
 
 

 

Interrogating the Structural Landscape of Malaria 

Biomarkers with Epitope Targeted Peptide Capture Agents 

Thesis by 

JingXin Liang 

 

In Partial Fulfillment of the Requirements for the 

degree of 

Doctor of Philosophy 

 

 

 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

Pasadena, California 

 

2018 

(Defended March 22, 2018) 

 

 



 

 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ã 2018 

JingXin Liang 

ORCID: 0000-0001-6600-8409 

 



 

 

iii 

Acknowledgements 

 There’s a famous proverb that says, “It takes a village to raise a child.”  In my 

opinion, it takes no less than that – in actuality, even more – to teach, nurture, and grow a 

scientist.  The journey towards becoming a scientist is an arduous one, filled with twists 

and turns, experimentation, learning on the fly, and displaying tenacity in the face of 

adversity.  Completing a doctoral program is as much an intellectual feat as it is an exercise 

of persistence.  As my doctoral advisor would say, “You can’t do science in a vacuum,” 

and he is absolutely right.  There are people, both within and outside of the scientific 

community, who have helped me, shaped me, and contributed along my journey. 

Voilà! Here is my village. 

First and foremost, I thank my parents, H.X. Liang and C.W. Leung, as well as my 

brother, J.Y. Leung.  We are a family of first-generation immigrants to America.  My 

parents are the most selfless and brave people I know – it is through their sacrifices that 

their children had better lives, educations, and opportunities.  I cannot even begin to fathom 

the amount of strength, persistence, and courage it took for them to create new lives on 

foreign shores, to build something from nearly nothing.  From humble beginnings, they 

created possibilities for their children and our family.  When I struggle, I think of the 

bravery they displayed to overcome even greater obstacles, and it gives me the perspective 

to push on and persevere.  I would not be here without my family.  My deepest gratitude 

and love goes out to them. 

I thank my advisor, Professor James R. Heath, for his mentorship, insight, and 

optimism for the past five years.  I have always admired his unique scientific view of the 

world, his intellect, and his ability to think of creative solutions to problems that span 



 

 

iv 

multiple disciplines.  When I am at a scientific crossroads, I tend to think, “What would 

Jim do?”  I appreciate his dedication to science, his willingness to help when I had a 

scientific problem, his insight and constructive criticism that helped me grow the 

independence to captain my own ship.  I am privileged to have had the opportunity to learn 

from him and grow under his mentorship.   

I also express gratitude for the team of scientists who are my committee members: 

my chair, Professor Douglas C. Rees; my secondary advisor, Professor William A. 

Goddard, III; and Professor Shu-ou Shan.  They provided time, questions, and valuable 

insight during meetings and exams.  I thank Professor Mitchio Okumura and Agnes Tong 

(Caltech Y) for the meaningful contributions they made during my first year at Caltech.  I 

must acknowledge and thank Professor Spiridoula Matsika, who was most formative in my 

nascent years of scientific research at Temple University. 

Thank you to all the members of Heath lab team whom have inhabited the basement 

of Noyes with me.  I want to acknowledge my team of colleagues who provided knowledge, 

leadership, good times, and help when I needed it.  Here we go: Samir Das, Arundhati Nag, 

Jessica Pfeilsticker, Jun Wang, Blake Farrow, Sung A Hong, Jongchan Choi, JC Hyun, 

Byung Jun Kim, Mary Beth Yu, Aiko Umeda, David Bunck, Yapeng Su, Sharareh 

Gholamin, Alice Hsu, William Chour, Amy McCarthy, Heather Agnew, and Bert Lai.  In 

later years, the basement of Noyes has been graced with new, wonderful colleagues and 

inhabitants: Alphonsus Ng, Min Xue, Anvita Mishra, John Heath, Fan Liu, Yue Lu, 

Matthew Idso, Songming Peng, Dazy Johnson, Alex Xu, and William Denman.  I also 

thank Katrine Museth, Elyse Garlock, and Rena Beccara-Rasti, for all they do to make our 

lives easier, as well as Kevin Kan, who lets me have first dibs on all the snacks.   



 

 

v 

I thank my partner, Mark Nesbit, for his love, companionship, patience, and support.  

Thank you for enriching my life, for being the kind of partner with whom I can be 

comfortable around all the time, and a steady ship.  We all have to sail through rough seas 

from time to time – the journey is infinitely more pleasant with you on board.  I love you 

and I’m so proud of you.  Through Mark, I’ve also had the blessing of growing my family:  

Dorothy and Skip, who have always treated me like their own; Katherine, my marine 

biologist sister; Veronica, my warrior sister.  I love you all. 

I am grateful for friendships that have enriched my life and demonstrated that 

wealth is not always accumulated through capitol: Regina Baglia, mi hermana de otra 

madre and first mate, for a decade of friendship, sleepovers, and study dates – words cannot 

encompass the last ten years, but eating our fill of cheese samples from Di Bruno Bros is a 

good start to the story.  I’m so excited to meet Èlia!  Roberta Poceviciute, for wonderful 

company, showing me the European way of life, honesty, and always opening her home to 

me.  Tahmineh Khazaei and Betty Wong, for encouragement, kindness, and supporting 

artistic endeavors.  Anastasia Pagán, a warm, generous soul who brings light and shows 

me new horizons.  Kaycie Deyle, for five years of support and meaningful conversations, 

even from Switzerland.  Ellen Casavant, who taught me how to grow friendships over great 

distances.  Nicole LaBerge and Marcus Drover, who are two of my favorite Canadian 

expats and wonderful friends.  Elizabeth O’ Brien, for all we’ve experience together in the 

journey of graduate school.  In no particular order, all the people who’ve been part of good 

times: Paul Walton, Jenna Bush, Matt Mayers, Leanne Chen, Siobhán MacArdle, and 

Nikolas Malafek.  From my Temple University days, I thank Mark Fennimore, Christopher 



 

 

vi 

Kozak, Professor Zhen Lu, Professor Kurt A. Kistler, and Catherine Triandafillou, who all 

played significant parts leading up to today.   

And now, onwards! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

vii 

 

 

 

 

 

 

“A smooth sea never made a skilled sailor.” 

- Franklin D. Roosevelt 

 

 

 

Good timber does not grow with ease: 

The stronger wind, the stronger trees; 

The further sky, the greater length; 

The more the storm, the more the strength. 

By sun and cold, by rain and snow, 

In trees and men good timbers grow. 

- Douglas Malloch, “Good Timber” 

 

 

 

     

 



 

 

viii 

Abstract 

Antibodies have conventionally been used as molecular recognition agents against 

epitopes, or antigenic regions, for protein capture and detection.  The ability of monoclonal 

and polyclonal antibodies to selectively bind their targets with high affinities makes them 

excellent agents for specific protein recognition.  However, as large proteins themselves 

(~150 kDa), antibodies are susceptible to changes in pH, temperature, and biochemical 

environment, particularly proteolytic cleavage.  Additionally, epitope binding on 

antibodies is reliant on their rigid tertiary structure to position key functional groups that 

facilitation antigen recognition.  Retaining the integrity of the protein structure creates rigid 

limitations against chemical modifications of antibodies to suit unique needs.   

Protein-catalyzed capture agents (PCCs) developed within the Heath group at 

Caltech address the limitation of antibodies as affinity agents.  Using epitope-targeted in 

situ click screening methodology, the Heath group has developed peptidomimetic 

molecules that offer an alternative solution to antibodies.  These PCCs exhibit high affinity 

and selectivity for their protein targets.  As peptide-based molecules, PCCs can be 

engineered to be biochemically stable and resistant to changes in their chemical 

environment.  Their peptide-based structures are readily amenable to chemical 

modifications and allow for adaptation to a range of applications.   

This thesis describes the development of PCCs against unique protein biomarkers 

for the detection of the most lethal species of malaria infection, Plasmodium falciparum.  

Malaria is a global health epidemic and its eradication is reliant on rapid and accurate 

diagnostics for prompt treatment.  We targeted the P. falciparum specific biomarkers 

lactate dehydrogenase (LDH) and Histidine-rich protein 2 (HRP2), both of which present 
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unique challenges for protein capture.  The LDH biomarker is homologous across malaria 

species, whereas HRP2 is highly polymorphic and lacks distinct secondary structure.  The 

variation in sensitivity of HRP2 detection by antibody-based tests has been attributed to 

the genetic polymorphism of the biomarker. 

In Chapter 1, we describe the development of high affinity PCCs that bind 

selectively to the LDH biomarker.  We targeted an epitope that was highly homologous 

across LDH species.  This chapter also details the expansion of mono-valent PCC agents 

into bivalent ligands using the protein architecture to select secondary ligands for binding 

improvement.  For the HRP2 biomarker, we developed a multiple epitope targeting strategy 

to address protein polymorphism.  We targeted for epitopes in HRP2 and developed PCCs 

that bind in the range of monoclonal antibodies.   

Chapter 2 details the expansion of PCC agents developed against HRP2 into 

multivalent molecules for improved binding.  The development of bivalent ligands from 

combinatorial screening of linker libraries is presented.  The optimal linker lengths 

determined by the screens are described.  

In Chapter 3, a general strategy for targeting the protein landscape to inhibit 

formation of a protein and biomolecule complex with PCCs against HRP2 is demonstrated.  

Specifically, the inhibition of heme sequestration by HRP2 is shown.  A bivalent ligand 

that targets two epitopes on HRP2 is shown to have enhanced inhibitory potency over any 

single or cocktail combination of PCCs.  

Altogether, the studies herein demonstrate the utility of peptidomimetic molecules 

as agents for protein capture and detection as well as a generalizable strategy of functional 

inhibition through epitope-targeting.  
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Chapter 1 

 

An Introduction to Protein-Catalyzed Capture Agents 
 

1.1  Peptidomimetics as Antibody Alternatives in RDTs 

  Conventional methods of protein capture and detection rely on the use of antibodies 

as agents of molecular recognition.1  Monoclonal and polyclonal antibodies are large 

proteins on the scale of ~150 kDa which exhibit high affinity and selectivity for their targets.  

One application of antibodies for molecular recognition is the antibody-based rapid 

diagnostic test (RDT), which is essentially a sandwich immunoassay employed as a fast 

screening platform for myriad health conditions.  A typical antibody-based RDT is a lateral 

flow device, or dipstick, that is used to measure biomarkers in samples such as urine and 

blood (Figure 1-1A).2  A capture antibody is immobilized on the surface, which is typically 

nitrocellulose, that pulls down the target protein out of the biological sample by 

recognizing a particular region on the antigen.  A second antibody binds to an orthogonal 

region of the antigen and is typically tethered to a colored particle that provides a 

colorimetric readout to indicate a positive or negative confirmation.  RDTs require no 

trained personal and can provide a diagnostic answer in the time frame of minutes.  They 

are easy to use, require no trained personal or external resources such facilities, and can be 

easily transported and distributed.3  As such, antibody-based RDTs have utility for disease 

detection where diagnoses of large populations are required, such as global infections like 

malaria.2,4,5   
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However, while RDTs provide a means for rapid disease detection, there are 

drawbacks to these antibody-based platforms.  Antibodies are expensive to produce, exhibit 

batch-to-batch variability, and like all proteins, require storage and use in controlled pH, 

temperature, and chemical environments.  They are susceptible to biochemical processes 

such as proteolytic cleavage and their sensitivity to abrupt changes in their environments 

limitss their widespread use outside of laboratory settings.  The ideal affinity agent would 

be one that is cost-effective, easy to synthesize, and stable against biochemical fluctuations.   

 

Figure 1-1.  A typical rapid diagnostic test (RDT) is a lateral flow assay.  (A) An antibody-

based RDT relies on proteins to capture and detect the antigen.  (B) An alternative RDT 

where the antibodies are replaced by PCCs. 

 
 Protein-catalyzed capture agents (PCCs), developed in collaboration between 

Heath and Sharpless labs, offers an alternative to antibodies as agents of molecular 

recognition.36–9,9,10  These synthetic PCCs are developed from high throughput screening 

of peptide-based one-bead-one-compound (OBOC) libraries.  The goal of PCC 

development for diagnostics is to create pairs of molecular recognition agents that can 

replace antibodies in a lateral flow assay (Figure 1-1B).  Using high throughput screening 
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RDT platform

FLOW FLOW

Capture Antibody

Detection Antibody
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Sample

Capture Peptide
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Detection Peptides

PCC-based
RDT platform
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methodology allows for the rapid discovery of new ligands with precision targeting and 

engineering of affinities.  Like antibodies, PCCs developed within the Heath group are 

built from amino acid chains (peptides), but these peptidomimetic molecules have multiple 

advantages over their protein counterparts (Figure 1-2).   

 

Figure 1-2.  A comparison of antibodies to peptide-based affinity agents (PCCs) for protein 

capture and detection. (PDB: 1IGT) 

 

First, PCCs have high affinity and selectivity for their protein targets, similar to 

antibodies, but are developed synthetically.  Peptides are cost-effective to produce relative 

to antibodies and display excellent thermostability against high temperatures.11  Second, 

the synthesis of small peptidomimetic molecules from amino acid building blocks allows 

for increased chemical flexibility in design that cannot be accomplished with antibodies.  

For example, unnatural D-amino acid buildings blocks can be used to generate PCCs that 
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are resistant to proteases.9  Cyclization of the peptide backbone increases stability against 

degradation and allows for chemical flexibility of affinity agent architectures.  In addition, 

the synthesis of PCCs on solid support allows for modular and adaptable synthesis of the 

peptidomimetic scaffold.  The synthetic flexibility of PCCs allows for the generation of 

molecules ranging from ~1 to ~5kDa.  The synthesis of PCCs on large scale can be 

accomplished via automated techniques, which makes their production cost effective, and 

the simplicity of their structures relative to antibodies significantly reduces batch-to-batch 

variability.  

 

1.2  PCCs as Antibody-Alternatives in Malaria Diagnostics 

 This thesis describes the development of PCCs as alternatives to antibodies in 

lateral flow assays for malaria diagnostics.  Malaria, a mosquito-borne infectious disease 

caused by the protozoan Plasmodium, persists in subtropical and tropical regions of the 

world. Despite widespread measures to treat and prevent the disease, malaria persists as a 

global health epidemic.  The disease infects over 200 million people annually and claims 

over 600,000 lives.12  The most lethal species of the disease is caused by Plasmodium 

falciparum, which contributes to the majority of malarial deaths.  The gold standard of 

disease detection is through blood smear microscopy, but its widespread use is hindered by 

the need for dedicated facilities and personnel.  In malaria endemic regions, RDTs are the 

most cost-effective and efficient means to rapidly diagnose infection in large populations.   

 Currently, malaria RDTs exist that detect the antigens P. falciparum lactate 

dehydrogenase (PfLDH) and histidine-rich protein II (PfHRP2) for the diagnosis of lethal 

malarial infection.5,13  The utility of RDTs are limited by their variability in sensitivity of 
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detection in instances where parasitemia, or parasite load, is low (<200 parasites/µL).  This 

variation in sensitivity is especially a concern for tests that detect PfHRP2, which is highly 

polymorphic.4,14  The inaccuracy of diagnoses can lead to false negatives, which 

contributes to untreated infections and potential death.  Thus, an ideal RDT must reliably 

detect antigens that are unique to P. falciparum and have the sensitivity to capture 

biomarkers at low concentrations.  

 There are several factors that make the diagnosis of malaria infection through 

traditional antibody-based RDTs problematic.  First, antibodies are sensitive to heat and 

humidity, which are less than ideal for the climates in which malaria persists.  Second, 

PfHRP2 antigen detection tests have been shown to exhibit variable performance, which 

has been attributed to the genetic variations of the protein across regions of the world.4,14–

16  In total, over 400 isolates of PfHRP2 exist globally.4  These isolates have variations in 

repeat sequences of the proteins or deleted sections,94,14 making antigen detection 

problematic if monoclonal antibodies in RDTs are targeted against such regions.  Another 

issue is the existence of P. falciparum isolates lacking the pfhrp2 or pfhrp3 genes which 

encode for PfHRP2 and its homolog, PfHRP3.17  The complete absence of PfHRP2 antigen 

would result in false positives, which underscores the importance of RDTs that reliably 

detect PfLDH protein.  However, PfLDH antigen tests also exhibit issues of their own 

which include low specificity.13  The variability in detection of malaria infection results in 

under- and over-diagnosis of the disease.  Poorly implemented treatment programs that 

result from misdiagnosis can contribute to antimalarial drug resistance, which also 

increases malaria-related fatalities.18,19  In order to treat and eradicate malaria, the 

development of rapid and accurate RDTs is imperative for individual patient case 
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management, disease surveillance, and properly implemented drug treatment programs. In 

this thesis, we leverage and expand upon existent technology in the Heath group to innovate 

PCCs that address the shortcomings on antibodies with applications towards future RDTs 

for malaria. 

  

1.3  Engineering PCCs with High Affinity and Target Selectivity 

 Within the Heath group, PCCs have been developed through combinatorial 

screening of combinatorial OBOC peptide libraries of varying architectures (Figure 1-3).  

Earlier screening methodology utilized randomized 5-mer linear peptide libraries.7,9,10,20  

These libraries were synthesized on bead via split-and-mix synthesis using amino acids of 

L- or D-stereochemistry and yielded affinity agents that bound in micromolar to nanomolar 

affinities (Figure 1-3A).7,9,20  Later PCC methodology utilized libraries that were cyclized 

through clicking between azide and alkyne or ring closing metathesis, the latter of which 

afforded a larger, more flexible ring structure (Figure 1-3B).  Cyclization of the 5-mer 

libraries restricts the numbers of conformations accessible to PCCS.  Since linear PCCs 

sample more conformations than cyclic PCCs, they exhibit lower binding affinities.  

Conformational restriction through cyclization drastically limits the conformation 

accessible through bond rotation, which can be thought of as prepaying the entropic cost 

of PCC:target binding.  In later work within the Heath group, cyclic PCCs have 

demonstrated affinities in the picomolar regime.7,21  The OBOC libraries are 

comprehensive in 18 of naturally occurring amino acid side chains with cysteine and 

methionine eliminated for chemical stability which yields 185, or roughly 2 million, diverse 

elements.7  After synthesis of the 5-mer region, the libraries are cyclized and appended 
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with an azide or alkyne click handle, also denoted as Az4 or Pra, respectively.  Linear 

libraries require no cyclization and are immediately appended with a handle.  The libraries 

are validated for confirmation of cyclization and successful synthesis by sequencing on an 

Edman instrument.    

 

Figure 1-3.  Architectures of OBOC libraries used for high throughput screening.  The 

libraries are comprehensive in 18 amino acids, can be constructed with L- or D- 

stereocenters, and bear alkyne/Pra or azide/Az4 click handles. 

 

 Standard development of PCCs within the Heath group first begins with epitope 

targeting.7,8,11,20,21  Epitopes are antigenic determinants, also known as amino acid 

sequences which are recognized by antibodies.  After identification of the antigen, one or 

several epitopes are selected after inspection of the primary protein sequence.  Ideally, this 

epitope is a minimum of ~10 amino acids in length, and is unique to the target, thus 

engineering selectivity into the final PCC.  It is also beneficial to select an epitope that is 

accessible to an affinity agent, i.e., not buried within the protein core, and that has some 

secondary structure that might be maintained in a synthetic peptide.  However, defined 
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secondary structure is not a necessarily a prerequisite for generating high-binding hits in 

screens.  Following selection, the synthetic epitope (SynEp) is constructed via standard 

solid phase peptide synthesis, fitted with an azide or alkyne click handle that is 

complementary to the one on the OBOC library, and appended with a biotin tag for 

detection. (Figure 1-4).   

  

Figure 1-4.  A targeted peptide sequence (epitope) is selected from a protein and 

synthesized (SynEp).  The SynEp is affixed with an azide/Az4 (shown) or alkyne/Pra click 

handle and appended with a biotin tag for detection by an antibody.  (PDB: 1LDG) 

 

 A general protocol of pre-clearing followed by screening of the OBOC library is 

followed (Figure 1-5) which includes non-specific binding to detection antibodies, such as 

anti-biotin or streptavidin, and human serum to yield a focused library.  For increased 

selectivity in the final PCC, the library can be pre-screened against SynEps from off-target 

proteins to weed out binding to homologous biomolecules or even adjacent sites on the 

target.  This focused library is then incubated with the SynEp from the target of interest.7  

Library elements that bind strongly to the SynEp position the complementary alkyne and 

azide click handles together to form a covalent triazole product.   

12 amino acid SynEp
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The classic Copper(I)-catalyzed azide-alkyne cycloaddition (CuACC) reaction 

forms a covalent heterocyclic triazole product.22  The Copper(I) catalyst increases the rate 

of reaction between azide and alkyne with complete conversion.  In the absence of the 

Copper(I) catalyst in our screens, the triazole click product is low-yielding.  Covalent 

linkage is entirely dependent on the molecular recognition between the SynEp and the 

library elements to hold the azide and alkyne fragments in close enough proximity to 

facilitate triazole formation.6  Thus, it is largely the strength, or affinity, of binding between 

the SynEp and library elements that promote the click product in the absence of Copper(I).  

The affinity-driven catalysis of the click reaction allows for the development of PCC agents 

with nanomolar affinities in a single-generation screen.7  

 

Figure 1-5.  Schematic of a high throughout screen using epitope targeting, in situ click 

chemistry, and OBOC library methodologies.  False-positives such as binders to detection 

antibodies, off-target epitopes, and human serum are removed from the OBOC library in a 

pre-clear.  The pre-cleared library is incubated with the SynEp that bears a click handle 

complementary to the one on bead.  Strong library binders promote formation of the 

covalent click product.   
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1.4  Chapter Summaries  

 This thesis presents the application of the aforementioned PCC technology for the 

development of peptidomimetics in malaria RDTs that detect lethal P. falciparum infection.  

In Chapter 2, the development of monovalent and bivalent ligands against the PfLDH and 

Pan-Plasmodium LDH antigens is described.  The use of cyclic OBOC libraries over linear 

libraries demonstrates the superiority of conformational restriction in generating peptide 

binders with nanomolar affinities.  The expansion of PCCs into bivalent ligands through 

secondary ligand screens with the target antigen is also described within this chapter.  In 

the instance of a linear peptide, we find that expansion into a bivalent structure can increase 

affinity.  

 Chapter 3 describes the development of cocktail combination of PCCs to bind the 

PfHRP2 antigen.  Unlike PfLDH, PfHRP2 is a highly patterned and polymorphic protein 

that lacks defined secondary structure.  The primary amino acid sequence of this antigen 

differs across P. falciparum isolates and has been suggested to contribute to the variations 

in sensitivity observed in RDTs that detect PfHRP2.4,14–16  To address PfHRP2 

polymorphism, we devised a strategy where we target four unique epitopes within the 

protein.  By developing a cocktail of affinity agents that target conserved and variant 

regions of PfHRP2, we can account for variations or deletions in repeats through 

simultaneously binding multiple regions in a single protein for built in sensitivity 

amplification.  In total, four regions of the PfHRP2 antigen are targeted.  

 Chapter 4 describes the expansion of PfHRP2 monovalent ligands into bivalent 

ligands through OBOC linker screens.  A small library of peptide-based linkers was 

constructed for screening between different PCCs of the PfHRP2 cocktail described in 
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Chapter 3.  Even without defined secondary structure in the target antigen, we found that 

the linker screens selected for a defined ligation length though the hits generated were 

nonspecific.  Knowledge obtained from this work was applied towards development of a 

bivalent ligand that demonstrated inhibitory properties against PfHRP2 function as 

described in Chapter 5.  

In addition to its diagnostic utility, PfHRP2 has long been implicated as a target for 

the sequestration of cytotoxic free heme in the malaria parasite.  In Chapter 5, the PCCs 

developed in Chapter 3 are demonstrated to inhibit the sequestration of PfHRP2 binding to 

heme through targeting heme-binding epitope motifs.  Through ligation of two PCCs that 

target internal regions of PfHRP2, we find that inhibition of heme sequestration is 

significant and improved over using monovalent peptides.   

Altogether, this thesis describes the interrogation of the structural landscape of two 

malarial proteins with unique diagnostic and scientific challenges.  Firstly, PCCs were 

developed against PfLDH, a highly homologous biomarker with a defined protein 

architecture for the generation of mono- and bivalent affinity agents.  Secondly, PCCs were 

developed that could simultaneously target multiple regions in a single and unstructured 

biomarker with the added ability to inhibit protein function.  Through the use of epitope 

targeting and in situ chemistry, PCCs were developed that bind to their P. falciparum 

targets with high affinity and selectivity.  In addition, we demonstrate that the PCCs have 

utility outside of diagnostics and can inhibit protein and biomolecule interactions, showing 

potential as therapeutics through disruption of protein function through precision targeting. 
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Chapter 2 

 

Rapid Discovery of Capture and Detection Agents for Plasmodium 

falciparum Lactate Dehydrogenase 

 

Reproduced in part with permission from: 
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Sarkes, A.S. Finch, H.D. Agnew, S. Pitram, B. Lai, M.B. Yu, A.K. Museth, K.M. Deyle, 

B. Lepe, F.P.  Rodriguez-Rivera, A. McCarthy, B. Alvarez-Villalonga, A. Chen, J. Heath, 

D.N. Stratis-Cullum, J.R. Heath 

Angewandte Chemie International Edition, 2015, 54(45), 13219-13224. 

DOI: 10.1002/anie.201505243 

 

 
2.1  Introduction 

 The mosquito-borne disease malaria is caused by the protozoan parasite, 

Plasmodium, and infects over 200 million human hosts annually in tropical and subtropical 

regions of the world.1  The P. falciparum species is the most lethal and contributes to nearly 

all malaria related deaths.  Eradication of this global epidemic requires the rapid and 

accurate diagnosis of the large human populations affected.  Lateral flow 

immunochromatographic assays, also known as rapid diagnostic tests (RDTs), provide a 

means of rapidly diagnosing large populations with results in minutes, which allows for 

prompt treatment.2–6  As described in Chapter 1 (Figure 1-1), RDTs are antibody-based 
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sandwich assays where a protein bioarker is captured by one antibody and detected by a 

second antibody, and the colorimetric readouts provide a positive or negative result.7  

Though the gold standard of malarial disease detection is microscopy,4,5 RDTs are 

advantageous because they do not require dedicated facilities or personnel for examination 

of patient samples.  Relative to other techniques, RDTs are relatively low-cost and provide 

results within 5 to 15 minutes.   

There are commercially available RDTs for the P. falciparum histidine-rich protein 

2 (PfHRP2) and lactate dehydrogenase (PfLDH) biomarkers, the latter of which is the focus 

of this chapter.2,3,6   PfLDH is key enzyme utilized by the parasite for glycolysis and energy 

production and interconverts lactate and pyruvate while simultaneously converting 

NADH/NAD+.8  The LDH enzymes exists in other malarial species such as P. vivax, with 

which it is nearly 75% genetically identical with 90% residue similarity.9,10  Since P. 

falciparum infection is so severe, it is imperative that malarial LDHs can be differentially 

detected in a single test.  In addition to diagnostics, the selective detection of PfLDH 

antigen by RDT is useful for assessing parasite burden.  Unlike another P. falciparum-

specific antigen, histidine-rich protein 2 (PfHRP2), which is detected in malaria RDTS and 

persists even after treatment, the PLDH antigen clears from the blood within 24 hours after 

infection clearance, which holds prognostic utility.11–14  The rapid clearance of the antigen 

is imperative for patient case management, determining the success of drug treatments such 

as artemisinin combination therapy, and for identifying  

recurrent malaria infections.11,15   

Currently, PLDH RDTs are available that can detect P. falciparum-specific or pan-

Plasmodium LDH antigens that allow for the diagnosis of specific or mixed infections 
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(schematic provided in Figure 2-1).5  However, whilst malaria RDTs provide a means of 

rapidly diagnosing patients infected with P. falciparum for the administration of drug 

treatments, they have limitations.  At high parasitemia, or high parasite densities, greater 

than 90% of sensitivities are achieved for P. falciparum specific RDTs.  However, at low 

parasitemia where parasite density varies from 100 – 500 parasites/µL, sensitivities of these 

antibody-based RDTs can drop below 80%.15  Antibody-based RDTS, particularly for 

PfLDH detection, have been shown to be sensitive to temperature fluctuations and generate 

false negatives under heat.2  The degradation in performance at higher temperatures is 

especially problematic for diagnostics in the tropical and subtropical climates in which 

malaria is prevalent.2  PLDH-based RDTs are also less sensitive than their PfHRP assay 

counterparts and cannot always detect clinical infection.12   

 

Figure 2-1.  Schematic of an RDT for P. falciparum-specific and pan-Plasmodium 

infection.  Representative results for (A) P. falciparum and possible mixed infection, (B) 

non-P. falciparum-specific infection, and (C) a negative result for malarial infection are 

shown.  Figure adapted from the literature.5  

 

 This chapter focuses on the development of reagents that address the limitations of 

targeting PfLDH antigen in antibody-based RDTs.2,5,14  An ideal RDT (schematic provided 
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in Figure 2-1) for malaria should be able to distinguish between species infection, generate 

true positive/negative results, withstand temperature fluctuations for use in endemic 

regions of the world, be cost-effective, and be sensitive in low to high parasitemia.  For 

prompt treatment of lethal malaria, it is especially important to distinguish P. falciparum 

from other Plasmodium species from an RDT.   

 In this chapter, we describe the development of peptidomimetic protein-catalyzed 

capture agents (PCCs) as synthetic, easily synthesizable, and cost-effective antibody 

alternatives for PfLDH RDTs.  We use epitope-targeted in situ click chemistry screening 

methodology,16–18,18–20 which allows for the rapid discovery of peptide-based ligands from 

high throughput screening of one-bead-one-compound (OBOC) to develop affinity agents 

against PfLDH.  We use an epitope targeting strategy to engineer PCCs with specificity for 

PfLDH over PvLDH and other off-target proteins.  A comparison of PCCs developed from 

linear and cyclic OBOC libraries is provided that demonstrates the superior utility of 

entropy restricted structures for affinity agents.  We also explore using the structured 

landscape of PfLDH antigen to screen for secondary ligands to develop bivalent PCCs.  

 

2.2  Materials and Methods  

Materials.  Epitope and peptide syntheses were accomplished using standard Fmoc amino 

acids with acid-labile side chain protecting groups, which were purchased from Anaspec, 

Chempep, Chem-Impex International, and Aapptec.  Specialty amino acids such as Fmoc-

NH-Pegn-CH2CH2CO2H, (S)-N-Fmoc-2-(4’-pentenyl)alanine, and (R)-N-Fmoc-2-(7’-

octenyl)alanine were purchased from Chempep and Sigma Aldrich, respectively.  Grubbs 

CatalystTM 1st Generation and anhydrous 1,2-Dichloroethane was purchased from Sigma 
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Aldrich.  All peptide syntheses were completed on solid support with standard 

methodology using Biotin NovaTagTM resin (Millipore Sigma) for biotinylated peptides or 

Rink Amide MBHA resin (Aapptec).  The reagents N-Methyl-2-pyrrolidone (NMP, BDH 

Chemicals), N,N-Diisoproprylethylamine (DIEA, Sigma Aldrich), 2-(7-Aza-1H-

benzotriazole-1-yl)-1,1,3,3-tetramethylammonium hexafluorophosphate (HATU, 

Chempep), and piperidine (Alfa Aesar) were used in synthesis.  Trifluoroacetic acid (TFA, 

Chem-Impex International) and 2.5% triethylsilane (TES, Sigma Aldrich) were used for 

removal of peptides from solid support.  TentaGel S-NH2 resin (Rapp Polymere) was used 

for OBOC library synthesis.  Copper (I) iodine (CuI) and L-Ascorbic Acid were purchased 

from Sigma Aldrich.  Sodium diethyldithiocarbamate was purchased from Chem-Impex 

International. Dimethyl sulfoxide (DMSO) was purchased from EMD Millipore. 

 Recombinant PfLDH and PfHRP2 antigens were purchased from CTK Biotech.  

Human LDH was obtained form Abnova.  Anti-biotin alkaline phosphatase antibody was 

purchased from Sigma-Aldrich.  Anti-GST antibody conjugated to HRP was purchased 

from Abcam.  For screening, 5-bromo-4-chloro-3’-indolylphosphate p-toludine salt/nitro-

blue tetrazolium chloride (BCIP/NBT Color Development Substrate) was purchased from 

Promega. 

 

 General Preparation of OBOC Libraries.  Linear OBOC libraries were synthesized on 

90 µm TentaGel resin using standard split-and-mix synthesis on a 5g scale to generate a 

combinatorial mixture of pentameric peptides.  The 18 standard L-amino acids, Fmoc-X-

OH, where X= Ala, Val, Leu, Ile, Pro, Phe, Trp(Boc), Gly, Ser(tBu), Thr(tBu), Tyr(tBu), 

Asn(Trt), Gln(Trt), Asp(OtBu), Glu(OtBu), Lys(Boc), Arg(Pbf), and His(Trt), were used 
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with methionine and cysteine omitted for chemical stability.  D-libraries were generated 

using the enantiomers of the standard amino acids.  All syntheses were accomplished using 

standard solid phase techniques from the C- to N-terminus on a Titan 357 Peptide 

Synthesizer (Aapptec) with 0.2 M amino acid, 0.2 M HATU, 2 M DIEA solutions, and 

20% piperidine/NMP solutions.  An azide or alkyne click handle was appended to the N-

termini of each library after synthesis of the pentameric region.  Cyclic OBOC libraries 

were generated in the same manner with the addition of azide and alkyne amino acids 

(alkyne-X1X2X3X4X5-azide).  The libraries were cyclized overnight by treatement with 2 

equivalents of CuI and 5 equivalents of ascorbic acid in 20% piperidine/NMP.  The copper 

was removed by washing with 2% sodium diethyldithiocarbamate (w/v) and 2% DIEA (v/v) 

in NMP.  An azide of alkyne click handle was then appended to the N-termini of the 

cyclized libraries.  The side chain protecting groups were removed by treatment with 95% 

TFA, 2.5% TES, and 2.5% deionized water for 2 hours.  The libraries were validated for 

cyclization and completion by sequencing via Edman degradation on a 494 CLC Procise 

Sequencer (Life Technologies).  All reactions were performed at ambient temperature.  

 

General Peptide Synthesis.  All resin was preswelled in NMP for a minimum of 2 hours 

prior to synthesis.  Fmoc groups were removed by treatment of 2 x 20 minutes in 20% 

piperidine/NMP.  Couplings were accomplished using excesses of 4 equivalents of amino 

acid, 4 equivalents of HATU, and 12 equivalents of DIEA in NMP.  Washes were 

performed between all steps with NMP.  Peptides were cleaved off the resin by treatment 

with 95% TFA, 2.5% TES, and 2.5% deionized water for 2 hours with agitation.  The 

cleavage solution was precipitated into diethyl ether.  The precipitate was pelleted by 
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centrifugation and resuspended in minimal DMSO for purification.  All reactions were 

performed at ambient temperature.  

 

Protocols for Cyclization.  For click cyclization, peptides bearing the azide and alkyne 

handles were subjected to 2 equivalents of CuI and 5 equivalents of ascorbic acid overnight 

at ambient temperature.  Following the overnight reaction, the peptides were washed with 

2% sodium diethyldithiocarbamate (w/v) and 2% DIEA (v/v) in NMP, followed by 

rigorous rinsing with NMP.  Peptides cyclized by ring closing metathesis (RCM) had the 

specialty peptides, (S)-N-Fmoc-2-(4’-pentenyl)alanine, and (R)-N-Fmoc-2-(7’-

octenyl)alanine, in place of the azide and alkyne click handles.  The resin was dried down 

in DCM before resuspension in anhydrous DCE.  The resin was placed under inert 

atmosphere and subjected to 8 mM Grubbs catalyst prepared in anhydrous DCE.  The 

reaction was allowed to stir under argon for 6 hours, at which time all solution was drained 

from the flask, and fresh 8mM Grubbs catalyst solution was added.  The reaction was 

allowed to proceed overnight under inert atmosphere at room temperature.  Following the 

RCM procedure, the resin was washed rigorously with 10% sodium diethyldithiocarbamate 

(w/v) and 5% DIEA (v/v) in dimethyl formamide (DMF).  Synthesis, cleavage, and 

characterization were accomplished as described.  

 

Purification and Characterization.  Synthetic epitopes and peptide hits were purified via 

reversed phase high-performance liquid chromatography on either a Beckman Coulter 

HPLC instrument with a Luna 10 µm C18(2) 100A column.  Gradients were composed of 

18 MegaOhm distilled water and HPLC grade acetonitrile with 0.1% TFA in both.  
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Peptides were characterized after purification by matrix assisted laser desorption ionization 

time-of-flight (MALDI-TOF) mass spectrometry.  Product fractions were collected, 

lyophilized, and reconstituted for quantification prior to assays.  Peptides were quantified 

by determination of extinction coefficients and measurement of absorbance at 280 nm on 

a ThermoFisher Nanodrop 2000c UV-Vis spectrophotometer.   

 

Screening Protocols.  All screening protocols were conducted using binding buffer (20 

mM Tris, 150 mM NaCl, 0.1% bovine serum albumin, 0.05% Tween 20, pH 7.5) unless 

otherwise denoted.  High salt buffer (25 mM Tris, 750 mM NaCl, 10 mM MgCl2, pH 7.5) 

and BCIP buffer (100 mM Tris, 10 mM NaCl, 1 mM MgCl2, pH 9) were also used.  All 

steps were performed at ambient temperature unless otherwise denoted.  All screens were 

conducted on 300 to 500 mg of library beads bearing the combinatorial pentamers.   

 

General Library Preclear and Epitope Antiscreen.  Step 1:  The library beads were swelled 

in buffer with 0.05% TWEEN20 for 6 hours at 4°C. Step 2: The library was incubated with 

7.5 µM of scrambled epitope (where applicable) for 6 hrs. After incubation, the library 

beads were washed for 3 x 5 minutes buffer, 3 x 5 minutes in TBST (TBS + 0.05% 

TWEEN20), and 3 x 5 minutes in TBS (standard wash). Non-covalent binders were 

removed by a 2 hour wash with guanidinium HCl solution (pH 2). Step 3: The library was 

treated with anti-biotin alkaline phosphatase at 1/10000 dilution and developed with 

BCIP/NBT for 15 to 25 minutes.  The blue/purple beads (nonspecific hits) were discarded 

and the clear beads were retained for subsequent screens. Step 4: The clear beads were 

decolorized by agitation in NMP for 2 hours. The beads were washed and dried in DCM. 
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They were then agitated in guanidine hydrochloride for 3 hours followed by 10 x 5 minutes 

washes in deionized water. 

 

General Human Antiscreen.  Step 1:  Library beads were swelled in binding buffer until 

homogenous.  Step 2: Beads were blocked in 5% milk in buffer overnight.  Step 3:  The 

beads were washed 3 x 5 minutes in buffer followed by incubation with 1% filtered human 

serum in 0.5% milk for 1 hour.  Step 4:  The beads were washed 3 x 5 minutes in buffered 

followed by incubation with 1/10000 rabbit anti-whole human serum polyclonal antibody 

in 0.5% milk in buffer for 1 hour.  Step 5:  The beads were washed 3 x 5 minutes in buffer 

before incubation with 1/10000 goat anti-rabbit IgG polyclonal antibody in 0.5% milk in 

TBS for 1 hour.  Step 6:  The beads were washed 3 x 5 minutes in high salt TBS followed 

with an additional 1 hour wash.  The beads were washed with BCIP buffer, pH 9.  Step 7:  

The beads were developed with BCIP/NBT as described above. 

 

General Product Screen (Single Ligand).  Step 1: The beads retained from the 

antiscreen/preclear were swelled as described followed by incubation with 5 to 10 µM of 

target SynEP.  Step 2:  Beads were washed 3 x 5 minutes with buffer.  Non-covalent binders 

were removed by washing in guanidinium hydrochloride for 2.5 hours.  The beads were 

washed 10 x 5 minutes with deionized water.  Step 3:  The beads were swelled in buffered 

and blocked in 5% milk overnight at 4°C. Step 4:  The beads were incubated with 

streptavidin or anti-biotin AP (1/10000) for 1 hour.  The beads were washed for 3 x 5 

minutes in buffer, followed by 3 x 5 minutes in TBST.  Step 5:  The beads were then washed 
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in BCIP buffer and developed as described above.  Step 6:  The colored/hit beads were 

isolated, decolorized, and retained for sequencing via Edman degradation.  

 

Secondary Ligand Antiscreen and Preclear (Applicable to PfLDH Only for alkyne bearing 

library).  Step 1:  The library beads were swelled in buffer.  A solution of 100 µM of the 

best anchor peptide hit with a C-terminal azide click handle, 200 mM human LDH, and 

500 nM of GST was incubated for 30 minutes.  The solution was subsequently incubated 

with the library for 90 minutes followed by 3 x 5 minutes washes in buffer.  Step 2:  The 

library beads were incubated with anti-biotin AP (1/10000) for 1 hour, washed in 3 x 5 

minutes in buffer, and washed again in BCIP buffer.  Step 3:  The library was developed 

with BCIP/NBT.  Hits (binders to the anchor ligand, hLDH, GST, and the detection 

antibody) were detected and removed.  The library was stripped and prepped as usual for 

the next screening step.  

 

Secondary Ligand Target Screen (PfLDH – screen for noncovalent binding).  Step 1:  

Following the antiscreen/preclear, the library beads were swelled in buffer overnight at 

4°C.  Step 2:  A solution of 90 µM of anchor ligand with an N-terminal azide click handle 

was incubated with 200 nM of PfLDH-GSTfor 30 minutes.  The anchor + protein solution 

was then incubated with the library for 90 minutes.  Step 3:  The library beads were washed 

3 x 5 minutes in buffer and incubated with anti-GST (1/2000) antibody conjugated for 1 

hour.  Step 4:  The library was then washed in BCIP buffer and developed with BCIP/NBT.  

Purple/hit beads were collected, decolorized, and stripped of protein for the product screen.   

 



 26 

Secondary Ligand Product Screen.  Step 1:  The library beads retained from the target 

screen were incubated for 1 hour with anti-biotin AP antibody in TBST at 4°C.  Step 2: 

The colored hit beads were washed for 5 minutes in BCIP buffer and developed with BCIP 

only.  The darkest beads were isolated, stripped of protein, decolorized, and washed 

vigorously with water.  The hit peptide sequences were identified by Edman degradation. 

 

General Enzyme-Linked Immunosorbent Assay (ELISA) Protocols.  The solution 

conditions of ELISAs were designed to mimic those in the screens.  The same TBS binding 

buffer was used for all assays in general unless otherwise specified.  All sandwich ELISAs 

were performed on NeutrAvidin or Streptavidin Coated Microtiter Plates (Pierce).  All 

assay steps were performed at ambient temperature unless otherwise specified.  

 

General Sandwich ELISA Protocol.  Step 1:  The plate was washed 3X with buffer, 200 µL 

per well at RT.  The plate was then incubated with blanks or biotinylated ligands at 1 – 2 

µM solutions for 2 hours.  Lower concentrations can be used to reduce surface coverage 

for binding assays.  Step 2:  The plate was washed 3X and blocked with 3% BSA or 5% 

milk in TBST for two hours at RT or longer at 4°C.  Step 3:  The plate was washed 3X and 

incubated with either a single protein concentration or a dilution series when constructing 

a binding curve.  The incubations were performed at ambient temperature if incubation 

time was less than 3 hours or at 4°C for longer times.  Step 4:  The plate was washed 3X 

and incubated with anti-GST-HRP (Abcam) antibody at 1:2000 dilution for 1 hour.  Step 

5:  The place was then washed 3X with buffer, 1X with TBS, and developed with TMB 

Substrate/Peroxidase (ThermoScientific or KPL, 2-Step Kit).  The development was 
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allowed to proceed for no longer than 10 minutes, at which time the reaction was quenched 

with 1M sulfuric acid.  Absorbance measurements were taken at 450 nm on a plate reader.  

The data was worked up with blanks or control ligands removed as necessary for 

background subtraction.  Measurements were taken in duplicate to triplicate, contigent on 

reagent availability.  

 

2.3  Results and Discussion 

2.3.1  Epitope Selection for Targeting Plasmodium LDH  

The development of a sandwich pair of PCCs to target PfHRP2 in an RDT requires 

two orthogonal epitopes for capture and detection (see Figure 1-1).  A selective capture 

agent must be able to target PfLDH over its homologs which are ~75% identical. 9,10  In 

line with a general sandwich assay, we targeted two orthogonal regions in PfLDH so that 

affinity agents would not cross-react during simultaneous binding events.  To engineer a 

capture PCC specific to PfLDH, we targeted an epitope specific to the antigen.  With the 

rational in mind that the capture PCC would solely pull down PfLDH and thus eliminate 

concerns of cross-reactivity, we targeted a second epitope that is common to all 

Plasmodium LDH antigens for detection.     
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Figure 2-2.  An epitope (blue) that is specific to PfLDH was targeted for capture and fitted 

with an azide (Az4) click handle.  A pan-species epitope (red) was selected for detection 

and fixed with an alkyne (Pra) click handle.  The general schematic of the capture and 

detection PCC pair in a sandwich assay format is shown in the upper left-hand corner.  

(PDB: 1LDG, figure partially adapted.8)  

 

For capture of PfLDH, the amino acid sequence from 208-219, LISDAELEAIFD, 

was selected for epitope synthesis as illustrated in Figure 2-2.  It is important to note the 

high homology of the LISDAELEAIFD epitope to the homogolous epitopes in other 

malaria species which requires that the final PCC be able to distinguish between small 

changes in sequence identity.  For example, amino acids 208-219 differ only by four amino 

acids between P. falciparum and P. vivax LDH antigens.14  For the PCC screening process, 

the LISDAELEAIFD epitope was synthesized with an alkyne click handle, on the C-

terminus to yield LISDAELEAIFD-Az4.18  A  scrambled version of this epitope, 

DDIAILIEEFALS-Az4, was also synthesized for prescreening. Inclusion of a scrambled 

epitope in a prescreen helps to eliminate hits that might generate false positives from lack 

of sequence specificity.18  A pan-species epitope was selected for the development of a 

Plasmodium falciparum

LISDAELEAIFD-Az4

Pan Plasmodium

GVEQV-Pra-IELQLN
PfLDH

Pan Plasmodium 
  

GVEQV-X-IELQLN 
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detection PCC.  The amino acids 297-308 of LDH, GVEQVIELQLN, are common to at 

least P. falciparum, P. vivax, and P. yoeli species of malaria.14  The SynEp for PxLDH 

detection was synthesized with a Pra in the center to yield GVEQV-Pra-VIELQLN.18  

 

2.3.2  Discovery of Capture and Detection PCCs Against PfLDH 

The primary detection PCC agent against GVEQVIELQLN was developed using 

older screening methodology from the Heath group that utilized in situ click screening with 

OBOC linear peptide libraries.16,16  The screen was conducted against a OBOC D-

stereochemistry library fitted with an Az4 click handle that was prescreened to remove 

false-positives.  This screen yielded a linear 5-mer D-peptide with the sequence hevwh.18  

The use of D-amino acids in a linear library is to provide increased proteolytic stability in 

the final peptide sequences.  The EC50 of hevwh as determined by enzyme-linked 

immunosorbent assay (ELISA) was found to be 1.7 µM (Figure 2-3).18   The EC50 value 

offers an upper limit to the true binding affinity, or KD, of a ligand to substrate, and the 

affinity of this PCC is considered modest.  Further work detailed in this chapter will 

describe the expansion of this primary ligand into a bivalent molecule for increased target 

binding.   

 

Figure 2-3.  (A)  Structure of hevwh.  (B) Sandwich ELISA of the binding affinity of 

hevwh (EC50 = 1.7 µM). 

 



 30 

The development of the capture PCC for PfLDH was accomplished with a OBOC 

click cyclized L-peptide library appended with Az4 as shown in Figure 1-3.   Non-specific 

binding to the detection antibody and the scrambled epitope, DDIAILIEEFALS-Az4, were 

removed in the prescreening process.  After removal of false positives, the OBOC cyclized 

library was subjected to in situ click screening with the LISDAELEAIFD-Az4 SynEp.  In 

the absence of Copper(I) catalyst, the click reaction between the azide and alkyne moieties 

is low yielding.  Typical screens are initiated with ~106 beads, which are focused through 

elimination of false positives and nonspecific interactions. The product screen against 

LISDAELEAIFD-Az4 SynEp yielded just 7 covalent click products as hits.  This is 

anticipated.18  The hit beads were sequenced via Edman degradation for identification of 

the 5-mer peptides that bind to the SynEp (Table 2-1).   

 

Table 2-1.  Hit peptides for PfLDH capture PCCs as determined by Edman degradation 

presented in single amino acid letter code.   

 

 The PfLDH hits were synthesized and accessed for binding performance in single 

point ELISAs.  Briefly, the hits in Table 2-1 were synthesized with a biotin tag on the C-

terminus end that was separated from the macrocycle by a Peg5 linker.  The hits were also 

cyclized using Cu(I) catalyzed click to reproduce the structures present on the library beads 

during screening.  In the initial validation of hit binding to the target epitopes, the PfLDH 
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capture SynEp was appended with a 3-unit polyethylene glycol (Peg3) linker and 

conjugated to bovine serum albumin to yield LISDAELEAIFD-Peg3-C-BSA, where C = 

cysteine.  The same procedure was repeated to generate the scrambled epitope.  The BSA 

conjugated SynEps were immobilized on the plate and probed biotinylated peptide 

candidates.  The peptides are detected by an anti-biotin antibody conjugated to an enzyme 

that turns over a colorimetric substrate where signal is proportionate to the amount of 

analyte bound.21   

 
Figure 2-4.  Sandwich ELISA of click cyclized CC candidates against the PfLDH-specific 

SynEp in 0.1% human serum.  The hits were tested as a monomer (mono), dimer (dim), or 

a mixture of both (mix). 

 

 The most promising hits from the preliminary ELISA were cyHWSAN, 

cyPLKGG, cyRGGIL, and cyKKIHL (data not shown) which were probed in the epitope 

binding assay (Figure 2-4).  Whilst the best PCC candidate appears to be cyKKIHL dimer 

from this assay, repeats of this experiment demonstrated variations in performance (data 

not shown).  Thus, cyHWSAN monomer was selected as the best candidate for PfLDH 

capture (Figure 2-5A).  A sandwich ELISA of cyHWSAN demonstrate the selectivity of 

the PCC for PfLDH over PvLDH and human LDH (hLDH) (Figure 2-5B).  The capture 
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PCC binds to its target with an EC50 = 23.4 nM (as determined by ELISA) and KD = 40.6 

nM by fluorescence polarization (Figure 2-5C).18 

 

 

Figure 2-5.  (A) The click cyclized cyHWSAN is the best candidate as a capture PCC 

against PfLDH.  (B)  The PCC is selective for PfLDH.  (C)  The PCC binds to PfLDH with 

a KD = 40.6 nM as measured by fluorescence polarization.  Figure reprinted in part with 

permission.18   

 

 There is a stark difference in target affinities from PCCs developed from linear and 

cyclic OBOC peptide libraries.  Relative to the nanomolar affinity of cyHWSAN, hevwh 

is only a modest binder.  Recent PCCs developed with cyclic OBOC peptide libraries 

within the Heath lab have demonstrated the superiority of conformationally restricted 

structures in generating affinity agents that bind in the nanomolar regime from a single 

generation screen.18,19  Whereas linear peptides possess myriad conformations, peptides 

restricted through macrocycles are inflexible against many conformational changes.  When 

bound to their target epitopes, cyclic PCCs present functionalities in the optimal positions 

for recognition without the need to sample or cycle through all possible conformations.   
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2.3.2  Improving Affinity of the PfLDH Capture PCC Through Olefin Metathesis 

 In a bid to increase the performance of cyHWSAN, we experimented with 

modifications to the cyclic backbone.  All-hydrocarbon stapling, or ring closure through 

olefin metathesis, has been shown to increase target affinity as well as improving 

proteolytic resistance and serum half-lives of peptides.22  The all-hydrocarbon staple 

induces a-helical structure into the stapled peptide.  The staple is constructed by forming 

a C-C bond with ruthenium-mediated (1st generation Grubbs catalyst) olefin metathesis.23  

We appended a glycine (G) residue onto the HWSAN sequence and replaced the click 

handles with the olefin bearing side chains, (S)-N-Fmoc-2-(4’-pentenyl)alanine and (R)-

N-Fmoc-2-(7’-octenyl)alanine, on the C- and N-termini of the peptide, respectively.  

Treatment of the olefin appended peptide with 1st generation Grubbs catalyst yields an i, i 

+ 7 hydrocarbon staple, where the i + 7 specifies 7 residues distance between olefin-

bearing side chains.24  We synthesized GHWSANRCM (Figure 2-6) with an i, i + 7 an staple 

in addition to an i, i + 6 variant (not shown).  Relative to cyHWSAN, GHWSANRCM bears 

a larger, more flexible ring structure that is expected to enforce a-helical structure as 

detailed in the literature.22  
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Figure 2-6.  (A)  The structure of the i, i + 7 hydrocarbon stapled GHWSANRCM PCC.  

(B)  The affinity of the PCC against PfLDH-GST is increased by hydrocarbon stapling (i, 

i + 7), but at a loss of antigen specificity.  (C)  The EC50 of GHWSANRCM (i, i + 7). 

 

We tested the performances of the stapled peptides to compare their affinities for 

PfLDH-GST relative to cyHWSAN.21  All hydrocarbon stapling improved the affinity of 

GHWSANRCM, but at a cost of target selectivity (Figure 2-6B,C).  The EC50 of the i, i + 7 

stapled peptide of binding to PfLDH-GST was improved to 2 nM.  However, the 

hydrocarbon staple also introduces off-target interactions with PvLDH-GST. The i, i + 6 

staple significantly reduces affinity of the PCC for either antigen.  Given the increased 

signal observed for PfLDH-GST in our assays, we opted to use GHWSANRCM in further 

screening for a secondary ligand to further improve the performance of the capture PCC.  

 

2.3.3  Expansion of Anchor PCC Agents into Bivalent Ligands 

 Prior work on PCC agents within the Heath group has demonstrated that iterative 

in situ click screening to obtain secondary and tertiary ligands16,17,19,20,25 can greatly 

improve the affinity and performance of PCCs.  We sought to improve upon hevwh and 

GHWSANRCM by using our screening methodology to develop bivalent PCCs. 
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 Whereas primary PCCs are developed against SynEps selected from the antigen of 

interest, screens for secondary ligands utilize the full protein target.  The secondary ligand 

candidates were obtained by screening PfLDH-GST against a click cyclized (triazole 

bearing) OBOC library.  As illustrated in Scheme 2-1, the primary, or anchor, PCC bearing 

a click handle is first incubated with the full protein to allow binding to the targeted SynEp.  

The protein:PCC complex is then screened against a OBOC library that bears a 

complimentary click handle to that on the PCC.  Whereas the initial screen for an anchor 

PCC relies upon the recognition between library elements and the SynEp to promote 

formation of a click product, the screen for a secondary ligand requires the target to guide 

the click product.  In the target screen, only elements of the library that bind on regions of 

the target protein in close proximity to where the anchor PCC is already bound will 

facilitate the formation of the low-yielding click product.  In this manner, it is the protein 

that assembles the bivalent ligand that recognizes two separate sites on the same PCC.  The 

OBOC library is then stripped of any noncovalent binders and probed for the covalent click 

product.  This process can be iterated for additional ligands as needed.16,17,19,20,25  
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Scheme 2-1.  Schematic of target-guided iterative in situ click screening methodology for 

obtaining secondary and tertiary ligands.16,17,19,20,25   

 

 Two versions of GHWSANRCM were prepared for secondary ligand screens guided 

by the full PfLDH protein (Figure 2-7).  The anchor PCC was synthesized with an azide 

on either the N-terminus or C-terminus.  A cyclic OBOC library was prescreened to remove 

non-specific binding to the detection antibody, human LDH, and the GST fusion tag on 

PfLDH-GST.  The GHWSANRCM anchors were incubated separately with PfLDH-GST 

and screened against batches of the OBOC library.  Noncovalent binders were removed 

and the click products with each anchor were detected and sequenced.  The secondary 

ligand hits are provided in Table 2-2.  
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Figure 2-7.  The stapled GHWSANRCM was used as an anchor PCC in the secondary 

ligand screens against PfLDH.  An azide click handle was appended at the N-terminus (left) 

or C-terminus (right) of the anchor PCC.  Biotin is tethered on to each ligand for detection.   

 

 

Table 2-2.  Secondary ligand hits for a captyre PCC against PfLDH from screening with 

GHWSANRCM with (A) a C-terminal or (B) N-terminal azide (Az4) click handle 

sequenced via Edman degradation.  

 

 There is a high degree of homology between the two screens.  Several hits for the 

C-terminal secondary ligand screen look nearly alike to GHWSANRCM.  We hypothesize 

that it is likely the secondary ligand may have bound to a second copy of PfLDH-GST.  

There are also repeats of amino acids in the same position in both screens, namely H, A, 

G, and R residues.  In order the test the secondary ligands, the hits were synthesized on 
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Sieber resin, which allows for retention of protecting groups, and appended to the anchor 

GHWSANRCM PCC (Figure 2-7) by click chemistry.  The biligands were examined by 

sandwich ELISA for PfLDH-GST binding (data not shown).24  The best biligands were 

found to be GHWSANRCM-HYYRY (N-terminal screen) and GHWSANRCM-RGRRY 

(C-terminal screen) (Figure 2-8).   

 

Figure 2-8.  Structure of (A) the N-terminal biligand GHWSANRCM-HYYRY and (B) the 

C-terminal biligand GHWSANRCM-RGRRY.  

 

 The binding affinities of the capture biligand PCCs against PfLDH antigen were 

determined by sandwich ELISA.  Recombinant PfLDH was expressed in house with a 

FLAG tag and a His6-SUMO tag.26  The EC50 values of the C-terminal PCC 

GHWSANRCM-RGRRY against FLAG-PfLDH and His6-SUMO-PfLDH were found to 

be 21 nM and 9.5 nM, respectively.  Likewise, the analogous EC50 values for antigen 

binding by the N-terminal PCC GHWSANRCM-HYYRY were found to be 16 nM and 18 

nM (Figure 2-9).21  Relative to both cyHWSAN, the triazole bearing macrocycle, and the 

hydrocarbon stapled GHWSANRCM, neither of the biligands show significant 
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improvement in affinity.  Whilst iterative in situ screening for rapid secondary and tertiary 

ligand discovery has enhanced the affinity of other PCCs developed in the Heath lab, this 

work shows that this effect may be target dependent.  As such, a tertiary ligand screen was 

not pursued further.   

 
Figure 2-9.  The apparent binding affinities, EC50 values, of the PfLDH biligands are 

shown with (A) FLAG-tagged recombinant PfDLH and (B) His6-SUMO-tagged 

recombinant PfLDH.  There is no significant improvement in affinity from expansion of 

the anchor ligand into bivalent PCCs.  

 

 A secondary ligand screen was also performed for improvement of the pan-

Plasmodium LDH detection PCC, hevwh, with a cyclic OBOC library using the same 

methodology described for the aforementioned biligands.  After validation of hits via 

ELISA (data not shown), the best secondary ligand was a cyclic peptide with the sequence 

YLGHK.  The EC50 of the secondary ligand, cyYLGHK, was determined to be ~15 nM by 

sandwich ELISA (data not shown).  The anchor and secondary ligand were ligated together 

A

B

GHWSAY GHWSANRCM-HYYRY

GHWSANRCM-RGRRY

GHWSANRCM-RGRRY

GHWSANRCM-HYYRY



 40 

by a triazole to create the bivalent PCC (Figure 2-10A).  The EC50 of the biligand against 

PfLDH-GST and PvLDH-GST is 15 nM and 12 nM, respectively (Figure 2-10B).  The 

biligand maintains its performance in up to 5% human serum, which is indicative of little 

off-target interaction (Figure 2-10C).26  From these data, we can conclude that the affinity 

of the biligand is largely dominated by the affinity of the macrocyclic secondary ligand.  

In this case, the addition of a secondary ligand is beneficial for increasing overall affinity, 

though the use of cyYLGHK alone might demonstrate similar performance.  

 

Figure 2-10.  (A)  The structure of the detection biligand PCC against pan-Plasmodium 

LDH.  (B)  The biligand PCC binds to PfLDH-GST and PvLDH-GST in nanomolar 

affinities with no binding to the GST tag.  (C)  The performance of the PCC is maintained 

in up to 5% human serum.  
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2.4  Conclusion 

 A pair of synthetic affinity agents were developed as a sandwich set of protein 

capture agents for the lactate dehydrogenase biomarker of the lethal malaria species, P. 

falciparum.  We employed epitope targeted in situ click chemistry in conjunction with high 

throughput screening against OBOC libraries for the rapid discovery of affinity agents.  We 

targeted two distinct epitopes, one that occurred only in PfLDH to engineer antigen 

specificity into the PCC, and one that was common to the LDH enzyme in multiple 

Plasmodium species.   

 We developed a monovalent capture PCC against the PfLDH-specific epitope that 

can selectively bind PfLDH nanomolar affinity despite high similarity between 

homologous antigen epitopes.  The affinity was slightly improved through alteration of the 

original click cyclized PCC macrocycle into an all-hydrocarbon stapled backbone.  

However, this increase in affinity came at the cost of target specificity and the altered PCC 

showed off-target interactions.  Using target-guided iterative in situ click screening 

methodology, we screened new macrocyclic OBOC libraries for suitable secondary ligands.  

Despite high homology in the hits, we found that for the capture PCC, a bivalent ligand 

performed similarly to a monovalent affinity agent.   

 We applied the secondary ligand screening protocols towards the micromolar 

detection PCC, which was obtained from an initial screen against a linear OBOC peptide 

library.  In this case, the addition of a second ligand obtained from screening against a 

cyclic OBOC library significantly improved the detection PCC to nanomolar affinity for 

pan-Plasmodium LDH antigens.  The improved affinity of the biligand detection PCC was 
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largely attributed to the macrocyclic secondary ligand.  The improved detection PCC was 

found to perform in up to 5% human serum and showed little off-target interactions.   

 In this work, the application of epitope-targeting for engineering specificity and the 

use of entropy restricted macrocyclic peptide libraries were demonstrated.   Relative to 

linear peptide libraries, we found that the use of cyclic libraries dramatically improved the 

affinities of monovalent PCCs.  Using cyclic OBOC peptide libraries in combination with 

epitope targeting and in situ click chemistry methodology provides a platform for the rapid 

discovery of selective and high-binding affinity agents in a single generation high 

throughput screen.  As demonstrated through the development of a pair of capture and 

detection PCCs against Plasmodium LDH antigens, this platform can be readily applied 

towards the development of similar affinity agents against other antigens and disease 

biomarkers.  
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Chapter 3 

 

A Cocktail of Multi-Epitope Targeted Protein-Catalyzed Capture 

Agents Against Plasmodium falciparum Histidine-Rich Protein 2 

 

Reproduced in part with permission from: 

*S. Das, *A. Nag, J.X. Liang, D.N. Bunck, A. Umeda, B. Farrow, M.B. Coppock, D.A. 
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B. Lepe, F.P.  Rodriguez-Rivera, A. McCarthy, B. Alvarez-Villalonga, A. Chen, J. Heath, 

D.N. Stratis-Cullum, J.R. Heath 

Angewandte Chemie International Edition, 2015, 54(45), 13219-13224. 
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3.1  Introduction 

 As described in Chapters 1 and 2, P. falciparum is the most lethal of all malaria 

species and eradication of this global epidemic is contingent on rapid, accurate, and cost-

effective diagnosis as afforded by rapid diagnostic tests (RDTs).1  P. falciparum histidine-

rich protein 2 (PfHRP2) is an antigen that is detected by antibody-based malarial RDTs.  

PfHRP2 is a 30 kDa water soluble protein that is specific to P. falciparum infection.  It is 

found in the parasite’s food vacuole and cytoplasm.  The antigen is also secreted into the 

erythrocytes of infected human hosts and associated with the cellular membrane.2  The 

presence of PfHRP2 in cerebrospinal fluid has also recently been reported.3  The stability 
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of the protein makes it an excellent biomarker for the detection of lethal malaria infection.4  

Unfortunately, like other malarial RDTs, antibody-RDTs against PfHRP2 exhibit variable 

performance which can largely be attributed to the unique nature of the protein.  

 The PfHRP antigen is encoded by the pfhrp2 gene, which encodes for 37% alanine 

(A), 10% aspartic acid (D), and 34% histidine (H) residues.  The internal region of PfHRP2 

is highly repetitive and contains many patterns of epitopes such as AHHATD, AHHAAD, 

AHHAHHAAD in its internal region.5–7  PfHRP2-based RDTs have been shown to 

perform well at high parasitemia, but exhibit variations in sensitivity at low parasite 

densities (<200 parasites/µL) which has been correlated with the well documented genetic 

variation in PfHRP2.7–9  As many as 80 unique sequences of PfHRP2 per country have 

been reported and over 400 isolates exist worldwide.8  Antigen polymorphism has not been 

shown to greatly affect diagnosis by antibody-based RDTs in clinical malaria infection 

where parasite load is great.  On the other hand, the variable performance of these lateral 

flow assays at low parasite densities has been linked to the deletion or variations in the 

number of repeated motifs (Table 3-1) as well as cross-reactivity with the homologous 

PfHRP3.5,7  It is possible that monoclonal antibodies in such assays display variations in 

signal if targeted against these inconsistent repetitive motifs.  All PfHRP2 sequences are 

expected to have conserved Type 1 (AHHAHHVAD) and Type 12 (AHHAAAHHEAATH) 

repeats.  Whilst the number of repeats may vary, Type 2 (AHHAHHAAD) and Type 6 

(AHHATD) epitopes within the internal region of PfHRP2 are found in 100% of isolates 

studied.7  The use of two antibodies that recognize different epitopes to compensate for 

reduced numbers of one antigenic motif has been proposed as a strategy for addressing the 

effect of PfHRP2 polymorphism.7   
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Table 3-1.  Repeated motifs in the internal region of PfHRP2.  Figure reproduced from 

the literature.7  

 
 In this chapter, we describe the development of a combination, or cocktail, of 

synthetic affinity agents known as protein-catalyzed capture agents (PCCs) as alternatives 

to antibodies for application in a PfHRP2-based RDT.10  We employ a multi-epitope 

targeting strategy where we developed five PCCs, one for capture and four for detection, 

for a system of built-in signal amplification as a means to address antigen polymorphism.  

With a cocktail of PCCs, any decrease or absence of an epitope bound by one affinity agent 

can be compensated for through detection of other another epitope.  Using epitope targeting 

in conjunction with in situ click screening methodology developed with cyclic one-bead-

one-compound (OBOC) peptide libraries,10 we describe the rapid discovery of PCCs that 

bind in with nanomolar to picomolar affinities, which is within the range of monoclonal 

antibodies.11  
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3.2  Materials and Methods 

All reagent acquisitions, syntheses, and screening protocols were followed as 

described in Chapter 2 and the literature.10  The screening methodology was identical with 

the exception of the product screens where synthetic epitopes were incubated at 10 µM 

overnight at 4°C.  The screens were developed from 30 to 55 minutes. Recombinant 

PfHRP2 with a GST tag (PfHRP2-GST, UniProt Sequence: P90582, 98.9% identical to 

ITG strain) was obtained from CTK Biotech.   

 

3.3  Results and Discussion 

3.3.1  A Multi-Epitope Targeting Strategy 

 The design of a cocktail of affinity agents begins with epitope selection for the 

construction of synthetic epitopes (SynEps) for screening.  In order to develop a set of 

reagents for PfHRP2 detection, the antigen needs to be specifically pulled down over other 

proteins in a biological matrix and then detected with PCCs in a manner that can provide 

reasonable signal.  This requires targeting an epitope unique to PfHRP2 for antigen-specific 

capture and multiple orthogonal epitopes for detection.   

 One of the many existent primary amino acid sequences of PfHRP2 (UniProt 

Sequence: P90582, 98.9% identical to ITG strain) is illustrated in Figure 3-1.  As shown in 

Table 3-1, the Type 12 epitope, AHHAAAHHEAATH, is specific to PfHRP2 and is 

reported to be universally conserved.7  We constructed a SynEp containing the Type 6 and 

Type 12 motifs, AHHATDAHHAAAHHEAATHC, which are unique to PfHRP2 for the 

development of a capture PCC.  Four epitopes were targeted for detection: Type 2, 

AHHAHHAAD; Type 6, AHHATD; Type 2 variant, AHHAADAHHA; and a sequence 
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near the N-terminus that is expected to be conserved, LHETQAHVD (Figure 3-1).  Unlike 

previous screens where antigens with defined secondary structure were targeted and longer 

epitopes might be expected to have some degree of static conformation,10,12–14 unbound 

PfHRP2 has no defined structure.15,16  This means that no static or secondary structure can 

be obtained even with the selection of longer SynEps and these epitopes lack 

conformational or entropic restrictions.  

 

Figure 3-1.  A schematic of a cocktail of multi-epitope targeted PCCs against PfHRP2 

(cartoon in lower right).  Three repeat motifs (AHHATD, AHHAHHAAD, and 

AHHAADAHHA) as well as a singly occurring epitope (LHETQAHVDD) were targeted 

for detection.  An epitope specific to PfHRP2 (AHHATDAHHAAAHHEAATHC) was 

targeted for capture.  

 

 The SynEps for the five targeted epitopes were synthesized for screening where the 

epitopes had an alkyne-bearing (Pra) side chain on their C-termini.10  All cyclic OBOC 

libraries used for the development of anti-PfHRP2 PCCs were prescreened to remove off-

target binders to detection antibodies and human sera.  An additional prescreening step was 

added for detection PCC screens with the Type 12 epitope to minimize cross-reactivity.   
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3.3.2  Development of a Capture Agent Against PfHRP2 

 The capture PCC was developed against an i, i + 7 hydrocarbon stapled library 

afforded by olefin metathesis (Figure 3-2).10  Following the standard screening protocols, 

eight hit sequences were obtained and tested in a sandwich ELISA (data not shown) for 

binding to the recombinant full PfHRP2-GST protein.  The best PCC candidate turned out 

to be GSTEWL, denoted here as GSTEWLRCM to indicate the stapled backbone.  The 

binding affinity of GSTEWLRCM was determined by sandwich ELISA (EC50) to be 20 nM, 

which agreed very well with fluorescence polarization measurements using fluorescein 

isothiocyanate as a reporter where the KD was found to be 54.2 nM (Figure 3-3A).    

 
Figure 3-2.  Structure of the best PCC candidate (GSTEWLRCM) for the capture of 

PfHRP2 obtained by screening with a OBOC hydrocarbon stapled library.10  The eight hits 

from the screen are shown.  

 

 As a capture PCC, GSTEWLRCM proved successful in capture PfHRP2-GST over 

PfLDH-GST and pure GST, which demonstrated the intended specificity of the affinity 

agent (Figure 3-3B).  Additionally, the capture PCC retained most of its performance in 
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1% human serum, showing only a 16% decrease, which is indicative of a small amount of 

off-target interactions (Figure 3-3C).10     

 

 

Figure 3-3.  (A)  The anchor PCC, GHWSANRCM, binds to full length recombinant 

PfHRP2-GST with a KD = 54.2 nM by fluorescence polarization.  (B)  GHWSANRCM 

binds selectively to PfHRP2 over PfLDH and the GST tag.  (C)  The binding of 

GHWSANRCM with 25 nM of PfHRP2-GST and the GST tag in 0 or 1% human serum.  

The signal of the PCC is attenuated by ~16%, indicating little off-target interactions.  

Figure reproduced with permission.10 

 

3.3.3  Development of the Capture and Detection PCCs Against PfHRP2 

 Four epitopes of various lengths were synthesized as SynEps for screening against 

pentameric click cyclized OBOC libraries, which afforded a smaller and more rigid 

backbone than the hydrocarbon stapled library used for the development of the capture 

PCC.  The click cyclized OBOC libraries now also employed the addition of para-fluoro-

phenylalanine, adding a 19th amino acid to the combinations possible in the pentameric 

peptide libraries.10   

The selection of the para-fluoro-phenylalanine (4FF) amino acid side chain is 

observed in the hit sequences of the detection PCC candidates screened against the SynEp 

of the Type 2 epitope variant, AHHAADAHHA, in PfHRP2 (Table 3-2).  There is a large 

degree of homology observed in the hits that include stretches of three tyrosine (Y) residues 

A B C
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in a row and the selection of charge residues such as lysine (K) and arginine (R) in the X4 

and X5 positions.  

 

 

Table 3-2.  Hits against the Type 12 (AHHAADAHHA) SynEp as sequenced by Edman 

degradation.  The best hit before optimization was cyYYYNV.  

 

 The hits were synthesized after sequencing and assessed in a sandwich ELISA 

against the full recombinant PfHRP2-GST protein (Figure 3-4).  From these data, the best 

PCCs contain the YY motif at the N-terminal end of the pentameric sequence, which 

include cyYYYKV and cyYYYNV.17  The macrocyclic ligand, cyYYYKV, was selected 

as the best candidate for a detection PCC against the Type 2 variant.   

X1 X2 X3 X4 X5
4FF Y Y G L
Y Y V N R
Y Y K L Y

Y Y Y N K

Y Y G K L

Y Y Y K N

R 4FF Q Y Y

Y Y Q L L

L G Y Y Y

Y Y Y N V

Y Y Y K S

L K Y Y Y
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Figure 3-4.  A sandwich ELISA comparing AHHAADAHHA-screened hits against the 

full length recombinant PfHRP2-GST protein.  

 

 Recent literature has shown that the substitution of Y residues with 4FF can 

significantly improve the inherent affinity of a peptide-based affinity agent.18  We 

experimented with 4FF substitution in place of Y for cyYYYKV as well as K with R and 

assessed the altered PCCs in a sandwich ELISA (Figure 3-5).  Replacement of K with R 

improved the signal of the detection PCC.  Further replacement of Y in the X2 position 

with 4FF yielded a superior PCC, cyY4FFYRV (Figure 3-6).   

 

Figure 3-5.  Sandwich ELISA assessment of variants of cyYYYKV binding to full length 

PfHRP2-GST after amino acid substitutions.17 
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Figure 3-6.  (A) The cyYYYKV PCC as obtained from sequencing of hits.  (B)  Structure 

of the improved second-generation PCC, cyY4FFYRV, after two amino acid substitutions.  

 

 The binding affinity (EC50) of cyY4FFYRV for PfLDH-GST was measured in a 

sandwich ELISA and found to be 540 pM (Figure 3-7A).  The performance of the PCC and 

the PCC with PfHRP2-GST was also assessed in a sandwich ELISA in human serum 

(Figure 3-7B).  In the absence of protein, the PCC demonstrates some non-specific 

interactions with the detection antibody against the GST tag, which may be attributed to 

either the antibody of the PCC.  In the presence of 1% human serum, cyY4FFYRV 

maintains over 80% of its performance.  At 5% of serum, the performance of cyY4FFYRV 

drops to almost 50%, indicating competitive off-target interactions when the concentration 

of proteins increases.17  

 
Figure 3-7.  (A)  The EC50 of cyY4FFYRV was determined to be 540 pM by sandwich 

ELISA.10  (B)  The specific capture of PfLDH-GST by cyY4FFYRV in 0 to 5% human 
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serum is demonstrated.  At higher human serum concentrations, the ligand performance is 

diminished by ~ 50% by off-target interactions.  DMSO is used as a control for protein. 

 

 The same screening methodology and ELISAs were used to obtain a detection PCC 

against the SynEp of the Type 2 epitope, AHHAHHAAD.10  The best macrocyclic hit 

obtained from the click cyclized OBOC library was cyYKYYR, which was synthesized as 

both a monomer and a dimer19 (Figure 3-8).  Due to the high molar loading on the resins 

used for peptide synthesis on solid support, peptide dimers can spontaneously form as a 

result of intramolecular cyclization.  Thus, both versions of the PCC were assayed.  

 
Figure 3-8.  (A) Chemical structure of the cyYKYYR monomer, developed against the 

Type 12 epitope, AHHAHHAAD.  (B)  Chemical structure of the cyYKYYR dimer19 that 

formed through intramolecular cyclization.  Both PCCs are shown with biotin tags 

separated by polyethylene glycol linkers.  

 

 The binding affinities of the monomer and dimer versions of cyYKYYR were 

determined using standard sandwich ELISA (Figure 3-9).  From a single generation screen 

without modification of any amino acids, the affinity of cyYKYYR against PfLDH-GST 
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was found to be 218 nM.10  Dimerization of cyYKYYR by intramolecular cyclization 

improved the affinity by over five-fold, to 40.7 nM.19  However, single point measurements 

demonstrate that whilst the affinity is drastically improved, the signal of the cyYKYYR 

dimer is only improved over the monomer by two-fold (Figure 3-9B).  The cyYKYYR 

dimer also exhibits more off-target interactions, as evidenced by single point assays in 

human serum.  With increasing concentrations of human serum, the signal of cyYKYYR 

dimer is attenuated in greater magnitude than that of cyYKYYR monomer.  In this case, 

whilst cyYKYYR dimer shows greater affinity and better signal, cyYKYYR monomer 

might be a more ideal ligand for minimal cross-reactivity in performance. 

 
Figure 3-9.  (A)  The binding affinities of cyYKYYR monomer and dimer to the full 

PfLDH-GST protein determined by sandwich ELISA are 218 nM and 40.7 nM, 

respectively.  (B)  The cyYKYYR dimer shows more rapid decline in signal, i.e., 

nonspecific interactions, than the monomer in human serum.19   

 

 The last PCC successfully developed was against the N-terminal epitope, 

LHETQAHVDD.  Like the other screens, the hits obtained from in situ click screening 

with a macrocyclic OBOC peptide library bear a degree of homolog (Table 3-3).  The 

candidate PCCs contain a preponderance of R residues, though less Y than the PCCs 

against the Type 2 variations.  From these hits, the best PCC against LHETGAHVDD was 

A B
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determined via single point sandwich ELISA to be cyRYKHY.  The EC50 of cyRYKHY 

by sandwich ELISA was found to be 4.1 nM without any alteration to the chemical 

structure (Figure 3-10A).10  We sought to improve the affinity of be cyRYKHY through 

amino acid substitutions as performed on cyY4FFYRV.  The Y in the X5 position of be 

cyRYKHY was substituted to 4FF and para-cyano-phenylalanine, CNF.  However, single 

point assays showed that the 4FF substitution had negligible effect on the performance of 

this PCC.  Replacement of the Y at X5 with CNF actually abolished over 50% of PCC 

performance and increased non-specific interactions.  However, this study did show that 

the Y residue at X5 played an essential role in recognition and that the cyano group may 

have contributed electron donation through resonance that significantly impacted the 

electron density of the phenyl ring.  

 

Table 3-3.  Candidate PCC hits against the N-terminal, LHETQAHVDD.  The best hit was 

cyRYKHY.    

 

X1 X2 X3 X4 X5
R Y K/L H Y
R K/L Y Y V

A K L L L
R R Q S R
F Q R R F

K F K L Y
P K/L R T/G F
S Y K Y Y

A Y Y K/L K/L
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Figure 3-10.  (A) The EC50 of cyRYKHY obtained was 4.1 nM.  (B)  The performance of 

cyRYKHY was dampened by replacement of the Y residue at X5. 

 

3.3.4  A Limitation to Epitope Targeting 

 Whilst high affinity PCCs were successfully developed for the C-terminal, N-

terminal, and Type 2 variant epitopes, no affinity agent was obtained against the Type 6 

motif, AHHATD.  Compared to the other SynEps, AHHATD is extremely short and bears 

only six amino acids.  From a preliminary sandwich ELISA assay (data not shown), the 

best hit was cyPWEVH (Figure 3-11).  However, it was not feasible to obtain a binding 

curve for this PCC.  A comparison of cyPWEVH with other PCCs demonstrated its low 

signal and inferior relative performance (Figure 3-12).   

 

Figure 3-11.  (A)  Chemical structure of the Type 6 epitope, AHHATD.  (B)  List of hits 

against the Type 6 SynEp where the best candidate, cyPWEVH, is highlighted.   
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Figure 3-12.  Sandwich ELISA comparing the performance of cyPWEVH against other 

PCCs developed against PfHRP2.  

 

 These data demonstrate that there are limitations to the epitope targeting strategy 

for the rapid discovery of affinity agents.  All the other SynEps constructed against malarial 

epitopes within this thesis have been a minimum of ten amino acids in length.  The failed 

development of a suitable PCC against AHHATD suggests that six amino acids is too short 

in length and may not provide enough contacts for the recognition events that result in tight 

binding.  If we consider the pentameric structure presented by the OBOC library, the 

macrocyclic backbone likely does not present functional groups in a linear manner for 

maximal contact with short epitopes.  A further hypothesis, which has not yet been tested, 

is that the residues present in the SynEp may be important.  For example, the inclusions of 

more hydrophobic residues or charged side chains may result in more p-stacking or 

electrostatic bonding interactions, respectively.   

 

3.3.5  Assessment of a Multi-Epitope Targeted Cocktail of PCCs  

 In the final study, several of the PCCs were combined to determine their efficiency 

at binding to PfHRP2-GST.  A sandwich ELISA was performed where the performance of 

PWEVH YYYKV LGYYY YYQLL

0.0

0.2

0.4

0.6

A 
45

0n
m



 62 

the single PCCs, GSTEWLRCM, cyY4FFYRV, and cyYKYYR was compared to dual 

mixtures.20  From the data provided in Figure 3-13, the performance of cyYKYYR on its 

own stands out.  Whilst cyYKYYR displays the most off-target interactions as evidenced 

by the high signal in the DMSO control in the absent of protein, it most successfully binds 

to PfHRP2-GST.  Despite the higher binding affinity of cyY4FFYRV, this PCC also 

underperforms in PfHRP2-GST capture relative to cyYKYYR.  Of the dual ligand 

combinations, the pairing of cyY4FFYRV and cyYKYYR is observed as the best 

performing set followed by cyYKYYR with GSTEWLRCM.  Overall, the strength of the 

best performing cocktail duos seems to be largely dominated by the superior ability of 

cyYKYYR to bind PfHRP2-GST.  We can conclude that the PCCs can also stand on their 

own in pulling down PfHRP2-GST as the combinations do not significantly outperform 

their constituents.    

 
Figure 3-13.  Sandwich ELISA comparing combinations of the PCCs with the performance 

of the standalone affinity agents at two low-PfHRP2-GST concentrations.  
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combination cannot be generalized across all variants of this protein.  As shown in Figure 

3-1, this particular PfHRP2 has a lot of AHHAHHAAD, or Type 2, repeat motifs which 

may contribute to the high signal of cyYKYYR.  The preponderance of Type 2 variants 

may also contribute to the high affinities of cyYKYYR and cyY4FFYRV, where binding 

interactions between PCC and PfHRP2 may be additive.  In the case of the single occurring 

epitopes, such as the N-terminal and C-terminal motifs, the binding affinity may reflect the 

true strength of recognition rather than avidity effects.   

 

3.4  Conclusion 

 A cocktail of protein-catalyzed capture agents was developed to simultaneously 

target multiple regions in a single malarial protein biomarker, P. falciparum HRP2.  This 

strategy was developed to address variations in sensitivity of antibody-based RDTs that 

detect the PfHRP2 biomarker.  Antibodies typically target a single epitope and may exhibit 

variations in signal with the absence or variation of the target region.  Through 

simultaneously targeting multiple epitopes, we provide a means for built-in signal 

amplification and compensation for absent peptide motifs.  The PCCs developed have 

affinities in the high picomolar to low nanomolar range, similar to that of monoclonal 

antibodies.  We demonstrate that the PCCs can function as a cocktail of reagents whilst 

retaining excellent performance in PfHRP2 capture as standalone agents.  This work stands 

as a generalizable strategy for the successful development of affinity agents against a 

polymorphic and unstructured protein target.  
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Chapter 4 

 
 

A Linker Screen for Bivalent Ligands in an Unstructured 

Protein Landscape Using In Situ Click Chemistry 

 

4.1  Introduction 

  Epitope targeted in situ click chemistry has allowed for the rapid discovery of high 

affinity ligands, or protein-catalyzed capture agents (PCCs), in a single generation high 

throughout screen.  Developed within the Heath lab, high-binding and selective agents of 

molecular recognition are discovered by screening against one-bead-one-compound 

(OBOC) macrocyclic peptide libraries.  As detailed in Chapters 2 and 3, the use of 

macrocyclic over linear peptide libraries1 can easily generate picomolar and nanomolar 

binders against both structured and unstructured protein targets without the need for 

secondary or tertiary ligands.  However, prior work on linear peptidomimetic PCCs has 

demonstrated the utility of expanding monovalent ligands into bi- or triligand compounds 

to drastically improve affinity.2–7   

As described in Chapter 2, the expansion of primary, or anchor, PCCs into multi-

ligand molecules is accomplished in a step-wise fashion.  The anchor PCC, fitted with a 

click handle, is incubated against the full protein and allowed to recognize, i.e., bind, to the 

epitope against which it was first developed.  The anchor:protein complex is then subjected 

to a prescreened OBOC library that bears the complementary click handle to that on the 

anchor.  Elements of the OBOC library that bind tightly and in close proximity to the 
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primary ligand facilitate the formation of a click product which is then detected, sequenced, 

and tested.2  This process can be iterated to produce additional ligands.   

In general, the expansion of an anchor PCC into a multivalent ligand has relied on 

a static and defined protein structure.  The tertiary structure of the protein provides a solid 

basis upon which to guide the self-assemblage of secondary and tertiary ligand arms, i.e., 

target-guided click.  Within our lab, we have demonstrated the use of the tertiary structure 

of botulinum neurotoxin to assemble a biligand.6  In this work, two unique epitopes were 

targeted for the development of two distinct PCCs.  Instead of screening for a secondary 

ligand, the two anchor PCCs were linked by screening with a linker library of varying 

length, i.e., the protein target selected its own ideal ligator between PCCs bound to adjacent 

sites.  In situ click screening methodology was also employed in selection of the ideal 

linker.6  

Thus far, the development of biligands and triligands within the Heath lab has relied 

on a defined, tertiary structure.  In this chapter, we explore whether this screening 

methodology can be applied to an intrinsically disordered protein, P. falciparum histidine-

rich protein 2 (PfHRP2), which exhibits no secondary structure when it is not sequestering 

heme molecules in its native state.8,9  We use the PCCs developed within Chapter 31 against 

four distinct epitopes in PfHRP2 as anchors for an in situ click chemistry linker screen 

using OBOC libraries.  We find that the PfHRP2 antigen structure selects for a specific 

length of semi-rigid ligation and apply these linkers towards the development of biligand 

PCC structures.  
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4.2  Materials and Methods  

General Information.  All materials for assays, solid phase peptide synthesis, and 

screening were obtained by vendors described in Chapter 2.  The additional unnatural 

amino acid used within this study, aminoisobutyric acid (Aib), was obtained from Sigma-

Aldrich.  In the case of proline and leucine, the D-stereochemistry amino acids were used 

for library synthesis.  The protocols for immunoassay, chemical synthesis, compound 

characterization, and purification are identical to general procedures provided in previous 

chapters. 

 

OBOC Linker Library.  The anchor PCCs cyYKYYR and cyY4FFYRV were each 

synthesized on 100 mg scale on TentaGel resin (Rapp Polymere, 0.29 mmol/g) separated 

from the bead by a methionine residue.  Successful synthesis and click cyclization of the 

anchor PCCs were confirmed by Edman degradation.  Split-and-mix synthesis was 

employed to generate a linker region by successive couplings of D-proline, glycine, D-

leucine, and aminoisobutyric acid.  At each of the five coupling step, ¼ of the resin was 

not treated with coupling solutions to generate linkers that varied from 0 to 5 amino acids 

in length.  An alkyne click handle was appended to the N-terminus of the variable linker 

region.   

 

Linker Screens.  The standard binding buffer as described for screening in Chapter 2 was 

used for the linker screens.  The OBOC linker libraries were precleared against the 

detection antibody (Antibiotin-AP) and all four anchor PCCs.  Full recombinant PfHRP2 

protein without a fusion tag (PATH, ITF strain) was used as the target to guide the linker 
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product screen.  Following full washing and stripping of the OBOC library after the 

prescreen, the library was blocked in 1% BSA in binding buffer.  For each separate screen, 

the beads were incubated with 5 µM of the desired anchor and 100 nM of recombinant 

PfHRP2 protein for 6 hours at ambient temperature.  The beads were washed 3X in standard 

buffer, 1 hour with guanidine hydrochloride (pH 2), and 10X with standard buffer.  The 

library was blocked overnight in 1% BSA in binding buffer at 4°C.  Afterwards, the library 

was incubated with 1:10000 antibiotin-AP in standard buffer for 1 hour at ambient 

temperature.  The beads were then washed 3X with standard buffer, 3 x 15 minutes with 

high salt TBS, 1 hour with high salt TBS, 3X in BCIP buffer, and developed with BCIP/ 

NBT for a maximum of 30 minutes.  The hits (purple beads) were isolated, washed, and 

sequenced via Edman degradation to identify hits.    

 

Synthesis, Purification, and Characterization of Fmoc-L-Pra-OtBu.  The alkyne 

bearing unnatural amino acid, Fmoc-L-propargylglycine-OH, was protected on the C-

terminus with an OtBu by treatment with t-But-2,2,2-trichloroacetimidate in 

dichloromethane.  The reaction was heated up to 55°C and refluxed for five hours (Scheme 

1).  The resultant molecule, herein termed Fmoc-L-Pra-OtBu, was extracted with saturated 

NaHCO3, followed by an extraction with brine.  The compound was dried with the addition 

of anhydrous MgCl2.  The crude molecule was concentrated under vacuum.  

 

 
Scheme 1.  Addition of the OtBu protecting group onto Fmoc-L-Propargylglycine-OH.  
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Fmoc-L-Pra-OtBu was purified by silica gel chromagraphy, using a mobile phase of 10:1 

hexanes:ethyl acetate, and monitored with thin layer chromatography.  Spots with the 

product were identified by UV absorption at 254 nm.  The product fractions were 

concentrated under vacuum and characterized by NMR spectroscopy by addition of a 

methyl peak in 1H spectrum.  

 

4.3  Results and Discussion 

4.3.1  Target-Guided Linker Screens 

 To identify the ideal linker between PfHRP2-targed PCCs as described in Chapter 

3, high throughput linker screens were performed with the full non-tagged PfHRP2 

antigen.10  As illustrated in Figure 4-1, the library had one static region, which was an anti-

PfHRP2 PCC, and a variable linker region.  Two anchor PCCs were synthesized on bead: 

cyYKYYR and cyY4FFYRV, which were developed against Type 2 epitope variants.1,11  

These libraries bore alkyne (Pra) click handles at their N-termini.  These libraries were 

prescreened against off-target interactions.  Three of the anti-PfHRP2 PCCs were 

synthesized and utilized off-bead: cyRYKHY (N-terminal targeted PCC), GWNVDLRCM 

(another hit against the C-terminus of PfHRP2 from Chapter 3), and cyYKYYR (Type 2 

targeted PCC).  These anchor PCCs were appended with azide (Az4) click handles on their 

C-termini which were complementary to those on the linker libraries.  The anchor PCCs in 

solution were pre-incubated with the full PfHRP2 protein.  The anchor:protein complex 

was then screened against the OBOC library bearing another PCC and the variable linker 

region (Figure 4-2).  Four amino acids were selected (D-proline, glycine, D-leucine, and 
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aminoisobutyric acid) to create linkers that were semi-rigid or barriers against complete 

free rotation around the amide bonds. 

 

Figure 4-1.  Schematic for linker screen between two ligands binding to distal regions on 

PfHRP2.  One ligand is synthesized on bead with the variable linker library, appended with 

an alkyne (Pra) click handle.  The second ligand, bearing the azide (Az4) click handle, is 

prepared in solution and incubated with the OBOC library.  

 

Figure 4-2.  Amino acids used in the on-bead variable linker region.  Aminoisobutyric 

(Aib) acid is an unnaturally occurring side chain.   
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linkers that are four amino acids in length.  The four amino acid length encompasses over 

55% of the total hits.   

 

Figure 4-3.  Sequenced hits obtained from the linker screens.   

 

4.3.2  Comparison of PfHRP2 Biligands to Anchor PCCs 

 The biligands were synthesized with the PCC pairs as indicated in Figure 4-3 and 

the variable linkers.  A representative chemical structure of the biligand cyY4FFYRV – p-

l-Aib – cyYKYYR is shown in Figure 4-4.  All the biligands were constructed in this 

manner by synthesis of the constant PCC from the library on solid support, followed by the 

linker amino acids, and the coupling of Fmoc-L-Pra-OtBu.  The traizole was assembled by 

clicking an azide bearing amino acid with the alkyne (Pra) group.  The synthesis of the 

secondary ligand was finished before the entire biligand was cleaved off solid support, 

purified, and quantified for immunoassay.   
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Figure 4-4.  Representative chemical structure of all biligands in this study.  Biligand are 

synthesized on solid support from the C- to N-terminus.  The biligands are composed of 

two anchor PCCs against PfHRP2, a triazole, and a linker region.  

 

 A set of biligands containing PCCs developed against the Type 2 variants in 

PfHRP2 and the N-terminal epitope, LHETQAHVDD, were synthesized following the 

schematic in Figure 4-4.  Their linker regions comprised four to five amino acids in length.  

The biligands were cyY4FFYRV - p l Aib Aib – cyRYKHY, cyYKYYR - l g l g l – 

cyRYKHY, and cyYKYYR - p Aib p Aib – cyRYKHY.  These ligands were compared 

to their anchor constituents in a sandwich ELISA (Figure 4-5).  As observed in the results, 

only one biligand, cyY4FFYRV - p l Aib Aib – cyRYKHY, showed significant signal in 

binding PfHRP2-GST in the assay.  The two other biligands perform poorly.  Despite the 

high signal, however, cyY4FFYRV - p l Aib Aib – cyRYKHY displays a large degree of 

non-specific binding as observed in the lane containing no protein.  We hypothesize that 

the extreme non-specific binding may be due to the hydrophobic nature of the linker region 

in addition to any off-target interactions from the constituent PCCs.  All three of these 

biligands were discarded as viable candidates and further molecules were synthesized for 

testing.  
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Figure 4-5.  Sandwich ELISA comparing several biligands obtained from the linker screen 

to their constituents.  
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two cyYKYYR molecules,12 the anchor PCC, which proved to provide the greatest signal 

in the capture of PfHRP2-GST as demonstrated in Chapter 3 (Figure 4-6).   

 

Figure 4-6.  Two equivalents of cyYKYYR are ligated by a polyethylene glycol unit.12  
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displays nanomolar binding affinity to PfHRP2-GST and demonstrates a functional 

application in attenuating the role of this antigen in heme sequestration.  

 

Figure 4-7.  Sandwich ELISA comparing the performance of single PCCs, combinations, 

and biligands in human serum. 

 

Figure 4-8.  Biligand (cyYKYYR-Peg1-cyY4FFYRV) obtained from Peg1 ligation.  
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4.4  Conclusion 

 Using the full PfHRP2 antigen as a guide for in situ assemblage of bivalent ligands.  

Screens were performed using OBOC libraries with a variable region composed of 

unnatural amino acids for linkers.  Whilst this strategy of target guided selection of linkers 

from a combinatorial library has proved successful with a structured protein,6 the 

development of biligands from this screening methodology produced molecules with a 

high-degree of off-target interactions despite the high homology in lengths selected by the 

screens.  This work has demonstrated that in situ linker screens guided by an intrinsically 

disordered, unstructured protein have not yielded high-performing PCCs, though this it not 

necessarily generalizable to all disordered proteins.  From this study, the development of 

biligands from ligation using a single unit polyethylene glycol linker proved to be a facile 

means of generating bivalent molecules that yield superior performance over linkers 

obtained from a high throughput screen.   
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Chapter 5 

 

Inhibition of heme sequestration of Histidine-Rich Protein 2 using 

multiple epitope-targeted peptides 

 

Reprinted with permission from Biochemistry, submitted for publication: 

J.X. Liang, D. N. Bunck, A. Mishra, M. Idso, J. R. Heath 

Unpublished work © 2018 American Chemical Society 

 

5.1  Introduction  

Plasmodium falciparum is the most lethal malarial species attributed to the 

infectious Plasmodium species.1,2  During the intra-erythrotic stage of the parasite’s life 

cycle, P. falciparum ingests over 75% of the host hemoglobin for nutrients,2 releasing 

cytotoxic free heme.3–5  The toxic byproduct is remediated by the parasite through 

conversion into hemozoin, an inert biomineral comprising a network of heme dimers linked 

by hydrogen bonds.  The heme dimer is structurally identical to β-hematin, where each 

heme unit is connected through coordination of its propionate group on the porphyrin to 

the iron center of its cognate heme.6  

Numerous antimalarial drugs target hemozoin formation.  The antimalarial drug 

chloroquine prevents nucleation of new heme layers in hemozoin by binding to the surfaces 

of β-hematin crystals.  In turn, this leads to retention of toxic free heme concentrations 

within the protozoan, thus inducing parasite death.7,8  Artemesinin is another antimalarial 

drug used to treat P. falciparum infection.  While the exact mechanism of artemisinin is 
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unknown, it is suggested to inhibit hemozoin formation through terminal capping of heme 

dimers, thus preventing aggregation of the dimeric units necessary for biocrystallization.9 

While inert to the parasite, heme byproducts are harmful to human hosts, even after 

parasite clearance.  Chronic bone loss has been correlated with the persistence of 

accumulated hemozoin in bone marrow after P. falciparum infection.10  The retained 

hemozoin also modulates immune responses and bone homeostasis, so inhibition of heme 

biocrystallization might reduce disease related complications.10  Despite numerous 

therapeutic compounds that hinder hemozoin formation, resistance against established 

single and combination drug therapies persists as a barrier against malaria eradication.1  

For example, one means of chloroquine resistance by P. falciparum arises from a genetic 

mutation that prevents uptake of the drug.  Similarly, other genetic mutations or selection 

of resistant isolates by drug pressure confer resistance to the P. falciparum species.11  Many 

antimalarial drugs work through targeting heme via a host of biomolecules such as lipids 

and proteins that have been implicated in biocrystallization.12  An alternative avenue of 

reduction hemozoin formation might be to target key biomolecules that are associated with 

this process.    

A key P. falciparum specific protein implicated in heme binding is histidine-rich 

protein 2 (HRP2).  The protein is secreted into the cytosol of erythrocytes and recruited in 

the parasitic food vacuole with hemoglobin.13  HRP2 is composed almost exclusively of 

histidine (37%), alanine, and aspartic acid residues (Figure 5-1), with multiple, discrete 

Ala-His-His-Ala-Ala-Asp (AHHAAD) and AHHAHHAAD fragments repeated 

throughout its internal region.  These subunits function as heme binding motifs, aiding in 

the formation of β-hematin, the precursor to hemozoin.  Unbound HRP2 is a random coil, 
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adopting secondary structure only when bound to heme.14,15  One HRP2 copy can bind up 

to 15-17 equivalents of heme, ligating the central iron atom with two imidazoles on 

histidine side-chains.13,16  Dendritic structures bearing peptides AHHAHHAADA and the 

variant AHHAHHAANA have been shown to both bind heme and facilitate hemozoin 

formation.17  Interestingly, while HRP2 sequesters heme and aids in biocrystallization, 

Plasmodium clones lacking genes for HRP2 and the homologous HRP3, can still produce 

hemozoin.  Murine parasites lacking in HRP2 can also form hemozoin.18  Outside of heme 

sequestration, HRP2 has been implicated in cerebral malarial pathogenesis by weakening 

the brain endothelial barrier.19  Given the multiple roles assigned to HRP2, it is worthwhile 

to explore methods of inhibiting its activity and function.  

 

Figure 5-1. P. falciparum HRP2 contains numerous internal repeats of AHH, AHHAAD, 

and AHHAHHAAD motifs that participate in heme sequestration, as well as more 

chemically diverse regions at the C- and N-termini.  The epitopes targeted in this study are 

colored by type.  (UniProt: P90582, 98,9% similarity to ITG strain).    

 

HRP2 holds diagnostic utility as a biomarker for acute and chronic P. falciparum 

infection.  We recently reported on the development of protein-catalyzed capture agents 

(PCCs) that bind to HRP2.20  We developed several PCCs as a cocktail for simultaneously 

recognizing multiple sites within HRP2, including several heme-binding epitopes (Figure 

5-2).20 Here, we explore the utility of those PCCs for inhibiting the formation of a 

heme:protein complex with HRP2-GST and an untagged, ITG strain of HRP2, herein 

MVSFSKNKVLSAAVFASVLLLDNNNSAFNNNLCSKNAKGLNLNKRLLHETQAH
VDDAHHAHHVADAHHAHHAADAHHAADAHHAHHAADAHHAHHAAYAHHAHH
AADAHHAHHASAHHAHHAADAHHDAHHAADAHHAAYAHHAHHAADAHHAHH
ASDAHHAADAHHAAYAHHAHHAADAHHAADAHHATDAHHAHHAADARHATD
AHHAADAHHATDAHHAADAHHAADAHHATDAHHAADAHHATDAHHAADAHH
AADAHHATDAHHAHHAADAHHAAAHHATDAHHATDAHHAAAHHEAATHCLRH
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termed HRP2 (ITG).  We find that the inhibitory potency of these PCCs can be enhanced 

through multimerization of the PCC agents.  The reported approach provides a novel, 

proof-of-concept strategy that demonstrates protein targeting with engineered peptides can 

be used as functional inhibitors of protein and biomolecule interactions as demonstrated in 

the heme-binding properties of P. falciparum HRP2.  

 

Figure 5-2.  (A) Heme complexes with histidine rich regions in Plasmodium falciparum 

HRP2, and formation of those complexes can be hindered using the antimalarial drug 

chloroquine (CQ).  (B)  Macrocyclic peptides (L1, L2, L3) developed against the color-

matched epitopes in HRP2 prevent formation of the heme:HRP2 complex by directly 

targeting the protein instead of heme.  The EC50 binding strengths of the peptide ligands 

are indicated in the figure.   
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5.2  Materials and Methods 

Materials.  Recombinant Plasmodium falciparum HRP2 with a glutathione s-transferase 

tag (HRP2-GST) was obtained from CTK Biotech (A3000, 60 kDa, UniProt Sequence: 

P90582).  All dilutions were made from reconstitution of the protein pellet with deionized 

water as per manufacturer instructions.  The HRP2-GST stock was quantified by Bradford 

assay to yield a 37 and 47 µM stock, dependent on protein lot, from which all dilutions 

were made.  Glutathione s-transferase (GST) from equine liver, hemin chloride, 

chloroquine diphosphate, and HEPES were all obtained from Sigma-Aldrich.  Native 

Plasmodium falciparum HRP2 (ITG strain, 29 kDa, 24 µM) was kindly provided by 

collaborators from PATH.  The primary sequence of HRP2 (ITG) is 98.9% similar to 

UniProt Sequence: P90582. All microplate heme binding assays were performed in 96-

well clear bottom plates with non-binding surfaces obtained from Corning.  Electronic 

absorption spectra for microtiter plate assays were obtained on a Flexstation 3 Multi-Mode 

Microplate Reader (Molecular Devices) at ambient temperature.  Electronic absorption 

spectra for ligand and heme interaction studies were obtained on a Cary 300 UV-Vis 

spectrophotometer in 1 cm quartz cuvette at ambient temperature.  

 

Ligand Synthesis and Purification.  All ligands were synthesized on Rink Amide MBHA 

resin (Aapptec, 0.68 mmol/g loading) from their C to N termini using standard solid phase 

peptide synthesis techniques and commercially available L-amino acids (Aapptec, Anaspec, 

or Chempep).  The resin was pre-swelled in N-methylpyrrolidone (NMP, BDH Chemicals) 

for a minimum of 2 hours prior to synthesis.  The Fmoc group was removed by treatment 

for 2, 5, 25 minutes in 20% piperidine (Alfa Aesar) in NMP.  An azide click handle was 
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attached by coupling of 4 equivalents of Fmoc-Lys(N3)-OH with 4 equivalents of HATU 

(Chempep) used as a coupling agent and 12 equivalents of N,N-Diisopropylethylamine 

(DIEA, Sigma-Aldrich).  Elongation of the peptide chain was accomplished on the Titan 

357 Peptide Synthesizer (Aaaptec).  An alkyne click handle was installed through coupling 

of Fmoc-L-Propargylglycine onto the N-termini of the peptides in the same reagent excess 

as azide attachmebt.  The terminal Fmoc group was removed and the peptide ligands were 

cyclized by treatment overnight with 2 equivalents of copper iodide (Sigma-Aldrich) and 

5 equivalents of L-Ascorbic Acid (Sigma-Aldrich) in 20% piperidine in NMP.  After 

cyclization, the resin was rinsed liberally with NMP.  For synthesis of ligands with two 

cycles, the cyclization step was repeated for 5 hours after the first overnight reaction.  

Following the click reaction, the resin was washed liberally with NMP.  The remaining 

copper was removed by washing with a 2% w/v solution of sodium diethyldithiocarbamate 

trihydrate (Chem-Impex International) and 2% v/v solution of DIEA in NMP until the wash 

turned from dark brown to clear.  The resin was then rinsed liberally with NMP, followed 

by methanol, and dichloromethane (DCM).  The resin was dried under vacuum.  Peptides 

were cleaved off solid support by treatment with 95% trifluoroacetic acid (TFA, Chem-

Impex International), 2.5% triethylsilane (TES, Sigma-Aldrich), and 2.5% deionized water 

for 2 hours with agitation.  The cleaved peptides were precipitated with diethyl ether and 

centrifuged for 45 minutes.  The supernatant was discarded and the peptides were dissolved 

in 50/50 acetonitrile/water.  The peptides were purified via preparatory scale reversed 

phase HPLC on a Dionex Ultimate3000 instrument on a Kinetex 5 µm XB-C18 100 column.  

Fractions containing the compound were lyophilized, recombined, and purified again via 

reversed phase semi-preparatory scale chromatography.  Repurification was accomplished 
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on either a Beckman Coulter HPLC instrument with a Luna 10 µm C18(2) 100A column 

or a Dionex Ultimate3000 UHPLC (ThermoScientific) on a Hypersil GOLD  C18 250 x 

10 mm column (ThermoScientific).  Chromatographic fractions containing the desired 

peptide products were characterized via MALDI-TOF MS (Bruker) using α-Cyano-4-

hydroxycinnamic acid matrix (10 mg in 50/50 acetronitrile/water with <0.1% TFA). All 

peptides were quantified on a ThermoFisher Nanodrop 2000c UV-Vis spectrometer at 

A280 nm using extinction coefficients of 2560 cm-1 M-1 (Arg-Tyr-Lys-His-Tyr and Tyr-

(4F)Phe-Tyr-Arg-Val), 3840 cm-1 M-1 (Tyr-Lys-Tyr-Tyr-Arg), and 6400 cm-1 M-1 (Tyr-

Lys-Tyr-Tyr-Arg ligated to Tyr-(4-Fluoro)Phe-Tyr-Arg-Val). 

 

Heme Binding Assays.  A 1 mM solution of heme was prepared fresh for each experiment 

by dissolving ~ 13.1 mg of hemin chloride (Sigma-Aldrich) into 20 mL of 0.1 M NaOH 

where solution volumes were dispensed by serological pipettes for uniformity.  The 0 to 

21 µM heme stocks were prepared in 100 mM pH 7.0 HEPES (Sigma-Aldrich) buffer by 

individual dilutions from the 1 mM solution.  From the 0 to 21 µM heme stocks, 450 µL 

of each solution was transferred into individual microcentrifuge tubes.  For the protein 

containing solutions, 490 nM of HRP2-GST was added from the 37 µM or 47 µM stock.  

For the inhibition experiments, 10 µM of ligand or chloroquine was dispensed into each 

microcentrifuge tube requiring ligand.  The solutions were protected from light and allowed 

to equilibrate at room temperature for 20 minutes. The solutions were then transferred onto 

a microwell plate and their electronic absorption spectra were read at ambient temperature 

on a platereader from 325 – 700 nm at 3 nm resolution.  Absorbance at 415 nm was 

analyzed for the formation and inhibition of a heme:protein complex. All variable assays 
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were performed in the presence a control to yield four conditions: (i) heme (varied), (ii) 

heme (varied) + protein (constant), (iii) heme (varied) + ligand (constant), and (iv) heme 

(varied) + protein (constant) + ligand (constant).  Contributions to the Soret band at 415 

nm were determined in the control by spectral subtraction of {heme + protein} – {heme} 

at each point to obtain the difference spectra.  For the ligand inhibition assays, the 

difference spectra are calculated by subtracting {heme + ligand} from {heme + protein + 

ligand}, which removes optical contributions from heme and ligand interactions.  Thus, the 

final difference spectra are representative of contributions made only by formation of the 

heme:protein complex.  From these data, DA415 are abstracted to generate heme binding 

curves.  For ligand containing assays, DA415 values for the control are averaged over 26 

data points.  All DA415 values for the ligands were measured in at least triplicate with few 

exceptions. 

 

Enzyme-Linked Immunosorbent Assays.  All ELISA measurements of ligand binding to 

HRP2-GST were obtained on clear 96 well NeutrAvidin high-binding capacity plates 

(ThermoScientific).  Assays were performed in TBS buffer (pH 7.5) with 0.05% Tween20 

and 0.1% BSA.  All plate washing as well as ligand, proteins, and antibody solutions were 

prepared in this buffer.  The plates were washed 1X before incubation with a biotinylated 

ligand solution for 2 hours at ambient temperature.  The plates were than washed 3X before 

blocking with 5% milk in buffer either at ambient temperature for 2 hours or overnight 

(~16 hours) at 4°C.  After blocking, the plates were washed 3X with buffer, followed by 

incubation with HRP2-GST at ambient temperature for 2 hours or overnight (~16 hours) at 

4°C.  The plates were then washed 3X and incubated with 1:2000 dilution of anti-GST 
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horse radish peroxidase (Abcam) for 1 hour at ambient temperature.  The plates were 

washed 3X with buffer and 1X with pure TBS before development with TMB ELISA 

substrate (ThermoFisher) for 5 minutes.  The development was quenched with 1M H2S04 

before absorbance measurements were taken on a Flexstation 3 Platereader.  To account 

for nonspecific binding of HRP2-GST, all binding assays were performed with a control, 

non-interacting ligand of polyethylene glycol (PEG5) on the same microtiter plate as the 

variable ligand.  This background ligand was immobilized in a manner identical to the 

variable ligand.  Non-specific binding to both the microtiter plate and PEG5 were 

background subtracted from the absorbance of the variable ligands.   

 

Circular Dichroisim Spectroscopy.  Circular dichroism spectroscopy was performed on 

an Aviv Biomedical Model 410 spectrophotometer.  Solutions of native HRP2 (ITG) 

protein were prepared in concentrations of 2, 3, and 4 µM.  The spectra of HRP2 (ITG) 

were measured from 198 to 280 nm at 1 nm resolution in quartz cells (Hellma Analytics) 

of 1 mm pathlength.  L2-P1-L3 was titrated into the cuvettes containing HRP2 (ITG), 

aspirated gently with a pipette tip, and their spectra measured again.  The titrations were 

continued until the peak at 199 nm was saturated for each protein concentration.   

 

Size Exclusion Chromatography.  Size exclusion chromatography was performed on a 

Biorad X FPLC using a Superdex 200 10/300 column.  Solutions for HRP2-GST and GST 

were separately prepared at 500 nM and eluted via an isocratic PBS gradient. 
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5.3  Results and Discussion  

5.3.1  Development of Macrocylic Peptide Ligands 

Developing ligands for the detection of HRP2 is challenging because the protein 

exhibits significant sequence diversity across malaria endemic regions.21–23  We used the 

epitope-targeted in situ click chemistry screening method20 to develop three macrocyclic 

peptide ligands against conserved motifs within the protein (Figure 5-2B).  For this method, 

polypeptides representing the targeted epitopes were synthesized, affixed with a click 

handle, and screened against combinatorial macrocyclic peptide libraries that presented the 

complementary click handle.  This screen selects for library elements that bind to the 

synthetic HRP2 epitopes in just the right orientation to promote the (non-catalyzed) copper-

free click reaction.  Candidate PCCs are then screened for selective binding to the full 

length protein.  

Using this method, three anti-HRP2 macrocyclic PCCs were developed against 

epitopes of the HRP2 protein of Figure 5-1. The in vitro binding characteristics of these 

PCCs were previously reported.20  A macrocycle bearing the sequence Arg-Tyr-Lys-His-

Tyr (cyRYKHY or L1; EC50 = 4.1 nM) was developed against the singly occurring Leu-

His-Glu-Thr-Gln-Ala-His-Val-Asp-Asp (LHETQAHVDD) epitope located near the N-

terminus.  The other two targeted epitopes, AHHAADAHHA and AHHAHHAAD, are 

heme binding motifs in the internal region of HRP2 that are present in most HRP2 

genotypes, but with different repeat frequencies.21,23  These PCCs have sequences Tyr-Lys-

Tyr-Tyr-Arg (cyYKYYR, L2; EC50 = 218 nM) and Tyr-(4F)Phe-Tyr-Arg-Val 

(cyY4FFYRV, L3; EC50 = 540 pM), respectively (Figure 5-2B).  For PCC macrocycles 

developed against different targets, we have recently reported that qualitative EC50 values, 
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measured using the methods used here, agree, within a factor of 2, with quantitative binding 

constant (KD) values measured using fluorescence polarization.24 

The apparent binding affinity of L3 is particularly high.  For both L2 and L3, the 

targeted epitopes represent repeating motifs, which could contribute to the measured 

avidity, likely scaling with the numbers of repeats.23  The L1 ligand is apparently a strong 

inherent binder of its target epitope.  In comparison to the peptide macrocycles developed 

herein, the affinity of heme to HRP2 has been reported as 940 nM.25 We thus reasoned that 

our ligands might competitively inhibit the formation of the heme:HRP2 complex. 

 

5.3.2  Heme Binding Assays 

We characterized free and bound heme using UV-Vis absorption spectroscopy in 

microwell plates.  Digestion of hemoglobin to liberate free heme occurs in the digestive 

vacuole of the parasite P. falciparum between pH 4.8-5.  At pH 5.5, the coordination state 

of heme is identical to that at pH 7.0. In the presence of HRP2 it polymerizes through 

saturated binding of the protein.  Saturation at pH 7.0 occurs without polymerization or 

precipitation with retention of the initial heme coordination geometry.15 We conducted the 

microtiter assays at pH 7.0 in 100 mM HEPES buffer, as adapted from reported protocols, 

using HRP2-GST.15  The UV-Vis spectrum of free heme exhibits a broad peak at 386 nm 

that shifts to a sharp Soret band at 415 nm indicative of the heme:HRP2-GST complex 

(Figure 5-3A, B).  The characteristic weakly absorbing a/b bands at 568 nm/535 nm are 

also observed in bound heme.  The environment and interactions of heme can be monitored 

through these spectroscopic features.   
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Figure 5-3.  Electronic absorption spectra of (A) 0 to 21 µM free heme and (B) with 490 

nM HRP2-GST taken in 100 mM HEPES (pH 7.0) after incubation at ambient temperature 

for 20 minutes.  Free heme exhibits a broad peak centered at 385 nm.  The heme:HRP2-

GST complex produces a sharp Soret band at 415 nm with low intensity bands at 568 

nm/535 nm, while HRP2-GST by itself (blacked dotted trace) is optically transparent 

through this region.  (C) The signature of HRP2-GST binding to heme can be quantified 

by taking the difference spectra as shown, isolating the optical feature at 415 nm.  

 

The impact of CQ, L1, L2, and L3 binding on heme:HRP2 formation were 

determined by replicating heme titrations in the presence of ligand.  We measured the UV-

Vis absorption spectra of 0 to 21 µM heme solutions, with and without HRP2-GST.  The 

heme and HRP2-GST solutions were equilibrated at room temperature for 20 minutes 

before transfer to a microtiter plate for optical absorption measurements.  The formation of 

the heme:HRP2-GST complex was monitored by the growth of the Soret band at 415 nm.  

Taking the difference spectra between free and bound heme isolated the Soret band, thus 

permitting a quantitative assessment of the change in absorbance (DA415, Figure 5-3C).   
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Figure 5-4.  The influence of 10 µM epitope-targeted PCCs on inhibiting the formation of 

the heme:HRP2-GST complex is demonstrated.  Chloroquine (CQ), which binds to heme 

and inhibits the formation of heme:HRP2-GST, provides a reference ligand.  (A) L1, which 

binds to a singly occurring N-terminal epitope is about as effective as CQ.  (B) L2 and (C) 

L3, which bind against histidine-rich repeat motifs throughout HRP2, show weak 

inhibition relative to CQ.  All assays were performed from 0 to 21 µM heme, 10 µM total 

ligand, and 490 nM of HRP2-GST in 100 mM HEPES (pH 7.0) at ambient temperature.   

 

A saturation curve for the heme:HRP2-GST complex is generated by plotting 

DA415 against [Heme] (Figure 5-4).  In the control, the growth in the DA415 correlates 

with the abundance of the heme:HRP2-GST complex.  Inhibition of heme:HRP2-GST 

binding results in attenuation of this optical feature.  An additional titration of GST with 

heme was performed to confirm that the fusion tag does not display significant optical 

features at low heme concentrations (Figure 5-S1).  However, GST has been reported to 

bind heme so further assays were performed with a non-tagged HRP2.  In addition, we also 

performed the heme:HRP2-GST inhibition experiments using the cyclic peptide Asn-Tyr-

Arg-Trp-Leu (NYRWL), which was previously developed against botulinum toxin 

serotype A light chain (Figures S2).20  We selected this ligand for the presence of the Tyr 

and Arg residues, which are also present in L2 and L3.  The NYRWL peptide displays no 
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inhibitory function despite bearing identical two residues in the same order as L2 and L3.  

This result speaks to the specificity of the ligands developed via epitope-targeting against 

proteins of interest. 

The effect of the anti-HRP2 peptides (L1, L2, and L3) was determined (Figure 5-

4) using UV-Vis absorption spectroscopy.  For these measurements, the formation of the 

heme:HRP2-GST complex was recorded by titrating [Heme] into a 490 nM HRP2-GST 

solution in the presence of 10 µM ligand or a CQ control.  Chloroquine (CQ) is a known 

inhibitor of hemozoin formation (Figure 5-S3).  It binds strongly to heme in a 2:1 ratio with 

a KD = 37 nm and does not interact with HRP2.25  CQ thus competes with the protein for 

heme sequestration.25   

Ligand 
 

 
[Heme] 

A415=0.40 
10 µM Heme 
∆A415 

% Inhibition 
Relative to 

Control 
0 µM 6 µM 0.56 0 
10 µM CQ 13 µM 0.24 57 
10 µM L1 15 µM 0.25 55 
10 µM L2 9 µM 0.40 28 
10 µM L3 8 µM 0.47 16 
5 µM L2-P1-L3 20 µM 0.16 65 
10 µM L2-P1-L3 32 µM 0.11 80 
5 µM L1 + 5 µM L3 13 µM 0.29 48 
5 µM L2 + 5 µM L3 12 µM 0.33 41 

 

Table 1.  Inhibition of Anti-HRP2 PCC Agents. 

Inhibitory potency was assessed at 50% saturation of the heme:HRP2-GST complex (Abs 

= 0.40) and at equimolar heme / ligand concentrations (10 µM) from the plots in Figures 

4-4 and 4-5.   

 

The effect of CQ on heme:HRP2-GST formation can be observed by attenuation 

of the DA415 across heme concentrations.  Like the control, saturation curves for the 
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heme:HRP2-GST complex in the presence of ligand were constructed by monitoring 

DA415 across heme concentrations.  The plots in Figures 4 and 5 are reminiscent of 

inhibition curves, but with the caveat that multiple copies of heme, as well as most of the 

PCCs, bind to a single copy of HRP2-GST, so saturation in these solution phase assays is 

difficult to establish.  Furthermore, the primary targets of CQ and the PCCs are not the 

same.  This makes determination of absolute IC50 values for inhibiting heme:HRP2 

complex formation difficult.  However, relative comparisons between the PCCs and CQ 

can be made by fitting each of the data sets in Figures 4 and 5 to a Hill function (Table 1).  

We then selected the value of Abs = 0.40, or ~50% saturation, of the DA415 heme:HRP2-

GST Soret band as a reference point (this value is reached at [Heme] = 6 µM).  Addition 

of 10 µM CQ inhibits heme:HRP2-GST formation so that 13 µM heme is required to 

achieve an Abs = 0.40 value for the Soret band.  The relative inhibition afforded by the 

anti-HRP2 peptides can be assessed in a similar way.  All the anti-HRP2 PCC agents 

require similar or lesser amount of heme to achieve Abs = 0.40 except for L2-P1-L3, which 

requires 32 µM heme.   

Given the strong binding strength of L2 and L3 to their respective heme-binding 

(i.e.,  AHHAAD-containing) epitopes, we expected those ligands to exhibit potent 

inhibitory effects on heme:HRP2-GST complex formation.  In HRP2-GST, the 

AHHAHHAAD epitope is repeated 8 times whereas the analogous AHHAADAHHA motif 

is repeated 12 times (Figure 5-1).  The repetitions of these two epitopes are not additive as 

they are variants of one another, but we had anticipated L2 and L3 to be the strongest 

inhibitors given the frequency of these motifs.  Surprisingly, L1 is the strongest of the 

single peptide cycle inhibitors.  L1 performed similarly to CQ, despite targeting a singly 
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occurring epitope not implicated in heme binding (Figure 5-4A and Figure 5-S4).  However, 

L1 is the only peptide macrocycle which contains a histidine residue which may participate 

in coordination with the iron center in heme, similar to the histidine residues in HRP2.  L2 

and L3 are significantly weaker than CQ (Fig 3-4B, C and Figures 3-S5, 6), despite the 

preponderance of repeated epitopes against which they were developed.     

 

Figure 5-5.  Combinations of (A) 5 µM L1 + 5 µM L3 and (B) 5 µM L2 + 5 µM L3 inhibit 

with a strength similar to CQ.  (C) The most potent inhibition is afforded by addition of 10 

µM of the bivalent ligand, L2-P1-L3.  All assays were performed from 0 to 21 µM heme, 

10 µM total ligand, and 490 nM of HRP2-GST in 100 mM HEPES (pH 7.0) at ambient 

temperature.   

 

Figure 5-6.  Chemical structure of the bivalent ligand L2-P1-L3.  The two ligands, L2 

(green) and L3 (teal), are ligated by a polyethylene glycol to afford a semi-flexible 

molecule.  
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We also investigated whether a cocktail of ligands could enhance inhibition.  A 

mixture of L1 + L3 and L2 + L3 (each ligand supplied at 5 µM concentration) had about 

the same potency as 10 µM of CQ (Figure 5-5A, B).  The L2 + L3 cocktail is more effective 

than its individual constituents.  The improved potencies can be viewed as additive 

potencies through increased concentration of competitive peptides.  We explored whether 

we could introduce cooperativity in inhibition by tethering L2 and L3 with a 9-atom 

polyethylene glycol (PEG) linker, yielding the bivalent ligand L2-P1-L3 (Figure 5-6).  We 

reasoned that a PEG linker would allow the new ligand to span two spatially separated 

regions in the unstructured protein target without significant loss of overall conformational 

rigidity.  The heme binding assay was repeated with 10 µM of L2-P1-L3 (Figure 5-5C and 

Figure 5-S7) and the inhibition effect was more pronounced than any single ligand, cocktail, 

or CQ in the same dose, with a value of about 32 µM [Heme] at 50% saturation 

(extrapolated).  As 10 µM of L2-P1-L3 would be equivalent to 10 µM of L2 and L3 

individually, we also performed the heme:HRP2-GST assay with 5 µM of L2-P1-L3 

(Figure 5-7).  At 50% saturation, treatment of heme:HRP2-GST with 5 µM of L2-P1-L3 

would require 20 µM of heme to overcome inhibition.  A similar quantitative assessment 

of inhibition can be made by comparing DA415 at 10 µM of heme across all the assays.  

At this concentration, the 10 µM of ligand added is in equimolar competition with heme 

binding.  CQ performs similarly to L1 and inhibit 57% to 55% of heme:HRP2-GST relative 

to the control, respectively.  By this assessment, L2-P1-L3 shows an almost two-fold 

improved inhibition over CQ by inhibiting 80% of the heme:HRP2 complex.  At half 

concentration, 5 µM of L2-P1-L3 inhibits 65% of the heme:HRP2-GST complex and 

outperforms any single molecule or combination tested.  An additional assay of 
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heme:HRP2 inhibition was performed with a cocktail combination of 10 µM L2 + 10 µM 

L3, which is the equivalent of adding 10 µM of L2-P1-L3 (Figure 5-7).   

 

Figure 5-7.  Comparison of heme:HRP2 complex inhibition by cocktail combinations of 

L2 and L3 versus L2-P1-L3.  A combination of 10 µM of L2 and 10 µM of L3 exhibits 

similar potency to 5 µM of L2-P1-L3, indicating 2 equivalents of each individual ligand 

are required to approach the performance of the biligand.   

 

5.3.3  Heme Binding by Native HRP2 

The GST tag on HRP2-GST is expected to have some ability to sequester heme.  

We thus investigated the differences between heme binding by native, non-tagged HRP2 

(ITG) and HRP2-GST fusion tag.  The assays were repeated with HRP2 (ITG) at 1, 5, 7, 

and 21 µM of heme.  At lower heme concentrations, the amount of complex formed is 

comparable.  At higher heme concentrations, HRP2 (ITG) saturates before HRP2-GST 

(Figure 5-8).   
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Figure 5-8.  A comparison of heme binding capacities between 490 nM HRP2-GST and 

360 nM HRP2 (ITG) indicates similar sequestration at lower concentrations.  The assay 

was performed with 1, 7, 15, and 21 µM of heme.  (A)  HRP2-GST and HRP2 (ITG) exhibit 

the same heme binding capacity at 1 and 7 µM.  HRP2-GST exhibits greater heme and 

protein complex formation at higher heme concentrations.  (B)  Heme:HRP2 (ITG) was 

subjected to 5 µM of L2-P1-L3.  Inhibition is the most pronounced up to 15 µM of heme.  

At 7 µM of heme, treatment of the heme:HRP2 (ITG) complex with 10 µM of CQ (grey 

dashed line) demonstrates relatively weaker inhibitory potency.   

 

The heme:HRP2 (ITG) complex was subjected to 5 µM of L2-P1-L3 following the 

same protocol as the other microtiter plate assays (Figure 5-9).  We compare the 

performance of L2-P1-L3 to CQ at 7 µM heme, which represents the steepest part of the 

heme binding curve. At 7 µM of heme, 10 µM of CQ affords just 14% inhibition of 

heme:HRP2 (ITG). The addition of 5 µM of L2-P1-L3 induces 64% inhibition of 

heme:HRP2 (ITG) at 7 µM of heme.  The differences between inhibition of a heme:protein 

complex with and without the GST fusion tag are shown in Figure 5-9.  This data shows 
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that the potency of heme:protein complex inhibition by L2-P1-L3 is retained with HRP2 

(ITG).   

 
 
Figure 5-9.  Comparison of ∆A415 at 7 µM of heme, shows similar quantities of complex 

formation between HRP2-GST and HRP2 (ITG).  The addition of 5 µM L2-P1-L3 

compared to 10 µM of CQ demonstrates the relative superior inhibitory potency of the 

bivalent inhibitor.   

 

5.3.4  The Potency of a Bivalent Ligand 

The data of Figure 5-5 indicates that the L2-P1-L3 bivalent ligand is a significantly 

better inhibitor of heme:HRP2 binding than CQ.  The potency of 10 µM L2-P1-L3 is 

largely retained with 5 µM of the biligand until concentrations of heme exceed 15 µM 

(Figure 5-7).  L2-P1-L3 inhibits heme:HRP2 across all heme concentrations explored.  We 

explored whether this increased potency arose from cooperative binding.  We have shown 

that optimally linking two epitope targeted PCCs onto the surface of a structured protein 

can significantly enhance binding affinity.24,26  However, the random coil structure of 

HRP2, plus the repetitive heme binding epitope motifs within HRP2 does not lend itself 
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towards such a straightforward picture. We obtained EC50 curves using enzyme-linked 

immunosorbent assays (ELISAs) to compare the L2, L3,20a and L2-P1-L3 protein 

interactions (Figure 5-S8, Table 3-S1).  The L2-P1-L3 titration curve is interpretable as 

the sum of two curves, one reflecting an EC50 value (6.3 ± 1.7 nM) close to that of L1 (4.1 

± 1.0 nM) and the second reflecting an EC50 value (850 ± 270 pM) similar to L3 (540 ± 

130 pM).  This is not reflective of a traditional cooperative binder where the KD can 

approach the product of the affinities of the component binders.  Thus, it is likely that the 

increased potency of L2-P1-L3 arises from concentration effects, i.e., when one ligand is 

bound to HRP2, the local concentration of the second ligand is high.  However, it does not 

appear that both ligands bind simultaneously.  

 

Figure 5-10.  Circular dichroism spectra were obtained of the titration of HRP2 (ITG) at 
(a) 2 µM, (b) 3 µM, and (c) 4 µM with L2-P1-L3 in 20 mM sodium phosphate buffer, pH 
7.0.16 The spectra of HRP2 across concentrations is that of a random coil with a single, 
broad peak at 199 nm.  Titration of L2-P1-L3 slightly diminishes the intensity of this peak 
until saturation.   
 

We also queried whether L2-P1-L3 might influence the intrinsically disordered 

nature of HRP2.  Solution phase HRP2 exhibits a characteristic random coil structure via 

circular dichroism (CD) spectroscopy.14  Heme binding events by HRP2 might facilitate 

disulfide bridge formation between protein monomers, perhaps enforcing a secondary 
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helical structure onto the protein that increases heme concentration.16  We studied the 

interaction of L2-P1-L3 and HRP2 (ITG) using CD spectroscopy (Figure 5-10).  The CD 

spectra of 2 µM, 3 µM and 4 µM of native HRP2 indicate a random coil with a sharp peak 

at 199 nm and a broad, low absorption strength peak centered around 235 nm.  Titration of 

L2-P1-L3 into the native HRP2 solutions slightly, but consistently, diminishes the peak at 

199 nm.  However, it does not induce any secondary structural change that is detectable by 

CD.  Thus, although heme may induce and stabilize secondary structure in HRP2, L2-P1-

L3 may just stabilize the random coil structure.  We propose that L2-P1-L3 might create 

an enthalpic energy barrier to the heme-binding conformation of HRP2.  This is consistent 

with the observations reported in this paper, but challenging to quantitatively prove.     

Prior work with antimalarial molecules has shown that complexes between 

compounds and heme exhibit peak maxima distinct from the Soret band of heme:HRP2 at 

415 nm.27,28  Such is the case in CQ, where a distinct peak at 424 nm can be observed in 

the difference spectra of heme with and without the inhibitor (Figure 5-S19).  A trough is 

observed at 382 nm for heme:CQ, similar to that in the difference spectra of the 

heme:HRP2 complex.  We titrated the peptide ligands against heme in the absence of 

protein and found that similar optical features in their difference spectra could be observed, 

though with low extinction coefficients (Figures S11 - 15).  At low concentrations of heme 

(1 to 10 µM), the heme:ligand interaction is weak and manifests as a low absorbance 

strength, broadened band.  However, this peak grows more distinct at greater quantities of 

heme.  Interestingly, the most distinct band for a heme:ligand complex is observed with L1 

(Figures S11), indicating that specific heme:ligand interaction is likely the strongest.  Due 

to the presence of histidine in L1, this result is anticipated.  The imidazole of the histidine 
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likely participates in ligation with the iron center of heme, much like the imidazoles in 

HRP2.  Indicative of a similar interaction of L1 with heme to heme:HRP2 is the rise of the 

heme:L1 peak at 414 nm, whereas all the other ligands absorb at or beyond 420 nm.  The 

interaction of L2, L3, and L2-P1-L3 with heme may arise from the preponderance of 

tyrosine residues in these ligands, since these aromatic residues may contribute to non-

polar p-stacking interactions with the electron clouds in the porphyrin structure of heme.  

We compared the relative strength of heme, ligand, and CQ interactions at DA424 nm 

(Figure 5-S15 – S17).  From these data, we can estimate EC50 values in the few µM range, 

with L3 the strongest binder, and L2 the weakest.  Compared to the high apparent affinity 

of the peptide ligands for HRP2, which are low nanomolar to high picomolar, the 

heme:ligand interactions are relatively weaker. 

The heme and ligand data, in addition to affinity assays of the ligands, point to two 

modes of inhibitory action with the anti-HRP2 PCC agents.  First, the PCC agents can 

prevent binding of heme to HRP2 through directly targeting of AHHAAD-containing 

motifs.  The higher potency of L2-P1-L3 supports the notion that interaction with the target 

epitopes provides a mode of inhibition.  The additional weaker interactions of the peptide 

ligands with heme may also influence inhibitory potency.   

 

5.4  Conclusions   

The malaria parasite digests hemoglobin in infected erythrocytes as a source of 

nutrients, liberating toxic heme in the process. The most lethal P. falciparum species has 

evolved a means of protection by converting this molecule to the inert biomineral hemozoin 

through a mechanism in which HRP2 has been implicated.  Heme:HRP2 binding and heme 
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sequestration is promoted by repetitious heme-binding motifs within the protein, such as 

AHHAAD.  We explored a class of epitope-targeted peptide macrocycles, called PCCs, as 

inhibitors of heme-HRP2 binding.  The PCCs had been selected for binding to two closely 

related, genetically conserved heme-binding motifs, as well as a mostly genetically 

conserved, singly occurring epitope near the HRP2 N-terminus of the protein.  We explored 

several combinations of these PCCs for blocking heme:HRP2.  The combinations included 

individual ligands, cocktails of two PCCs, and a covalently linked PCC biligand.  Our 

findings indicate that it is possible to inhibit heme:HRP2 association by competitively 

binding to heme sequestration epitopes on HRP2.   

We find that heme:HRP2 complex formation is inhibited through both 

ligand:protein and, to a lesser extent, ligand:heme interactions.  The peptide macrocycle 

L1 targeted against the N-terminus of HRP2 was the most potent single PCC for blocking 

heme:HRP2, with an inhibitory performance similar to the antimalarial drug chloroquine.  

Although the N-terminal epitope is not an expected heme-binding region of HRP2, L1 

contains a histidine residue.  Recent work on heme-detoxification protein (HDP), which 

contains multiple dispersed histidine residues, has suggested the importance of this amino 

acid in coordinating with the iron center of heme to seed hemozoin production.29,30  The 

interaction of ligands with heme may provide a secondary mechanism for inhibition of 

HRP2:heme complexation.   

The most potent inhibitor, L2-P1-L3, was composed of PCCs developed for 

binding to the same HRP2 epitopes that are associated with heme sequestration.  The 

biligand outperformed CQ for blocking heme:HRP2 formation by more than two-fold 

(Figure 5-3, Table 3-1).  The evidence herein points to an additive binding effect of this 
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biligand on HRP2.  We propose also that stabilization of the random coil structure of HRP2 

by L2-P1-L3 binding may also prevent HRP2 from adopting the conformation necessary 

to sequester heme.  

The technology for engineering ligands that bind to predetermined, unstructured 

regions of target proteins is a generalizable strategy unique to our approach, and permitted 

this exploration of the molecular nature of heme-sequestration by HRP2.  Whilst the 

translation of such molecules into viable intracellular therapeutics would require 

engineering them for cell penetrance and bioavailability, we demonstrate a general proof-

of-concept for the use of epitope-targeted peptide macrocycles as inhibitors of function 

through disruption of protein and biomolecule interactions.    
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5.6  Appendix: Supplementary Information 

 
Figure 5-S1.  UV-Vis absorption spectra of heme binding assay with GST control.  

UV-Vis absorption spectra for 440 nM GST titrated with 0 to 16 µM heme.  (a) The spectra 

for heme + GST has a peak at 385 nm indicative of free heme.  (b) The difference spectra 

of {Heme + GST} – {Heme} shows no optical features to suggest significant GST binding 

to heme. 

 
Figure 5-S2.  Heme-Binding Assay with NYRWL.  The heme and HRP2-GST binding 

curve was constructed with 490 nM protein.  The heme and protein complex was treated 

with 10 µM of NYRWL.  Measurement of DA415 nm indicates no inhibitor potency of 

NYRWL against the formation of the heme:HRP2-GST complex. 
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Figure 5-S3.  Heme binding assay with CQ.  UV-Vis absorption spectra for (a) 0 to 21 

µM free heme with 10 µM CQ (inset), (b) 0 to 21 µM free heme with 10 µM CQ and 490 

nM HRP2-GST, and (c) {Heme + HRP2-GST + CQ} – {Heme + CQ} difference spectra 

for quantitation of the diminished heme:HRP2-GST peak at 415 nm.  The contribution of 

CQ to the blue region of the optical spectra is observed and does not contribute to the 

features of interest at 385/415 nm. 

 
Figure 5-S4.  Heme binding assay with L1 (cyRYKHY).  UV-Vis absorption spectra for 

(a) 0 to 21 µM free heme with 10 µM L1, (b) 0 to 21 µM free heme with 10 µM L1 and 

490 nM HRP2-GST, and (c) {Heme + HRP2-GST + L1} – {Heme + L1} difference spectra.  

The intensity of the 415 nm feature is diminished relative to the control assay without 

ligand.  Some interaction of L1 with heme may be inferred from (a) where the heme + L1 

spectra are broadened relative to the heme control. 
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Figure 5-S5.  Heme binding assay with L2 (cyYKYYR).  UV-Vis absorption spectra for 

(a) 0 to 21 µM free heme with 10 µM L2, (b) 0 to 21 µM free heme with 10 µM L2 and 

490 nM HRP2-GST, and (c) the difference spectra of {Heme + HRP2-GST + L2} – {Heme 

+ L2}.  The spectra of heme with L2 shows slight broadening and redshifting of the peak 

from 385 nm. 

 
Figure 5-S6.  Heme binding assay with L3 (cyY4FFYRV).  UV-Vis absorption spectra 

for (a) 0 to 21 µM free heme with 10 µM L3, (b) 0 to 21 µM free heme with 10 µM L3 

and 490 nM HRP2-GST, and (c) {Heme + HRP2-GST + L3}– {Heme + L3} difference 

spectra.  As with the other ligands, addition of L3 to free heme results in spectral 

broadening.  Relative to the other ligands, L3 is a weaker inhibitor of the heme:HRP2-GST 

complex. 
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Figure 5-S7.  Heme binding assay with L2-P1-L3.  UV-Vis absorption spectra for (a) 0 

to 21 µM free heme with 10 µM L2-P1-L3 added, (b) 0 to 21 µM free heme with 10 µM 

L2-P1-L3 and 490 nM HRP2-GST, and (c) {Heme + HRP2-GST + L2-P1-L3} – {Heme 

+ L2-P1-L3} difference.  The addition of HRP2-GST in the presence of L2-P1-L3 does 

not produce the prominent optical feature at 415 nm that is indicative of the heme:HRP2-

GST complex.  

 
Figure 5-S8.  EC50 binding curves for L1, L2, L3, and L2-P1-L3.  The EC50 values for 

peptides L1, L2, L3, and L2-P1-L3 were obtained via ELISA-type immunoassays using a 

biotinylated 5 unit polyethylene glycol (PEG5) as a background ligand. For these assays, 
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biotinylated PCC was immobilized on a high binding capacity NeutrAvidin plate 

(ThermoFischer) from a 200 nM solution. Recombinant HRP2 with a GST tag was titrated 

at the indicated concentrations, and surface-captured HRP2 was detected using a (1:2000 

dilution) anti-GST-HRP antibody (Abcam).  Background and non-specific binding of 

HRP2-GST was removed by subtraction of an identical protein titration with biotinylated 

PEG5.  (a)  L1 has an EC50 = 4.1+1.0 nM, fitted using Prism (one site specific binding with 

Hill constant = 1).  (b)  L2, while not quite saturated, has an EC50 = 218+44 nM (fitted in 

Igor to the Hill equation without constraints).  (c)  L3 fits to an EC50 = 540+130 pM (Prism, 

one site specific binding with Hill constant =1.1).  (d)  The L2-P1-L3 biligand exhibits the 

sum of two binding isotherms.  Below [HRP2] = 70 µM, the EC50 = 850+270 pM (Hill 

constant =1).  A fit over the full [HRP2] titration yields an EC50 = 6.3+1.7 nM (Hill constant 

=1). 

 
Figure 5-S9. UV-Vis Spectra of CQ interactions with heme.  (a) UV-Vis absorption 

spectra of 10 µM CQ with 21 µM heme and 490 nM HRP2-GST.  (b) The formation of 

complexes with heme can be observed in the difference spectra.  The optical feature at 415 

nm is diminished in the presence of CQ.  Heme and CQ form a complex that yields a broad 

peak at 424 nm and a trough at 382 nm by measuring {Heme + CQ} – {Heme}.  (c)  The 

heme:CQ complex grows with increasing concentrations of heme. 
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Figure 5-S10.  UV-Vis absorption spectra of L1 with heme.  (a) UV-Vis absorption 

spectra of 10 µM L1 with 21 µM heme and 490 nM HRP2-GST.  (b) Addition of L1 

significantly dampens the 415 nm peak for heme:HRP2-GST.  (c) The difference spectra 

between {Heme + L1} – {Heme}.   

 
Figure 5-S11.  UV-Vis absorption spectra of L2 Interaction with heme.  (a) UV-Vis 

absorption spectra of 10 µM L2 with 21 µM heme and 490 nM HRP2-GST.  (b)  The 

heme:HRP2-GST signal is attenuated in the presence of L2.  (c) The difference spectra 

between {Heme + L2} – {Heme}.  The broad, low absorbing peak that arises at higher 

heme concentrations is not attributed to formation of a complex with the ligand.  

 
Figure 5-S12.  UV-Vis absorption spectra of L3 Interaction with heme.  (a) UV-Vis 

absorption spectra of 10 µM L3 with 21 µM heme and 490 nM HRP2-GST.  (b) L3 
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diminishes heme:HRP2-GST, but not appreciably at 21 µM heme.   (c) The difference 

spectra between {Heme + L3} – {Heme}.  

 
Figure 5-S13. UV-Vis absorption spectra of L2-P1-L3 Interaction with Heme.  (a) UV-

Vis absorption spectra of 10 µM L2-P1-L3 with 21 µM heme and 490 nM HRP2-GST.  (b)  

The addition of 10 µM L2-P1-L3 shows the most pronounced inhibitory effect on 

formation of heme:HRP2-GST.  (c)  The difference spectra between {Heme + L2-P1-L3} 

– {Heme} does not indicate a significant interaction or complex formation between heme 

and the ligand. 
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Figure 5-S14. Absorption spectra of heme and ligands.  Absorption spectra obtained on 

a Cary 300 of (A) 1 to 10 µM heme, (B) 1 to 10 µM heme + 10 µM L1, (C) 1 to 10 µM 

heme + 10 µM L2, (D) 1 to 10 µM heme + 10 µM L3, and (E) 1 to 10 µM heme + 10 µM 

CQ.   
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Figure 5-S15.  Difference absorption spectra of heme and ligands.  Solutions of 10 µM 

of L1, L2, L3, and CQ were titrated individually with 0 to 10 µM of heme on a Cary 300 

spectrophotometer.  The difference absorption spectra are obtained by {Heme + Ligand} – 

{Heme} for (A) L1 (lmax = 414nm), (B) L2 (lmax = 421nm), (C) L3 (lmax = 420nm), and 

(D) CQ (lmax = 420nm).  All the ligands and CQ show at least weak interaction with heme.  

L1 shows the strongest interaction. The absorption data from a dual beam instrument is 

qualitatively the same as that obtained on a platereader (Figures 3-S9 to 3-S13).   
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Figure 5-S16.  Quantification of ligand interactions with heme. The signal at DA424 nm 

was used to compare all heme:ligand interactions.  The curves were fit in Prism (one site, 

specific binding with no constraints on the Hill constant).  The apparent strength of the 

interactions acoss this concentration range is calculated as follows L3 (EC50 = 1.9+1.0 µM, 

Hill constant = 1.89) > CQ (EC50 = 2.1+0.4 µM, Hill constant = 2.86) < L1 (EC50 = 3.0+0.5 

µM, Hill constant = 1.72) < L2 (EC50 = 3.6+0.4 µM, Hill constant = 3.65). 

 
Figure 5-S17.  HPLC chromatogram for L1 purification.  The UV-Vis chromatogram 

for the 280 nm channel from the second purification of L1.  L1 eluted at 15% acetonitrile 

in water.  All peaks were analyzed via MALDI-TOF MS and fractions containing L1 were 

retained and lyophilized in preparation for reconstitution.   
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Figure 5-S18.  MALDI-TOF mass spectrum of L1 (cyRYKHY).  Mass spectrum 

obtained for L1 after two purifications via reversed phase HPLC.  The prominent peaks 

are assigned as follows: L1 monomer 1015.609 [M+H]. 

 
Figure 5-S19.  HPLC chromatogram for L2 purification.  The UV-Vis chromatogram 

for the 280 nm channel from the second purification of L2.  L2 eluted in 17% acetonitrile 

in water.  All peaks were analyzed via MALDI-TOF MS and fractions containing L2 were 

retained and lyophilized in preparation for reconstitution. 
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Figure 5-S20.  MALDI-TOF mass spectrum of L2 (cyYKYYR).  Mass spectrum 

obtained for L2 after two rounds of purification via reversed-phase HPLC.  The prominent 

peaks are assigned as follows: L2 monomer 1040.984 [M+H], dimerization of L2 with 

aldehyde addition to the N-terminal amine 2080.909 [M+H]. 

 
Figure 5-S21.  HPLC chromatograms for L3 purification.  The UV-Vis chromatogram 

for the 280 nm channel from the second purification (inset) of L3 via semi-preparatory 

scale reversed phase.  L3 eluted at 25% acetonitrile in water.  All peaks were analyzed via 

MALDI-TOF MS and fractions containing L3 were retained.   
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Figure 5-S22.  MALDI-TOF mass spectrum of L3 (cyY4FFYRV).  Mass spectrum 

obtained for L3 after two purifications via reversed-phase HPLC.  The prominent peaks 

are assigned as follows: L3 monomer 1014.009 [M+H]. 

 
Figure 5-S23.  HPLC chromatogram for L2-P1-L3 purification.  The UV-Vis 

chromatograms for the 280 nm channel for the purification of L2-P1-L3 via preparatory 

scale reversed phase HPLC is shown.  L2-P1-L3 eluted at 40% acetonitrile in water.  All 
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peaks were analyzed via MALDI-TOF MS and fractions containing L2-P1-L3 were 

retained.  

 
Figure 5-S24.  MALDI-TOF mass spectrum for L2-P1-L3.  Mass spectrum for L2-P1-

L3 obtained after reversed-phase HPLC purification.  The prominent peak is 2151.327 

[M+H]. 

 
Figure 5-S25.  FPLC traces of HRP2-GST and GST.  HRP2-GST was analyzed by fast 

perfomance liquid chromatography (FPLC) at 50 µM.  A trace of GST is included for 

reference.  
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[HRP2] A1 A2 A3 
1.86E-07 0.1558* 0.1291* 0.2010* 
7.23E-08 0.1238 0.1090 0.0806 
2.81E-08 0.1040 0.0789 0.1067 
1.09E-08 0.0524 0.0465 0.0540 
4.25E-09 0.0446 0.0460 0.0457 
1.65E-09 0.0353 0.0281 0.0364 
6.43E-10 0.0203 0.0169 0.0133 
2.50E-10 0.0247 0.0128 0.0134 
9.73E-11 0.0175 0.0100 0.0029 
3.78E-11 0.0226 0.0075 0.0018 
1.47E-11 0.0116 0.0067 0.0152 

 

Table 3-S1.  Absorbance data (A450nm) for L2-P1-L3, EC50 Binding Curves.  

The absorbance values for the L2-P1-L3 binding assay are shown after background 

subtraction. The absorbance values were transformed to fraction bound for fitting of the 

EC50 value to fit the two visible isotherms in the binding assay data.  Data points excluded 

from the fits due to nonspecific binding at high [HRP2] are denoted by an asterisk (*).  

 

 

 

 


