
Engineering Molecular Self-

assembly and Reconfiguration in 

DNA Nanostructures 

 

Thesis by 

Philip Petersen 

 

In Partial Fulfillment of the Requirements for 

the degree of 

Doctor of Philosophy, Biology 

 

 

 

 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

Pasadena, California 

 

2018 

Defended on May 22, 2018



 ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2018 

Philip F. Petersen 

ORCID: 0000-0002-9912-389X 



 

 

iii 

ABSTRACT 

Smart electronics have developed ubiquitously to assist people in everything from 

navigation to health monitoring. The rise of complex electronics relied on rational design of 

platforms to build ever larger and more complex circuit networks and for frameworks to 

test those electronics. Biochemical circuits have also seen dramatic advancement in the last 

two decades within the field of DNA nanotechnology. As with electronics, DNA 

nanotechnology applied rational design to DNA molecules to build ever more complex 

biochemical networks that, beyond current electronics, also retain a significant measure of 

biological compatibility and plasticity akin to many networks of biological origin. Well 

situated for promising applications in diagnostics and therapeutics, advancing DNA 

nanotechnology devices will also rely upon larger platforms and testing frameworks. 

In roughly the last decade, researchers have been building upon the invention of DNA 

origami, a technique allowing the robust construction of biomolecular nano-structures 

capable of precise nanometer positioning of proteins, nanoparticles, and other molecules. 

DNA circuits have computed on the nanostructures; DNA robots have moved 

nanoparticles, made choices, and have even sorted cargo on the surface of a nanostructure. 

The complexity of circuits and devices continues to rise. 

In this thesis, we will discuss our contributions to the field of DNA nanotechnology by 

developing design rules and systematic approaches to controlling nanostructure complex 

assembly. These rules and approaches allow for the construction of molecular structures 

with a tunable diversity, large systems approaching the size of bacteria yet retaining 

nanometer precision, and biological plasticity inspired dynamic systems for arbitrary 

reconfiguration.  

Using a DNA origami tile tailored for array formation with a high continuous surface area, 

we create a framework inspired from molecular stochasticity for programming DNA array 

formation and gaining control over diversity of global properties through simple local rules. 

Three general forms of planar networks, random loops, mazes, and trees, were manipulated 
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on the micron scale upon the self-assembled DNA arrays. We demonstrate control of 

several properties of the networks, such as branching rules, growth directions, the 

proximity between adjacent networks, and size distributions. The large diversity, in 

principle, allows for a wide, but tunable, testing environment for molecular circuits. By 

further applying these principles to subunits of finite assemblies, variable components may 

be mixed with fixed components potentially opening additional applications in high 

throughput device or drug screening. 

Next we turned to expanding the platform size biochemical circuits may be built upon. 

While DNA origami allows nanometer precise placement, the size remains roughly below 

0.05 um^2. Toward making large arbitrarily complex structures with only a set of simple 

tiles, multi-stage self-assembly has been explored in theory and for small DNA tiles. None 

were successful experimentally with DNA origami. We developed a strategy for DNA 

origami: a simple rule set applied recursively in each stage of a hierarchical self-assembly 

process, and to significantly reduce costs, a constant set of unique DNA strands regardless 

of size. We also developed a software tool to automatically compile a designed surface 

pattern into experimental protocols. We experimentally demonstrated DNA origami arrays 

approaching the size of small bacteria, 0.5 um2, with several arbitrary patterns, each 

consisting of 8,704 specifically chosen pixel locations with nanometer precision, including 

a bacteria sized portrait of a bacteria. The large platform opens the door to more advanced 

molecular circuits for applications such as diagnostics. 

Finally we demonstrated control over the dynamics of DNA origami reconfiguration in tile 

arrays. In an approach we call DNA tile displacement, we showed that a DNA origami 

array may have tiles arbitrarily replaced by another tile, including tiles of another shape or 

surface pattern. We also demonstrated control over the kinetics of tile displacement and 

performed several general purpose reconfigurations of DNA nanostructures. Examples 

include sequential reconfiguration, competitive reconfiguration, cooperative 

reconfiguration, and finally the scalability of multi-step reconfiguration as demonstrated 

through a fully playable nano-scale biomolecular tic-tac-toe game. The major ramifications 
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are a plasticity more common to biology than to electronics—molecular platforms with 

arbitrary patterning that can reconfigure an arbitrary part of the nanostructure in an 

arbitrary order based on environmental signals. In principle, such reconfiguration can allow 

advanced circuits with the capacity to adapt to environmental needs or heal damaged 

components. 
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C h a p t e r  1  

INTRODUCTION 

As you read this sentence, a vast network of cells in your head are working together to 

process the incoming information. However, the stunning complexity of cells 

contemplating their own complexity is no less rivaled by the impressive diversity of tasks 

cells perform elsewhere in a human body. Cells cooperate to build the bone scaffolding 

supporting posture, the push and pull of separate muscles in sync to move a limb, and even 

to hunt down foreign invader cells in an immune defense. Each individual cell may have 

vastly different morphological shapes and surface expression of biomolecular components. 

The list goes on and on. Scientists have worked to understand the complexities of a single 

cell, asking questions such as how it responds to external environmental cues, how it 

adapts, how it communicates, and how it replicates. An early step in the field of genetics 

starts with Gregor Mendel [1] in the mid-1800s raising pea plants and noting the heredity 

of traits. The hereditary information controlling the vast diversity of traits, as we now 

know, is from deoxyribonucleic acid (DNA), the central information of life.  

It would take until 1953 for the core model of DNA to be created [2] based on available x-

ray pattern data of DNA. DNA was a double helix, formed of the chemical bases Thymine 

(T), Adenine (A), Guanine (G), and Cytosine (C). While DNA can take other 

conformations, this model well represents most DNA in biological cells [3]. The base A 

binds to T and the base G binds to C. The specificity of the bindings is due to the A-T 

connection forming two hydrogen bonds and the G-C connection forming three hydrogen 

bonds. The stability of the helix is derived from the stacking interactions between the base 

pairs. The double helix is approximately 2 nm wide and each base pair is 0.34 nm long. 

There are roughly 10.5 base pairs per turn of the DNA helix. Hence each base pair rotates 

approximately 360/10.5 degrees with each additional base pair along the length of the 

double helix. The great structural consistency DNA possesses over other nanomaterials 
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would lend itself well to nanostructure design forming the field of structural DNA 

nanotechnology. 

Many industries have formed around understanding and controlling DNA. Some seek to 

develop food crops with new resistances or higher yield, while others analyze a person's 

genome to find genetic markers of disease. In the last two decades, the emergent field of 

DNA nanotechnology has taken advantage of DNA molecules to form structural systems 

[4] and process complex computational functions [5]. Supporting the rise of all these areas 

of research, there have been technological advancements in DNA synthesis, manipulation, 

and visualization. The cost of DNA synthesis has decreased several orders of magnitude 

since the field of DNA nanotechnology started, even allowing for entire gene synthesis [6]. 

Also, DNA has proved to be a highly compatible material, having been conjugated to a 

wide range of molecules such as proteins [7], nanoparticles [8,9], or polymers [10]. In 

terms of visualization, technologies in super resolution microscopy such as DNA PAINT 

[11] can visualize short individual binding events of DNA strands. Moreover, resolution 

down to the major and minor groove of DNA has been obtained with atomic force 

microscopy (AFM) [12]. High-speed AFM may even allow visualization of dynamic 

molecular events [13]. The supporting technology invites the development of ever more 

complex DNA structures and devices. 

In this thesis, we will discuss our contributions to the field of DNA nanotechnology by 

programming design rules and demonstrating systematic approaches to controlling 

nanostructure complex assembly. These rules and approaches allow for the construction of 

molecular structures with a tunable diversity, large systems approaching the size of bacteria 

yet retaining nanometer precision, and biological plasticity inspired dynamic systems for 

arbitrary reconfiguration. 

1.1   Overview of DNA nanotechnology 

DNA nanotechnology mostly takes advantage of DNA’s information carrying capacity and 

structure, using DNA for the purposes of nanotechnology rather than as genetic encoding in 
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cells. This section gives a rough overview of select advancements in the field focusing 

mostly on structural DNA nanotechnology. 

As noted previously, DNA’s base pairing rules control how two strands of DNA will bind 

together to form a well characterized double helix. Beyond base pairing, there has been 

much investigation into the structural properties [14] and thermodynamic properties [15] of 

DNA. With artificial DNA synthesis, there is room for rational design of base sequences 

allowing for the formation of specific target DNA complexes. For example, work by Len 

Adleman [16] demonstrated rationally designed DNA for computation.  By harnessing 

combinatorial connections of designed DNA molecules, it became possible to compute the 

solution to a seven-node Hamiltonian path problem. Unique single strands of DNA 

representing nodes and paths between nodes were mixed together in massive parallelism. 

Double strand connections between the strands formed combinatorial pathway solutions. 

While this work was impractical to scale up, it demonstrated the application of 

combinatorial diversity to DNA strand connections for molecular information processing, 

and inspired our own exploration of combinatorial diversity in surface patterning (see 

Chapter 2).  

When it comes to forming structures from DNA, Ned Seeman pioneered several early 

successes. While DNA in nature is mostly double strand unbranched helices, through DNA 

synthesis, non-natural branched structures could be formed; see Figure 1.1(a). Through 

sequence design of every DNA strand in a system, even 3-dimensional structures may be 

formed such as a cube [4]. Others looked at scaling up DNA systems through the formation 

of arrays from small DNA tiles. Winfree et al. formed small tiles from DNA with short 

single-strand DNA ‘sticky ends’ programmed to allow the tiles to come together in large 

periodic arrays [17], see Figure 1.1(b). Early repeating periodic arrays would lead to more 

complex algorithmic assembly (see Figure 1.1(c)) opening up the formation of complex 

computing arrays implementing general frameworks such as cellular automata [18] or 

specific functions such as binary counting [19]. 
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Figure 1.1: DNA nanostructures. a, DNA designed to form a cube shaped nanostructure [4]. b, DNA 
designed to form a small DNA tile with short single-strand sticky ends. The sticky ends interact to allow 
periodic array formation [17]. c, small DNA tiles with complex sticky ends designed for algorithmic assembly 

of an array forming Sierpinski gasket fractals [18]. 

A major step forward in DNA structures took place in 2006. Paul Rothemund invented a 

new technology which he called DNA origami as it involved folding a long single-stranded 

DNA into arbitrary shapes [20]. The long single strand was a single-stranded DNA genome 

of a virus measuring over 7 kilobases long, and, in the context of DNA origami, it is known 

as scaffold DNA. After routing the scaffold DNA into the desired folding pathway of the 

target shape, hundreds of shorter synthetic single-strand DNA segments are introduced 

designed to hold the scaffold DNA in the target conformation, see Figure 1.2(a). The 

technique of making DNA origami has been so successful and accessible that several 

groups have formed their own customized structures from scratch [21, 22]. Thinking 

outside the box, the researchers in Andersen et al. formed their DNA origami into the shape 

of a box capable of being opened with DNA strand ‘keys’ [23]. Other researchers with 

biomedical applications in mind used DNA origami to create a DNA device that can open 

and close in response to target antigens on a cell surface [24]; see Figure 1.2(b). This 

device was used to deliver antibody fragments to a natural killer leukemia cell line isolated 

from a patient with aggressive NK leukemia. 
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Figure 1.2. DNA origami nanostructures. a, Iconic Smiley DNA origami from Paul Rothemund’s publication 
of DNA origami. On the left is an example routing path of the long single-strand scaffold strand in black with 
several colorful short DNA strands providing support [20]. b, A DNA origami designed to deliver antibody 
fragments to a leukemia cell line. The device can open and close in response to antigens on a cell surface [24]. 

1.2   DNA origami as a breadboard 

The structural precision of DNA origami coupled with DNA’s compatibility with a wide 

range of other molecules has been the basis of several molecular devices. This section 

explores some of the small devices made on DNA origami, and the challenges of scaling up 

the size of 2D DNA nanostructures to allow greater device complexity. 

Similar to how a breadboard is useful in electronics for organizing electronic components 

on a flat surface, DNA origami can readily provide a flat 2D surface with nanometer 

precision. Researchers have made good use of the limited space on a single DNA origami 

to organize all sorts of molecular materials such as proteins [7], nanoparticles[8, 9], or 

polymers[10]. From those components, a wide range of molecular devices can be formed 

on DNA origami. In an example of bottom-up fabrication, rather than the top-down 

approach of electronics, Maune et al. [25] formed a molecular electronic device by 

arranging two carbon nanotubes on DNA origami to form a transistor. While only a single 

transistor per DNA origami was fabricated, many transistors were formed in parallel, 

potentially allowing for construction of complex molecular electronics in a massively 

parallel fashion should a large enough platform be available.  
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Other researchers have explored the area of autonomous molecular machines. Fine 

nanomechanical systems were explored by Hariadi et al. through their investigation of 

protein-protein interactions [26]. With the capacity to tether muscle’s myosin proteins on 

DNA origami at specific locations, the mechanics of individual protein contributions to 

collective motion could be investigated. An enzymatic cascade was made by Ke et al., 

exploiting DNA origami’s spatial organization for directional regulation of an enzyme 

pathway [27]. Researchers have also developed and programmed molecular robots. 

Molecular robots have developed from just taking several steps on an origami surface to 

moving materials such as nanoparticles [28]. Robots may also be programmed to perform 

complex tasks such as sorting cargo species to designated locations [29]. 

 

Figure 1.3. Molecular devices built on DNA origami. [25-28]. 

Naturally, devices could be larger and more complex if there was a larger platform. As with 

small DNA structures, there is interest in scaling up DNA origami. Some researchers took 

the direct approach. If DNA origami was limited by the length of the scaffold DNA strand, 

then finding a longer single-stranded DNA strand to act as a new scaffold would make 

larger DNA origamis. Marchi et al. successfully applied this method to fold DNA origamis 

several fold larger than the first origamis [30]; however, there has been trouble scaling 

further with this approach, and the cost of synthetic DNA strands, now numbering in the 
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thousands to fully connect the larger structure, starts becoming inhibiting. Accordingly, 

the approach of forming arrays of DNA origami tiles was also explored. Seeman et al. [21] 

created a DNA origami designed to form arrays, see Figure 1.4. Under specific temperature 

conditions, it was demonstrated this origami could form periodic arrays of several microns; 

although, there some drawbacks existed. To maximize locations functional molecules can 

be attached at, it is favorable to design the origami to have all its staple extension points on 

the same side of the origami; however, this design required two tiles flipped relative to each 

other which would put components  on opposite sides of the array. A breadboard works 

best when all components are on the same side of the board able to interact with one 

another. Also, the tiles used for the large array where a tight plus shape, see Figure 1.4, and 

thus had limited continuous surface area coverage due to the open corners even in a 

perfectly formed array. As of this writing, there has been no algorithmic techniques to 

DNA origami assembly. 

While a large periodic array does provide a large surface to build on, each tile in the array 

loses its unique addressability. Other researcher groups have tried various methods to form 

finite arrays of tiles where every tile may be uniquely addressed. Woo et al. first made 

finite arrays with stacking bonds and shape complementary of edges [31]. Rajendran et al. 

then made nine unique origami tiles in the form of jigsaw pieces [32], see Figure 1.4. Each 

DNA origami tile piece fit at a particular spot in a three by three finite array. Zhao et al. 

instead tried organizing separate DNA origami tiles with a scaffold strand [33]. These 

approaches, while not much different in size compared to the large DNA origami by 

Marchi et al., did have the additional benefit that a portion of DNA strands were reused. 

Without as many unique strands, upfront costs for synthetic DNA manufacturing, while 

still scaling with increased platform size, scaled less extensively as simply forming a single 

massive DNA origami. Still, the size of finite 2D DNA origami nanostructures was limited. 

It is worth noting that if the size of a finite array is made large enough, it may be able to 

integrate with low-cost top-down approaches such as photolithography for scalable device 

construction. 
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Figure 1.4. Scaling up DNA origami. a, periodic array of DNA origami tiles. b, three by three array of DNA 
origami tiles. 

1.3   Reconfiguration in DNA nanostructures 

Reconfiguration of an existing structure allows for efficient use of resources and also 

adaptation to environmental stimuli. This section explores the extent of research into DNA 

nanostructure reconfiguration.  

Cells, the quintessential natural molecular machines, undergo significant structural 

reconfiguration. Immune cells will undergo shape reconfiguration as they chase an invader, 

pushing and pulling on their membranes [34]. Most other cells will at least undergo pattern 

reconfiguration by switching their surface receptors as the cells mature or face an 

environmental stress [35]. Not only are these adaptations efficient for life, this plasticity 

allows for responsive changes to external stimuli. Still, structural reconfiguration has yet to 

be thoroughly explored in artificial molecular machines. There have been some dynamic 

DNA structures. Han et al. [36] formed a DNA Mobius strip able to take a thick and thin 

conformation. Gerling et al. [37] made a DNA robot-like figure with two hinged arms able 

to take an open or closed position. Song et al. [38] made a “domino” nanoarray able to pass 
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an input deformation throughout an array. Others have made openable boxes [23] or drug 

delivery vehicles [24] that open with the right target. Ultimately, all these systems perform 

a specific task and lack a generalizable module for arbitrary reconfiguration. 

 

Figure 1.5. Dynamic DNA structures. a, a DNA Mobius strip [36]. b, a DNA robot-like figure [37]. c, a 
"domino" nanoarray [38]. 

Stepping away from DNA origami and tile arrays, an important driving force in dynamic 

DNA nanotechnology has been the capacity to build computational systems. Many of these 

circuits rely on the ability to tune reaction rates as variable rates allow functions such as 

analog to digital conversion or thresholds [39]. In essence, small DNA strands can be 

controlled to interact with one another at rates tunable over several orders of magnitude 

[40]. Similarly, in programming the pathways of structural reconfiguration, the ability to 

tune reaction rates would allow for more sophisticated functions such as those that exploit 

competition. Cells take advantage of competing membrane modifying pathways for their 

own structural reconfiguration such as when guiding the growth cone of a developing 

neuron's axon [41]. However, in artificial nanostructures, there has been no such control 

developed for DNA origami interactions. 
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1.4 Summary of the thesis 

This section presents our main contributions to the field of DNA nanotechnology though 

unique solutions to the above challenges. 

Chapter 2 of this thesis introduces the development of a new DNA origami tile designed 

specifically to work as an optimized 2D breadboard for larger complex nano-devices and 

machines. We designed an entirely flat, one-helix thick tile tailored to array formation with 

a single, non-flipping tile. With interest in the tile forming a breadboard for future devices, 

we optimized the tile for a high continuous surface area to allow the greatest flexibility in 

future device designs.  

Chapter 3 of this thesis shows the implementation of combinatorial approaches to 2D 

systems of molecules to allow controlled diversity in network formation. Combinatorial 

approaches in synthesizing one-dimensional polymer chains have revolutionized chemical 

synthesis and the selection of functional nucleic acids. We expand these principles to 

random two-dimensional networks to open new opportunities for fabricating more complex 

molecular devices on DNA nanostructures. In order to scale up the complexity and 

diversity of molecular structures and devices, one can control the inherent stochasticity 

within molecular systems. First, we developed a framework for programming DNA tilings 

through simple, local rules to obtain control of global patterns. Applying the rules 

experimentally, we constructed several forms of planar networks on micron-scale self-

assembled DNA origami arrays and controlled properties such as growth, network 

proximity, and size distributions. Furthermore, we demonstrated controlled stochastic self-

assembly allowing for combinatorial diversity in subsets of an entire system, potentially 

useful for applications such as parallel drug screening or parallel testing of molecular 

robots against diverse operating environments. 

Chapter 4 of this thesis demonstrates our robust hierarchical strategy to break the two-

dimensional size limitations of DNA origami, and its application to forming micron-scale 

uniquely-addressable DNA origami arrays. The arrays formed reach the scale of a small 
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bacteria yet maintain unique addressability. Furthermore, the upfront cost of 

manufacturing the arrays is fixed regardless of scale, as the strategy employs a constant 

number of unique structural DNA strands. These arrays may be used for complex 

organization of diverse molecules and device fabricating with nanometer precision of 

components over the entire micron scale of the array. Opportunities arise for larger and 

more sophisticated molecular machines such as DNA robots or DNA circuits. 

Fundamentally, the simple recursively applied hierarchical strategy may be more widely 

used to build complex molecular systems with a constant number of simple components 

not limited to a specific design. 

Chapter 5 of this thesis presents a general purpose approach to reconfiguration in DNA 

nanostructures. Reconfiguration provides efficiency and responsiveness to environmental 

stimuli. In principle, a reconfiguring device can be modified to a new task, adapt to external 

cues, or even heal damaged components. We present a general approach called tile 

displacement, allowing the reconfiguration of DNA nanostructures with arbitrary patterns 

to reconfigure arbitrary parts of the structure in an arbitrary order. Shapes reconfiguration 

may also be applied. We further demonstrated control over the kinetics of tile displacement 

and developed several building blocks for general-purpose reconfigurations of DNA 

nanostructures. Examples include sequential reconfiguration, competitive reconfiguration, 

and cooperative reconfiguration. Finally, we explored the scalability of multi-step 

reconfiguration as demonstrated through a fully playable nano-scale biomolecular tic-tac-

toe game, demonstrating a piece by piece arbitrary interchange of a nanostructure’s 

subunits even to the point none of the original species on the nanostructure game board 

remained. The plasticity may be more common to biology than to engineering, yet the 

strategy for autonomous reconfiguration in self-assembled DNA nanostructures is now 

allowing adaptive behaviors in artificial molecular machines. 
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C h a p t e r  2  

A DNA ORIGAMI TILE 

Since its conception, the technique of forming DNA origami [1] has been applied to form a 

myriad set of nano-scale structures. Here, we design a new DNA origami tile tailored to 

forming arrays with extensive continuous surface area for displaying patterns. 

Ever since the first unnatural DNA nanostructures [2], there has been interest in forming 

arrays. Using small DNA tiles composed of up to just a few DNA strands, researchers have 

formed finite arrays [3], periodic arrays [4], and even created complex global patterns 

through the use of algorithmic arrays [5-7]. However, the development of DNA origami 

has brought an advantageous new tool with its own benefits. An origami tile can be 

composed of hundreds of unique strands leading to a considerably larger size. Researchers 

have made good use of the space to organize a wide range of molecules such as proteins 

[8], nanoparticles [9, 10],  or polymers[11]. This high spatial precision of molecular 

placement holds promise for molecular devices; however, to form and manipulate large 

complex molecular networks, larger sizes and greater control of tile interactions is 

necessary.  

As a larger structure, the edges of origami tiles can also be larger, allowing for more 

programmable interactions through multiple sticky ends and geometry. These new 

parameters creates new challenges and benefits for array formation. Woo et al.[12] 

explored several origami tile edge design parameters and their effect on tile interactions. 

They used blunt end helix stacking along with relaxed edges to bring tiles together. 

However, one of the most successful 2D array designs by Liu et al.[13] took into account 

several new design considerations. Their origami had two bundles of perpendicular helices 

forming a plus like shape. While making the origami two helices thick around the tile 

center, this design created symmetry at its edges with all edge helices parallel with the edge 
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helices of neighboring tiles. Also, to remove the natural curvature within their tile, a 

corrugation strategy was implemented where tiles were flipped alternatively in the array.  

While the prior origami tile designs were able to form various arrays, it is desirable to have 

a flat, one-helix thick tile capable of forming arrays without flipped tiles and designed for a 

high continuous surface area. Such a large, flat surface would function optimally as a 

breadboard for future devices. We designed such a DNA origami tile that would serve as 

our platform for engineering array formation and tile-tile dynamics. 

2.1 Design considerations for a scaffold path 

DNA origami can be formed into a wide range of structures depending on the designed 

routing of the viral M13 single -stranded DNA known as the scaffold path. This section 

covers the intended properties of the tile including the capacity to rotate in an array 

location, simplicity of design, direction of helices at the tile's edges, and the amount of 

continuous surface area. The pros and cons of multiple potential designs meeting those 

properties are considered. 

One core interest for our DNA origami tile is the ability for a single tile to be able to form 

large arrays including unbounded array growth and finite arrays. On these arrays, we would 

be able to implement a useful tool to meet a research aim: Truchet tiling [14, 15] (see 

Chapter III). For Truchet tiling, each Truchet tile in the array has a rotationally asymmetric 

pattern that connects to the pattern on its neighboring tiles. The pattern connection allows 

for controllable large complex global patterns with the right parameters, including each 

tile's individual rotation in the array (see Chapter III for in depth details and 

implementation).  As rotation is important in the implementation of Truchet tiles, it is 

desirable for each tile to be able to take several rotated conformations within the array 

plane at each tile location. Many shapes such as a rectangle, with only two possible 

rotations in an array, would place limits on the maximum possible rotations. Accordingly, 

the DNA origami tile should be symmetric on all sides when rotated in a location of the 

array. Avoiding great complexity in tile shape, a few simple space-filling shapes were 
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considered such as a triangle, square, and hexagon (Figure 2.1). The square has a 

comfortable four possible symmetric rotations, better than a triangle with only three. While 

the hexagon has more possible rotations, in a finite array, the square tile allows the 

formation of smoother outer edges. Furthermore, square tiles in any array form a standard 

grid pattern with locations that can be represented with integer (x,y) markers for ease of 

display, use, calculations, and eventual simulation of systems. For all these reasons, for our 

main DNA origami tile, we chose to form a symmetric square tile. 

 

Figure 2.1: Space-filling regular polygon shapes. a, A triangle tile and triangles in a mini array. b, square tile. 
c, hexagon tile. 

Next, we desire the edges of the square tile to be able to interact with other tiles through the 

use of weak stacking bonds [12] or short sticky ends (see section 2.3 for edge staple design 

specifics). Weak interactions between tiles helps reduce kinetics traps during self-assembly, 

as tiles can disassociate from each other and rearrange themselves into thermodynamically 

more favorite configurations. A stacking bond requires the blunt ends of DNA double 

helices to interact; accordingly, DNA helices along an edge of the square tile must be all 

perpendicular to that edge, see Figure 2.2.  

Finally, for the use of the tile as a platform, there must be the ability to freely draw 

arbitrary patterns upon the surface of the tiles. Pattern pixel locations may be the 5' or 3' 
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end of staple strands in the DNA origami and are commonly used as attachment sites for 

proteins, nanoparticles, or other molecules. In order for our tiles to be the potential platform 

of a wide range of future devices, we desire a flat tile design that maximizes the amount of 

continuous surface area available on the origami surface, thus avoiding unusable pixel 

locations. As part of an array forming the global pattern, each tile should be flat and rigid, 

not only for potential devices built upon the tiles, but also flat structures are useful in 

encouraging two-dimensional growth for the array formation. With these design criteria in 

mind, we considered three different scaffold paths; see Figure 2.2: 

 

Figure 2.2: Scaffold paths for a square DNA origami tile. a, scaffold path fills each of the four triangles 
within the tile with internal crossovers at the end of each helix row. b, scaffold path fills each square corner 
quadrants within the tile. c, scaffold path fills each of the four triangles within the tile with scaffold loops 
connecting helices within the interior of the tile. 

Each of the three designs in Figure 2.2 have their own pros and cons. The first design of the 

scaffold path considered (Fig. 2.2(a)) routes a path around the square filling each of the 

four isosceles right triangles within the square sequentially. The tips of each helix row ends 

with a scaffold crossover. Crossovers are a direct connection between bases on two 

adjacent DNA double helices. Because DNA is a helix, the common locations where 

crossovers can geometrically occur from one side of an helix to the other is at integer 

number of turns plus half a turn of the helix. Accordingly, each internal crossover is an 

integer plus a half turn away from the exterior edge crossovers. Since the crossover 

locations are constrained to plus or minus an entire helix turn (10 to 11 base pairs), the 

interior crossovers tend to leave small holes near the diagonals. If the helices were given an 
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extra turn to fill those holes, they would then overlap with each other, violating the flat 

and rigid design criteria. The small holes themselves may cause a lack of rigidity as well, 

besides also adding to the discontinuous surface area. 

The next design (Fig. 2.2(b)) routes a path filling each of the four square shaped corner 

quadrants sequentially. This design no longer has the small holes in the center as the 

scaffold does not make any interior crossovers. However, a disadvantage is the need for 

large scaffold loops connecting the scaffold to adjacent corners of the square. Such large 

loops may interfere with tile-tile interactions and create a bias. Another disadvantage is the 

broken symmetry of the edge helices. While the number of helices may be the same, the 

number of crossover helix pairs varies which could possibly result in unforeseen 

complications between edges.  

Finally, the last and chosen design (Fig. 2.2(c)) routes a path filling each of the four 

isosceles right triangles within the square sequentially like the first design. The difference 

in this design is that there are no interior scaffold crossovers. Instead, each interior part of a 

helix reaches the diagonal and connects to its neighboring helix via a scaffold loop—a 

calculated number of unpaired nucleotides loosely tethering the two ends together. This 

design has the advantages of a fully symmetric design with fairly minimal exposed loops of 

scaffold. It also maximizes the continuous surface area of the tile. Accordingly, we proceed 

with this design. 

2.2 Calculating single-stranded domains and creating stable seams 

Single-stranded scaffold loops connect helices along the scaffold path in the interior of the 

tile. Also, the square tile's diagonals are seams between four isosceles right triangles held 

together by staple bridges. This section covers the calculations in forming scaffold loops, 

staple bridges across the seams, and staple design considerations to maintain the square's 

integrity. See [16 (Supp. S2.2)] for a mathematical workflow. 
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The single stranded domains of scaffold loops and staple bridges (see Figure 2.3) must 

be carefully calculated. If the lengths are inaccurate, it could cause budges, strain, or 

alternatively, a lack of rigidity. Small variations in the strain or twist in a tile can have a 

deleterious effect on that tile's array formation capacity. In order to properly determine a 

length we programmed three-dimensional models containing coordinates for every base in 

every helix within the origami. The length of each base pair in a double helix is set to 0.34 

nm and the height of a double helix is set to 2 nm. One base pair is skipped between 

crossovers in every 48 base pairs to result in an average 10.44 base pairs per helix turn. 

Adjacent bases thus rotate around the helix at a rate of 360 degrees per 10.44 base pairs. A 

150 degree split is assumed from the helix center to the staple and scaffold bases forming 

the helix. The separation between the four triangles, the width of the seam, was set at 1 nm. 

It is a distance that is not too close to cause any overlap of base pairs but still keeps the 

seam tight. 1nm is also the assumed average separation between neighboring helices within 

the interior of the origami structure. The number of nucleotides needed in a single stranded 

domain could then be calculated from the Euclidean distances between the start and end 

bases for the scaffold loops and staple bridges. Each unpaired nucleotide is assumed to be 

0.4 nm in a relaxed state. When looking down the length of the seam in the plane of the 

origami, the staple bridges are staggered. For example, some staple bridges connect from 

the top side of the origami on one triangle to the bottom side of the origami on the 

neighboring triangle. The neighboring staple bridge may instead connect from the bottom 

to the top and so forth along the length of the seam. This staggered set of connections is 

expected to balance out  any strain in the staple bridges. 
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Figure 2.3: Mini version of the DNA origami with staple bridge and scaffold loop zoom-ins. Orange 
represents bridge staples. Black represents scaffold M13. In the mini-origami, the staple bridges connecting 
neighboring triangles across the seams are dotted orange lines and scaffold loops connecting the interior 
scaffold between neighboring helices are represented by dotted black lines. Blue represents edge staples—
controlling tile-tile interactions (see section 2.3). Green represents internal staples providing pixel locations (see 
section 2.4). 

Applying the model, the number of nucleotides needed in the single stranded domain for 

each staple bridge from the origami exterior inward was calculated as follows: 7, 5, 4, 7, 6, 

4, 7, 3, 5, and 8 nucleotides. Some helices are quite close requiring only 3 nts or around 1.2 

nm to bridge the gap, others require more at 8 nts or around 3.2 nm. These numbers are for 

one seam only, but since the origami has symmetry, the same numbers apply to all seams. 

The scaffold loops in a single triangle looking down on the origami and going counter-

clockwise were calculated as follows: 11, 8, 13, 10, 8, 8, 10, 13, 8, and 11 nucleotides. 

Each triangle consists of 22 double helices, but note there are only 10 staple bridges in a 

seam where one would expect 11 connections. This is because the outermost bridge across 
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the seam is not a staple but rather a scaffold forming a scaffold bridge, see Figure 2.3. 

The length of the scaffold bridge is calculated at 8 nts; however, the scaffold bridge lengths 

actually used are 10, 10, 10, and 11 nts for the four seams. The slightly larger values are 

needed as the full length of the M13 scaffold at 7,249 nts must have a location in the 

design. Extra nucleotides from the M13 scaffold not used in the main origami structure are 

stored roughly evenly in the four outer scaffold bridges with the assumption that the staple 

bridges already provide enough rigidity to compensate for flexible scaffold bridges. 

Even with a carefully calculated seam length, the staple bridges have the challenging task 

of connecting distant portions of the M13 scaffold with a single stranded domain. With so 

many single stranded domains along the seams, both the staple bridges and the scaffold 

loops, there is concern that the domains may get tangled or otherwise kinetically trapped 

during formation harming the flatness of the tile. To investigate the potential issue, we 

made two designs of staple bridges called "strong-weak" and "strong-strong" as show in 

Figure 2.4. The strong-weak design, should the bridges have trouble connecting, allow the 

seams to breath open slightly and reconnect to release any formed tangles. The cost is a 

weaker seam. The strong-strong design has sufficiently long domains on both adjacent 

triangles to form a stable connection. 

 

Figure 2.4: Two Cadnano designs of staple bridges. a, "strong-weak" design. Domains on one side of the 
seam are much longer than on the other side of the seam. The orange circle shows one longer, and thus 
stronger, domain on the lower triangle. The blue circle shows that staple bridge's shorter, and thus weaker, 
domain across the seam on the upper triangle. b, "strong-strong" design. Domains are roughly balanced with 
reasonably long domains on both sides of the seams between adjacent triangles. Note the blue and orange 
circle cover similar strength domains of the same staple bridge on both sides of the seam. 
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The structural integrity of the two bridge design was confirmed using atomic force 

microcopy (AFM). In one set of experiments (Fig. 2.5), the two designs had all their edge 

staples removed, see Figure 2.3, to provide worse case structural instability. Eventually, to 

form arrays, a fraction of edge staples will be removed to program distinct interactions 

between tiles. Thus, we evaluated the structural integrity of the two bridge designs with and 

without edge staples. In another set, a full set of inert edges (see section 2.3) were used to 

keep tiles as monomers but structurally complete. Upon AFM imaging, the strong-weak 

design without edge staples showed extensive ripped open seams demonstrating the weaker 

nature of the bridges. The strong-strong design mostly remained intact under the same 

conditions. Also, when imaging with a full set of inert edge staples, both tiles appeared 

healthy. This result implies that the scaffold loops and staple bridges do not have 

preferential tangles or at least are able to resolve them even with strong domains on both 

sides of the seams. Accordingly, we used the "strong-strong" staple bridge design for all 

future experiments. 

 

Figure 2.5: AFM images of strong-weak and strong-strong bridges without edge staples or with a full 
set of inert edge staples. Without edge staples, the weaker bridges allowed the tiles to rip apart at the seams. 
The strong-strong tiles were better able to hold the seams closed on imaging. With inert edges, the tiles were 
fairly intact in both designs. 
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2.3 Creating inert and interacting edges 

In order to control array formation, control of tile-tile interactions is necessary. This section 

covers the development of inert edges and the basic design of interacting staples. 

Woo et al. [12] explored edges with no staple crossovers at the helix row ends. Having 

staple crossovers forces the edge nucleotides into the plane interfering with the blunt end's 

natural capacity to stack. However, that the relaxed edges are able to form the normal 150 

degree angle promotes normal stacking. We use the relaxed edge design with no staple 

crossovers along the tile's edge. Also, each staple binds to two helices for a total of eleven 

possible edge staple locations per tile side. 

Finite arrays require inert edges around the exterior of the array to prevent further tile 

attachment. Even before that, non-interacting monomer tiles are useful to measure tile 

integrity.  Therefore, a non-interacting inert edge staple would be useful. We investigated 

four types of edges for their inertness: the absence of edge staples, truncating edge staples 

leaving free single stranded M13 dangling at the ends, encoding edges with truncated edge 

staples, and edge staples capped with short hairpins. In the complete absence of edge 

staples, the tiles did not interact (Fig. 2.5), but there was tile deformation presumably due to 

the M13 scaffold loops on the edges possessing a non-trivial amount of spurious 

interactions with each other effectively squeezing an edge. Next, we tried truncated edge 

staples that may possess less spurious scaffold interactions (see Figure 2.6). All designs, 2, 

4, and 6 nucleotide truncations on both the 5' and 3' end of each edge staple, failed to 

entirely stop tile-tile interactions. With truncations, there was variable amounts of small 

array formation. With a full set of truncated edges still interacting, we tried encoded the 

edge with truncated staples of different truncation lengths. First, we used a full set of 

truncated edge staples with the truncation code of 42462626424, where the eleven numbers 

represent the eleven edge staples and their respective truncation length. The reasoning is if 

the 2 nt truncated staples stacked, then the 4 nt and 6 nt staples would be too short to form 

stacks. The code was designed to ensure that there is no stacking alignment of more than a 

few stacks even when shifting the edge code along itself. While successfully forming 
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monomers, the tiles developed worse deformation. When we changed the edge code to 

_4_2_6_2_4_, where underscores were the absence of an edge staple, tile integrity 

improved, although there was again an increase in tile-tile interaction. 

 

Figure 2.6: Truncated edges and encoded truncated edges. a, from left to right: truncation by 2 nts, 
truncation by 4 nts, and truncation by 6 nts. Each truncation is from the 5' and the 3' end of the staple meaning 
4, 8, and 12 nts of free scaffold is formed for each staple design. b, encoded truncated edges. The top diagram 
has an edge code of 42462626424 where the eleven numbers represent the truncation amount of each staple. 
The bottom diagram has code _4_2_6_2_4_ where underscore is the absence of a staple. While the latter code 
deformed less, there was still undesired tile-tile interactions. 
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Moving away from truncated edges, we decided an edge staple might be capped with a 

hairpin. As a hairpin can close tightly on itself, it can be highly inert unlike scaffold single-

stranded domains. We tried four implementations of the hairpin design (see Figure 2.7). 

The first had a hairpin on the 5' end of an edge staple and a truncation on the 3' end for 

every edge staple. The second removed every other edge staple along an edge leaving only 

5 edge staples. The third had a hairpin on both the 5' end of the edge staple and the 3' end 

for every edge staple. The fourth design removed every other edge staple along an edge 

like before but with the double hairpin design. In terms of tile integrity, the double hairpin 

design was superior and either the full set or spaced layout of edge staples were used in 

future experiments. 

 

Figure 2.7: Hairpin capped edge staples. '#' represents the presence of a hairpin edge staple whereas '_' is 
the absence of any edge staple at that location. Four designs: 5' hairpin and 3' truncation for each edge staple in 
either a full edge set (top-left) or spaced layout (top-right), a hairpin on both the 5' and 3' end of edge staples in 
either a full edge set (bottom-left) or spaced layout (bottom-right). 
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With inert edge staples able to prevent stacking on desired sides of the tile, there is still a 

need to have edges that can allow control of tile-tile interactions. In the simplest case, we 

can include a full set of unmodified edge staples. While similar to the stacking seen in the 

above truncated edge sets, here each staple will provide a full two stacking bonds with their 

5' and 3' ends (Fig. 2.8). While providing an attractive force between two tile edges, a full 

set of stacking staples lacks significant specificity. Furthermore, the overall edge binding 

energy would not be tunable with just one edge design. There are two approaches we 

developed to address the issue of specificity and edge binding energy. First, we can remove 

edge staples, effectively encoding an edge. With fewer staples, the binding energy 

decreases as fewer stacking bonds may be made between any two edges. With an encoded 

edge, the binding energy cost between two aligned interacting edges and misaligned edges 

can be increased in order to encourage better alignment. Also, by using different edge 

codes, specificity is improved as maximum binding energy is only achieved when 

matching edges bind to each other. Second, we can swap one of the stacking ends of an 

edge staple with either a truncation or a short nucleotide extension ('sticky end'). We 

predominately truncate only the 3' end of a staple (the "receiver" staple) and extend the 5' 

end of another staple (the "giver" staple) as this generates enough specificity for most of 

our purposes. The specificity arises because the 5' sticky end added to one edge staple has a 

DNA sequence match with the nucleotides truncated from another edge staple. the amount 

of truncation or extension can vary from one to five nucleotides depending on the 

application (see individual chapters for the development process of application specific 

edges). Furthermore, the modified staples can be encoded to tune binding energy or add 

additional specificity. 
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a

b

c

 

Figure 2.8: Edge encoding and edge sticky ends. a, Tile-tile interaction with a full set of unmodified edge 
staples. All eleven edge staples form two stacking bonds for 22 total stacking bonds. b, An example of an 
encoded edge with unmodified edge staples. Only 5/11 edge staple locations are used resulting in a lower 
binding energy of just 10 total stacking bonds. A misaligned edge can only form a maximum of 6 stacking 
bonds. c, An example of a sticky end edge staple "giver" (top)  and a truncated edge staple "receiver" (bottom). 
Here the extension and truncation are 2 nucleotides but values from one to five are used. Each staple still 
forms one stacking bond with its unmodified end. 
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2.4 Creating a unique pattern 

In section 2.1, we laid out a scaffold path that met several important design criteria, one of 

which is a maximized continuous surface area for the application of arbitrary patterning. To 

verify if molecules can be placed at precisely defined locations, we needed a method to 

visualize designed patterns using atomic force microscopy. A simple method is to use 

extensions of DNA strands to create an increased height of the molecules on the tile 

surfaces, marking each pixel location in the designed pattern. As different forms of 

extensions would have different properties in terms of imaging contrast and pixel 

resolution, we explored several types of surface modifications for their ability to apply 

simple, yet high-contrast, patterning.  

We investigate four design types (Fig. 2.9). The 5' and 3' end of integrated staples within an 

origami tile are popular locations to attach molecules; although, staple modifications can be 

made along the staple length. Accordingly, three of our four designs make use of the 3' end 

of staples internal to our tile with only one design supplying contrast from the middle of the 

staple strand. Due to the layout of internal staples within the origami tile, the 3' ends of the 

internal staples form a hexagonal pattern on the same side of the tile. The benefit of this 

design is that the pattern forms completely on the same side of the tile. An analogy can be 

made to an electronics breadboard, where electronic components such as chips, wires, 

resisters, capacitors, etc. can be arbitrarily placed on the same side of a board; albeit, as we 

are only interested in verifying the placement locations via imaging contrast, it would be 

more similar to arbitrary attachment of only markers. 
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Figure 2.9: Four staple extension designs for patterning and AFM images of a 5 by 5 tile array with an 
"arc" pattern. a, positions of the 3' end of internal staples in a hexagonal pattern and a side view of a tile 
showing several 3' staple ends all on the same side of an origami tile. These locations are used for (b), (c), and 
(e). b, Extensions are double strands. Internal staples are extended by 20 Ts and are hybridized to a strand of 
20 As. The lines in the AFM image are 3 pixels wide with a pixel being an extension location. c, Internal staples 
extended by a hairpin. The lines in the AFM images are 2 pixels wide. d, Dumbbell hairpins at the midpoint of 
each staple [1]. The lines in the AFM image are 2 pixels wide. e, Bridged extensions. Internal staples in a line 
have their 3' end extended by a repeating set of three unique nucleotide sequences. Three 20-nucleotide  binder 
strands are added complementary to parts of two adjacent staple extensions. There are two Ts inserted as 
spacers between the 3' end of the selected staples and the bridge extensions. The lines in the AFM image are 
just 1 pixel wide. In (b) and (e), left AFM images have the surface modifications facing up on the imaging 
surface and right AFM images have the surface modifications facing down. 
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The first design we tested is a double stranded extension from the 3' end of 'internal' 

staples (Fig. 2.9(b)), staples not involved with forming bridges or edge interactions. Each 

selected pixel for contrast, as defined as each useable 3' extension location, was extended 

by 20 Ts. For imaging, another strand of 20 As would be added and allowed to hybridize to 

the 20 T extensions, forming a double stranded extension from the tile surface. The 

extensions are like flexible poles that can move around and this effect is visible on AFM 

imaging. In Figure 2.9(b), an arc like pattern of lines 3 pixels wide is formed on a 5 by 5 

array of tiles. The left AFM image has the double stranded extensions facing upwards and 

the right AFM image has the double stranded extensions facing downwards—sandwiched 

between the mica surface and the origami. There is a noticeable change in contrast. When 

the double strands are facing upwards, the AFM tip likely can push the double strand out of 

the way everywhere except at the base of the extension where it is fixed. With each 

extension better localized, the lines of the arc pattern can be seen to be made up of several 

pixel points. Now if the double strands are facing down, the strands end up stuck between 

the mica surface and the origami above them. On imaging, the strands are presumably more 

fixed and the entire strand provides a larger area of contrast. Each pixel covers a larger 

surface area and connects with neighboring pixels to form an overall more continuous 

pattern. While we do not specifically control how an origami array lands on a mica surface, 

it is worth noting that larger origami arrays tend to preferentially land with extensions face 

down likely due to curvature created by the extensions themselves. Due to the good 

contrast and extremely simple extension design, we ultimately used this design in all future 

experiments. 

The second design we explored replaces the double stranded extension with a hairpin. The 

reasoning is that a hairpin naturally has a double stranded domain, and there would be no 

need to add another strand such as 20 A in order to form contrast for imaging. The results 

on AFM (Fig. 2.9(c)) were similar in contrast; although, single stranded extensions were 

deemed to be a simpler design for similar results. The next design we tried was borrowed 

from a contrast method developed in the first DNA origami research by Rothemund [1]. 

Instead of modifying the 3' end of a staple, a dumbbell hairpin is added right at the 
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midpoint of each selected staple (Fig. 2.9(d)). Such a design benefits similarly to the 3' 

hairpin in that no additional contrast strand is needed; although, staples need more 

sequence length to accommodate the dumbbell. The last design explored was the most 

complex but was meant to give the highest resolution contrast even with 1 pixel thick lines. 

This design aimed to create a bridge-style extension (Fig. 2.9(e)) chain where the contrast 

is created by a mostly continuous fixed chain of double stranded DNA formed along the 

pattern lines. 3' ends of staples are extended by 3 unique sequences in sequential order 

along the length of the line. To connect the unique extensions, 3 binder staples are added. 

Each 20 nt binder staple is half complementary to the beginning of one 3' extension and the 

end of an adjacent 3' extension. Therefore, when the binder staple hybridizes, it holds 

together two neighboring extensions, ultimately forming a chain when multiple binders 

hybridize. There is a two T spacer between the 3' end of staples and the bridge-style 

extensions. On AFM, the contrast can be high as expected even despite being only 1 pixel 

wide. While the contrast is excellent, the design is complex and is geared toward forming 

lines rather than arbitrary patterns. As we planned to create arbitrary drawings, we opted 

for the extremely simple first design over the more intricate designs.  

With all the basic components forming our tiles determined, we can now move on to using 

the tiles to engineer the formation of DNA origami arrays and their reconfigurations. 
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C h a p t e r  3  

CONTROLLING GROWTH AND GLOBAL PROPERTIES            
OF DNA ORIGAMI ARRAYS  

Combinatorial approaches for fabricating one-dimensional polymer chains have 

revolutionized chemical synthesis [1] and the selection of functional nucleic acids [2]. This 

chapter expand these principles to random two-dimensional networks to open new 

opportunities for fabricating more complex molecular devices on DNA nanostructures. 

Nature adapts through an inherent stochasticity. One has only to look at human's long 

biologic struggle against viruses to see an example of this in action. Nobel prize winning 

[3] research showed that developing human immune cells undergo a combinatorial 

rearrangement of antibody related gene segments. The goal is the formation of novel amino 

acid sequences in the antigen-binding region of antibodies for targeting a wide range of 

ever-adapting foreign invaders such as bacteria, parasites, or viruses. Yet we still get sick. 

Viruses also take advantage of combinatorial diversity to find functional units that have not 

yet been targeted by the immune system. Every year, people get flu shots yet become sick 

with the flu. While immunity is developed to the flu, inevitably, illness reoccurs the 

following year. The resilience of the flu is due to massive combinatorial changes in its 

surface receptors through random mutations and random switching of receptors among 

virus strains [4]. Applying these combinatorial methods, so successful in nature, to 

scientific research has yielded tremendous results. 

Combinatorial approaches can be used for many applications. Len Adleman [5] harnessing 

combinatorial connections of designed DNA molecules to compute the solution to a seven-

node Hamiltonian path problem, a computationally intensive task. However, one of the 

most notable recent advancements with combinatorial chemistry is systematic evolution of 

ligands by exponential enrichment, known an SELEX. This combinatorial chemistry 

technique in molecular biology binds nucleic acids of single-stranded DNA or RNA to 
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target ligands [2,6,7]. The method starts with the synthesis of an enormous combinatorial 

library of random DNA or RNA sequences. That library is then exposed to a target ligand 

such as a cancer related protein or other compound. Non-binding sequences are removed 

and those bound are amplified for further rounds of selection for the very highest affinity 

sequences. The end result is the ability to make aptamers of very high binding affinity to a 

wide range of target ligands, including the small molecule ATP [8], the disease causing 

protein prions [9], cancer stimulated proteins such as Vascular Endothelial Growth Factor 

[10], and even entire cancer cells [11]. Some aptamers are already approved by the Food 

and Drug Administration to treat diseases [10,12]. Having an ever expanding library of 

more functional DNA components to integrate into designs, the field of DNA 

nanotechnology greatly benefits. 

While it is easier to generate a one-dimensional polymer or nucleic acid chain for 

screening, many natural structures such as cell surfaces or functional devices such as 

circuits exist in two-dimensions. By expanding the combinatorial principles to another 

dimension, we generate a framework for programming random DNA tilings in two-

dimensions, exhibiting tunable global properties through simple, local rules. 

3.1   Growth of unbounded 2D DNA origami arrays 

See Chapter 2, section 3 for the development of inert non-interacting edges and the design 

of interacting edges. This section explores the development of an edge set encouraging 

large unbounded 2D DNA origami arrays. 

The very direct approach to forming arrays from our tile design is to leave all eleven edge 

staples unmodified and forming two stacking bonds at their 5' and 3' ends for a total of 22 

stacking bonds per edge. Arrays up to 500 × 500 nm were self-assembled, see Figure 3.1. 

Tiles aggregated around the exterior of arrays, and structures showed misalignment 

between tiles. The misalignment likely arises due to the M13 scaffold sequence dictating 

the sequences of the edge staples. Stacking bonds are a mix of A-T and G-C base pairs. As 

G-C stacks have greater energy than A-T stacks [13], edges can misalign and still find 
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favorable binding conditions. These issues implied the binding energy was too strong 

and specificity was too low. 

In order to reduce binding energy and increase the specificity between edges, we reduced 

the number of staples in an edge to five. The distribution of the five staples limits 

misaligned stacking energy to 6 total stacking bonds out of a possible of 10 stacking bonds 

when perfectly align, remember each staple forms two stacking bonds. Arrays of up to 1 × 

1 μm were formed with better alignment but still suffering from some aggregation. 

To gain even further control over specificity with low binding energy, we modified the 

edge staples to either include a 5' sticky end or a 3' truncation. The first edge set we 

designed had five edge staples evenly distributed along a tile's edge. These edge staples had 

either a 1 nt sticky end (giver) or a 1nt truncation (receiver). Each edge staple still formed 

one normal stacking bond, rather than the above two. In order to form arrays, one edge 

would have staples with 1 nt sticky ends and the edge opposite on the tile would have 

staples truncated by 1 nt. The sticky ends would be complementary to the M13 scaffold 

exposed by the 1 nt truncations. As noted with the stacking bonds only tile, the M13 

scaffold results in unique sequences on each edge of the square DNA tile. Compared to just 

encoding specificity in the geometric layout of edges, there is extra specificity of having 

complementary base pair matching. Unlike the tiles forming arrays with stacking bonds 

only, tiles with sticky ends and truncations have defined relative orientations. In this 

design, all tiles have the same relative orientation in the array. Larger arrays of around 2 × 

2 μm were grown. 
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Figure 3.1. Unbounded arrays of square DNA origami tiles with stacking bonds only, encoded stacking 
bonds, and 1nt connections. a, Full set of edge staples forming only stacking bonds. Edge design then a 
representative array of approximately 500 × 500 nm with a zoom in on a misaligned set of tiles. b, Five edge 
staples forming only stacking bonds. Edge design then a representative array of approximately 1 × 1 μm. There 
is still some aggregation. The bonds between tiles is visible in the rightmost image clearly showing the 5 pairs of 
bonds space in the edge design. c, five edge staples with a 1nt sticky end and stacking bond. Edge design on 
top showing the staples are evenly distributed along the edge. On the bottom-left is a tile abstraction showing 
four tiles in the array. Edges with a 1 nt sticky end extension are shown with a filled triangle and 1 nt truncated 
edges are indented triangles with colors representing the edge specificity. Representative arrays of around 2 × 2 
μm are shown. 
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While including more sticky end staples would further increase specificity, the binding 

energy becomes a concern. We tried expanding the specific 1 nt edge staples from just five 

staples to all eleven staples to determine the consequences of strong binding energy, see 

Figure 3.2. The previously flat arrays were now forming tubes. Due to the extremely strong 

edge connections and the flexible seam along the diagonal of our tile, the tubes were 

resistant to breakage on AFM imaging. We suspect that there was some amount of 

curvature in our tiles. The curvature allowed the two ends of a growing array to flex 

together to form a tube. Stronger binding energy promotes tube formation as it forms more 

stable connections, counterbalancing the entropy cost of restricting a tile into a tube shape. 

Furthermore, as the bonds are stable at higher temperatures, tubes can form at higher 

temperatures where the tiles are presumably more flexible.  

As we wished to form interconnected patterns on our DNA origami arrays, we needed to 

test how surface modifications on the origami tiles would affect growth of unbounded 

arrays. We took the five staple and an eleven staple edge design and place a double arc type 

pattern on their surfaces consisting of double stranded DNA extensions. Arrays were 

indeed inhibited. The strong new eleven staple design showed tubes of smaller diameter 

than with unmodified tiles, presumably implying the surface modification created even 

greater curvature. Even the five staple design showed ribbon-like structures on AFM 

imaging, presumably still tubes but with edges too weak to remain stable under AFM 

imaging conditions. In order to determine which way the tiles were flexing to form tubes, 

we made a surface design that was asymmetric. This partial arc pattern would create a 

difference if a tile was face up or face down on an image. Simultaneously, we wished to 

explore longer sticky ends to see how greater specificity would change array formation. To 

keep an overall weak binding energy, we only used two edge staples with 4 nt sticky ends. 

Tubes still formed with this design; however, the partial arc pattern showed the double 

stranded extensions were on the outside of the tube. This is likely caused by the double-

stranded extensions repelling each other. We needed a means to counter the curvature 

induced by the surface modifications. 
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Figure 3.2. Tube forming unbounded arrays of square DNA origami tiles with strong binding energies 
and/or surface modifications. a, Eleven 1 nt sticky end staples. Giving and receiving edges are on opposite 
sides so all tiles in an array have the same relative orientation. The tile has no surface modifications. The tube is 
partially opened on the two ends with the double-thick region of the tube represented by a lighter color. The 
tube flattens along the seams of our tile and remains stable on AFM imaging. Note the large diameter. b, left: 
eleven 1 nt sticky end staples with surface modifications on the tiles. See inset for the modification design on a 
single tile. The tube has a smaller diameter. right: five 1 nt sticky ends with the same surface modifications. 
AFM shows a ribbon-like pattern likely due to a tube being unstable and flattening out when imaged by an 
AFM tip. c, Asymmetric partial arc surface pattern with two 4 nt sticky end edge staples per tile edge. Tubes 
still form, but the face-down surface patterns on AFM imaging imply the pattern is on the outside of the tube. 

To counteract curvature, we employed a global curvature correction mechanism, see Figure 

3.3. Where tiles all in an array have the same relative orientation, any curvature during self-

assembly is likely to accumulate with each additional tile. Thus, instead of having tiles 

attach in the same orientation, we have each tile attach via a 90 degree rotation. This is 

similar to the "corrugated" design used in prior cross-shaped origami arrays [14], but 

avoids having any flipped tiles. Avoiding flipped tiles is important to allow our arrays to be 

better used as breadboards as we desire all surface modifications to be able to connect to 

each other on the same side of the tiles. It is also favorable to design all staple extension 

points on the same side of an origami for maximum surface area usage. Our edge of choice 

was four staple locations evenly distribution with 2 nt sticky ends. The binding energy is 

fairly weak yet provides increased specificity for forming arrays. We first tested tiles 

without surface modification, obtaining arrays. Next we added the arc pattern to the tiles to 

determine if tubes or arrays would form. The global curvature correction mechanism 

appeared to work in that large 2D arrays formed. The increased specificity also helped the 

formation of the 2D arrays. Arrays had more uniformly-orientated domains and were also 

more crystalline, containing straight edges akin to the facets found in crystals. 
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Figure 3.3. Unbounded arrays of square DNA origami tiles with global curvature correction. a,  left: 
array abstraction diagram. Each tile is rotated by 90 degrees compared to its neighbors. right: Edge diagram. 
Four edge staples with 2 nt sticky ends provide specificity yet weak binding. b, array formation of unmodified 
tiles. Array edges are straight as in a crystal. c, array formation with arc tiles. 
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With a design able to support surface modification, we then turned to characterizing and 

optimizing conditions. First, we experimentally investigated the melting temperature of our 

edges to better understand at what temperature our arrays form. By centering our 

temperature annealing schedules around the melting point, we should optimize array 

growth. At high temperature, origami becomes overly flexible and even unstable, thus the 

best melting points should be much lower. We added a fluorophore-quencher pair to our 

edge, overall adding only one additional stacking bond as the fluorophore-quencher pair 

did not touch. We allowed the tiles to form two by two arrays where the fluorophore and 

quencher come into proximity when the array is formed resulting in lowered fluorescence 

intensity (see Figure 3.4). When the arrays melt with increasing temperature, the tiles 

separate resulting in increased fluorescence intensity. It was determined that the melting 

point was close to 35 degrees Celsius. We also verified the data with AFM experiments. By 

mixing pre-formed arrays with two different patterns and heating to different temperatures, 

we could find the temperature resulting in the tiles mixing—the melting point. We tested 

30, 33, 35, 37, and 40 degrees Celsius. 30 was similar to 33. 37 and 40 were similar to 35. 

Thus, the melting temperature was likely close to 35 degrees Celsius. 
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Figure 3.4. Fluorescence and AFM melting temperature experiment. a, Tile abstraction of a two by two 
array with a fluorophore and quencher pair shown as the red and black dot respectively. When the array forms, 
the pair are in proximity and the fluorescence will be lower. b, melting graph showing the relative fluorescence 
intensity when heating and cooling the sample as measured on a Fluorolog-3 spectrofluorometer with 
temperature control (Horiba Scientific). Tiles were heating in 2 degree Celsius increments at 5 minutes per 
increment for equilibration. The fluorophore is ROX, measured with 584 nm excitation and 602 nm emission 
wavelength. Each data point is the average of three data points taken over three heating and cooling cycles. 
Tiles are at the concentration of 50 nM in a 500 uL quartz cuvette. c, left: Two arrays of origami with a 
mirrored arc pattern were formed separately. middle: The two tile arrays were mixed together and heated to 33 
degrees Celsius. There is marginal mixing with arrays mostly intact as seems from the circle patterns. right: the 
two arrays heated together to 35 degrees Celsius. The patterns merge together showing random loops rather 
than circles.  

Next, we tried annealing our arrays over different time durations (see Figure 3.5). Multi-

day anneals gave large arrays. Varying the annealing time from two days to a week, arrays 

of up to 10 by 10 microns were formed. This array would contain several thousand tiles; 

see Figure 3.6a and 3.6b.  
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Figure 3.5. Representative AFM images of unbounded arrays with increasing anneal time. 
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Figure 3.6a. 7 by 7 um AFM image showing part of a crystalline domain of unbounded tiles with 
double-stranded surface modifications forming circle patterns. 
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Figure 3.6b: A 16.2 by 16.2 um AFM image showing part of a crystalline domain of unbounded tiles 
with double-stranded surface modifications forming circle patterns. There exists some defects at this 
scale. Zoom in to see the circle patterns showing the domains.  

3.2   Global properties controlled by programming pattern design on individual tiles 

With the capacity to grow the largest-to-date 2D arrays of origami tiles, next comes the 

process of controlling global properties of the arrays. This section explores the first of three 

levels of control: the design of local tile patterns. Most of these methods can be 
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implemented using only a single type of edge design. Hence, experimentally robustness 

is created as an incorrect tile attachment requires four errors, all four sides of the square, to 

be incorrect to integrate into an array. 

The surface design of interest to represent the level of control over global properties is 

Truchet tiles [15]. A Truchet tile has a rotationally asymmetric pattern that continues into 

neighboring tiles, resulting in complex patterns. We used two surface pattern designs: a 

double arc design and a T shaped design (see Figure 3.7). For an array of arcs taking 

random orientations at each tile location, the lines continue between tiles forming non-

branching loops of varying sizes or touch the edge of an array. However, in order to create 

mazes, branching is needed and can be formed by designing how lines connect within and 

among tiles. If one looks at the area between the loops on  arc tiles, it is analogous to 

diagonal tiles. A diagonal tile can introduce branches where four tiles meet at their corners 

with either a three or four-way branched junction. There is also a variable distance between 

junctions with shorter distances being more likely. If branching points are placed within a 

tile such as with a T pattern on a tile, four-way junctions are removed, and since every tile 

center has a junction, the distance between junctions becomes fixed with a separation of a 

single tile's length.  Again, by looking at the area between the lines, new global properties 

emerge. 

Beyond branching, other properties vary. The proximity or degree of interconnection 

between global array patterns will change depending on the tile pattern design. In arrays 

where arc/diagonal tiles rotate randomly, adjacent mazes are interwoven. However, in 

arrays formed from T pattern tiles, large mazes often occupy their own large rectangular 

areas with tiny mazes occasionally scattered within them. Furthermore, the size 

distributions of mazes formed between the tile surface pattern designs varies significantly. 

Simulation results of randomly generated mazes showed the size of the largest mazes on 

random arrays of T tiles is generally larger with a wider distribution than the largest mazes 

formed by arc/diagonal tiles; see Figure 3.7(d and e). Looking at the area between the T tile 
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mazes, smaller mazes were formed. We set out to experimentally demonstrate the 

simulation results. 

 

Figure 3.7. Programming the tile. a, a diagonal tile maze looking at the maze formed from the line and the 
area between the line. Note the arc tile design is the inverse of the diagonal tile design. The largest maze is 
highlighted in orange. b, T tile design. c, Simulation from ten thousand independently generated mazes 
showing the average size of the largest maze on random arrays of size 2 by 2 to 10 by 10. d, Histogram 
comparing the largest maze size on 10 by 10 arrays formed from simulations of a million independent trials. 

First we desired to prove that we could integrate two tiles with the same edges but different 

surface patterns into an array with a random choice between the two tiles. We mixed equal 

amounts of two tiles each with a mirrored version of the double arc as compared to the 

other with the intent to form loop mazes. We then noted the orientation of each tile and 

made a layout of two by two local neighborhoods. If tile integration was random, there 

should be little bias for any two by two local pattern formation; see Figure 3.8. No notable 



 

 

44 

bias was found, implying tile integration was not significantly affected by the surface 

modification. 

 

Figure 3.8.Analysis of tile orientations of arc tiles forming a loop maze pattern on an array. a, 
Representative AFM image showing arc tiles in two orientation resulting in a loop pattern. b, rotated image 
with the tile orientation marked with blue or green dots. c, Counts of all 16 possible two by two local 
neighborhoods. n=456 neighborhoods. Each pattern appears 28.5 ± 4.9 times (6.25% ± 1.07%). 

We then performed analysis on several separate tile areas of size 10 by 10 by randomly 

selecting a zoomed in location on large arrays (Figure 3.9). Sizes of the longest loop and 

largest maze from the area between the loops were simulated and compared to the 

experimental data for the 10 by 10 tile areas. Experimental data roughly matched the 
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simulated results within the 95% confidence interval. Mazes showed the expected 

properties: branching with three and four-way junctions varying from one to six tiles apart, 

network proximity, and differences in maze sizes. In order to form random T tile arrays, we 

used four tiles each with the T design rotated by 90 degrees to cover the four possible 

orientation of a tile. Analysis of random 10 by 10 tile area also matched simulated results 

within the 95% confidence interval; see Figure 3.10. These mazes showed three-way 

junctions only one tile apart. While the arcs were interwoven, the T mazes were mostly 

separated. The largest arc maze was 39.4 ± 4.5 with expected size 42.3, whereas the largest 

T maze was 77.8 ± 9.5 with expected size of 75.3. 
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Figure 3.9. Analysis of arc loops and mazes for 10 by 10 tile area. Each maze shows the original AFM image 
on the left. In the middle are the loops with each separate loop colored a distinct color to better distinguish 
separate loops. On the right are mazes formed from the area between arcs again with separate mazes colored 
distinctly. At the bottom, the longest loop and largest maze from each of the ten 10 by 10 tile areas are overlaid 
with the probability density function (scaled to 100) generated from simulations. μ is the mean, σ is the 
standard error of the mean, and ±2σ corresponds to 95% confidence. The size of a circle is set to 2 with the 
total size of all loops in a 10 by 10 tile area being 100. 
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Figure 3.10. Analysis of T mazes for a 10 by 10 tile area. Ten 10 by 10 tile areas of T mazes. Each maze 
shows the original AFM image on the left. In the middle are the line mazes with each separate line  colored a 
distinct color. On the right are mazes formed from the area between the lines again with separate mazes 
colored distinctly. At the bottom, sizes of the largest line and area maze are overlaid with the probability 
density function (scaled to 100) generated from simulations. μ is the mean, σ is the standard error of the mean, 
and ±2σ corresponds to 95% confidence. The size of a T tile is set to 1 with the total size of all mazes being 
100. 
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3.3   Global properties controlled by programming the tile-tile interactions  

This section explores the second of three levels of control of global properties, 

programming the grid through tile-tile interactions. 

Previous mazes all contained loops. For example, with T tiles able to take all four 

orientations at any location in an array, the simplest loops that could form are on a 2 by 2 

tile area. This simple loop may also form with only two orientations if those two 

orientations are 180 degree rotations of each other. Note that there are possible orientations 

90 degrees rotated from each other where loops will no longer form (Figure 3.11). 

Furthermore, the growth direction will be along the diagonal of arrays forming a tree-like 

pattern considering the corner tile as the root. 

The growth direction of the trees may be instead designed so that trees could grow in all 

directions. This is accomplished by changing the tile orientation grid. The one-direction 

tree assumed all tiles had the same relative orientation in the grid. However, if the grid had 

four distinct orientations in each 2 by 2 tile area, a single type of T will always form square 

loops of size 4, when setting a single T tile to size 1. Any two types of T tiles on this four-

orientation grid would either be in phase (there exists alternating choices in adjacent 2 by 2 

tile areas to connect loops together) or out of phase (preserving a loop would necessarily 

break adjacent loops). Setting each tree to a single loop, called the root, trees can be grown 

in all directions on the four-orientation grid using two T tiles that are out of phase with each 

other. This can be done with specific 90 degree rotated tiles and 180 degree rotated tiles. 

While the root will vary in size, larger roots are statistically less likely than a small root. 

Simulations of random 10 by 10 arrays suggest above 80% of T90 trees (two 90 degree 

rotated tiles that are out of phase) and above 99% of T180 trees will have a 'square root' on 

four tiles, the smallest possible loop. 

Besides differences in the percentage of smaller roots, T90 and T180 trees will exhibit 

distinct branching properties. T90 trees will have straight branches with variable lengths, 

shorter being more likely than longer, whereas T180 trees have only two possible lengths 
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of straight branches. There are size variations as well. The largest tress on T90 arrays 

will be expected to be larger than on T180 arrays with a wider distribution. 

 

Figure 3.11. Programming the grid to form tree-like patterns in all directions. a, A T tiles design on a grid 
with all tiles having the same relative orientation. Arrows represent a specific orientation of a tile at the given 
location, not having an effect on the orientation of the pattern on that tile b, four-orientation grid with an 
example of two tiles that are in phase when mixed together and two tiles that are out of phase when mixed 
together. c and d, Two T tile designs on the four-orientation grid generating tree-like properties with different 
branch lengths. For the ease of analysis, we assume each array in on a torus. Each tree is shown in a distinct 
color for visual clarity. The root is filled with the same color as the branches for visualization. e, From left to 
right. Histogram of the largest tree size on 10 by 10 arrays from simulations with a million independent trials. 
Probability of a root size in 10 by 10 arrays from simulations with ten thousand independent trails. Average size 
of the largest trees on random arrays from 4 by 4 to 22 by 22 from simulations of ten thousand independent 
trials per array size. Histogram of the largest tree size on 16 by 16 arrays from simulations with a million 
independent trials. 

The corrugated edge design implements the four-orientation grid as each tile integrates 90 

degrees compared to its neighbor, mimicking the four-orientation grid layout. Using T tiles 
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in two orientations we construct T90 and T180 arrays. Trees grew in all directions with 

expected branching patterns. T90 straight branches had variable length straight branches 

from 1.5 to 8.5, and the T180 trees had straight branch lengths of only 1.5 and 2. Expected 

size differences between the largest trees were also observed.  The largest T90 tree was 

54.7 ± 11.7 whereas the largest T180 tree was 33.4  ± 11.9, agreeing with expected sizes of 

58.0 and 36.7 from simulations (see Figure 3.12). For greater control, more complex grids 

may be generated with several tiles with distinct edge designs at the cost of increased 

design and experimental challenges; see section 3.5. 
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Figure 3.12. Analysis of T90 and T180 trees on 10 by 10 tile area. Each maze shows the original AFM image 
on the top. Below is an image with each distinct maze colored a distinct color and the root of that maze being 
filled in with the maze's color. a, T90 trees. b, T180 trees. c and d, Sizes of the largest maze from each of the 
ten 10 by 10 tile areas are overlaid with the probability density function (scaled to 100) generated from 
simulations. μ is the mean, σ is the standard error of the mean, and ±2σ corresponds to 95% confidence. A 
single T tile is set to a value of 1 and the array has a total value of 100. 
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3.4    Global properties controlled by programming the probabilities of tile choices  

This section explores the last explored level of control of global properties, programming 

the random choice of tile. 

The prior two sections involved equal probability of tiles with different pattern orientations 

obtained by mixing an equimolar ratio of the tiles. If instead, the tile ratio is tunable, the 

size distributions of global patterns can be further controlled; see Figure 3.13. In the prior 

section, T90 trees were growth from two T tile patterns 90 degrees rotated from each other. 

If the total tile population is represented by 1 and the probability of one tile type is called p, 

then the other tile's probability is 1-p. When the probability p of a tile is not present at all 0 

or the only tile present 1, all trees are just the square root with expected size equal to 

exactly 4. When p varies between 0 and 1, then the trees grow larger with an expected 

maximum size at p = 0.5.  

More tiles with multiple pattern types may be introduced. By tuning their probabilities, we 

gain control over new features of patterns. A tile with a cross-like pattern mixed with the 

arc pattern would allow control over the number of crossings in random loops. When p = 1, 

all loops will be circles of the four-orientation grid. As p decreases, the loops become much 

longer with only a few crossings. As p further decreases, the trend changes, loops become 

shorter as there are fewer turns. When p = 0, every tile will be a crossing, making an array 

of only straight lines of the array length (see Figure 3.13(d)). 
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Figure 3.13. Programming the random choice to control the crossings and size of loops, mazes, and 
trees. a, b, and c, Random loops mazes and trees with size controlled by the probabilities of two tiles with 
different pattern orientations. The numerical simulations are formed from ten thousand independent trials for 
each p from 0 to 1 with 0.01 increments. d, Random loops with crossings controlled by the probability ratio of 
two tiles with distinct patterns. e, Average sizes of longest loop, largest maze and tree on array sizes of 4 by 4 
to 40 by 40 with p values of 0, 0.24, 0.33, 0.41, and 0.5. Numerical simulations used one thousand independent 
trials for each array size and each p value. f, Average size of the longest loop on random arrays from size 4 by 4 
to size 40 by 40 for p values of 0, 0.24, 0.33, 0.41, 0.5, 0.59, 0.67, 0.76, and 1. Numerical simulations used one 
thousand independent trials for each array size and each p value. 

We implement experimentally the random trees (Fig. 3.14) and random loops with arc and 

cross tiles all mixed at ratios of p or 1-p respectively. The value of p is set to three 

probabilities: 0, 1/3, and 1/2. When p = 0, all trees are square roots of size 4 as expected. At 

p = 1/3 or 1/2, larger trees formed at the cost of fewer trees per array. The average tree size 

was 17.6 ± 5.8 at p = 1/3 compared to its expected size of 16.7. The average tree size was 

25.9 ± 8.0 at p = 1/2 compared to its expected size of 26.7. The experiments thus showed 

the largest tree sizes at p = 1/2 as expected with simulations. For the loops, at p = 0, all 
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loops were straight lines as expected since every tile was a cross. When the value of p 

was set to 1/2 and 1/3, it was found that longer and fewer loops existed at p = 1/3. This 

again agreed with simulations and expectations. The number of crossings was 70.3 ± 7.4 

when p = 1/3 with an expected value of 67. The number of crossings was 48.7 ± 4.4 when p 

= 1/2 with the expected value of 50. This shows the tuning of tile ratios is properly 

reflected in the experimental arrays. In principle, even further tile patterns could be 

introduced to form a wider range of tunable pattern properties. 

 

Figure 3.14. Analysis of T90 trees on 10 by 10 tile areas. a, p = 1/3. Analysis includes every tree in the tile 
area. b, p = 1/2. c, p = 0. Only one tile area is shown as any other accurate tile area would appear identical. d, 
Zoomed out AFM images of tile arrays before cropping out a random 10 by 10 tile area. From top to bottom, 
p = 0, 1/3, and 1/2 respectively. μ is the average size of all T90 trees, σ is the standard error of the mean, and 
±2σ corresponds to 95% confidence. 



 

 

55 

 

Figure 3.15. Analysis of loops with crosses on 10 by 10 tile area. a, p = 1/3. Analysis includes every loop in 
the tile area. b, p = 1/2. c, p = 0. Only one tile area is shown as any other accurate tile area would appear 
identical. d, Zoomed out AFM images of tile arrays before cropping out a random 10 by 10 tile area. From top 
to bottom, p = 0 and 1/3 respectively. μ is the mean, σ is the standard error of the mean, and ±2σ corresponds 
to 95% confidence. 

3.5   Design of 2D DNA Origami arrays with designed sizes  

All prior sections involved a single edge design set on multiple tiles using different surface 

modifications to form the complex patterns with the desired global properties on 

unbounded arrays. This section looks to a new approach for controlling complexity in 

global patterns by instead controlling the size of the grid through finite DNA origami 

arrays. The work in this section motivates the work done in Chapter 4. Chapter 4 explores 

forming fully addressable finite arrays through a different technique that is much more 

scalable at the cost of more mixing stages.  

When the tiles of an array are all mixed together, a finite array requires multiple types of 

tiles with distinct edge designs. Each tile may have a specific pattern that is unique to a 

particular location in the array providing significant additional control of the array's global 

properties. At this point, we explored two designs for finite array self-assembly. One is 

meant to encourage assemblies over incomplete arrays. The other allows asymptotically 
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fewer numbers of distinct edges. The first design is a fully connected design whereas the 

second design is similar to a comb structure. While the comb structure saves edges by 

replacing several edges with weak stabilizing interactions, each tile attaching to the array 

attaches by only one sides during self-assembly. Completing assemblies in not preferring 

over incomplete ones for the comb design (see Figure 3.16). However, for fully connected 

structures, the optimal tile connections are made when attaching to complete an assembly 

versus only making one connection in an incomplete structure. Due to the large number of 

orthogonal edge sets needed, all arrays were given four-fold rotational symmetry to 

minimize the number of unique edge sets needed. Still, a fully connected design requires 

n(n-1)/2 distinct pairs of edges, always more than a comb design. 

 

Figure 3.16. Differences in completing arrays for two finite array designs. a, fully connected design 
favoring completing assemblies over incomplete. Filled arrows and indented arrows of the same color are 
matching edges. b, comb design. Double black bars are weak stabilizing edges with only stacking bonds.  

Four criteria dictate edge design. First, spurious edge interactions between different copies 

of the same tile type are to be minimized. Edges with a sticky edge overhang are called 

giving edges, and edges with a truncation are called receiving edges. While a giving edge 

maximizes binding energy when it binds to its complementary receiving edge, spurious 

interactions may occur. The worst is commonly between a giving edge and a non-

complementary receiving edge as some sequence similarity of sticky ends is likely. Hence, 
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we chose individual tiles with either all giving or all receiving edges when possible. 

Thus, when the tiles are initially formed as monomers, they are less likely to form 

aggregates. 

Second, specific edge interactions are given different binding energies for a design 

principle we call one-pot staged self-assembly which contributed to the high yield of 

arrays. By varying the binding energy of specific edge interactions, we can promote 

sequential stages of self-assembly during the annealing of all tiles mixed together. In this 

manner, the complex task of all tiles finding their proper matches is broken into multiple 

stages, reducing the risk of potential spurious interactions.  

Third, tile orientations in the final finite array are balanced as much as possible in 2 by 2 

tile areas. As with the corrugated method used with the unbounded arrays to form flat 

arrays despite surface modifications, multiple 90 degree rotations of tiles within the finite 

array was used. 

Fourth, we keep the number of edge codes as low as possible. Edge codes refer to a specific 

layout of edge staples with a sticky end length (Fig. 3.17). Each edge code has variable 

sticky end length and layout. Since there is variation in M13 scaffold at different locations, 

the sticky end sequences to each of the four sides of the square tile are different. Hence, 

each edge code can provide to four pairs of distinct edge interactions. This design criteria 

conflicts with the third design criteria to some extent and both are balanced against each 

other. Accordingly, neither design criteria is fully satisfied completely. Fully giving tiles 

can also be rotated in their array location, since the sticky end sequences can be extended 

off of any side of the square. Since receiving edges are dictated by the M13 sequence, these 

tiles cannot be rotated without considering the edge pairing. We also do not take into 

account the M13 sequence causing different amount of stacking bond energies depending 

on which edges interact. It would be possible to consider this, however, it would provide 

even greater constrictions on the design space. 
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Figure 3.17. Five types of edge codes used in finite arrays. All staples in an edge code have a specific sticky 
end length on the 5' end of the staple and truncation on the 3' end. Each edge code may be used at four 
different locations on a tile due to the M13 sequence variance around an origami tile. Total stacking bonds 
roughly approximates overall binding energy between the edges and is the sum of all stacking bonds formed 
from all staples interacting between the edges. 
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Using these design criteria we design 3 by 3, 4 by 4, and 5 by 5 finite arrays for the fully 

connected design (Fig. 3.18) and the comb design (Fig. 3.19). Before mixing individual 

tiles together, we added a set of negation strands with complementary sequences to the 

edge staples to each tile to prevent any edge staples incorporating into locations on other 

tiles. 

 

Figure 3.18. Fully connected finite arrays of square DNA origami tiles. a, 3 by 3 array. From left to right: 
abstract design diagram with distinct edge interactions labeled 1/1* to 3/3* where giving and receiving edges 
are represented by solid triangles and indented triangles respectively. Abstract design diagram with edge code 
from figure 3.17, and the distinct types of tiles labeled with N, E, S, and W representing unique orientation of 
each tile. AFM images of a selected zoomed out and zoomed in view. Patterns on arrays are for ensuring 
complete structures have correctly integrated tiles at each location. b, 4 by 4 array. c, 5 by 5 array. 
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Figure 3.19. Comb design for finite arrays of square DNA origami tiles. a, 3 by 3 array. From left to right: 
abstract design diagram with distinct edge interactions labeled 1/1* to 2/2* where giving and receiving edges 
are represented by solid triangles and indented triangles respectively, and weak non-specific supporting edges 
are double black bars. Abstract design diagram with edge code from figure 3.17, and the distinct types of tiles 
labeled with N, E, S, and W representing unique orientation of each tile. AFM images of a selected zoomed out 
and zoomed in view. Patterns on arrays are for ensuring complete structures have correctly integrated tiles at 
each location. b, 4 by 4 array. c, 5 by 5 array. 

Yield was calculated from AFM images with the aid of a software tool to mitigate the risk 

of overestimating actual yield [16]. If using selected AFM images of around 2 by 2 microns 

as with other works in the literature, we could find yields of 3 by 3, 4 by 4, and 5 by 5 

arrays close to 100%. Instead, we desired to avoid selecting optimal small AFM images for 

yield calculations, aiming to calculate yield on very large areas of 30 by 30 microns to 

minimize bias. Yield was calculated as the total pixels in mostly isolated complete 

assemblies of the designed size in the AFM image divided by the total pixels above a 

threshold of background. With a large sample size of several thousand to tens of thousands 

of origami tiles per AFM image, the yield of fully connected 3 by 3, 4 by 4, and 5 by 5 
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arrays was 15.6%, 15,0%, and 32.4% respectively. The yield of the comb design only 

gave 8.0%, 6.7%, and 1.3%. This suggests that the fully connected design that favored 

complete assemblies is crucial for higher yields. 

3.6     Combinatorial diversity and programmable properties in finite arrays 

This section covers the application of combinatorial rules to control fundamentally new 

properties enabled by the multiple tile types in finite arrays. Since a tile’s edge design 

dictates its location in the finite array, it becomes possible to control specific pattern 

configurations at specific locations that differ from neighboring tiles. 

For our experiments, we took our high yield 5 by 5 fully connected arrays. These arrays 

have four-fold symmetry and are made from seven unique tiles in terms of edge design. By 

using tiles with a double arc design, we made arc mazes of 440 by 440 nm in size. To 

obtain random mazes, we applied the first rule from section 3.2 for programming the tile. 

For each of the tile types per distinct edge designs, we included two different tiles with 

different surface patterns. As with the unbounded arrays forming loops, the two designs 

were mirror images of double arcs (Fig. 3.20). Theoretically, looking at the mazes from a 

fixed view point, there exists over thirty million (225 = 33,554,432) distinct mazes that 

may form in a single test tube. We found the average number of circles to be 1.0 ± 0.6, 

ageing with the expect value of (m – 1) × (n – 1) × (1/2)4 in random m by n arrays of arc 

tiles [17]. 

We next demonstrated not only the fixed properties emerging from  having a finite array, 

but the control of pattern configurations at specific locations in the finite array. We created 

random mazes with a designed entrance and exit (Fig. 3.20). Here, we fixed the exterior 

tiles in each 5 by 5 array in a determined orientation. The interior tiles remained a p = 0.5 

random choice between two mirror image arc patterns. Considering rotational symmetry, 

there are 28 = 256 distinct mazes formed, all with a path from the entrance to the exit. All  5 

by 5 arrays extracted from AFM showed this property.  
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Figure 3.20. Random loops and mazes on the entire or part of a 5 by 5 finite array. a, Random loops and 
mazes on entire 5 by 5 arrays. The bottom image is composed from 5 separate zoomed in AFM images. b, 
Designed mazes with fixed orientation of exterior tiles and random orientation of interior tiles. The right image 
is composed of 12 separate zoomed in AFM images. 

Here we only varied the tile type, taking advantage of the finite nature of the array. The 

random choice of the tiles may also be programmed for further control. In principle, these 
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rules can further be applied to other more complex grids, such as the arrays and 

nanostructures introduced in the following chapters. One can image the pattern being 

replaced with functional devices: maze lines being replaced with nanoparticles to form 

waveguides, cross-like patterns being nanotubes forming transistors, or even each tile just 

holding a random library of potential functional nucleic acids taking SELEX to 2D. 
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C h a p t e r  4  

FRACTAL ASSEMBLY OF MICRON-SCALE DNA ORIGAMI 
ARRAYS WITH ARBITRARY PATTERNS 

The previous chapter focused on controlling global properties and generating tunable 

diversity of patterns in arrays of DNA origami. Here, we demonstrate a set of hierarchical 

assembly rules to construct a single target pattern on a micron-scale finite array. 

Since the creation of the first DNA origami, there has been interest in scaling up the size of 

two dimensional DNA origami structures (see Fig 4.0). Marchi et al. [1] took the direct 

approach to increasing the scale of a DNA origami structure by taking the same principles 

as the first DNA origami but applied to a significantly longer scaffold strand. With a single 

scaffold strand for the staples to attach onto, the author's overall DNA structure maintains 

the benefit that it can still be made in a single mixing step. However, as the number of 

unique locations to be held together increases due to a longer scaffold, so does the number 

of unique staple strands needed to form the complete DNA structure. More unique strands 

means a higher upfront cost and issues with spurious interactions among the distinct 

strands. Raiendran et al [2] implemented a scaled DNA structure requiring fewer additional 

unique staples through the use of select recycled staples. The authors split the mixing 

stages into two steps: in the first, nine individual DNA origami tiles were annealed reusing 

many staple sequences between the separate tile's interiors; in the second, the nine DNA 

origami tiles were mixed together, and due to their unique edges, formed a 3 by 3 array. 

Accordingly, a DNA structure nine times the size of a single DNA origami was formed 

with only edge staples scaling with the size of the complete structure. 

The question arises ─ does the number of unique staples necessarily have to scale with the 

size of the structure? In Demaine et al. [3], the authors showed that, in theory, it is possible 

to form arbitrary shapes with only O(1) glues with no scaling of unique staple numbers 

needed if applied to DNA origami tiles. Experimentally, successful demonstrations have 
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been rarer. Still, by using multi-stage hierarchical methods, Park et al. [4] made a 4 by 4 

array of small DNA tiles recycling edges and interior strands. There has been no 

demonstration of a hierarchical multi-stage approach with DNA origami. 

While prior scaled two dimensional DNA origami structures increased the surface area, 

they all result in an increase in unique staples required. Furthermore, to reach the scale 

necessary to interact with the low cost fabrication technique of photolithography [5], an 

even larger structure is necessary than those structures create thus far. We designed a set of 

rules called Fractal Assembly (as the technique builds complex structures using only a set 

of simple rules applied recursively) and applied the rules to DNA origami tiles, 

demonstrating micron-scale finite DNA structures with arbitrary patterns. 

 

Figure 4.0: The development of arbitrarily patternable two-dimensional DNA structures. Log-log plot 
comparing the size of a DNA structure against the required number of nucleotides in unique strands in that 
structure. 
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4.1    Design considerations and rules of Fractal Assembly 

In Chapter 3, section 5 we explored creating finite arrays. This section first reviews the 

limitations of our initial approach followed by the three simple rules of Fractal Assembly 

designed to address those limitations. 

Our finite arrays from Chapter 3 were self-assembled in two stages where first the DNA 

origami tiles were annealed separately, and then the formed tiles were annealed together. 

We further introduced the technique we called one-pot staged self-assembly where we used 

two types of edge codes with strong and weak binding energies to "stage" self-assembly 

even in one-pot. For example, in our 4 by 4 array, a strong 1 nt sticky end 11 staple edge 

was used to form four 2 by 2 arrays. Next, a weaker 2 nt sticky end 4 staple edge was used 

to bring the 2 by 2 arrays together to form the 4 by 4 array. To lower the number of tiles 

and edges required (allowing only two edge codes to be sufficient), we introduced four-fold 

rotational symmetry (see top of Figure 4.1). For our higher yield fully connected arrays, the 

symmetry meant n2/4 distinct types of tiles and n(n-1)/2 distinct types of edges were 

needed for n by n sized arrays. Unfortunately, the rotational symmetry removes unique 

addressability for the entire array as the same tiles integrate into multiple locations in the 

array. 

In order to allow unique addressability on our arrays, we initially took the above design and 

removed the four-fold rotational symmetry asepct. To form the new array, we now needed 

four times the number of distinct types of tiles and edges as before. Since our square tile 

has four edges made unique by the differing M13 sequence along each edge, each edge 

code can provide only four pairs of distinct edges. The two edge codes initially used with 

four-fold symmetry would not provide enough edge pairs now. A total of 24 distinct pairs 

are required for unique addressability (Fig. 4.1 bottom)—16 to form the 2 by 2 arrays 

(previously only 4 were needed) and 8 to bring the 2 by 2 arrays together (previously only 

2 were needed). Hence, 6 types of edge codes are needed as each code provides four pairs. 

Using palindromic edge codes as before, we made edges from four staples taken from an 

eight staple pool out of the eleven possible staple locations (011101110, where 1 represents 
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a location where a staple could be chosen). With these new 6 edge codes, we formed a 

uniquely-addressable 4 by 4 array (Fig. 4.1 bottom), although the yield was lower than the 

array with rotational symmetry. As there is an increase in the number of distinct tiles and 

edges, there is likely an increased amount of spurious interactions resulting in the reduced 

yield. Besides this problem, we already pushed the limits of our edge codes, limiting us 

from forming larger arrays with this method. 

Transitioning into more stages for the self-assembly process is a potential solution for (i) 

reducing spurious interactions by reducing the number of possible reactions at each stage, 

and (ii) using fewer distinct edges by reusing the same edge interaction for tiles assembling 

in different test tubes during the same stage. Still, multi-stage self-assembly requires a edge 

design compatible with the multi-stage annealing protocol. The temperature at any stage 

must be high enough to melt the spurious interactions in the current stage but not high 

enough to melt the previous stage's target structures. We took the above uniquely-

addressable 4 by 4 array and split its formation into three stages: (1) we annealed the tiles 

in separate test tubes from 90 to 20 °C, (2) we annealed four 2 by 2 arrays in separate test 

tubes from 50 to 20 °C, and (3) we annealed the four 2 by 2 arrays together from 30 to 20 

°C. The last stage required a very low temperature as the tile edges used four 2 nt sticky 

end staples which have a melting point close to 35 °C (see Chapter 3, section 2). The low 

temperature likely was not high enough to melt the spurious interactions, and we obtained 

poor yield. 
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Figure 4.1. Chapter 3, Section 5 finite arrays and failed attempts to expand the approach to uniquely-
addressable DNA origami arrays. AFM images are 10 by 10 microns. 

There are three unresolved issues that arise from creating a multi-stage self-assembly 

strategy in practice that we can see from these failed attempts. (i) Designing larger DNA 

origami arrays should not rely on increasing numbers of distinct edge strands as the sheer 

quantity would inevitably limit the size of the structures, (ii) the multi-stage tile design 

must be compatible with the multi-stage annealing process as mentioned above to break 

spurious interactions but not melt the prior stage's structures, and (iii) the self-assembly 
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process should be simple and accordingly the rules for designing arrays of different sizes 

should be as similar as possible. If the same rules apply across sizes, design principles and 

experimental conditions learned from smaller structures can be more readily applied to 

larger structures. 

We introduce an assembly technique that is hierarchical and also self-similar that we call 

fractal assembly. The name fractal was chosen as our technique mimicked fractal 

formation, the formation of complex structures through a simple algorithm repeating at 

different scales [6]. The self-similar component critically allows the use of a constant 

number of unique strands to built structures of increasing sizes, the multi-stage annealing 

protocol that functions experimentally, and allows applying assembly principles learned 

from creating smaller structures to larger structures. 

For fractal assembly, the formation of the DNA origami tiles individually is considered 

stage 0. Four square tiles are combined to form a square 2 by 2 array for stage 1 (Fig. 

4.2(a)). For each subsequent stage, a larger square array is formed from four smaller square 

arrays formed in the prior stage. For an n by n array, one starts with n2 test tubes of 

individual origami tiles and combines four into one at each stage until all molecules are 

combined into one last test tube after log2n stages (Fig. 4.2(b)). For a tile with x uniquely-

addressable pixels, the final array will have x × n2 pixels, and each pixel will have a unique 

address based off the identity of an initial test tube (Tij, 1 ≤ i, j ≤ n) and the identity of the 

pixel on the DNA origami tile in that test tube (Fig. 4.2(c)). 
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Figure 4.2: Design of fractal assembly. a, A three-stage self-assembly process forming an 8 by 8 array. Each 
distinct color dictates the tile-tile or array-array interactions in a particular stage. The shades of the same color 
are a particular edge interaction within the same stage. b, Forming n by n arrays in log2 n stages. c, 8 by 8 array 
with a Mona Lisa pattern. Indentations and bumps along edges show receiving and giving tile edges that consist 
of staples with nucleotide truncations and extensions, respectively. The four relative receiving edges of each tile 
are colored blue, green, orange, and yellow, as receiving edge identities are determined by the M13 sequence. 
Giving edges are colored based on their complementary receiving edges.  
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We developed three simple rules, recursively applied at all stages in fractal assembly. 

The first is the “giving and receiving rule,” the second is the “rotation rule,” and the last is 

the “edge code rule”. 

     4.1.a    The giving/receiving rule 

The first rule is the “giving and receiving rule”. In our edge design, desired interactions 

between DNA origami tiles are formed with nucleotide extensions "sticky ends" (called a 

giving edge) and truncations exposing the underlying M13 sequence (called a receiving 

edge). As the M13 scaffold sequence varies for the four edges of the square tile, we obtain 

four orthogonal receiving edges for any edge code — a particular sticky end length and 

staple layout along an edge. The rule for assigning giving and receiving edges (Fig. 4.3) is 

that for each of the four tiles or arrays, the two interactive edges — the participating edges 

in a particular stage — are either both giving or both receiving. The aim of this rule is to 

reduce self-aggregation. We previously noted in Chapter 3, section 5 that the spurious 

interactions between non-complementary giving and receiving edges are worse than those 

between giving or receiving edges alone. 

 

Figure 4.3. The giving and receiving rule, and the rotation rule. Each triangle points from a giving edge of 
a tile (or array) to a receiving edge of another tile (or array). North (N), east (E), south (S), and west (W) relative 
orientations of the DNA origami tile. Each white arrow points from the north edge to the south edge of a tile 
or an array. 
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     4.1.b    The rotation rule 

The second is the “rotation rule”. In Chapter 3, section 2, we investigated the detrimental 

effect surface modifications such as staple extensions had on the curvature of origami tiles 

in the formation of two-dimensional arrays. To mitigate the curvature effects and form 

large arrays, we changed the orientation of tiles relative to their neighbors to inhibit the 

ability of the curvature to propagating globally. 

In our final design, for each assembly of four tiles (or arrays), two tiles (or arrays) have one 

orientation, while the other two are 90 degrees rotated relative to the first pair (Fig. 4.3). If 

our prior results applied here, then should the DNA origami tiles have any internal 

curvature, it will be stopped from propagating globally in larger finite arrays. The specific 

orientations chosen also allow the four pairs of tile-tile or array-array interactions to be 

distinct from each other (E>N, N>W, W>S, and S>E). Note the receiving edges are spread 

once over N, S, E, and W, allowing a single edge code to be applied to all four edge pairs. 

Still, we explored the effect of tile orientation in fractal assembly to determine if it was 

truly necessary for finite arrays formed using fractal assembly. When all tiles had the same 

orientation in the array, we observed aggregations and no target structures (Fig. 4.4(a)); 

however, when the tiles were rotated in a 90 degree fashion compared to their neighbors, 

we obtained a greatly increased amount of incomplete but correctly-formed structures (Fig. 

4.4 (b)). The results imply the rotation rule is necessary to keep curvature from propagating 

in large finite arrays. 
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Figure 4.4. Rotation rule's effect on formation. a, top: design diagram, all tiles or arrays have the same 
relative orientation. Bottom: AFM image of 8 by 8 fractal assembly arrays. b, top: design diagram, each two tiles 
(or arrays) have the same orientation with the other two being rotated 90 degrees at each assembly stage. 
Bottom: AFM image of 8 by 8 fractal assembly arrays. c, top: design diagram of the 8 by 8 array from (b). 
Bottom: AFM image of 8 by 8 fractal assembly array from (b) missing one quadrant. 

     4.1.c    The edge code rule 

The last rule is the “edge code rule”. As shown in Figure 4.5, each edge code consists of 

eleven 0s and 2s, defining one edge of a tile. Each 0 represents a scaffold loop whereas 

each 2 represents a staple with a 2 nt sticky end. Our staples each provide one stacking 

bond along with the short sticky end for specificity. Overall, these edges are meant to 

provide high enough specificity to drive desire interactions, yet weak enough binding 

energy to allow tiles to rearrange themselves to avoid kinetic traps during self-assembly. 

Palindromic codes are used to reduce asymmetric structural fluctuation along the edges of 

the DNA origami tiles and promote stability of the self-assembled structures. The first stage 

of a fractal assembly uses an edge code of eight 2s. In the subsequent stages, the size of the 

array doubles and so does the number of tile edges participating in the desired array 

interactions. As a solution to the annealing process challenge, we split each edge code from 
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the previous stage to generate two new edge codes each with half of the 2s from the 

previous code (Fig. 4.5). While the locations of edge staples will spread out more for each 

later stage, the total number of edge staples participating in the desired interactions between 

tiles (or arrays) at any stage is constant. Plus with increased spacings between individual 

hybridization locations, the total binding energy between tiles or arrays will decrease [7, 8]. 

Decreased binding energy results in decreased melting temperatures of self-assembled 

structures at each stage, making an annealing temperature possible for each stage high 

enough to break spurious interactions yet not high enough to melt self-assembled structures 

from the prior stage. 

 

Figure 4.5. Edge rule. The edge rule for splitting staples in each stage. 0s represent the absence of a staple 
(open M13). 2s represent staple that is either truncated or extended by two nucleotides. Edges are split evenly 
in each stage and are palindromic. Each 2 in the second to fifth digits in each code corresponds to an 
indentation or bump on a tile edge shown in 4.2(c). 

As noted in Figure 4.4(c), we had formed 8 by 8 arrays with one 4 by 4 quadrant missing. 

The annealing schedule was 55, 45, and 35 ºC to 20 ºC for the three stages respectively. 

The melting temperature of a 2 by 2 array was measured at 52 ºC (Fig. 4.6), allowing 55 ºC 

to melt spurious interactions yet not be higher than the melting temperature of average 

origami structures as monomers [9]. 
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Figure 4.6. Fluorescence experiments for melting temperature measurement. a, Tile abstraction and edge 
design for a 2 by 2 array. The red dot (ROX fluorophore) is on a 5' end of an edge staple and is paired with the 
black dot (Iowa Black RQ quencher) on the 3' end of an edge staple on another tile. When the 2 by 2 array 
formed, the fluorophore is quenched causing low fluorescence. b, Melting curve for heating and cooling of 2 
by 2 arrays. Measured on a Mx3005P QPCR system (Agilent Technologies). Sample is heated from 25 to 45 ºC 
at 5 sec/0.1 ºC, from 45 to 55 ºC at 30 sec/0.1 ºC, held at 55 ºC for 30 sec, cooled from 55 to 45 ºC at 30 
sec/0.1 ºC, and finally cooled down 45 to 25 ºC at 5 sec/0.1 ºC. Each data point is an average of all data points 
at the same degree. Note, the fluorophore/quencher pair adds two stacking bonds to an edge in the 2 by 2 
array, likely increasing the melting temperature slightly. 

We decided to explore if increasing the annealing temperature would melt more spurious 

interactions and promote the formation of the missing quadrant (Fig. 4.7). However, the 

increased temperature of the anneal resulted in final structures that were scrambled. This 

result indicates that the temperature passed the melting point of the 4 by 4, arrays leading 

them to melt into 2 by 2 arrays recombining randomly. We continued with the 55, 45, and 

35 ºC annealing schedule for further experiments. 



 

 

76 

 

Figure 4.7. Annealing temperature. a, Design diagram of an 8 by 8 fractal array. Each quadrant has a unique 
pattern. b, AFM image of an incomplete 8 by 8 array, but with correctly formed quadrants. The annealing 
schedule was 55, 45, and 35 ºC to 20 ºC for each stage respectively. c, AFM image of scrambled and 
incomplete arrays. The last stage anneal was raised to 40 to 20 ºC. A few scrambled structures are outlined. 

It would be in principle possible to reduce the gap between the melting temperatures for the 

purposes of forming larger arrays. The edges would have to be redesigned to increase their 

melting point, possibly by adding more edge staples at each further stage. 

4.2    Demonstration of Fractal Assembly with DNA Origami tiles 

This section describes our structural modifications leading to the implementation of the 

Fractal Assembly rules on our square DNA origami tile. Using Fractal Assembly, we 

assembled and demonstrated the arbitrary patterning of two-dimensional arrays up to sixty-

four DNA origami tiles, reaching the micron-scale. 

With the design rules from the prior section, in principle, DNA origami arrays of any size 

using a constant set of unique strands becomes possible. After all, a larger array would just 

use more stages and more tiles that make use of a subset of the edge staples compared to 

tiles in a smaller array. At any point, desired interactions between tiles or arrays have at 

least twice as many edge staples involved as competing interactions (Fig. 4.8). This is 

important to prevent reused edge staples from inhibiting the self-assembly of the desired 

structures. 
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Figure 4.8: Desired and undesired interaction preference. The worst case maintains a desired reaction at 
least twice as preferred as undesired. Normally, the desired is at least four times more preferred. In subsequent 
stages, this gap between desire and undesired generally increases due to geometric spacing. 

The formation yield of one four by four quadrant was still relatively poor, and appeared to 

have a deformation on AFM imaging (Fig. 4.9(b)). We hypothesized that the poor yield 

was due to the deformation of tiles caused by imbalanced edges. Tiles near the exterior of 

the array had inert edges formed from a full set of eleven double-hairpin staples yet some 

of those tiles also had an interior edge with just four staples. If the adjacent scaffold loops 

provided an unbalanced level of strain, the difference in the number of edge staples could 

have caused the deformation. We decided to reduce the number of double-hairpin staples 

from all eleven locations to just five inert staples evenly spaced along the edge. The change 

proved to be a success when tested on 4 by 4 arrays, improving the yield of the 4 by 4 

arrays from 2.62% to 10.21% (Fig. 4.9 (b and c)). 
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Figure 4.9. Inert edges. a, Design diagram for (c). b, four by four array from a low yield quadrant showing a 
deformation. c, Edge diagram and AFM images for eleven and five double-hairpin edge staples per edge at the 
exterior of the array. Correct structures are colored yellow, with the rest colored blue. 

We suspected another reason holding back the yield was pipetting accuracy. To address 

this, we modified our protocol to increase pipetting volumes to better ensure each tile or 

array in a mix had a more accurate concentration. With the adjusted protocol, our yield 

increased from 10.21% to 16.11% (Fig. 4.10(a)). At the same time, we were redesigning 

the bridge staples and interior staples near the seams in our DNA origami design. The new 

design was meant to supply more pixel points for even greater continuous surface 

addressability. Perhaps due to break points adding flexibility, the new design fortunately 

led to an even higher yield of 24.99%. 
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Figure 4.10. Bridge and interior staple redesign for increased continuous addressable surface area. a, 
Original Cadnano [10] diagram with 112 pixels and a formed 4 by 4 array (same design as in 4.9 (c and d)). b, 
New Cadnano design with 136 pixels. Correct structures are colored yellow, with the rest colored blue. 

Finally, we moved to test the fractal assembly procedure on an automatic liquid handler. In 

making just a 4 by 4 array, there are approximately 3,000 pipetting events involved. A 

human is prone to errors and even correct pipetting actions are likely to have greater 

inaccuracy than the machine liquid handler. Once a human user writes a program to form 

the mixing protocol (and properly debugs the program), the liquid handling robot can 

rapidly and reliably carry out complex mixing procedures with great accuracy. Our yield 

for the 4 by 4 arrays increased from the 24.99% all the way up to 45.19% (Figure 4.11) 

when the individual tile mixing protocol was performed by an Echo 525 liquid handler. The 
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mixing time to form the entire array from scratch also decreased from days to minutes. 

The human user still combines the tiles together in each stage. 

 

Figure 4.11. Automatic liquid handler. Same 4 by 4 design as in 4.10(b). Automatically mixed by an Echo 525 
liquid handler. Correct structures are colored yellow, with the rest colored blue. 

Another factor when scaling to an 8 by 8 array size is the addition of an additional 

annealing stage. For forming the 4 by 4 array, we used an annealing schedule four times as 

long as the first stage for the second stage. The reason was that the concentration of 2 by 2 

arrays was necessarily at most a fourth the concentration of the individual tiles as four tiles 

were mixed together. Extrapolating this rule, the annealing time for the third stage forming 

an 8 by 8 array would be more than two days. To justify the long time, we attempted to 

form a 4 by 4 quadrant of the final 8 by 8 array where the first and second stages were 

annealed for the same duration. The yield of that quadrant indeed dropped from 48.72% to 

32.02% (Fig. 4.12). It appeared that the longer anneal time was necessary. 
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Figure 4.12. Annealing time per stage. a, Design diagram of a 4 by 4 quadrant of an 8 by 8 array with a Mona 
Lisa pattern. b, AFM image of the quadrant annealed for 2 minutes per 0.1 ºC in stage 1 and 8 minutes per 0.1 
ºC in the stage 2. c, both stages were annealed 2 minutes per 0.1 ºC 

Throughout the development of fractal assembly, we explored several other potential 

solutions to the above discussed issues. See [11 (Supplementary 6.1 to 6.9)] for other less 

successful but informative investigations. Importantly, what we learned from our simpler 

experiments on 4 by 4 arrays could apply to more complex 8 by 8 arrays due to the fractal 

nature of our approach — a simple set of rules repeated at different scales. 
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With the design principles and experimental conditions determined, we proceeded with 

the 8 by 8 array formation to provide us a full set of 2 by 2, 4 by 4, and 8 by 8 arrays (Fig. 

4.13). These arrays were assembled in two to four stages (including stage 0, the annealing 

of the individual origami tile). Each subsequent stage had a lower annealing temperature 

range and a longer annealing time duration. Before mixing individual tiles together, we 

added a set of negation strands with complementary sequences to the edge staples to each 

tile to prevent any edge staples incorporating into locations on other tiles as we did for the 

finite arrays in Chapter 3, Section 5. 

 

Figure 4.13. Experimental demonstration of fractal assembly. AFM images of 2 by 2, 4 by 4, and 8 by 8 
arrays with either no surface modifications (top row) or a Mona Lisa pattern (bottom row) 

With the arrays formed and each pixel patternable, in principle, the 5’ or 3’ end of each 

interior staple can be directly conjugated to, or extended as attachment sites for, diverse 

molecules including proteins [11], carbon nanotubes [12], polymers [13], metal 

nanoparticles, and organic dyes [14]. In this design, each interior staple is a uniquely-
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addressable pixel that can be either be ON or OFF (with or without modification), which 

leads to arbitrary binary patterns. These principles could expanded upon to form more 

sophisticated patterns if multiple types of modifications or extensions are utilized. Our 

design has 136 readily addressable pixels per tile, which on an 8 by 8 array, allows the 

selection of 8,704 pixels with nanoscale precision on a micron scale. 

4.3    Yield of arrays in relation to number of tiles 

In the prior section, yield of assemblies was presented as we explored design principles and 

experimental conditions in the demonstration of fractal assembly. This section covers the 

methodology and process of determining yield, and the yield of our final assemblies.  

The yield is determined as the total pixels in a complete array of the designed size, divided 

by the total pixels above a threshold of the background in random 10 by 10 µm images for 

2 by 2 arrays and 30 by 30 µm images for 4 by 4 and 8 by 8 arrays. The error was 

calculated as p√(1 − p)/√n, where p is the estimated yield and n is the number of complete 

arrays, treating the yield as a Bernoulli probability. This calculation was software assisted 

[15] but determinations of correct target structures was a manual determination. Structures 

cut off by the AFM image borders or structures tightly clustered in an aggregation were not 

considered correct target structures. Target structures are highlighted in yellow and all 

pixels above a background threshold are highlighted in blue. 

In order to determine the accuracy of our AFM-based yield estimation, we explored 

whether a bias existed for binding to mica between structures. We were particularly 

interested in differences based off of size. To test the differences, we mixed 4 by 4 arrays 

with monomers at an equal concentration of individual tiles (Fig. 4.14). If the monomers 

bound to the same extent as 4 by 4 arrays, the yield of 4 by 4 arrays would drop in half 

compared to its yield calculation without monomers present. However, if there is a bias, 

greater than half would indicate less binding of monomers, and less than half would 

indicate favored binding of monomers. The AFM images showed the latter, with 

monomers biased to land. We hypothesize that the smaller monomers diffuse faster and 
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thus land faster on the mica surface. The result is our yield estimates could be lower (or 

higher) than the actual yield depending on the off-target structure size distribution. If the 

off-target structures are smaller incomplete structures, the yield is likely to be an 

underestimate, whereas larger aggregations would settle more slowly, resulting in an 

overestimate. Our AFM images show a balance of incomplete structures and aggregated 

structures, ideally keeping the yield estimate reasonably accurate. 

 

Figure 4.14. Assessing accuracy of AFM-based yield estimation. a, Three case scenarios for yield 
estimation. b, Yield of plain 4 by 4 arrays. c, Yield of the same plain 4 by 4 arrays mixed with monomers. The 
yield is less than half. 

The basic yield of monomer DNA origami was roughly 97%. For the plain arrays (Fig. 

4.15), the yield of two by two arrays was calculated at 92.81 ± 1.74%.  The yield of four by 
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four arrays was calculated at 47.91 ± 1.76%. The yield of the eight by eight arrays was 

calculated at 1.81 ± 1.27%. The yield decreases quite significantly with increasing size of 

the array. This is not surprising when compared to other assembly approaches such as in 

chemical synthesis that involved sequential steps. While Fractal Assembly does not involve 

single tile attachments, it can be helpful to consider the yield if tiles attached one at a time. 

In order to match the above yields of Fractal Assembly, each individual tile attachment 

would need to have nearly a 95% successful attachment rate. This can be calculated from 

the formula 0.95n-1 for an n tile assembly: ~86% for 4 tiles, ~46% for 16 tiles, and ~4% for 

64 tiles. Furthermore, unlike in chemical synthesis, we did not perform purification at any 

stage before proceeding to subsequent stages. 

 

Figure 4.15. Plain arrays. a, a 10 by 10 µm image for 2 by 2 arrays and b and c, 30 by 30 µm images for 4 by 4 
and 8 by 8 arrays respectively. Yield is the total pixels in complete arrays (yellow) divided by the total pixels 
above the threshold of background (blue + yellow). The error was calculated as p√(1 − p)/√n, where p is the 
estimated yield and n is the number of complete arrays, treating the yield as a Bernoulli probability. n = 205, 
384, and 2 for plain arrays of sizes 2 by 2, 4 by 4, and 8 by 8, respectively. 
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To demonstrate our arbitrary capability, we modified a select set of pixels with double-

stranded extensions to form a global pattern design of a Mona Lisa. For the arrays with 

patterns, we calculated yield in the same fashion getting yields of 94.22 ± 1.22%, 41.55 ± 

1.26%, and 3.22 ± 1.00% respectively for the two by two, four by four, and eight by eight 

arrays (Fig. 4.16). These values are remarkably similar to plain tiles without any patterns. 

This suggests that the Fractal Assembly rules create a robust enough structure to handle 

particular changes in its surface modification — a good property to have when attaching 

molecules such as proteins [11], carbon nanotubes [12], or polymers [13] to the origami 

surface. 

 

Figure 4.16. Arrays with a Mona Lisa pattern. a, a 10 by 10 µm image for 2 by 2 arrays and b and c, 30 by 
30 µm images for 4 by 4 and 8 by 8 arrays respectively. Yield is the total pixels in complete arrays (yellow) 
divided by the total pixels above the threshold of background (blue + yellow). The mean was calculated as 

, where pi is the estimated yield and ni is the number of complete arrays in each image. The 
error was calculated as p√(1 − p)/√n, where p is the estimated yield and n is the number of complete arrays, 
treating the yield as a Bernoulli probability. n = 346, 633, and 10 for arrays with a pattern for sizes 2 by 2, 4 by 
4, and 8 by 8, respectively. 
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Using the automatic liquid handler, we tested several other patterns on the 8 by 8 array 

(see section 4.4). The designs had more complex details with finer features. Using these 

automatic experiments, we made an estimate for the correct tile incorporation rate in four 8 

by 8 array patterns (Mona Lisa, rooster, bacteria, and a circuit). For each pattern, we used a 

sample size of 6 to 38 arrays for each pattern. The rate varied from 99.7 ± 0.09% to 98.96  

± 0.52% depending on the pattern (Mona Lisa pattern had the highest rate and the circuit 

had the lowest). For the smaller arrays of 4 by 4 and 2 by 2, the rate increased to 99.93  ± 

0.07% and 100% with a sample size of 90 and 167 arrays respectively. 

There are several aspects of fractal assembly that merit further study. First, while our 

design has fairly decent continuous surface area, the pixels are not completely continuous 

in the origami arrays, resulting in periodic holes in the array. Using a different DNA 

origami with a fully packed pixel layout with fractal assembly would make a smoother 

breadboard. Second, a deeper understanding of the thermodynamics and kinetics of origami 

tile self-assembly [7, 16] would allow better control of the assembly process, allowing 

perhaps larger origami arrays with higher yield.  

Third, for many potential application, a separation of incomplete from complete structures 

is desired. We explored removing excess staples and negation strands from the origami 

arrays after the fractal assembly process. We experimentally purified 1 by 1 (monomers) to 

8 by 8 arrays using 0.5 mL and 100kDa spin filters (Amicon, #UFC510096). Each sample 

was filtered six times, each time was for 3 minutes at 13,000 relative centrifugal force 

(RCF). We used gel electrophoresis to analyze the samples before and after purification 

(Fig. 4.17(a)). The gel showed the successful removal of excess staples and negation 

strands in all samples. The monomers and 2 by 2 arrays migrated at the same speed before 

and after purification demonstrating they were still intact. The 4 by 4 and 8 by 8 arrays 

partially or completely stayed in the wells, likely because they were too large to enter the 

gel. We AFMed to determine the structural integrity of larger arrays (Fig. 4.17(b)). While 

the yield decreased, no particular deformation was observed as compared to the unpurified 

samples. 
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Figure 4.17. Spin-filter purification. a, 1 by 1 (monomer) to 8 by 8 arrays before and after purification. 0.5% 
agarose gel, ran at 80 mV for 2 hours. The contrast was increase in the orange box to show bands at low 

concentrations. b, AFM images of 4 by 4 arrays pre and post purification. 

We also investigated strengthening the origami arrays after their formation for potential 

purification techniques such as glycerol-gradient centrifugation [17] that have been used to 

separate other multi-origami structures based on their sizes. We accomplished the 

strengthening by added a 10-fold excess of the full set of 44 edges staples each with two 

stacking bonds to 4 by 4 arrays (Fig. 4.18). After incubated at room temperature for 1 hour, 

the staples were observed integrated into the origami tiles. The additional edge staples 

increased the interactions from 32 and 16 to 38 and 30 stacking bonds respectively (each 2 

nt sticky end is counted at 3 stacking bonds). If applied to an 8 by 8 array, the weakest 

interactions would increase from 8 to 26 stacking bonds. 
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Figure 4.18. Strengthening origami arrays after fractal assembly a, design diagram. b, AFM of 4 by 4 array 
before and then after strengthening. The white box highlights the most obvious changes on the edges (4 staples 
per edge on the left to 11 staples per edge on the right). 

4.4   Software tool for automated design and experiments 

Forming a single array can take the mixing of hundreds to over ten thousand strands. In 

order to facilitate adoption of our approach, we decided to increase accessibility to Fractal 

Assembly through the development of an online software tool called the FracTile Compiler 

[18]. 

The compiler simplifies the design steps from creating an arbitrary pattern to the mixing 

protocols; see Figure 4.19. The process starts with a user selecting the size of the canvas 
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from a single monomer tile all the way up to our demonstrated eight by eight array. The 

canvas starts blank, allowing the user to select pixels and draw their desired image. An 

image may be uploaded, upon which, it is converted to grayscale, and pixels are 

automatically selected to match the thresholded result. Naturally, the threshold level is 

adjustable, along with the options to invert, shift, or scale the entire layout. Manual drawing 

or touchups is always available. All layouts can be saved for future changes. Next, the 

compiler will automatically convert a pixel layout into a set of tiles depicting the series of 

stages of Fractal Assembly necessary to create the final array. The giving/receiving, 

rotation, and edge code rules are all automatically applied recursively to the diagram at all 

stages. Furthermore, the compiler will generate design diagrams of DNA origami tiles 

showing the form of every edge staple. Every diagram may be saved, often with different 

formats. 

 

Figure 4.19. Drawing and display options of the FracTile Compiler. a, main options available with the 
software [18]. From left to right: canvas size selection, image uploading, image modification options, display 
abstract tiles showing the Fractal Assembly process, display detailed DNA origami tiles showing edge 
configurations, display mixing protocols, show image with mock AFM colors. b, Abstract Tile diagram display 
for a rooster image. 
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Besides ease of display, the compiler forms the mixing protocols, listed what goes in 

each test tube, and lists all DNA sequences necessary for those protocols. While a manual 

mix option is supplied that allows a user to manually pipette all DNA strands, the program 

supports output of a mixing scheme directly readable by an Echo 525 liquid handler. By 

inputting the scheme into a liquid handler, the initial mixing step can be performed fully 

automatically. Even for the eight by eight array, with over ten thousand staples strands, 

automatic mixing can be completed in around half an hour, with user presence not 

necessary. The need for extensive initial lab work is thus removed, only requiring artistic 

efforts in the design of the layout. 

In order to demonstrate the generality of patterns and the ease of which design could be 

implemented, we designed several patterns with an assortment of fine and complex 

features; see Figure 4.20. Each of these designs were successfully formed experimentally 

with the designed patterns. 

 

Figure 4.20: Software aided automatically mixed experiments. a, Design diagrams displayed in mock AFM 
colors predictive of the design's appearance on AFM. b, The actual AFM images: a Mona Lisa, a bacteria scale 
bacteria, a rooster, a photoreceptor circuit [19], a DNA robot (drawing), and a chess game. 
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C h a p t e r  5  

RECONFIGURATION OF DNA NANOSTRUCTURES            
USING TILE DISPLACEMENT 

This chapter focuses on a general approach to reconfiguration of DNA origami 

nanostructures through a fundamentally new concept we call tile displacement. 

Cells, the quintessential natural molecular machines, undergo significant structural 

reconfiguration. Why do cells bother with reconfiguration? Two very general reasons 

apply. First, it is critical to adapting to the environment and responding to environmental 

cues. Shape and structural reconfiguration in response to cues is important for many cells to 

perform their life sustaining tasks in the human body. For example, immune cells will 

undergo shape reconfiguration as they chase an invader, pushing and pulling on their 

membranes [1]. It is worth noting that these reconfiguration pathways are genetically 

broken in some unfortunate individuals, leading to a set of structurally more "static" 

immune cells unable to properly respond to the presence of foreign invaders, which leads to 

the health results expected—easy infections [2].  

A second reason to reconfigure is efficiency. Most other cells will at least undergo pattern 

reconfiguration by switching their surface receptors as the cells mature [3] or face an 

environmental stimuli [4]. In this manner, a single cell might simply transform into 

whatever type of cell it determines is needed based off of the cues it receives. For example, 

mammalian stem cells will efficiently differentiate into several kinds of blood cells each 

performing their own tasks in the body and each with their own unique phenotypic markers 

on their surface [5]. Furthermore, the location of surface markers can also be very 

important. Many cells rely on careful signaling complexes to define the plasma membrane 

domains to which proteins are delivered [6]. Failure to properly reconfigure the correct 

plasma membrane domain leads to all sorts of diseases such as Bartter syndrome, 

congenital sucrase-isomaltase deficiency, or familial hypercholesterolamia [6].  Regardless, 



 

 

93 

in a healthy person, the continuous dynamic surface configuration in cells function 

impressively. Not only are these adaptations efficient for life, allowing one cell to 

potentially adapt to a wide range of tasks, but also this plasticity allows for responsive 

changes to external stimuli such as foreign invaders or biological chemicals.  

Still, structural reconfiguration has yet to be thoroughly explored in artificial molecular 

machines. There have been some dynamic DNA structures (Fig. 5.1). Han et al. [7] formed 

a DNA Mobius strip able to take a thick and thin conformation. Gerling et al. [8] made a 

DNA robot-like figure with two hinged arms able to take an open or closed position. Song 

et al. [9] made a “domino” nanoarray able to pass an input deformation throughout an 

array. Others have made openable boxes [10] or drug delivery vehicles [11] that open with 

the right target. Ultimately, all these systems perform a specific task and lack a 

generalizable module for arbitrary reconfiguration. 

 

Figure 5.1. Dynamic DNA structures. a, a DNA Mobius strip [7]. b, a DNA robot-like figure [8]. c, a 
"domino" nanoarray [9]. 

We present a general approach to systematic structural reconfiguration we call tile 

displacement after the similar system in DNA strand interactions known as strand 

displacement. Our approach is designed to allow DNA nanostructures with arbitrary 

patterns to reconfigure arbitrary parts of the structure in an arbitrary order. Shapes 
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reconfiguration may also be applied. We further demonstrated control over the kinetics 

of tile displacement and developed several building blocks for general-purpose 

reconfigurations of DNA nanostructures. Examples include sequential reconfiguration, 

competitive reconfiguration, and cooperative reconfiguration. Finally, we explored the 

scalability of multi-step reconfiguration as demonstrated through a fully playable nano-

scale biomolecular tic-tac-toe game, demonstrating a piece by piece arbitrary interchange 

of a nanostructure’s subunits even to the point none of the original species on the 

nanostructure game board remained. In principle, such reconfiguration can allow advanced 

circuits with the capacity to adapt to environmental needs or heal damaged components. 

The plasticity may be more common to biology than to engineering, yet the strategy for 

autonomous reconfiguration in self-assembled DNA nanostructures is now allowing 

adaptive behaviors in artificial molecular machines. 

5.1    A general approach to reconfiguration 

This section introduces the process of developing the general approach to reconfiguration 

we call tile displacement.  

In order to better understand control of dynamic behaviors, first we will step away from 

DNA origami and arrays. We look to the earlier developments in the dynamic DNA 

nanotechnology field for inspiration. A simple mechanism for controlling dynamic 

behaviors in DNA circuits [12] and robots [13] is the mechanism of DNA strand 

displacement (Fig 5.2(a)). A single-stranded DNA invader signal can first bind to a 

partially double-strand DNA complex by a single-stranded domain known as a toehold. 

After branch migration in a competing domain, the originally bound strand in the complex 

is released. Does there exist a similar mechanism for controlling reconfiguration in DNA 

nanostructures? 
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Figure 5.2. DNA strand displacement as compared to the new mechanism of DNA tile displacement. a, 
A simple DNA strand displacement. The single-stranding invader binds to the partially double-stranded 
complex via the complementary toehold T/T* domains, then through branch migration along B, releases the 
originally bound strand and fully integrates itself into the complex. b, abstract diagram of tile displacement with 
tile positions. c, 3D diagram of tiles undergoing the same reaction. d, Experimental data of displacement where 
the invading monomer lacks a toehold. Dotted outlines are of unreacted species. e, Experimental data of 
displacement where the invading monomer has a toehold. Dotted outlines are of unreacted species and solid 
outlines are of reacted species. 
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Introducing the concept of tile displacement. Instead of the invader single-stranded DNA 

segment, there is an invader tile, see Figure 5.2(b), and instead of a partially double-strand 

DNA complex, there is a partially connected dimer between two tiles. While the tiles may 

come in many shapes, here shown as a square, they must possess edge binding domains 

that is analogous to DNA binding domains. The invader tile will have a fully unbound 

edge, similar to the single-stranded DNA invader. The tile dimer, analogous to the partially 

double-stranded DNA complex in DNA strand displacement, will be bound together only 

partially leaving a toehold segment of unbound edge domain. The invader tile will be able 

to bind to the toehold, and then through some mechanism likely similar to the branch 

migration in DNA strand displacement, replace the originally bound dimer tile with itself. 

In Figure 5.2(c), the concept of tile displacement is drawn using square DNA origami tiles 

as the invader and dimer complex tiles. The invader tile has an X surface modification 

pattern to distinguish it from the originally bound dimer tile, marked with an O surface 

modification pattern, that the invader is designed to replace. After replacement, the original 

plain-O dimer is now reconfigured into a new plain-X dimer.  

We experimentally formed the tiles; see Figure 5.2(d and e). Besides having an invading 

tile being able to replace a target tile, it is important that the tile does not undergo a 

replacement without a proper toehold domain; otherwise, the process of displacement 

would not be controllable. Two reactions were thus tested. First, an invading tile missing a 

complementary toehold region is added to a pre-annealed dimer complex of plain and O 

surface modified tiles. Second, an invading tile with a complete complementary toehold 

domain is added to a pre-annealed dimer complex of plain and O surface modified tiles. 

Upon AFM imaging the samples, the invaders with no toehold existed essentially as 

monomers as there was little drive for them to integrate into the dimer. This is also 

evidence that the dimers cannot spontaneously disassociate but must go through the tile 

displacement mechanism. Indeed, the invaders with toeholds had mostly converted all the 

dimers into the new plain and X configuration. The toehold concept is thus capable of 

controlling tile displacement.  
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While we are mostly interested in reconfiguring surface patterns due to patterning's 

potential applications to nano-robotics and devices, the shape may also be reconfigured 

(Fig. 5.3). We tested another simple tile displacement reaction with the invader tile being a 

triangle shape rather than another square. Hence, after the reconfiguration, the complex 

changed its shape from a square-square to a triangle-square. As a triangle has different edge 

angles as compared to a square, the integration of a triangle can change tile growth fronts, 

and if integrated into an array, may potentially even introduce curvature in three-

dimensions.  

 

Figure 5.3. Triangle shaped invader tile reconfigures a square-square dimer complex into a triangle-
square dimer complex. a, Triangle without a proper toehold does not react. b, Triangle with a toehold reacts.  

When looking at the tile diagrams in Figure 5.2, it is noticeable that the edges of the 

designed tile and a DNA strand are only analogous in an abstract diagram. While the 

concept of tile displacement can be applied to a wide range of tile shapes and tile edge 

connections strategies, we present a method built on the prior chapters for controlling tile-

tile interaction (Fig. 5.4). As noted in prior chapters, our tile's edges are composed of 

helices perpendicular to the edge. We controlled tile-tile interactions through several 

staples with sticky ends and stacking bonds. While a DNA strand hybridization involves 

nucleic acid base pairing together through hydrogen bonds, we bring tiles together through 

staples binding to other staples through sticky ends and stacking bonds. In this manner, 
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each staple can be in the abstract thought of as a base along a DNA strand, albeit with 

differing size, geometry considerations, specificity, and binding energy control. The 

strength of binding at each staple along the edge of a tile can be individually changed by 

modifying the sticky end length of that staple. The binding strength of a toehold may be 

also changed by modifying the number of staples interacting. In order to have uncovered 

domains such as with a complex's original cover tile not covering the toehold domain, we 

can remove sets of staples entirely. Branch migration domains were kept with 2 nt sticky 

ends. These domains were encoded as desired by removing select staples in order to 

increase the number of edge codes as done in Chapter 3, section 5. 

 

Figure 5.4. Edge design of tiles. All domains are formed from staples interacting through sticky ends and 
stacking bonds. Open toeholds are formed by removing staples in the opposite staple locations within the 
dimer complex. 

It is worth noting the origins of tile displacement, and its behind-the-scenes existence in the 

formation of static nanostructures. In the prior chapter, we formed finite arrays of square 

DNA origami tiles. Focusing on the smallest array, a 2 by 2 array, comprising 4 tiles, the 

yield was estimated at over 92.81 ± 1.74%. The yield is quite high, especially when we 

noted tiles did not form perfectly from M13 in the first place. If tile connections were 

irreversible, then once three tiles interacted to form a 3-mer, the only path to forming a 
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complete structure would be the integration of the correct last monomer. Many 

incomplete structures would be expected to be leftover near the end of the anneal as they 

would be unable to react with each other. However, if the incomplete structures were 

allowed to react with each other, for example two 3-mers reacting with each other to form a 

complete structure and a dimer, the overall yield would increase markedly. It was results 

such as this that led us to discover DNA tile displacement.  

5.2    Competitive Reconfiguration 

This section explores the first of three general purpose reconfiguration of DNA 

nanostructures, competitive reconfiguration. 

An important driving force in dynamic DNA nanotechnology has been the capacity to build 

computational systems. Many of these circuits rely on the ability to tune reaction rates as 

variable rates allow functions such as analog to digital conversion or thresholds [12] (Fig. 

5.5). In essence, small DNA strands can be controlled to interact with one another at rates 

tunable over several orders of magnitude [14]. Similarly, in programming the pathways of 

structural reconfiguration, the ability to tune reaction rates would allow more sophisticated 

functions such as those that exploit competition. Cells take advantage of competing 

membrane modifying pathways for their own structural reconfiguration such as when 

guiding the growth cone of a developing neuron's axon [15]. However, in artificial 

nanostructures, there has been no such control developed for DNA origami interactions. 

 

Figure 5.5. DNA circuits and rate tuning. a, Simple DNA building blocks using strand displacement and its 
rates, capable of scaling to large digital logic circuits [15]. b, Variable rate of strand displacement over several 
orders of magnitude.   
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We explore a range of tile toeholds for their kinetic properties. There are two general 

strategies we used to modify toehold binding energy. First, we can vary the sticky end 

length of staples involved in the toehold. We tested lengths of one and two nucleotides in 

the staple's sticky ends to provide variable binding energy yet still maintain specificity. 

Second, we can directly vary the number of staples involved in the toehold domain similar 

to using fewer base pairs in a DNA strand toehold. We vary the number of staples from 

zero to four. The branch migration domain is entirely 2 nt staples. In order to measure the 

kinetic rates, we formed a dimer from two tiles we refer to as the Base Tile (BT) and Cover 

Tile (CT), see Figure 5.6. The CT has a quencher and the BT has a fluorophore arranged 

such that the fluorophore is quenched while in the dimer state. The BT has the toehold 

domain with either 1 or 2 nt truncation receivers. If the CT is released, the fluoresence 

signal would rise. We displace the CT with an Invader (Inv) tile that has variable toeholds. 

Kinetic curves are shown in Figure 5.6(b) for 1 nt and 2 nt sticky end lengths and from zero 

to four staples. As expected, 2 nt sticky end curves are generally faster than 1nt sticky end 

curves with the exception of one staple of 2 nt. Also, decreasing the number of staples 

decreases the rate of the reaction as expected. At a toehold length of zero, the reaction, 

while not zero, is a very slow leak. The analysis of the kinetic curves is show in Figure 

5.6(c) and is compared to DNA strand displacement. The results might be attributed to the 

DNA origami's larger size. For example, the displacement rate is lower than strand 

displacement perhaps due to long range geometric considerations. While the binding rate is 

somewhat lower, the disassociation rate is also a lower variable of the toehold binding 

energy. There also appears to be differences between 1 nt and 2 nt sticky ends for kinetics. 

It is worth pointing out that M13 sequences dictated the edge's sequences and performing 

kinetic measurements on another two random edges is likely to yield varying specific 

results; however, the trends in toehold strengths (i.e., more staples increasing binding 

energy) are presumably similar. 
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Figure 5.6. Kinetic measurements of tile toeholds. a, abstract diagram of tile displacement reaction. There 
are two types of BT toeholds, one with 1 nt truncations and the other with 2 nt truncations. The Inv toehold 
varies between one and four staples of 1nt and 2nt sticky ends. When the Inv tile replaces the CT, the quencher 
is released from the BT resulting in signal rise. b, kinetic curves. For invaders of 1 nt and 2 nt sticky ends from 
zero to four staples. For example, 1nt0Toe is 1 nt sticky end with a zero staple toehold length. c, analysis of 
kinetic data for the interaction of these specific tile edges as compared to strand displacement.  

With a means to control kinetics, we design a competitive reconfiguration pathway with 

tiles, see Figure 5.7. We take advantage of the separation between 1nt and 2nt sticky end 

kinetics to form two dimers. The dimer for the faster pathway has a four staple 2 nt toehold, 

and the dimer for the slower pathway has a four staple 1 nt toehold to provide the kinetic 

separation. The invader tile has a four staple 2 nt sticky end toehold which can bind 

perfectly with the faster pathway toehold but can also bind less effectively with the slower 

pathway toehold as it can only bind by 1 nt. As long as the stronger toehold actually results 

in a faster reaction, then it should out-compete the designed slower reaction. It would not 

be until the amount of invader tile exceeds the amount of fast pathway dimer that it would 

particularly react with the slower pathway. In this way, the reaction also works as a 

threshold. Experimental results roughly agreed with expectations. The Invader tile 

preferentially resulted in a rise in signal from the faster pathway with only a significant rise 
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in the slower pathway when more invader was added than there was available fast 

pathway. We also performed AFM on the sample. We labeled our tiles with unique surface 

patterns so that we could distinguish each tile on imaging. Thus, we were able to verify that 

starting and target nanostructures were present in expected ratios. The fast pathway 

successfully outcompeted the slower pathway for reconfiguration and also demonstrated a 

threshold reaction. 
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Figure 5.7. Competitive reconfiguration. a, tile abstract diagram. Invader tile can react with either dimer 
CT:BT1 or dimer CT:BT2 with different kinetics. b, fluoresence kinetics data for the two dimers at 2nM with 
variable amounts of invader tile added. c, Completion levels d, Origami diagrams and AFM images of two 
invader concentrations. Left: 1.2nM, right: 6nM. Dotted outlines are incomplete structures. Solid colored 
outlines are complete reactions.  
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5.3    Sequential Reconfiguration 

This section explores the second of three general purpose reconfiguration of DNA 

nanostructures, sequential reconfiguration. 

Biological pathways often work through a sequential series of steps. For example, introns 

are cut before protein synthesis least wasted non-sense protein be formed. Likewise, the 

reconfiguration of a complex structures (nano-devices for example) can avoid costly steps 

until all the support steps have occurred. 

We likewise designed a sequential reconfiguration consisting of a size two cascade 

requiring the second step to occur only if the first step occurred; see Figure 5.8. Here, we 

also add another dimension to our method; rather than work on a single edge between 

dimers, we move our geometry to two-dimensions. Our starting unit is now a 2 by 2 array 

with four edge interactions going vertically or horizontally. Obtaining bulk data is still done 

with a fluorophore and quencher pair located between two connected tiles. In this 

sequential reconfiguration, first, a monomer tile does a tile displacement into a corner of 

the 2 by 2 array. The monomer invades by a strong four staples to drive the reaction 

forwards. In order to complete the reaction, the first monomer invader must invade two tile 

edges in two-dimensions. Furthermore, the invasion reaction is not a complete reaction, but 

rather, the invader is unable to bind to the last three staples. This mismatch is planned as 

three staples is not a stable domain on its own, and so even though the invader does not 

displace every single staple, the original tile in the 2 by 2 array can still fall off once all of 

its connections to the 2 by 2 array but 3 staples are displaced. When the original tile falls 

off, it leaves behind a toehold of 3 staples suitable for attack by the second step species of 

our reaction—a dimer. This dimer matches the new toehold that appears only after the first 

step of the reconfiguration pathway. It binds and performs its own complex displacement. 

While only displacing in one-dimension, by displacing off half the 2 by 2, it does a 

displacement across two tile edges joined together. Only when this last step succeeds 

would we see a fluoresence increase.  
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We further performed AFM to visualize our reaction. The two un-displaced tiles in the 

2 by 2 array were given surface modification patterns of circles. The two tiles to be 

displaced were given an arc pattern such that the 2 by 2 array appeared to show a frown. 

The monomer tile contained a single straight line along its midpoint. When it integrated 

into the 2 by 2, it replaced half the frown with a straight line similar to a smirk. Finally, the 

dimer contained another arc pattern but upside down. Hence, when the dimer invaded for 

the last step, it turned the smirk into a smile. 
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Figure 5.8. Sequential reconfiguration. a, abstract diagram of a two step sequential reconfiguration. First a 
monomer tile invader in two-dimensions opening a toehold for a dimer to invade and displace across multiple 
tiles. b, reaction mechanism in (a). c, fluorescence data. The bottom blue curve is a two by two array at 2nM 
plus the second step dimer at 4nM. The green curve is a two by two array with the first step monomer already 
pre-annealed into the array at 2nM plus the second step dimer at 4nM (kinetics of just the second step 
reaction). The yellow curve is the two step reaction with a two by two array at 2nM, and monomers and dimers 
at 4 nM. d, Origami species diagrams and AFM images. Dotted outlines are of starting components. Solid 
outlines are of reacted components. All staples are 2 nt sticky ends. See Appendix A for a detailed design 
diagram. 
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The Fluorescence kinetics data gave expected and unexpected results (Fig. 5.8(c)). We 

wanted to ensure that the second reconfiguration may only occur if the first reconfiguration 

occurred first. We tested mixing the second step dimer reaction with the starting two by 

two array without any of the first step monomer. Without the monomer to open the toehold 

for the dimer, the reaction should not take place. We see this expected result in the blue 

curve being reasonably flat near zero. We also wanted to see the rate of the second step as 

compared to the first step. We measured by second step by starting with the preformed 

product of the first step. This 1-step reaction reacted as shown in the green curve. Putting 

the whole reaction together, we tested the sequential reconfiguration with both invaders to 

form the yellow curve. The degree of separation between the two curves was unexpectedly 

close.  

We then looked to the AFM data. The leak reaction of the second step dimer shows 

extensive frown 2 by 2 arrays even though there are many smile dimers strewn around 

unreacted. Thus, the dimer could not easily react without the monomer being present. The 

one-step reaction of the second step shows extensive smile 2 by 2 arrays where the dimer 

invaded successfully. Likewise, the complete reaction with both steps also shows extensive 

smile 2 by 2 arrays where the monomer invaded followed by a successful dimer invasion. 

However, the complete reaction also showed a population of 3-mers. We suspected there 

was an alternative pathway for the reaction contributing to a faster than expected reaction 

on par with the 1-step reaction. See Appendix A.4 for the proposed alternative 2-step 

mechanism. 

In the end, we successfully demonstrate sequential tile displacement in two dimensions, 

opening hidden toeholds, and with domains stretching across multiple tiles. 

5.4 Cooperative reconfiguration 

This section explores the third of three general purpose reconfiguration of DNA 

nanostructures, cooperative reconfiguration. 
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Cooperative reactions are a building block to combining reconfiguration with logic. 

After all, if Structure A and Structure B both need to be present, it is a logic AND function. 

While similar to the previous sequential reconfiguration where the second step required the 

first step to have taken place, allowing both inputs to react initially should increase kinetic 

rates. 

We designed a cooperative reconfiguration system on a two by two array (Fig. 5.9). The 

two halves of the array are held together by two tile edges. If a single tile were to invade, it 

can only, at most in one-dimension, displace one of the edges. However, if a second tile 

were to invade at the same time and both tiles displace one edge, then the combined effect 

is enough to displace off half of the array. Unlike in the prior section, here the two by two 

array has two initial toeholds meant for two different invader tiles. Accordingly, either 

invader alone can invade but should not be able to fully displace off a section of the two-

by-two array. Invaders invade by 3 staples with 2 nt sticky ends. 

For AFM, we reused the frown-to-smile design from the prior section. The two-by-two 

array starts as a frown with the two non-displaced tiles in the array being circle patterns for 

the eyes. Each invader swaps half the frown-into-a-smile with both invaders forming a 

smile. 



 

 

109 

 

Figure 5.9. Cooperative reconfiguration. a, abstract diagram of a cooperative reaction. Two invader 
monomers T1b and T2b have toeholds into the two by two array of 3 staples 2 nt sticky ends. Only if both 
monomers are present should a dimer be displaceable from the two by two array. b, reaction mechanism in (a).  
c, Fluorescence data. Two by two arrays are at 2nM. Blue curves: Leak—tile T2b only is added at 4nM. Green 
curve: Leak—tile T1b only is added at 4nM. Note there is some increase in signal likely due to the fluorophore 
quencher pair being located on that tile's side, and the 5-mer with the invader in the structure being somewhat 
stable. Yellow curve: Both invaders present at 4nM. Orange curve: dimer invader at 4nM. c, Origami diagrams 
and AFM. Left: only one invader present. Right: both invaders present. Dotted outlines are unreacted 
structures. Solid outlines are reacted structures. See Appendix A for detailed design diagram. 
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The desired reaction took place when both invaders are present. They both successfully 

invade to displace off a dimer from the two by two. In principle, adding a single invader 

monomer is a reversible reaction as it should not be able to complete the displacement 

alone. However, the invader on the side with the fluorophore quencher pair results in a 

notable, but incomplete, signal rise. This likely means that the 5-mer structure formed 

when the invader integrates into the two by two array is somewhat stable. Our tile is not a 

perfect square and has small missing corners; see the AFM images of the two by two array 

in Figure 5.9(d). Since the displacement is across the center of the two by two, there is a 

gap that forms there which is the sum of two square DNA origami tile's missing corners. 

This means that the 5-mer structure is somewhat stable since, in order for the invader to be 

knocked off, a substantial remote toehold type reaction must take place across the gap. The 

T3T4 dimer may also become unstable after the invader binds and spontaneously 

disassociate. Still, AFM showed the desired reaction did take place forming smiles, and the 

leak reactions still having frowns. 

5.5     Scalability of multi-step reconfiguration 

This section explores the composition of our building blocks together into a large scale 

multi-step reconfiguration. 

We demonstrate multi-step reconfiguration of a large three by three DNA origami tile array 

with arbitrary patterns by reconfiguring arbitrary parts of the structure in an arbitrary order. 

The three by three array is a large DNA nanostructure containing over 1,200 uniquely 

addressable pixels, potentially targets for nanoparticles [17-18], proteins [16], or polymers 

[19] for nano-devices or artificial molecular machine components. In principle, such large-

scale reconfiguration might eventually allow advanced circuits with the capacity to adapt to 

environmental needs or heal damaged components.  

For now, we played a massively parallel game of tic-tac-toe on our three by three DNA 

origami nanostructure game boards. This classic game where players take turns placing an 

X or an O on the board requires each tile insertion to be at any arbitrary location on the 
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board. Plus, the order of tile displacements must be capable of taking place in any order 

as each game may be different depending on a player's whim. Each location can either be 

turned into an X or an O from an X or O invader tile. Also tiles being able to integrate into 

any location in an array means corner, edges, and even the center of an array. Tile 

displacement must truly operate in two-dimensions with geometry. The entire board must 

be open to reconfiguration. 

     5.5.a  Tic-Tac-Toe design 

We first designed a three by three array game board capable of allowing reconfiguration at 

any of its nine locations. Having a location reconfigured must also not prohibit any other 

tile from also reconfiguring in neighboring locations. See Figure 5.10 for our design. The 

board has several open toeholds. These toeholds are all unique and guide invaders to that 

specific location. Toeholds are 2 staples with 5 nt sticky ends for high specificity in a short 

domain and varied between 5' and 3' extensions to create more design space. Invaders only 

invade by one toehold expect for the center location which invades by four toeholds. The 

corner invader must bind by one toehold and branch migrant across two tile edges in two 

dimensions. The edge invader must bind by one toehold and further branch migrant across 

three tile edges in two dimensions. The center tile has one toehold for each of its four edges 

that it needs to branch migrant across. 

 

Figure 5.10. Design of Tic-Tac-Toe game board on a three by three array. Toeholds are marked with 
jagged colored lines. Branch migration domain are solid colored lines. See Appendix A for detailed design 
diagram. 



 

 

112 

The only difference between invaders between the two players is the surface 

modification pattern to appear like an O or an X. Otherwise, each player gets 9 tiles, each 

targeting a different location in the array. Note that while an invader may appear to have 

multiple toeholds on its edges, only one toehold is used for every tile except the center. For 

example, the top-left invader tile has a brown and green toehold. It will invade using the 

brown toehold that matches the toehold on the left-middle tile in the game board. The green 

toehold is unused in the invasion; however, it maintains the presence of the green toehold 

in the game board. Thus when the center-top tile invades, it will have the green toehold to 

invade with regardless of the move order. 

Based off of prior result kinetics, we expected it to be harder for an invading tile to cross 

multiple tile edges. This is of particular concern for the center tile as all four of its edges 

must be branch migrated. It is for this reason we apply four toeholds to the center tile, one 

toehold for every edge. We expect such a design to increase the reconfiguration yield of the 

central tile. 

     5.5.b   Kinetics of each move 

Before playing a full game, we explored the kinetics of each general move class: corner, 

edge, and center. We needed to ensure every type of move was possible in order to have a 

board that is truly able to arbitrarily reconfigure. We formed all the boards at 4nM and 

mixed in 8nM of either a corner tile, a edge tile, or the center tile and measured the kinetics 

as with prior experiments; see Figure 5.11. 
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Figure 5.11. Tic-Tac-Toe kinetics of the corner tile, edge tile, and center tile. a, Abstract diagram. b, 
Reaction mechanism c, Fluorescence data. Green is the edge tile. Blue is the corner tile. Yellow is the center 
tile. d, Origami diagrams and AFM images. Top to bottom: corner, edge, and center tile added respectively. 
Dotted outlines are of non-displaced game boards. Solid outlines are properly displaced game boards. 
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The fluorescence data provides interesting but not unexpected results. First, the corner 

tile reacts more readily and more completely than the edge tile. This is expected as the edge 

tile has to branch migrant over three tile edges with only one toehold, whereas the corner 

only has the branch migrant over two tile edges also with only one toehold. The edge and 

corner appear to reconfigure to an extent the Tic-Tac-Toe game should be possible to play. 

Second, the center tile reacts nearly perfectly. While the center tile was likely to have 

several issues as it required displacing over four edges, the addition of a toehold on every 

displacement edge appeared to solve the problem. Once bound by a toehold, that toehold 

simply has to encourage the displacement of one edge similar to our initial dimer 

experiments that reacted rapidly and to a high completion level. The center invading tile is 

apparently flexible enough to bind to the four toeholds at some point in the displacement 

process. 

Invader tiles also appear to localize to their target location accurately with, for example, no 

observed center tiles integrating in an edge location. With each of the three classes of 

moves successful, the game of tic-tac-toe is ready to be played 

     5.5.c  Demonstration of the Tic-Tac-Toe game encompassing all move types 

Over the course of several days, games of Tic-Tac-Toe were played. Each day, a player 

would mix an increasing amount of excess of invader tile of their choice into a game board 

mix. The samples were allowed to incubate at room temperature overnight to allow that 

tiles time to reconfigure the game board. The next day, a small amount of sample was taken 

for AFM imaging to verify the correct displacement. Also, the other player would then 

have the opportunity to place a move from the opposing side at that point. This continued 

until a player won; see Figure 5.12. 
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Figure 5.12. Full games of Tic-Tac-Toe based on tile displacement to reconfigure the game board. For 
each game played, the abstract diagram is shown on the left and an AFM image of that move on the right. 
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As we AFMed the game board after every move, we were able to see the development 

of the game. By the end, we had successfully replaced 7/9, 8/8, and 9/9 of the entire game 

board with new custom patterned tiles. Between all the games, tiles integrated into all 

playable locations. One game even played all nine locations replacing the entire game 

board. As DNA origami is highly compatible with a wide range of molecular compounds 

such as proteins [16], nanoparticles [17, 18], or polymers [19], each new tile could 

potentially bring its own device into the original system in response to environmental cues 

or even to heal damaged components.  
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C h a p t e r  6  

CONCLUSIONS 

In this thesis, we discussed our contributions to the field of DNA nanotechnology by 

developing design rules and systematic approaches to controlling nanostructure complex 

assembly. Drawing inspiration from the biology's quintessential molecular machine, the 

cell, these rules and approaches allow for the construction of artificial molecular structures 

with tunable diversity, large systems approaching the size of bacteria yet retaining 

nanometer precision, and biological plasticity inspired dynamic systems for arbitrary 

reconfiguration.  

In Chapter 2 of this thesis, we introduced the development of a new DNA origami tile 

designed specifically to work as an optimized 2D breadboard for larger complex nano-

devices and machines. We designed an entirely flat, one-helix thick tile tailored to array 

formation with a single, non-flipping tile. With interest in the tile forming a breadboard for 

future devices, we optimized the tile for a high continuous surface area to allow the greatest 

flexibility in future device designs.  

In Chapter 3, we used the tile to create a framework inspired from molecular stochasticity 

for programming DNA array formation and gaining control over diversity of global 

properties through simple local rules. Combinatorial chemistry techniques in synthesizing 

one-dimensional polymer chains, such as SELEX, have revolutionized chemical synthesis 

and the selection of functional nucleic acids. We expand these principles to random two-

dimensional networks to open new opportunities for fabricating more complex molecular 

devices on DNA nanostructures. Three general forms of planar networks, random loops, 

mazes, and trees, were manipulated on the micron scale upon the self-assembled DNA 

arrays. We demonstrated control of several properties of the networks, such as branching 

rules, growth directions, the proximity between adjacent networks, and size distributions. 

The large diversity, in principle, allows for a wide, but tunable, testing environment for 
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molecular circuits. By further applying these principles to subunits of finite assemblies, 

variable components may be mixed with fixed components potentially opening additional 

applications in high throughput device or drug screening over two-dimensions. 

Next, Chapter 4 of this thesis demonstrates our robust hierarchical strategy to break the 

two-dimensional size limitations of DNA origami, and its application to forming micron-

scale uniquely-addressable DNA origami arrays.. While DNA origami allows nanometer 

precise placement, the size remains roughly below 0.05 um2. Our strategy relied upon a 

simple rule set applied recursively in each stage of a hierarchical self-assembly process. 

Furthermore, the upfront cost of manufacturing the arrays is fixed regardless of scale, as the 

strategy employs a constant number of unique structural DNA strands. We also developed 

a software tool to automatically compile a designed surface pattern into experimental 

protocols. We experimentally demonstrated DNA origami arrays approaching the size of 

small bacteria, 0.5 um2, with several arbitrary patterns, each consisting of 8,704 specifically 

chosen pixel locations with nanometer precision, including a bacteria sized portrait of a 

bacteria. These arrays may be used for complex organization of diverse molecules and 

device fabricating with nanometer precision of components over the entire micron scale of 

the array. Opportunities arise for larger and more sophisticated molecular machines such as 

DNA robots or DNA circuits. Fundamentally, the simple recursively applied hierarchical 

strategy may be more widely used to build complex molecular systems with a constant 

number of simple components not limited to a specific design. 

Finally, in Chapter 5, we present a general purpose approach to reconfiguration in DNA 

nanostructures. Reconfiguration in biological cells provides efficiency and responsiveness 

to environmental stimuli. In principle, a reconfiguring device can be modified to a new 

task, adapt to external cues, or even heal damaged components. In an approach we call 

DNA tile displacement, we showed that a DNA origami array may have tiles arbitrarily 

replaced by another tile, including tiles of another shape or surface pattern. We also 

demonstrated control over the kinetics of tile displacement and performed several general 

purpose reconfigurations of DNA nanostructures. Examples include sequential 
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reconfiguration, competitive reconfiguration, cooperative reconfiguration, and finally 

the scalability of multi-step reconfiguration as demonstrated through a fully playable nano-

scale biomolecular tic-tac-toe game. The major ramifications is a plasticity more common 

to biology than to electronics—molecular platforms with arbitrary patterning that can 

reconfigure an arbitrary part of the nanostructure in an arbitrary order based on 

environmental signals.  

We have demonstrated tunable combinatorial diversity, precise nanometer addressability 

on the scale of small bacteria, and even a framework toward adaptive behaviors in artificial 

molecular machines. Eventually, we may see engineered structures that qualify as life, 

rivaling cells. Our strategies take us closer. 
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APPENDIX A: ADDITIONAL DIAGRAMS AND IMAGES 

 
Figure A.1. Specific edge and pattern design of sequential reconfiguration. Tile orientation N, E, S, and 
W are represented by the green, brown, orange, and yellow bars respectively. Giving staples with a 5' 2 nt sticky 
end and 3' stacking bond are represented by rectangular protrusions from the colored bars. The color of the 
protrusion represents the complementary edge (N, E, S, or W) of that staple sticky end. Receiving staples 5' 
stacking bonds and 3' 2 nt truncations are rectangular indentations in the colored bar. Their sequence is 
determined by the M13 sequence on that edge. A Rox fluorophore is represented by a red dot and is bound to 
the 5' end of a staple with an additional 3' stacking bond. A Iowa black quencher is represented by a black dot 
along a tile's edge and is bound to the 3' end of a staple with a 5' stacking bond. 136 pixel locations are 
represented by gray dots (OFF pixels) or black dots (ON pixels) within the tile's interior. ON pixels have a 
double stranded extension at that location.  
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 Figure A.2. Specific edge and pattern design of cooperative reconfiguration. Tile orientation N, E, S, and 
W are represented by the green, brown, orange, and yellow bars respectively. Giving staples with a 5' 2 nt sticky 
end and 3' stacking bond are represented by rectangular protrusions from the colored bars. The color of the 
protrusion represents the complementary edge (N, E, S, or W) of that staple sticky end. Receiving staples 5' 
stacking bonds and 3' 2 nt truncations are rectangular indentations in the colored bar. Their sequence is 
determined by the M13 sequence on that edge. A Rox fluorophore is represented by a red dot and is bound to 
the 5' end of a staple with an additional 3' stacking bond. A Iowa black quencher is represented by a black dot 
along a tile's edge and is bound to the 3' end of a staple with a 5' stacking bond. 136 pixel locations are 
represented by gray dots (OFF pixels) or black dots (ON pixels) within the tile's interior. ON pixels have a 
double stranded extension at that location.  
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Figure A.3. Specific edge and pattern design of Tic-Tac-Toe Game. Tile orientation N, E, S, and W are 
represented by the green, brown, orange, and yellow bars respectively. In the middle is the game board with 
toehold regions boxed. On the right and left are the two players X and O. The tiles of the two players are 
identical in terms of edge design. The toehold receiver staples boxed (and their respective givers from the 
player O and X set) are two 5 nt staples. The green boxes use 3' trunctions and 5' stacking bonds with their 
matching giver on the invading tiles being 5' extensions and 3' stacking bonds. The black boxes use 5' 
trunctions and 3' stacking bonds with their matching giver on the invading tiles being 3' extensions and 5' 
stacking bonds. By switching the sticky end side of the staple, we are able to have multiple toeholds of the same 
length at the same location on a particular edge yet maintain orthogonality. For all other staples: giving staples 
with a 5' 2 nt sticky end and 3' stacking bond are represented by rectangular protrusions from the colored bars. 
The color of the protrusion represents the complementary edge (N, E, S, or W) of that staple sticky end. 
Receiving staples 5' stacking bonds and 3' 2 nt truncations are rectangular indentations in the colored bar. Their 
sequence is determined by the M13 sequence on that edge. 136 pixel locations are represented by gray dots 
(OFF pixels) or black dots (ON pixels) within the tile's interior. ON pixels have a double stranded extension at 
that location.  
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Figure A.4. Alternative sequential reconfiguration pathway. a, Designed pathway. b, Alternative pathway. 
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APPENDIX B: DNA SEQUENCES 

Chapter 3: all staple sequences and Cadnano diagram for all designs presented are located 

on pages 79-137 in the supplement of prior work [1]. 

Chapter 4: all staple sequences and Cadnano diagram for all designs presented are located 

on pages 33-47 in the supplement of prior work [2]. 

Chapter 5: Non-edge staples and Cadnano diagram for all designs presented are located on 

pages 33-38 in the supplement of prior work [2]. Edge staples for each design reproduced 

below. 

 

Edge staple name nomenclature:  

Double hair pin inert edge staples are named in the format "Edg_T[x]R[yy]C7_DHP" 

where x is 1 to 4 representing the tile edge N, E, S, or W respectively, and yy is 00, 02, 

04,..., 20 (eleven possible numbers) representing the eleven possible staple position along 

an edge in a clockwise direction looking down on a tile. 

Sticky end staples are named in the format "[z]b[C2][w]T[x]C7R[yy]". z is the length of 

the sticky end in nucleotides (1,2 or 5). If 'C2' is present in the name, it means the sticky 

end is extended from the 3' end of the edge staple with a 5' stacking bond (receiver is vice 

versa and truncated); otherwise, the sticky end is extended from the 5' end of the edge 

staple with a 3' stacking bond (receiver is vice versa and truncated). If w is 'R' then the 

staple is a receiving staple. If w is "G[x]" then it is a giver complentary to edge x where x 

can be one to four representing the tile edge N, E, S, or W respectively. x is 1 to 4 

representing the tile edge N, E, S, or W respectively, and yy is 00, 02, 04,..., 20 (eleven 

possible numbers), representing the eleven possible staple position along an edge in a 

clockwise direction looking down on a tile. 
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Special cases: names starting with "F" are Rox fluorophore strands. Names starting with 

TYE are TYE563 fluorophore strands. Names starting with Q are Iowa black quencher 

strands. Names ending in 'pipi' are staples forming two stacking bonds. 

 

Table S1: Edge staples in the 1 nt and 2 nt kinetic measurements 

Tile Edge Staple Name Edge Sequence 

Base2nt 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAAC

AGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACG

AGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCC

CTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGAC

AGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTT

TCTGTATGTGTCGTAGACAC 

Frox_T2_R00 /5Rox_N/AGCCACCACCCTCATTGAACCGCCACCCTC

AG 

2bRT2C7R02 GAGAGGGTTGATATAAGCGGATAAGTGCCG 

2bRT2C7R04 GTATAAACAGTTAATGTTGAGTAACAGTGC 

2bRT2C7R06 GCAGGTCAGACGATTGTTGACAGGAGGTTG 

2bRT2C7R08 TAGCGCGTTTTCATCGCTTTAGCGTCAGAC 

2bRT2C7R10 GCGCCAAAGACAAAAGTTCATATGGTTTAC 

2bRT2C7R12 CCGAAGCCCTTTTTAAAGCAATAGCTATCT 

2bRT2C7R14 TTTTTTGTTTAACGTCTCCAAATAAGAAAC 

2bRT2C7R16 AACCTCCCGACTTGCGGCGAGGCGTTTTAG 

2bRT2C7R18 TAAACCAAGTACCGCATTCCAAGAACGGGT 

2bRT2C7R20 AGATAAGTCCTGAACACCTGTTTATCAACA 

Edg_T3R02C7_DHP GTGTCGTAGACACAGTAGGGCTTAATTGAAAAGCCAAC

GCTCAACGTGTCGTAGACAC 

Edg_T3R06C7_DHP GTGTCGTAGACACAGTCAATAGTGAATTTTTAAGACGC

TGAGAAGGTGTCGTAGACAC 

Edg_T3R10C7_DHP GTGTCGTAGACACCAATATAATCCTGATTGATGATGGC

AATTCATGTGTCGTAGACAC 

Edg_T3R14C7_DHP GTGTCGTAGACACACATCGCCATTAAAAAAACTGATAG

CCCTAAAGTGTCGTAGACAC 

Edg_T3R18C7_DHP GTGTCGTAGACACTTGATTAGTAATAACATTGTAGCAA

TACTTCTGTGTCGTAGACAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCG

AAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCA
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GGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATT

AAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAA

GCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCA

AGGATAAGTGTCGTAGACAC 

Cover 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAAC

AGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACG

AGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCC

CTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGAC

AGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTT

TCTGTATGTGTCGTAGACAC 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAG

TGCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGA

GGTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGG

TTTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAA

GAAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAA

CGGGTATGTGTCGTAGACAC 

2G2T3C7R08 TATGAGCAAAAGAAGATGATTCATTTCAATTACC 

2G2T3C7R10 CACAATATAATCCTGATTGATGATGGCAATTCAT 

2G2T3C7R12 TGGTTATCTAAAATATCTAAAGGAATTGAGGAAG 

2G2T3C7R14 AGACATCGCCATTAAAAAAACTGATAGCCCTAAA 

2G2T3C7R16 CCTCGTCTGAAATGGATTACATTTTGACGCTCAA 

2G2T3C7R18 TCTTGATTAGTAATAACATTGTAGCAATACTTCT 

Q_T3_R20 AGGAACGGTACGCCAGTAAAGGGATTTTAGAC/3IAbR

Q/ 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCG

AAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCA

GGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATT

AAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAA

GCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCA

AGGATAAGTGTCGTAGACAC 

2nt-4th 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAAC

AGTTGATGTGTCGTAGACAC 
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Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACG

AGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCC

CTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGAC

AGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTT

TCTGTATGTGTCGTAGACAC 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAG

TGCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGA

GGTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGG

TTTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAA

GAAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAA

CGGGTATGTGTCGTAGACAC 

2G2T3C7R00 ATGTAAAGTAATTCTGTCAAAGTACCGACAAAAG 

2G2T3C7R02 ATAGTAGGGCTTAATTGAAAAGCCAACGCTCAAC 

2G2T3C7R04 CGAATGGTTTGAAATACCCTTCTGACCTAAATTT 

2G2T3C7R06 GAAGTCAATAGTGAATTTTTAAGACGCTGAGAAG 

2G2T3C7R08 TATGAGCAAAAGAAGATGATTCATTTCAATTACC 

2G2T3C7R10 CACAATATAATCCTGATTGATGATGGCAATTCAT 

2G2T3C7R12 TGGTTATCTAAAATATCTAAAGGAATTGAGGAAG 

2G2T3C7R14 AGACATCGCCATTAAAAAAACTGATAGCCCTAAA 

2G2T3C7R16 CCTCGTCTGAAATGGATTACATTTTGACGCTCAA 

2G2T3C7R18 TCTTGATTAGTAATAACATTGTAGCAATACTTCT 

Edg_T3C7R20_pipi AGGAACGGTACGCCAGTAAAGGGATTTTAGAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCG

AAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCA

GGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATT

AAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAA

GCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCA

AGGATAAGTGTCGTAGACAC 

Base1nt 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAAC

AGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACG

AGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCC

CTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGAC
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AGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTT

TCTGTATGTGTCGTAGACAC 

Frox_T2_R00 /5Rox_N/AGCCACCACCCTCATTGAACCGCCACCCTC

AG 

2bRT2C7R02 GAGAGGGTTGATATAAGCGGATAAGTGCCG 

2bRT2C7R04 GTATAAACAGTTAATGTTGAGTAACAGTGC 

2bRT2C7R06 GCAGGTCAGACGATTGTTGACAGGAGGTTG 

2bRT2C7R08 TAGCGCGTTTTCATCGCTTTAGCGTCAGAC 

2bRT2C7R10 GCGCCAAAGACAAAAGTTCATATGGTTTAC 

2bRT2C7R12 CCGAAGCCCTTTTTAAAGCAATAGCTATCT 

1bRT2C7R14 TTTTTTGTTTAACGTCTCCAAATAAGAAACG 

1bRT2C7R16 AACCTCCCGACTTGCGGCGAGGCGTTTTAGC 

1bRT2C7R18 TAAACCAAGTACCGCATTCCAAGAACGGGTA 

1bRT2C7R20 AGATAAGTCCTGAACACCTGTTTATCAACAA 

Edg_T3R02C7_DHP GTGTCGTAGACACAGTAGGGCTTAATTGAAAAGCCAAC

GCTCAACGTGTCGTAGACAC 

Edg_T3R06C7_DHP GTGTCGTAGACACAGTCAATAGTGAATTTTTAAGACGC

TGAGAAGGTGTCGTAGACAC 

Edg_T3R10C7_DHP GTGTCGTAGACACCAATATAATCCTGATTGATGATGGC

AATTCATGTGTCGTAGACAC 

Edg_T3R14C7_DHP GTGTCGTAGACACACATCGCCATTAAAAAAACTGATAG

CCCTAAAGTGTCGTAGACAC 

Edg_T3R18C7_DHP GTGTCGTAGACACTTGATTAGTAATAACATTGTAGCAA

TACTTCTGTGTCGTAGACAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCG

AAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCA

GGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATT

AAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAA

GCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCA

AGGATAAGTGTCGTAGACAC 

0Toe Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAAC

AGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACG

AGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCC

CTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGAC

AGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTT

TCTGTATGTGTCGTAGACAC 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAG
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TGCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGA

GGTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGG

TTTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAA

GAAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAA

CGGGTATGTGTCGTAGACAC 

2G2T3C7R08 TATGAGCAAAAGAAGATGATTCATTTCAATTACC 

2G2T3C7R10 CACAATATAATCCTGATTGATGATGGCAATTCAT 

2G2T3C7R12 TGGTTATCTAAAATATCTAAAGGAATTGAGGAAG 

2G2T3C7R14 AGACATCGCCATTAAAAAAACTGATAGCCCTAAA 

2G2T3C7R16 CCTCGTCTGAAATGGATTACATTTTGACGCTCAA 

2G2T3C7R18 TCTTGATTAGTAATAACATTGTAGCAATACTTCT 

Edg_T3C7R20_pipi AGGAACGGTACGCCAGTAAAGGGATTTTAGAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCG

AAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCA

GGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATT

AAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAA

GCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCA

AGGATAAGTGTCGTAGACAC 

2nt-3th 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAAC

AGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACG

AGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCC

CTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGAC

AGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTT

TCTGTATGTGTCGTAGACAC 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAG

TGCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGA

GGTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGG

TTTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAA

GAAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAA

CGGGTATGTGTCGTAGACAC 



 

 

130 
2G2T3C7R02 ATAGTAGGGCTTAATTGAAAAGCCAACGCTCAAC 

2G2T3C7R04 CGAATGGTTTGAAATACCCTTCTGACCTAAATTT 

2G2T3C7R06 GAAGTCAATAGTGAATTTTTAAGACGCTGAGAAG 

2G2T3C7R08 TATGAGCAAAAGAAGATGATTCATTTCAATTACC 

2G2T3C7R10 CACAATATAATCCTGATTGATGATGGCAATTCAT 

2G2T3C7R12 TGGTTATCTAAAATATCTAAAGGAATTGAGGAAG 

2G2T3C7R14 AGACATCGCCATTAAAAAAACTGATAGCCCTAAA 

2G2T3C7R16 CCTCGTCTGAAATGGATTACATTTTGACGCTCAA 

2G2T3C7R18 TCTTGATTAGTAATAACATTGTAGCAATACTTCT 

Edg_T3C7R20_pipi AGGAACGGTACGCCAGTAAAGGGATTTTAGAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCG

AAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCA

GGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATT

AAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAA

GCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCA

AGGATAAGTGTCGTAGACAC 

2nt-2th 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAAC

AGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACG

AGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCC

CTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGAC

AGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTT

TCTGTATGTGTCGTAGACAC 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAG

TGCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGA

GGTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGG

TTTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAA

GAAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAA

CGGGTATGTGTCGTAGACAC 

2G2T3C7R04 CGAATGGTTTGAAATACCCTTCTGACCTAAATTT 

2G2T3C7R06 GAAGTCAATAGTGAATTTTTAAGACGCTGAGAAG 

2G2T3C7R08 TATGAGCAAAAGAAGATGATTCATTTCAATTACC 

2G2T3C7R10 CACAATATAATCCTGATTGATGATGGCAATTCAT 

2G2T3C7R12 TGGTTATCTAAAATATCTAAAGGAATTGAGGAAG 
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2G2T3C7R14 AGACATCGCCATTAAAAAAACTGATAGCCCTAAA 

2G2T3C7R16 CCTCGTCTGAAATGGATTACATTTTGACGCTCAA 

2G2T3C7R18 TCTTGATTAGTAATAACATTGTAGCAATACTTCT 

Edg_T3C7R20_pipi AGGAACGGTACGCCAGTAAAGGGATTTTAGAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCG

AAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCA

GGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATT

AAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAA

GCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCA

AGGATAAGTGTCGTAGACAC 

2nt-1th 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAAC

AGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACG

AGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCC

CTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGAC

AGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTT

TCTGTATGTGTCGTAGACAC 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAG

TGCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGA

GGTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGG

TTTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAA

GAAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAA

CGGGTATGTGTCGTAGACAC 

2G2T3C7R06 GAAGTCAATAGTGAATTTTTAAGACGCTGAGAAG 

2G2T3C7R08 TATGAGCAAAAGAAGATGATTCATTTCAATTACC 

2G2T3C7R10 CACAATATAATCCTGATTGATGATGGCAATTCAT 

2G2T3C7R12 TGGTTATCTAAAATATCTAAAGGAATTGAGGAAG 

2G2T3C7R14 AGACATCGCCATTAAAAAAACTGATAGCCCTAAA 

2G2T3C7R16 CCTCGTCTGAAATGGATTACATTTTGACGCTCAA 

2G2T3C7R18 TCTTGATTAGTAATAACATTGTAGCAATACTTCT 

Edg_T3C7R20_pipi AGGAACGGTACGCCAGTAAAGGGATTTTAGAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCG

AAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCA

GGCGAAAGTGTCGTAGACAC 
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Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATT

AAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAA

GCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCA

AGGATAAGTGTCGTAGACAC 

1nt-4th 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAAC

AGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACG

AGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCC

CTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGAC

AGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTT

TCTGTATGTGTCGTAGACAC 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAG

TGCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGA

GGTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGG

TTTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAA

GAAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAA

CGGGTATGTGTCGTAGACAC 

1bG2T3C7R00 TGTAAAGTAATTCTGTCAAAGTACCGACAAAAG 

1bG2T3C7R02 TAGTAGGGCTTAATTGAAAAGCCAACGCTCAAC 

1bG2T3C7R04 GAATGGTTTGAAATACCCTTCTGACCTAAATTT 

1bG2T3C7R06 AAGTCAATAGTGAATTTTTAAGACGCTGAGAAG 

2G2T3C7R08 TATGAGCAAAAGAAGATGATTCATTTCAATTACC 

2G2T3C7R10 CACAATATAATCCTGATTGATGATGGCAATTCAT 

2G2T3C7R12 TGGTTATCTAAAATATCTAAAGGAATTGAGGAAG 

2G2T3C7R14 AGACATCGCCATTAAAAAAACTGATAGCCCTAAA 

2G2T3C7R16 CCTCGTCTGAAATGGATTACATTTTGACGCTCAA 

2G2T3C7R18 TCTTGATTAGTAATAACATTGTAGCAATACTTCT 

Edg_T3C7R20_pipi AGGAACGGTACGCCAGTAAAGGGATTTTAGAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCG

AAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCA

GGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATT

AAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAA

GCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCA
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AGGATAAGTGTCGTAGACAC 

1nt-3th 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAAC

AGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACG

AGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCC

CTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGAC

AGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTT

TCTGTATGTGTCGTAGACAC 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAG

TGCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGA

GGTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGG

TTTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAA

GAAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAA

CGGGTATGTGTCGTAGACAC 

1bG2T3C7R02 TAGTAGGGCTTAATTGAAAAGCCAACGCTCAAC 

1bG2T3C7R04 GAATGGTTTGAAATACCCTTCTGACCTAAATTT 

1bG2T3C7R06 AAGTCAATAGTGAATTTTTAAGACGCTGAGAAG 

2G2T3C7R08 TATGAGCAAAAGAAGATGATTCATTTCAATTACC 

2G2T3C7R10 CACAATATAATCCTGATTGATGATGGCAATTCAT 

2G2T3C7R12 TGGTTATCTAAAATATCTAAAGGAATTGAGGAAG 

2G2T3C7R14 AGACATCGCCATTAAAAAAACTGATAGCCCTAAA 

2G2T3C7R16 CCTCGTCTGAAATGGATTACATTTTGACGCTCAA 

2G2T3C7R18 TCTTGATTAGTAATAACATTGTAGCAATACTTCT 

Edg_T3C7R20_pipi AGGAACGGTACGCCAGTAAAGGGATTTTAGAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCG

AAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCA

GGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATT

AAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAA

GCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCA

AGGATAAGTGTCGTAGACAC 

1nt-2th 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAAC

AGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACG

AGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCC
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CTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGAC

AGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTT

TCTGTATGTGTCGTAGACAC 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAG

TGCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGA

GGTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGG

TTTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAA

GAAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAA

CGGGTATGTGTCGTAGACAC 

1bG2T3C7R04 GAATGGTTTGAAATACCCTTCTGACCTAAATTT 

1bG2T3C7R06 AAGTCAATAGTGAATTTTTAAGACGCTGAGAAG 

2G2T3C7R08 TATGAGCAAAAGAAGATGATTCATTTCAATTACC 

2G2T3C7R10 CACAATATAATCCTGATTGATGATGGCAATTCAT 

2G2T3C7R12 TGGTTATCTAAAATATCTAAAGGAATTGAGGAAG 

2G2T3C7R14 AGACATCGCCATTAAAAAAACTGATAGCCCTAAA 

2G2T3C7R16 CCTCGTCTGAAATGGATTACATTTTGACGCTCAA 

2G2T3C7R18 TCTTGATTAGTAATAACATTGTAGCAATACTTCT 

Edg_T3C7R20_pipi AGGAACGGTACGCCAGTAAAGGGATTTTAGAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCG

AAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCA

GGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATT

AAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAA

GCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCA

AGGATAAGTGTCGTAGACAC 

1nt-1th 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAAC

AGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACG

AGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCC

CTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGAC

AGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTT

TCTGTATGTGTCGTAGACAC 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAG

TGCCGTCGTGTCGTAGACAC 
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Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGA

GGTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGG

TTTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAA

GAAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAA

CGGGTATGTGTCGTAGACAC 

1bG2T3C7R06 AAGTCAATAGTGAATTTTTAAGACGCTGAGAAG 

2G2T3C7R08 TATGAGCAAAAGAAGATGATTCATTTCAATTACC 

2G2T3C7R10 CACAATATAATCCTGATTGATGATGGCAATTCAT 

2G2T3C7R12 TGGTTATCTAAAATATCTAAAGGAATTGAGGAAG 

2G2T3C7R14 AGACATCGCCATTAAAAAAACTGATAGCCCTAAA 

2G2T3C7R16 CCTCGTCTGAAATGGATTACATTTTGACGCTCAA 

2G2T3C7R18 TCTTGATTAGTAATAACATTGTAGCAATACTTCT 

Edg_T3C7R20_pipi AGGAACGGTACGCCAGTAAAGGGATTTTAGAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCG

AAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCA

GGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATT

AAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAA

GCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCA

AGGATAAGTGTCGTAGACAC 

 

Table S2: Edge staples in competitive reconfiguration measurements 

Tile Edge Edge Seq 

Base2nt 

Rox 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAACA

GTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACGA

GAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCCC

TGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGACA

GCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTTT

CTGTATGTGTCGTAGACAC 

F_rox_v1_T2_R00 /5Rox_N/AGCCACCACCCTCATTGAACCGCCACCCTCA

G 

2bRT2C7R02 GAGAGGGTTGATATAAGCGGATAAGTGCCG 



 

 

136 
2bRT2C7R04 GTATAAACAGTTAATGTTGAGTAACAGTGC 

2bRT2C7R06 GCAGGTCAGACGATTGTTGACAGGAGGTTG 

2bRT2C7R08 TAGCGCGTTTTCATCGCTTTAGCGTCAGAC 

2bRT2C7R10 GCGCCAAAGACAAAAGTTCATATGGTTTAC 

2bRT2C7R12 CCGAAGCCCTTTTTAAAGCAATAGCTATCT 

2bRT2C7R14 TTTTTTGTTTAACGTCTCCAAATAAGAAAC 

2bRT2C7R16 AACCTCCCGACTTGCGGCGAGGCGTTTTAG 

2bRT2C7R18 TAAACCAAGTACCGCATTCCAAGAACGGGT 

2bRT2C7R20 AGATAAGTCCTGAACACCTGTTTATCAACA 

Edg_T3R02C7_DHP GTGTCGTAGACACAGTAGGGCTTAATTGAAAAGCCAACG

CTCAACGTGTCGTAGACAC 

Edg_T3R06C7_DHP GTGTCGTAGACACAGTCAATAGTGAATTTTTAAGACGCT

GAGAAGGTGTCGTAGACAC 

Edg_T3R10C7_DHP GTGTCGTAGACACCAATATAATCCTGATTGATGATGGCA

ATTCATGTGTCGTAGACAC 

Edg_T3R14C7_DHP GTGTCGTAGACACACATCGCCATTAAAAAAACTGATAGC

CCTAAAGTGTCGTAGACAC 

Edg_T3R18C7_DHP GTGTCGTAGACACTTGATTAGTAATAACATTGTAGCAAT

ACTTCTGTGTCGTAGACAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCGA

AAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCAG

GCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATTA

AGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAAG

CAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCAA

GGATAAGTGTCGTAGACAC 

Cover_t

hres 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAACA

GTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACGA

GAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCCC

TGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGACA

GCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTTT

CTGTATGTGTCGTAGACAC 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAGT

GCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGAG

GTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGGT

TTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAAG



 

 

137 
AAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAAC

GGGTATGTGTCGTAGACAC 

2G2T3C7R08 TATGAGCAAAAGAAGATGATTCATTTCAATTACC 

2G2T3C7R10 CACAATATAATCCTGATTGATGATGGCAATTCAT 

2G2T3C7R12 TGGTTATCTAAAATATCTAAAGGAATTGAGGAAG 

2G2T3C7R14 AGACATCGCCATTAAAAAAACTGATAGCCCTAAA 

2G2T3C7R16 CCTCGTCTGAAATGGATTACATTTTGACGCTCAA 

2G2T3C7R18 TCTTGATTAGTAATAACATTGTAGCAATACTTCT 

Q_T3_R20 AGGAACGGTACGCCAGTAAAGGGATTTTAGAC/3IAbRQ

/ 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCGA

AAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCAG

GCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATTA

AGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAAG

CAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCAA

GGATAAGTGTCGTAGACAC 

Trig 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAACA

GTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACGA

GAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCCC

TGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGACA

GCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTTT

CTGTATGTGTCGTAGACAC 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAGT

GCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGAG

GTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGGT

TTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAAG

AAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAAC

GGGTATGTGTCGTAGACAC 

2G2T3C7R00 ATGTAAAGTAATTCTGTCAAAGTACCGACAAAAG 

2G2T3C7R02 ATAGTAGGGCTTAATTGAAAAGCCAACGCTCAAC 

2G2T3C7R04 CGAATGGTTTGAAATACCCTTCTGACCTAAATTT 

2G2T3C7R06 GAAGTCAATAGTGAATTTTTAAGACGCTGAGAAG 

2G2T3C7R08 TATGAGCAAAAGAAGATGATTCATTTCAATTACC 



 

 

138 
2G2T3C7R10 CACAATATAATCCTGATTGATGATGGCAATTCAT 

2G2T3C7R12 TGGTTATCTAAAATATCTAAAGGAATTGAGGAAG 

2G2T3C7R14 AGACATCGCCATTAAAAAAACTGATAGCCCTAAA 

2G2T3C7R16 CCTCGTCTGAAATGGATTACATTTTGACGCTCAA 

2G2T3C7R18 TCTTGATTAGTAATAACATTGTAGCAATACTTCT 

Edg_T3C7R20_pip

i 

AGGAACGGTACGCCAGTAAAGGGATTTTAGAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCGA

AAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCAG

GCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATTA

AGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAAG

CAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCAA

GGATAAGTGTCGTAGACAC 

Base1nt 

TYE563 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAACA

GTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACGA

GAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCCC

TGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGACA

GCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTTT

CTGTATGTGTCGTAGACAC 

TYE_F_T2R00 /5TYE563/AGCCACCACCCTCATTGAACCGCCACCCTC

AG 

2bRT2C7R02 GAGAGGGTTGATATAAGCGGATAAGTGCCG 

2bRT2C7R04 GTATAAACAGTTAATGTTGAGTAACAGTGC 

2bRT2C7R06 GCAGGTCAGACGATTGTTGACAGGAGGTTG 

2bRT2C7R08 TAGCGCGTTTTCATCGCTTTAGCGTCAGAC 

2bRT2C7R10 GCGCCAAAGACAAAAGTTCATATGGTTTAC 

2bRT2C7R12 CCGAAGCCCTTTTTAAAGCAATAGCTATCT 

1bRT2C7R14 TTTTTTGTTTAACGTCTCCAAATAAGAAACG 

1bRT2C7R16 AACCTCCCGACTTGCGGCGAGGCGTTTTAGC 

1bRT2C7R18 TAAACCAAGTACCGCATTCCAAGAACGGGTA 

1bRT2C7R20 AGATAAGTCCTGAACACCTGTTTATCAACAA 

Edg_T3R02C7_DHP GTGTCGTAGACACAGTAGGGCTTAATTGAAAAGCCAACG

CTCAACGTGTCGTAGACAC 

Edg_T3R06C7_DHP GTGTCGTAGACACAGTCAATAGTGAATTTTTAAGACGCT

GAGAAGGTGTCGTAGACAC 

Edg_T3R10C7_DHP GTGTCGTAGACACCAATATAATCCTGATTGATGATGGCA

ATTCATGTGTCGTAGACAC 
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Edg_T3R14C7_DHP GTGTCGTAGACACACATCGCCATTAAAAAAACTGATAGC

CCTAAAGTGTCGTAGACAC 

Edg_T3R18C7_DHP GTGTCGTAGACACTTGATTAGTAATAACATTGTAGCAAT

ACTTCTGTGTCGTAGACAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCGA

AAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCAG

GCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATTA

AGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAAG

CAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCAA

GGATAAGTGTCGTAGACAC 

 

 

Table S3: Edge staples in sequential reconfiguration measurements 

Tile Edge Edge Seq 

T1 

 

2G2T1C7R00 ATGGTGGCATCAATTCTAGGGCGCGAGCTGAAAA 

2G2T1C7R02 ATTCCCAATTCTGCGAACCCATATAACAGTTGAT 

2G2T1C7R06 GACCATAAATCAAAAATCCAGAAAACGAGAATGA 

2G2T1C7R10 CAGAAACACCAGAACGAGAGGCTTGCCCTGACGA 

2G2T1C7R12 TGCTGATAAATTGTGTCGAGATTTGTATCATCGC 

2G2T1C7R14 AGGAACGAGGGTAGCAACGCGAAAGACAGCATCG 

2G2T1C7R16 CCGGTTTATCAGCTTGCTAGCCTTTAATTGTATC 

2G2T1C7R18 TCGGGATTTTGCTAAACAAATGAATTTTCTGTAT 

2G2T1C7R20 AGACAAACTACAACGCCTGAGTTTCGTCACCAGT 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAGTGCC

GTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGAGGTT

GAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGGTTTA

CCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAAGAAA

CGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAACGGG

TATGTGTCGTAGACAC 

Edg_T3R02C7_DHP GTGTCGTAGACACAGTAGGGCTTAATTGAAAAGCCAACGCTC

AACGTGTCGTAGACAC 

Edg_T3R06C7_DHP GTGTCGTAGACACAGTCAATAGTGAATTTTTAAGACGCTGAG

AAGGTGTCGTAGACAC 
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Edg_T3R10C7_DHP GTGTCGTAGACACCAATATAATCCTGATTGATGATGGCAATT

CATGTGTCGTAGACAC 

Edg_T3R14C7_DHP GTGTCGTAGACACACATCGCCATTAAAAAAACTGATAGCCCT

AAAGTGTCGTAGACAC 

Edg_T3R18C7_DHP GTGTCGTAGACACTTGATTAGTAATAACATTGTAGCAATACT

TCTGTGTCGTAGACAC 

2G4T4C7R00 ATGAGCACGTATAACGTGCTATGGTTGCTTTGAC 

2G4T4C7R02 AACGGGCGCTAGGGCGCTAAGAAAGCGAAAGGAG 

2G4T4C7R04 ATATCACCCAAATCAAGTGCCCACTACGTGAACC 

2G4T4C7R06 TAATCCTGTTTGATGGTGGCCCCAGCAGGCGAAA 

2G4T4C7R12 GCCGTTGGTGTAGATGGGGTAATGGGATAGGTCA 

2G4T4C7R16 CCGCCGGAGAGGGTAGCTTAGCTGATAAATTAAT 

2G4T4C7R20 ACTAAGCAATAAAGCCTCAAAGAATTAGCAAAAT 

T1b 

 

2G2T1C7R00 ATGGTGGCATCAATTCTAGGGCGCGAGCTGAAAA 

2G2T1C7R02 ATTCCCAATTCTGCGAACCCATATAACAGTTGAT 

2G2T1C7R06 GACCATAAATCAAAAATCCAGAAAACGAGAATGA 

2G2T1C7R10 CAGAAACACCAGAACGAGAGGCTTGCCCTGACGA 

2G2T1C7R12 TGCTGATAAATTGTGTCGAGATTTGTATCATCGC 

2G2T1C7R14 AGGAACGAGGGTAGCAACGCGAAAGACAGCATCG 

2G2T1C7R16 CCGGTTTATCAGCTTGCTAGCCTTTAATTGTATC 

2G2T1C7R18 TCGGGATTTTGCTAAACAAATGAATTTTCTGTAT 

2G2T1C7R20 AGACAAACTACAACGCCTGAGTTTCGTCACCAGT 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAGTGCC

GTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGAGGTT

GAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGGTTTA

CCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAAGAAA

CGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAACGGG

TATGTGTCGTAGACAC 

Edg_T3R02C7_DHP GTGTCGTAGACACAGTAGGGCTTAATTGAAAAGCCAACGCTC

AACGTGTCGTAGACAC 

Edg_T3R06C7_DHP GTGTCGTAGACACAGTCAATAGTGAATTTTTAAGACGCTGAG

AAGGTGTCGTAGACAC 

Edg_T3R10C7_DHP GTGTCGTAGACACCAATATAATCCTGATTGATGATGGCAATT

CATGTGTCGTAGACAC 

Edg_T3R14C7_DHP GTGTCGTAGACACACATCGCCATTAAAAAAACTGATAGCCCT

AAAGTGTCGTAGACAC 

Edg_T3R18C7_DHP GTGTCGTAGACACTTGATTAGTAATAACATTGTAGCAATACT

TCTGTGTCGTAGACAC 

2G4T4C7R06 TAATCCTGTTTGATGGTGGCCCCAGCAGGCGAAA 

2G4T4C7R12 GCCGTTGGTGTAGATGGGGTAATGGGATAGGTCA 
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2G4T4C7R16 CCGCCGGAGAGGGTAGCTTAGCTGATAAATTAAT 

2G4T4C7R20 ACTAAGCAATAAAGCCTCAAAGAATTAGCAAAAT 

T1a 

 

2G2T1C7R00 ATGGTGGCATCAATTCTAGGGCGCGAGCTGAAAA 

2G2T1C7R02 ATTCCCAATTCTGCGAACCCATATAACAGTTGAT 

2G2T1C7R06 GACCATAAATCAAAAATCCAGAAAACGAGAATGA 

2G2T1C7R10 CAGAAACACCAGAACGAGAGGCTTGCCCTGACGA 

2G2T1C7R12 TGCTGATAAATTGTGTCGAGATTTGTATCATCGC 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAGTGCC

GTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGAGGTT

GAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGGTTTA

CCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAAGAAA

CGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAACGGG

TATGTGTCGTAGACAC 

Edg_T3R02C7_DHP GTGTCGTAGACACAGTAGGGCTTAATTGAAAAGCCAACGCTC

AACGTGTCGTAGACAC 

Edg_T3R06C7_DHP GTGTCGTAGACACAGTCAATAGTGAATTTTTAAGACGCTGAG

AAGGTGTCGTAGACAC 

Edg_T3R10C7_DHP GTGTCGTAGACACCAATATAATCCTGATTGATGATGGCAATT

CATGTGTCGTAGACAC 

Edg_T3R14C7_DHP GTGTCGTAGACACACATCGCCATTAAAAAAACTGATAGCCCT

AAAGTGTCGTAGACAC 

Edg_T3R18C7_DHP GTGTCGTAGACACTTGATTAGTAATAACATTGTAGCAATACT

TCTGTGTCGTAGACAC 

2G4T4C7R00 ATGAGCACGTATAACGTGCTATGGTTGCTTTGAC 

2G4T4C7R02 AACGGGCGCTAGGGCGCTAAGAAAGCGAAAGGAG 

2G4T4C7R04 ATATCACCCAAATCAAGTGCCCACTACGTGAACC 

2G4T4C7R06 TAATCCTGTTTGATGGTGGCCCCAGCAGGCGAAA 

2G4T4C7R12 GCCGTTGGTGTAGATGGGGTAATGGGATAGGTCA 

2G4T4C7R16 CCGCCGGAGAGGGTAGCTTAGCTGATAAATTAAT 

2G4T4C7R20 ACTAAGCAATAAAGCCTCAAAGAATTAGCAAAAT 

T2 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAACAGTT

GATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACGAGAA

TGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCCCTGA

CGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGACAGCA

TCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTTTCTG

TATGTGTCGTAGACAC 

2bRT2C7R00 AGCCACCACCCTCATTGAACCGCCACCCTC 



 

 

142 
2bRT2C7R02 GAGAGGGTTGATATAAGCGGATAAGTGCCG 

2bRT2C7R04 GTATAAACAGTTAATGTTGAGTAACAGTGC 

2bRT2C7R06 GCAGGTCAGACGATTGTTGACAGGAGGTTG 

2bRT2C7R08 TAGCGCGTTTTCATCGCTTTAGCGTCAGAC 

2bRT2C7R10 GCGCCAAAGACAAAAGTTCATATGGTTTAC 

2bRT2C7R14 TTTTTTGTTTAACGTCTCCAAATAAGAAAC 

2bRT2C7R18 TAAACCAAGTACCGCATTCCAAGAACGGGT 

2bRT2C7R20 AGATAAGTCCTGAACACCTGTTTATCAACA 

2G2T3C7R04 CGAATGGTTTGAAATACCCTTCTGACCTAAATTT 

2G2T3C7R08 TATGAGCAAAAGAAGATGATTCATTTCAATTACC 

2G2T3C7R12 TGGTTATCTAAAATATCTAAAGGAATTGAGGAAG 

2G2T3C7R18 TCTTGATTAGTAATAACATTGTAGCAATACTTCT 

Q_T3_R20 AGGAACGGTACGCCAGTAAAGGGATTTTAGAC/3IAbRQ/ 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCGAAAG

GAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCAGGCG

AAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATTAAGT

TGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAAGCAA

ATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCAAGGA

TAAGTGTCGTAGACAC 

T3 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAACAGTT

GATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACGAGAA

TGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCCCTGA

CGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGACAGCA

TCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTTTCTG

TATGTGTCGTAGACAC 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAGTGCC

GTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGAGGTT

GAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGGTTTA

CCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAAGAAA

CGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAACGGG

TATGTGTCGTAGACAC 

2G3T3C7R00 ACGTAAAGTAATTCTGTCAAAGTACCGACAAAAG 

2G3T3C7R04 AAAATGGTTTGAAATACCCTTCTGACCTAAATTT 
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2G3T3C7R08 AGTGAGCAAAAGAAGATGATTCATTTCAATTACC 

2G3T3C7R12 CCGTTATCTAAAATATCTAAAGGAATTGAGGAAG 

2G3T3C7R16 TTTCGTCTGAAATGGATTACATTTTGACGCTCAA 

2G3T3C7R18 ACTTGATTAGTAATAACATTGTAGCAATACTTCT 

2G3T3C7R20 AGAGGAACGGTACGCCAGTAAAGGGATTTTAGAC 

2bRT4C7R00 GAGCACGTATAACGTGCTATGGTTGCTTTG 

2bRT4C7R04 ATCACCCAAATCAAGTGCCCACTACGTGAA 

2bRT4C7R08 GCTCACTGCCCGCTTTACATTAATTGCGTT 

2bRT4C7R14 TTTAAATTGTAAACGTATTGTATAAGCAAA 

2bRT4C7R16 GCCGGAGAGGGTAGCTTAGCTGATAAATTA 

2bRT4C7R18 AAATTTTTAGAACCCTTTCAACGCAAGGAT 

2bRT4C7R20 TAAGCAATAAAGCCTCAAAGAATTAGCAAA 

T4 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAACAGTT

GATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACGAGAA

TGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCCCTGA

CGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGACAGCA

TCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTTTCTG

TATGTGTCGTAGACAC 

F_rox_v1_T2_R00 /5Rox_N/AGCCACCACCCTCATTGAACCGCCACCCTCAG 

2bRT2C7R02 GAGAGGGTTGATATAAGCGGATAAGTGCCG 

2bRT2C7R08 TAGCGCGTTTTCATCGCTTTAGCGTCAGAC 

2bRT2C7R12 CCGAAGCCCTTTTTAAAGCAATAGCTATCT 

2bRT2C7R16 AACCTCCCGACTTGCGGCGAGGCGTTTTAG 

2bRT3C7R00 GTAAAGTAATTCTGTCAAAGTACCGACAAA 

2bRT3C7R02 AGTAGGGCTTAATTGAAAAGCCAACGCTCA 

2bRT3C7R04 AATGGTTTGAAATACCCTTCTGACCTAAAT 

2bRT3C7R08 TGAGCAAAAGAAGATGATTCATTTCAATTA 

2bRT3C7R12 GTTATCTAAAATATCTAAAGGAATTGAGGA 

2bRT3C7R16 TCGTCTGAAATGGATTACATTTTGACGCTC 

2bRT3C7R20 AGGAACGGTACGCCAGTAAAGGGATTTTAG 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCGAAAG

GAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCAGGCG

AAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATTAAGT

TGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAAGCAA

ATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCAAGGA
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TAAGTGTCGTAGACAC 

T2_2 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAACAGTT

GATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACGAGAA

TGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCCCTGA

CGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGACAGCA

TCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTTTCTG

TATGTGTCGTAGACAC 

2bRT2C7R00 AGCCACCACCCTCATTGAACCGCCACCCTC 

2bRT2C7R02 GAGAGGGTTGATATAAGCGGATAAGTGCCG 

2bRT2C7R04 GTATAAACAGTTAATGTTGAGTAACAGTGC 

2bRT2C7R06 GCAGGTCAGACGATTGTTGACAGGAGGTTG 

2bRT2C7R08 TAGCGCGTTTTCATCGCTTTAGCGTCAGAC 

2bRT2C7R10 GCGCCAAAGACAAAAGTTCATATGGTTTAC 

2bRT2C7R14 TTTTTTGTTTAACGTCTCCAAATAAGAAAC 

2bRT2C7R18 TAAACCAAGTACCGCATTCCAAGAACGGGT 

2bRT2C7R20 AGATAAGTCCTGAACACCTGTTTATCAACA 

2G2T3C7R04 CGAATGGTTTGAAATACCCTTCTGACCTAAATTT 

2G2T3C7R08 TATGAGCAAAAGAAGATGATTCATTTCAATTACC 

2G2T3C7R12 TGGTTATCTAAAATATCTAAAGGAATTGAGGAAG 

2G2T3C7R18 TCTTGATTAGTAATAACATTGTAGCAATACTTCT 

Edg_T3C7R20_pip

i 

AGGAACGGTACGCCAGTAAAGGGATTTTAGAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCGAAAG

GAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCAGGCG

AAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATTAAGT

TGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAAGCAA

ATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCAAGGA

TAAGTGTCGTAGACAC 
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Table S4: Edge staples in cooperative reconfiguration measurements 

Tile Edge Edge Seq 

Cover1 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAA

CAGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAAC

GAGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGC

CCTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGA

CAGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATT

TTCTGTATGTGTCGTAGACAC 

2G4T2C7R00 ATAGCCACCACCCTCATTGAACCGCCACCCTCAG 

2G4T2C7R04 ATGTATAAACAGTTAATGTTGAGTAACAGTGCCC 

2G4T2C7R10 GGGCGCCAAAGACAAAAGTTCATATGGTTTACCA 

2G4T2C7R12 GCCCGAAGCCCTTTTTAAAGCAATAGCTATCTTA 

2G4T2C7R16 CCAACCTCCCGACTTGCGGCGAGGCGTTTTAGCG 

2G4T2C7R20 ACAGATAAGTCCTGAACACCTGTTTATCAACAAT 

2G3T3C7R00 ACGTAAAGTAATTCTGTCAAAGTACCGACAAAAG 

2G3T3C7R02 CTAGTAGGGCTTAATTGAAAAGCCAACGCTCAAC 

2G3T3C7R06 AAAGTCAATAGTGAATTTTTAAGACGCTGAGAAG 

2G3T3C7R10 ATCAATATAATCCTGATTGATGATGGCAATTCAT 

2G3T3C7R14 AGACATCGCCATTAAAAAAACTGATAGCCCTAAA 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGC

GAAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGC

AGGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGAT

TAAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATA

AGCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGC

AAGGATAAGTGTCGTAGACAC 

Cover2 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAA

CAGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAAC

GAGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGC

CCTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGA

CAGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATT

TTCTGTATGTGTCGTAGACAC 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAA
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GTGCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGG

AGGTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATG

GTTTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATA

AGAAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGA

ACGGGTATGTGTCGTAGACAC 

2G2T3C7R06 GAAGTCAATAGTGAATTTTTAAGACGCTGAGAAG 

2G2T3C7R10 CACAATATAATCCTGATTGATGATGGCAATTCAT 

2G2T3C7R12 TGGTTATCTAAAATATCTAAAGGAATTGAGGAAG 

2G2T3C7R16 CCTCGTCTGAAATGGATTACATTTTGACGCTCAA 

2G2T3C7R18 TCTTGATTAGTAATAACATTGTAGCAATACTTCT 

Q_T3_R20 AGGAACGGTACGCCAGTAAAGGGATTTTAGAC/3IAb

RQ/ 

2bRT4C7R00 GAGCACGTATAACGTGCTATGGTTGCTTTG 

2bRT4C7R04 ATCACCCAAATCAAGTGCCCACTACGTGAA 

2bRT4C7R08 GCTCACTGCCCGCTTTACATTAATTGCGTT 

2bRT4C7R10 GTAACGCCAGGGTTTTAAGGCGATTAAGTT 

2bRT4C7R16 GCCGGAGAGGGTAGCTTAGCTGATAAATTA 

2bRT4C7R20 TAAGCAATAAAGCCTCAAAGAATTAGCAAA 

Base1 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAA

CAGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAAC

GAGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGC

CCTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGA

CAGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATT

TTCTGTATGTGTCGTAGACAC 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAA

GTGCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGG

AGGTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATG

GTTTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATA

AGAAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGA

ACGGGTATGTGTCGTAGACAC 

2bRT3C7R00 GTAAAGTAATTCTGTCAAAGTACCGACAAA 

2bRT3C7R02 AGTAGGGCTTAATTGAAAAGCCAACGCTCA 

2bRT3C7R04 AATGGTTTGAAATACCCTTCTGACCTAAAT 
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2bRT3C7R06 AGTCAATAGTGAATTTTTAAGACGCTGAGA 

2bRT3C7R10 CAATATAATCCTGATTGATGATGGCAATTC 

2bRT3C7R14 ACATCGCCATTAAAAAAACTGATAGCCCTA 

2bRT3C7R18 TTGATTAGTAATAACATTGTAGCAATACTT 

2bRT3C7R20 AGGAACGGTACGCCAGTAAAGGGATTTTAG 

2G1T4C7R00 GTGAGCACGTATAACGTGCTATGGTTGCTTTGAC 

2G1T4C7R04 TCATCACCCAAATCAAGTGCCCACTACGTGAACC 

2G1T4C7R10 GAGTAACGCCAGGGTTTTAAGGCGATTAAGTTGG 

2G1T4C7R14 GATTTAAATTGTAAACGTATTGTATAAGCAAATA 

2G1T4C7R16 TAGCCGGAGAGGGTAGCTTAGCTGATAAATTAAT 

2G1T4C7R20 AATAAGCAATAAAGCCTCAAAGAATTAGCAAAAT 

Base2 

 

2bRT1C7R00 GGTGGCATCAATTCTAGGGCGCGAGCTGAA 

2bRT1C7R04 ATTGCTCCTTTTGATATTAGAGAGTACCTT 

2bRT1C7R06 CCATAAATCAAAAATCCAGAAAACGAGAAT 

2bRT1C7R10 GAAACACCAGAACGAGAGGCTTGCCCTGAC 

2bRT1C7R16 GGTTTATCAGCTTGCTAGCCTTTAATTGTA 

2bRT1C7R20 ACAAACTACAACGCCTGAGTTTCGTCACCA 

F_rox_v1_T2_R00 /5Rox_N/AGCCACCACCCTCATTGAACCGCCACCCT

CAG 

2bRT2C7R02 GAGAGGGTTGATATAAGCGGATAAGTGCCG 

2bRT2C7R04 GTATAAACAGTTAATGTTGAGTAACAGTGC 

2bRT2C7R08 TAGCGCGTTTTCATCGCTTTAGCGTCAGAC 

2bRT2C7R10 GCGCCAAAGACAAAAGTTCATATGGTTTAC 

2bRT2C7R14 TTTTTTGTTTAACGTCTCCAAATAAGAAAC 

2bRT2C7R16 AACCTCCCGACTTGCGGCGAGGCGTTTTAG 

2bRT2C7R18 TAAACCAAGTACCGCATTCCAAGAACGGGT 

2bRT2C7R20 AGATAAGTCCTGAACACCTGTTTATCAACA 

Edg_T3R02C7_DHP GTGTCGTAGACACAGTAGGGCTTAATTGAAAAGCCAA

CGCTCAACGTGTCGTAGACAC 

Edg_T3R06C7_DHP GTGTCGTAGACACAGTCAATAGTGAATTTTTAAGACG

CTGAGAAGGTGTCGTAGACAC 

Edg_T3R10C7_DHP GTGTCGTAGACACCAATATAATCCTGATTGATGATGG

CAATTCATGTGTCGTAGACAC 

Edg_T3R14C7_DHP GTGTCGTAGACACACATCGCCATTAAAAAAACTGATA

GCCCTAAAGTGTCGTAGACAC 

Edg_T3R18C7_DHP GTGTCGTAGACACTTGATTAGTAATAACATTGTAGCA

ATACTTCTGTGTCGTAGACAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGC

GAAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGC

AGGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGAT

TAAGTTGGGTGTCGTAGACAC 
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Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATA

AGCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGC

AAGGATAAGTGTCGTAGACAC 

Inv1 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAA

CAGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAAC

GAGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGC

CCTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGA

CAGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATT

TTCTGTATGTGTCGTAGACAC 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAA

GTGCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGG

AGGTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATG

GTTTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATA

AGAAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGA

ACGGGTATGTGTCGTAGACAC 

2G3T3C7R00 ACGTAAAGTAATTCTGTCAAAGTACCGACAAAAG 

2G3T3C7R02 CTAGTAGGGCTTAATTGAAAAGCCAACGCTCAAC 

2G3T3C7R06 AAAGTCAATAGTGAATTTTTAAGACGCTGAGAAG 

2G3T3C7R10 ATCAATATAATCCTGATTGATGATGGCAATTCAT 

2G3T3C7R14 AGACATCGCCATTAAAAAAACTGATAGCCCTAAA 

2G3T3C7R16 TTTCGTCTGAAATGGATTACATTTTGACGCTCAA 

2G3T3C7R18 ACTTGATTAGTAATAACATTGTAGCAATACTTCT 

2G3T3C7R20 AGAGGAACGGTACGCCAGTAAAGGGATTTTAGAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGC

GAAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGC

AGGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGAT

TAAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATA

AGCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGC

AAGGATAAGTGTCGTAGACAC 

Inv2 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAA

CAGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAAC

GAGAATGAGTGTCGTAGACAC 
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Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGC

CCTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGA

CAGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATT

TTCTGTATGTGTCGTAGACAC 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAA

GTGCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGG

AGGTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATG

GTTTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATA

AGAAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGA

ACGGGTATGTGTCGTAGACAC 

2G2T3C7R00 ATGTAAAGTAATTCTGTCAAAGTACCGACAAAAG 

2G2T3C7R02 ATAGTAGGGCTTAATTGAAAAGCCAACGCTCAAC 

2G2T3C7R04 CGAATGGTTTGAAATACCCTTCTGACCTAAATTT 

2G2T3C7R06 GAAGTCAATAGTGAATTTTTAAGACGCTGAGAAG 

2G2T3C7R10 CACAATATAATCCTGATTGATGATGGCAATTCAT 

2G2T3C7R12 TGGTTATCTAAAATATCTAAAGGAATTGAGGAAG 

2G2T3C7R16 CCTCGTCTGAAATGGATTACATTTTGACGCTCAA 

2G2T3C7R18 TCTTGATTAGTAATAACATTGTAGCAATACTTCT 

Edg_T3C7R20_pip

i 

AGGAACGGTACGCCAGTAAAGGGATTTTAGAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGC

GAAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGC

AGGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGAT

TAAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATA

AGCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGC

AAGGATAAGTGTCGTAGACAC 

Inv1_Trig 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAA

CAGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAAC

GAGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGC

CCTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGA

CAGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATT

TTCTGTATGTGTCGTAGACAC 
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2G4T2C7R00 ATAGCCACCACCCTCATTGAACCGCCACCCTCAG 

2G4T2C7R04 ATGTATAAACAGTTAATGTTGAGTAACAGTGCCC 

2G4T2C7R10 GGGCGCCAAAGACAAAAGTTCATATGGTTTACCA 

2G4T2C7R12 GCCCGAAGCCCTTTTTAAAGCAATAGCTATCTTA 

2G4T2C7R16 CCAACCTCCCGACTTGCGGCGAGGCGTTTTAGCG 

2G4T2C7R20 ACAGATAAGTCCTGAACACCTGTTTATCAACAAT 

2G3T3C7R00 ACGTAAAGTAATTCTGTCAAAGTACCGACAAAAG 

2G3T3C7R02 CTAGTAGGGCTTAATTGAAAAGCCAACGCTCAAC 

2G3T3C7R06 AAAGTCAATAGTGAATTTTTAAGACGCTGAGAAG 

2G3T3C7R10 ATCAATATAATCCTGATTGATGATGGCAATTCAT 

2G3T3C7R14 AGACATCGCCATTAAAAAAACTGATAGCCCTAAA 

2G3T3C7R16 TTTCGTCTGAAATGGATTACATTTTGACGCTCAA 

2G3T3C7R18 ACTTGATTAGTAATAACATTGTAGCAATACTTCT 

2G3T3C7R20 AGAGGAACGGTACGCCAGTAAAGGGATTTTAGAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGC

GAAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGC

AGGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGAT

TAAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATA

AGCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGC

AAGGATAAGTGTCGTAGACAC 

Inv2_Trig 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAA

CAGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAAC

GAGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGC

CCTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGA

CAGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATT

TTCTGTATGTGTCGTAGACAC 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAA

GTGCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGG

AGGTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATG

GTTTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATA

AGAAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGA

ACGGGTATGTGTCGTAGACAC 

2G2T3C7R00 ATGTAAAGTAATTCTGTCAAAGTACCGACAAAAG 
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2G2T3C7R02 ATAGTAGGGCTTAATTGAAAAGCCAACGCTCAAC 

2G2T3C7R04 CGAATGGTTTGAAATACCCTTCTGACCTAAATTT 

2G2T3C7R06 GAAGTCAATAGTGAATTTTTAAGACGCTGAGAAG 

2G2T3C7R10 CACAATATAATCCTGATTGATGATGGCAATTCAT 

2G2T3C7R12 TGGTTATCTAAAATATCTAAAGGAATTGAGGAAG 

2G2T3C7R16 CCTCGTCTGAAATGGATTACATTTTGACGCTCAA 

2G2T3C7R18 TCTTGATTAGTAATAACATTGTAGCAATACTTCT 

Edg_T3C7R20_pip

i 

AGGAACGGTACGCCAGTAAAGGGATTTTAGAC 

2bRT4C7R00 GAGCACGTATAACGTGCTATGGTTGCTTTG 

2bRT4C7R04 ATCACCCAAATCAAGTGCCCACTACGTGAA 

2bRT4C7R08 GCTCACTGCCCGCTTTACATTAATTGCGTT 

2bRT4C7R10 GTAACGCCAGGGTTTTAAGGCGATTAAGTT 

2bRT4C7R16 GCCGGAGAGGGTAGCTTAGCTGATAAATTA 

2bRT4C7R20 TAAGCAATAAAGCCTCAAAGAATTAGCAAA 

 

Table S5: Edge staples in scalable multi-step (Tic-Tac_Toe) reconfiguration measurements 

Tile Edge Edge Seq 

T1_TTT 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAAC

AGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACG

AGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCC

CTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGAC

AGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTT

TCTGTATGTGTCGTAGACAC 

5bC2RT2R00 CCACCCTCATTGAACCGCCACCCTCAG 

5bC2RT2R02 GGTTGATATAAGCGGATAAGTGCCGTC 

Q_T2R06 /5IAbRQ/GCAGGTCAGACGATTGTTGACAGGAGGTTG 

2bRT2C7R10 GCGCCAAAGACAAAAGTTCATATGGTTTAC 

2bRT2C7R14 TTTTTTGTTTAACGTCTCCAAATAAGAAAC 

2bRT2C7R16 AACCTCCCGACTTGCGGCGAGGCGTTTTAG 

2bRT2C7R18 TAAACCAAGTACCGCATTCCAAGAACGGGT 

2bRT2C7R20 AGATAAGTCCTGAACACCTGTTTATCAACA 

2bRT3C7R00 GTAAAGTAATTCTGTCAAAGTACCGACAAA 

2bRT3C7R02 AGTAGGGCTTAATTGAAAAGCCAACGCTCA 

2bRT3C7R06 AGTCAATAGTGAATTTTTAAGACGCTGAGA 



 

 

152 
2bRT3C7R08 TGAGCAAAAGAAGATGATTCATTTCAATTA 

2bRT3C7R12 GTTATCTAAAATATCTAAAGGAATTGAGGA 

2bRT3C7R16 TCGTCTGAAATGGATTACATTTTGACGCTC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCG

AAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCA

GGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATT

AAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAA

GCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCA

AGGATAAGTGTCGTAGACAC 

T2_TTT 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAAC

AGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACG

AGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCC

CTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGAC

AGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTT

TCTGTATGTGTCGTAGACAC 

5bRT2C7R00 AGCCACCACCCTCATTGAACCGCCACC 

5bRT2C7R02 GAGAGGGTTGATATAAGCGGATAAGTG 

2G4T2C7R04 ATGTATAAACAGTTAATGTTGAGTAACAGTGCCC 

2G4T2C7R08 CATAGCGCGTTTTCATCGCTTTAGCGTCAGACTG 

2G4T2C7R12 GCCCGAAGCCCTTTTTAAAGCAATAGCTATCTTA 

2G4T2C7R14 AATTTTTTGTTTAACGTCTCCAAATAAGAAACGA 

2G4T2C7R18 AGTAAACCAAGTACCGCATTCCAAGAACGGGTAT 

2G4T2C7R20 ACAGATAAGTCCTGAACACCTGTTTATCAACAAT 

2G1T3C7R00 GTGTAAAGTAATTCTGTCAAAGTACCGACAAAAG 

2G1T3C7R02 ATAGTAGGGCTTAATTGAAAAGCCAACGCTCAAC 

2G1T3C7R08 GCTGAGCAAAAGAAGATGATTCATTTCAATTACC 

2G1T3C7R10 GACAATATAATCCTGATTGATGATGGCAATTCAT 

2G1T3C7R14 GAACATCGCCATTAAAAAAACTGATAGCCCTAAA 

2G1T3C7R16 TATCGTCTGAAATGGATTACATTTTGACGCTCAA 

5bRT3C7R18 TTGATTAGTAATAACATTGTAGCAATA 

5bRT3C7R20 AGGAACGGTACGCCAGTAAAGGGATTT 

2G2T4C7R00 ATGAGCACGTATAACGTGCTATGGTTGCTTTGAC 

2G2T4C7R02 ATCGGGCGCTAGGGCGCTAAGAAAGCGAAAGGAG 

2G2T4C7R04 CGATCACCCAAATCAAGTGCCCACTACGTGAACC 

2G2T4C7R06 GAATCCTGTTTGATGGTGGCCCCAGCAGGCGAAA 



 

 

153 
2G2T4C7R10 CAGTAACGCCAGGGTTTTAAGGCGATTAAGTTGG 

2G2T4C7R14 AGTTTAAATTGTAAACGTATTGTATAAGCAAATA 

T3_TTT 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAAC

AGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACG

AGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCC

CTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGAC

AGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTT

TCTGTATGTGTCGTAGACAC 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAG

TGCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGA

GGTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGG

TTTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAA

GAAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAA

CGGGTATGTGTCGTAGACAC 

5bC2RT3R00 GTAATTCTGTCAAAGTACCGACAAAAG 

5bC2RT3R02 GGCTTAATTGAAAAGCCAACGCTCAAC 

2bRT3C7R06 AGTCAATAGTGAATTTTTAAGACGCTGAGA 

2bRT3C7R10 CAATATAATCCTGATTGATGATGGCAATTC 

2bRT3C7R14 ACATCGCCATTAAAAAAACTGATAGCCCTA 

2bRT3C7R16 TCGTCTGAAATGGATTACATTTTGACGCTC 

2bRT3C7R18 TTGATTAGTAATAACATTGTAGCAATACTT 

2bRT3C7R20 AGGAACGGTACGCCAGTAAAGGGATTTTAG 

2bRT4C7R00 GAGCACGTATAACGTGCTATGGTTGCTTTG 

2bRT4C7R02 CGGGCGCTAGGGCGCTAAGAAAGCGAAAGG 

2bRT4C7R06 ATCCTGTTTGATGGTGGCCCCAGCAGGCGA 

2bRT4C7R08 GCTCACTGCCCGCTTTACATTAATTGCGTT 

2bRT4C7R12 CGTTGGTGTAGATGGGGTAATGGGATAGGT 

2bRT4C7R16 GCCGGAGAGGGTAGCTTAGCTGATAAATTA 

T4_TTT 

 

5bRT1C7R00 GGTGGCATCAATTCTAGGGCGCGAGCT 

5bRT1C7R02 TCCCAATTCTGCGAACCCATATAACAG 

Q_T1R04 /5IAbRQ/AAATTGCTCCTTTTGATATTAGAGAGTACC

TTTA 

2G3T1C7R08 AGCGAGGCATAGTAAGAGACGCCAAAAGGAATTA 

2G3T1C7R12 CCCTGATAAATTGTGTCGAGATTTGTATCATCGC 

2G3T1C7R14 AGGAACGAGGGTAGCAACGCGAAAGACAGCATCG 



 

 

154 
2G3T1C7R18 ACGGGATTTTGCTAAACAAATGAATTTTCTGTAT 

2G3T1C7R20 AGACAAACTACAACGCCTGAGTTTCGTCACCAGT 

2G4T2C7R00 ATAGCCACCACCCTCATTGAACCGCCACCCTCAG 

2G4T2C7R02 AAGAGAGGGTTGATATAAGCGGATAAGTGCCGTC 

2G4T2C7R08 CATAGCGCGTTTTCATCGCTTTAGCGTCAGACTG 

2G4T2C7R10 GGGCGCCAAAGACAAAAGTTCATATGGTTTACCA 

2G4T2C7R14 AATTTTTTGTTTAACGTCTCCAAATAAGAAACGA 

2G4T2C7R16 CCAACCTCCCGACTTGCGGCGAGGCGTTTTAGCG 

5bRT2C7R18 TAAACCAAGTACCGCATTCCAAGAACG 

5bRT2C7R20 AGATAAGTCCTGAACACCTGTTTATCA 

2G1T3C7R00 GTGTAAAGTAATTCTGTCAAAGTACCGACAAAAG 

2G1T3C7R02 ATAGTAGGGCTTAATTGAAAAGCCAACGCTCAAC 

2G1T3C7R04 TCAATGGTTTGAAATACCCTTCTGACCTAAATTT 

2G1T3C7R06 CGAGTCAATAGTGAATTTTTAAGACGCTGAGAAG 

2G1T3C7R10 GACAATATAATCCTGATTGATGATGGCAATTCAT 

2G1T3C7R14 GAACATCGCCATTAAAAAAACTGATAGCCCTAAA 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCG

AAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCA

GGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATT

AAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAA

GCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCA

AGGATAAGTGTCGTAGACAC 

T5_TTT 

 

2bRT1C7R04 ATTGCTCCTTTTGATATTAGAGAGTACCTT 

2bRT1C7R06 CCATAAATCAAAAATCCAGAAAACGAGAAT 

2bRT1C7R10 GAAACACCAGAACGAGAGGCTTGCCCTGAC 

2bRT1C7R12 CTGATAAATTGTGTCGAGATTTGTATCATC 

2bRT1C7R18 GGGATTTTGCTAAACAAATGAATTTTCTGT 

2bRT1C7R20 ACAAACTACAACGCCTGAGTTTCGTCACCA 

2bRT2C7R04 GTATAAACAGTTAATGTTGAGTAACAGTGC 

2bRT2C7R06 GCAGGTCAGACGATTGTTGACAGGAGGTTG 

2bRT2C7R10 GCGCCAAAGACAAAAGTTCATATGGTTTAC 

2bRT2C7R12 CCGAAGCCCTTTTTAAAGCAATAGCTATCT 

2bRT2C7R18 TAAACCAAGTACCGCATTCCAAGAACGGGT 

2bRT2C7R20 AGATAAGTCCTGAACACCTGTTTATCAACA 

2bRT3C7R04 AATGGTTTGAAATACCCTTCTGACCTAAAT 

2bRT3C7R06 AGTCAATAGTGAATTTTTAAGACGCTGAGA 

2bRT3C7R10 CAATATAATCCTGATTGATGATGGCAATTC 



 

 

155 
2bRT3C7R12 GTTATCTAAAATATCTAAAGGAATTGAGGA 

2bRT3C7R18 TTGATTAGTAATAACATTGTAGCAATACTT 

2bRT3C7R20 AGGAACGGTACGCCAGTAAAGGGATTTTAG 

2bRT4C7R04 ATCACCCAAATCAAGTGCCCACTACGTGAA 

2bRT4C7R06 ATCCTGTTTGATGGTGGCCCCAGCAGGCGA 

2bRT4C7R10 GTAACGCCAGGGTTTTAAGGCGATTAAGTT 

2bRT4C7R12 CGTTGGTGTAGATGGGGTAATGGGATAGGT 

2bRT4C7R18 AAATTTTTAGAACCCTTTCAACGCAAGGAT 

Q_T4R20 TAAGCAATAAAGCCTCAAAGAATTAGCAAA/3IAbRQS

p/ 

T6_TTT 

 

2G3T1C7R00 ACGGTGGCATCAATTCTAGGGCGCGAGCTGAAAA 

2G3T1C7R02 CTTCCCAATTCTGCGAACCCATATAACAGTTGAT 

2G3T1C7R04 AAATTGCTCCTTTTGATATTAGAGAGTACCTTTA 

2G3T1C7R06 AACCATAAATCAAAAATCCAGAAAACGAGAATGA 

2G3T1C7R10 ATGAAACACCAGAACGAGAGGCTTGCCCTGACGA 

2G3T1C7R14 AGGAACGAGGGTAGCAACGCGAAAGACAGCATCG 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAG

TGCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGA

GGTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGG

TTTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAA

GAAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAA

CGGGTATGTGTCGTAGACAC 

5bRT3C7R00 GTAAAGTAATTCTGTCAAAGTACCGAC 

5bRT3C7R02 AGTAGGGCTTAATTGAAAAGCCAACGC 

2G1T3C7R04 TCAATGGTTTGAAATACCCTTCTGACCTAAATTT 

2G1T3C7R08 GCTGAGCAAAAGAAGATGATTCATTTCAATTACC 

2G1T3C7R12 TAGTTATCTAAAATATCTAAAGGAATTGAGGAAG 

2G1T3C7R14 GAACATCGCCATTAAAAAAACTGATAGCCCTAAA 

2G1T3C7R18 ATTTGATTAGTAATAACATTGTAGCAATACTTCT 

2G1T3C7R20 AAAGGAACGGTACGCCAGTAAAGGGATTTTAGAC 

2G2T4C7R00 ATGAGCACGTATAACGTGCTATGGTTGCTTTGAC 

2G2T4C7R02 ATCGGGCGCTAGGGCGCTAAGAAAGCGAAAGGAG 

2G2T4C7R08 TAGCTCACTGCCCGCTTTACATTAATTGCGTTGC 

2G2T4C7R10 CAGTAACGCCAGGGTTTTAAGGCGATTAAGTTGG 

2G2T4C7R14 AGTTTAAATTGTAAACGTATTGTATAAGCAAATA 

2G2T4C7R16 CCGCCGGAGAGGGTAGCTTAGCTGATAAATTAAT 

5bRT4C7R18 AAATTTTTAGAACCCTTTCAACGCAAG 

5bRT4C7R20 TAAGCAATAAAGCCTCAAAGAATTAGC 



 

 

156 
T7_TTT 

 

5bC2RT1R00 CATCAATTCTAGGGCGCGAGCTGAAAA 

5bC2RT1R02 ATTCTGCGAACCCATATAACAGTTGAT 

2bRT1C7R06 CCATAAATCAAAAATCCAGAAAACGAGAAT 

2bRT1C7R10 GAAACACCAGAACGAGAGGCTTGCCCTGAC 

2bRT1C7R14 GAACGAGGGTAGCAACGCGAAAGACAGCAT 

2bRT1C7R16 GGTTTATCAGCTTGCTAGCCTTTAATTGTA 

2bRT1C7R18 GGGATTTTGCTAAACAAATGAATTTTCTGT 

2bRT1C7R20 ACAAACTACAACGCCTGAGTTTCGTCACCA 

2bRT2C7R00 AGCCACCACCCTCATTGAACCGCCACCCTC 

2bRT2C7R02 GAGAGGGTTGATATAAGCGGATAAGTGCCG 

2bRT2C7R06 GCAGGTCAGACGATTGTTGACAGGAGGTTG 

2bRT2C7R08 TAGCGCGTTTTCATCGCTTTAGCGTCAGAC 

2bRT2C7R12 CCGAAGCCCTTTTTAAAGCAATAGCTATCT 

2bRT2C7R16 AACCTCCCGACTTGCGGCGAGGCGTTTTAG 

Edg_T3R02C7_DHP GTGTCGTAGACACAGTAGGGCTTAATTGAAAAGCCAAC

GCTCAACGTGTCGTAGACAC 

Edg_T3R06C7_DHP GTGTCGTAGACACAGTCAATAGTGAATTTTTAAGACGC

TGAGAAGGTGTCGTAGACAC 

Edg_T3R10C7_DHP GTGTCGTAGACACCAATATAATCCTGATTGATGATGGC

AATTCATGTGTCGTAGACAC 

Edg_T3R14C7_DHP GTGTCGTAGACACACATCGCCATTAAAAAAACTGATAG

CCCTAAAGTGTCGTAGACAC 

Edg_T3R18C7_DHP GTGTCGTAGACACTTGATTAGTAATAACATTGTAGCAA

TACTTCTGTGTCGTAGACAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCG

AAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCA

GGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATT

AAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAA

GCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCA

AGGATAAGTGTCGTAGACAC 

T8_TTT 

 

2G3T1C7R00 ACGGTGGCATCAATTCTAGGGCGCGAGCTGAAAA 

2G3T1C7R02 CTTCCCAATTCTGCGAACCCATATAACAGTTGAT 

2G3T1C7R08 AGCGAGGCATAGTAAGAGACGCCAAAAGGAATTA 

2G3T1C7R10 ATGAAACACCAGAACGAGAGGCTTGCCCTGACGA 

2G3T1C7R14 AGGAACGAGGGTAGCAACGCGAAAGACAGCATCG 

2G3T1C7R16 TTGGTTTATCAGCTTGCTAGCCTTTAATTGTATC 

5bRT1C7R18 GGGATTTTGCTAAACAAATGAATTTTC 

5bRT1C7R20 ACAAACTACAACGCCTGAGTTTCGTCA 

2G4T2C7R00 ATAGCCACCACCCTCATTGAACCGCCACCCTCAG 



 

 

157 
2G4T2C7R02 AAGAGAGGGTTGATATAAGCGGATAAGTGCCGTC 

2G4T2C7R04 ATGTATAAACAGTTAATGTTGAGTAACAGTGCCC 

2G4T2C7R06 TAGCAGGTCAGACGATTGTTGACAGGAGGTTGAG 

2G4T2C7R10 GGGCGCCAAAGACAAAAGTTCATATGGTTTACCA 

2G4T2C7R14 AATTTTTTGTTTAACGTCTCCAAATAAGAAACGA 

Edg_T3R02C7_DHP GTGTCGTAGACACAGTAGGGCTTAATTGAAAAGCCAAC

GCTCAACGTGTCGTAGACAC 

Edg_T3R06C7_DHP GTGTCGTAGACACAGTCAATAGTGAATTTTTAAGACGC

TGAGAAGGTGTCGTAGACAC 

Edg_T3R10C7_DHP GTGTCGTAGACACCAATATAATCCTGATTGATGATGGC

AATTCATGTGTCGTAGACAC 

Edg_T3R14C7_DHP GTGTCGTAGACACACATCGCCATTAAAAAAACTGATAG

CCCTAAAGTGTCGTAGACAC 

Edg_T3R18C7_DHP GTGTCGTAGACACTTGATTAGTAATAACATTGTAGCAA

TACTTCTGTGTCGTAGACAC 

5bRT4C7R00 GAGCACGTATAACGTGCTATGGTTGCT 

5bRT4C7R02 CGGGCGCTAGGGCGCTAAGAAAGCGAA 

2G2T4C7R04 CGATCACCCAAATCAAGTGCCCACTACGTGAACC 

2G2T4C7R08 TAGCTCACTGCCCGCTTTACATTAATTGCGTTGC 

2G2T4C7R12 TGCGTTGGTGTAGATGGGGTAATGGGATAGGTCA 

2G2T4C7R14 AGTTTAAATTGTAAACGTATTGTATAAGCAAATA 

2G2T4C7R18 TCAAATTTTTAGAACCCTTTCAACGCAAGGATAA 

2G2T4C7R20 AGTAAGCAATAAAGCCTCAAAGAATTAGCAAAAT 

T9_TTT 

 

2bRT1C7R00 GGTGGCATCAATTCTAGGGCGCGAGCTGAA 

2bRT1C7R02 TCCCAATTCTGCGAACCCATATAACAGTTG 

2bRT1C7R06 CCATAAATCAAAAATCCAGAAAACGAGAAT 

2bRT1C7R08 CGAGGCATAGTAAGAGACGCCAAAAGGAAT 

2bRT1C7R12 CTGATAAATTGTGTCGAGATTTGTATCATC 

2bRT1C7R16 GGTTTATCAGCTTGCTAGCCTTTAATTGTA 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAG

TGCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGA

GGTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGG

TTTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAA

GAAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAA

CGGGTATGTGTCGTAGACAC 

Edg_T3R02C7_DHP GTGTCGTAGACACAGTAGGGCTTAATTGAAAAGCCAAC

GCTCAACGTGTCGTAGACAC 

Edg_T3R06C7_DHP GTGTCGTAGACACAGTCAATAGTGAATTTTTAAGACGC

TGAGAAGGTGTCGTAGACAC 

Edg_T3R10C7_DHP GTGTCGTAGACACCAATATAATCCTGATTGATGATGGC



 

 

158 
AATTCATGTGTCGTAGACAC 

Edg_T3R14C7_DHP GTGTCGTAGACACACATCGCCATTAAAAAAACTGATAG

CCCTAAAGTGTCGTAGACAC 

Edg_T3R18C7_DHP GTGTCGTAGACACTTGATTAGTAATAACATTGTAGCAA

TACTTCTGTGTCGTAGACAC 

5bC2RT4R00 CGTATAACGTGCTATGGTTGCTTTGAC 

5bC2RT4R02 GCTAGGGCGCTAAGAAAGCGAAAGGAG 

2bRT4C7R06 ATCCTGTTTGATGGTGGCCCCAGCAGGCGA 

2bRT4C7R10 GTAACGCCAGGGTTTTAAGGCGATTAAGTT 

2bRT4C7R14 TTTAAATTGTAAACGTATTGTATAAGCAAA 

2bRT4C7R16 GCCGGAGAGGGTAGCTTAGCTGATAAATTA 

2bRT4C7R18 AAATTTTTAGAACCCTTTCAACGCAAGGAT 

2bRT4C7R20 TAAGCAATAAAGCCTCAAAGAATTAGCAAA 

T2_TTT_X 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAAC

AGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACG

AGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCC

CTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGAC

AGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTT

TCTGTATGTGTCGTAGACAC 

5bRT2C7R00 AGCCACCACCCTCATTGAACCGCCACC 

5bRT2C7R02 GAGAGGGTTGATATAAGCGGATAAGTG 

2G4T2C7R04 ATGTATAAACAGTTAATGTTGAGTAACAGTGCCC 

2G4T2C7R08 CATAGCGCGTTTTCATCGCTTTAGCGTCAGACTG 

2G4T2C7R12 GCCCGAAGCCCTTTTTAAAGCAATAGCTATCTTA 

2G4T2C7R14 AATTTTTTGTTTAACGTCTCCAAATAAGAAACGA 

2G4T2C7R18 AGTAAACCAAGTACCGCATTCCAAGAACGGGTAT 

2G4T2C7R20 ACAGATAAGTCCTGAACACCTGTTTATCAACAAT 

2G1T3C7R00 GTGTAAAGTAATTCTGTCAAAGTACCGACAAAAG 

2G1T3C7R02 ATAGTAGGGCTTAATTGAAAAGCCAACGCTCAAC 

2G1T3C7R08 GCTGAGCAAAAGAAGATGATTCATTTCAATTACC 

2G1T3C7R10 GACAATATAATCCTGATTGATGATGGCAATTCAT 

2G1T3C7R14 GAACATCGCCATTAAAAAAACTGATAGCCCTAAA 

2G1T3C7R16 TATCGTCTGAAATGGATTACATTTTGACGCTCAA 

5bRT3C7R18 TTGATTAGTAATAACATTGTAGCAATA 

5bRT3C7R20 AGGAACGGTACGCCAGTAAAGGGATTT 

2G2T4C7R00 ATGAGCACGTATAACGTGCTATGGTTGCTTTGAC 

2G2T4C7R02 ATCGGGCGCTAGGGCGCTAAGAAAGCGAAAGGAG 

2G2T4C7R04 CGATCACCCAAATCAAGTGCCCACTACGTGAACC 



 

 

159 
2G2T4C7R06 GAATCCTGTTTGATGGTGGCCCCAGCAGGCGAAA 

2G2T4C7R10 CAGTAACGCCAGGGTTTTAAGGCGATTAAGTTGG 

2G2T4C7R14 AGTTTAAATTGTAAACGTATTGTATAAGCAAATA 

5bC2G2T4R18 AAATTTTTAGAACCCTTTCAACGCAAGGATAAGAGAG 

5bC2G2T4R20 TAAGCAATAAAGCCTCAAAGAATTAGCAAAATAGCCA 

T3_TTT_X 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAAC

AGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACG

AGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCC

CTGACGAGTGTCGTAGACAC 

Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGAC

AGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTT

TCTGTATGTGTCGTAGACAC 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAG

TGCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGA

GGTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGG

TTTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAA

GAAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAA

CGGGTATGTGTCGTAGACAC 

5bC2RT3R00 GTAATTCTGTCAAAGTACCGACAAAAG 

5bC2RT3R02 GGCTTAATTGAAAAGCCAACGCTCAAC 

2bRT3C7R06 AGTCAATAGTGAATTTTTAAGACGCTGAGA 

2bRT3C7R10 CAATATAATCCTGATTGATGATGGCAATTC 

2bRT3C7R14 ACATCGCCATTAAAAAAACTGATAGCCCTA 

2bRT3C7R16 TCGTCTGAAATGGATTACATTTTGACGCTC 

2bRT3C7R18 TTGATTAGTAATAACATTGTAGCAATACTT 

2bRT3C7R20 AGGAACGGTACGCCAGTAAAGGGATTTTAG 

2bRT4C7R00 GAGCACGTATAACGTGCTATGGTTGCTTTG 

2bRT4C7R02 CGGGCGCTAGGGCGCTAAGAAAGCGAAAGG 

2bRT4C7R06 ATCCTGTTTGATGGTGGCCCCAGCAGGCGA 

2bRT4C7R08 GCTCACTGCCCGCTTTACATTAATTGCGTT 

2bRT4C7R12 CGTTGGTGTAGATGGGGTAATGGGATAGGT 

2bRT4C7R16 GCCGGAGAGGGTAGCTTAGCTGATAAATTA 

5bG2T4C7R18 CCGTCAAATTTTTAGAACCCTTTCAACGCAAGGATAA 

5bG2T4C7R20 CTCAGTAAGCAATAAAGCCTCAAAGAATTAGCAAAAT 

T4_TTT_X 

 

5bRT1C7R00 GGTGGCATCAATTCTAGGGCGCGAGCT 

5bRT1C7R02 TCCCAATTCTGCGAACCCATATAACAG 
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2G3T1C7R04 AAATTGCTCCTTTTGATATTAGAGAGTACCTTTA 

2G3T1C7R08 AGCGAGGCATAGTAAGAGACGCCAAAAGGAATTA 

2G3T1C7R12 CCCTGATAAATTGTGTCGAGATTTGTATCATCGC 

2G3T1C7R14 AGGAACGAGGGTAGCAACGCGAAAGACAGCATCG 

2G3T1C7R18 ACGGGATTTTGCTAAACAAATGAATTTTCTGTAT 

2G3T1C7R20 AGACAAACTACAACGCCTGAGTTTCGTCACCAGT 

2G4T2C7R00 ATAGCCACCACCCTCATTGAACCGCCACCCTCAG 

2G4T2C7R02 AAGAGAGGGTTGATATAAGCGGATAAGTGCCGTC 

2G4T2C7R08 CATAGCGCGTTTTCATCGCTTTAGCGTCAGACTG 

2G4T2C7R10 GGGCGCCAAAGACAAAAGTTCATATGGTTTACCA 

2G4T2C7R14 AATTTTTTGTTTAACGTCTCCAAATAAGAAACGA 

2G4T2C7R16 CCAACCTCCCGACTTGCGGCGAGGCGTTTTAGCG 

5bRT2C7R18 TAAACCAAGTACCGCATTCCAAGAACG 

5bRT2C7R20 AGATAAGTCCTGAACACCTGTTTATCA 

2G1T3C7R00 GTGTAAAGTAATTCTGTCAAAGTACCGACAAAAG 

2G1T3C7R02 ATAGTAGGGCTTAATTGAAAAGCCAACGCTCAAC 

2G1T3C7R04 TCAATGGTTTGAAATACCCTTCTGACCTAAATTT 

2G1T3C7R06 CGAGTCAATAGTGAATTTTTAAGACGCTGAGAAG 

2G1T3C7R10 GACAATATAATCCTGATTGATGATGGCAATTCAT 

2G1T3C7R14 GAACATCGCCATTAAAAAAACTGATAGCCCTAAA 

5bC2G1T3R18 TTGATTAGTAATAACATTGTAGCAATACTTCTTCCCA 

5bC2G1T3R20 AGGAACGGTACGCCAGTAAAGGGATTTTAGACGGTGG 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCG

AAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCA

GGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATT

AAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAA

GCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCA

AGGATAAGTGTCGTAGACAC 

T5_TTT_X 

 

5bG3T1C7R00 TAGACGGTGGCATCAATTCTAGGGCGCGAGCTGAAAA 

5bG3T1C7R02 CTTCTTCCCAATTCTGCGAACCCATATAACAGTTGAT 

2bRT1C7R04 ATTGCTCCTTTTGATATTAGAGAGTACCTT 

2bRT1C7R06 CCATAAATCAAAAATCCAGAAAACGAGAAT 

2bRT1C7R10 GAAACACCAGAACGAGAGGCTTGCCCTGAC 

2bRT1C7R12 CTGATAAATTGTGTCGAGATTTGTATCATC 

2bRT1C7R18 GGGATTTTGCTAAACAAATGAATTTTCTGT 

2bRT1C7R20 ACAAACTACAACGCCTGAGTTTCGTCACCA 

5bG4T2C7R00 AAAATAGCCACCACCCTCATTGAACCGCCACCCTCAG 
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5bG4T2C7R02 GATAAGAGAGGGTTGATATAAGCGGATAAGTGCCGTC 

2bRT2C7R04 GTATAAACAGTTAATGTTGAGTAACAGTGC 

2bRT2C7R06 GCAGGTCAGACGATTGTTGACAGGAGGTTG 

2bRT2C7R10 GCGCCAAAGACAAAAGTTCATATGGTTTAC 

2bRT2C7R12 CCGAAGCCCTTTTTAAAGCAATAGCTATCT 

2bRT2C7R18 TAAACCAAGTACCGCATTCCAAGAACGGGT 

2bRT2C7R20 AGATAAGTCCTGAACACCTGTTTATCAACA 

5bG1T3C7R00 CCAGTGTAAAGTAATTCTGTCAAAGTACCGACAAAAG 

5bG1T3C7R02 TGTATAGTAGGGCTTAATTGAAAAGCCAACGCTCAAC 

2bRT3C7R04 AATGGTTTGAAATACCCTTCTGACCTAAAT 

2bRT3C7R06 AGTCAATAGTGAATTTTTAAGACGCTGAGA 

2bRT3C7R10 CAATATAATCCTGATTGATGATGGCAATTC 

2bRT3C7R12 GTTATCTAAAATATCTAAAGGAATTGAGGA 

2bRT3C7R18 TTGATTAGTAATAACATTGTAGCAATACTT 

2bRT3C7R20 AGGAACGGTACGCCAGTAAAGGGATTTTAG 

5bG2T4C7R00 ACAATGAGCACGTATAACGTGCTATGGTTGCTTTGAC 

5bG2T4C7R02 GGTATCGGGCGCTAGGGCGCTAAGAAAGCGAAAGGAG 

2bRT4C7R04 ATCACCCAAATCAAGTGCCCACTACGTGAA 

2bRT4C7R06 ATCCTGTTTGATGGTGGCCCCAGCAGGCGA 

2bRT4C7R10 GTAACGCCAGGGTTTTAAGGCGATTAAGTT 

2bRT4C7R12 CGTTGGTGTAGATGGGGTAATGGGATAGGT 

2bRT4C7R18 AAATTTTTAGAACCCTTTCAACGCAAGGAT 

2bRT4C7R20 TAAGCAATAAAGCCTCAAAGAATTAGCAAA 

T6_TTT_X 

 

2G3T1C7R00 ACGGTGGCATCAATTCTAGGGCGCGAGCTGAAAA 

2G3T1C7R02 CTTCCCAATTCTGCGAACCCATATAACAGTTGAT 

2G3T1C7R04 AAATTGCTCCTTTTGATATTAGAGAGTACCTTTA 

2G3T1C7R06 AACCATAAATCAAAAATCCAGAAAACGAGAATGA 

2G3T1C7R10 ATGAAACACCAGAACGAGAGGCTTGCCCTGACGA 

2G3T1C7R14 AGGAACGAGGGTAGCAACGCGAAAGACAGCATCG 

5bC2G3T1R18 GGGATTTTGCTAAACAAATGAATTTTCTGTATAGTAG 

5bC2G3T1R20 ACAAACTACAACGCCTGAGTTTCGTCACCAGTGTAAA 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAG

TGCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGA

GGTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGG

TTTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAA

GAAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAA

CGGGTATGTGTCGTAGACAC 



 

 

162 
5bRT3C7R00 GTAAAGTAATTCTGTCAAAGTACCGAC 

5bRT3C7R02 AGTAGGGCTTAATTGAAAAGCCAACGC 

2G1T3C7R04 TCAATGGTTTGAAATACCCTTCTGACCTAAATTT 

2G1T3C7R08 GCTGAGCAAAAGAAGATGATTCATTTCAATTACC 

2G1T3C7R12 TAGTTATCTAAAATATCTAAAGGAATTGAGGAAG 

2G1T3C7R14 GAACATCGCCATTAAAAAAACTGATAGCCCTAAA 

2G1T3C7R18 ATTTGATTAGTAATAACATTGTAGCAATACTTCT 

2G1T3C7R20 AAAGGAACGGTACGCCAGTAAAGGGATTTTAGAC 

2G2T4C7R00 ATGAGCACGTATAACGTGCTATGGTTGCTTTGAC 

2G2T4C7R02 ATCGGGCGCTAGGGCGCTAAGAAAGCGAAAGGAG 

2G2T4C7R08 TAGCTCACTGCCCGCTTTACATTAATTGCGTTGC 

2G2T4C7R10 CAGTAACGCCAGGGTTTTAAGGCGATTAAGTTGG 

2G2T4C7R14 AGTTTAAATTGTAAACGTATTGTATAAGCAAATA 

2G2T4C7R16 CCGCCGGAGAGGGTAGCTTAGCTGATAAATTAAT 

5bRT4C7R18 AAATTTTTAGAACCCTTTCAACGCAAG 

5bRT4C7R20 TAAGCAATAAAGCCTCAAAGAATTAGC 

T7_TTT_X 

 

5bC2RT1R00 CATCAATTCTAGGGCGCGAGCTGAAAA 

5bC2RT1R02 ATTCTGCGAACCCATATAACAGTTGAT 

2bRT1C7R06 CCATAAATCAAAAATCCAGAAAACGAGAAT 

2bRT1C7R10 GAAACACCAGAACGAGAGGCTTGCCCTGAC 

2bRT1C7R14 GAACGAGGGTAGCAACGCGAAAGACAGCAT 

2bRT1C7R16 GGTTTATCAGCTTGCTAGCCTTTAATTGTA 

2bRT1C7R18 GGGATTTTGCTAAACAAATGAATTTTCTGT 

2bRT1C7R20 ACAAACTACAACGCCTGAGTTTCGTCACCA 

2bRT2C7R00 AGCCACCACCCTCATTGAACCGCCACCCTC 

2bRT2C7R02 GAGAGGGTTGATATAAGCGGATAAGTGCCG 

2bRT2C7R06 GCAGGTCAGACGATTGTTGACAGGAGGTTG 

2bRT2C7R08 TAGCGCGTTTTCATCGCTTTAGCGTCAGAC 

2bRT2C7R12 CCGAAGCCCTTTTTAAAGCAATAGCTATCT 

2bRT2C7R16 AACCTCCCGACTTGCGGCGAGGCGTTTTAG 

5bG4T2C7R18 AGGAGTAAACCAAGTACCGCATTCCAAGAACGGGTAT 

5bG4T2C7R20 TTGACAGATAAGTCCTGAACACCTGTTTATCAACAAT 

Edg_T3R02C7_DHP GTGTCGTAGACACAGTAGGGCTTAATTGAAAAGCCAAC

GCTCAACGTGTCGTAGACAC 

Edg_T3R06C7_DHP GTGTCGTAGACACAGTCAATAGTGAATTTTTAAGACGC

TGAGAAGGTGTCGTAGACAC 

Edg_T3R10C7_DHP GTGTCGTAGACACCAATATAATCCTGATTGATGATGGC

AATTCATGTGTCGTAGACAC 

Edg_T3R14C7_DHP GTGTCGTAGACACACATCGCCATTAAAAAAACTGATAG

CCCTAAAGTGTCGTAGACAC 

Edg_T3R18C7_DHP GTGTCGTAGACACTTGATTAGTAATAACATTGTAGCAA
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TACTTCTGTGTCGTAGACAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCG

AAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCA

GGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATT

AAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAA

GCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCA

AGGATAAGTGTCGTAGACAC 

T8_TTT_X 

 

2G3T1C7R00 ACGGTGGCATCAATTCTAGGGCGCGAGCTGAAAA 

2G3T1C7R02 CTTCCCAATTCTGCGAACCCATATAACAGTTGAT 

2G3T1C7R08 AGCGAGGCATAGTAAGAGACGCCAAAAGGAATTA 

2G3T1C7R10 ATGAAACACCAGAACGAGAGGCTTGCCCTGACGA 

2G3T1C7R14 AGGAACGAGGGTAGCAACGCGAAAGACAGCATCG 

2G3T1C7R16 TTGGTTTATCAGCTTGCTAGCCTTTAATTGTATC 

5bRT1C7R18 GGGATTTTGCTAAACAAATGAATTTTC 

5bRT1C7R20 ACAAACTACAACGCCTGAGTTTCGTCA 

2G4T2C7R00 ATAGCCACCACCCTCATTGAACCGCCACCCTCAG 

2G4T2C7R02 AAGAGAGGGTTGATATAAGCGGATAAGTGCCGTC 

2G4T2C7R04 ATGTATAAACAGTTAATGTTGAGTAACAGTGCCC 

2G4T2C7R06 TAGCAGGTCAGACGATTGTTGACAGGAGGTTGAG 

2G4T2C7R10 GGGCGCCAAAGACAAAAGTTCATATGGTTTACCA 

2G4T2C7R14 AATTTTTTGTTTAACGTCTCCAAATAAGAAACGA 

5bC2G4T2R18 TAAACCAAGTACCGCATTCCAAGAACGGGTATCGGGC 

5bC2G4T2R20 AGATAAGTCCTGAACACCTGTTTATCAACAATGAGCA 

Edg_T3R02C7_DHP GTGTCGTAGACACAGTAGGGCTTAATTGAAAAGCCAAC

GCTCAACGTGTCGTAGACAC 

Edg_T3R06C7_DHP GTGTCGTAGACACAGTCAATAGTGAATTTTTAAGACGC

TGAGAAGGTGTCGTAGACAC 

Edg_T3R10C7_DHP GTGTCGTAGACACCAATATAATCCTGATTGATGATGGC

AATTCATGTGTCGTAGACAC 

Edg_T3R14C7_DHP GTGTCGTAGACACACATCGCCATTAAAAAAACTGATAG

CCCTAAAGTGTCGTAGACAC 

Edg_T3R18C7_DHP GTGTCGTAGACACTTGATTAGTAATAACATTGTAGCAA

TACTTCTGTGTCGTAGACAC 

5bRT4C7R00 GAGCACGTATAACGTGCTATGGTTGCT 

5bRT4C7R02 CGGGCGCTAGGGCGCTAAGAAAGCGAA 

2G2T4C7R04 CGATCACCCAAATCAAGTGCCCACTACGTGAACC 

2G2T4C7R08 TAGCTCACTGCCCGCTTTACATTAATTGCGTTGC 

2G2T4C7R12 TGCGTTGGTGTAGATGGGGTAATGGGATAGGTCA 

2G2T4C7R14 AGTTTAAATTGTAAACGTATTGTATAAGCAAATA 
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2G2T4C7R18 TCAAATTTTTAGAACCCTTTCAACGCAAGGATAA 

2G2T4C7R20 AGTAAGCAATAAAGCCTCAAAGAATTAGCAAAAT 

T9_TTT_X 

 

2bRT1C7R00 GGTGGCATCAATTCTAGGGCGCGAGCTGAA 

2bRT1C7R02 TCCCAATTCTGCGAACCCATATAACAGTTG 

2bRT1C7R06 CCATAAATCAAAAATCCAGAAAACGAGAAT 

2bRT1C7R08 CGAGGCATAGTAAGAGACGCCAAAAGGAAT 

2bRT1C7R12 CTGATAAATTGTGTCGAGATTTGTATCATC 

2bRT1C7R16 GGTTTATCAGCTTGCTAGCCTTTAATTGTA 

5bG3T1C7R18 TCAACGGGATTTTGCTAAACAAATGAATTTTCTGTAT 

5bG3T1C7R20 AAAAGACAAACTACAACGCCTGAGTTTCGTCACCAGT 

Edg_T2R02C7_DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAG

TGCCGTCGTGTCGTAGACAC 

Edg_T2R06C7_DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGA

GGTTGAGGTGTCGTAGACAC 

Edg_T2R10C7_DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGG

TTTACCAGTGTCGTAGACAC 

Edg_T2R14C7_DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAA

GAAACGAGTGTCGTAGACAC 

Edg_T2R18C7_DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAA

CGGGTATGTGTCGTAGACAC 

Edg_T3R02C7_DHP GTGTCGTAGACACAGTAGGGCTTAATTGAAAAGCCAAC

GCTCAACGTGTCGTAGACAC 

Edg_T3R06C7_DHP GTGTCGTAGACACAGTCAATAGTGAATTTTTAAGACGC

TGAGAAGGTGTCGTAGACAC 

Edg_T3R10C7_DHP GTGTCGTAGACACCAATATAATCCTGATTGATGATGGC

AATTCATGTGTCGTAGACAC 

Edg_T3R14C7_DHP GTGTCGTAGACACACATCGCCATTAAAAAAACTGATAG

CCCTAAAGTGTCGTAGACAC 

Edg_T3R18C7_DHP GTGTCGTAGACACTTGATTAGTAATAACATTGTAGCAA

TACTTCTGTGTCGTAGACAC 

5bC2RT4R00 CGTATAACGTGCTATGGTTGCTTTGAC 

5bC2RT4R02 GCTAGGGCGCTAAGAAAGCGAAAGGAG 

2bRT4C7R06 ATCCTGTTTGATGGTGGCCCCAGCAGGCGA 

2bRT4C7R10 GTAACGCCAGGGTTTTAAGGCGATTAAGTT 

2bRT4C7R14 TTTAAATTGTAAACGTATTGTATAAGCAAA 

2bRT4C7R16 GCCGGAGAGGGTAGCTTAGCTGATAAATTA 

2bRT4C7R18 AAATTTTTAGAACCCTTTCAACGCAAGGAT 

2bRT4C7R20 TAAGCAATAAAGCCTCAAAGAATTAGCAAA 

T1_TTT_O 

 

Edg_T1R02C7_DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAAC

AGTTGATGTGTCGTAGACAC 

Edg_T1R06C7_DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACG

AGAATGAGTGTCGTAGACAC 

Edg_T1R10C7_DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCC

CTGACGAGTGTCGTAGACAC 
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Edg_T1R14C7_DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGAC

AGCATCGGTGTCGTAGACAC 

Edg_T1R18C7_DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTT

TCTGTATGTGTCGTAGACAC 

5bC2RT2R00 CCACCCTCATTGAACCGCCACCCTCAG 

5bC2RT2R02 GGTTGATATAAGCGGATAAGTGCCGTC 

2bRT2C7R06 GCAGGTCAGACGATTGTTGACAGGAGGTTG 

2bRT2C7R10 GCGCCAAAGACAAAAGTTCATATGGTTTAC 

2bRT2C7R14 TTTTTTGTTTAACGTCTCCAAATAAGAAAC 

2bRT2C7R16 AACCTCCCGACTTGCGGCGAGGCGTTTTAG 

2bRT2C7R18 TAAACCAAGTACCGCATTCCAAGAACGGGT 

2bRT2C7R20 AGATAAGTCCTGAACACCTGTTTATCAACA 

2bRT3C7R00 GTAAAGTAATTCTGTCAAAGTACCGACAAA 

2bRT3C7R02 AGTAGGGCTTAATTGAAAAGCCAACGCTCA 

2bRT3C7R06 AGTCAATAGTGAATTTTTAAGACGCTGAGA 

2bRT3C7R08 TGAGCAAAAGAAGATGATTCATTTCAATTA 

2bRT3C7R12 GTTATCTAAAATATCTAAAGGAATTGAGGA 

2bRT3C7R16 TCGTCTGAAATGGATTACATTTTGACGCTC 

5bG1T3C7R18 TTGATTTGATTAGTAATAACATTGTAGCAATACTTCT 

5bG1T3C7R20 GAAAAAGGAACGGTACGCCAGTAAAGGGATTTTAGAC 

Edg_T4R02C7_DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCG

AAAGGAGGTGTCGTAGACAC 

Edg_T4R06C7_DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCA

GGCGAAAGTGTCGTAGACAC 

Edg_T4R10C7_DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATT

AAGTTGGGTGTCGTAGACAC 

Edg_T4R14C7_DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAA

GCAAATAGTGTCGTAGACAC 

Edg_T4R18C7_DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCA

AGGATAAGTGTCGTAGACAC 

Note: All invading X tiles used are shown (T2-9). Only T1 from the O set is shown for edge sequence 
completeness.  
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