabilities (streamwise
oscillations in C f such that the upstream state is not considered to be in equilibrium)
in this case, and therefore do not present results in the asymptotically rough regime
for the lowest Reτ case. Thus we restrict our primary set of simulations to have
large k+s in the asymptotically rough regime with large Reynolds numbers. One
other minor concern noticed throughout this LES study (and in previous usage of
the present model and numerical methods through boundary layer, channel flows)
is a near wall effect which, while predicting uτ reasonably well (based on validation
tests presented in Chung [15] and Saito and Pullin [72] and in chapter 5), is the
existence of slight discrepancies in mean velocity profiles and turbulent stresses
over the first 3 grid points. These do not appear to have a major effect on the exterior
flow behaviour, and minimal log-layer mismatch is observed.
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