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ABSTRACT

During animal development from zygote to adult, a limited set of regulatory
molecules are autonomously deployed in the service of tissue-specific gene ex-
pression (reviewed in chapter 1). Inherent in the process is the tension that single
cells sample heterogeneous expression states while robustly maintaining a collective
final outcome. This thesis addresses theoretical issues that help resolve the paradox
that one cell simultaneously contains the fate information of many.

Previous models of development have likened cell fate to minima on a
smooth potential energy surface. Such static pictures can be misleading because
they suggest the egg knows the path it will take to the adult before it divides even
once. Recognition that the potential analogy is an oversimplification has led others
to propose that the surface is actually nonsmooth. Chapter 2 reviews the theoretical
basis for smooth potentials and resolves these problems by appealing to the tangent
space of gene expression. It is then shown that if the potential difference is sufficient
to characterize the difference between egg and adult, then the tangent space controls
on gene expression are one-dimensional. Furthermore, a shortcoming of models
ignoring the connectivity and common origin of dividing cells is that they erect
artificial barriers between alternative fates. A fundamentally different picture is
sketched wherein the difference between egg and adult is schematized as the shape
of the locus of equipotential fates accessible at the same point in time. The conjugacy
of space and time is invoked to explain how the requirement that each fate be on a
line of equipotential is the same as requiring that each alternative fate move the same
distance down the surface at each step. The developmental trajectory is deterministic
but not known in advance because it needs to be ascertained at each step which way
cells "turn" in order to maintain their equipotential relationship. Chapters 3 and 4
refine this sequential model of collective development with specific examples.

A simple solution to the problem of cell-type specific gene expression is
combinatorial binding of transcription factors at promoters. It is shown in chapter
3 that such models result in substantial information bottlenecks, because all cell
fate information is concentrated at the start. We explore a novel, noncommutative
model of gene regulation—known as sequential logic—that spreads the information
out over time. It is shown using time sequences of noncommutative controllers that
targets which otherwise would have been activated together can be regulated inde-
pendently. We derive scaling laws for two noncommutative models of regulation,
motivated by phosphorylation/neural networks and chromosome folding, respec-
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tively, and show that they scale super-exponentially in the number of regulators. It is
also shown that specificity in control is robust to loss of a regulator. Consequently,
sequential logic overcomes the information bottleneck in complex problems and
enables novel solutions through roundabout strategies. The theoretical results are
connected to real biological networks demonstrating specificity in the context of
promiscuity.

Noncommutative sequential logic has improved storage capacity, but it
does not specify who or what supplies the sequences of input that determine cell
fate. Chapter 4 offers a solution by way of the seemingly unrelated problem of
looping in twisted strings. Cells and strings obey a set of common space-time
constraints, ultimately due to the conservation of energy. It is argued that the most
parsimonious allocation of energy from the straight to strained string is the one in
which each segment sees the same share of the total. Planar looping is shown to
be a consequence of the parsimony principle and the Euler-Poincaré equations for
rotational motion in the presence an applied torque. We then solve the problem
for the looping of a twisted string; with two strains, the Euler-Poincaré equations
predict a different answer than the classical Frenet-Serret equations. Using the
results of chapter 2, it is concluded that the Frenet-Serret curvatures assigned ahead
of time are not guaranteed to generate space curves that conserve energy: the
predicted string has localized strains the Euler-Poincaré solution lacks. Rotational
dynamics of strings are connected to developing organisms by postulating conserved
RNA polymerase as an analog of angular momentum, and transcriptional activity
as energy. Alternative fates along a one-dimensional "string" of dividing cells are
possible by finding the RNAP distribution that conserves transcriptional activity
along a curve of constant developmental potential. Consequently, each alternative
fate samples a different sequence of changes to the distribution as it follows a local
gradient downhill from high to low developmental potential over time.

In conclusion, regulation in the tangent space of gene expression resolves
the paradox that development has a unique solution specified in the DNA of the egg
which cannot be determined with certainty until completion of the adult. Noncom-
mutative sequential logic generates complexity that cannot be realized at the start,
while interdependent cells (and strings) require time to ensure that each fate is at the
same potential difference from a common ancestor. This fundamental reimagining
of the Waddington framework can be tested using new multiplexed mRNA imaging
technologies that preserve the spatial context of cells in developing tissue.
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C h a p t e r 1

INTRODUCTION: AUTONOMOUS DECISION-MAKING IN
THE EMBRYO AND BEYOND

1.1. Biological mechanisms of development
Multicellular life starts from a single fertilized egg cell called the zygote.

After many rounds of division, the zygote is transformed into an adult composed
of O (102) cell types, each expressing different subsets of O (104) genes, under the
control of O (103) transcription factors [176, 275, 282]. The task of assigning each
cell its proper expression state is not a trivial one. It is made more complex by
the fact that early development has only O (101) intercellular signaling pathways
to channel cell fate information [90]. Hinegardner and Engleberg have argued that
the biological complexity of the adult is not much greater than that of the fertilized
egg [117], a position sustained by the general conservation of body plans across
metazoans [90, 91]. But Valentine and coworkers have countered that complexity
should include the sequential process of ordering and arranging expression states
among cells [275]. While the adult and zygote refer to the same list of parts in the
DNA, it is unknown where the instructions for putting them together reside. Does
the egg "know"—in the sense that, is there sufficient information at the egg stage
to know—what it will look like as an adult? Even if the egg were so prescient, it
would appear that there is an information bottleneck between the instructions and
their execution: development does not occur all at once, but in a robust series of
steps, as has been repeatedly observed in nature [80, 227] and in in vitro culture [21,
67, 276]. Alternatively, the instructions could change over time in such a way that
the egg doesn’t know where it’s going until it gets there. Which (if either) of each
these two strategies do cells in the embryo use to learn what fate they should adopt
in the adult? And how do so many fates emerge from such a limited number of
signals? The aim of this thesis is to provide theoretical insight into these questions.

It has long been known from fluorescent tracer and microscopy studies
that model organisms have a predictable [262] yet flexible [143, 151, 180] fate map
from the earliest embryonic stages. Pioneering experiments have revealed numerous
mechanisms that descendent cells use to realize their fates. Maternal transcripts in
the oocyte guide gene expression for the first several cell divisions, after which
time the zygote takes over production of the essential factors for transcription,
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metabolism, and DNA replication [186, 304]. By the 16-cell stage in mouse,
progenitors have segregated into layers known as that trophectoderm and the inner
cell mass. The latter subsequently differentiates into the primitive ectoderm and
the epiblast, which later becomes endoderm, mesoderm, and ectoderm (reviewed in
[306]). Differentiation into the three primary germ layers is controlled by alleviating
repression mediated by the so-called pluripotency factors Oct4, Sox2/3, and Nanog
in the stem cell stage, which are then repurposed for repressing incompatible fates
[271, 293]. For example, Oct4-expressing embryonic stem cells (ESCs) respond
to a BMP signal for the transcription of genes such as Brachyury (T), associated
with the mesoderm fate, whereas Sox2 knockdown relieves repression of T [293].
Additional regulation occurs at the chromatin level, allowing poised ESCs to choose
between alternative fates. For example, the neural Olig1 gene in ESCs is marked
bivalently with repressive (H3K27me3) and activating (H3K4me3) modifications
on lysine residues of the histone proteins, but monovalently in fibroblasts and neural
progenitors, respectively [177].

Once the basic radial symmetry of the germ layers is established, the
anterior-posterior, left-right, and dorso-ventral body axes, which underlie metazoan
body plans, must be specified. Initial asymmetries in shape and gene expression
at the early stages are the basis of polarity in subsequent ones, as has been seen
in organisms as diverse as flies [152], worms [185, 188, 191], frogs [264, 285],
fish [17, 30, 31, 202], chicken [11, 205], mice [197, 276, 210, 266], and humans
[294]. A unifying mechanism is that directional transport of vesicles and proteins
regionalizes gene expression [69, 188, 202, 266]. The role of hydrodynamics
during symmetry-breaking was elegantly shown by culturing mouse embryos in a
specialized chamber and subjecting them to fluid flow both parallel and antiparallel
to the intrinsic direction of ciliary rotation in the node: the latter condition reversed
the pattern of a normally asymmetrically-expressed gene [197]. Cortical flow and
cytoskeletal reorganization following sperm entry in C. elegans embryos lead to
asymmetric localization of the PAR proteins at the one-cell stage [185, 188]. Once
localized, posterior PAR2 excludes other anterior PARs by phosphorylating PAR1,
typifying a general mechanism whereby upstream genes restrict transcripts that
otherwise would be found ubiquitously in the embryo [30, 185, 191, 285, 294].
Homologs of the conserved TGF-β family members Lefty and Nodal act in a similar
manner though a complex feedback loop during left-right patterning of the fish
heart: Wnt signaling activates Lefty [17], which is promoted by, and subsequently
inhibits, Nodal in an asymmetrical manner [30, 285]; Nodal is responsible for the
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localization of the transcription factor Brachyury to the mesoderm [294]; loss of
Nodal results in bilateral Lefty expression [31].

Once started down a developmental path, cells maintain their unique iden-
tities through contact inhibition [114, 251] and asymmetric cell division [118, 216].
The balance between progenitors and differentiated cells is regulated during neural
fate specification, for example, when cells expressing the Delta ligand prevent cells
with Notch receptors from differentiating as neurons [114]. It was also shown in
the ascidian Ciona that ephrin signaling in the 8-cell stage induced polarization of
notochord/neural mother cells and led to suppression of notochord fate in half of the
embryo [216]. Whereas in these examples interactions serve to prevent neighboring
and daughter cells from adopting the same fate, cell-cell contact also plays a role
in regulating the arrival time of signals. It was shown that during C. elegans vulva
induction, secondary progenitor cells differentiate normally even if they are blocked
from receiving an upstream signal: they receive a downstream signal instead from
primary cells [251]. In many cases, diffusible molecules provide the inductive sig-
nal, while cell context determines the interpretation. For example, the ubiquitous
signaling molecule Wnt, which has multiple roles in axis formation (reviewed in
[90, 116]), is kept under tight regulation to avoid misexpression. In a study of Wnt
signaling in the intestine, several hundred target genes were found to be specifi-
cally and significantly co-bound by an intestine-restricted transcription factor and a
Wnt effector [280]. But in another study of anterior development in the mouse, a
homeobox transcription factor drove expression of Wnt antagonists specifically in
the anterior mesendoderm, forestalling head defects [81]. Although in these cases
cofactors mediate Wnt specificity, in other tissues cofactors are dispensable. For
example, the Wnt transducer β-catenin requires the Xenopus transcription factor
XTcf3 for target gene activation in dorsal, but not ventral, tissue in early embryo-
genesis [110]. XTcf3 was also shown to regulate β-catenin-mediated transcription
during mesoderm induction, but not to be required for later patterning [160]. Al-
though it is not always clear what causes the change in cofactor dependency over
time, it is possible that the effects of an early deficiency are merely delayed to a
later checkpoint. For instance, it is not necessary for mouse β-catenin to bind Tcf1
protein in order for cells progress through the DN1 and DN2 stages of thymoge-
nesis, although complete absence of Tcf1 later results in apoptosis by the DN3
stage [299]. Of course, cell death need not indicate a patterning error: interdigital
cartilage [88], plant embryos [36], and motoneurons [204] all undergo programmed
apoptosis during development as a means of shape remodeling.
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Knock-out studies like those cited above can reveal the causal role of each
gene in a developmental regulatory network of interrelated components. An alter-
native view of development, informed by conventional and single-cell sequencing
technologies, is that stochasticity and heterogeneous gene expression in the early
stages lead to different fates in the adult [54, 99, 306]. In support of this idea,
heterogeneous expression of pluripotency regulators [53, 135, 252] and asymmetric
partitioning of maternal transcripts [247] have been shown to influence which fates
embryonic cells are likely to adopt. For example, there is a small but reproducible
population of pluripotent cells with transiently low Nanog and high Gata6 expres-
sion biased toward endoderm fate [135, 252]. Populations of cells appear to control
their overall level of heterogeneity: sorted cells eventually recapitulate the original
distribution of expression states by stochastic switches [53, 135]. Heterogeneity is
not restricted to cell culture assays, but also occurs in intact blastomeres. It has
been shown by sequencing that transcriptional noise increases expression variation
in individual genes between single blastomeres over time [247]. Increasing varia-
tion is in line with Markovian models of evolution in which multicellular lineages
(i.e., cells) stochastically choose to add or remove a cell type (change the expression
level of a gene) independently of their history [275]. Nevertheless, heterogeneity
and stochasticity should be regarded in light of the observation that development
is extraordinarily robust, not only in the final outcome it achieves, but also in the
timing and coordination of steps along the way. Genetic circuits have been found
that modulate embryos’ sensitivity to inductive signals like retinoic acid [44] and
BMP [208], with the result that animals have reduced variation in organ size [208].
Other testaments to reproducibility include the following: less than 10% variation
of bicoid copy number in individual fly embryos [213], characteristic morpholog-
ical transitions that occur at predictable times in mouse epiblast culture [21], and
intransigence of chick forebrain development to hypoblast transplantation experi-
ments [80]. The tension between robustness and stochasticity has been partially
resolved by highly multiplexed in situ single-cell mRNA profiling heterogeneity in
the mouse hippocampus [244] and chicken neural tube [157]. With cells’ spatial
context preserved, these studies make it possible to resolve broader organization
underlying single-cell heterogeneity, suggesting that cells’ stochastic decisions do
not happen in isolation. It is therefore desirable to find a framework that reconciles
top-down (deterministic) and bottom-up (stochastic) decision-making processes in
development.
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1.2. The potential landscape analogy
It is relatively easy to mathematically formulate development when cell

fate is characterized by expression of a single gene: changes that increase expression
from a referrence level are positive, those that decrease it are negative, and the
desired level is a minimum with respect to some regulatory function. It is not so
clear what it means to increase or decrease such a function when there are multiple
genes, because alternative fates increase the expression of some genes and lower the
expression of others. In the hematopoietic lineage, for example, Gata1 and PU.1
have alternate extremes of expression during myeloid and erythroid specification,
respectively [53]. With increasing numbers of genes to define cell types, there are
correspondingly more minima, and more paths between minima. As an example,
astrocyte fate can be reached not only from the natural developmental trajectory
of neural progenitors, but also from mature neurons by transcriptome transfer of
mRNA from a mature astrocyte host [261], showing that recipient cells sense a
different stable state after traversing a potential barrier. In multiple dimensions,
figuring out which direction is "up" out of the basin of a stable fate is accomplished
by the use of a gene regulatory function. This function sees attempted changes dx
in the genes’ expression levels and outputs a tangent vector df of changes permitted
by the regulatory logic. There is no universal direction in a multidimensional space
that is "up", but if a state is stable, then no tangent vectors can point "down". The
preceding observation, making no reference to any fixed coordinate system, implies
that the tangent vectors span a positive volume of gene expression space. It turns
out that the enclosed volume is the determinant of the matrix spanned by the tangent
vectors ∂f

∂xi
(see Appendix 1.5.1). Therefore, stable states are those points where the

(linearized) regulatory function has a positive determinant.
The linear theory outlined above is themathematical basis of theWadding-

ton landscape of cell fate canalization during development [288]. As long as the
landscape is constant in time, the gene regulatory function permits pluripotent pro-
genitors to fluctuate within a delimited region of gene expression space without
lineage commitment. The cue to differentiate from initially homogeneous starting
conditions is often modeled as a bifurcation [26, 125, 155, 224, 245, 290, 291], or
as the creation or elimination of a fixed point on a vector field of a multistable circuit
[75, 125, 135], both of which change the underlying landscape. The model has had
some success, for example, in explaining the progressive restriction of Drosophila
olfactory receptors: deletion of a transcription factor (Rotund) required by two tri-
choid sensilla subtypes converts the gene expression profiles of those subtypes into
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that of an Rn-independent upstream subtype, suggesting that differentiation lowers
a potential barrier [155]. Another study demonstrated that erythropoietin changes
the landscape felt by bone marrow progenitors: whereas progenitors are metastable,
addition of growth factor eliminates barriers to the alternative erythroid and myeloid
fates (via a supercritical pitchfork) [125]. This was an important finding because it
(i.) showed that the same initial conditions (growth factor) can lead to different final
conditions (myeloid or lymphoid fate) and (ii.) fit within the mathematical theory of
gene regulatory logic. It was proven mathematically that when the gene regulatory
functions corresponding to two different fate minima intersect at a midpoint a in
gene expression space, their determinants (i.e., derivatives) at a are both positive,
implying that gene-gene interaction network must have a nonlinear cycle [254]. A
cycle in which two genes mutually repressed each other was in fact the basis of
the bistability results in [125]. Nonlinearity in the interaction between genes and
their regulators can lead to other unexpected effects, such as the context-specific
interpretation of a signal. BMP was recently found to repress the Vg1 gene in the
posterior of the chick embryo, but to promote it in the anterior [11]. This effect
could be reproduced by mathematical modeling if BMP promoted transcription fac-
tors of both genes, and if the transcription factors mutually repressed each other via
a nonlinear circuit.

Despite the success and conceptual simplicity of the Waddington land-
scape, it has its limitations. Bhattacharya and coworkers have emphasized that
biological landscapes need not represent a gradient potential like gravity [26],
which obeys a clear conservation law. In cells, gene 1 can change more or less inde-
pendently of a functionally unrelated gene 2, but in a gravitational field, the height
of a tossed ball necessarily trades off against its upward velocity. A hyperbolic
landscape is illustrated in Figure 1.1A to show the implications of a gradient system.
The difference ∆φ (x, y) in heights of the surface at two points represents the ten-
dency of the expression levels x, y of two genes to change in the direction between
those points. The red and blue lines in the lower plot, which represent the time
derivatives −∂x∂t = f (x, y) = ∂φ

∂x and −∂y∂t = g (x, y) =
∂φ
∂y in the x and y directions,

are the resultants of forces on the genes, analogous to those of a circulation-free
stress field in an elastic material (see [79] ch. 2, 4 and 7, [163] ch. II and XIV,
[242] ch. 2, [243] ch. 4). And like an elastic sheet at equilibrium, the continuity
equations require that the y-rate-of-change of f balance the x-rate-of-change of g
(see section 2.2.1). The two functions "know" about each other in the sense that, at
fixed transcriptional activity (see section 4.2.5), the x rate of change is completely
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determined by the rate of change of y. As a consequence, the tendency to transit
between any two points in space (as measured by the difference in heights on the
surface) is path-independent.

As has been pointed by others [182, 295], it is unrealistic to expect reg-
ulatory landscapes to be gradient potentials with symmetric interactions between
expression states. One alternative non-gradient landscape is the spiral surface of
Figure 1.1B, having a discontinuity at the origin. In this picture, the same expression
state (x, y) can be associated with high potential or low potential depending on how
it is reached. Path-dependence is quantified by the curl ∇ × (f, g) = ∂f

∂y −
∂g
∂x of the

velocity field. Some authors have likened such cross product terms to a curl-flux
force associated with oscillations in gene activity due to the input of external energy
[290, 291], while others have interpreted them as manifestations of discontinuous
transition states [182]. According to the elastic sheet analogy, it is possible to un-
derstand "tearing" of the surface as the decoupling of expression state dynamics that
occurs when one gene is hidden from the regulatory influence of another, perhaps
by the chromatin. Nevertheless, recent single-cell RNA sequencing data in actively
differentiating lineages have painted a picture where (inferred) transitions between
cell types are largely smooth [148, 238, 295], even when velocities are measured
independently of the assumption of an underlying field [148]. One of the main
contributions of this thesis is the idea that a smooth landscape is compatible with
path-dependence or noncommutativity if controls are taken, via differentiation, to
the tangent space of gene expression, where rates (both in time over space) are
independently controlled. Indeed, recent results on RNA velocity [148] imply that
cells select their fate indirectly by modulating intron splicing of new transcripts.
Section 2.2.2 in chapter 2 shows how a non-gradient potential arises in gene ex-
pression space as the system traverses a certain vector field with nonzero circulation
in the tangent space. As a consequence, the dynamics projected to the base space
circulate as well, even as the surface itself remains smooth. Different realizations
of noncommutativity are the subjects of chapters 3 and 4.

Aside from the theoretical issue of the potential is the more immediate
problem that gene expression differences alone do not always account for fate selec-
tion. In a recent example, the photo-induced decision of individual plasmodial cells
to sporulate did not appear to have an obvious relationship with gene expression:
divergent responses occurred even among cells with highly similar transcription
profiles [224]. Recent theoretical research has explored the possibility that, in ad-
dition to expression levels, factors such as speed [194] and direction [206] through
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Figure 1.1: Potential landscapes in gene expression. (A) A gradient landscape described
by the surface φ (x, y) = xy = fx + gy, with f and g the negative rates of change of
gene expression in the x and y. Height measures the tendency for gene expression to
change. The tangent vectors in the lower plot move the system between different states.
The direction of change is determined by the sign of dx or dy, and the magnitude by
vector length. The red paths on the surface are mappings of the intervals x ∈ [0, c] , y = 0
and x ∈ [φ (0, y) /y, φ (c, y) /y] , y = −c, and the blue paths y ∈ [0,−c] , x = 0 and y ∈

[φ (x,0) /x,φ (x,−c) /x] , x = c with with c = 0.8. Note that the negative derivatives point
in the direction of expression change. The inset illustrates the circulation-free nature of
vector field, as all tangent vectors entering a region subsequently leave it. (B) A pseudo-
potential landscape not described by a gradient having a discontinuity at the origin. Alternate
pathways differ because the curl of the vector field (f, g) is nonzero. The two-dimensional
surface is parametrized by (v sin (u) , v cos (u) , u) for v ∈ [0,3] and u ∈ [−3π

2 ,
3π
2
]. The red

paths are parametrized by (r tan θ, r tan θ0, θ − 2θ0) for θ ∈ [π
4 ,−

π
4
] , r = 1.5, θ0 = π

4 and
(r tan θ, r tan θ0, θ) for θ ∈ [−π

4 ,
π
4
] , r = 1.5, θ0 =

π
4 . The blue paths are defined similarly.

The inset illustrates the divergence-free nature of the vector field, as all tangent vectors
circulate around a region.

gene expression space may play a role in cell fate canalization. In a model of
Delta-Notch signaling, for example, physically connected cells could transit from an
all-Delta no-Notch state to a hexagonally-patterned some-Delta some-Notch state by
first increasing the production rate of Notch and then lowering the production rate
of Delta, but not if the order of the paths was reversed [206]. The result is similar to
a model showing that "cheater" bacteria can invade a social population if they first
evolve a novel "deaf" receptor, but not if they first evolve a novel signal: the first
pathway gives them transient immunity to production cues, but the second has them
doing double duty in responding and signaling [68]. These toy models are valuable
because they are far more parsimonious than the simple-minded explanation that
context-dependence of gene expression is the result of yet another cofactor: pursuing
their implications will likely yield more biological insight in the long term. Finally,
only a single prior state needed to be remembered for path-dependence to emerge in
the models of [68, 194, 206]; chapter 3 of this thesis considers what happens when
networks remember longer sequences of input.

1.3. Combinatorial logic in development
Combinations of inputs specify cell fate, but whether or not those inputs

are remembered over time makes different outcomes possible. The theoretical
framework broadly known as combinatorial logic (Figure 1.2A) is a memoryless
(i.e., Markovian) scheme which postulates that different outcomes result for inputs
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A, B, and A AND B, and additionally when A is replaced with C. The probabilistic
nature of DNA binding has made combinatorial logic a popular model for analyzing
the statistical mechanics of independent and synergistic transcription factor binding
at promoters [29, 113, 137, 239, 246], and therefore has helped inform the design of
many synthetic circuits (see below). Perhaps more important than thermodynamics,
however, are the propositions that combinatorial logic extracts additional diversity
from a limited number of transcription factors [25, 39, 225], and that it tunes the
response of undifferentiated cells to morphogen gradients [14, 46, 101]. How
could a single transcription factor have different effects in different contexts? By
acting in combination with others. One comprehensive microarray study found that
several genes involved in Drospholia wing development could be turned on or off
in response to Myc (A) binding at the promoter, and that the response depended
on the presence or absence of alternate (B and C) elements at a distal enhancer
or cis-regulatory element [199]. An even clearer example was observed in the
action of signaling molecules cAMP and DIF on the three cell types of the amoeba
Dictyostelium discoideum: cAMP alone promoted prespore and prestalk A cell fate;
DIF alone prestalk A and prestalk B; and the combination prestalk A specifically
[23]. Morphogens are diffusible signals that act in a dose-dependent manner to
control gene expression [14]. FGF and activin act as morphogens in the Xenopus
embryo, generating muscle alone when activin is low and FGF high, or notochord
alone when both are high [101]. The advantage of controlling development with
overlapping gradients in this manner is that there is less need for precision in the
inputs; robustness is thereby enhanced. For example, it was demonstrated that
when Drosophila embryos are assumed to function as optimal decoders of a few
combinatorial inputs, segmented gene expression can be reproduced to within 1%
accuracy [214].

Figure 1.2: Combinatorial and sequential logic. Developmental signals (square, triangle,
circle) can be interpreted in two different ways. (A) In memoryless combinatorial logic,
iteration of the same tristable regulatory function f produces three stable expression states.
Here the signals are also gene products, and the combination of expressed genes is the state.
(B) In sequential logic, each cell remembers the sequence of the inputs it has seen when
choosing its fate.

Despite its advantages, the unavoidable consequence of combinatorial
logic is that cell fate is set at time zero (Figure 1.2A). Using the language of the gene
regulatory function of the previous section, three signals (square, triangle, circle)
lead to a change in gene expression in each cell at step one, a different change at step
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two, and so on until the minima have been reached and development is complete.
Might such a process permit a switch in basins of attraction midway? In the absence
of noise, the answer is, No. A cell initially poised to adopt fate 1 using combinatorial
logic cannot later find out it adopts fate 2. The paradox of a Markovian process
like combinatorial logic is that since information cannot be created over time, any
changes to the regulatory function must be programmed at the start. It is the nature
of a potential minimum that all states sufficiently close by get no farther away as
time goes on, unless energy or information is supplied. Conversely, it is not possible
to say that the information for the adult (parts and order) is present in the egg if it
can’t be known until later. The foregoing reasoning leads to the conclusion that if a
cell uses combinatorial logic, then it must know its fate at time zero (see also section
4.3).

To be sure, there are well-documented cases in C. elegans [10, 221],
Drosophila [24, 78, 155, 309], rodents [259, 260, 308], and amoeba [23] in
which combinatorial inputs explain gene expression choice in different tissues. Two
Drosophila photoreceptor proteins Tsh and Hth promote (or fail to inhibit) the Eya
gene when expressed alone, but function as repressors when expressed in combina-
tion [24]. Suppression of Eya in a specific context ensures that tissue anterior to the
pre-proneural zone ahead of the morphogenic furrow is maintained in a proliferative
state antagonistic to photoreceptor differentiation. In the C. elegans pharynx, PHA-
4 and two HRL factors regulate the gland-specific hlh6 gene, activating it in gland
and suppressing it in non-gland cells [221]. Deletion or mutation of one of the HRL
sites results in derepression, showing that a different complement of factors regu-
lates the gene in non-gland tissue. In addition to single genes, combinatorial inputs
operate on the cell fate level. Sox9 in the mouse spinal cord represses motoneurons
and promotes astrocytes [259], while Olig2 represses astrocytes and promotes both
oligodendrocytes and motoneurons [308]. These two genes give rise to a combina-
torial code whereby oligodendrocyte identity is specified by high levels of Sox9 and
Olig2 together; motoneurons and astrocytes are favored by the respective absence
of either antagonist. Finally, a hybrid scheme was identified in the fly eye, involving
combinatorial signaling molecules Notch and EGF regulating combinatorial input
to Pax2, which designated the fates of at least four different cell types [78]. These
examples show how combinatorial logic concisely explains expression differences in
individual genes [23, 24, 221] and the emergence of specific cell types [24, 46, 101,
78, 155, 259, 260, 308]. Yet shortcomings are apparent when combinatorial logic
is used to regulate groups of genes and cells at once, particularly in that specificity
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appears to require a specialized factors for each fate (see chapter 3). As the example
in the amoeba shows, combinatorial codes can result in some cell types (e.g. pre-
stalk A) emerging under all conditions [23], clearly an undesirable and unrealistic
outcome in organisms with diversified cell types. Therefore, simple combinatorial
logic may not be suitable for explaining de novo development from a symmetric
starting state. New technology for characterizing combinatorial transcription bind-
ing on the whole-genome level [10, 309], although valuable for identifying these
diverse cell types, may not be appropriate for addressing the question of initial
symmetry breaking. Alternative models, which are the subject of this thesis, will
be necessary for the design of experiments that leverage the increasingly rich data
now at our disposal.

An alternative to combinatorial logic, proposed in [153] (and reproduced
in chapter 3 of this thesis), is that all inputs are remembered in the process of gene
regulation. In this model, termed sequential logic (Figure 1.2B), several inputs act
in sequence to specify developmental fate. In this way, cells seeing the same signal
in the egg stage can later adopt divergent fates if they see different signals later
(cf. fin versus tail in Figure 1.2B), or even if they see some of the same signals
in different orders (tail versus scale, tail versus mouth fin versus scale, fin versus
mouth). This noncommutative model addresses the information bottleneck inherent
in the Markovian nature of combinatorial logic: information is spread out over time
instead of concentrated in the egg. The idea that there is such a bottleneck has to
some extent been anticipated. One study found that the Drosophila transcription
factor Rn acts in nested fashion in patterning the fates of olfactory receptor neurons
on progenitors that have already reached a certain state [155]. Another showed that
the timing of neurogenesis and gliogenesis in themouse spinal cord depends onwhen
the patterning factors Pax6, Olig2, and Nkz2.2 are turned off, and when pro- and
anti-neural factors are turned on [260]. This result is similar to the subjugation of the
switch from early neurogenesis to later generation of oligodendrocytes to the timing
of Sox9 activation [259, 308]. While the role of time in sequential development is
well-established, the extent to which it demands revised models going beyond static
landscapes and simple combinatorial logic has been under-appreciated.

It might reasonably be asked of Figure 1.2Bwhat accounts for the different
sequences seen by each cell. Although the zygotic cells don’t know their fate at time
zero, it appears that something does. Put another way, abandoning combinatorial
logic is sufficient tomake the time dimension informative. But in order for sequential
logic to be a necessary feature development, the landscapemust change as cellsmove
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along it. Although some authors have included the a time-dependent remodelling
of the landscape [75, 125, 290, 291], truly autonomous development needs to be
free of external influences once initiated. Chapter 4 develops a new hypothesis
that autonomy emerges from the space-time constraints of limited transcriptional
resources.

1.4. Combinatorial and sequential logic in synthetic biology
An alternative approach to studying cellular decision-making during de-

velopment in vivo is to build synthetic gene circuits. Implementation of combinato-
rial and sequential logic circuits in live cells as components of biological computers
is an ongoing project in synthetic biology. Rational design of genetic circuits is
useful not only for engineering purposes, including designing oscillators for ther-
apeutics [112] and long-term storing of data [55], but also for gaining insight into
how cells use circuits for processing information in vivo (e.g. [8]). Just as computers
built from a small variety of electronic components have widespread functionality,
cells use limited signals to solve the problem of development [214]; it is imperative
to understand how.

In the last two decades, the purview of synthetic biology has expanded
from combinatorial transcriptional circuits in E. coli to stably writing into the DNA
of eukaryotes. Studies thus fall on three (not-quite-orthogonal) axes spanning
circuit type (combinatorial versus sequential), computational platform (RNA versus
DNA), and cell system (eukaryotic versus prokaryotic). Although work continues in
all regions of this space, the general desire is to engineer circuits with memory for
application in human systems. This section reviews the different synthetic systems
with an eye toward understanding the information-processing strategies that may be
used in development in vivo.

Fluorescence in bacterial cells is driven by a limited number of small-
molecule inducers to gene promoters, in a manner that is strongly dependent on cir-
cuit topology. Arabinose (Ara) and acyl homoserine lactone (AHL) directly activate
the AraC and LuxR promoters pBAD and pLux [20, 59, 181, 289, 307], leading to
reporter expression, but LacI and TetR repress the operators pLacO and pTetO con-
trolling lactose metabolism and tetracycline resistance [59, 89, 105, 181, 189]; they
must be repressed with the small molecules isopropyl β-D-1-thiogalactopyranoside
(IPTG) and anhydrotetracycline (aTc). Additionally, the λ phage repressor cI in-
hibits transcripts from the pR promoter controlling the lytic response [105, 161],
but it must be supplied transcriptionally. There are a number of caveats to the use
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of inducers in cells. Although repression of repressors and activation of activators
logically have the same outcome, it has been shown that repression is in general
dominant: when pBAD and pTetO jointly controlled downstream gene expression,
Ara alone could not activate a GFP reporter, while aTc alone could [59]. In an-
other study of co-regulated genes, cooperativity between TFs bound at primary
and auxiliary sites was asymmetric with respect to activation and repression [115].
Auxiliary sites bound their regulators more tightly in activating circuits, whereas
primary sites did so in repressive ones. Assuming that the higher affinity regulator
is the first on and the last off, then the most switch-like response occurs when the
primary activator (repressor) is the last be added (removed), in agreement with the
observed affinities. Even the relative placement of activators from the transcription
start site can influence the sharpness and leakiness of the response [189]. These and
other concerns regarding genetic context and promoter strength [105, 289] mean
that small molecule inputs to prokaryotic circuits are best treated as approximations
of Boolean inputs to electronic circuits. Optimization through directed evolution
[161, 237, 307] and other methods [181, 289] is a necessary first step in circuit
design.

Once optimized, prokaryotic circuits can activate reporter expression in cis
or in trans. When multiple binding sites are inserted upstream of a single promoter,
fluorescence is a function only of the inputs [20, 40, 59, 105, 189, 237, 307]. This
strategy has lent itself to circuits that compute AND [40, 237], NOR [40, 307], NOT
[20, 40], and OR [40]. The more complex IF/ANDN (one of two inputs being on
by itself is uniquely forbidden/allowed) appears to require regulation in trans (see
below). The same elements were realized in a mammalian system using as input
various antibiotics to disrupt the regulator-DNA interaction [144]. These simple
circuit elements can be used to generate large-scale patterns: in one experiment,
a mixed population of cells placed at different distances from a signal source with
promoters of different strengths were induced to form fluorescent bulls’ eyes [20].
With more than two inputs to a promoter, a range of computations are possible if
one or more inputs is held constant [40]. Exhaustive sampling of different promoter
architectures has shown that cells actually compute a linear combination of AND
and OR, leading to a ladder of increasing fluorescence when A, B, and A + B
are added [59]. When multiple promoters are used, input-output circuits become
bistable. In one highly-cited study, IPTG relieved repression of pLacO by LacI,
leading to TetR transcription and further repression of LacI at a locus in cis [89].
The opposite LacI-high state could be induced in real-time by adding aTc following
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IPTG, showing that the circuit was operating in a bistable region of parameter (i.e.,
promoter strength) space. Although integrated on a single plasmid, the circuit in
this study was actually a special case of regulation in trans with two promoters
regulated by separate but interconnected promoters, a necessary feature for circuits
with memory.

Not all circuits regulated in trans are bistable, but in general they are more
modular than their counterparts in cis. This is because the products of the first input
layer can be fed into a second, swappable layer downstream. The architecture of such
circuits can be funnel-like [7, 16, 181, 289] or nonlinear [84, 161]. The funnel variety
feed inputs into two different promoters, and the expressed products interact in some
way to control transcription at a third. For example, input promoters have been
engineered to produce enhancer-binding factors that interact with RNA polymerase
[289], bacterial chaperones [181], and suppressors of amber stop-codons [7]. In all
cases, both inputs were necessary to control output at a third locus, showing that
funnel gates are similar to electronic summing junctions. The modularity of such
systems was demonstrated by Moon and colleagues, who showed that orthogonal
chaperone-transcription factor pairs could be chained together to produce a four-
input AND gate with minimal faults, owing to different kinetics of the separate
two-input modules [181]. A two-input one-output circuit that computes the logical
XOR from two linkedANDNmodules was also constructed using regulation in trans
in a mammalian system [16]. The major difference between the prokaryotic and
eukaryotic contexts is that small molecule repressors are replaced by antibiotics.
Briefly, antibiotic A at one promoter inhibited the RNA-binding repressor of a
fluorescent reporter transcribed from a distant locus, itself transcriptionally inhibited
by antibiotic B. Because transcription is upstream of RNA-binding, the circuit
computed the ANDN operation, only generating fluorescence when A is present
alone; it is the complement of A→ B.

Besides the funnel-type circuits that take multiple inputs to produce a
single output, regulation in trans can be adapted to produce sequential circuits with
memory. In this type of circuit, a single input initiates a chain of events that delays the
output by virtue of a nonlinearity. Nonlinearity (i.e., a feedback loop) is necessary for
memory (i.e., multiple steady states) [254]. In one example of a sequential-counting
circuit, T7 RNA polymerase and GFP were both tagged with a mutated ribosome
binding sequence [84]. Because mRNA binding was downstream of transcription,
Ara-mediated post-transcriptional relief of riborepression was achieved only while
the inducer was present. With GFP under the control of T7 RNA polymerase, this
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system during the first Ara pulse effectively functions as an incoherent feedforward
loop [6]; it is not until a second pulse of Ara appears that GFP mRNA is translated.
This report was widely cited as an example of a genetic circuit that can count pulses.
In another study of sequential logic, a memory module was combined with a NOR
gate to reversibly switch a circuit between RFP- and GFP-expressing states using the
UV-triggered RecA proteasome pathway [161]. The RFP-GFP module, a bistable
switch controlled by mutually repressive cI inhibitors, operated in a monostable
regime thanks to the superior strength of the GFP promoter. But a UV pulse that
triggered proteolysis of cI also induced transcription of third cI variant, giving the
system an additional "kick" to the RFP-expressing state. The final component was
the production of LacI by the RFP operon, resulting in repression of cI number 3,
so that a second UV pulse could restore the GFP-RFP switch to its default GFP-
expressing state. Although highly complex, and showing only middling switching
efficiency, the push-on push-off switch is a unique realization of a circuit able to
remember sequences of input. In a final example, yeast cells were engineered with
a feedback loop in which a GFP gene expressed from a CYC1 locus was activated
by Gal1-driven LexA DNA-binding at the promoter [2]. The system could transit
between high- and low-GFP states depending on the kinetic parameters. The high-
GFP state persisted in the absence of galactose, although it ultimately decayed to
the low state due to dilution during cell growth. These examples show the great
versatility of genes driven from multiple promoters to generate sequential logic
circuits that do much more than simply produce a fixed output to a given input.

Uniting the examples discussed above is their reliance on fluorescence
output. A parallel approach to logic functions in cells is to write changes directly
into the DNA using recombinases [35, 74, 84, 108, 121, 253] or CRISPR-Cas9
DNA-editing technologies [71, 83]. DNA is a more stable storage medium than
the transcriptional circuitry, because it persists for multiple generations and can
even be read after cell death. Thus, DNA recombinases are a natural avenue for
pursuing sequential logic in cells. Different recombinases such as Fim (B and E)
[74, 108], HbiF [74], Cre [84], Hin [108], and Bxb1 [35, 121], and TP901-1 [121]
recognize specific DNA sequences and have different levels of reversibility, but their
overall mechanism is conserved. In the Bxb1 serine integrase system, the phage
attP site (palindromic except for a central dinucleotide) undergoes recombination
with the host attB site, generating attR and attL sites from alternate halves of the
original partners; the reverse reaction is not allowed [92]. In order for proper
synapsis to occur, the DNA strands must be in opposite→ and← orientations when
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corresponding halves of the double helix pair as ⇆. Imagine the arrows being cut
in the middle and the heads being attached to opposite tails (Figure 1.3). When
the sites lie in cis on a circular plasmid, the cuts necessarily remove a contiguous
portion of the DNA, which may contain two heads (panel A), or a head and a tail
from opposite sites (panel B). Therefore, case A with the geometry → ← results
in the the intervening DNA being reversed, and case B with → → in looping out.
In A, intervening elements such as transcription start- and termination sites can be
rotated with respect to one other and with respect to downstream genes, but they
must be collinear in order to have an effect on transcription. For example, a DNA
bit was switched from off to on (i.e., GFP-expressing) by introducing a pulse of
HbiF recombinase to flip a start site from up to down, and FimE to flip it back again
[74]. Strikingly, the recombinases recognize opposite sites irreversibly, and can
be arranged to make a NOT gate if one is expressed constitutively. State-sensitive
recombination is a useful feature, as the authors of a prior study were compelled to
express the recombinase together with an excisionase in order to effect the reverse
flip; as a result, they observed a mixed population of on and off states, a situation
termed stoichiometric mismatch [35]. Nevertheless, once the kinetic parameters
were adjusted, both studies observed stability of the DNA switching devices over
time and upon multiple cycles, suggesting that such systems may be useful for long-
term memory storage. A major drawback, however, is the problem of addressing
specific bits with only one or two molecules available to catalyze the switch reaction
at any bit. The synthetic biology toolbox has several different parts [284], and
one solution is to try to supplement it with newly designed recombinases; this
strategy is likely to have diminishing marginal returns. Another way to circumvent
the bottleneck of limited switches is to spread them out in time. Friedland and
coworkers employed a type of recombinase sequential logic to expose transcription
start sites and terminators in an ordered fashion to build a DNA device capable of
counting pulses [84]. A novel strategy employed by both Hsiao and colleagues and
Ham and colleagues was to stagger the sites recognized by different recombinases,
and then to expose cells to different sequences of events [108, 121]. Examination of
the DNA state afterward by either fluorescence [121] or culture PCR [108] showed
that it was possible to detect which recombinase was seen first. A theoretical version
of this switching strategy in explored chapter 3.

Besides building bacterial computers, there is an emerging interest in
using circuits with memory to learn about the dynamics of living cells using the
DNAmolecule as a recording device. In principle, any locus in the bacterial genome
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Figure 1.3: Two outcomes for oppositely oriented DNA recombinase switches. Phage-
derived recombinases are able to flip or cut DNA when recognition sites are aligned head-
to-tail. (A) Antiparallel recognition sites are flipped because the arrowheads are connected
when the recombinase introduces a nick. (B) The intervening stretch is excised and the sites
are parallel because the arrowheads are disconnected.

can be "written" into by expression of a retron unit in the SCRIBE system [71]. A
single-stranded DNAmolecule containing the edited gene is reversibly incorporated
into the parent locus by the Beta recombinase, and the state is stored at the population
level (i.e., only some cells are edited). It was shown thatmultiple edits could bemade
using multiple plasmids, albeit with low efficiency, providing one solution to the
scalability problem of recombinase circuits. Alternatively, recorded events can be
"read" off the genome by the marks they leave there using theMEMOIR system [83].
Frieda and coworkers introduced 28 DNA stem loop "scratchpads" into the genome
of proliferatingmouse embryonic stem cells, and used CRISPR-Cas9 to introduce an
irreversible deletion. Probing the state of transcripts from the scratchpad loci using
smFISH allowed the relatedness of daughters to be quantitatively assessed. This
scheme makes it possible to answer the question of whether single cells remember
the history of signals presented to them.

1.5. Appendix
1.5.1 The n-dimensional volume element

Let a1, . . . , an−1, b ∈ Rn be elements of a vector space with unit magnitude,
each having the form ai = ajiej relative to the standard basis {ei}. If each of these n
elements is referred to the origin, then they span an n-dimensional volume element
no bigger than the n-cube. Let

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜
⎝
a1

⎞
⎟⎟⎟
⎠
, . . . ,

⎛
⎜⎜⎜
⎝
an−1

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝
b

⎞
⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(1.1)

be the column span of the n elements. We seek to prove

Theorem 1.5.1. The volume spanned by n elements of Rn is detA.

Proof. The theorem is proved by induction on the dimension of A. For the n = 2

case, it is easy to see that the parallelogram spanned by orienting a1 = a and b at the
origin is the area (a1 + b1) (a2 + b2) of the square subtending them, less the areas
2a2b1 of the corners and a1a2 + b1b2 of the external triangular elements. The sum
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of these contributions is a1b2 − a2b1 = detA, relative to a right-handed coordinate
system. Note that if the roles of axes e1 and e2 are reversed, then the area b1a2−b2a1

has the opposite sign.
For the general case, assumeA is the volume of the region ∂R spanned by

n − 1 vectors a1, . . . , an−1. Adjoin b to the list, and refer it to a basis (b∥, b⊥), where
b⊥ ⋅ ai = 0 for all i. Let X = ∂

∂b be the vector field everywhere defined by tangent
vectors in the direction of b; then ∇ ⋅X = 1. The divergence theorem [50] shows
that the volume V of the n-dimensional region R subtended by the n vectors is

V = ∫
R
dV = ∫

R
∇ ⋅XdV = ∫

∂R
X ⋅ ndA = b⊥A, (1.2)

where n is the unit normal to the boundary ∂R, and ∂n
∂b = b⊥ is the amount of

n traversed when traveling on b. Eq. (1.2) is equivalently interpreted as sum-
ming up small volume units V over the entire region R, or flowing along b and
adding "slices" of the n − 1-dimensional area A. Now let a1, . . . , an−1, b ∈ Rn

be referred to the standard basis so that b⊥ = b ⋅ ei is perpendicular to the "face"
(see [13] ch. 7) of ∂R with no components in ei. The area of this face is
det [a1 . . . ai−1 ai+1 . . . an−1] ∶= detAi, the ith principal minor of A; its
orientation (−1)i+1 corrects the sign error that results when ai+1 is an even number
column. Therefore the n-dimensional volume with vectors referred to the standard
basis is

b⊥A =
n

∑
i=1

bi (−1)i+1
detAi = detA. (1.3)

If the columns of A are vectors ∂f
∂xi

of gene expression changes due to
attempted changes in the expression values xi of each of the n genes, then detA > 0

at a point a is the condition that a stationary point is stable.
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C h a p t e r 2

THEORY OF SMOOTH POTENTIALS

2.1. Introduction
Waddington’s theory [288] of a potential landscape for differentiating cells

has recently become experimentally testable thanks in part to advances in single-
cell sequencing technologies [182]. The gene expression states of individual cells
at various time points in the process of hematopoietic [133, 179, 295] and neural
[148, 217] differentiation, cellular reprogramming [147, 238], and preimplantation
development [107, 169, 201] have been visualized as clusters in a high dimensional
space, supporting a picture of hierarchical development in which cells roll down
a surface. Taking cells out of their biological context was a necessary first step
in perfecting these powerful techniques, but an unintended consequence has been
neglect of the role of time in development. In particular, the Waddington landscape
suggests that in the absence of expression noise, a cell picks its fate by falling into
the basin of its nearest attractor state. And although the landscape may change due
to the tuning of some external control parameter [75, 290, 291], development is an
autonomous process that proceeds robustly with minimal guidance. These features
beg the question, Why don’t cells start at the end if they know the end at the start?

To resolving the paradox, it is necessary to reexamine the mathematical
basis for the theory of potential landscapes. The Waddington landscape is a smooth
surface, but as others have pointed out, gene expression levels need not reflect a
gradient potential [26, 295]; both concepts are made precise in section 2.2.1. It
is shown in section 2.2.2 that non-gradient dynamics arise on a smooth surface
by transportation to the tangent space where rates (in space and time) of gene
expression are independently controlled. Development proceeds as the flow from
high to low potential of a locus of accessible states during which time information in
the DNA of the progenitor is unpackaged; the condition for the potential difference
to uniquely determine the trajectory at time zero is shown in section 2.2.3 to be
the one-dimensionality of the controls. It is suggested that a system with many
controls becomes one-dimensional as it orients to the direction of the applied forces
at each step; in so doing, the trajectory is no longer known in advance. In 2.2.4,
the conjugacy of space and time is invoked to explain how connected cells moving
down a potential surface as group, abolishing the need for additional barriers between
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alternative fates. By spreading out information in both space and time, the so-called
parsimony principle resolves the fundamental information paradox that a single
progenitor cell encompasses the fates of all its progeny.

2.2. Results and Discussion
2.2.1 Consequences of a smooth potential

Generalized forces can be defined froma smooth potential functionφ (x, y)
by its derivatives. It is the objective of this section to show that smoothness of the
gene regulatory function leads to a gradient system in gene expression space. By a
gradient system it is meant that transcripts at any point in expression space change in
a direction that is a right angles to lines of equipotential relative to a reference state;
motion of the (conservative) system is entirely due conversion of potential energy
into kinetic. The consequences of a non-gradient potential are characterized by the
negation of the sufficiency conditions.

Let the gene regulatory function of a two-gene system (x, y) be defined
by the vector field (f (x, y) , g (x, y)), where −ẋ = f and −ẏ = g are the negative
rates of escape from two states x and y, similar to the assumptions of [26]. Define
the potential function φ ∶ R2 → R over regions in gene expression space by

φ (x, y) = f (x, y)x + g (x, y) y, (2.1a)

with differential

dφ (x, y) = f (x, y)dx + g (x, y)dy. (2.1b)

The condition (2.1b) is equivalent to the requirement that potential differences f = ∂φ
∂x

and g = ∂φ
∂y reflect the tendency of the system to transit between two points. Then

flow of the system is represented by the (bold face) vector field

φ = f ∂

∂x
+ g ∂

∂y
= (f, g) . (2.2)

Because φ in (2.1a) defines a surface, it may assume the role of the warping function
of a torsion bar in the St. Venant problem from continuum mechanics [79, 163,
243]. A surface φ is said to be continuous in a neighborhood containing (x, y) if
lim(h,k)→(0,0) φ (x + h, y + k) = φ (x, y) for all directions v = (h, k), and smooth if
limv→0

1
∥v∥ (φ (x + h, y + k) − φ (x, y)) exists and is always equal to a tangent vector

(f, g) for continuous functions f and g. These definitions suffice to prove the
following version of the Implicit Function Theorem.
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Lemma 2.2.1. Ifφ is a smooth surface with a continuous differential dφ = fdx+gdy,
then there is a path in gene expression space with constant φ.

Proof. If (x, y) is not an extremum of φ, then there are at least two tangent vectors
v1,v2 with vi = (f (i), g(i))T such that det [(v1) (v2)] = 0. Otherwise attempted
changes dx and dy would always result in changes f and g of the same sign, which
is only the case for extrema. Because the sign of the volume element spanned by
the output tangent vectors must change, and because f and g are continuous, the
determinant must at some point vanish. Therefore, the system of equations which
must hold for the condition dφ = 0 to be true, viz.

f (1)dx + g(1)dy =0 (2.3a)

f (2)dx + g(2)dy =0, (2.3b)

has a nontrivial solution (dx, dy)T (see Lemma 2.2.2 below). Upon substituting
this solution into (2.1b), we find that

dy

dx
= −f

g
. (2.4)

The differential equation (2.4) defines the locus of points in the (x, y) plane with
constant φ.

The solvability of system (2.3) is a consequence of the following technical
lemma:

Lemma 2.2.2. Let A be a linear operator with detA = 0. Then there is a nonzero
vector v such that Av = 0.

Proof. In general, A maps vectors to vectors by Av = w. Because A is linear,
w = (w1, . . . ,wn)T may be written as (λ1v1, . . . , λnvn)T for some constants λi. By
appropriate choice of the vi as vi ↦ λ1

λi
vi, w may instead be written λ (v1, . . . , vn)T

for λ = λ1. This transformation is well-defined if it is restricted to λi ≠ 0. Assuming
without loss of generality that this substitution has been made, we may solve for λ
by taking the determinant of both sides of the equation Av − λI = 0, which follows
from Av = w = λIv. The permutation definition of the determinant satisfies

det (A − λI) =∑
σ

sign (σ)∏
i

(Aσ(i)
i − λδσ(i)i )

=∑
σ

sign (σ)∏
i

Aσ(i)
i + homogeneous polynomial in λ, (2.5)
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using the Acolumn
row convention [172]. Because detA = 0, Eq. (2.5) is itself a

homogeneous polynomial in λ (i.e., having no constant term), and must therefore
have at least one root λ = 0. Therefore, Av = w = 0.

Being a velocity potential, the locus of constant φ not only determines
a relationship between x and y, but also how the (negative) velocities f and g
must change in order for y and x to maintain their equipotential relationship. This
idea is generalized using the language of vector fields in the tangent space of gene
expression, where directions rather than positions are the independent variables.
The next result shows that if f and g are well-behaved, like common gene regulatory
functions, then the vector fieldφ can be defined as the harmonic conjugate of another
field ψ. The relationship between these two fields determines how the velocities
change in order to maintain constant potential and constant stress, respectively.

Theorem 2.2.3. If f and g are velocities of a smooth potential φ, then there is an
orthogonal vector field ψ such that

∇ ⋅φ = −∇ ×ψ (2.6a)

∇ ⋅ψ = ∇×φ. (2.6b)

Proof. Using Eq. (2.1b), the total derivative of φ becomes

dφ = df ⋅ x + fdx + dg ⋅ y + gdy
0 = df ⋅ x + dg ⋅ y. (2.7)

This is the Legendre transformation of φ. On a curve of constant φ, which must
exist by Lemma 2.2.1, Eq. (2.1b) also vanishes:

0 = fdx + gdy. (2.8)

Rearranging (2.7) and (2.8) and taking their ratio gives the constraint

df/dy
dg/dx = y

x
⋅ g
f

( ∂
2φ

∂y∂x
)/( ∂2φ

∂x∂y
) = 1 = g

x/fy (2.9)

that must hold between the expression states x, y and their velocities f, g on the
equipotential curve. Eq. (2.9) shows that g

x and f
y may not depend on different

variables; the simplest case is that they are both lines with the same slope, i.e.,
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g (x) = αx and f (y) = αy. This condition is assumed in the torsion problem [163,
243], and is the one illustrated in Figure 1.1A.

Now, the vector field φ = (f, g) of velocities is

φ = (αy,αx) , (2.10)

with divergence and curl given by ([50] ch. 1, [255] ch. 7)

∇ ⋅φ = ∂f
∂x

+ ∂g
∂y

= α(∂y
∂x

+ ∂x
∂y

) = 0 (2.11a)

∇×φ = ∂f
∂y

− ∂g
∂x

= α(∂y
∂y

− ∂x
∂x

) = 0. (2.11b)

The field ψ defined by
ψ = (−g, f) = (−αx,αy) (2.12)

has divergence and curl given by

∇ ⋅ψ = −∂g
∂x

+ ∂f
∂y

= ∇×φ (2.13a)

∇×ψ = −∂g
∂y

− ∂f
∂x

= −∇ ⋅φ, (2.13b)

and is at right angles to φ.

Theorem2.2.3 shows thatφ defines a smooth gradient system in expression
space because the field ψ specifies the direction of motion that at any point moves
the system between level sets of the function φ. An example for the two-gene system
is shown in Figure 2.1. The concentric circles represent the loci of x2 = const. and
−y2 = const.,1 relative to a reference level. Then at any point in space there is an
imbalance x2 − y2 by virtue of the fact that the system lies on exactly two of these
circles. The motion of the system from any point (x, y) is found by flow along
φ = (y, x), i.e., by moving by the amount y along the x̂ unit vector and by x along
ŷ; in contrast, flow along the orthogonal field ψ = (−x, y) changes the potential. In
this way, the system always knows the allowed directions of motion at any point in
space.

The landscape analogy cannot be taken as too literal a metaphor for de-
velopment, at least not until a few modifications are made. In a physical landscape,
you walk uphill and over a ridge into another valley; in a potential landscape, you

1The minus sign indicates that increasing x is attendant on decreasing y, e.g., if y is an inhibitor
of x.
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Figure 2.1: A gradient potential in gene expression space. Gene expression transfers
population from the y state (blue) to the x state (state) in a conservative two-gene system in
such amanner that the potential φ = xy is constant as φ = 1

2
(x2 − y2) is adjusted. Circles are

loci of constant transcripts x2 and −y2, so that the sum of any two circles is the imbalance.
As the energy φ increases, the midpoint of zero imbalance moves up and to the right. The
senses in which the distances x and −y are increasing (toward darker hues) are shown with
red and blue arrows pointing to/from the current state of the system. The local coordinate
system corresponds to the fixed axes drawn in black. The dashed lines show the tangent and
normal directions along a curve of xy = const. The conjugate vector fieldsψ ∶= ψ̂ = (−x, y)
and φ ∶= φ̂ = (y, x) defining these respective directions are orthogonal relative to the skew
coordinate system. Colored lines with chevrons show how the distance vectors are projected
along the (signed) unit vectors x̂ and −ŷ.

walk on a path where φ (x, y) is constant. Going up- or downhill in the poten-
tial landscape changes the depths of the valleys in the physical landscape, in the
sense that the more energy you have, the higher the hill you can climb. Notice
that the several hyperbolic paths in Figure 2.1 connect the same endpoints at differ-
ent heights, a feature that appears to violate the injectivity (one-to-one-ness) of a
smooth φ. The interpretation is that adding energy to the system lowers the entire
surface, so that the equipotential hyperbolas approach a straight line. A spaceship
flying between two planets rather than marbles rolling downhill is perhaps a more
accurate picture of the gene regulatory potential. Figure 2.1 is an attractive analogy
for development because high-energy progenitors can exist in a bipotent intermedi-
ate state associated with high levels of multiple lineage-promoting factors, whereas
low energy differentiated cells have to go around a barrier. Although some studies
have found that progenitors stochastically turn on separate lineages programs [207,
217], there is ample single-cell evidence that stem cells in the kidney [42], intestine
[142], bone marrow [82], hematopoietic lineages [122, 203, 219], and early blastula
[201] simultaneously express genes associated with alternative fates. These bipo-
tent progenitors are extremely rare and may not always translate nascent transcripts
into protein products, but the very fact that single bipotent cells can be trapped
and converted to alternative fates [203] suggests that the picture in Figure 2.1 of
a high potential locus of states is not farfetched. Even reports suggesting that fate
is fixed by mutually exclusive stochastic events at the progenitor stage have found
latent capacity for stem cells to adopt multi-lineage transcription states when certain
genes are knocked down [207]. This is an important refinement to the Waddington
landscape, because it suggests that cells do not roll downhill independently. Instead,
a collection of cells at the same potential take different trips downhill in such a way
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that they remain at the same height throughout the process (see section 2.2.4 below).
There is no need to invoke additional barriers between states of low developmental
potential, because alternative fates can only be reached by going back in time.

What are the allowed equipotential trajectories the system? The conjugate
vector fields φ and ψ are the equivalent of the Cauchy-Riemann equations for the
imaginary and real parts of a harmonic function of a complex variable [77]. Vector
fields (2.10) and (2.12) give the x and y components of the derivatives of functions
φ and ψ. Comparing like terms shows that

∂φ

∂y
= ∂ψ
∂x

(2.14a)

∂φ

∂x
= −∂ψ

∂y
, (2.14b)

by which it is clear that φ defines the imaginary part of an analytic function in the
complex plane. With α = 1, Eqs. (2.14) lead to

ψ = 1

2
(x2 − y2) (2.15a)

φ = xy, (2.15b)

the latter being the surface plotted in Figure 1.1A and the level sets plotted in
Figure 2.1. Eqs. (2.15) correspond to the strain and warp, respectively, of a rod
with an elliptical cross section under torsion. Moving on an hyperbolic trajectory
xy = const. means that φ is constant as the system moves between different circles
of constant x2 and −y2. Depending on the value of φ, the point at which x and y
are equal moves to progressively higher levels until the allowed trajectory between
the two states is a straight line; otherwise the system goes around the barrier on an
hyperbolic curve. Also observe that

φ = −ẋx − ẏy = − d
dt

1

2
(x2 + y2) , (2.16)

so that in a gradient system, constant transcriptional activity corresponds to the total
amount of transcripts changing at a fixed rate.

The foregoing reasoning asserts that a smooth potential surface and linear
gene regulatory functions lead to a gradient system in gene expression. In this case,
the velocities are uniquely determined from the difference ∆φ between two points:
by the commutativity of the controls (see below), the path between endpoints is
always broken up into flows φ and ψ parallel and perpendicular to the gradient.
Conversely, if the system is not a gradient, the controls f and g may be noncommu-
tative. Hence the change in velocity between two points is path dependent.
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2.2.2 Projection of the dynamics in the tangent space leads to noncommutative
paths in gene expression space
The smooth potential φ = fx + gy need not be a gradient if the second

line of (2.9) does not hold: if the mixed partials of φ are not equal, then alternative
paths from (x0, y0) to (x1, y1) in general have different values of φ (as in the
spiral landscape of Figure 1.1B). Although it is relatively easy to construct such a
discontinuous surface in the base space, it is more illuminating to derive it from
the curl of a vector field in the tangent space, where gene expression is actually
controlled. Denote byM the manifold of gene expression states (x, y), and by TM
its tangent space with local coordinates (x, y, ẋ, ẏ) = (x, y,−f,−g). In section 2.2.1,
it was shown that flow along the field ψ onM restricted gene expression to level
sets of the function φ by virtue of its being everywhere perpendicular to ∇φ = φ.
The content of the following theorem is that level sets of a candidate potential φ on
M are not invariant to the curl of a vector field (f, g) of controls in TM.

Theorem 2.2.4. If f and g are the conjugate forces of a smooth potential φ defined
onM, then there is a projection mapping π ∶ TM →M such that the following
diagram commutes:

(f, g)∣
TM

∇×Ð→ ∇× (f, g)∣
TM

π↓ ↓π
(x, y)∣

M
Ð→
∇×

∇× (x, y)∣
M

(2.17)

Proof. Define the real-valued function φ ∶ R2 → R onM by

φ (x, y) = f (x, y)x + g (x, y) y (2.1a)

dφ (x, y) = f (x, y)dx + g (x, y)dy, (2.1b)

as in Eqs. (2.1). It follows from Eqs. (2.10) and (2.12) in Theorem 2.2.3 that there
is a field φ = (f, g) and a conjugate field ψ = (−g, f) at right angles to φ such that
∇ ⋅ φ = ∇ ×ψ and ∇ ⋅ψ = −∇ × φ. The field φ was found by stipulating that the
function φ be constant. Then the fact that ∇φ and ψ are orthogonal implies that the
direction ∇ψ that maximizes the rate of change of a function ψ (and hence transfers
population from y to x the fastest) is orthogonal to φ. Therefore, the divergence
∇ψ of ψ (the net change in ψ over a region) is the total change in the components f
and g of φ around a loop in (x, y,−f,−g) that maintains constant φ. In a gradient
potential, there is no change when returning to the same point; in a non-conservative
potential, there is a nonzero circulation ∇×φ when returning to (x0, y0).
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If π is the projection mapping (x, y,−f,−g) ↦ (x, y), then the matrix of
the inverse mapping

π−1 = −
⎛
⎝

∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

⎞
⎠

(2.19)

is the differentiation map π−1 ∶M → TM. The strategy to prove the theorem will
be to use Eq. (2.19) to find the forward transformation π and show that it commutes
with the cross product in diagram (2.17). For small∆t the instantaneous x derivative
is approximated by

− f = ẋ = ∆x

∆t
= x − x

∆t
, (2.20)

and similarly for ẏ. Here, (x, y) is a fixed intermediate point on the (approximate)
tangent vector through a point r (t) = (x (t) , y (t)) of the trajectory r. Then

π−1 = −1

∆t

⎛
⎝

−∂x
∂x + 1 −∂x∂y
− ∂y∂x −∂y∂y + 1

⎞
⎠
= 1

∆t
(F − I) = −1

∆t
I, (2.21)

where I is the identity onR2 andF = ∂zi
∂zj

is the deformation gradient [50] relating the
intermediate to the original coordinates; it vanishes in the tangent space where the
dependent variable is ∆z instead of z. Inverting (2.21) using the classical adjugate
gives the projection mapping as

π = 1

detπ−1
adj (π−1) = ∆t2

J

1

∆t
(adj (F) − I) = −∆t ⋅ I, (2.22)

where J = detF −TrF + 1 = 1. Therefore, the top/right path in diagram (2.17) is

π ○∇×φ = −∆t ⋅∇×(∆x

∆t
,
∆y

∆t
) = [(∂x (t)

∂y
− ∂y (t)

∂x
) − (∂x

∂y
− ∂y
∂x

)] = ∇×(x, y) ,
(2.23)

which shows that the circulation of a trajectory (x (t) , y (t)) is exactly balanced
by circulation in the opposite direction of the chord (∆x,∆y). For the left/bottom
path, observe that the (transpose) adjugate deformation gradient acting on φ from
the right can be written

adj (F) ○φ = φ ⋅ adj (F)T = (∂y
∂y
f + ∂x

∂y
g,
∂y

∂x
f + ∂x

∂x
g)

= − 1

dt
(∂y
∂y
dx + ∂x

∂y
dy,

∂y

∂x
dx + ∂x

∂x
dy) . (2.24a)

Then using the constancy of (x, y) and the identity ∂
∂zj
dzi = δij ,

∇×φ ⋅ adj (F)T = − 1

dt
(∂x
∂y

− ∂y
∂x

) = 0. (2.24b)
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We are left with

∇× π ○φ = −∇ ×∆t ⋅ (f, g) = −∇ × (∆x,∆y) = ∇× (x, y) , (2.25)

exactly as in Eq. (2.23), and where the time-dependence of (x, y) is understood.
Therefore, diagram (2.17) is commutative.

The consequence of Theorem 2.2.4 is that if the actions f and g controlling
the rates of change of gene expression do not commute, then the potential landscape
in gene expression space is not a gradient, even if the potential surface itself is
smooth. If the expression levels x and y are the independent variables, then it is
only in the commutative case (2.9) when ∂f

∂y −
∂g
∂x = 0 that the rate at which one

gene changes is balanced by the rates and expression levels of the other gene(s) (cf.
Figure 1.1A). A physical example of this balance is the way in which a spaceship’s
rate of escape from Earth depends on its distance from Earth, as well as its distance
and rate of escape from the moon. A similar coupling between distances and rates
is at work in Michaelis-Menten kinetics, where the too much of a substrate inhibits
the catalysis rate of an enzyme. When a cell receives an independent signal to
increase transcription of gene x, however, there is no balance law that says how
the rate of transcription of gene y must change, and so the potential cannot be a
gradient. Theorem 2.2.4 permits us to project the tangent space dynamics back into
gene expression space in a manner that preserves the degree ∂f

∂y −
∂g
∂x to which they

fail to commute. The foregoing arguments show that appealing to the tangent space
of gene expression alleviates the need for unrealistic potentials in the base space.

2.2.3 When the potential difference alone determines the trajectory
Theorem 2.2.4 shows that when f and g are independent controls, there

is no guarantee that φ is conserved. It is of interest to know when φ can be used
to determine the trajectory of the system in advance. The following corollary of
Theorems 2.2.3 and 2.2.4 characterizes the necessary and sufficient conditions when
control in the tangent space defines a gradient system in the base space.

Theorem 2.2.5. When only one dimension is controlled in the tangent space TM
of a manifoldM, the potential φ onM defines a gradient.

This is an important corollary which will be appealed to in chapter 4
for making statements about when prior knowledge of forces provides advance
knowledge of position. We prove it in two different ways, first geometrically by
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referring to the level sets of φ in Figure 2.1, and second using a more general,
algebraic approach without refernce to the preceding theorems.

Geometric proof of Theorem 2.2.5. This is a statement of the form A ⇐⇒ B,
meaning A Ô⇒ B and B Ô⇒ A. To prove it we show both that A Ô⇒ B and
AÔ⇒ B; the latter is the same as B = B Ô⇒ A = A.

The potential φ = fx + gy is smooth if and only if Eq. (2.9) holds, i.e.,
mixed partials ∂2φ

∂x∂y and
∂2φ
∂y∂x are equal. By Theorem 2.2.3, the fieldφ corresponding

to φ has a conjugate field ψ = (−g, f). First suppose the one dimensional control is
f = αy; then g = 0 by definition. But since g = −ẏ = 0, we must have that f = αy0 for
some constant y0. Then the smoothness condition ∂f

∂y −
∂g
∂x = 0 holds, and the system

is a gradient. The condition holds for any general function f = f (x, y) because y is
constant and g = 0.

Conversely, assume the controls are two-dimensional; then the applied
force λ is not parallel to the direction vector v of the current point. There is an

orthogonal matrix T =
⎛
⎝

cos θ − sin θ

sin θ cos θ

⎞
⎠
such that v ∈ R2 has a one-dimensional

representation via the transformation Tv =
⎛
⎝

0

u

⎞
⎠
if θ = tan−1 v1

v2 and u = ∥v1 + v2∥2.

If the controls f, g are applied for sufficient times t1, t2 such that

λ ⋅ v = (t1 t2)
⎛
⎝
v1

v2

⎞
⎠
= (t1 t2)TT

⎛
⎝

0

u

⎞
⎠
= (t1 sin θ + t2 cos θ)u ≠ 0

Ô⇒ t1 ≠ −
v2

v1
t2, (2.26)

then the controls are two-dimensional. Now assume that an external source of energy
promotes the system between two level sets φ1 and φ2 > φ1 of the potential, and let
this change be broken down into two sequential steps via a (variable) intermediate
state φ∗. The control f promotes the system in the x̂ direction toward the x origin,
and g takes it along ŷ toward the y origin. By adjusting the durations t1, t2 of
the first and second steps, the alternate paths f, g and g, f have the same energy
endpoints. Because of the constancy of φ on a level set, the tangent vectors are
uniquely determined at each spatial point: the direction ŷ∗ after the application of
control f differs from ŷ; similarly, x̂∗ after the application of control g points in a
different direction than x̂. For if it were possible to reach curve φ∗ along x̂ with ŷ
intact, say, then the y origin would be at the terminus of the same direction vector
emanating from two different points; this can only happen if the two points are one,
in which case the controls are one-dimensional (e.g. the path parallel to the line
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of increasing x in Figure 2.1). Now, both sequences of input f, g and g, f change
the potential from φ1 to φ2 via φ∗, but the uniqueness of the tangent vectors shows
that it is impossible for x and y to change by the same amounts on the alternate
paths. That the same ∆φ is associated with different translations (∆x1,∆y2) and
(∆y1,∆x2) at steps 1 and 2 implies that

∂f

∂y
− ∂g
∂x

≈ ∆f

∆y1

− ∆g

∆x1

= ∆2φ

∆y1∆x2

− ∆2φ

∆x1∆y2

= ∆2φ

∆x1∆x2∆y1∆y2

(∆x1∆y2 −∆x2∆y1) ≠ 0. (2.27)

The last equality holds because det
⎛
⎝

∆x1 ∆x2

∆y1 ∆y2

⎞
⎠
= 0 only if the columns (or rows)

are linearly dependent; they are not if the paths start together and end apart. Thus by
Theorem 2.2.4, a system controlled in the tangent space by two-dimensional inputs
is not a gradient.

Algebraic proof of Theorem 2.2.5. First we prove sufficiency. Let f1, . . . , fn be col-
umn vectors of controls fi = Fjiej relative to the standard basis e1, . . . , en. Then the
condition that, given an input set of controls, the energy completely determines the
trajectory of the variables x1, . . . , xn onM is expressed as

⎛
⎜⎜⎜⎜⎜⎜
⎝

dφ

0

⋮
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜
⎝
f1

⎞
⎟⎟⎟
⎠

⋯
⎛
⎜⎜⎜
⎝
fn

⎞
⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜
⎝

dx1

⋮
dxn

⎞
⎟⎟⎟
⎠
, (2.28)

meaning that the only output channel containing information about the inputs dxi

is the energy. System (2.28) is a single equation; it is solvable if it has at most
one unknown. By hypothesis, this condition is met, because it is another way
of expressing the one-dimensionality of the controls. Observe that there is an
orthogonal matrix T = Tdx dependent on the current direction such that

T
⎛
⎜⎜⎜
⎝

dx1

⋮
dxn

⎞
⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0

⋮
0

du

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (2.29)
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For if

T(i) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

⋱
cos θin ⋯ − sin θin

⋮ ⋮
sin θin ⋯ cos θin

⎞
⎟⎟⎟⎟⎟⎟
⎠

where θin = tan−1 ( dx
i

dxn
) , (2.30a)

then

T =
n−1

∏
i=1

T(i) (2.30b)

is an orthogonal matrix that maps the direction vector dx by successive rotations
of the projections in the i, n plane onto a single direction (the nth), with magnitude
equal to the sum of the squares of the components. Using T to refer the dynamics to
a one-dimensional trajectory parallel to dx, we can rewrite the solubility condition
of Eq. (2.28) as

dφ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜
⎝
f1

⎞
⎟⎟⎟
⎠

⋯
⎛
⎜⎜⎜
⎝
fn

⎞
⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦

TTT
⎛
⎜⎜⎜
⎝

dx1

⋮
dxn

⎞
⎟⎟⎟
⎠

=
⎛
⎜⎜⎜⎜
⎝
T

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜
⎝
f1

⎞
⎟⎟⎟
⎠

⋯
⎛
⎜⎜⎜
⎝
fn

⎞
⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

0

⋮
0

du

⎞
⎟⎟⎟⎟⎟⎟
⎠

= (0 ⋯ 0 λ)

⎛
⎜⎜⎜⎜⎜⎜
⎝

0

⋮
0

du

⎞
⎟⎟⎟⎟⎟⎟
⎠

= λdu. (2.31)

Thus, the controls of a solvable system are written as a potential of mean force

λ = ∂φ
∂u
, (2.32a)

or upon taking the Legendre transform

u = ∂φ
∂λ
. (2.32b)

Therefore, the energy differential is sufficient to characterize the trajectory u onM
if the controls can be reduced to a single vector λ.

When is this reduction possible? To prove necessity, observe that in order
that the first of n − 1 columns of the control matrix vanish under the action of
T = [aij], we must have that

a1
1f1 + a2

1f2 +⋯an1fn = 0. (2.33)
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This is the condition that n vectors be linearly dependent. Rearranging (2.33) and
inserting f1 = − 1

a11
(a2

1f2 +⋯an1fn) into the equation for the second column

a1
2f1 + a2

2f2 +⋯an2fn == −
a1

2

a1
1

(a2
1f2 +⋯an1fn) + a2

2f2 +⋯an2fn = 0 (2.34)

expresses the condition that n − 1 vectors be linearly dependent. In general, the
equation for the kth column is a statement about the linear dependence of control
vectors fk, . . . , fn, conceived of as an equation for fk in terms of the other n − k.
The penultimate condition is

a1
n−1f1 + a2

n−1f2 +⋯ann−1fn = αfn−1 + βfn = 0, (2.35)

expressing the requirement that two vectors be linearly dependent. Thus, all vectors
are parallel to fn, and we conclude that the controls are one-dimensional.

The consequence of Theorem 2.2.5 is that controlling the deviation from
two reference states in general makes it impossible to know the trajectory of the
system in advance. Because there are many possible paths between the same energy
endpoints, the system does not know to which reference state it converges unless
it also knows its position. In contrast, the reference state is always the same for
a single potential well; the unique position trajectory x (t) is dual to the velocity
trajectory f (t) specified at the start. As the same level set of φ is reached when
controls are applied for different times, different level sets φ1 and φ2 are reached if f
and g are applied for equal times but in different orders. The "extra" energy φ2 −φ1

in the noncommutative system must be stored if it is not translated into motion. A
possibility considered in chapter 4 is that the dynamics can slow down if certain of
the genes have more resistance or "inertia" to being transcribed than others.

Alternatively, the trajectory is completely determined by the input controls
if at each step they are linearly dependent under the action of T, i.e., if they add up
to the (orthogonal) direction of motion dx. The reaction force vector fi = ∂φ

∂xi
is

orthogonal to the direction vector dxi so that the area they span is equal to the energy
increment (see Materials and Methods section 4.4.1.3 in chapter 4). With only one
reference state, the Legendre transform of φ is always directed along level sets of φ,
and the direction dx achieving the specified potential difference dφ is the orthogonal
one down the gradient. In other words T is always a rotation of 90○. But with n
directions, Tdx represents a 90○ rotation in a skew coordinate system (cf. tan and
gray areas in Figure 2.1); the rotation relative to fixed coordinates is not known until
the position in space is known, and so the sequence of Tdx’s is not known before
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the trajectory is. Therefore, the n-dimensional controls determine the trajectory in
advance only if you check at all steps that they induce transport between level sets
of φ. By the time you’ve done this, the system is no longer determined in advance!
The interpretation favored here is that it is possible to have advance knowledge of
the future, but that interpreting this knowledge requires all time up until when the
future becomes the present.

2.2.4 The parsimony principle
The results so far paint a picture of progressive lineage restriction on a

smooth potential surface. The requirement for time is shown here to be conjugate
to the spatial connectivity of developing cells. We argue that there is a "kernel" of
information in the egg that can be made to fit within the adult either by specifying
all fates at once or letting development proceed over time. The minimal size
requirement for fitting this information in space-time follows from the parsimony
principle.

Development is at heart a process taking a system from high to low
potential over time. Theorem 2.2.5 states that the potential difference between the
end points is sufficient to characterize the trajectory when there is only one velocity
being independently controlled. We can understand this statement as a condition
on energy partitioning using the parsimony principle. The conversion of energy is
measurable in single-cell data that show increased RNA splicing velocity [148] and
decreased expression heterogeneity [182, 217]. The simplest or most parsimonious
explanation for why cells moves faster (through expression space) when their fate
is more certain is that potential energy is converted into kinetic. In more abstract
terms, one dimensionality means that the trajectory never leaves the surface φ,
because one direction ∂f

∂y is always balanced by another ∂g
∂x during the step ∆φ.

One-dimensionality also means that the higher derivatives of the curve of φ versus
t are zero, although this does not mean the surface φ has to have a constant slope:
the marble follows a zig-zag (or "canalized") path down the hill if the path suddenly
becomes too steep. In the absence of other information, the most we can say is that
each time point is the same as the last, being characterized by the same decrease in
potential.

The tradeoff between pluripotency and certainty of fate reflects a tradeoff
in a conserved quantity called information. Just as the sum of potential and kinetic
energy is conserved for the marble, so the total information present in the egg
is constant in the space and time of development. The increment of a function
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I (z) = I (t, s) of conjugate variables can be regarded as the pairing ⟨φ,ψ⟩ of
conjugate n-dimensional vector fields (see Materials and Methods section 4.4.1.3
in chapter 4), so that its space-time derivative of I can be written using a 2n-
dimensional vector field

dI

dz
= X (I) = dI ⋅X, (2.36)

where the second equality follows from writingX = (φ,ψ) = φ (t, s) ∂
∂t +ψ (t, s) ∂

∂s

in coordinates and applying the chain rule. We hypothesize that development can be
schematized in Figure 2.1 as the transformation of the locus of equipotential fates
from a straight line to a curved one. If information is conserved during development,
we should find it entirely contained in the area spanned by two equipotential lines.
According to the parsimony principle, we are agnostic as to how the information is
distributed; our best guess is that the areal distribution is uniform. We may write
this condition as the vanishing of the variation

δI = δ∮ dI (X) = ∮ φds + ψdt = δ∫ ∫ (∂φ
∂t

− ∂ψ
∂s

)dsdt = 0, (2.37)

where we have applied Green’s theorem [77] to a counterclockwise loop in the (t, s)
plane. The condition holds for all bounding space-time curves if the integrand on
the r.h.s. of (2.37) vanishes, i.e., if

∂φ

∂t
= ∂ψ
∂s
. (2.38)

Compare this equation with the Cauchy-Riemann equations (2.14), where now the
transformed time variable t↦ x + y is associated with increasing distance from the
reference states and the transformed space variable s↦ x − y with balance between
them.

Eq. (2.38) hypothesizes that collective development is more like flow of
an incompressible fluid or straining of a rubber band than it is a marble rolling
downhill. Cell fates that are nearby (with respect to the expression space coordinate
s) are related to each other by how far back in time they diverged. There is no
need for extra extra barriers between alternative fates in the present because the
only way they communicate is by going backwards in time. We can also understand
the balance implied in Eq. (2.38) by the idea that the egg contains a "kernel" of
information to be distributed among alternative fates (Figure 2.2A). With a small
number n of signaling inputs, each fate is encoded in time by one of nT possible
sequences over T discrete events. That these fates are encoded in the egg implies
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that the total information is bounded by

I ≤ nT (2.39a)

log I ≤ T logn. (2.39b)

Eq. (2.39b) shows that it is much more efficient to increase the number of steps T
when assembling complex instructions than it is to increase the number of inputs.
Both strategies lead to the same total information I , but it requires an exponential
increase in n to specify all fates in a single step (blue area in Figure 2.2A); a linear
increase in T encompasses the same information using only a few n (red area). This
tradeoff is examined in chapter 3 with specific coding models.

Figure 2.2: The information kernel. (A) The parsimony principle is at work in two
alternative plots of total information. With an exponential number of inputs, all fates can
be specified in one step, whereas using more steps and fewer inputs results in a fatter
rectangle of the same area (not to scale). Conservation reflects the fact that the egg contains
the total information content of the adult. (B) The infinitesimal version of the parsimony
principle shows that locally increasing the number of signaling inputs necessarily decreases
the information allocated later.

The infinitesimal version of Eqs. (2.39) expresses the idea of local balance.
If at some point in time or expression space the information contained in one cell
exceeds the amount allocated to in by the parsimony principle, its neighbors in time
and space must have less (Figure 2.2B). A biological example is lateral inhibition
in the Delta-Notch signaling pathway. A cell expressing the Delta ligand inhibits
its Notch-expressing neighbors from adopting a neural fate [9, 114]. Delta is a very
informative gene, defining the fate of both the expressing and receiving cell. But by
the balance condition (2.38), excess information that flows into one cell now must
flow out again later. In other words, the cost of extra knowledge is a limited horizon;
the future moves toward the present until the information rectangle becomes a spike.
An investigation of such space-time trade-offs in the physics of strings is described
in chapter 4.

2.3. Conclusions
Here we have provided a two-gene example of how a cell can fail to know

its fate in advance. The parsimony principle required that the cell at each step see
the same decrease in information instead of following its original trajectory to a
minimum. In answer to the paradox posed in section 2.1, although a cell might
know its end at the start, it does not know how to get there. The biological basis for
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the parsimony principle was that multipotent cells have a range of expression states
along a level set of the potential. Absent of other sources of information during the
process, development was autonomous if cells maintained this relationship in time.
The balance condition (2.38) meant that some steps could break the equipotential
relationship by locally increasing the signaling input into other cells, but at the cost
of the endpoint being reached earlier. Development of connected cells entails a
reimagining of the Waddington’s analogy of the marble in terms of an elastic string
or an incompressible fluid. Single-cell sequencing technologies that maintain cells’
spatial context [157, 244] are beginning to make this hypothesis testable.
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C h a p t e r 3

NONCOMMUTATIVE BIOLOGY: SEQUENTIAL REGULATION
OF COMPLEX NETWORKS

1. Letsou W, Cai L. Noncommutative Biology: Sequential Regulation of Com-
plex Networks. PLoS Comput Biol. 2016; 12: e1005089. doi: 10.1371/
journal.pcbi.1005089.

3.1. Introduction1
A fundamental question in systems biology is how a small number of

signaling inputs specifies a large number of cell fates through the coordinated ex-
pression of thousands of genes. This problem is especially challenging given that
gene regulatory and other types of networks in biology tend to be highly intercon-
nected and their regulators promiscuous, with regulators affecting multiple targets
and targets being affected by multiple regulators. Examples of this architecture in-
clude: transcription factor binding networks in bacteria [166], yeast [18, 103], plants
[215], and animals [195, 226]; cellular signalling pathways involved in growth and
differentiation [123, 130, 164]; the interactome of protein kinases and phosphatases
[232, 279]; and synaptic connections between different layers of the brain [234].
Furthermore, because the targets and regulators are often well-mixed and mutually
accessible in the cell, most actions are likely to have nonspecific and undesired
effects.

At the same time, regulatory molecules drive networks to a large number
of highly specific outcomes or cell fates. Although there are approximately four
hundred canonical cell types in the adult human [281], recent single-cell RNA
expression profiling experiments in the developing embryo [201, 300], brain [303],
hematopoietic system [133, 179], and other organs [42, 273] have indicated that
there may be thousands more.

Given there are only a few signaling pathways used in metazoan develop-
ment [91, 283], understanding how cells reach their final outcomes when there are
fewer regulators than fates and/or targets is an unsolved problem. One extensively

1The formatting of the original article has been made to agree with the rest of this thesis. Typos
have been fixed, the word "the" was deleted before theorems inMaterials andMethods sections 3.4.4,
3.4.5, and 3.4.8, and a few non-critical mathematical errors were corrected in section 3.2.8.

https://doi.org/10.1371/journal.pcbi.1005089
https://doi.org/10.1371/journal.pcbi.1005089
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studied solution for the control of promiscuous gene networks is combinatorial bind-
ing of DNA-binding transcription factors (TFs) at the promoter [43, 63, 72, 113,
137, 138, 268, 212, 298]. At the level of individual promoters, combinatorial bind-
ing ensures that individual genes are ON only when specific combinations of TFs
are present (Figure 3.1A). However, on the genome level, combinatorial regulation
restricts which sets of genes may be ON at the same time. For example, using AND
logic, gene H in Figure 3.1A is only ON in the case that the three TFs K1, K2, and
K3 are concurrent at the H promoter; but these stringent requirements mean that H
can never be transcribed independently of the less highly-regulated genes A-G. (A
similar conclusion holds for OR logic.)

Figure 3.1: Combinatorial logic bottlenecks information flow in networks. (A) The
number of ways that three TFs (K1,K2,K3) can be ON or OFF (tabulated at right) is the
same as the number of ways they can bind at promoters (left). An equal number of gene
expression states are observed whether the TFs use AND logic (requiring all factors be
present) or OR logic (requiring at least one of the factors). (B) Signal-to-target information
flow is bottlenecked by regulators if (i.) the regulators respond to multiple targets, or
(ii.) if the signals activate multiple regulators. The allowed target states are tabulated for
signals using AND logic and regulators using AND/OR logic. (C) A feedback loop causes
constitutive activation of a regulator (K1) and leads to fewer accessible configurations
(tabulated at right).

In fact, using combinatorial control, there is a one-to-one correspondence
between configurations of the targets and configurations of the regulators. As shown
in Figure 3.1A, theON/OFF states of 3 TFs uniquely define the binding combinations
at 23 = 8 promoters. A similar conclusion holds when the regulators are expressed
in a graded fashion.

This one-to-one correspondence is the fundamental limitation of combi-
natorial regulation: it requires an equal number of regulators and independently
controlled targets and/or cell fates. Applied to embryonic development, combinato-
rial control requires that hundreds or thousands of cell-type specific TF combinations
be generated in a spatially precise manner at the start. However, the combinatorial
scheme does not explain how the TF states are regulated in the first place, and thus
it offers no new insight into how cell fate is specified.

The limitations of combinatorial logic can also be understood from an in-
formation theoretic point of view. In particular, it is impossible to specify arbitrary
cell fates if the regulatory layer bottlenecks the capacity of the targets to receive
messages from extracellular signals. It is known that some ten to twenty types of
signals [91, 283] converge onto membrane-bound regulators in many different com-
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binations, permitting messages to be passed to the downstream targets. Much of this
information stands to be lost, however, if the network relies on combinatorial logic
alone: the regulatory layer simply cannot transmit messages in their entirety if there
are more signals than regulators. Thus, combinatorial logic strongly circumscribes
what fates are ultimately reachable. Cell fate information is lost not only if the
signals are more numerous than the regulators, but also if the connections between
signals and regulators are promiscuous (Figure 3.1B). When different signals acti-
vate the same regulators (Figure 3.1B.i), certain signaling inputs become redundant.
On the other hand, when same signal activates different regulators (Figure 3.1Bii),
some of the regulators become redundant. One may determine by direct enumer-
ation exactly how redundancy decreases the number of configurations available to
the targets (Materials and Methods sections 3.4.1 and 3.4.2). These preliminary
conclusions are at odds with the observation that signaling molecules are deployed
over time in a complex code [129]. How do these messages in the signal space reach
the targets if the regulatory layer imposes a bottleneck on information flow?

In addition, feedback regulation—a common feature of regulatory net-
works—exacerbates information bottleneckswhen coupledwith combinatorial logic.
Stated another way, feedback merely widens the basin of attraction of certain pro-
moter configurations at the expense of the number of distinct configurations. In
Figure 3.1C, constitutive expression ofK1 by C means that C is never ON indepen-
dently of the targets regulated byK1. Thus, the number of accessible configurations
decreases from 8 to 6 without allowing new target configurations to be explored.

We need an alternative to combinatorial logic in cell fate specification
that overcomes information bottlenecks. Here, we considered time-ordered control
schemes, which we refer to as sequential logic. In this scheme, regulators can be
applied in a stepwise manner; the entire sequence matters, so the final configurations
can differ if the same regulators are permuted in time. In order for different tem-
poral sequences to carry distinct information, the actions of the regulators must be
noncommutative. This is the case, for example, when a regulator protects its targets
from the action of another regulator, as when loci recruited to repressive chromatin
compartments are protected from further modification [52, 236].

While it is not surprising that noncommutative sequences like this re-
sult in different outcomes at the single promoter level, these simple mechanisms
may have nontrivial implications for regulation at the genome level. In particular,
noncommutativity permits the same regulators to be used at different times with
distinct effects. This is seen in development when ubiquitous signaling molecules
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like FGF family members exert different effects depending on the time and context
of their expression [132, 178, 249, 287]. Reuse of factors could greatly expand the
information capacity of the major signaling pathways.

A number of examples show that noncommutativity may be a general
strategy in other areas of biology. In hematopoietic stem cells, activation of GATA2
and C/EBPα in different orders results in different cell fates [131]. In neurobiology,
different temporal orderings of the same inputs lead to distinct firing patterns [1,
93, 183]. In the field of synthetic biology, a DNA switch was developed that
could detect the order in which invertase enzymes were applied [108]. And in
evolutionary biology, the order in which mutations arise was recently implicated
in determining a genotype’s fitness [34, 68, 209, 292]. There is also accumulating
evidence for sequential logic in transcriptional control: signaling molecules and
TFs in mammalian cells, including ERK [5], NF-κB [139, 193], p53 [150], as well
as in yeast [45, 61, 158] have been observed to pulse, suggesting that TF timing may
be used to control the transcriptional state of the cell.

By applying sequential logic, we show that, even in complex and promis-
cuously regulated networks, specific target configurations can be reached using a
temporal sequence of regulators. In particular, we consider two models inspired by
(i.) kinase/neural networks and (ii.) chromosome folding and show analytically that
both scale super-exponentially. We further show that noncommutative networks are
robust to the loss of regulators, suggesting a mechanism for regulator evolution.
We also show that regulators induce different orbits in expression space, which is
related to the number of networks that can be controlled in parallel. We conclude
by discussing how these models apply to interconnected networks in and outside
biology and by providing possible experimental tests of the theoretical concepts.
Theorems and proofs are given in the Materials and Methods.

3.2. Results
3.2.1 A time-sequence ratchet model generates more diversity than combina-

torial logic in multiply-connected networks
To consider how time-ordered sequences of regulators can specifically

control groups of targets, we begin by analyzing a generic two-layer network that
is an extension of combinatorial logic (Figure 3.2, Materials and Methods sections
3.4.1 and 3.4.2). In this model, each regulator controls multiple targets, and each
target is accessible to any of its regulators. Themodel is meant to be analogous to the
cellular environment wherein regulators and targets are well-mixed. For example,
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targets could be substrate proteins capable of multi-site phosphorylation [228, 270],
and regulators the kinases and phosphatases. Targets could also be neurons and
regulators their upstream excitatory and inhibitory inputs [234]. We denote by K
the set of activators (i.e., kinases) and P the set of deactivators (i.e., phosphatases).
Each target has a ladder of (integer-valued) states, and together the states of the
targets are a configuration of the network. (This distinction is in contrast to the
common usage of "state" as a gene expression vector.) An additional parameter, the
threshold T , determines the number of rungs on the ladder. Regulators ratchet the
targets through their states, and only targets that have reached threshold will be ON
at the end of a sequence of regulators. If each target in the group can be controlled
by a unique combination ofK’s andP ’s, what ON/OFF configurations are possible?

In this model, termed the ratchet network (Figure 3.2A), each of n K’s
andm P ’s control N = (n

ln
)(m
lm
) unique targets, with the connectivity parameters ln

and lm specifying the number of regulators to which each target connects. Consider
the sequence K1K2P1 acting on the targets A,B,C, and D (Figure 3.2B). In the
final configuration, B and D are ON together even though no single K connects to
both, and A and C are OFF, even though both share and activator with B and D.
Therefore, this simple model illustrates the important point that similarly regulated
targets can be in independently controlled using sequential logic.

Figure 3.2: The ratchet model attains configurations not reachable by combinatorial
logic. (A) The ratchet model for n = m = 2 and ln = lm = 1. Activators (K’s) and
deactivators (P ’s) turn targetsON andOFF, respectively. (B)An example temporal sequence
for the network with a threshold equal to 1. Black targets are in the 1 state. (C) An example
sequence for the same network with threshold equal to 2. Gray targets are in the 1 state, and
black targets are in the 2 state. (D) Scaling laws for the threshold T = 1 (red) and T = 2
(yellow) are shown for symmetric networks (n =m). A comparison to combinatorial logic
with an equivalent number of regulators (n +m) is shown in blue.

With threshold T = 1, not all configurations are reachable. Observe that
there is no way to specifically activate A and D while leaving B and C OFF. This
result is surprising given that A and D share no regulators: specificity depends
on the network as a whole, not just individual targets. By going to T = 2, the
forbidden configuration becomes accessible (Figure 3.2C), along with all ON/OFF
states (below).
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3.2.2 A combinatorial formulation of the model as a connectivity matrix
The model described above can be formalized as a combinatorial object

that we refer to as the connectivity matrix A. This formulation is useful because it
is amenable to studying scaling, and it permits a direct comparison between non-
commutative ratchet networks and standard combinatorial logic. For the interested
reader, the models considered in this paper have a universal formulation as non-
commutative matrix operators on the vector space of configurations (Materials and
Methods section 3.4.9).

Typically, the state ofN targets is represented as anN -dimensional vector.
If each target is controlled by a unique (Ki, Pj) pair (i.e., ln = lm = 1), theN = nm-
dimensional vector can be re-formulated as an n ×m matrix

A =
⎛
⎜⎜⎜
⎝

P1 ⋯ Pm

K1 A1,1 ⋯ A1,m

⋮ ⋮ ⋱ ⋮
Kn An,1 ⋯ An,m

⎞
⎟⎟⎟
⎠
, (3.1)

where each entry Ai,j ∈ {0,1, . . . , T} is the state of the target regulated by Ki and
Pj . For example, the connectivity matrix for the network in Figure 3.2 is

A =
⎛
⎝

P1 P2

K1 A B

K2 C D

⎞
⎠
. (3.2)

In general, a regulator may connect to multiple targets (i.e., ln, lm > 1,
see below), so that each entry of A may be thought of as anM -dimensional vector
(M determined in Materials and Methods section 3.4.1). It turns out that this is
an unnecessary complication; we instead let each Ai,j = 1 if at least one of the M
targets regulated by Ki and Pj is ON, and Ai,j = 0 only if allM targets are OFF.

In this formulationKi and Pj are raising and lowering operators that map
n ×m matrices to n ×m matrices via the rules

Ki (Ai,j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ai,j + 1 if Ai,j < T
Ai,j if Ai,j = T

Pi (Ai,j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ai,j − 1 if Ai,j > 0

0 if Ai,j = 0.
(3.3)

From Eq. (3.3), any sequence Ki1Ki2⋯Kik of all K’s is commutative, because
any target controlled by t ≤ k of the K’s will be in state t ≤ T at the end of the
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sequence, regardless of the order. A similar argument holds for the P ’s. However,
sequences consisting of both K’s and P ’s are in general noncommutative. This is
due to edge effects when Ai,j = 0 or T . If Ai,j = T , for example, then KiPj results
in Ai,j = T − 1, whereas PjKi gives Ai,j = T . Therefore, A gives insight into both
the configuration of the targets and the noncommutativity of the regulators.

The problem of determining the number of accessible configurations in a
network is reduced to finding the number of matrices satisfying certain patterns. For
example, combinatorial logic with T = 1 corresponds to the special case in which
the only sequences are the 2n combinations of the n K’s. In an n × 1 connectivity
matrix, activating Ki corresponds to turning all 0’s in row i into 1’s. There are
2n matrices generated by this procedure. More complicated cases of combinatorial
logic can be studied this way (Materials and Methods section 3.4.2), but it turns out
that the total number of network configurations is always less than 2n+m, with n+m
the total number of regulators. This is important because noncommutative models
can bypass the exponential limit.

3.2.3 The ratchet model scales as the poly-Bernoulli numbers
We used the connectivity matrix representation of the ratchet network to

determine the scaling as function of the number of regulators n and m, with each
target connected to a unique (K,P ) pair (i.e., ln = lm = 1) and the threshold T = 1.
Ki turns 0’s to 1’s in row i and Pj turns 1’s to 0’s in column j. The rules are
consistent with the one-pot reaction model in which all substrates receptive to Ki

are promoted whenKi is active. For example, the sequenceK1K2P1 in Figure 3.2B
can be recast as

⎛
⎝

0 0

0 0

⎞
⎠

K1Ð→
⎛
⎝

1 1

0 0

⎞
⎠

K2Ð→
⎛
⎝

1 1

1 1

⎞
⎠

P1Ð→
⎛
⎝

0 1

0 1

⎞
⎠
. (3.4)

The main result is that A must avoid the patterns
⎛
⎝

1 0

0 1

⎞
⎠
and

⎛
⎝

0 1

1 0

⎞
⎠

in any 2 × 2 sub-block (Materials and Methods section 3.4.3). Brewbaker [38]
enumerated the n×m binary matrices avoiding these patterns and showed that they
scale as the poly-Bernoulli numbers [136]

B−n
m = B−m

n =
m

∑
j=0

(−1)(n+j) j! (j + 1)n {n
j
} =

min (n,m)
∑
j=0

(j!)2 {m + 1

j + 1
}{n + 1

j + 1
}, (3.5)

where {n
j
} is a Stirling number of the second kind, defined combinatorially as the

number of ways to put j labelled balls into n unlabelled boxes such that no box
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is empty [175]. These numbers scale not quite as fast as 2N = 2nm, but much
faster than 2n+m, the maximum number of states in the equivalent combinatorial
network (Figure 3.2D). Thus, a simple time-sequence model is able to generate
super-exponential scaling.

3.2.4 All binary ON/OFF states are reachable for an increased threshold
Aremore configurations accessible ifmultiple activation events are needed

before reaching threshold? For example, neurons require the summation of multiple
excitatory inputs to reach action potential, and proteins need to be phosphorylated at
multiple sites before they are activated [228, 270]. We found that by increasing the
threshold toT = 2, all 2N ON/OFF configurations of theN targets become reachable.

In the connectivity matrix formulation,
⎛
⎝

1 0

0 1

⎞
⎠
and

⎛
⎝

0 1

1 0

⎞
⎠
are no longer forbidden,

which we show with an inductive proof (Materials and Methods section 3.4.4). This
scaling law (Figure 3.2D) achieves the maximum of reachability and specificity; it
far exceeds the scaling 2n+m of the combinatorial model.

Being able to reach the entire ON/OFF space of N targets is overkill for
most biological networks, which only display a relatively small number of stable
configurations. The major implication of this result is that multiple levels of activity
permit more targets to be controlled independently.

3.2.5 Increased regulatory connectivity generates robustness
As sequential logic allows a large number of configurations to be reached

in a complex network, we asked whether increasing the connectivity of the network
(ln and lm) can maintain the specificity of the network while making it robust to the
loss of a regulator. This is potentially relevant to evolution of biological networks,
because redundant connections allow the network to repurpose regulators for new
functions without severely impairing existing ones [267].

In the ratchet model, an increase in the connectivity parameters to ln = 2

K’s and lm = 2 P ’s permits multiple targets to share a common (K,P ) pair (Figure
3.3A). The connectivity matrix incorporating the extra links in the network in Figure
3.3A is

A =
⎛
⎜⎜⎜
⎝

P1 P2 P3

K1 ABDE ACDF CDEF

K2 ABGH ACGI BCHI

K3 DEFG DFGI EFHI

⎞
⎟⎟⎟
⎠
. (3.6)

Now that each entry ofA is a group ofM > 1 targets, it makes sense to track the state
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of the group as a whole with a single number Ai,j . Even though a target appears in
multiple entries of A, the rules prevent a regulator from altering the state of groups
at remote locations (e.g. K1 cannot change the state of the group at A2,2).

We prove in the Materials and Methods that all sequences using at least
n − ln + 1 K’s and m − lm P ’s are redundant with shorter sequences (Figures 3.3B
and C, Materials and Methods section 3.4.5). For example, the sequencesK1K2K3

is required to turn ON all targets in the case ln = lm = 1, but if ln = lm = 2, the shorter
sequences K1K2, K1K3, and K2K3 have the same effect. We derived a recursive
formula that eliminates the redundant sequences in each (n,m, ln, lm) instance to
derive the number of sequences in (n,m, ln + 1, lm) and (n,m, ln, lm + 1) (Figure
3.3D and S2 Fig). The formula agreed exactly with an algorithm designed to find all
minimal length sequences (Materials andMethods 3.4.5). Notably, increasing ln, lm
reduced the number of configurations. We observed a similar effect in combinatorial
logic (S1 Fig).

Figure 3.3: Multiple connections in the ratchet network decreases the number of
configurations. (A) An example network where each target has ln = 2 connections to
the K’s (red) and lm = 2 connections to the P ’s (blue). (B) A list of the minimal length
sequences generating unique configurations in the network in when ln = lm = 1. Red bars
are K actions and blue bars are P actions. (C) The list of minimal length sequences when
ln = lm = 2. Some sequences now map to the same configuration. (D) Analytical solution
for the number of sequences as a function of n =m for different ln = lm families.

To investigate the robustness of sequential logic networks, we studied
the effect of deleting regulators in increasingly connected networks on the num-
ber of reachable configurations (Figure 3.4A). We hypothesized that sequences that
activate similar subsets of targets should be able to recoup permanently lost config-
urations. To test this, we computed the normalized correlation coefficient between
configurations in the network using all K’s (the full network) and configurations
in the network without K1 (the impaired network), subject to the constraint that
those configurations were reached using longer sequences (Figure 3.4B). To focus
on the recoverable fraction, we deleted all configurations that had an exact match.
Highly similar configurations (yellow) clustered to the right of the plot, indicating
that longer sequences can be used to recover lost configurations.

How similar are the recouped configurations? As connectivity increased,
the maximum similarity became increasingly concentrated above 0.8 (Figure 3.4C).
There is generally a tradeoff between reachability and the size of the fraction above
0.8 (Figure 3.4D). The tradeoff is nonlinear, however: using ln = 2 gave the greatest
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Figure 3.4: The ratchet network is robust to loss of a regulator. (A) A schematic illus-
tration of the experiment. The regulatorK1 was deleted from networks withm = 2 P ’s and
variable n for different values of the connectivity ln. The resulting number of configurations
was computed by simulation. (B) Correlation coefficient between configurations in the full
network (all K’s; rows) and the impaired network (without K1; columns). All rows with
exact matches were deleted. (C) Cumulative distribution F (x) of the maximum correlation
coefficient x for each row in C for different values of ln. The dashed line is the similarity
cutoff 0.8. (D) Tradeoff between reachability and robustness. The number of reachable
configurations as a function of (n, ln) is plotted versus the fraction of states above the
similarity cutoff 0.8 (i.e., 1 − F (0.8)) for different values of n.

increase recoverability for the smallest loss of configurations, showing that an inter-
mediate level of redundancy can buffer the network to loss of regulators. The above
analyses demonstrate that specificity of control is not compromised when regulators
are lost or repurposed in heavily interconnected networks.

3.2.6 Sequestration networks generate diversity through protected states
In the ratchetmodel, all targets are accessible to their regulators at all times.

However, in some cases targets may be shielded from regulators: for example, genes
can be silenced by sequestration in various nuclear compartments [211, 310]. This
was seen in a landmark study by Filion and coworkers [76], who used a DNAse
accessibility assay to show that genes associate with different regulators depending
on their chromatin "color" or accessibility status.

To study the effect of accessibility and silencing on activating specific
subsets of genes, we constructed the following sequestration model. In addition to
the OFF state 0 and the ON state 1, each target/gene is endowed with additional
orthogonal states 2 to n (allowing for a total of 2n−1 − 1 genes). If RNA polymerase
(RNAP) is associated with K1, what genes can be independently activated? In this
model (Figure 3.5) a regulator Ki promotes targets in the 0 state to state i, and Pi
returns targets in state i to 0. Any target in state i is protected from regulators other
than Pi. As an example of gene regulation on a three-dimensional chromosome
(Figure 3.5A), the sequence K3K4K1P3P4 first clusters all genes having a 3 in
a repressive compartment, and then the remaining genes having a 4 in another
repressive compartment. The net effect is that RNAP can only act on the gene
represented by {1,2}. We represent this abstractly as a configuration vector of k-
armed targets (Figure 3.5B), where each entry corresponds to the state {0,1, . . . , n}
of a gene able to access k ≤ n of the states (see below for a mathematical description
of the model). Therefore, protected states in the sequestration model allow genes to
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be transcribed specifically in a well-mixed environment.

Figure 3.5: The sequestration network is a noncommutative model of gene regulation
by chromosome folding. (A) A sequence of moves K3K4K1P3P4 on a hypothetical
chromosome withK and P actions represented as DNA-binding factors andK1 playing the
role of RNAP. Red circles correspond to genes and numbers correspond to allowed binding
partners. (B) The same sequence in A represented as a collection of targets with up to n = 4
arms. For example, the target {0,1,2} corresponds to the gene locus with states 1 and 2 in
A. The filled circle represents the current state.

We derived (see below) that the number of reachable configurations scales
with the number of regulator pairs n as

f (n) = 22n−1−1 −
n−1

∑
m=2

(n − 1

m
)(2∑

m
k=3 (

m
k−1) − 1) (2∑

m
k=3 (

n−1
k−1)−(

m
k−1)) . (3.7)

For n = 1,2,3,4,5,6, this formula gives f (n) = 1,2,7,89,16897,780304385 (Fig-
ure 3.6). We also relaxed the constraint that all genes have a 1 state (allowing
for a total of 2n − 1 genes) and found that the number of configurations scales as
cn = 2,7,94,37701 with n = 1,2,3,4. The full model does not have an analytical
solution, but it does have upper and lower bounds related to Eq. (3.7) (Materials
and Methods section 3.4.7, S3 Fig).

Figure 3.6: Scaling in the sequestration model is super-exponential.(A) A plot of all
the allowed configurations of a set of targets of n = 4 regulator pairs in the sequestration
model. Yellow represents targets that are ON, and blue those that are OFF. (B) A list of
the sequences generating the corresponding states in A. K actions are shown in the red
spectrum, and P in the blue. (C) A logarithmic plot of the scaling in the sequestration
model. The total space is the 22n−1−1, the reachable space is calculated from Eq. (3.7), and
the combinatorial model is 22n.

Combinatorial scaling laws of this sort are not uncommon [66, 100, 209].
Edwards and Glass [66] saw an explosion in the number of states when studying tra-
jectories on n-cubes, and Green and Rees [100] saw a super-exponential jump when
enumerating certain types of nonrepeating sequences on n letters. Furthermore,
a similar small number (four) of factors are necessary and sufficient to reprogram
fibroblasts to stem cells [265]. Together, these results indicate that sequences can far
exceed the 2n limit set by combinatorial regulation, and that only a few regulators
are necessary to make large changes in the configuration of a cell.
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3.2.7 Regulators act on the configuration vector in the sequestration model
The sequestration network with n regulator pairs (referred to as the n-

network) is described using the 1 × 2n − 1 configuration vector x. This is a simpler
description than the connectivitymatrix because a target affected byKi is necessarily
affected by Pi. The entries of x are the states of each target g able to be controlled by
k ≤ n of the regulator pairs. Each target g is a list {0, i1, . . . , ik} of the k regulators
to which it responds. Because of their radial appearance, such targets are said to
have k arms (see Figure 3.5B).

The regulators act on x according to the rules

Ki (xg) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

xg + i if i ∈ g and xg = 0

xg else

Pi (xg) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if i ∈ g and xg = i
xg else.

(3.8)

Eq. (3.8) guarantees that the regulators are orthogonal in the sense that a target in
state j is protected from Ki and Pi if i ≠ j; and also idempotent in that K2

i = Ki.
Furthermore, sequences of regulators are noncommutative unless the only actions
are P ’s. This is a consequence of the fact that P ’s put all affected targets into the 0
state. Although these rules are different from the ratchet model, a formulation exists
that generalizes the K’s and P ’s to matrix operators consistent with both models
(Materials and Methods section 3.4.9).

If x is restricted to the 2n−1 − 1 targets all able to be regulated by K1 and
at least one other K, the network is said to be reduced; otherwise we say x is full.
This distinction was used in Figure 3.5.

A one-coloring is a configuration of x that uses only one of the states and
0. For example, the configuration x = (1,0,0,1,1,0,0) in the full n = 3-network
is a one-coloring of 1; so is the reduced network formed by (x4,x5,x7) = (1,1,0).
This concept is easily extended to k > 1-colorings. One-colorings are particularly
important because they resemble the ON/OFF configurations of genes in an RNA-
seq experiment, and we would like to know how many such configurations can be
reached.

3.2.8 A simple counting argument for the connected one-colorings illustrates
super-exponential scaling in the sequestration model
As in the ratchet model, finding the accessible states of the sequestration

network amounts finding restricted patterns in x. We determined that the restricted
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one-colorings are those that violate a property referred to as connectivity (Materials
and Methods section 3.4.6). A configuration of x is said to be connected if all
k ≥ 3-arm targets g(k)i = {0, i1, . . . , ik} match the state of at least one of (k

2
) of

the 2-arm targets {0, i1, i2},. . ., {0, ik−1, ik} sharing the indices i. If the network is
reduced, no k-arm target may be in the 1 state when all of 2-arm targets with which
it overlaps (i.e., shares an index other than 1) are in the 0 state. This restricts the
one-colorings and suggests a method to determine the scaling law for the model in
Figure 3.5.

As an example, in the n = 4 network on the reduced set of 23 − 1 targets
illustrated in Figure 3.5, {0,1,3} and {0,1,4} both being 0 constrains {0,1,3,4}
to be 0 as well. Furthermore, even though {0,1,2} is in the 1 state, {0,1,2,4} and
{0,1,2,3,4} may be 0. It is only the two-arm targets that constrain the possible
configurations: for example, the longer sequence

K2K4P2K3K2P4K1P3K4P1K3P4K1P2P3

obtains the statex = (0,0,1,0,0,0,1) inwhich only the targets {1,4} and {0,1,2,3,4}
are ON, showing that {0,1,2,3,4} need not be in the same state as {0,1,2,3},
{0,1,2,4}, or {0,1,3,4}. In Figure 3.6A and B we show the allowed states and the
sequences that generate them for n = 4; there are 90 out of a possible 224−1−1 = 128

configurations.
There are 22n−1−1 one-colorings on 2n−1 − 1 targets. How many of these

violate the connectivity rule? Suppose there are m 0’s among the 2-arm targets.
If m = 1, then ( m

k−1
) = ( 1

k−1
) = 0 of the k ≥ 3-arm targets are constrained to be 0,

as there is always another 2-arm target (in the 1 state) that each k-arm target can
match. If m > 1 and k − 1 ≤ m, however, then ( m

k−1
) > 0, so ( m

k−1
) k-arm targets

whose states {i1, . . . , ik−1} are completely contained within the set of 2-arm targets
{0,1, j1} , . . . ,{0,1, jm}must be 0. Hence in any violation of the connectivity rules
at least one of ∑mk=3 ( m

k−1
) k-arm targets will be in the 1 state and the remaining

∑mk=3 (n−1
k−1

) − ( m
k−1

) k-arm targets will be 0 or 1. Furthermore, there are (n−1
m

) ways
of specifyingm 0’s, so the total number of violations is

n−1

∑
m=2

(n − 1

m
)(2∑

m
k=3 (

m
k−1) − 1) (2∑

m
k=3 (

n−1
k−1)−(

m
k−1)) . (3.9)

Subtraction from 2n−1 − 1 gives Eq. (3.7).
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3.2.9 The ratchet and sequestration networks divide the configuration space
into orbits
Until now we have considered the reachable space of a single group of

targets each starting in 0. An ensemble of networks could each start with their
targets in some arbitrary state, and when a sequence is applied to the ensemble the
different networks will in general span different configurations. Determining the
number of orbits (defined precisely in Materials and Methods section 3.4.8) within
the set of possible configurations tells us how many networks can be controlled in
parallel.

Enumerating the reachable space for both the ratchet and sequestration
networks involved finding configurations that violated at least one rule. If two
configurations have distinct violations, then there is no way they can communicate
using the regulators. Therefore, the different orbits are the groups of configurations
having the same forbidden patterns. It is possible that a violation could be alleviated
by an action that changes the state of an offending target, so we require that each
orbit be immune to a subset of the regulators. This could be achieved in biological
networks by locking targets in protective chromatin states or by shutting down certain
cellular receptors.

We determined a recursive formula for the number of orbits in the ratchet
network for an arbitrary n,m (Materials and Methods section 3.4.8). In Figure
3.7A we plot the orbits for the n = 4,m = 2 case. There is one large component of
size B−m

n and several smaller orbits of size B−j
i with i ≤ n and j ≤ m. There are

only a handful of singleton orbits in Figure 3.7A, but the number of isolated states
dominates the space as n,m increase.

We were unable to find a similar solution for the sequestration network
because we lack a general solution for the number of states in the main orbit.
However, Figure 3.7B shows the computationally discovered orbits for the full
network on 2n − 1 targets. A nontrivial feature is that there are orbits which use all
pairs of regulators, but which do not communicate with the main orbit. For example,
the sequence K2K3 from x = (1,0,0,0,0,0,1) reaches the same configuration as
the sequence K1 starting from x = (0,2,3,2,2,3,0); these configurations are part
of the same orbit because both violate the connectivity rule between x7 = {0,1,2,3}
and the 2-arm targets x4, x5, and x6.

Another observation is that some pathways cannot be reversed by a legal
action in the ratchet network orbits (indicated by a directed arrow in Figure 3.7),
whereas there always exists a reversible path between configurations in the seques-
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tration network orbits (no arrowheads). It can be proved that this is true in general
for the sequestration network (Materials and Methods section 3.4.8). This feature
permits orbits to be found computationally by looking for reversible one-step paths
in the entire configuration space.

Figure 3.7: Noncommutativemodels induce orbits in the configuration space. Graphical
representation of the orbits in (A) the n = 4,m = 2 ratchet network and (B) the full n = 3
sequestration network. Configurations are indicated by red circles, and those accessible to
each other are connected with blue lines. Arrows in A indicate whether a path is irreversible.

The orbits are one explanation for the phenomenon the same signal can
cause cells to behave differently [287]. More generally, the orbits demonstrate an
intriguing symmetry between the targets responding to a restricted subset of the
regulators on one hand, and the orbits restricted to the same subset on the other.

3.3. Discussion
In this paper we first show how noncommutative, sequential logic can re-

lieve information bottlenecks in multilayer networks. Bottlenecks in combinatorial
logic may occur whenever a downstream layer has fewer elements than the layer up-
stream, which poses the problem of how networks process complex signals without
loss of information. Noncommutative solutions such as the ratchet and seques-
tration models, in which the number of configurations scales super-exponentially
in the number of regulators (Eqs. (3.5) and (3.7)), permit longer, more complex
messages to reach the targets via information "pulses." These pulses encode a large
diversity of signals into configurations of the targets that would otherwise be lost
using combinatorial logic.

Noncommutativity has long been recognized as a central concept in con-
trol theory, because it allows systems with few controllers to explore a broader
configuration space. For example, one generates z rotations in 3D by R−xRyRx,
so control over z is generated by a pulse sequence of rotations in x and y, as in
airplane control where roll and pitch generate yaw [190]. Infinitesimal motions
in the form of generating matrices are translated into flows in a vector space by
exponentiation. Because matrix multiplication is noncommutative, composition of
flows is not simply the addition of generators, but rather a higher order polynomial
of commutators of the generators given by the Baker-Campbell-Hausdorff formula
[258]. Noncommutativity also appears in experimental physical chemistry where
pulse sequences can prepare spin systems in nontrivial population configurations
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[47]. A formal description of these phenomena is based on the Heisenberg picture
of quantum mechanics, wherein evolution of a system of many variables is given by
a differential equation involving the commutator of a Hamiltonian operator.

The significance of noncommutative control for systems biology is that it
becomes possible to independently control targets that would otherwise be activated
by the same promiscuous regulator. In this paper, we argue that noncommutative
sequences permit control over new directions in gene expression space, allowing
more specific sets of targets to be controlled. Several studies have shown that
TFs that can bind genes in one tissue type are in fact precluded from binding the
same genes in another [15, 146]. The C. elegans TF LIN35 fails to bind targets
in the germline that it binds in the intestine [146], and the SMARCA4 complex
in mouse binds enhancer elements in heart, limb, and brain tissue in a tissue-
specific manner [15]. One hypothetical explanation for these observations, based
on the sequestration model, is that cell-type specific gene expression is the result
of noncommutative sequences likeK1K2 andK2K1 that silence certain promoters.
The three-dimensional structure of the genome is a likely setting for this type of
regulation.

Gene regulation is known to take place in three-dimensions, as observa-
tions of DNA looping [198], nonrandom chromosome packing [192], and clustered
transcription factories [241] have shown. However, the factors that affect chro-
mosome structure are non-specific. One such factor is the ubiquitous zinc finger
protein CCCTC binding factor (CTCF) [174], which functions as both an activator
of transcription by bringing enhancers and promoters together [111, 256] and as a
repressor by insulating genes [22, 120]. Epigenetic modifications, such as histone
methylation and acetylation [104, 177, 305], also affect three-dimensional struc-
ture. In addition, DNA looping was observed in the context of allelic exclusion
during B- and T-cell lineage specification where individual alleles were recruited to
heterochromatic regions while the other underwent recombination [52, 236]. Con-
sequently, the sequestration model predicts that temporal permutations of a small
set of chromatin modifying factors could specify a large number of potential chro-
mosomal conformations and lead to different expression states and corresponding
cell fate decisions.

New technologies such RNA-seq and ChIP-seq can be used to test the pre-
dictions of the noncommutativity hypothesis at the genome level. Epigenetic drugs
such as azacytidine and trichostatin A inhibit DNA methylation [184] and histone
deacetylation [301], respectively, and have been shown to cause global changes in
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gene expression alone and in combination [62, 184]. The sequestration hypothesis
predicts that perturbations to the three-dimensional structure of the chromosome are
noncommutative, so distinct gene expression states may be reached by permuting
the order in which epigenetic drugs are applied. While the sequestration model may
underlie chromosome folding, the ratchet model could form the basis of phospho-
rylation networks. For example, mass spectrometry studies have revealed complex
phosphorylation patterns [127, 220], though the number of kinases and phosphatases
is comparatively small and the networks are highly interconnected [232, 279]. As
phosphoproteins are the mediator of extracellular signals, ordered disruption of
signaling pathways could also lead to distinct gene expression configurations.

Analogously, the ratchet model may aid in the specification of distinct
neural activity patterns, owing to the fact that connections between the different
hippocampal layers overlap [234, 240]. While superficial neurons can be activated in
response to spatial cues, deeper layers can be selectively activated by time sequences
of inputs [1, 41, 93]. These results suggest the hypothesis that neural networks may
be noncommutative. In particular, experimental support exists for the role of the
dentate gyrus in pattern separation and orthogonalization by way of ensuring that
even quite similar memory representations use distinct subsets of neurons [49,
154]. The ratchet model, by ordering inputs in time, is one way of reaching these
specific subsets if the number of input neurons is smaller than the number of targets
neurons. Memories share many common elements, including shape, color, smell,
and sound, which poses problems for recall. We hypothesize that older, "fuzzier"
memories could be those relegated to very long ratchet sequences. According to
this hypothesis, memories are not forgotten, but are instead increasingly difficult to
access, and memories that are not consolidated are those that never formed a unique
ratchet sequence.

Beyond resolving bottlenecks and generating specificity, noncommutative
actions offer a new interpretation of how cell fate decisions and other stepwise pro-
cesses occur on abstract regulatory landscapes. The classicalWaddington landscape
view of development holds that cells decay to attractor configurations representing
terminal outcomes [288]; this is consistent with a boolean network with many vari-
ables X converging to a fixed point [124]. In a static landscape, the final outcome
is determined a priori by the nearest energy minimum. What then determines the
initial configuration? In organisms such as Drosophila, maternal patterning of the
embryo may account for this initial bias [257]; but in other organisms that employ
mechanisms like multilineage priming [3, 177], it is not clear that every cell fate
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decision is made at the beginning.
Sequential logic allows cells to reach their final fate on a dynamic land-

scape. In the system of Figure 3.8A (top), for example, it is not possible for cells
in the blue configuration to transition to the red fate by increasing X2, because this
involves an uphill climb. However, the regulators of genetic networks may also af-
fect the landscape directly. This is seen in Figure 3.8A (bottom) where the sequence
K1K2P1 changes the landscape in such a way that the overall cost of reaching the
same endpoint is much lower than the direct path (Figure 3.8A, top). This can
be understood as the effect of regulators acting on additional variables V , which
modulates the landscape in X space. For example, TFs can recruit chromatin reg-
ulators that modify global three-dimensional chromosome structure and future TF
accessibility [27, 111, 241, 286], or kinases can sequester substrates in the nucleus
to prevent their subsequent activation [45, 61]. Because sequential logic acts on the
V ’s as well as the X’s, changes that appear to be small in one dimension (Figure
3.8B, left) actually involve large excursions in the full space (Figure 3.8B, right).
As a consequence, in noncommutative regulation, the landscape changes and cells
can take on fates that were not accessible at the beginning.

Figure 3.8: Sequential logic on regulatory landscapes. (A) The regulatory landscape
for the 2-mRNA system X1,X2 for two hypothetical paths with configurations represented
by balls. It is difficult to directly increase X2 because of a potential barrier (top). In the
roundabout path (bottom), visiting two intermediate configurations via K1K2P1 results in
an altered regulatory landscape. (B) The initial and final configurations in A projected onto
(X1,X2) space (left) and (X1,X2, V1) space (right). The regulators affect not only X1 and
X2, but also an additional variable, denoted V1, that alters the landscape ofX1 andX2. The
arrows indicate the instantaneous direction of the trajectory.

Previous theoretical models have explored dynamic regulatory landscapes
in the form of bifurcations [75, 125]. In these models, a set of kinetic parameters
determines the positions of minima and maxima in the landscape. However, the
noncommutative model advanced here is fundamentally different, in that using the
regulators to move through X changes the landscape directly. This could happen,
for example, if acting on X1 with K1 hides it from the effect of K2. Uncoupling of
targets in this way may underlie the distinct effects of signals like FGF at different
stages of development [132, 178, 249, 287]. It will be interesting to explore time
series data for hints that some genes pulse ON and OFF in order to protect their
promoters from the actions of promiscuous regulators.

Multistep processes other than development can benefit from the type of
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noncommutative regulation highlighted in Figure 3.8. What seems like an intractable
problem at the start becomes much more feasible if one realizes that the effects of
actions change with time and context. This intuition is why thinking in terms of
commutators [A,B] = AB − BA can make complex problems more soluble: the
desired effect is often what is leftover after performing and undoing a sequence of
actions. Several examples illustrate this concept.

With its increased capacity for generating diversity, sequential logic is
likely to be used in evolution. A recent theoretical example in social bacteria
demonstrated that in evolving a new quorum sensing receptor-ligand pair, adding
new receptors prior to ligands is preferred over the opposite path [68]. An analysis
of the stability and catalytic activity of a family of bacterial β-lactamase mutants
showed that the ability to evolve new substrate specificity is contingent on mutations
that first stabilize the protein active site [229, 292]. Finally, biological networks
evolve the same functions in different orders, but the order in which these functions
arise dictates which other genotypes can be reached by neutral mutations [209].
These results suggest that permuted sequences of mutation events may have different
fitness costs. With extensive artificial evolution experiments underway in protein
engineering [229] and bacterial mutation accumulation [34], coupled with progress
in sequencing technologies, it will be possible to test this hypothesis by permuting
the conditions that promote mutation.

Sequential logic can also be applied in synthetic biology to build circuits
with memory [85, 108, 161, 170]. In general, the toolkit that permits up- and
downregulation of genes is small, with a few staples like Lac, Tet, and Ara [284].
Significant effort has been put into generating logic gate (AND/OR) promoters [43].
To further expand the toolkit, it has been proposed that more orthogonal regulators
be developed [223]. We suggest that sequential logic may be a more promising
strategy to scale up the number of targets that can be independently controlled by
permuting in time a small number of controllers.

More broadly, sequential logic can be used to accomplish experimental
goals not possible in single-step approaches. For example, in multiplexing mRNA
detection in single cells, we previously used a sequential hybridization scheme
that permits the number of barcodes to exponentially [165], whereas combinatorial
schemes can only specify approximately 30 barcodes. We expect many single-
cell experiments to benefit from a sequential strategy in which detours facilitate
achievement of the main goal with high efficiency.

Finally, our results connect outside of biology to strategic planning in
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social, political, and economic arenas. Anyone familiar with negotiating knows
about the limitations inherent in trying to make interconnected groups of people
move in specific directions, especiallywhen the actions affect all participants at once.
Multiparty negotiations and tournamentsmay benefit from time-ordered strategies in
which enemies temporarily team up, or fringe interest groups are transiently pacified.
Indeed, a conclusion from the sequestration model is that the most highly regulated
targets need to be protected prior to satisfying the ones with fewer connections.
Determining whether this prediction is borne out in congressional and international
negotiations, for example, is an interesting question for political science. Evidence
for noncommutative effects in games exists in that the initial seeding in a tournament
can bias its outcome [102], and that long-term goals change players’ strategies in in
the repeated prisoner’s dilemma [86]. In conclusion, the direct path to an outcome in
a networks with many interacting parts may have many unintended and prohibitively
expensive consequences. A multi-step strategy may achieve the same outcome with
minimal cost and side effects.

3.4. Materials and Methods
3.4.1 The connectivity matrix with multiple targets

In this section we determine how many targets are controlled by the same
regulators in the connectivity matrix A. Then we extend A to more than 2 dimen-
sions.

If ln = lm = 1 it is clear that each Ai,j corresponds to a single target
and that each target appears only once. In general, however, a target can appear
in multiple entries of A (cf. Eq. (3.6)). To see this, consider the bipartite graph
formed by all the targets and all the K’s, but none of the P ’s. The handshaking
lemma from graph theory [175] says that the total number of edges is one half the
sum of the degrees of each vertex, which is either ln for a target or some number
pn for a K regulator. There are Nln total edges, so we find 1

2 (Nln + npn) = Nln
or pn = N

n ln for the number of links coming from each K. Similarly, the number
of links emanating from each P is pm = N

m lm. In terms of the connectivity matrix,
pn and pm correspond to the number of unique targets in each row and column,
respectively.

BecauseK1 connects to a fraction pn
N of the targets, it follows thatK1 and

P1 together connect to a fraction pnpm
N2 of the targets. Therefore, the total number

of targets connecting to K1 and P1 is M = N (pnpm
N2 ) = pnpm

N . Another way to see
this is to consider one target in the intersection of K1 and P1. This one target uses
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up one of each of the regulators and one unit of connectivity, leaving a total of
M = (n−1

ln−1
)(m−1
lm−1

) ways to connect other targets to the same pair of regulators. It
is easily verified that these two formulations for the number of targets per matrix
entry M are equivalent. This illustrates that there is not simply a one-to-one
correspondence between the entries of A and the targets.

There was nothing special about the labels K and P in the above para-
graphs. Thus, the connectivity matrix can easily be extended to a u-dimensional
connectivity tensor where u is the number of pools of regulators. Each pool has ni
regulators connecting to lni targets, and each target connects to pni = N

ni
lni regulators

of pool i, ∀i ∈ {1, . . . , u}. The total number of targets and the total number of targets
per entry are extensions of the u = 2 case, giving

N =
u

∏
i=1

(ni
lni

) (3.10)

distinct targets and

M = ∏
u
i=1 pni
Nu−1

=
u

∏
i=1

(ni − 1

lni−1

) (3.11)

targets controlled by one factor from each of the u pools. S1 Fig A shows an example
network with u = 3 pools.

3.4.2 Counting configurations in combinatorial networks using the connec-
tivity matrix
The number of configurations in combinatorial logic is the number of

ways thatN targets can each be bound by exactly u regulators, where each regulator
comes from a different pool. In the main text we analyzed the case u = 1 and ln = 1.
Here we extend those results to arbitrary u and ln.

First consider the case u = 2, corresponding to a pool ofK’s and a pool of
P ’s. Whereas in the ratchet model, Ki and Pj acted separately on the entries of A,
in combinatorial logic the pair (Ki, Pj) is needed to switch Ai,j from 0 to 1. Many
such pairs may be active at any one time. We write this formally as

({K} ,{P}) [Ai,j] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if Ki ∈ {K} and Pj ∈ {P}
0 else,

(3.12)

where {K} denotes a subset of theK’s. The notation (⋅, ⋅)means that a combination
of factors acts on the target, instead of just a single factor.

If ln = lm = 1 there are (2n − 1) (2m − 1) + 1 ways to pick at least one
of n K’s and one of m P ’s, plus one way to pick nothing. If lm = 1 and ln > 1,
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then for a certain number α ≤ n of the K’s, any subset containing α or more K’s
has the same effect as activating all n K’s at once. For example, in Eq. (3.6), the
action of ({K1,K2} ,{P1, P2}) is sufficient to activate all targets in the n = m = 3,
ln = lm = 2 network. To determine α, recall that there areM targets in each entry of
the connectivity matrix A. Choosing i K’s means that the total number of targets
isM × i, but a single column of A only contains pm unique targets. Each target is
connected to ln K’s, so for a target in the intersection of i K’s and a single P , there
are ln− i spots left over to choose n− i K’s and lm−1 spots left over to choosem−1

P ’s, or (n−iln−i)(
m−1
lm−1

)ways total. Using the principle of inclusion-exclusion [175] this
means that α is the smallest i such that

M × i −
min (i,ln)
∑
i′=2

(−1)i
′
( i
i′
)(n − i

′

ln − i′
)(m − 1

lm − 1
) ≥ pm. (3.13)

By choosingαK’s, the number of unique targets in a column ofA that can be turned
ON is exactly the number represented in that column. Because all subsets withα,α+
1, . . . , n−1K’s are redundant, here are only (2n − 1)−∑n−1

i=α (n
i
) subsets ofK’s that

contribute to unique configurations, leaving a total of [(2n − 1) −∑n−1
i=α (n

i
)] (2m − 1)+

1 unique configurations.
If the P ’s also have redundant connections, the result generalizes to

Theorem 3.4.1. The number of configurations in combinatorial logic with param-
eters n,m, ln, lm, and u = 2 is

(2n − 1) (2m − 1) + 1

− (
n−1

∑
i=α

(n
i
)) (2m − 1) − (2n − 1)

⎛
⎝
m−1

∑
i=β

(m
i
)
⎞
⎠
+ (

n−1

∑
i=α

(n
i
))

⎛
⎝
m−1

∑
i=β

(m
i
)
⎞
⎠
,

(3.14)

where α (resp. β) is the smallest number of K’s (resp. P ’s) having the same effect
as all K’s (resp. P ’s) at once.

This result is obtained by counting all pairings of K’s and P ’s, and
then subtracting those pairings that have a redundant effect. For example, any
combination usingK3 is redundant in the connectivity matrix of Eq. (3.6). Finally,
those pairings that were excluded twice are added back in.

This result generalizes to all u with slight modifications. Because one
factor from each of u pools is now required, the combinatorial equation determining
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state of a target is

({K}1 ,{K}2 , . . . ,{K}u) [Ai,j,...,k]

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if K1i ∈ {K}1 ,K2j ∈ {K}2 , . . . ,Kuk ∈ {K}u
0 else.

(3.15)

Here the double subscript Kik indicates the kth factor in the ith pool. Determining
αi for each pool i of regulators requires finding the pool j ≠ i which maximizes
the number Ni of targets controlled in two dimensions. If we choose αi or more
regulators in the ith pool, then there is a redundancy in the j th dimension, whereas
any choice of fewer than αi regulators activates fewer than Ni targets. Write
Ni = maxj≠i {(nilni)(

nj
lnj

)} the total number of targets and pnj = Ni
nj
lnj the number of

targets in any column of the the equivalent ni × nj connectivity matrix regulated
by pools i and j. It is easy to see that these parameters reduce to their previous
definitions for u = 2. Now define Mi = (ni−1

lni−1
)(nj−1
lnj−1

) as the number of targets in
each entry of the equivalent ni × nj connectivity matrix. As above, αi is now the
smallest r such that

Mi × r −
min (r,lni)
∑
r′=2

(−1)r
′
(ni − r

′

lni − r′
)(nj − 1

lnj − 1
) ≥ pnj. (3.16)

Once αi is determined for each pool i, the inclusion-exclusion sum can be
extended using standard arguments [175]. Define by

S(k) = ∑
σ∈(u

k
)
{∏
i∈σ

(
ni−1

∑
j=αi

(ni
j
))∏

i∉σ
(2ni − 1)} , (3.17)

where σ denotes all k-subsets of {1, . . . , u}. Then we have the final result

Theorem 3.4.2. The total number of configurations in combinatorial logic with u
pools and parameters ni, lni, i ∈ {1, . . . , u} is

S = 1 +
u

∑
k=0

(−1)k S(k). (3.18)

This result reduces to Theorem 3.4.1 when there are only u = 2 pools. At
most there are ∏u

i=1 (2ni − 1) ways to specify at least one target, corresponding to
the 0th-order term in Eq. (3.18). Increasing the connectivity through the lni can
only reduce the number of configurations. This behavior is shown in S1 Fig B for
the symmetric case that all the ni and lni are equal. As u is increased the number
of configurations increases dramatically, but the scaling is actually subexponential,
i.e., less than 2N . Increasing connectivity through lni shifts the curves to the right.
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3.4.3 Using the connectivity matrix to establish a one-to-one correspondence
between the ratchet network and the lonesum matrices
To establish the correspondence between the reachable configurations of

ratchet network (ln = lm = 1, T = 1) and the lonesum matrices, we must show (i.)

that A avoids the patterns
⎛
⎝

1 0

0 1

⎞
⎠
and

⎛
⎝

0 1

1 0

⎞
⎠
in any 2 × 2 sub-block, and (ii.) that

any lonesum matrix can be constructed from K and P actions. First observe that
the value 1 in Ai,j indicates the last K affecting that index must have followed a
P , whereas 0 indicates the last P must have followed a K. For the first restriction

we have
⎛
⎝

1 0

0 1

⎞
⎠
implies

⎛
⎝
P1⋯K1 K1⋯P2

K2⋯P1 P2⋯K2

⎞
⎠
. This means P2 follows K1 follows

P1 follows K2 follows P2, which is a contradiction, showing that this 2 × 2 block is
unreachable. The other five unique 2 × 2 blocks are all reachable with elementary
sequences. This establishes point (i.) that the reachable configurations are a subset
of the lonesum matrices.

To establish point (ii.) that the lonesum matrices are a subset of the
reachable configurations, we use an equivalent formulation of the lonesum matrices
as staircase matrices composed of the rows aj = (1, . . . ,1,0, . . . ,0) with the last 1
appearing at position ij subject to the constraint that ij ≤ ij−1 for all ∀j ∈ {2, . . . , n}
[141]. It is easy to see that the pattern of ones resembles an inverted staircase.
We show via induction that any staircase matrix can be constructed from K and P
actions. The nth row is obtained by the sequence KnPin+1⋯Pm which leaves 1’s at
the first in indices and 0’s at the remainder. Now assume that the kth row is obtained
by the sequence KkPik+1⋯Pm without affecting any of the rows n,n − 1, . . . , k + 1.
Then the sequence Kk−1Pik−1+1⋯Pm puts 1’s at the first ik−1 indices of row k − 1.
Because ik−1 ≥ ik ≥ ⋯ ≥ in, none of the Pik−1+1, . . . , Pm turn a 1 to a 0 in rows
n,n − 1, . . . , k + 1, k. This proves the induction hypothesis and shows that the
staircases matrices are a subset of the reachable configurations.

Together with the fact that the reachable configurations are a subset of the
staircase matrices, this implies that the reachable configurations and the lonesum
matrices are in fact the same set, and we have

Theorem 3.4.3. The number of reachable configurations in the (n,m) ratchet
network with ln = lm = 1 and threshold 1 scales as the poly-Bernoulli numbers
B−n
m = B−m

n .
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3.4.4 Inductive proof that all binary ON/OFF configurations are reachable in
the ratchet network with threshold greater than 1
With T = 2, only targets in state 2 are ON. Once a 0-1 configuration of A

is obtained, however, it is a simple matter to convert it into an ON/OFF configuration
by applying all the K’s. Here we use the fact that 1’s can be reached from above
and below to prove

Theorem 3.4.4. In the ratchet network represented by the matrix A with ln = lm = 1

and threshold T = 2, all binary 0-1 configurations are reachable.

Proof. We use an induction argument analogous to the proof of Theorem 3.4.3.
Suppose that in row n a set of r ≤ m indices {nj} = {nj1 , . . . , njr} should be ON.
First prepare every target in row n in the 1 state using Kn, then use the sequence
KnPjr+1⋯Pjm to obtain 2’s at {nj1 , . . . , njr} and 1’s at {njr+1 , . . . , njm}. Now
assume that we can prepare rows n,n − 1, . . . , k + 1 in a similar 1-2 configuration
with the rest of the matrix 0. We want to show that we can add row k to this set
without affecting any of the previous rows. Assuming that a set of s ≤ m indices
{kj1 , . . . , kjs} should be ON, apply the sequence Pj1⋯PjsK2

kPjs+1⋯Pjm to obtain
2’s at {kj1 , . . . , kjs} and 1’s at {kjs+1 , . . . , kjm}. Now, because {Pj1 , . . . , Pjs} ∪
{Pjs+1 , . . . , Pjm} = {P1, . . . , Pm}, all 2’s and 1’s in rows n,n − 1, . . . , k + 1 are now
1’s and 0’s, respectively. Applying the sequence KnKn−1⋯Kk+1 reestablishes the
1-2 configuration we had prior to fixing row k and leaves 0’s at rows 1, . . . , k − 1.
Now that row k is also in the proper 1-2 configuration, we have proved the induction
hypothesis. Once all rows in the proper 1-2 configuration, the sequence P1⋯Pm
obtains the matrix in the 0-1 configuration. Since this procedure can be repeated for
any collection of indices {{1j} , . . . ,{nj}}, it follows that all binary 0-1 matrices
are reachable.

3.4.5 A recursive formula for the number of non-redundant sequences in the
ratchet network
When the connectivity parameters ln and lm exceed 1, certain sequences

in the threshold 1 ratchet network become redundant. Our goals in this section are
to (i.) to characterize the redundant sequences by the number of K’s and P ’s, and
(ii.) count the non-redundant sequences. This will obtain an upper bound on the
number of configurations.

We want the shortest sequences that can activate or (deactivate) all targets;
any sequences longer than this are redundant. To see why this is so, we need the
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concept of a cycle. We say that a target has gone through a cycle if has traversed the
states 0, 1, 0 at some subsequent time points. We have the following lemma.

Lemma 3.4.5. Any sequence that takes all targets through a cycle is redundant.

Proof. The final configuration of any sequence is represented by the positions of
the 1’s and 0’s of the connectivity matrix. Recall that Ai,j = 0 if and only if all
targets represented by Ai,j are OFF in the final configuration. Permute the rows
and columns of A until it is in staircase form with r ≤ min (n,m) steps, where a
step is a group of adjacent rows or columns having the same number of 1’s and 0’s.
The steps partition the rows and columns of A into subsets of indices {i1, i2, . . . , ir}
and {j1, j2, . . . , jr} where the kth step is defined by 1’s at rows ik to ik+1 − 1 and 0’s
at columns jk to jk+1 − 1. Then the sequence ∏r

k=1Kik⋯Kik−1Pjk⋯Pjk−1 obtains
the desired configuration of 1’s and 0’s. Being able to write a staircase matrix for
the final configuration means that every target ON in the final configuration occurs
only where there are 1’s in the matrix. These targets are never affected by a P in
this procedure; they do not go through a cycle. Because any allowed configuration
can be reached from this procedure, it follows that any sequence that uses a cycle is
redundant.

Knowing that the non-redundant sequences must avoid cycles, it suffices
to find the longest sequences that can be written before cycles appear.

Lemma 3.4.6. For each value of ln (lm), the maximum number of K’s (P ’s) that
can be used before all targets are activated (deactivated) is n − ln + 1 (m − lm).

Proof. A sequence that activates all targets has no intervening P ’s. Recall that a
single K activates at most Nn ln targets. Then, prior to the last K being used, the
number of activated targets is N − N

n ln = N
n (n − ln) ≤ N

n ln (n − ln). This means
there are at most n − ln groups of targets controlled by differentK’s. Thus, at most
n − ln K’s are used before the last K is used, and n − ln + 1 K’s must be sufficient
to activate the complete set. The maximum number of P ’s that can be used is only
m− lm because we can think of every sequence starting in the zero configuration as
having been preceded by a single P ; this modification puts the P ’s on equal footing
with the K’s.

With this characterization of the non-redundant sequences our goal is to
recursively eliminate sequences that use n − ln + 1 K’s and m − lm P ’s. We first
find the number of sequences that use up to m − lm P ’s, which forms the top row
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in each (n,m) block in S2 Fig. Then we use these values to recursively find the
number of sequences using up to n− ln + 1 K’s. The strategy is to subtract from the
total number of sequences at a given (ln, lm) all those sequences using the forbidden
number of regulators in order to get the new total.

Denote by amn the number of sequences usingmP ’s when the total number
of K’s is n. If m = 1, then all B−n

1 = 2n sequences (except for the empty sequence)
use a K and none use a P . Ifm = 2, the maximum number of P ’s that can be used
is m − lm = 1. Discarding the 2n sequences with no P , the number of sequences
using a single P is

a1
n =

B−n
2 − 2n

2
. (3.19)

Division bym = 2 is required to account for the fact that there are (m
1
) =m different

ways of starting each sequence with a P , and we consider both of these equivalent.
Having determined amn , it is straightforward to determine am+1

n . Because there are
m + 1 P ’s to choose from, there are (m+1

m
)amn ways to write sequences with m

P ’s, (m+1
m−1

)am−1
n ways to write sequences with m − 1 P ’s,. . ., (m+1

0
)1 ways to write

sequences with 0 P ’s, the only remaining sequences are those with m + 1 P ’s.
Knowing that the total number of sequences is B−n

m , this leaves

am+1
n =

B−n
m − 2n −∑mj=0 (m+1

j
)ajn

m + 1
(3.20)

total sequences using m + 1 P ’s when the total number of K’s is n. Having
determined this number, we can sum up all the sequences using m − lm P ’s to get
the first row of the (n,m) block in S2 Fig. Denote by cmn (ln, lm) the lmth column
and lnth row of the (n,m) block. The column headers cmn (1, lm) are given by

cmn (1, lm) = 2n +
m−lm
∑
j=0

(m
j
)ajn. (3.21)

We can determine the row entries for ln > 1 in the same way that we
determined the column headers, the only difference being that the total number of
sequences is cmn (1, lm), not B−n

m unless lm = 1. Denote by bnm (lm) the number of
sequences using n K’s when the total number of P ’s ism and the P connectivity is
lm. For fixedm, lm and n = 1, there are

b1
m (lm) = 2m −

lm−1

∑
j=0

(m
j
), (3.22)

sequences, as all but the empty sequence use a single K. In complete analogy to
(3.20) we find there are

bn+1
m (lm) = cmn (1, lm) −

n−ln+1

∑
j=0

(n + 1

j
)bjm (lm) (3.23)
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sequences using n+1K’s when the total number of P ’s ism. Unlike in the equation
for amn , there is no division by n + 1 because all sequences starting with a different
K are different. Finally, we can sum up all the sequences using n− ln + 1 K’s to get

Theorem 3.4.7. The number of minimal length sequences in the (n,m, ln, lm)
ratchet network with threshold T = 1 using no more than n − ln + 1 K’s and
m − lm P ’s is

cmn (ln, lm) =
n−ln+1

∑
j=0

(n
j
)bjm (lm) . (3.24)

We used this formula to compute each entry in S2 Fig. Because of the
complexity of this procedure, we checked it against a computer algorithm operating
with the following steps. In step 1 find all B−n

m sequences in the ln = lm = 1 case. In
step 2 increase the connectivity (ln or lm) and find all sequences of a given length;
group them by the configuration they generate. Some of these sequences will not
appear in the list generated by step 1: for example, both K1K2 and K2K1 will
be found in step 2. We are interested in index permutation e.g. 1 → 3, not letter
permutation, so in step 3 delete all sequences in each length group not appearing in
step 1. Repeat steps 1-3 with this new list of sequences until ln = n − 1. This code,
implemented in Matlab Version 2015b, gave exact agreement with Theorem 3.4.7.

3.4.6 Proof that the reachable configurations are equivalent to the connected
one-colorings
We now show that rules restrict the reachable configurations of the se-

questration model in the main text to the connected one-colorings of the reduced
n-network.

Theorem 3.4.8. There is a one-to-one correspondence between the reachable con-
figurations of the reduced n-network and the connected one-colorings.

Proof. The converse direction, reachable implies connected, is easier to prove and
will be discussed first. Assume that all configurations in the reduced n-network
so far reached are connected. The next configuration will be reached by turning
all 0’s to i’s or all j’s to 0’s by application of Ki or Pj , respectively. The k-arm
targets sharing state i with the 2-arm target {0,1, i} are either in the same state
as some other 2-arm target {0,1, i′} or are in the 0 state. So application of Ki

cannot change the connectivity of the configuration. Furthermore, a k-arm target
can be in the j state only if the target {0,1, j} is in the j state, so these targets will
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still be matched after application of Pj . Thus, any configurations reachable from a
reachable configuration must be connected.

The forward direction, connected implies reachable, is less trivial. In
order to prove that all connected one-colorings in the n-network are reachable, we
will use the strong form of mathematical induction. Assume the theorem holds for
all networks up to n−1. Embedded within the full n-network of 2n −1 targets is the
reduced n-network on 2n−1 targets. Within the reduced n-network is a set of 2n−2

targets able to access {0,1,2} and all subsets (including∅) of the integers {3, . . . , n}.
Thus, we can substitute 2 → 1 as the ON state in this embedded network and all
connected one-colorings (of 2) will be reachable. The same holds in general for all
2n−k targets able to access {0,1, k} and all subsets of the integers {k + 1, . . . , n}. In
each of these embedded networks the substitution k → 1 as the ON state will enable
us create any connected one-coloring.

Pick any connected one-coloring (of 1) in the n-network. Its opposite
configuration is formed by the transformation at each target g of 1→ 0 and 0→ kmin,
where kmin = min{k ∈ g∣xpos({0,j,k}) = 0} is the smallest index that g shares with a
corresponding 2-arm target at position pos ({0, j, k}) of x (possibly in the full
network) currently in the 0 state. The opposite of a connected one-coloring is
clearly connected, because all the connected 1’s are now 0, and all the 0’s are in
the same state as the 2-arm target {0, j, kmin}. If it is possible to reach the opposite
configuration, then application of the sequence K1P2 . . . Pn yields the desired one-
coloring of the n-network.

To show that the opposite configuration of the chosen one-coloring is
indeed reachable, isolate the embedded networks one-by-one by application of the
sequence KkK1Pk for k = 2, . . . , n, so that the targets in the n − k + 1-network
are the only targets in the 0 state. By hypothesis, the connected one-colorings are
reachable in all embedded networks which have at most n − k states besides 0, 1,
and k. The opposite configuration in the n-network is composed of connected one-
colorings (of k) in each embedded network; these are are reachable. Therefore, the
one-coloring of the n-network is reachable via K1P2 . . . Pn. This procedure holds
for any one-coloring.

3.4.7 Lower and upper bounds for the full n-network
How many configurations are reachable in the full n-network? Let this

number be cn. The following theorems derive lower and upper bounds for cn in
terms of the number of one-colorings.
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Theorem 3.4.9. The formula f (n + 1) for the number of connected one-colorings
in the reduced n + 1-network is a lower bound for cn.

Proof. The full n + 1-network can be partitioned into a set of 2n targets having a 1
and all subsets of {2, . . . , n + 1}, and 2n−1 targets that lack 1 but have all nonempty
subsets of {2, . . . , n + 1}. The latter set of targets is an embedded full n-network,
while the former is the reduced n + 1-network. All 2(n + 1) letters are needed to
form the one-colorings in the reduced n + 1-network. Every one-coloring is finally
obtained by applying some permutation of K1, P2, . . . , Pn+1 to a configuration that
uses (at most) the states 2, . . . , n + 1 and 0, i.e., the full n-network. Because K1

and P1 do not affect the targets of the the embedded full n-network, there must be
(at least) one sequence using only {K2, . . . ,Kn+1} and {P2, . . . , Pn+1} that prepares
the embedded full n-network in the aforementioned configuration, which means we
may associate a one-coloring to (at least) one of the cn sequences in the embedded
full n-network. Therefore, multiple configurations in the full n-network may map
to the same one-coloring in the reduced n + 1-network. Conversely, if two one-
colorings are different, they are distinguishable by their configurations immediately
preceding the final K1, P2, . . . , Pn+1 sequence, and must therefore map to different
configurations in the full n-network. Together, these statements imply that the map
from configurations in the full n-network to one-colorings in the reduced n + 1-
network is many-to-one, but the map from one-colorings to configurations in the
full n-network is one-to-one. Therefore, f (n + 1) ≤ cn.

Theorem 3.4.10. An upper bound on cn is

nf (n)+n (n − 1) (f (n) − 1) f (n − 1) +⋯ + n! (f (n) − 1)⋯ (f (2) − 1) f (1) + 1

=
n

∑
k=1

(n)k
⎧⎪⎪⎨⎪⎪⎩

n

∏
j=n−k+2

(f (j) − 1)
⎫⎪⎪⎬⎪⎪⎭
f (n − k + 1) + 1, (3.25)

where (n)k = n (n − 1)⋯ (n − k + 1) is the falling factorial.

Proof. There are nf (n) one-colorings in the full n-network, plus one origin. Each
one of the one-colorings can be thought of as the origin of an n − 1-network, which
in turn generate (n − 1) f (n − 1) one-colorings in an embedded n − 1-network, for
a total of

nf (n) (n − 1) f (n − 1)

configurations using 1, 2, and perhaps 0, hence termed two-colorings. However, one
of the f (n) one-colorings is the 0 state of the n-network, so it does not generate any
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two-colorings. Thus, there are at most 1 + nf (n) + n (n − 1) (f (n) − 1) f (n − 1)
zero-, one-, and two-colorings. Now assume that the number of k-colorings is

n (n − 1)⋯ (n − k + 1) (f (n) − 1) (f (n − 1) − 1)
⋯ (f (n − k + 2) − 1) f (n − k + 1) .

Of these,

n (n − 1)⋯ (n − k + 1) (f (n) − 1) (f (n − 1) − 1)⋯ (f (n − k + 2) − 1)

are origins of an n − k-network, meaning they are actually k − 1-colorings; they
cannot generate any k + 1-colorings. The remaining

n (n − 1)⋯ (n − k + 1) (f (n) − 1) (f (n − 1) − 1)
⋯ (f (n − k + 2) − 1) (f (n − k + 1) − 1)

are genuine k-colorings which can generate f (n − k) one-colorings in the n − k-
network, or equivalently, k + 1-colorings. Thus, the total number of zero-, one-,
two-, . . . , k + 1-colorings is no more than

n (n − 1)⋯ (n − k + 1) (f (n) − 1) (f (n − 1) − 1)
⋯ (f (n − k + 2) − 1) (f (n − k + 1) − 1) .

This induction argument proves the statement.

3.4.8 Properties of the orbits in the ratchet and sequestration network
First we define what it means to be an origin and an orbit in the threshold-

1 ratchet network and determine the number of orbits as a function of n and m.
Then we prove that the configurations in the sequestration network are defined by
reversible paths.

A forbidden configuration in the ratchet network contains some row or

column permutation of the pattern
⎛
⎝

1 0

0 1

⎞
⎠
on any 2×2 sub-block of the connectivity

matrix A. This is the minimum violation, but larger blocks may violate this pattern

as well, for example
⎛
⎜⎜⎜
⎝

1 0

0 1

1 0

⎞
⎟⎟⎟
⎠
has 2 violations. Furthermore, application of any of the

K’s or P ’s in this sub-block will relieve at least one of these violations. Therefore,
we define an i, j-orbit in the ratchet network as the locus of configurations having
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a forbidden configuration on an i × j sub-block that does not use the corresponding
set of i K’s and j P ’s. The origin of any i, j-orbit is the configuration having all
remaining nm − ij entries of A equal to 0 (or all 1 to make the case of having only
P actions symmetric with having onlyK’s). A matrix X having the same forbidden
i × j sub-block as an origin Y is not considered to be in the orbit of Y if (i.) there
is no sequence of actions that transforms Y to X, or (ii.) if the sequence involves
one of the forbidden K’s or P ’s. With these restrictions, the number of origins is
equal to the number of orbits.

Denote by cji the number of orbits in a ratchet network of size n ×m with
violations involving i ≤ n K’s and j ≤ m P ’s. If i = j = 2 there are 2ij −B−2

2 = 2

forbidden configurations that turn into origins for the remaining n− i K’s and n− j
P ’s. There are more orbits in these smaller networks. For every i′, j′ ≥ 2 there are
( i
i′)(

j
j′)c

j′
i′B

−(j−j′)
i−i′ configurations reached by orbits using i′ K’s and j′ P ’s. Only

configurations not reached by these orbits are available as new origins when the
number of K’s and P ’s not to be used is i and j, respectively. Finally, there are
(n
i
)(m

j
) ways to specify i ≤ n K’s and j ≤m P ’s. Then we have

Theorem 3.4.11. For a given set of i ≤ n K’s and j ≤ m P ’s, the number of
i, j-orbits is

cji = (2ij −B−j
i ) −

i,j

∑
i′,j′≥2

i′+j′≤i+j−1

( i
i′
)( j
j′
)cj′i′B′−(j−j′)

i−i′ , (3.26)

and the total number of i, j-orbits in the n ×m ratchet network is

Cj
i (n,m) = (n

i
)(m
j
)cji , (3.27)

where

B′−(j−j′)
i−i′ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

B
−(j−j′)
i−i′ if i − i′ > 0 and j − j′ > 0

2i−i
′ if j − j′ = 0

2j−j
′ if i − i′ = 0

. (3.28)

The modificationB′ ensures that an orbit lacking allowable P ’s (K’s) can
still use K’s (P ’s). A table of values of Eq. (3.27) is given in S4 Fig.

We noted in the main text that configuration in the sequestration network
can be joined by reversible paths. A pathKiPj orPjKi is reversible if a configuration
reached by the sequence of actions w is also reached by the either the sequence
wKiPj or wPjKi, but not wKi or wPj , respectively. Thus we can also prove



69

Theorem 3.4.12. There always exists a reversible path between any two configura-
tions in an orbit of the sequestration network.

Proof. Let x be a configuration in an orbit using m ≤ n of the actions, and let P
denote the locus of configurations reached from x. We now need to show that P
must be reversibly reached from the origin. Denote by P the complement of P , so
that any y ∈ P is reversibly reached from the origin. In order for there to be no
reversible path between x ∈ P and y ∈ P , there must always be a state i such thatKi

increases the number of targets {⋅, i} in the i state and Pi increases the number of
targets {⋅, i} in the zero state. Now assume there is a configuration z ∈ P using allm
allowed states. z must have at least one target in the 0 state, but this is un-allowed,
because then z would violate the connection rule. Therefore, there is a maximum
number m′ < m of states used by any x ∈ P . Now assume there is a configuration
z′ ∈ P using all m′ allowed states. But this implies that there is a single-arm target
{0, j} that must be in the zero state. Then the action Kj takes z′ to a configuration
y ∈ P and Pj takes y to z. This path must be reversible, and z′ is reached reversibly
from the origin. By induction we conclude that m′ = 0 and that P = ∅. Finally,
because any two configurations are reached reversibly from the origin, there is a
reversible path between them.

Theorem 3.4.12 defines the orbits of the sequestration network as those
configurations connected by reversible paths.

3.4.9 A universal formulation of the actions as matrix operators
In this section we show how to write the K and P regulators as matrix

operators in a manner consistent with both models considered in the paper. First
we define the vector space V of configurations of the N targets, then we derive the
operators that transform V .

Let x ∈ V . For a network with N targets we require that ∑i xi = N . This
means that x has at leastN entries, and in general dim x ≥ N . Therefore, we cannot
use the standard state space of N -dimensional vectors, because the operators will
not conserve the number of targets. Each target has a 0 state. The number D of
independent directions accessible from 0 is called the dimension of the network, and
the number T of steps one can move along each dimension is called the threshold. In
the ratchet model, each target has a single ladder of states with variable threshold, so
D = 1 and T is allowed to vary; in the sequestration model D = n but the threshold
is T = 1.
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Denote byAdi the fraction of the targets of typeA in state i ∈ {0,1, . . . , T}
along dimension d. For a subset of the targets a K-type action causes population
transfer between states (d, j) and (d, i)with i = j+1, and aP -type action the reverse.
If a K regulator acts for a short time we can write the "reaction rate" equation as

ẋAj = −gAxAj (3.29a)

ẋAi = +gAxAj , (3.29b)

where gA > 0 is a proportionality constant. This defines amatrix differential equation

ẋ = Gdj ⋅ x (3.30)

with x ∈ RN(DT+1)×1 the vector of populations of theDT + 1 states of the N targets
and Gdj ∈ RN(DT+1)×N(DT+1) the block diagonal matrix of rate constants between
the j and j + 1 population states along dimension d. Eqs. (3.29) can be rewritten

⎛
⎝
ẋAj
ẋAi

⎞
⎠
=
⎛
⎝
−gA 0

gA 0

⎞
⎠
⋅
⎛
⎝
xAj
xAi

⎞
⎠
. (3.31)

Because Gdj is block diagonal, Eq. (3.30) can be solved by exponentiation on each
block:

⎛
⎝
xAj (t)
xAi (t)

⎞
⎠
= exp

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
−gA 0

gA 0

⎞
⎠
t

⎫⎪⎪⎬⎪⎪⎭
⋅
⎛
⎝
xAj (0)
xAi (0)

⎞
⎠
=
⎛
⎝

e−gAt 0

1 − e−gAt 1

⎞
⎠
⋅
⎛
⎝
xAj (0)
xAi (0)

⎞
⎠
. (3.32)

The restriction of the model from a continuous range of population states
xAi ∈ [0,1] to the boolean values {0,1} formally emerges by considering the "reac-
tion" K catalyzes on its targets to have gone to completion. We do this by taking
the the limit t→∞ in Eq. (3.32) to get

⎛
⎝
xAj (t)
xAi (t)

⎞
⎠
=
⎛
⎝

0 0

1 1

⎞
⎠
⋅
⎛
⎝
xAj (0)
xAi (0)

⎞
⎠
, (3.33)

so that the matrix Kdj defined by

Kdj = lim
t→∞

exp{Gdjt} (3.34)

is the block diagonal matrix having 1’s at (row, column) positions (1 + (d − 1)T +

i,1 + (d − 1)T + j) of each block that responds to K in dimension d and admits
population transfer between from j to i.
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BecauseK acts on all targets at once, it is insensitive to the initial state j.
Thus the matrix corresponding to the action of K is

Kd =∏
j

Kdj, (3.35)

which is the block diagonal matrix having 1’s at (row, column) positions

(1+ (d − 1)T +1,1+ (d − 1)T +0), . . . , (1+ (d − 1)T +T,1+ (d − 1)T +T −1)

and (1 + (d − 1)T + T,1 + (d − 1)T + T)

of each block that responds to K in dimension d.
This derivation can be repeated in the case that population goes in the

opposite direction from at state j to a state i < j using a different set of rate matrices
Hdj corresponding to the reverse of Eq. (3.31). We obtain the block diagonal matrix
Pd corresponding to the action of P in dimension d having 1’s at (row, column)
positions

(1+ (d − 1)T +0,1+ (d − 1)T +1), . . . , (1+ (d − 1)T +T −1,1+ (d − 1)T +T)

and (1 + (d − 1)T + 0,1 + (d − 1)T + 0)

of each block that responds to P in dimension d. Whereas Kd is sub-diagonal, Pd

is super-diagonal.
The Baker-Campbell-Hausdorf expansion shows thatKd in Eq. (3.35) and

in general any product ofmatricesKd andPd are generated bymatrix exponentiation
of commutators of the generators Gdj, Hdj. This is the origin of noncommutativity
in both the ratchet and sequestration models.

An example in the sequestration network illustrates population transfer be-
tween states. In the n = 2 network on the targetsA,B, andC the initial configuration
of the network is represented by (A0 A11 A21 B0 B11 B21 C0 C11 C21)

T
=

(1 0 0 1 0 0 1 0 0)
T
. Only targets A and C can access dimension 1, and

only targets B and C can access dimension 2. Therefore the t→∞ action ofK1 on
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the network is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

e−gAt 0 0 0 0 0 0 0 0

1 − e−gAt 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 e−gCt 0 0

0 0 0 0 0 0 1 − e−gCt 1 0

0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

0

0

1

0

0

1

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ÐÐ→
t→∞

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

1

0

1

0

0

0

1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.36)

Only A and C advance to state 1 and the number of targets (3) is conserved.

3.5. Supplementary Information

Figure S3.1: Scaling in combinatorial networks is sub-exponential. (A) An example
network with u = 3 pools of n = 2 regulators each. A target is only ON if all u of its
regulators bind. (B) Plots of Eq. (3.18) versus n for an increasing number of pools u and
increasing redundancy ln
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Figure S3.2 (preceding page): Number of unique words in the threshold 1 ratchet
network as a function of n,m, ln,and lm found using Eq. (3.24). n and m increase the
across the rows and up the columns. ln and lm increase down the columns and across the
rows of the sub-blocks.

Figure S3.3: The full n-network model has upper and lower bounds. (A) A plot of all
the allowed configurations of a set of targets controlled by n = 3 regulators pairs in the full
n-network. Blue, cyan, yellow, and red correspond to states 0, 1, 2, and 3, respectively. (B)
A list of the words generating the corresponding states in A.K actions are shown in the red
spectrum, and P in the blue. (C) A logarithmic plot of the bounds on the full model. The
total space is ∏ni=0 (i + 1)(

n
i
), the upper and lower bounds are calculated from Eqs. (3.25)

and (3.7), respectively, and the combinatorial model is 22n.

Figure S3.4 (preceding page): Number of orbits restricted from using i of theK’s and
j of the P ’s in the threshold 1 ratchet network as a function of n and m calculated
using Eq. (3.27). n andm increase the across the rows and up the columns. i and j increase
down the columns and across the rows of the sub-blocks.
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C h a p t e r 4

STRING THEORY MEETS BIOLOGY: APPLICATION OF
ROTATIONAL DYNAMICS TO AUTONOMOUS

DEVELOPMENT

4.1. Introduction
The fundamental problems in using combinatorial logic to explain devel-

opment have been reviewed in section 1.3, and an alternative using sequential logic
was proposed in chapter 3. The information bottleneck at the egg stage could be
circumnavigated by extracting the information content of the adult in a stepwise
fashion. However, the paradox remained unresolved as to how sequences could
arise autonomously. As reviewed in section 1.1, the need for sequential processes
is hardly surprising in experimental embryology. Inductive signals in the form of
morphogen gradients initiate development [14, 233], and over time the cell translates
these messages into tissue-specific gene expression profiles. Yet, it has been argued
that such an "ordering process" adds no new information to instructions present in
the egg, in the same way that a differential equation with boundary conditions pro-
vides no more information than the solution curve [117]. It was described in chapter
2 how regulation in the tangent space of gene expression led to a stepwise process
in as related cells maintained their equipotential relationship over time. It is the aim
of the current chapter to make this abstract theory more tangible by showing how
imposition of conserved transcriptional activity translates into spatially-restricted
gene expression. These goals are accomplished via a seemingly unrelated question:
What happens to a string whose ends are subjected to twisting and bending?

Strings are bent and twisted due to the action of forces and torques supplied
at their ends; it is desirable to predict the resultant shape and stability. Initial
studies on strings were motivated by the problems of kinking in undersea cable
[60, 159, 302], and wave propagation in wires [56, 274], but similar analyses have
been extended to looping and supercoiling in DNA [87, 248]; see also [98] for a
perspective. Exact results are possible when the string is cast in the form of the
inflectional Euler elastica (see [28], [163], ch. XIX, [200] ch. 4, [272] ch. 2.7, and
the Supplementary Information 4.5.1), a curved planar arc of fixed length, which
may double back on itself to form loops. This well-studied model has shed much
light on the elastic stability of strings.
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One may want to know, for example, under what conditions planar loops
"pop out" of the plane. A popular strategy for determining the loads that lead to
pop out or kinking has been to use nonlinear stability analysis near a bifurcation in
the string’s energy [98, 159, 167, 196, 277, 278, 302]. The idea of this approach,
when applied to the related problem of beam buckling, is to postulate a relationship
between the axial and (sinusoidal) transverse displacements of a loaded elastic rod,
and then to solve a differential equation for the amplitude of a particular mode as a
function of the axial compression [296]. One may also relate the total energy of the
deformed rod to the transverse displacement (cf. [272] ch. 1.11), an approach which
when applied to the string led Maddocks to a bifurcation diagram in the deflection
angle θ between the string axis and the line of action of the load [167]. The critical
tension from the beam buckling problem (derived in [272] ch. 2.21) has also been
related to the bending angle θ [278]. In reference [278], phase portraits in the (θ, θ′)
plane revealed qualitative differences in shape as the tension was tuned, from those
with full loops (θmax ≥ 2π) to those that merely nutate (0 < θmax < 2π); the analysis
paralleled that of the heavy top precessing in time (see [13] ch. 6.30). Tension-
displacement phase diagrams have also been used to determine when twisted strings
whose ends are brought together pop out into loops [97, 196, 269, 277]. Thompson
and Champneys originally made the distinction between wave-like helical loops, in
which one turn of axial twist coincides with one turn of the helix, and localized
loopswith three twists; they derived equilibrium conditions relating the energy of the
localized state to themoment and tension applied in the helical state [269]. Similarly,
van der Heijden and coworkers described two behaviors in pretwisted strings whose
ends were brought together: (i.) those that jumped into self-contacting loops before
the ends met, and (ii.) those that smoothly made the transition through a circular
ring [277]. In general, buckling relieves torsional strain—by reducing the angular
deformation that must be accommodated—at the expense of increased bending
strain; the critical point is where the two strains match [98]. In addition to these
studies, others have explicitly measured pop out curves using specialized apparatus
[97], derived perturbation expansions in the angular velocities [96], and analyzed
vibrations in clamped elasticas [70]. This last study made use of the central idea [56,
57, 272] that first differences in space of forces and moments over small sections of
the string result in second differences in time (i.e., acceleration) of spatial points of
the material.

Instead of a stability analysis, one may want to know the explicit equation
of the space curve of the string’s central line. Although the planar elastica has a
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closed-form solution, being loaded onlywith tension, the nonplanar loop is nontrivial
because end shortening interacts with twist. The combined torques and tensions
change the direction of all three so-called director basis vectors {di} [56, 57, 167,
200], which define an orthogonal basis that moves with the string. The directors are
related to a fixed Euclidean coordinate system by elements of the Lie group SO (3)
of rigid rotations of a three-dimensional object. Furthermore, because twist and
bending are accounted for using angular rates of the directors, the applied loads
are actually members of the tangent space of SO (3), known at the group identity
as the Lie algebra so (3). Fortunately, there is a well-development mathematical
theory called Hamiltonian mechanics [12, 13, 119, 172] that prescribes how angular
velocities change in a dynamical system with fixed energy. Previous authors have
successfully used this framework to describe n-dimensional rotation, fluid flow,
plasma dynamics, and heavy tops [33, 106, 173, 222]. The main idea is that
since vector fields represent the tangent vectors of flows, it is possible, using the
Legendre transform and a device called the Lie bracket, to find a new differential
equation that maintains constant energy along vector fields of interacting forces.
The Euler-Poincaré equations for the rotation of a body in three-dimensional space,
for example, can be written as the Lie bracket of angular momentum and angular
velocity. In turn, the Euler-Poincaré equations are a special case of the analysis
using the more general semidirect product group, a group in which the symmetry of
the free system is broken by the application of a force in a distinguished direction
[106, 119, 172, 173]. This chapter examines the case when the symmetry of the
string’s director basis is broken by both axial and bending strains. It is concluded
that the Euler-Poincaré equations represent the most parsimonious path between
energy states of a string controlled only at its ends, but that in the case of more than
one force, a closed form trajectory cannot be known in advance.

When stated as a constraint on information, string dynamics illuminate
the problem of development by resolving the paradox of how a process can be
deterministic but not realizable until the passage of time. To see how this works,
imagine drawing the (unique) line through the tangent vectors of a single vector
field starting at time zero; where would this line be if there were two overlaid fields?
Following the vector field 2 for a short time means that the line traces a different
tangent vector of field 1, just as following field 1 in reverse for a short time discloses
a different tangent vector of field 2. The two tangent lines found by this procedure
approximate the trajectory of the system when field 2 modifies field 1 (and vice
versa). The (possibly non-integrable) field obtained as the time span approaches
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zero is known formally as the Lie derivative. The Lie derivative of the two fields
determines the trajectory at later times, but only because the input signals provide
"steering assistance," not exact "GPS coordinates." We can’t know final state until
we follow the flow lines till their ends. If biological signals could be formulated
as vector fields, they too would steer development on highly contingent trajectories
set by their Lie brackets in the egg. This chapter develops such a formulation used
conserved total RNA polymerase to represent the more abstract concept of constant
total information. Just as torsion and curvature of a string are constrained by the total
energy, conserved transcriptional activity determines the spatial variation of gene
expression throughout the embryo. The emphasis on constants of motion imposes
symmetry on the system via Noether’s theorem [119], resulting in an autonomous
theory of development that does not appeal to noise or stochasticity in expression
dynamics.

4.2. Results
The Results are organized as follows. First in section 4.2.1, the differential

equation in the arc length for the angular momentum of a looped string is derived,
and the connection is made to the analogous problem of the heavy top. It is shown
in section 4.2.2 how to account for pure twist of fibers about the central line;
how twist interacts with looping to become torsion is addressed in section 4.2.3.
The results of the Lie framework are compared with the classical Frenet-Serret
equations using known equations for the angular velocities. It is concluded that
differences emerge due to misalignment of forces and velocities along the length of
the string. In section 4.2.4, the Zassenhaus expansion for mixed forces propagating
from a localized point on the string is derived. The remaining sections 4.2.5-4.2.7
connect the string results to the problem of autonomous development. Section
4.2.5 presents a derivation of the rotational equations for the allocation of limited
RNA polymerase, section 4.2.6 describes a rigid parametrization of a growing one-
dimensional organism, and section 4.2.7 applies the model to interacting morphogen
gradients during development. Supplementary derivations are found in theMaterials
and Methods section 4.4.

4.2.1 String looping without twist
Combinations of forces in strings lead to shapes not predicted by either

force alone. Before studying combined forces, we show how to translate tension at
the string ends into the evolution of the angular velocity of the binormal curvature
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vector along the arc length of the string. Formulating force in the tangent space of
allowed motions of the string makes it possible to treat the combinatorial problem
in a unified way using Lie algebras.

According to Love [163], Kirchhoff was the first to make an analogy
between the equations governing the periodic motion of pendula and the helical
looping of strings. With the time variable t replaced by the spatial variable s,
looping becomes the problem of how the principal unit vectors (n,b, t) in the
normal, binormal, and tangential directions rotate relative to a (moving) body-
centered coordinate frame. The principal vectors are everywhere defined by drawing
the unit normal out from the center of curvature to the origin of the body frame
and orienting the unit tangent in the direction of motion; binormal is the direction
mutually orthogonal to n and b. Of course, there is no reason a point referred to an
independent set {di} of mutually orthogonal vectors in the body frame at s should
have the same coordinates relative to the principal frame. Derived and used in many
works dealing with strings [56, 57, 95, 200, 274], the fundamental equation for
updating the body position vector d in R3 is

d′ = ω × d =
⎛
⎜⎜⎜
⎝

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

d1

d2

d3

⎞
⎟⎟⎟
⎠
= Ω ⋅ d, (4.1)

where the components of d are the positions coordinates of a point mass relative to
the body-centered orthonormal basis (d1,d2,d3), and ω is the vector of rotational
velocities (radians per length) about the three axes in the body. The directors
(d1,d2,d3) are initially parallel to the principal (n,b, t) vectors and to the fixed
Euclidean (e1,e2,e3) basis, although they become misaligned as a result of the
applied curvature, twist, and torsion. The vector ω and the skew-symmetric matrix
Ω are related by the so-called hat map ̂∶ R3 → R3×3 in the obvious manner [119];
̂ can be extended to vectors in Rn (see [126] for one realization). To understand,
for example, the total displacement ω1d2 − ω2d1 of of the third component of d

when multiplying out Eq. (4.1), one uses a construction, due to Routh [231],
for moving the north pole (axis 3) of a rotating globe: counterclockwise rotation
about axis 1 increases the distance between the north pole and (the old) axis 2 by a
circumferential arc length ω1d2 while leaving the distance to axis 1 fixed; subsequent
counterclockwise rotation about (the new or old) axis 2 decreases the distance to
(the old) axis 1 by ω2d1. Such are the only rotations that move the north pole, which
is invariant to rotations about itself.
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An alternative formulation for determining the space curve of a string
relies entirely on the principal basis. In the Frenet-Serret equations, the principal
basis is updated as

t′ = −κn (4.2a)

n′ = κt − τn (4.2b)

b′ = τn. (4.2c)

There are only two distinguished velocities, viz. ω2 = κ and ω3 = τ , corresponding
to the curvature and geometric torsion of the space curve r (s) of the central line
[218]. In this basis, the normal direction, not d1, is chosen to rotate with the body.
The principal t and body d3 tangents are assumed to be parallel, but points not on
the central line are referred to different axes in the two formulations (4.1) and (4.2).

A loop is an instance of the inflectional Euler elastica, a well-known shape
that also satisfies the pendulum equation θ′′ = −λ2 sin θ in the (azimuthal) Euler
angle θ, where the rate of change of angular velocity ω2 = κ = θ′ (and hence the
bending moment) vanishes at the end point [28, 163, 200, 272, 296]. Loops can be
fully described by the end tension T = λ2EI2(= force) which maintains the shape
without any additional supports along s. For a loop localized to the xz plane, the
bending moment is EI2κ = force × dist., where E = force × dist.−2 is the Young’s
modulus and I2 = 1

ρ0 ∫Σ ρ (x, z) (x
2 + z2)dxdz = dist.4 is the y component of the

(diagonal) tensor 1
ρ0 ∫ ρ (x, y, z) (r

2ei ⊗ ei − r⊗ r)d3r of the second moments of
area about an axis through cross section Σ [13, 119, 200]; as in [200, 242], the mass
density of ρ (x, y, z) is normalized by the overall density ρ0 at a particular cross
section in order that EI have units of force×dist.2 The curvature κ = x′′z′−z′′x′

(z′+x′)3/2
[218]

corresponds to the Frenet-Serret curvature and is determined by differentiation of
the z and x coordinates of the elastica versus arc length s.

The elastica and Frenet-Serret pictures of the looped string are identical
in the case of a planar loop, as we now show. In the absence of applied torques, the
body-centered and fixed space bases at position s along the string are related to each
other by a rotation matrix g (s), which is an element of Lie group G = SO (n) of
n-dimensional rotations. So to write the (x, y, z) components of a position vector r

relative to the moving body frame (d1,d2,d3), one computes R (s) = g−1 (s) r (s).
Differentiating both sides and using the identity (gg−1)′ = g′g−1 + g (g−1)′ = 0 gives
that

R′ (s) = −g−1 (s) g′ (s) g−1 (s) r (s) = −g−1 (s) g′ (s)R (s) = −Ω (s) ⋅R (s) ,
(4.3)
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where g−1g′ = Ω = ω̂ is the the angular velocity matrix, an element of the Lie algebra
g of G. The Lie algebra is the tangent space of the G at the origin of the group, i.e.
the identity on Rn. Using the vector EI of moments, there is conjugate to Ω is an
angular momentum matrix p = ÊIω (also written EIΩ +ΩEI for EI the diagonal
matrix of moments), which evolves in the cotangent space g∗ of functions over g
under the action of g ∈ G as per Hamilton’s equations in presence of an applied
torque:

p′ (s) = [p (s) ,Ω (s)] +Ξ (s) (4.4a)

g′ (s) = g (s)Ω (s) . (4.4b)

Eqs. (4.4) are derived from Hamilton’s equations in the Materials and Methods
section 4.4.1.1, and an alternative using Lie groups and Lie algebras is presented
in section 4.4.1.3. In (4.4a), p = p̂ is regarded as a skew-symmetric matrix of
an angular momentum vector p with components EIiωi, and [⋅, ⋅] is the matrix
commutator. The situation Ξ = 0 where the applied torque vanishes corresponds
to an orbit in the cotangent space T ∗SO (n) of angular momenta associated with
the rotational motion of n-dimensional bodies [172]. When Ξ ≠ 0, symmetry is
broken, and angular momenta evolve in a reduced space se (3) tangent to the group
SE (3) = SO (3)×R3 of rotations plus translation in a distinguished direction. For
example, the so-called semidirect product group applies to the case of a heavy top
where the fixed direction of gravity is known even in the rotating frame, leading to
conservation of angular momentum about the vertical [106, 172, 173] .

The first result of this chapter is to show that the situation of the looped
string is that of the top. Let a string localized to the xz plane be loaded axially
with tension T = TΓt, with Γt the unit tangent vector relative to the fixed basis,
given at any point by inverse rotation g−1 (s)χt of the body tangent (0,0,1)T . At
any point s the radius of curvature % has magnitude 1

∥κ∥ = 1
κ2

in the body normal
direction χn = (1,0,0)T , and the component of the loading force along the string
is T cos θ (Figure 4.1A.i-ii). The moment % × F of this force about the center of
curvature is thus p (s) = T

κ2
cos (θ)χb in the binormal direction. Assuming that the

angular velocity κ2 = ∆θ
∆s is constant over the infinitesimal length over which it acts,

the moment of the tension force at a nearby point is p (s +∆s) = T
κ2

cos (θ +∆θ)χb.
The change in the moment is the applied torque, and its magnitude is equal to

∥∆p∥ = T

κ2

[(1 − 1

2!
(θ +∆θ)2 + 1

4!
(θ +∆θ)4 +⋯) − (1 − 1

2!
θ2 − 1

4!
θ4 +⋯)]

= T

κ2

∆θ (−θ + 1

3!
θ3 +⋯) +O (∆θ2) = − T

κ2

κ2∆s sin θ = −T∆s sin θ, (4.5)
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for sufficiently small ∆θ. If p is directed along χb, then ∆p is in the orthogonal
direction defined

χ′
b = (χt ×Γn)′ = χ′

t ×Γn = χn ×Γn, (4.6)

which can be used to replace sin θ term in Eq. (4.5). Here the opposite perspective
has been invoked to regard the reference normal as a constant while the body tangent
and binormal change. Taking ∆s → 0, the extra force dp

ds that must be supplied to
rotate the frame by an infinitesimal amount dθ is p′ = λ2EI2Γn ×χn. One checks
that the units make sense for EI2 = force × dist.2, λ = dist.−1, and p = force × dist.

Figure 4.1: Looping of the Euler elastica. The Euler elastica with loading parameter
λ =

√
T
EI =

√
3
10 , bending stiffness EI1 = EI2 = 10 and length L = 10 (plotted in bold

in panels B and C) gives rises to curvature κ2 (directed in the binormal direction along y)
in a straight string originally parallel to z. (A) Diagram showing how looping is caused
by tangential tension at different points along the string. Different tensions T (s) and
T (s + ds) in a string loaded at the ends with ∥T∥ = T = 3 cause rotation between frames i.
and ii. by the amount ∆θ. The extra torque misaligns the body normal χn (drawn in blue
directed toward the center of curvature) and the fixed normal x. iii. Rotation of the (old)
body frame n and t vectors due to the resultant moment (in the b direction) of the force F
on a vector ds in the (old) tangential direction. (B) Integration of the Euler equations (4.8)
leads to a planar loop of the central line (R = 0, black) identical to the Euler elastica (red).
Overlaid twist τ0 =

2π
L results in rotation of the R > 0 fibers (blue) as per the screw velocity

matrices (4.10) and (4.11). (C) The same as panel B with integration performed using the
Frenet-Serret relations (4.1) on the central line, again in agreement with the Euler elastica
(green). Filled circles indicate s = 0 and s = 0.5L; open circles s = L.

One can also verify that the extra force rotates the body frame by ∆θ. The
change dt

ds = r′′ (s) of the tangent vector of a space curve is directed in the binormal
direction, given by t × n [218].1 Then using the vector triple product identity we
find that the tangent changes by the amount

dt = (t × n) × ds = (t ⋅ ds)n − (n ⋅ ds) t = ds cos (∆θ)n − ds sin (∆θ)t, (4.7)

corresponding to a counterclockwise rotation of the body-centered basis by ∆θ

(Figure 4.1A.iii). The applied force causing ds to differ from t and n is p′ =
λ2EI2Γn ×χn.

The preceding arguments determine the applied torque Ξ in the looping
problem. Recalling that p = p̂, the differential equations for angular momentum

1Note that because n is defined to be the outward normal, the lobe of the loop in Figure 4.1B
and C lies in the −x direction in order that the coordinate system at the origin be right-handed.
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evolution become

p′ (s) = [p (s) ,Ω (s)] + λ2EI2 [Γ̂n (s) × χ̂n] (4.8a)

Γ̂′
n (s) = [Γ̂n (s) ,Ω (s)] (4.8b)

g′ (s) = g (s)Ω (s) , (4.8c)

where we have used the easily verified property of the hat map Γ̂ ×χ = [Γ̂, χ̂]. The
derivative of Γn = g−1χn in (4.8b) keeps track of the evolving angle between Γn

and χn, which are initially parallel (see Materials and Methods section 4.4.1.2).
With s replaced by t, and λ2EI2 by the gravitational moment, Eqs. (4.8)

agree with the heavy top equations [106, 119, 172, 173]. Although the applied
forces in the top and string are directed along different fixed vectors (Γn versus Γt),
geometry of similar triangles shows that both systems refer to the azimuthal angle
θ, and hence the forms of the evolution equations are the same. A more subtle point
is that the time (as opposed to spatial) rate of change of angular momentum has
units force × dist. × time−1, so that one understands division of ∆p by the unitless
quantity ω2∆t (instead of ∆s) as an applied torque in the top problem, as opposed
to an applied force in the string.

Figure 4.1B and C show the evolution of the central fiber (R = 0) of a
string with EI2 = 10 and T = 3, corresponding to the Euler elastica shown in bold
in both panels. Panel B is computed by specifying the initial tangent vector in the
fixed basis at s = 0 and updating g (s) by the angular momentum equations (4.8);
rotation of the central line in the body frame is then evolved stepwise by adding
g−1 (s)Γt (0)ds. Panel C is calculated using the Frenet-Serret relations (4.2) with
the curvature κ of the elastica used to get the new tangent vector t directly in fixed-
space coordinates. The results are essentially identical, both to each other and to
the elastica.

4.2.2 Looping with pure twist
Having reviewed the situation with a single force, we now introduce a

second: twist. Twist is important because it distinguishes an additional direction,
the axial one about which the fiber rotates. Although it is colloquial to use the terms
interchangeably, twist is not the same as torsion; both make separate contributions
to the axial strain of the director basis (see below). Twist is rotation of the d1 and d2

directors independently of the principal normal n and binormal b (see Figure 4.2B
below), and thus it cannot affect the motion of the central line, a point originally
made by Love [163]. Although the distinction will be important in section 4.2.3,
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in this section we show how to incorporate twist about looped space curves if it
does not affect the principals. A useful analogy for twist is a bent candy cane: the
painted-on red stripe twists about the central line r (s) at a rate dependent on arc
length s, but no matter the number of wraps, the plane of the candy cane is always
xz.

To model twist in a looped space curve, we need to introduce space-time
constraints that express the connection between rotation at a fixed s and simulta-
neous translation along s. Because twist takes time to propagate, the string under
combined twist and tension is actually a four-dimensional object parametrized in
space r and time t. The dimensionality is reduced to two, however, by the natural
parametrization s ↦ r (s) of the string along its arc length [218]. If twist is a
wave that propagates with velocity c in the s direction, then the time when the wave
reaches arc length s − λ is t, and the arc length accumulated when the clock reads
t + µ is s. The spatial and temporal delays λ and µ are related by

λ = s − tc (4.9a)

µ = s
c
− t, (4.9b)

similar to those used in [56]. In Materials and Methods section 4.4.2 it is shown
how Eqs. (4.9) partition the full four-dimensional configuration space into free and
dependent coordinates, or more generally, into vertical and horizontal parts [32,
171]. The result is that the permitted elements of the Lie algebra g = se (3) of the
special Euclidean group SE (3) are

ξ =Ωds + cLg−1 (vt) , (4.10a)

or as a 4 × 4 matrix

ξ =
⎛
⎝
Ωds cLg−1 (vt)

0 0

⎞
⎠
, (4.10b)

with Lg−1 representing left translation by g−1 of a unit step vt in time. Materials and
Methods section 4.4.2 also shows how ξ may be integrated to give a trajectory in
the group. The result is

g (s + ds) =h (s) exp (Ω (s)ds) + r (s) , (4.11a)

or equivalently

g (s + ds) =
⎛
⎝
h (s) exp (Ω (s)ds) r (s)

0 1

⎞
⎠
, (4.11b)
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where h ∈ SO (3) is a rigid rotation and r ∈ R3 is a point on the space curve. Both
Eqs. (4.10b) and (4.11b) agree with the semidirect product structure of se (3) [106,
134, 172, 173]: the first is the screw velocity matrix of [73], and the second satisfies
g∣
s=0

= identity on R4. The group element g (s) operates on four-dimensional

vectors (R (s = 0) ,1)T ; if Ω is a twist about the third body axis, then g rotates
d1 and d2 about the tangent line at the translated position r (s). Thus we arrive
at the intuitive notion of twist as rotation overlaid on the central line of the string,
regardless of its shape.

Although the preceding exposition emphasized traveling waves, common
experience says that twist waves in strings are stationary. For a twist wave to be a
standing wave after it has reached the terminus, the ratio of its temporal period and
spatial wavelength much be commensurate, i.e., the twists accumulated in time and
space must agree at both ends (cf. [13] ch. 6.30 for the case of the top). Therefore, c
must be rational; it drops out of the final equations after the standing wave has been
established. Furthermore, a twist τ0 = 2πn

L of n rotations per unit length of the string
has the angular velocity matrix Ω = (0,0, τ0)T .̂ With these values, Eqs. (4.10) and
(4.11) give the twist about the central line of a looped string. As rotation about the
body d3 = t axis leaves the central line unchanged, only body vectors with nonzero
d1 and d2 components are subject to twist. The R > 0 lines in Figure 4.1B and C
are rotations of the body vectors (R,0,0)T .

4.2.3 Looping with torsion converted to localized spiraling
Pure twist of ζ radians per unit length about the central line does not leave

room for any interactions with looping. According Love’s formula in the 3-2-3 Euler
angles ψ, θ, and φ (Figure 4.1A and B; [200] ch. 5; [163] ch. XVIII) for the total
axial strain, viz.

κ3 =
∂φ

∂s
+ ∂ψ
∂s

cos θ = ∂ζ
∂s

+ τ, (4.12)

specifying κ3 = τ0 = ∂ζ
∂s in the previous section on pure twist meant zero torsion τ in

the Frenet-Serret equations: the directors rotated, but the binormal stayed the same.
In contrast, loading the string with τ0 = 2πn

L radians per length in torsion with ∂ζ
∂s = 0

twist means the principals rotate as well. The spiraling terms ∂ψ
∂s and ∂φ

∂s partition
τ into rotation ∂ψ

∂s cos θ of the directors and the normals about the fixed z axis and
∂φ
∂s = τ0 (1 − cos θ) of only the directors about the bent central line. These separate
contributions to spiraling mean that the axial strains affecting the shape of the space
curve are modified by bending.

The subtle differences between torsion, twist, and spiraling are illuminated
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by the short-string model of Figure 4.2. Spiraling will be the general term for axial
strain the directors d1 and d2, which may (panel A) or may not (panel B) rotate
with the principal normal n and binormal b of the space curve. Rotation about the
fixed z axis is encompased by the angle ψ as spatial spiraling, while the remaining
rotation about the string’s tangent d3 is accounted for by φ as localized spiraling.
Torsion only contributes to spatial spiraling, but twist does not only contribute to
localized spiraling; thus ∂ζ

∂s ≠
∂φ
∂s . To see this another way, let the unbent (θ = 0)

string be loaded only with torsion τ0; then n and b spiral around the z axis, tracing
out the blue area of the tall string in panel A. Now if the string is bent, n and b

spiral about a foreshortened z axis, accounting for only ∂ψ
∂s cos θ of the input torsion;

the remainder ∂φ
∂s = τ0 (1 − cos θ) is converted into local spiraling (red area) of the

directors relative to the principals. Next imagine a candy cane with ∂ζ
∂s = τ0 in twist

being bent by compression of the ends (panel B). Although the space curve of the
central line has no torsion, the stripe can still only rise by cos θ along z (blue), the
rest being twist about d3 (red). Relative to the fixed basis, n and b in panel B do
not move. The two cases illustrate that local spiraling can be nonzero when twist is
(panel A), and that spatial spiraling can be nonzero when twist isn’t (panel B). Panel
C shows that in general, spiraling may be broken into the two contributions from
twist (green) and torsion (blue) for any bending angle θ. The director bases (black)
of the short and tall strings must agree, but the principal bases (blue) need not.
Bending converts equal fractions of twist and torsion into local spirals (highlighted
in red), with the effect that overall torsion is reduced. One also sees that twist is akin
to shear of the radial fibers: if the green areas vanished, the meridional coordinate
of the d1 fiber would not vary along its length.

Figure 4.2: The difference between torsion and twist using the short string model. (A,
B) Views of the straight and bent string having axial strain that is entirely torsional (A) or
entirely in twisting (B). The bent string is projected onto the z axis to show its foreshortened
height in that dimension, although its radial length is preserved. The Euler angles ψ, θ,
and φ are indicated; rotation of the director basis vectors d1 and d2 due to ψ is shown in
blue, and that due to φ in red. The principal n and b vectors rotate with the directors under
torsional strain (A), but are stationary during twist (B). (C) A topdown view of the string
shows that twist introduces shear of the short string fibers relative to the radius drawn from
the long string. At any bending angle θ, a fraction cos θ of twist (green) and torsion (blue)
are both converted to spatial spiraling. The "missing" rotation is accounted for by local
spiraling about string’s axis (traced in red). The director d1 in the short string is parallel to
that in the long string, but the normal spirals less due to bending.

The twist-torsion distinction is particularly relevant to the buckling of
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helical space curves, as discussed by in [269]. A helix of length L, height S, radius
R and inclination angle π

2 − θ is loaded with a total of n loops. It follows from the
elementary geometry of "unwinding" the helix at its inclination angle that the input
strain about z is 2πn

L = sin θ
R . Durning compression of the ends, τ = cos θ sin θ

R reduces
the strain by a factor cos θ (as per the usual formula, [200] ch. 1); the remaining
strain ∂φ

∂s = τ0 (1 − cos θ) goes into local spiraling. Buckling into a planar loop
may reduce the string’s total energy if the torsional rigidityGJ exceeds the bending
rigidities EI1 and EI2.

How bending and torsion combine to produce novel curves is the subject
of the next two sections of this chapter. As in section 4.2.1, the approach is to find
the differential force supplied at each point along s and represent it as an element
of g. Just as looping distinguishes the y direction, so spiraling distinguishes z, the
direction coincident with the axis of the undeformed string. It is assumed that all
spiraling is due to torsion. Let the local spiraling moment be GIl, so that GIlτ0 is
the torque (force× dist.) supplied to produce n turns over the length L of the unbent
string. As a result of bending, local spiraling is converted in spatial spiraling, a mode
which in general has a different moment of inertia GJ. At any point s the torque is
directed along the body tangentχt = d3, and is decomposable into the cross product
M = % × F of a (conserved) wrench force F acting on an orthogonal lever arm %.
The lever arm is the radius of curvature, being of magnitude 1

κ2
and directed along

the body normal χn. Thus the force F = M× 1

∥%∥2% responsible for spatial torquing
has magnitude GJτ0κ2 in the direction of the body binormal χb. At s = 0, χb = Γb

is in the direction of the fixed y axis; later χt accumulates an angle ψ relative to
Γb, reducing F by the cosine of this amount. The angular momentum supplied by
the binormal torquing at two closely spaced points is p (s) = GJτ0κ2 cos (ψ)× 1

κ2
χt

and p (s + ds) = GJτ0κ2 cos (ψ +∆ψ) × 1
κ2
χt. As in Eq. (4.5), the extra moment

responsible for the change is

∥∆p∥ = GJτ0∆ψ (−ψ + 1

3!
ψ3 +⋯) +O (∆ψ2) = −GJτ 2

0 ∆s sinψ. (4.13)

Here,GJ is the torsional rigidity, defined as the product of the shear modulusG and
a factor J equal to the sum I3 of the area moments of x2 and y2 at an xy cross section
(cf. [163] ch. XIV). This is in agreement with the earlier definition of section 4.2.1.

Next we want to use Eq. (4.13) to update the Euler equations (4.8). If p

is directed along χt, then a similar argument leading to Eq. (4.6) shows that ∆p

is directed along the cross product χb × Γb. Using this to replace the factor sinψ

in Eq. (4.13), we find that in the limit ∆s → 0 the extra torque is supplied by a
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force p′ = GJτ 2
0 Γb × χb proportional to the angle between the body and fixed the

binormals. One also checks that the units agree for GJ = force × dist.2, τ0 = dist.−1

and p = force × dist., as expected. With p = p̂, the modified angular momentum
equations for the interaction of bending and torsion are

p′ (s) = [p (s) ,Ω (s)] + λ2EI2 [Γ̂n (s) , χ̂n]
+GJτ 2

0 [Γ̂b (s) , χ̂b] (4.14a)

Γ̂′
n (s) = [Γ̂n (s) ,Ω (s)] (4.14b)

Γ̂′
b (s) = [Γ̂b (s) ,Ω (s)] (4.14c)

g′ (s) = g (s)Ω (s) . (4.14d)

The middle two Eqs. (4.14) explicitly give the rotation of body frame relative to
the fixed frame; they are not the same even though the body χn and χb vectors are
defined to be orthogonal. The rotations in Eqs. (4.14b) and (4.14c) account for
the extra torque in (4.14a). The conversion of some of τ0 to spatial spiraling leaves
τ0 (1 − cos θ) available for local spiraling, being the ω3 component of Ω in the screw
velocity equations (4.11). These modifications imply that torsion and bending are
no longer known functions of s: they are differential equations that may only solved
after traversing s.

The initial conditions of Eqs. (4.14) are also important for modeling the
interactions between looping and spiraling. We measure θ relative to the tangent
line at a point s0 so that the supplied axial strain has its maximum value τ0 cos (0)
there. Physically, this means taking the tangent line for the undeformed string. No
generality is lost because a twisted string can be rigidly rotated before the ends are
brought together. In the limit L→∞ the undeformed line at s0 approaches the fixed
z axis. Also recall that before bending, the initial angular momentum is GIlτ0 for
local spiraling, not GJτ0 for spatial spiraling.

The importance of evolving κ = ω2 and τ = ω3 simultaneously is illustrated
schematically in Figure 4.3, panels A and D.Whereas the Euler equations (4.14) use
the current direction of Γt and Γt to update all components of Ω, the Frenet-Serret
equations (4.2) use a fixed κ and τ . The two methods are similar, except that the
Euler equations result in additional bending at the ends of the string (panels B and
D). Where along s one begins integrating also has an effect on the shape. Choosing
s0 = 0.4L (C, F) results in the lower end of the Euler loop (C) being transposed to
the right of the elastica, whereas the lower end of the Frenet-Serret loop lies to the
left.
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Why should the two methods differ in the case of mixed forces, but not
in the case of a single force (as in Figure 4.1)? Section 2.2.3 in chapter 2 provides
necessary and sufficient conditions for when the dynamics of a system controlled
in the tangent space can be known in advance. When bending strain is supplied
singly, all potential energy is converted to kinetic in the form of rotation about a
single axis. With nowhere else for the energy to go but into ω2, it is possible to get
the unique trajectory from the Legendre transformation of the total energy change
by an angular velocity function Ω (s) written down at a starting point s0. The
curvature of the planar elastica is the unique function giving the unique shape. In
contrast, when two strains are supplied—in bending and spiraling, say—the energy
can go into different degrees of freedom; the space curve in general fails to be
unique. Chapter 2 outlines a theory of gradient and non-gradient systems, in which
it is shown that multidimensional controls make the dynamics unknowable at the
start. The dynamics can be made one-dimensional (i.e., parallel to a gradient) if
the rotating angular velocity vector is given time to reorient to the direction of the
applied forces. It is suggested here that misalignment of the forces and velocities in
the Frenet-Serret equations violates the parsimony principle that each segment see
the same increase in energy: by dissipating energy in the form of localized strains,
the angular trajectory occasionally moves skew to the potential gradient. Certainly
the predicted shape is a valid space curve, but realizing it would require additional
inputs of energy in the form of localized strains. In contrast, the Euler-Poincaré
equations are derived by minimizing the Lagrangian action functional [119], which
predicts that the most likely path between the unstrained and strained states is the
one that has the least deviation between level sets of the the potential. In this way,
a sequential process á la those studied chapter 3 arises autonomously in the form
the response of each segment of the string to a force imposed at the start. This
theory could be falsified by measuring excess strain in strings forced into the shapes
of Figure 4.3: the Euler-Poincaré string should have less localized strain than the
Frenet-Serret one.

4.2.4 Looping with a propagating end-shortening force
Another way spiraling and looping can interact is by treating forces as

vector fields on a certain Lie group; they evolve along each other over the body of
the string and cause it to turn in space. The aim of this section is to show how
to combine the fields and approximate the shape of a twisted string when a force
propagates from its center.
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Figure 4.3: Strings with interacting forces. (A, D)Digram of distinguished directions. In
the Euler picture (A), curvature and torsion are updated along s by extra torques applied in the
normal and tangential directions. In the Frenet-Serret picture (D) curvature κ is a specified
function of arc length s, and torsion τ is a function of the angle θ (s). (B, E) Integration
of the Euler (B) and Frenet-Serret (E) equations starting from the point s0 = 0.1L for fibers
of increasing distance from the central line. The central line (R = 0, black) experiences
only spatial spiralling, while the R > 0 fibers (blue, red) experience local spiraling due to
the screw velocity. (C, F) The same as panels B and E except that integration is started at
s0 = 0.4L. Parameters are EI1 = EI2 = 10, GJ = 15, GIl = 1, L = 10, τ0 = 2π

L . Filled
circles mark s = 0 and s = 0.5L; open circles s = L.

In experiments [97, 269], a compressive end-shortening force applied to
a pre-twisted causes looping. Propagation of the force means that different portions
of the string see different values of the field representing it (Figure 4.4A). Consider
dividing the string into many infinitesimal segments (black dots), a consecutive
number of which define a section. In the Materials and Methods section 4.4.3.1,
a model is described wherein stressed sections (red) push out into unstressed ones
(blue). By Newton’s third law, the unstressed sections push back, entangling more
and more segments into the force wave, which propagates with velocity c. (It
is sometimes convenient to think of the string moving with velocity −c toward a
stationary origin s0.) Equilibrium is reached when the numbers of right-pushing
and left-pushing segments in any section are equal. Because vector fields represent
velocities, it should be possible, from the space-time constraints in discussed in
section 4.2.2, to write an equation versus space for the shape of the string under the
loading force; conservation of energy makes this goal not strictly attainable.

The notion that forces take time to propagate motivates the introduction
of the flow Φt

X for time t along a vector field X ∈ g. Flow is the solution curve to
the differential equation

σ̇ (t) = X (σ (t)) (4.15)

for a path σ defined onG (cf. Eq. (4.49a) in Materials andMethods section 4.4.1.3).
We say that vector fields A and B—representing spiraling and bending—are the
exponential generators of the their corresponding forces, because the formal solution
of Eq. (4.15) is σ (t) = σ (0) exp (Xt). Due to the space-time constraints (4.9),
the first temporal derivative σ̇ in (4.15) is related to the spatial derivative g′∣

t=0
= X

of the rotation matrices; the higher derivatives are found from the Lie derivative,
introduced below.

The first question is, what flow is relevant to strings? In the force propaga-
tionmodel, sections at the string ends saw only axial stress, while those in themiddle
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Figure 4.4: Propagation of a force in the presence of background twist. (A) Establish-
ment of equilibrium in a twisted and bent string. Each infinitesimal segment of the string is
represented by a black dot. The force exerted during a single time step by one section of the
string on another is shown by a red line; unstressed segments are connected to themselves
in blue. The stress pattern evolves by Newton’s third law: unopposed exterior sections push
outward, while opposed interior sections reverse the stress direction. The initial force has
the strength of n = 16 segments. (Inset) Equilibrium is established in a finite section in one
time step. (B) Change in the direction of a vector field (representing a force) at different
points of the string. The map Φ changes the history of the finite sectionM of the string
(experiencing only spiral motion) into N (experiencing end-shortening and spiraling) by
reverse flow along A (blue) and forward flow along A +B (red). The vector field push
forward map Φ∗ is the expression of the force of manifoldM on manifoldN . Blue sections
of the string have been exposed to twist only (Φt

A), while red sections have been exposed to
twist and end-shortening (Φt

A+B). (C) Illustration of space-time constraints in a rigid string
on which the end-shortening force acts over time. In the absence of this force, sections
(violet) keep the same s over time (magenta), but in the presence of a force at s0, they move
toward the source at rate −c along s. Backward flow alongA (blue) and forward flow along
A +B (red) shifts the force at s0 at t = −∆t to s at t = 0. The delay λ is the size of the
shift measured from s. Each infinitesimal segment has the same value of ∆λ = ∆s − c∆t
because the propagation velocity c does not vary with s.

experienced axial and bending strains. By the time the force wave represented by
B reached the ends, its effect had changed (Figure 4.4B). But because space and
time are equivalent, it is possible to relate the direction of field B at a point s in
the present t = 0 to a point of origin s0 in the past t0 < 0. To make this connection
precise, undo the spiraling force field A for a time ∆t, and then apply A and B

together for the same amount of time. The flow Φ = Φ∆t
A+B ○Φ−∆t

A maps the points of
one manifoldM onto another N , each representing a different local section of the
string. Now apply B ∈ TM to the new coordinates Φ ○ z on N ; transform between
tangent spaces using the chain rule and multiplying by a Jacobean "conversion"
factor DΦ = dΦ(z)

dz to get

B =DΦ ⋅DΦ−1 ⋅B =DΦ ⋅B (Φ−1○) =∶ Φ∗B. (4.16)

This map Φ∗ ∶ TM → TN is known as the push forward [172] because the vector
field "catches up" with the coordinates (Figure 4.4B). The first derivative of Eq.
(4.16), i.e.,

B′ = LXB ∶= d

dt
DΦ ○B ○Φ−1∣

t=0
= [X,B] , (4.17)

is the Lie derivative of B along X (see Materials and Methods section 4.4.3.2).
It is shown in Materials and Methods 4.4.3.3 that the higher order deriva-
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tives of B along the path defined by Φ are

B(n) = dn

dtn
AdexpBt ○Adexp−At ○B∣

t=0
=

n

∑
k=0

(n
k
) (−1)k adn−kB ○adkA ○B, (4.18)

and that they are related by a multiplicative factor to the Zassenhaus coefficients
of the expansion exp{(A +B)∆t} for the simultaneous application of two matrix
operators [263, 297]; their calculation, which has been the subject of much previous
research in mathematical physics [48, 263], is greatly facilitated by the simple
binomial expansion of Eq. (4.18).

With the derivatives (4.18) it is possible to approximate the angular veloc-
ity matrix Ω as a polynomial in s. Letting A +B = g−1 (s0) g′ (s0) be the velocity
field at an origin of force propagation, the velocity Ω(1) at an arbitrary s may be
found by the nth-order Zassenhaus expansion as

Ω(1) (s) = 1

∆s
log [exp{(A +B)∆s} ⋅ exp (−A∆s)]

= 1

∆s
log [exp(B(n)

(s − s0)n

n!
)⋯ exp(B′ (s − s0)2

2!
) ⋅ exp (B (s − s0))].

(4.19)

The sense in which ∆s = s − s0 is increasing is shown in Figure 4.4C. Also shown
is how increments ∆λ of the spatial delay parameter (brown) pick out the next
space-time trajectory (green) of material points that, ∆s away from the origin s0,
experience the force after a time delay ∆t. Of course, we should really be using
elements ξ ∈ se (3) × R3 = so (3) × R3 × R3 of the full semidirect product Lie
algebra with two conserved directions, but if we knew those derivatives, the path in
se (3) ×R3 would be completely solved. Our objective is to find an approximation
using the reduced Lie algebra so (3) whose elements are simply the generators of
three dimensional rotations; e.g., A ∈ so (3) is just the spiral rotation (0,0, τ0)T̂.
With the approximation Ω(1) (s), Eqs. (4.14b) and (4.14c) can be integrated to give
the evolution for all s of the normal and binormal directionsΓn andΓb relative to the
fixed basis. Inserting these into Eq. (4.14a) gives the evolution of the momentum
p as a function of s, and by extension, the angular velocities Ω = ̂(EI)−1

p in
se (3) ×R3.

Figure 4.5 shows the O = 10 Zassenhaus approximation for a string initi-
ated from different points s0. As in section 4.2.3, it is assumed that the tangent line at
s0 of the full solution (4.14) is loaded with localized spiraling torque in the amount
GIlτ0, which is then converted to spatial spiraling as the ends are brought together.
The initial normal n is a 90○ rotation of t in the xz plane, and b is in the direction
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of t × n. The magenta curves approximate the full solution especially well near s0,
although not as well when ∆s increases (panels A and B). Nevertheless, the approx-
imation has the form of a loop and in addition begins to turn over at the midpoint
of the string. Interestingly, all curves have excess out-of-plane motion—rotation
about the x direction, being spanned by the cross product of the axes of bending and
spiraling strain. The approximation also does much better than the green "continua-
tion" lines, which plot the resultant free rotation at angular velocity Ω (s0)when the
applied torques are suddenly terminated, a consequence of Newton’s first law. Also
shown in panel C is a series of approximations of increasing order, demonstrating
that the curves converge after a certain number of retained terms in Eq. (4.19).
In summary, the Zassenhaus expansion is a reasonable approximation of the true
curve, but it cannot reproduce the solution to arbitrary accuracy.

Figure 4.5: The Zassenhaus approximation of a propagating end-shortening force. The
central line (black) of a twisted and looped string is re-plotted (magenta) using an expansion
of the Zassenhaus formula (4.19) for the angular velocity and integrated from (A) s0 = 0.9L,
(B) s0 = 0.8L, (C) s0 = 0.7L, (D) s0 = 0.6L, and (E) s0 = 0.5L. The continuation from s0

in the absence of other forces is plotted in green. The string parameters are indicated in the
top left panel. Panel C shows the convergence of a series of approximations. Solid circles
mark s = 0, s = L

2 , and s0; open circles s = L. Integration is performed with 104 points in all
panels, except in higher orders in C when the approximation becomes numerically unstable.

With the Zassenhaus approximation, the future evolution of the string is
guessed at the origin. In order to get this information, it was necessary to let the group
elements g and the velocities ξ in Eq. (4.49a) be expanded to arbitrary distances ∆s

from s0; only after the momenta p were computed could the permitted velocities be
found. But there was no guarantee during this procedure that the forces were being
applied in the same direction as the velocities. For the change dE in the energy to
be always parallel to a gradient, applied forces can only put energy into rotation;
misalignment results in energy dissipation. The inability to fully recover the Euler-
Poincaré solution with the Zassenahus expansion reflects significant constraints on
both string looping and organismal development: the vector fields of interacting
forces are not the derivatives of known functions of a single variable s. If the
velocities do not take time to align to the one-dimensional coordinate parallel to the
energy gradient, the approximation will miss crucial information about the future.
The requirement for the temporal dimension is shown in Figure 4.4B and C where
adjacent points on the string are related by a roundabout path in time, not by direct
traversal of space. Establishing how these concepts relate to developing organisms
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is the subject of the remaining sections of this chapter.

4.2.5 Rotational dynamics of transcription with limited RNA polymerase
Having discussed the way in which forces combine in strings, it remains

to be shown how the results apply to development. Development is fundamentally
the coordination of gene expression in time and space. Transcription of genes in
a tissue-specific manner requires appropriate allocation of limited transcriptional
resources, a constraint ultimately set by the nutrient availability in the environment.
The goal of the remaining sections is to show that limited RNA polymerase (RNAP)
leads to tissue-specific gene expression. The basis for this view is the observation
that Euler’s rotational equations (4.4) emerge due to a constraint on total energy.
Here, RNAP represents the more abstract concept that information in the egg stage
is conserved throughout development. In order for the Euler-Poincaré equations to
apply, it needs to be established what is rotating in genetic networks. To this end,
an analogy using a transcript cost function and transiting RNAP is presented next.

Once xi units of RNAP are allocated to a locus i on the chromosome, a
total of zi copies of gene i are transcribed. But the relation between xi and zi depends
on many factors, including gene length, the presence of cofactors, and the chromatin
landscape. All of these may be subsumed into a cost function Ii = RNAP × trans.−1

for the amount of RNAP required to transcribe one unit of gene i. The conversion
between RNAP and transcripts is then zi = I−1

i xi. In an extended embryo composed
of many cells, the transcription rates are actually spatial rates or pitches κij = dist.−1

that quantify the distance in space needed to be traversed for the RNAP allocation
vector to rotate (by 90○) between the orthogonal j and i axes. Then (negative)
allocation to locus i varies at a spatial rate Xi = ∑j xjκij = RNAP × dist.−1. For
n = 3 genes, the outflow rates κij = εkijκk correspond to rotational dynamics about
axis k.

Although rotations about body axes makes sense for three-dimensional
strings, rotation between axes is a more fundamental concept in gene networks
(Figure 4.6A). One understands the new viewpoint by introducing (mixed) tensor
quantities Jji , Iji, Iji, and κ

j
i as conversions from i to j. In Materials and Methods

section 4.4.4 we introduce for the spatial RNAP transfer and transcription rates

Xi =xjκji (4.20a)

Zi =κji IikIklzl, (4.20b)

where Jjl ∶= IjkIkl is a unitless conversion factor giving the worth of transcripts



94

produced at locus j in terms of transcripts produced at i by a single unit of RNAP,
and where the RNAP and mRNA amounts are related by

xi = Iijzj. (4.21)

Here, Iij = RNAP × trans.−1 is the cost function that measures the worth in RNAP
at i of one transcript from j. From Eq. (4.21), it is possible to show that

Xi = IijZj, (4.22)

which identifies Xi as a momentum and Zj as a velocity in gene expression space
(cf. the convention in Materials and Methods section 4.4.1.1). For simplicity, the
tensor Iij is 0 if i ≠ j, corresponding to the case that transcripts at i can only come
from RNAP at i (see Materials and Methods section 4.4.4).

Figure 4.6: Rotational dynamics of RNAP and transcription illustrated using the
energy ellipsoid. (A) RNAP flows from loci 2 and 3 to locus 1 at angular rates κto,from with
units of dist.−1, inducing changes in the transcription rates. Signs follow from association
κtofrom = κrowcol with the angular velocity matrix κ̂. The quantity Ii is the cost function for
the number of units of RNAP to produce a single transcript of gene i. (B) Evolution of the
transcription rates on the energy ellipsoid (blue) for low (red) and high (green) levels of
RNAP. The allowed transcription rates are intersect the spheres because RNAP is conserved.
RNAP is represented as a sphere because it has unit worth at each gene, whereas transcription
is an ellipsoid because different genes have different requirements for RNAP.

The velocities Zi and the conjugate momenta Xi are more natural quan-
tities to study than the absolute amounts zi and xi, because momenta and energy
are conserved in rotational systems in R3 [13]. These concepts are not merely ab-
stract constructions, but quantities having tangible influence on transcription. The
constraints on the transcriptional system may be expressed

n

∑
i=1

X2
i =X2 (4.23a)

n

∑
i=1

X2
i

Ii
= E. (4.23b)

Eqs. (4.23) specify the momentum sphere and energy ellipsoid, respectively, de-
marcating the allowed motions of the system by their intersection [13]. For n = 3,
Eq. (4.23b) is the only constraint (the Ii’s being fixed), but for larger n there are
additional invariants of motion [119, 168, 230]. Conservation of momentum means
that the vector Xi traces out a sphere in RNAP rate space (Figure 4.6B). The in-
tersection of the momentum sphere with the energy ellipsoid defines the allowed
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pairings of RNAP allocation- and mRNA transcription rates. Because transcrip-
tional activity E is conserved, the transcription rate vector Zi traces out a curve on
an ellipsoid with semiaxes

√
Ii and weighted radius

√
E; it is not a sphere because

the transcription costs are different. The reason for measuring RNAP outflowXi and
transcription inflow with Zi (cf. the position of the indices in Eqs. (4.20); see Ma-
terials and Methods section 4.4.4) is now clear: only those covector-vector pairings
⟨Xi, Zi⟩ = const. that conserve RNAP during transfer between loci are permitted.
Any two states V (1) = (X(1)i , Zi(1)) and V (2) = (X(2)i , Zi(2)) are compatible if they
can be mutually reached by rigid rotation of the radius of the momentum sphere. In
terms of the canonical two-form on vector fields (see Materials and Methods section
4.4.1 and [172] ch. 2),

Ω (V (1), V (2)) =X(1)i Ω♭Zi(2) −Ω♯X
(2)
i Zi(2)

=X(1)i IiX(1)i −X(1)i IiX(1)i = 0, (4.24)

states 1 and 2 lie along aHamiltonian flowof the transcriptional system that preserves
total transcriptional activity. In this way, the constraint leads to different expression
states throughout the body of the organism.

The spatial ratesXi andZj can be expressed in terms of the experimentally
accessible amountsxi and zj . Differentiate Eq. (4.21) and substitute into Eq. (4.20a)
to get x′i = (Iijzj)′ = xjκji = Ijlzlκij . Using skew-symmetry of the κ̂ we arrive at the
transcriptional analog of the Euler equations

(Iijzj)
′ = −κji Ijlzl, (4.25)

expressing the change in transcripts produced at each locus over space. For diagonal
costs Iij = Ijδij and n = 3 genes we find explicitly

⎛
⎜⎜⎜
⎝

I11z1

I22z2

I33z3

⎞
⎟⎟⎟
⎠

′

=κ × z = [κ̂, ẑ] =
⎛
⎜⎜⎜
⎝

0 −κ2
1 κ1

3

κ2
1 0 −κ3

2

−κ1
3 κ3

2 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

I11z1

I22z2

I33z3

⎞
⎟⎟⎟
⎠

=
⎛
⎜⎜⎜
⎝

κ1
3I33z3 − κ2

1I22z2

κ2
1I11z1 − κ3

2I33z3

κ3
2I22z2 − κ2

1I22z2

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

κ1
3I33z3 + κ1

2I22z2

κ2
1I11z1 + κ2

3I33z3

κ3
2I22z2 + κ1

2I22z2

⎞
⎟⎟⎟
⎠
, (4.26a)

or in terms of single indices

⎛
⎜⎜⎜
⎝

I1z1

I2z2

I3z3

⎞
⎟⎟⎟
⎠

′

=
⎛
⎜⎜⎜
⎝

κ13I3z3 + κ12I2z2

κ21I1z1 + κ23I3z3

κ32I2z2 + κ12I2z2

⎞
⎟⎟⎟
⎠
, (4.26b)
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using the κrowcol = κtofrom ↦ κto,from = −κfrom,to ↤ −κfromto = −κcolrow convention for the
association κij ↦ κi,j now that there is no need for tensor indices. Eqs. (4.26)
are important because they relate the tangent space of rates (Xi, Zj) to the base
space of mRNA copy number, which is really what determines cell fate. Thus the
absolute amounts xi and zi of RNAP and transcripts evolve via the Euler equations
for rotational motion.

The last equalities in Eqs. (4.26) describes the picture in Figure 4.6A
where the net change in the number of transcripts at a gene is due to the inflow
(or outflow for κij < 0) of RNA polymerase from all other genes. With only three
genes, the ♯ map from forms (covectors) to vectors of the Hodge dual of a two form
[⋆ (ei ∧ ej)]♯ = ei × ej = ek is a third vector (see [162] ch. 3 and [172] ch. 4),
recovering the simple picture of rotation about an axis. Thus we have shown that
the change in allocation of RNAP is between gene loci is analogous to rotational
dynamics in R3.

4.2.6 Parametrization of a growing organism as a rigid body
Although rotational dynamics apply to transcriptional systems, it is not

clear that they apply to developmental systems, which grow in extent as time pro-
gresses. In order to complete the analogy between development and strings, we
need a coordinate system that parametrizes the growing organism as a rigid body.
Specifically, we need to identify the spatial coordinate implied by the prime in Eq.
(4.26). It will be shown in this section that the transformation to logarithmic scale
by s↦ log s is the one we desire.

In a simple model of mitosis (Figure 4.7A), every cell replicates itself
during a certain time window. In a one-dimensional model of the process, beginning
at time t0 < 0, a cell at position x (t) = s with spatial extent cds replicates in time
dt, increasing the length of the organism by c0ds. As a result of this growth, the
kth cell in the array moves k units to the right relative to a fixed origin. Then the
velocity of cell k is

vk = lim
dt→0

xk (t + dt) − xk (t)
dt

= lim
dt→0

xk (t) + kc0dt − xk (t)
dt

= kc0. (4.27)

Eq. (4.27) defines the spatially varying constraint c = kc0 between time and space
in the organism (cf. Eqs. (4.9)). If the temporal µ and spatial λ delays are held
fixed, then we lose no generality in choosing the present (t = 0) in (4.9a) to make
the velocity measurement (4.27). Differentiating the spatial constraint shows that

dλ = ds − kc0dt − tc0dk = 0 Ô⇒ ds∣
t=0

= kc0dt. (4.28)
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In the continuous limit k → s; then we may introduce the transformed variable
s′ = log s, which satisfies the string condition ds′ = c0dt. In other words, the
velocity ds′

dt = c0 does not vary in space. The foregoing argument shows that the
logarithmic parametrization is the relevant length scale for growing systems.

Figure 4.7: Parametrization of a growing one-dimensional organism as a rigid body.
(A) Dividing cells originating from a single progenitor at t0 < 0 move rightward with
increasing horizontal velocity, quantified by the slope of the solid green lines connecting a
cell to its immediate ancestor. Tracing the lines backward (solid) and forward (dashed) shows
the cell’s position in space-time if the relationship c between space and time were constant.
(B) Transforming the spatial dimension as s′ = log s makes the space-time relationship
constant: each cell moves by the same multiple of its position at each time step. Distances
between cells at t = 0 are preserved at t0. (C) The total amount of a molecule that increases
exponentially in the transformed coordinate s′ is not conserved. (D) The total amount of a
molecule that is diluted at each cell division and traces out a straight line versus s′ = log s
is conserved; it marks out distance in the transformed coordinate, because twice as many
cells must be collected at each step to obtain a constant increase in the number of molecules
observed.

The transformed coordinate s′ = log s parametrizes the growing organism
as a rigid body. It can be shown that a line drawn in the (t, s) plane (no primes)
through a cell at position s in the present time t = 0 to its immediate ancestor at
s
2 , one division time τ earlier, intercepts the horizontal s = 0 line through cell 1 at
t = 2τ (1

s − 1) < 0 (Figure 4.7A). By connecting each cell to the principal ancestor
at the origin of space, one reads off its origin in time by the t-intercept. In contrast,
each segment of a twisted string has a unique "ancestor" at t0, namely, an earlier
version of itself. Because dividing cells were born at different times, s does not
parametrize the organism as a rigid body. In other words, in the growing organism
the connection one-form ω (Materials andMethods section 4.4.2) depends explicitly
on space, whereas in the rigid string it is invariant. In the transformed coordinate
system, lines drawn through cells in the present to their immediate ancestors are
parallel with slope c0 (Figure 4.7B). Extending these lines back − t0τ generations
in t connects cells in the present to a unique ancestor in the past. There is no
contradiction here because parallel lines do meet: at t = −∞, the ultimate origin of
time. No organism starts life as a dimensionless point, so picking t0 is equivalent to
choosing a time when the generational lines of each cell are still parallel. Because
the parameterization s′ preserves distance between the cells at all times between
t = 0 and t = t0, it is a rigid one.
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4.2.7 Autonomous development from strained gene expression profiles
Distinct cell fates are characterized by different gene expression profiles,

resulting from the allocation of RNAP and other factors to different genomic loci
via morphogen gradients [14, 233]. In this section, we consider the hypothesis
that morphogen gradients act on in the tangent space of gene expression; then the
information they convey must be in the form of "steering assistance" rather than
explicit "GPS" coordinates.

Let the nondecreasing function Θxi be the cumulative distribution of
RNAP seen at locus i across the spatial extent of the organism: by position s in the
organism, locus i will have seen a fraction Θxi (s) of the RNAP that it ultimately
will see. With s′ = log s the natural parametrization of the growing organism, the
distribution of RNAP is log-transformed as well: if s is log Θ-distributed, then log s

is Θ-distributed. With the appropriate Jacobean s′ = log s Ô⇒ ds′ = 1
sds, common

RNAP distributions are

Θ (l) =
√

2√
πσ
∫

l

0
exp(− (s′ − µ)2

2σ2
)ds′ (normal)

→ Θ (el) =
√

2√
πσ
∫

el

1

1

s
exp(− (log s − µ)2

2σ2
)ds (lognormal) (4.29a)

Θ (l) =∫
l

0
λ exp (−λs′)ds′ (exponential)

→ Θ (el) = ∫
el

1
λs−λ−1ds (log-exponential) (4.29b)

Θ (l) =1

` ∫
l

0
ds′ (uniform)

→ Θ (el) = 1

logL ∫
el

1

1

s
ds (log-uniform). (4.29c)

(See Figure 4.8A below for examples of each distribution in log-transformed coor-
dinates.) In Notice that in the log-transformed distributions the lower limit of s is
1 instead of 0, corresponding to the extent of a single cell, the smallest unit. Also
note that if the upper limit of s′ is ` = logL, then s = L is the spatial extent of the
organism.

The log-uniform distribution is special because it has the form of an arc
length of an undeformed string, i.e., a line versus s′ with unit slope. In contrast
to a replicated molecule such as the chromosome, which scales exponentially in s′

(Figure 4.7C), a molecule with fixed total amount is diluted at each cell division
and is distributed according to (4.29c) (Figure 4.7D). Intuitively, at each step in s′,
one needs to count twice as many cells to count the same number of molecules.
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The assumption that RNAP (or the nutrients in the environment converted into it) is
constant implies that the pitch of its distribution among genes obeys the same laws
as the balance of angular momentum and angular velocity at different points along
the string. We next make this analogy precise.

The applied torques in Eq. (4.14a) are of the form a force multiplied by
the cross product of a fixed and body-referenced direction. The forces λ2EI and
GJτ 2

0 measure the (constant) rate of change of the Euler angles θ and ψ, which
are the components of curvature in the normal and binormal directions. One can
easily see that twist τ0 = ∂ψ

∂s = 2πn
L is a constant curvature, but to see that λ is as

well requires closer examination of the elastica equations. In fact, the authors of
[65] showed that a wave traveling in an elastic medium and having the shape of the
Euler elastica naturally moves a material point in a circular arc, corresponding to a

constant curvature. In the general case, the curvature k2
ij =

(x′′i x′j−x′′j x′i)
2

(x′2i +x′2j )
3 varies with

the arc length parameter [218].
For a vector of input distributionsΘ (s′), one computes k2

ij from the rate at
which the projection of Θ0 on the (Θ0

xi
,Θ0

xj
) plane bends away at an angle θij from

the diagonal (Figure 4.8B, left). The resultant strain is interpreted as the preferential
allocation of RNAP to locus i over j (for counterclockwise deviation θij > 0), so
that by some value s′ = s′

1/2, locus i has seen 50% of its total RNAP allotment,
whereas locus j has necessarily seen less than 50%. Yet because RNAP is shared,
an arbitrary input distribution Θ0 will be deformed into a new distribution Θ so as
not to violate the conservation laws. Let Ω = κ̂ be the skew-symmetric matrix of
pitches of the angles θij versus s′. Then the angular momentum p = Îκ of RNAP in
the n = 3 gene system is assumed to evolve as

p′ (s) = [p (s′) ,Ω (s′)] +
3

∑
i=1

Iik2
i (s′) [Γ̂i, χ̂i (s′)] (4.30a)

Γ̂′
i (s′) = [Γ̂i (s) ,Ω (s′)] (4.30b)

g′ (s′) = g (s′)Ω (s′) , (4.30c)

where Γi = g−1χi is a unit vector in the direction of locus i at position s′. That is,
the same chemical force that increased RNAP at locus i at s′0 now increases (and
decreases) RNAP at other loci in the direction specified by Γi. Eqs. (4.30) need to
be solved by traversing developmental space, or equivalently, developmental time.
Only after seeing all s′ ∈ [0, `] can the evolution in the tangent space be projected
onto the base space of expression states. Also note that Eq. (4.30a) implicitly
assumes a diagonal cost function I and makes the identification kjl = εijlki. Latin k
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is reserved for the curvature of the input distributions, and Greek κ for the output
angular velocities.

To illustrate how gene expression evolves along the length of our one-
dimensional organism, Figure 4.8 shows the simulated response to input gradients
(4.29a)-(4.29c) of RNAP in n = 3 genes 1, 2, and 3 (panel A). Figure 4.8B (right)
shows the effect of Eqs. (4.30) on the evolution of the input vector Θ0 (s′) =
(Θ0

x1 (s′) ,Θ0
x2 (s′) ,Θ0

x3 (s′)) of RNAP allocation rates at each locus in the one-
dimensional organism, parametrized by s′ ∈ [0, log (10)]. Because Eqs. (4.30) can
result in un-realistic values of the Θxi (i.e., greater than 1 or less than 0), only the
range of s′ indicated by the solid lines of the input distribution are included in the
distorted distribution. Whereas the input distribution (black) is nondecreasing in s
and Θ0

x3 , the distorted distribution (blue) clearly increases and decreases. Yet the
resulting vector Θ (s′) is still a cumulative distribution, for the simple reason that
the Θ0

x3 gradient has been distorted: in the undistorted state, the diluted molecule
3 marks out distance in the transformed coordinate (cf. Figure 4.7D). Figure 4.8A
shows the RNAP density (red curves) at the three loci, computed from the derivative
of the monotonic cumulative distributions Θ0

xi
(blue curves). In contrast, in panel

C, the densities are computed over the regions which Θi is increasing. It is clear that
RNAP is distributed in a multimodal manner at the three loci, especially at locus 3.
Dividing by the cost functions Ii gives the transcript density in arbitrary units across
the organism (right). In this case, I1 = 3 is the smallest of the three cost functions,
and correspondingly gene 1 has the highest level of transcripts. In summary, an
input signal Θ0 of RNAP allocation rates in the tangent space has been transformed
into gene expression in a one-dimensional developing organism as a consequence
of conserved transcriptional activity.

4.3. Discussion
Wehave achieved two broad goals in this chapter. Firstwe have generalized

the interaction of twist and looping in physical strings as differential equations for
the angular momentum versus arc length. Second, we have shown how rotational
dynamics apply to gene networks and how they reshape gene expression profiles in
space. Unifying these disparate concepts is the theme that evolution in the tangent
space rather than the base space (of angular strains or expression levels) provides
a way to determine the future without knowing it ahead of time. It remains in this
section to discuss the implications for autonomous development.

The most important conclusion from the string equations in sections 4.2.1-
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4.2.4 is that the shape (i.e., the "future") of the string is determinant not because
of the heterogeneity of the individual segments (i.e., cells), but because of their
interdependence. The principal equations (4.8), (4.14), and (4.30) of these sections
are differential equations in the arc length coordinate s for a string with bending
stiffnessEI and torsional rigidityGJ. In the case of pure twist about the central line
(section 4.2.1), loops remain planar, and torsional rigidity does not affect looping.
But in strings and in biological systems, forces may interact in ways not predicted
by either force alone. In order to account for this interaction, it was necessary to
break up the applied torque (M orm in references [60, 196, 277, 278, 302]) into its
contributions from spiral and bending strains; then the dynamics could be reduced to
that of a top in a gravitational field. In fact, the analogy to the heavy top was pointed
out by van der Heijden and coworkers [278], although their analysis was primarily
on finding the critical points at which twisted rods buckled into loops. While their
strategy was to determine M from the evolution of the angular velocities in the
tangent space TSO (3), ours is the complementary approach of directly evolving
M in the cotangent space T ∗SO (3). The equivalence of these perspectives follows
from the corresponding equivalence of the Lie-Poisson and Euler-Poincaré (Eq.
(4.49b)) equations for the time (or arc length) evolution of the momentum rate of
change of the Hamiltonian ( ∂H∂µi = ξ

i) and the angular velocity rate of change of
the Lagrangian (i.e., ∂L

∂ξi
= µi) , respectively; they are converted into each other by

the Legendre transform [33]. The terms λ2EI and τ 2
0GJ are forces (constant in

the case of the elastica) whose resultants change the angular momentum when the
Euler angles θ and ψ between and about the fixed z axis are nonzero. The angular
momentum is converted into angular velocity using the moments of inertia, which
then update the direction of the tangent vector. In this way, the configuration of the
string is controlled by the memory of what it looked like when straight. "Memory"
is not merely a mathematical convenience; it is the manifestation of connections
between segments of the string which register stress as the string is strained. By
virtue of the space-time constraints, symmetry provides the bridge between past and
present.

The alternative to updating the angular momentum locally via the Euler
equations is to specify curvature and torsion for all s and evolve the angular velocities
using the Frenet-Serret relations (4.2), or to approximate the dynamics using the
Zassenhaus expansion (4.19). In the case of a single (bending) force, the Euler and
Frenet-Serret pictures are equivalent, although small but noticeable differences at
the ends emerge when bending strains combine with spiraling. The discrepancy is
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a consequence of the fact that the string is not a conservative system, unless certain
conditions are met. When there is only a single bending force, the angular trajectory
of the azimuth θ is fully determined from the derivative of the strain energy. When
two angles are strained by forces f and g, the equation dE = fdθ + gdψ for the
distribution of energy between them is underdetermined: ∆E is not sufficient to
determine the angular trajectory. The parsimony principle of section 2.2.4 provides
an additional constraint that the forces "add up" to the direction orthogonal to the
current trajectory. Because no energy is lost to dissipation, all segments stay on the
same level set of the potential as the string is transformed from straight to curved
over time, and no internal strains develop between segments. This is also the content
of Theorem 2.2.5, which states that it is only possible to know the (space or time)
trajectory in advance if the net force is one-dimensional, at all points orthogonal
to the trajectory. The problem is that the orthogonal direction is not guaranteed
to be a 90○ rotation when the basis is skew, as when the angles are strained by
different amounts (see Figure 2.1 in chapter 2). The Frenet-Serret equations and the
Zassenhaus expansion postulate a form for Ω for all s that may or may not agree
with the applied strains; in contrast, the Euler-Poincaré equations update the force
p′ at every step with the new direction of the body frame, effectively making the
dynamics one-dimensional. In this way, the Euler-Poincaré equations increase the
energy in the most parsimonious way: parallel to the energy gradient.

Is there any reason the Euler-Poincaré picture should apply in the current
setup? Surely the forces felt at any given segment need not be orthogonal to the
current angular velocity vector. The reason that these equations apply is that the
string is controlled only at its ends; there is no mechanism to increase or decrease
energy at intermediate points along the arc length. Furthermore, we know the total
increase in energy by virtue of specifying the total amount of curvature and twist in
advance. Therefore, every segment must see the same increase dE in the energy.
In these rarefied circumstances, the only way to obtained the strained string from
straight is to take the most direct path, putting all energy into rotation and dissipating
none. In contrast, real strings are dissipative. It may be that the endpoint strain
energy is not specified, or that there is some way for excess strain to be added or
frozen inmidway between the string ends. The prediction of the current theory is that
a string forced into an arbitrary shape will show localized strains the Euler-Poincaré
string lacks.

The results of this chapter allow us to make the following logical progres-
sion pertaining to combinatorial logic in development. If development is not known
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ahead of time in the egg stage, then the dynamics cannot be one-dimensional: strains
in the RNAP distribution at time zero point will have different effects at later times.
Because the controls f, g on gene expression x, y are noncommutative—in the sense
that ∂f

∂y −
∂g
∂x ≠ 0 (see sections 1.2 and 2.2.1 and Figure 1.1B)—it is not possible

for cells to flow downhill on the surface φ = fx + gy without reorienting at each
step, although the surface itself may be smooth. With controls in the tangent space
having nonzero curl, the projected dynamics in gene expression space circulate as
well (cf. section 2.2.2). Thus the potential is not a gradient potential, fixed at all
times from the start. Reversing the foregoing logic implies that if the dynamics are
not noncommutative, then they are not not known ahead of time. Or what is the
same thing, if the dynamics are commutative (i.e., combinatorial), they are known
at the start. The preponderance of evidence suggests that animals require time to
develop, the implication being that in the egg there is an information bottleneck to
the reading out the future. Put another way, a differential equation for cell fate is
not sufficient to characterize the adult at the egg stage if it can’t be integrated.

The concept of mixing forces to steer the shape of a string is an attractive
analogy in developmental biology where gradients of chemical signals control cell
fate. Information for the adult is stored in the DNA of the egg, but there are simply
insufficient signals to address it to each gene in every cell at the start. In order to
extract the information without appealing to a deus ex machina influence to guide
the embryo to its final state, each space-time fragment should contain the same
amount of information. With the total information context fixed, each progressive
change in transcription guides the interconnected group of cells down an energy
gradient in gene expression space. But with transcription in constant flux, the
gradient direction changes over time. Contrast this dynamic picture with the static
Waddington landscape where the "downhill" direction is known at every point from
the start. In order to make the differential equation for development integrable, it
must be checked at each step that the integration path is still downhill. By the time
we have done so, development is over.

In order to make the string analogy complete, it was necessary to find an
analog of the angular momentum. We showed in section 4.2.5 that a core component
of the transcription machinery, RNA polymerase, can serve in this capacity if its
total amount is fixed. While useful, this ansatz should not be taken literally: RNAP
is merely a substitute for the more abstract quantity called information. In a complex
organism, cells of different tissues transcribe distinct sets of genes, meaning that
RNAP must be variably allocated to each locus across the length of the organism.



104

Specifically, the organism remembers the spatial rates (measured in units of RNAP
per distance) at which the amount of RNAP at locus i changes between adjacent cells
in the same way that the deformed string remembers being straight. It is easy to see
the basis for this conservation law: allocating a large amount of RNAP/information
early on means that there is less to go around later.

If RNAP is momentum, then transcriptional activity—defined as the spa-
tial rate at which transcripts of type i vary been adjacent cells—is the energy. RNAP
represents the fundamental activity unit, having equal ability to transcribe genes at
all loci. However, transcripts are not all created equal, with some genes requiring
many units of RNAP to produce a single mRNA. The seemingly abstract notion of
rotation in transcriptional networks is just the net flow of mRNA from one locus to
another across space. The same calculus occupies traders in currencies who seek
the soundest specie in which to store their wealth, a quantity with universal value.
Before transcripts can transit, they must be converted into a common currency,
such as RNAP, with equal valuation at all loci. We understood this in Figure 4.6
as the intersection of an RNAP sphere, with equal axes in all gene "directions,"
and a transcriptional activity ellipsoid, with longer axes in the direction of more
costly genes. In higher dimensions than three, one no longer speaks of rotation
about an axis, but rather of rotations in a two-dimensional plane (see [162] ch.
4). This concept is much more transparent in transcriptional systems than strings
because we always speak about transfer from one gene to another, never about ro-
tation of a single gene. The concept generalize to any number of genes. For an
n-dimensional system that evolves as its Lie bracket, one may write the momentum
as M = IΩ +ΩI as the product of a skew-symmetric and a diagonal matrix, giving
that the amount of RNAP involved in the i → j transfer is (Ii + Ij)Ωij . The n-
dimensional Euler-Poincaré equations define (n

2
) differential equations of the form

(Ii + Ij) Ω̇ij = (Ii − Ij)∑k ΩikΩkj for each of the pairs of genes, modulo an applied
force [73]. Therefore, in the general case, no transfer is privileged by howwe choose
to write the skew-symmetric matrix Ω (see [126] for one option). In this chapter,
networks are limited to n = 3 genes, in which case there is only one integral invariant
of the motion, namely the energy. In higher dimensional systems it is well known
that other conserved quantities [168, 119] circumscribe the transcriptional activity.
In fact, for a matrix evolving in time as the Lie bracket with some n-dimensional
angular velocity, the traces of the n powers of the matrix are constants of the motion
[230]. It is the subject of future research to ascribe biological meaning to the higher
order constraints. While it was also assumed that RNAP acts locally—only RNAP
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at i affects transcripts at i—the possibility for nonzero off-diagonal terms in the
tensor Iij presages the more general case of gene regulatory interactions.

Essential to our results on the interpretation ofmorphogen gradients in sec-
tion 4.2.6 was the parametrization of the growing organism using a log-transformed
distance coordinate. This choice permitted distances between spatial points to be
preserved in time, an essential feature of rigid objects. The log-transformed param-
eter s′ makes sense because twice as many cells are needed to count the same total
number of molecules in a mitosing cell that partitions half its components between
two daughters upon division. Such a parametrization may not describe very early
development when rapid division occurs while the egg maintains constant size, or
in embryos that grow in 2- and 3D. The decoupling of real space and transformed
space is rationalized by recalling that cells differ due to their molecular makeup, not
their physical location per se. In section 4.2.7, for example, the organism itself did
not bend like a string: only the distribution of RNAP to a gene changed.

More fundamental than the log-transformed distance coordinate is the
equivalence of space and time. If pairwise distances are preserved, neighboring cells
are like a kymograph, representing phased versions of an ancestor cell at different
stages of its life. As a consequence of space-time equivalence, the transcriptional
states of neighbors are related to each other based on their distance from a common
ancestor. Another way to understand the relationship is by extending the wealth
analogy introduced above. Investments may be denominated in different currencies,
so that when the exchange rates are not constant, and investor stands to gain or
lose depending on when he chooses to repatriate his returns. If a U.S. investor’s
holdings denominated in Yen produce a λ1 = 10% return while over the same time
period the U.S. dollar depreciates by λ2 = −5%, then his profit in dollar terms is
(1 + λ2)−1 × (1 + λ1) × 1 = 1.16 times his initial dollar investment. Undoing the
action of holding dollars alone and applying the combined action of buying Yen
and investing it clearly leads to a different point along the dollar axis than simply
holding dollars. By virtue of their having a common origin, the distance "∆$"
accumulated between the alternative strategies is found by going backward and
forward in time as in Figure 4.4. An added complication is that a holder of Yen can
anticipate appreciation of the dollar; she can charge the U.S. investor a premium to
"hedge" his Yen investment against its reduced ability to repurchase dollars later.
Using the present framework of stress and strains to formulate the economics of
how beliefs about valuations in the future affect exchange rates in the present will
be an interesting topic for future research.
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It is interesting to relate our results to other studies that have explored the
role of forces in development. Elasticity in particular has been shown to be relevant
to tissue growth in plants [37, 19, 140, 156], leaf venation [149], invagination of the
morphgenic furrow in flies [58, 187], initial alignment of the anterior-posterior axis
in fish [51], and even looping in the intestine [235]. The primary result is that com-
plex forms are generated during development by context-specific responses of the
connected tissue to a common signal. For example, the faster growth rate of the gut
tube or leaf mesophyll vis-á-vis the underlying mesendoderm or epidermis resulted
in either loops [235] or cracks [149], respectively, a consequence of the constraint of
tissue connectivity. By combining global polarity and genetic "identity" factors with
applied gradients of growth rates, Kenneway and coworkers demonstrated how com-
binatorial interactions in the tangent space led to autonomous formation of shapes
as complex as the Snapdragon corolla tube [140]. This study intriguingly assumed
that genetic factors modulate the magnitude, but not direction, of the growth rate
vectors, reiterating the theme that shape is predetermined, but unrealized until time
has passed. A similar demonstration was made in Arabidopsis embryos where the
(genetic) effect of a cell wall-remodeling hormone was modulated by the local strain
felt by the growing cells [19]. The yolk and vitelline membrane of Drosophila em-
bryos were shown to modulate the depth and width, respectively, of the invaginating
morphogenic furrow as the cells underwent a combination of active and passive
isochoric deformations [58, 187]. Importantly, the different deformation rates con-
trolled the allowable forms, echoing the results here that the effect of two strains
cannot be known at the start. Spatial constraints are also operative when organelles
compete for scarce cytoplasmic resources [94], which can result in interior cells of a
colony being smaller and more compressed than their more peripheral counterparts
[4]. The contribution of this chapter is to suggest that elasticity may operate on the
more abstract space of gene regulation. Indeed, there is evidence for such a notion
in nodal flow in left-right polarity in mouse [197, 266] and germ band extension
in Drosophila [64]; both processes result in differential gene expression in tissues
where the forces are felt (reviewed in [109]). Finally, the hypothesis that limited
resources constrain form in a certain morphospace [250] suggests that evolution
balances adaptions by their perceived value in different environments.

It is also useful to compare our results with studies that have found a role
for the temporal dimension in cell decision-making. Palau-Ortin and colleagues
observed path-dependence in the selection of the stable state in a bistable region of
phase space in a noise-driven model of contact inhibition [206]. Selection could
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largely be accounted for by the equilibrium pattern of the previous monostable
region along the path, although a critical burn-in time was necessary for the system
to forget the very first state. Here, memory of the penultimate state shows that the
rate variables (where the cells are poised to go) and state variables (where they
are) have equally important roles in decision-making. On the other hand, Nené and
coworkers showed that the relative speeds and asymmetry of two signals could bias
selection in a bistable circuit, with faster decisions making the system less sensitive
to asymmetry [194]. Although both studies relied to some extent on noise for
the initial symmetry-breaking, the effect on gene expression could not be realized
until the passage of time. Our model does not include noise, but does require a
deterministic signal (the input gradients) at the very start.

In conclusion, the ideas presented in this chapter are one solution to the
problem of autonomous development. When they act in the tangent space, a small
number of signals evolve over time to produce novel outcomes that are neither
possible nor knowable at the egg stage. Because they steer cells rather than address
them to new positions, signals in the tangent space are just as agnostic to the final
outcome as the cells themselves. This new viewpoint removes the need for a deus
ex machina argument at time zero, an inescapable feature of regulation directly in
the base space of gene expression. We argued that the evolution of the space curve
of string or the developmental trajectory of a cell could not be known in advance
due to the multi-dimensional nature of the strains. The new model is a significant
step forward from static Waddington picture and answers the question of why cells
do not start at the end if they know the end at the start: the directions of the
forces in the tangent space controlling the spatial rates of expression do not always
point downhill; by the time their direction is verified at every step, development is
complete. It was suggested that an alternative to reading out all the information
at once in the egg state is to require each time step to process an equally-sized
information fragment. That different shapes result when the parsimony principle
is violated was used in support of a mechanism whereby sequential processes arise
autonomously. New technologies that probe the spatial variation of gene expression
at the single-cell level [157, 244] will be indispensable in the search for evidence
that the connectedness and common origin of dividing cells determine their fates to
the same, if not greater, extent than heterogenous decision-making.
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4.4. Materials and Methods
4.4.1 Vector fields and the derivation of Hamilton’s equations
4.4.1.1 Hamilton’s equations

The following is a derivation of Hamilton’s equations (4.4) applied to rotational
motion; the reader is referred to [134, 172] in particular for additional exposition.
The analysis uses a number of central concepts from the differential geometry of
vector fields, for which [13] chs. 7 and 8 and [255] chs. 4, 5, and 7 are good
references.

Velocity and momentum of an n-dimensional object make up a 2n-
dimensional symplectic vector space in which each vector has a unique conjugate.
In this space, (bold face) vector fields and their commutators have the form

X =Ωi ∂

∂qi
+Ξi

∂

∂pi
(4.31a)

[X,Y] =Ωi
X

∂Ωj
Y

∂qi
∂

∂qj
+Ωi

X

∂ΞY
j

∂qi
∂

∂pi
+ΞX

i

∂Ωj
Y

∂pi

∂

∂qj
+ΞX

i

∂ΞY
j

∂pi

∂

∂pi

−Ωi
Y

∂Ωj
X

∂qi
∂

∂qj
−Ωi

Y

∂ΞX
j

∂qi
∂

∂pi
−ΞY

i

∂Ωj
X

∂pi

∂

∂qj
−ΞY

i

∂ΞX
j

∂pi

∂

∂pi

= [ΩX,ΩY] + [ΞX,ΞY] + [ΩX,Ξ
Y] + [ΞX,ΩY]

= [ΩX,ΩY] + [ΞX,ΞY] . (4.31b)

To show that the last two terms vanish, observe that the (unadorned) momentum
vector ΞZ can be written under the hat map (4.1) as ÎΩZ = AΩ̂Z + Ω̂ZA, where
A = 1

ρ0 ∫ ρ (R)R ⊗ RdnR is a symmetric matrix which is diagonal in the body
basis relative to the center of mass [119]. Together with the skew symmetry of Ω̂Z,
this tensor can be commuted as Ω̂ZA = AT Ω̂T

Z = −AΩ̂Z when multiplying on the
left. Then

[Ω̂X, Ξ̂
Y] + [Ξ̂X, Ω̂Y] = [Ω̂X,AΩ̂Y + Ω̂YA] + [AΩ̂X + Ω̂XA, Ω̂Y]
= (Ω̂XAΩ̂Y −AΩ̂YΩ̂X) + (Ω̂XΩ̂YA − Ω̂YAΩ̂X)
+ (AΩ̂XΩ̂Y − Ω̂YAΩ̂X) + (Ω̂XAΩ̂Y − Ω̂YΩ̂XA)

= (Ω̂XAΩ̂Y −AΩ̂YΩ̂X) + (Ω̂XΩ̂YA − Ω̂YAΩ̂X)
+ (−Ω̂XAΩ̂Y +AΩ̂YΩ̂X) + (−Ω̂XAΩ̂Y + Ω̂YAΩ̂X) = 0. (4.32)

Reversing the hat map of the quantities on the l.h.s. of Eq. (4.32) gives the desired
result in Eq. (4.32) for the Lie bracket of vector fields.
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A special vector field XH represents the change dH of an energy function
H ∶ R2n → R, but rotated 90○ clockwise. The condition dH = 0 that energy is
conserved along a path parametrized by s is expressed by the vanishing of

dH (s) = ∂H
∂q

dq + ∂H
∂p

dp = (∂H
∂p −∂H∂q )

⎛
⎝

0 I

−I 0

⎞
⎠
⎛
⎝
dq

dp

⎞
⎠
= Ω (XH (s)) , (4.33)

with I the identity on Rn. The canonical two-form Ω (not to be confused with the
vector ΩZ) defined in (4.33) takes as input XH and an additional vector field Y over
R2n; it returns 0 if Y is parallel to XH , or what is the same thing, orthogonal to the
Legendre transform of H (see [106] section 1 and [172] ch. 2).

Eq. (4.33) shows that Ω operating on XH defines a one-form Θ =
θi (p, q)dqi. Then Ω may be written as the differential

dΘ = dθi ∧ dqi = ( ∂θi
∂pj

dpj +
∂θi
∂qj

dqj) ∧ dqi = ∂θi
∂pj

dpj ⊗ dqi −
∂θi
∂pj

dqi ⊗ dpj (4.34)

in the direction of the input vector fields ([13] ch. 7). The wedge product dpj ∧dqi =
dpi ⊗ dqi − dqi ⊗ dpj is the volume element in the 2n-symplectic vector space
spanned by pj and qi; it is nonzero only if i = j because there is only direction
skew-orthogonal to any vector in a symplectic space (see Appendix 1.5.1 and [13]
ch. 8). Observe that with an input field X the first term of Eq. (4.34) can be written

∂θi
∂pj

dpj (X)dqi = ΞX
j

∂θi
dpj

dqi, (4.35)

and similarly for Y. The Lie derivative LX (Θ) = X (Θ), introduced in Materials
and Methods section 4.4.3.2, has the additional property of being a derivation, viz.

LXΘ = LX (θjdqj) = LX (θj)dqj + θjLX (dqj)

= (Ωi
X

∂θj
∂qi

+ΞX
i

∂θj
∂pi

)dqj + θjΩi
X

∂

∂qi
dqj (4.36a)

implying when the substitution θi = pi is made that

ΞX
i

∂θj
∂pi

dqj = X (Θ) −Θ (X) (4.36b)

(with implicit summation over i, j). With this substitution in Eq. (4.34), the version
in coordinates

Ω (X,Y) = dΘ (X,Y) = ΞX ⋅ΩY −ΞY ⋅ΩX (4.37a)
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assumes the coordinate-free form

dΘ (X,Y) =X (Θ) ○Y −Θ (X) ○Y −Y (Θ) ○X −Θ (Y) ○X

= X (Θ ○Y) −Y (Θ ○X) −Θ ([X,Y]) , (4.37b)

expressing the well-known result (see [172] ch. 4, [255] ch. 7) for the derivative of
a one-form.

Now, substitute Θ = pidqi in Eq. (4.37b) and observe that Θ ○Z = p ⋅ΩZ.
Use of the chain rule then gives

Ω (X,Y) = X (p ⋅ΩY) −Y (p ⋅ΩX) − p (ΩX ⋅ΩY −ΩY ⋅ΩX)
= dp ⋅X (ΩY) − dp ⋅Y (ΩX) − p ⋅ adΩX

(ΩY) , (4.38a)

while at the same time contracting Eq. (4.33) with vector field Y yields

Ω (X,Y) = ∂H
∂q

ΩY + ∂H
∂p

ΞY. (4.38b)

Upon collecting like terms and evaluating the dp’s, one finds Hamilton’s equations
for the evolution of momenta p and the velocities q that preserve level sets of H:

∂H

∂q
=ΞX − ad∗ΩX

(p) = p′ (s) (4.39a)

∂H

∂p
= −ΩX = g−1 (s) g′ (s) = q′ (s) . (4.39b)

In Eqs. (4.38) and (4.39), the vector ΩZ and the covector p are regarded
as elements of the Lie algebra g and its dual g∗, respectively. The vector adjoint adη

with η ∈ g satisfies the relation ⟨µ,adη (ξ)⟩ = ⟨ad∗η (µ) , ξ⟩ with the covector adjoint
ad∗η in the pairing between µ ∈ g∗ and ξ ∈ g. The adjoint action of a Lie algebra on
itself is defined from the differential of the Adjoint action by

adη (ξ) = Te (Lg ○Rg−1) ○ ξ = TeLgRg−1 ○ ξ +LgTeRg−1 ○ ξ → η ○ ξ − ξ ○ η (4.40)

as g = exp (tη) → e at the identity of the Lie group G. Under the association p ↤ p̂

and ΩX ↤ Ω̂X of vectors to skew-symmetric matrices via the hat map (4.1), the
ad and ad∗ operations in Eqs. (4.38a) and (4.39a) become synonymous with the
Lie bracket or matrix commutator. Finally, by dropping the subscript X we obtain
Euler’s equations for the evolution of the angular momentum along the string in the
presence of an applied torque:

p′ (s) = [p (s) ,Ω (s)] +Ξ (s) (4.4a)

g′ (s) = g (s)Ω (s) . (4.4b)
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The association of elements of g,g∗ with skew-symmetric matrixes is made through-
out the Results section 4.2 and in the sequel. Eq. (4.4a) is sometimes known as the
Euler-Poincaré or Lie-Poisson equation [119, 172], because the angular momentum
p is the fiber derivative or Legendre transformation of the Lagrangian L, and the
angular velocity Ω that of the hamiltonian H; the change in one can be expressed
as the (co)adjoint ad (ad∗) of the the other.

4.4.1.2 Keeping track of a fixed direction

Here we derive the result Γ̂′
n (s) = [Γ̂n (s) ,Ω (s)] of (4.8b) in the Results section

4.2.1 that forΓn = g−1χn, the body-coordinate representation of the fixedx direction.
Introduce an auxiliary parameter t so that the fixed and body normal agree

at t = 0, viz. Γn (s + t)∣
t=0

= χn (t)∣
t=0

. The role of t is to pick out a reference vector
for Γn and define rotations relative to it. Then in the equation

Γn (t + s) = g−1 (t + s)χn (t) , (4.42)

the matrix g−1 (s + t)→ e as t→ 0. Advancing along the string by a short amount ds
gives the normal as Γn (t + s + ds) = g−1 (t + s + ds)χn (t). One gets in the limit
that the derivative is

Γ̂′
n (s + t)∣

t=0
= lim
ds→0

g−1 (t + s + ds) − g−1 (t + s)
ds

Γn (s + t)∣
t=0
. (4.43)

However, the matrix Ω is tangent to g at the origin e; then we may differentiate
the identity I = gg−1 with respect to s and let both t, ds → 0 to find (g−1)′∣

t=0
=

−g−1g′g−1∣
t=0

= −Ω. Thus we conclude

Γ̂′
n (s) = −Ω (s) ⋅Γ (s) = [Γ̂n (s) ,Ω (s)] (4.44)

for all s (cf. [12] Lemma 2 ff. and [172] ch. 9.1). This important modification
keeps track of the rotation of the body frame for updating the angular momentum p.

4.4.1.3 Alternative derivation of the Euler equations

Energy conservation is ultimately what causes dynamical systems like the string to
change direction and explore different regions of the underlying phase space. Here
we use this principle to arrive at Euler’s equations (4.4) from the perspective of Lie
groups and Lie algebras.

Let g ∈ G be points in a Lie group G, ξ ∈ g the infinitesimal velocity
generators in the Lie algebra, and µ ∈ g∗ the associated momenta in the dual Lie
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algebra. Conservation of the energy functionH ∶ R2n → Rmeans that over a region
V ∋ (z, z) bounded by ∂V in a symplectic phase space

∮
∂V
H (z, z)dz = ∫ ∫

V

∂H

∂z
dz ∧ dz = −∫ ∫

V

∂H

∂z
dz ∧ dz = 0, (4.45)

or upon collecting dz terms of and evaluating dz in the ξ direction

H = ∫
∂H

∂z
∧ dz = ∫ dz ∧LH = 0 (4.46a)

dH = ξ ∧LH = 0. (4.46b)

Here, the coordinate z is conjugate to z in the sense that dz and dz form the boundary
∂V of the volume element V [13], and the Legendre transform

LH ⋅w = d

dt
H (z + tw)∣

t=0
= ∂H
∂z

⋅w (4.47)

denotes the increase of H in the direction w [106, 172]. Without loss of generality,
we may associate ξ ∈ g and µ ∈ g∗, belonging to conjugate vector spaces, with dz
and LH so that the pairing (4.46b) becomes

dH = ⟨ξ, µ⟩Ω = [ξ, µ] , (4.48)

where ⟨⋅, ⋅⟩Ω denotes the pairing under the canonical two-form (regarded as a map

from g∗ to g via the symplectic matrix
⎛
⎝

0 I

−I 0

⎞
⎠
; see Materials and Methods section

4.4.1.1 and [172] ch. 2), and [⋅, ⋅] is the Lie bracket. The geometric intuition is that
orthogonal velocities and momenta form the border of a region whose (directed)
volume is the energy increment. Evaluation of dH in its direction of maximum
increase means composing the increment vector with an orthogonal direction vector;
maintaining level sets of H means the direction vector is parallel to the increment
vector.

The condition dH = 0 is a constraint on the allowed pairings (ξ, µ) of
infinitesimal translation in g,g∗. Consequently, momentum can be regarded as a
function µ ∶ G ×R → g∗ defined on G for a given value of the energy (cf. [106]).
Because ξ = g′∣

t=0
are the s-derivatives of g = exp ξt at the identity, the variation of

µ with s can be written

µ′∣
s=0

= d

ds
µ(g + g′s + 1

2
g′′s2 +⋯)∣

s=0
= ∂µ
∂g
ξ = Xξ (µ) , (4.49a)
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or what is the same thing

(µi
∂

∂gi
)
′
∣
s=0

= ∂

∂s
(µi

∂

∂gi
)(gj + ξjs +⋯)∣

s=0
= ∂µi
∂gj

ξj
∂

∂gi
+ µiξj

∂2

∂gj∂gi

= ξj ∂µi
∂gj

∂

∂gi
− µi

∂ξj

∂gi
∂

∂gj
= [Xξ,X

µ] , (4.49b)

where in the second line we have used Eq. (4.65) from Materials and Methods
section 4.4.3.2. Here, Xξ = ξi ∂

∂gi
is the vector field corresponding the velocity

vector ξ, and Xµ = µi ∂
∂gi

is the corresponding covector field for µ. Eq. (4.49b) and

the condition ξ = g′∣
t=0

are another version of Euler’s equations (4.4), now in terms
of vector fields; they may be supplemented with an applied torque field. Eq. (4.49a)
is the equation for flow of a curve along a vector field (used in the Results section
4.2.4).

4.4.2 The connection one-form
This section expands the notion of free and constrained coordinates, in-

troduced in section 4.2.2, to the more general scheme of vertical and horizontal
coordinates, and shows how the latter are expressed using the connection one-form.
See [32, 171] for more details.

Let Q ⊆ Rn and E = Q ×P ⊆ R2n be two manifolds representing the base
space and the configuration space of a kinematical system. The projection mapping
π ∶ E → Q from the full configuration space to the realized body coordinates induces
a mapping π∗ between the tangent spaces defined by Tπ ∶ TE → TQ. The kernel
of π∗ at a point q ∈ Q defines the elements ξ ∈ g of the Lie algebra of (infinitesimal
generators of) motions of the body that are tangent to the orbit of the actions g ∈ G of
the Lie group through q. The horizontal lift of a vector u ∈ TQ is the unique vector
vh = horu ∈ TE satisfying π∗ (vh) = u. The vector v has a unique decomposition
into a horizontal part vh ∈ H ⊆ TE and a vertical part vv = v − vh ∈ V ⊆ TE . Because
Tπ (vv) = 0, it is clear that only vertical vectors in V represent allowed motions
of the body, whereas horizontal vectors in H specifically fail the constraints on
the system. In this way, horizontal vectors v are defined by nonzero values of the
connection one-form ω (v), which in (fixed-space) coordinates is written

ω (q)dq = dr +A (q)dt, (4.50)

naturally partitioning a tangent vector into its free dr and constrained dt parts. The
connection one-form ω operates on tangent vectors vq at q and returns 0 if the sum of
the free ds ( ∂

∂s
) and constrained Adt ( ∂∂t) parts of the local field ( ∂

∂s ,
∂
∂t
) vanishes.
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The map g′g−1 → g′ → g−1g′ from fixed to body coordinates is well-known
to be accomplished by applying the Adjoint map Tg Adg−1 in the tangent space at g to
both sides of (4.50). For the particular space-time constraints introduced in (4.9a),
it is clear that A = −c ∈ R3 (with units of dist. × time−1). Now, let dr = g−1g′ = ξ be
the body-coordinate representation of an element of g, which is naturally interpreted
as an angular velocity. Let TgRg−1 (vt) be a fixed-coordinate representation of dt.
Then the connection one-form

ω (q)dq = TgAdgξ − cTgRg−1 (vt) =∶ dλ (4.51)

describes the variation in the spatial delay (4.9a) of the allowed pairs (dr, dt); it is
zero for a single front of the twist wave followed through space-time. But when the
string is observed at a fixed time (say the present t = 0), the segments accumulate
delay dλ = ∥dr∥ = ds, with no translation in t. There must be a new constraint on dr
to make the variation dλ vanish. The most general one-form we can write to express
this constraint is

ω (q)dq = Tg Adg (αdx + βdy + γdz)
= Tg Adg [α′ds ⋆ (dy ∧ dz) + β′ds ⋆ (dz ∧ dx) + γ′ds ⋆ (dx ∧ dy)]
= Tg Adg ⋆ (Ω♭)ds = Adg Ωds. (4.52)

HereΩds is the skew-symmetricmatrix (again a one-form) corresponding to the two-
formΩ♭ (xi, xj) ∼ dxi∧dxj via the Hodge ⋆ operator from k-forms to (n − k)-forms,
and the ♭ operator from vectors to forms is defined in the sense that Ω♭ (xi, xj)xj =
Ω♭ (xi) = ωijxj is a linear function over xj (see [172] chs. 2 and 4). Equating the
two pictures (4.51) and (4.52) ensures that the same twist wavefront is observed at
the origin of time as in the present; the equality gives a condition for the permitted
elements of g:

Tg Adg−1 (ω (q))dq =ξ − cTg Adg−1 Rg−1 (vt) = Ωds

Ô⇒ ξ =Ωds + cTgLg−1 (vt) , (4.10a)

or equivalently

ξ =
⎛
⎝
Ωds cTgLg−1 (vt)

0 0

⎞
⎠
. (4.10b)

Using the fact that ξ = g−1g′, we can left-multiply (4.10) by g and integrate
over s to solve for the path of the group variables in the configuration space. Because
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se (3) = so (3)×R3 is a direct product space, integration is performed on the rotations
and translations separately. Since rotations h ∈ so (3) satisfy

h′ (s) = lim
ds→0

h (s + ds) − h (s)
ds

= h (s)Ω (s) , (4.54)

we can use the fact that

h′ (s)ds = h (s) (I +Ω (s)ds − I) ≈ h (s) exp (Ω (s)ds) − h (s) (4.55)

to write
h (s + ds) ≈ h (s) + h′ (s)ds = h (s) exp (Ω (s)ds). (4.56)

LetXt (g) be the vector field at g of translation in time at time t, defined in the sense
that Xt (g) (p) = vt for a curve g (t) ∈ G parametrized in time. Then the left action
of g on g in Eqs. (4.10) is found by the chain rule (see [172] ch. 9) to be

v0 = TeLeX0 (e) (p) = TeLg−1LgXt (e) (p)
= TgLg−1 (TeLgXt (e)) (g ○ p) = TgLg−1Xt (g) (g ○ p) = TgLg−1vt, (4.57)

showing that the time-translation vector field is invariant as time increases. Then we
may replace TgLg−1vt with v0 in Eqs. (4.10). By letting g → e at the origin of time
in Eqs. (4.10) and recognizing that dr is an infinitesimal translation in R3 along the
space curve r (s), viz.

ξ = Ω (t) + cTgLg−1vt
t→0ÐÐ→ dr = 0 + cv0, (4.58)

it is further possible to replace TgLg−1vt with 1
cdr. Altogether, substituting Eqs.

(4.56) and (4.58) in (4.10) and integrating each term give for an element g ∈ se (3),

g (s + ds) =h (s) exp (Ω (s)ds) + r (s) , (4.11a)

or equivalently

g (s + ds) =
⎛
⎝
h (s) exp (Ω (s)ds) r (s)

0 1

⎞
⎠
. (4.11b)

4.4.3 Sending vector fields between manifolds
4.4.3.1 Force equilibrium

A model of force equilibration was introduced in section 4.2.4. Suppose that
compressive forces push on the ends of a string of length L starting at time t0 < 0
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(Figure 4.4A). Let a segment of a string be an infinitesimal piece of length dL.
A contiguous region of segments of length dL define a section of length ∆L.
The following is a characterization of the condition that such a string be in force
equilibrium after a finite time.

At a time t0 < 0, the section (L
2 − (n − 1)dL, L2 ) containing n segments

pushes against the equally sized section (L
2 ,

L
2 + (n − 1)dL) to its right; the in-

teger n is also proportional to the strength of the applied force. In the figure,
stresses between segments are indicated by red lines, whereas unstressed seg-
ments are connected to themselves in blue. Segments in the interior sections
(L

2 − n−1
2 dL, L2 ) and (L

2 ,
L
2 + n−1

2 dL) are opposed by sections to the right and left,
respectively, but segments in the exterior sections (L2 − (n − 1)dL, L2 − n−1

2 dL) and
(L

2 + n−1
2 dL, L2 + (n − 1)dL) are not opposed by an equal number of segments in

(L2 −
3(n−1)

2 dL, L2 − (n − 1)dL) on the left and (L2 + n−1
2 dL, L2 +

3(n−1)
2 dL) on the

right, respectively. Thus, by Newton’s third law, the latter segments must push back
on the exterior segments in the subsequent time step.

Precisely, let the length be defined by L = 2m × 2N , with N half the
number of sections and n = 2m the number of segments per section before any force
has been applied, also proportional to the ultimate strength of the force. The the
interval permutation function is

σk (Ii ∣ k) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ii if i ∈ [N − k,N + k + 1]
Ii else,

(4.60)

where I is the association j ↔ 2m−k − j, indexed by k, among the elements of I .
The process of pushing out continues, with the number of sections involved

at time step k+1 satisfying the recursion ak+1 = 2ak+2, and the number of interfaces
equal to ak+1

2 , beginning with a1 = 2. This is understood from Figure 4.4A where
interfaces are represented by intersections of the stress lines. The number ν of
segments in each section at step k + 1 is n

2k
= 2m−k. Equilibrium is reached as

ν → 1 when the number of right-pushing and left-pushing segments in any section
are equal; it occurs at time t = 0.

4.4.3.2 Push forward, pull back, and the Lie derivative

Here we use the language of manifolds to represent forces on strings as vector
fields, as introduced in section 4.2.4. Vector fields map spatial points to the tangent
vectors of the curve through them. The advantage of a vector field formulation of
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twisting and bending is that it facilitates combining forces by the Lie bracket of their
representative fields. End shortening will be represented by B and twist by A.

In general, flow (see Eq. (4.15)) of a vector fieldB alongAmay changeB.
In coordinates, the vector fieldB on amanifoldM is bj ∂

∂zj
. IfM is the configuration

space of a section of the string, then the map Φ ∶M → N transforms the section
by changing its history (Figure 4.4B). If there has been no propagation (c = 0), then
M is the section containing point z, whereas in the presence of a force (c ≠ 0), z
becomes Φ (z) ∈ N through a spatial shift λ. The path Φ = Φt

A+B ○Φ−t
A represents

undoing spiraling and then applying spiral strain in the presence of end-shortening.
By the change-of-variables theorem for vector fields [128], one writes B

onM as

B = bi (z) ∂

∂zj
= d (Φ ○ z)i

dzj
bj (z) ∂

∂ (Φ ○ z)i
=DΦ ⋅BΦ. (4.61)

The new field acts on coordinates Φ ○ z of N as

BΦ (Φ○) =DΦ−1 ⋅B (Φ○) =DΦ−1 ⋅ bj (Φ○) ∂

∂ (Φ ○ z)i
(Φ○) =∶ Φ∗B, (4.62)

where the map Φ∗ ∶ TN → TM between tangent spaces is the pull back [172], so
defined because the "advanced" vector fieldBΦ onN is brought back toM as a new
vector field Φ∗B. If BΦ = Φ∗B is the push forward of B onto N (cf. Eq. (4.16)),
then it is clear that

Φ∗Φ
∗B =DΦ ⋅Φ∗B ○Φ−1 =DΦ ⋅DΦ−1 ⋅B (Φ−1 ○Φ) = B, (4.63)

showing that the pull back is the inverse of the push forward, and vice versa. As
a result B sends points in different directions on M and N (Figure 4.4B). The
differential D denotes the Jacobean matrix DΦ = dΦ(z)

dz = Φ, reflecting the fact that
Φ is the exponential map exp (Xt) = I + tX + t2 1

2!X ○X + ⋯ for matrix operators
(cf. [172] ch. 9.1).

The Lie derivative LXB of B along X is [172, 255]

LXB = lim
t→0

1

t
(Φ∗B −B)∣

t=0
= d

dt
DΦ ○B ○Φ−1∣

t=0
. (4.64)

By pushing B on M forward onto an ever-closer manifold N in the direction
of X, Eq. (4.64) gives the first order change in B along X; it may be written
[X,B] = X ○ B − B ○ X. Another way to get the result that the Lie derivative
is represented by the Lie brackets is to assume that X = ai (z) ∂

∂zi
≈ ai ∂

∂zi
is

approximately constant over a small ball containing z. Taking the derivative of X
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(still assuming it to be constant) with respect to zj then gives that ∂ai
∂zj

∂
∂zi

= −ai ∂2

∂zjzi

(see [255] ch. 5). Regarding B = bi (z) ∂
∂zi

as a function f of z, we may substitute
into the definition LXf = X (f) of the derivative of f in the direction of X to find
that

LXB (z) = (LXb
j (z)) ∂

∂zi
+ bj (z) (LX

∂

∂zi
)

=ai∂b
j

∂zi
∂

∂zj
+ aibj ∂2

∂zizj
= ai∂b

j

∂zi
∂

∂zj
− bj ∂a

i

∂zj
∂

∂zi

=X ○B (z) −B ○X (z) = [X,B] (z) , (4.65)

so that a vector field applied to a function is the (negative) Lie bracket of that field
and the field representing function’s derivative. Together, Eqs. (4.64) and (4.65)
show that the directionB takes whenmade to flow alongX is the difference between
its direction after flowing on X, and what it would have been had the points only
travelled on X. In general, the difference in the paths is not zero, and we have a new
controllable direction on the manifold.

4.4.3.3 The Zassenhaus expansion

This section explains the Zassenhaus expansion, introduced in section 4.4 for ap-
proximating the angular velocity matrix at points distant from the origin of a force.
The higher order derivatives of the Adjoint action of SO (3) on its Lie algebra so (3)
are shown to approximate the motion in se (3) ×R3 = so (3) ×R3 ×R3.

The manifolds M ∋ s and N ∋ s0 are connected via the space-time
constrains (4.9). Undo spiral strain A for time −∆t and apply bending strain
B in the presence of A for ∆t to get that the transformation from M to N is
Φ = Φ∆t

A+B ○ Φ−∆t
A (see Figure 4.4B and C). The flow Φ∆t

A+B must at every instant
satisfy the n-fold iterates of differential equation (4.15). If the path may be divided
into n equally-sized segments as

exp{(A +B)∆t} = exp (Cn∆tn) ○ ⋯ ○ exp (C2∆t2) ○ exp (B∆t) ○ exp (A∆t),
(4.66)

then the derivatives of A +B along A at the ith step must equal the derivatives of
the ith term on the r.h.s (indexing the A term as i = 0 and B as i = 1). At ∆t = 0, the
only remaining term is

B(i−1) = i!Ci. (4.67)

Notice that there is no A term because the Lie derivative of A along itself is 0. We
lose no generality in taking the propagation velocity c to be unity and replacing the
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time shift ∆t with its attendant spatial shift ∆s = s − s0. We then have that the flow
Φ along the propagated force field is

exp{(A +B)∆t} ○ exp (−A∆t)

= exp(B(n)
(s − s0)n

n!
) ○ ⋯ ○ exp(B′ (s − s0)2

2!
) ○ exp (B (s − s0)). (4.68)

This result relates the flow Φ to the changes in the generator B, which are multiplied
instead of added as in a usual Taylor series. The logarithm of this quantity is used to
derive the approximation (4.19) for the angular velocities in the semidirect product
group from those in so (3).

To calculate the coefficient B′ in (4.68), we need to know how A + B

changes along the path Φ = Φ∆t
A+B ○ Φ−∆t

A as ∆t → 0. In the sequel we replace
∆t↦ t because there is no notion of absolute time. By the product rule we evaluate
the Lie derivative as

LA+BLA−1 (A +B) = d
dt
DΦt

A+B ⋅DΦ−t
A ⋅ (A +B) ○Φt

A ○Φ−t
A+B∣

t=0

= d
dt

Φt
A+B ○Φ−t

A ○ (A +B) ○Φt
A ○Φ−t

A+B∣
t=0

= ((A +B) ⋅Φt
A+B ○Φ−t

A ○ (A +B) ○Φt
A ○Φ−t

A+B

−Φt
A+B ○A ⋅Φ−t

A ○ (A +B) ○Φt
A ○Φ−t

A+B

+Φt
A+B ○Φ−t

A ○ (A +B) ○A ⋅Φt
A ○Φ−t

A+B

−Φt
A+B ○Φ−t

A ○ (A +B) ○Φt
A ○ (A +B) ⋅Φ−t

A+B)∣
t=0

= (A +B) ○ (A +B) −A ○ (A +B)
+ (A +B) ○A − (A +B) ○ (A +B)

= [B,A] . (4.69)

Under the association X = ai ∂
∂xi
↦ ai ↦ X̂ under the hat map (4.1), the Lie bracket

[⋅, ⋅] becomes the matrix commutator. Observe that the same result is obtained by
replacing A + B ↦ B. Thus to a first approximation the direction of B at two
points s and s0 exposed to end-shortening for different amounts of time differ by
(s − s0) [B,A]. In a similar fashion one can evaluate the second derivative

d2

dt2
DΦt

B ⋅DΦ−t
A ⋅B ○Φt

A ○Φ−t
B ∣

t=0
= [A, [A,B]] − 2 [B, [A,B]] . (4.70)

The operation eXt ⋅ B ⋅ e−Xt is known as the capital Adjoint AdexpXtB,
and its derivative at the identity t = 0 is well known to be the lower-case adjoint
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adX B = [X,B]. Then using the fact that the nth iterate of the product rule is
(fg)(n) = ∑k (nk)f (n−k)g(k), and that composition ○ is the same as multiplication for
matrix operators, we find that the nth Zassenhaus coefficient is

B(n) = dn

dtn
AdexpBt ○Adexp−At ○B∣

t=0
=

n

∑
k=0

(n
k
) (−1)k adn−kB ○adkA ○B, (4.18)

after mapping back to vector fields by inverting the hat map. This may also be seen
directly in terms of vector fields by noting that if

AdexpXt ○B =∑
k

1

k!
adkX ○Btk (4.71a)

holds for a single element g = expXt (cf. [145] ch. 2.9 and [297]), then the nth

term of the expansion Adh ○Adg for a second operator h = expYt

AdexpYt ○AdexpXt ○B = AdexpYt ○∑
k

1

k!
adkX ○B

= ∑
n−k

1

(n − k)! adn−kY ○∑
k

1

k!
adkX ○Btktn−k

=∑
n
∑
k

1

n!

n!

(n − k)!k!
adn−kY ○adkX ○Btn (4.71b)

is the only surviving term when taking the nth derivative at t = 0, recovering Eq.
(4.18) when Y = B and X = −A. Eq. (4.18) is in agreement with Eqs. (4.69) and
(4.70); together with Eq. (4.68), it specifies how a force field B propagates in space
and time.

4.4.4 The transcription rate tensor
This section shows how derive the relationships between the tensor quan-

tities in section 4.2.5, and clarifies the precise meanings of upper and lower indices.
Let the spatial rate of RNAP transfer out of locus i to all other loci j be

expressed by the covector
Xi = xjκji , (4.20a)

with units of RNAP × dist.−1. Lower indices denote the contravariant components
of a vector relative to a covariant (row) basis, and upper indices the covariant
components relative to a contravariant (column) basis [79]. Although outflow of
spent RNAP from i measures its own turnover rate there, inflow of fresh RNAP
measures the local transcription rate. As transcription at each of the loci have
different efficiencies, the rate at locus i may be expressed

Zi = κijIjkIklzl, (4.20b)
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with units of trans. × dist.−1; the sum is over diagonal indices in corresponding
positions. The quantity Ikl = RNAP × trans.−1 is a cost function that measures the
worth in RNAP at k of one transcript from l; the reciprocal Ijk = RNAP−1 × trans.
expresses the number of transcripts at j resulting from the transfer of a single unit
of RNAP from k. The product Jij = IikIkj (= IjkIki) is a unitless conversion matrix
giving the worth of transcripts (amount of RNAP) from j at locus i in terms of
transcripts (RNAP) produced at i (j) by a single unit of RNAP (transcript) freed
from j (i); it is singular because if 1 transcript at i is worth α transcripts of j and β
of k, then j is worth α−1 of i and α−1β of k, showing that the j th row of Jij is the ith

row multiplied by a constant.
The contrasting perspectives for RNAP and transcripts require Xi to be a

row vector, and Zi a column; the relationship between them is assumed to be

xi = Iijzj, (4.21)

as theRNAP freed from j is not converted back to transcripts. Although Iij looks like
a matrix, it is actually a double covariant tensor (being the contravariant components
of a covariant basis) that turns the column vector zj into a row. When the two-form
I (z) (w) is regarded as a function over the second second vector input, the matrix of
the linear operator I (z) must be interpreted as sending contravariant basis vectors
ei (columns) to covariant ones ei (rows) by transposition, making the mapping the
transpose (Iij)T = Iij of the tensor [172]. The tensor index conventions Trow

col = Tto
from

and Tto,from make precise the notion of reversed transfer from transcripts to RNAP:

Iijzj = (I11 I12 I13) (I21 I22 I32) (I31 I32 I33)
⎛
⎜⎜⎜
⎝

z1

z2

z3

⎞
⎟⎟⎟
⎠
= zj (Iij)T

= zjIij = (z1 z2 z3)
⎛
⎜⎜⎜
⎝

I1
1 I1

2 I1
3

I2
1 I2

2 I2
3

I3
1 I3

2 I3
3

⎞
⎟⎟⎟
⎠
∶= (y1 y2 y3) = yi, (4.72)

which is a vector that acts on the covector xi from the left instead of the right.
Therefore, the transpose is associated with reversal of RNAP flow.

One obtains the relationship (4.22) between the transcription and RNAP
allocation rates in the following way. From Eqs. (4.20a) and (4.21) it follows that

Xi = xjκji = Ijlzlκji = Ijl (IlkIknzn)κji = JkjZjIki = ZjIji, (4.73)

where the fourth equality follows by multiplying Eq. (4.20b) for Zj = κji IikIknzn by
Iki and using the fact that the IkiIik = 1 for transfer of RNAP away from and back
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to locus k. Note also that in the last equality Jkj acts on Iki, a quantity in terms of
RNAP amounts; we do not have to assume it operates directly on the transcription
rate Zj . In a diagonal basis we recover the single-index convention with Iii → Ii
being the conversion of transcripts to RNAP at locus i to produce a single transcript
of gene i. The case in which diagonalization is not possible corresponds to the one
of gene-gene regulation: transcripts at locus j affects transcription at locus i by
transfer of RNAP via the off-diagonal components of Iij .

4.5. Supplementary Information
4.5.1 The inflectional elastica

The shapes of the inextensible rod that can be maintained with terminal
forces and bending moments alone are solution to Euler’s problem of the elastica.
When restricted to the plane, the elastica has curvature in the amountκ = κ2 projected
along the principal binormal, and no axial curvature. This section describes how
to find the solution curve using elliptic integrals. The curve can be differentiated
twice to find the angular velocity, which interacts with axial twist. The development
follows [28, 272]; additional information can be found in [65, 200] regarding the
elastica, or [242] ch. 9 regarding moment balance. The curve will be localized in
the xz plane, and the Euler angle θ will define the inclination of the tangent vector
relative to the fixed z axis.

The elastica is said to be inflectional or non-inflectional depending on
whether or not the bending moment ∂θ

∂s vanishes at any point along s, including
the endpoints. At such points, the graph x (z) has an inflection point separating
regions of positive curvature (opening down, toward positive x in our schemes, see
footnote 1) and negative curvature (opening up). Inflections occurring at the end
points indicate vanishing of the bending moments and hence of the applied torque.
However, the angle θ (0) = α need not be zero at the inflections, and it may be
written in the form

p = sin(α
2
). (4.74)

Elasticas with non-vanishing end moments must be maintained by torques as well
as tensions; they are not considered here.

It is initially assumed that a string of length L lies along the fixed z axis.
As the ends at s = 0 and s = L are brought together due to a compressive force,
the string deforms in the xz plane. The components of the compressive force F

parallel and perpendicular to the z axis are F cos (θ) and F sin (θ). The Bernoulli
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relationship between the curvature and (magnitude of) the bending moment M for
shapes localized to the xz plane is

M = EI2
dθ

ds
, (4.75)

so that positive curvature is supported by a counterclockwise moment (a vector
pointing to positive y) at the s = 0 face. The Young’s modulus E has units of
force × dist.−2, while the second moment of area in the y direction

I2 =
1

ρ0
∫

Σ
ρ (x, z)x (s) z (s)dxdz (4.76)

has units of dist.4 Here, ρ(x,y)
ρ0

is the unitless mass density, which is unity when
mass is equally distributed over face Σ. Then the moment (4.75) is measured in
force × dist. Opposing (4.75) is the end force F acting perpendicular to a cross
sectional face Σ of area A (s) with lever arm xmeasured from an inflection point at
s = 0; its moment, assuming a constant area A (s) = A is

x
F

A
= xT (4.77)

where T > 0 is the pressure exerted by F on the xy cross section at s. Vanishing of
the differential of the two moments (4.75) and (4.77) across a small section ds of
the rod implies

M = EI2
dθ

ds
+ xT

dM

ds
= EI2

d2θ

ds2
+ T sin (θ) = 0

θ′′ (s) = −λ2 sin (θ (s)), (4.78)

where λ =
√

T
EI2 is an adjustable parameter, and dx

ds = sin θ. Eq. (4.78) is the
governing differential equation for the elastica with height profile x (z).

To integrate (4.78), observe that 1
2
d
ds (θ′)

2 = θ′θ′′. Multiplication by the
integrating factor θ′ gives

1

2
(dθ
ds

)
2

= ∫ −λ2 sin (θ (z))dθ
ds
ds = −λ2 cos θ +C, (4.79)

wherein the initial conditions θ (0) = α and θ′ (0) = 0 give C = λ2 cosα. The length
of the string is thus constrained to be

L =∫
L

0
ds = ∫

L

0

dθ√
2λ

√
cos θ − cosα

= ∫
θ(L)

θ(0)

dθ

2λ
√

sin2 α
2 − sin2 θ

2

= 1

2λ ∫
θ(L)

θ(0)

dθ

p
√

1 − sin2 (φ)
= 1

2λ ∫
θ(L)

θ(0)

dθ

p cosφ
, (4.80)
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where the quantities

sin
θ

2
=∶ sin(α

2
) sinφ =∶ p sinφ (4.81a)

and

dθ

dφ
= 2p cosφ

cos ( θ2)
= 2p cosφ√

1 − sin2 ( θ
2
)
= 2p cosφ√

1 − p2 sin2 φ
(4.81b)

have been introduced using p as defined in (4.74) above.2 N.B.: φ is not the Euler
angle of the same name, but the elliptic amplitude, defined below. Substituting
(4.81b) into (4.80) and evaluating at an intermediate arc length s gives

s = 1

λ ∫
φ(θ(s))

φ(θ(0))

dφ

p cosφ

dθ

dφ
= 1

λ ∫
φ(θ(s))

φ(θ(0))

dφ√
1 − p2 sin2 φ

. (4.82)

The lower limit φ(0) is found from the condition sin θ(0)
2 = sin α

2 = p sinφ (0) = p,
which implies φ(0) = π

2 + 2nπ. Separation of the integral shows that

λs = −∫
π
2

0

dφ√
1 − p2 sin2 φ

+ ∫
φ(θ(s))

0

dφ√
1 − p2 sin2 φ

= −K (p) +K (φ (s) ∣ p)

λs +K (p) = ∫
φ

0

dt√
1 − p2 sin2 t

, (4.83)

where we have introduced K (p) = K (π
2 ∣ p) for the (complete) elliptic integral of

the first kind, also known as the elliptic quarter period. The angle

φ = am{λs +K (p) ∣ p} (4.84)

is defined as the amplitude of the dimensionless arc length λs+K (p) via the Jacobi
elliptic functions

sin (am{λs +K (p) ∣ p}) = sn (λs +K (p) ∣ p) (4.85a)

cos (am{λs +K (p) ∣ p}) = cn (λs +K (p) ∣ p). (4.85b)

Intuitively, p is the elliptical eccentricity parameter, equal to 0 for a circle. The the
amplitude φ is just the angle on a unit circle needed to trace an arc of length s+ K(p)λ

2Note also that transformation of the limits of (4.80) using the map θ ∶M→ N depends on the
transformation ∫M θ∗ω = ∫N=θ○M ω ○ θ, where ω ∈ N ∗ is a k-form over N , and the transpose map
θ∗ω is a form overM∗, evaluated by the coordinate transformation θ ○M. See [13] ch. 7 for more
details.
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on an ellipse of the same area. Conversely, the argument of the amplitude function
(4.84) is the elliptic arc length (in units of λ) swept out by a circular angle φ.

The upper bound φ (s) of (4.82) is found using Eq. (4.79) for θ′ =
λ
√

sin2 α
2 − sin2 θ

2 when θ′ = 0 at s = L. Along with the definition (4.74) for p, this

gives sin ( θ(L)2 ) = p sinφ (L) = ± sin (α
2
) = ±p, or sinφ (L) = ±1, which implies

φ (L) = π
2 +mπ. The first nontrivial solution of Eq. (4.82) occurs for n = 0 and

m = 1, which results in

λL +K (p) = ∫
3π
2

0

dt√
1 − p2 sin2 t

= 3K (p)

λL = 2K (p) , (4.86)

thereby providing a relationship between the string length L and the elliptic eccen-
tricity p.

The object is ultimately to find the x and z coordinates of the transformed
string. Using

x′ = sin θ = 2 sin(θ
2
) cos(θ

2
) = 2p sin (φ)

√
1 − p2 sin2 φ

z′ = cos θ = 1 − 2 sin2 θ

2
= 2 (1 − p2 sin2 φ) − 1, (4.87)

we may integrate to get

x = ∫
x

0

dx

ds
ds = ∫

φ(s(x))

φ(s(0))

dx

ds

ds

dφ
dφ = ∫

φ(s(x))

φ(s(0))

2p sin (t)
√

1 − p2 sin2 t

λ
√

1 − p2 sin2 t
dt

= 2p

λ ∫
φ(s(x))

φ(s(0))
sin tdt = −2p

λ
(cosφ (s) − cosφ (0))

= −2p

λ
[cos (am{λs +K (p) ∣ p}) − cos (am{K (p) ∣ p})]

= −2p

λ
cn (λs +K (p) ∣ p) (4.88)
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and

z =∫
z

0

dz

ds
ds = ∫

φ(s(z))

φ(s(0))

dz

ds

ds

dφ
dφ = ∫

φ(s(z))

φ(s(0))

2 (1 − p2 sin2 t) − 1

λ
√

1 − p2 sin2 t
dt

=2

λ ∫
φ(s(z))

φ(s(0))

√
1 − p2 sin2 t − ∫

φ(s(z))

φ(s(0))

1

λ
√

1 − p2 sin2 t

=2

λ
(E (φ (s) ∣ p) − E (φ (0) ∣ p)) − 1

λ
(K (φ (s) ∣ p) −K (φ (0) ∣ p))

=2

λ
(E (am{λs +K (p) ∣ p} ∣ p) − E (am{K (p) ∣ p} ∣ p))

− 1

λ
(K (am{λs +K (p) ∣ p} ∣ p) −K (am{K (p) ∣ p} ∣ p))

=2

λ
(E (am{λs +K (p) ∣ p} ∣ p) − E (am{K (p) ∣ p} ∣ p)) − 1

λ
(λs +K (p) −K (p))

= − s + 2

λ
(E (am{λs +K (p) ∣ p} ∣ p) − E (am{K (p) ∣ p} ∣ p)) , (4.89)

where E (π2 ∣ p) = E (p) is the (complete) elliptic integral of the second kind defined
in the obvious way on the second and third lines of (4.89). In the last line of (4.88),
we have used the fact that the amplitude am{K (p) ∣ p} of the complete elliptic
integral is the angle required to subtend one quarter of the elliptical circumference,
i.e., π2 , to eliminate the second cosine term. In the second-to-last line of (4.89), one
uses K (am{x ∣ p} ∣ p) = x, which literally says that the arc length covered by an
angle sufficient to cover the arc length x is x.

Note that Eq. (4.89) is of the form z = −s + ∆s. For the case of zero
deformation ∆s = 0, the z limits satisfy z (0) = 0, as expected, but also z (L) = −L.
Therefore, (4.89) inverts the ends of the rod. This can be dealt with in simulations
by preemptively inverting the rod by s↦ −s.

Inmeasuring derivatives g′ and p′ of the rotationmatrices g and the angular
momentum p in Eq. (4.4) it is important to take into account the direction in which
s is increasing. Starting at the center of the rod and moving rightward to s = L
means ds is always positive, even if the z coordinate decreases.

4.5.2 Perspective drawing of spheres
The circles in Figure 4.2 and 4.6 are drawn in a three-dimensional per-

spective using a skew axis in the xy to represent z. The transformation is exact
using the metric tensor prescription outlined here. Additional background can be
found in [79].

Representation of three-dimensional objects on a two-dimensional canvas
is defined by a rank-deficient linear projection mapping PM ∶ R3 → R2 onto a skew
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planeM ⊆ R2 spanned by vectors v1,v2 as

PM (w) = [vj ⊗ ei]w =
⎛
⎝
v1 ⋅E1 v1 ⋅E2 v1 ⋅E3

v2 ⋅E1 v2 ⋅E2 v2 ⋅E3

⎞
⎠

⎛
⎜⎜⎜
⎝

w1

w2

w3

⎞
⎟⎟⎟
⎠
=
⎛
⎝
v1 ⋅w
v2 ⋅w

⎞
⎠
, (4.90)

where w1,w2,w3 are the components of w relative to the standard Euclidean basis
{Ei} fixed to the body’s center of mass. Obviously, PM (w) = w for any vector
w ∈M , because

PM (w) =
⎛
⎝
v1 ⋅ (w1v1 +w2v2)
v2 ⋅ (w1v1 +w2v2)

⎞
⎠
=
⎛
⎝
w1

w2

⎞
⎠
= w. (4.91)

But ifw has components not inM , it will suffer angular distortion due to the unequal
sharing of the out-of-plane components among v1 and v2. The goal of perspective
drawing is to find, for an arbitrary view angle (azimuthal and meridional), the basis
vectors that make the third dimension appear undistorted.

The projection of a vector is faithful if it preserves magnitude, namely if
w and PM (w) = PM (w1E1 +w2E2 +w3E3) = w1v1 + w2v2 have the same norm
relative to the covariant and contravariant basis sets (see below). It is first assumed
that Z can be projected faithfully into M using the metric tensor, and a drawing
scheme is proposed. It is then shown that this projection is faithful using concepts
from the problem of simple shear in continuum mechanics.

4.5.2.1 The metric tensor method

The illusion of depth is accomplished using the metric tensors gij and gij , which
measure the dot products between pairs of covariant xi,xj and contravariant xi,xj

basis vectors, respectively, of M . Let the vectors x1 and x2 be the standard or-
thonormal basis vectors of the (x, y) Euclidean plane.3 Precisely, x1 ⋅x2 = 0, while
∥x1∥ = ∥x2∥ = 1. We seek to define a rotated set of basis vectors x1 and x2 that also
satisfy xi ⋅ xj = δji , but which possibly do not have unit magnitude. These vectors
are projections of a local (X,Y,Z) frame that rotates with the body. Let the x2

direction in the rotated system represent −Z, and let x1 be orthogonal to it (Figure
S4.1A). The angle between (positive) x1 and x2 axes is φ, and that between x1 and

3In general, bold face will denote basis vectors, and unadorned quantities their components; so
x1 is the covariant component of the contravariant basis vector x1 in the expression x1x1.
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x1 is π
2 − φ. From the usual definition of the dot product, it is readily found that

x1 ⋅ x1 = ∥x1∥ cos(π
2
− φ) Ô⇒ ∥x1∥ = 1

∣sinφ∣ (4.92a)

x2 ⋅ x2 = ∥x2∥ cos(π
2
− φ) Ô⇒ ∥x2∥ =

1

∣sinφ∣ . (4.92b)

Since the components of the metric tensors are found by gij = xi ⋅xj and gij = xi ⋅xj ,
all that remains in the definition of g are the (symmetric) cross terms:

x1 ⋅ x2 = 1

sinφ
cos(π

2
+ φ) = −cosφ

sinφ
(4.93a)

x1 ⋅ x2 =
1

sinφ
cos (φ) = cosφ

sinφ
. (4.93b)

Thus transformation from contravariant to covariant is given by

gij =
⎛
⎝

1
sin2 φ

− cotφ

− cotφ 1

⎞
⎠
, (4.94a)

and from covariant to contravariant by

gij =
⎛
⎝

1 cotφ

cotφ 1
sin2 φ

⎞
⎠
. (4.94b)

Of course, when φ = 0, we recover the situation where x1 = x1, x2 = x2, etc., so that
arbitrary vectors w ∈ Rn take the form w = w1x1 + . . . +wnxn.

The metric tensor can be used to express new vectors in terms of the old
by

x1 = g11x1 + g12x2 (4.95a)

x2 = g21x
1 + g22x

2. (4.95b)

Inserting (4.95b) into (4.95a) gives

x1 = g11x1 + g12 (g21x
1 + g22x

2)

= g11

1 − g12g21

x1 +
g12g22

1 − g12g21

x2, (4.96a)

and similarly

x2 =
g21g11

1 − g21g12
x1 +

g22

1 − g21g12
x2. (4.96b)



129

Thus, transformation between the rectangular (x1,x2) and rotated (x1,x2) basis
sets can be accomplished by

x1 = 1/ sin2 φ

1 + cot2 φ
x1 −

cosφ/ sin3 φ

1 + cot2 φ
x2 = x1 − cot (φ)x2 (4.97a)

x2 =
cosφ/ sin3 φ

1 + cot2 φ
x1 +

1/ sin2 φ

1 + cot2 φ
x2 = cot (φ)x1 + x2. (4.97b)

Therefore, the matrix

Aφ ∶=
⎛
⎝

1 − cotφ

cotφ 1

⎞
⎠

(4.98)

can be inverted to solve the linear equation

⎛
⎝

0

−1

⎞
⎠
= Aφ

⎛
⎝
x1
φ

x2,φ

⎞
⎠

(4.99)

for the (x1, x2) components of the basis vectors (x1,x2) representing the Z basis
vector with coordinates (0,−1) relative to the rotated (x1,x2) system. Figure
S4.1A, lower, shows that two ellipses (a1, b1) and (a2, b2) with horizontal and
vertical semiaxes a and b can be drawn on top of an ellipse (r1, r2) where

a1 = r1 + r3 ∣x1
φ∣ (4.100a)

b1 = r3 ∣x2,φ∣ (4.100b)

a2 = r3 ∣x1
φ∣ (4.100c)

b2 = r2 + r3 ∣x2,φ∣ (4.100d)

that will intersect at a point (r3 ∣x1
φ∣ , r3 ∣x2,φ∣) of the standard Euclidean plane, with

r3 the magnitude of the semiaxis in the third dimension of an ellipsoid (r1, r2, r3).
The matrix

A−1 =
⎡⎢⎢⎢⎢⎣
A−1
φ

⎛
⎝

0

−1

⎞
⎠
,A−1

φ

⎛
⎝

1

0

⎞
⎠

⎤⎥⎥⎥⎥⎦
=
⎛
⎝
− sinφ cosφ sin2 φ

− sin2 φ − sinφ cosφ

⎞
⎠

(4.101)

defines a transformation from body coordinates to the references basis, referring
direction vectors (X,Z)T in the body to their components (x1, x2) relative to the
fixed coordinate system (x1,x2) (see Figure S4.1E for the sense in which the body
element is defined). In particular, Eq. (4.101) refers a sphere in the third quadrant
to the standard basis after it has been rotated by φ.

Eqs. (4.100) are not the only ellipses with vertices on x1,x2 that have
intersections on −x2. Positive rotation by an angle φ is the same as a negative
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rotation by φ∗ = π
2 − φ. By making the transformation φ↦ φ∗ one gets the matrix

Aφ∗ ∶=
⎛
⎝

1 tanφ

− tanφ 1

⎞
⎠

(4.102)

and the linear equation
⎛
⎝

1

0

⎞
⎠
= Aφ∗

⎛
⎝
x1,φ∗

x2
φ∗

⎞
⎠

(4.103)

for the rectangular coordinates of the body basis vector (1,0) in the rotated (x1,x2)
system. In general, Aφ1 andAφ2 define different bases (x1,x2), but if the angles are
chosen such that φ2 = π

2 − φ1, then the vectors will overlap. As shown in in Figure
S4.1B, lower, the analogous set of ellipses (4.100) for Aφ∗ , viz.

a1∗ = r1 + r3 ∣x1
φ∗ ∣ (4.104a)

b1∗ = r3 ∣x2,φ∗ ∣ (4.104b)

a2∗ = r3 ∣x1
φ∗ ∣ (4.104c)

b2∗ = r2 + r3 ∣x2,φ∗ ∣ (4.104d)

are different from Eqs. (4.100), but they still intersect the original ellipse (r1, r2)
on −x2. If fact, because the φ↦ φ∗ transformation exchanges of the roles of x1 and
−x2 relative to the rectangular basis, Figure S4.1B is simply a 90○ rotation of panel
A. To see this explicitly, note that the analogous matrix to Eq. (4.101) is

A∗−1 =
⎡⎢⎢⎢⎢⎣
A−1
φ∗

⎛
⎝

0

−1

⎞
⎠
,A−1

φ∗
⎛
⎝

1

0

⎞
⎠

⎤⎥⎥⎥⎥⎦
=
⎛
⎝

cosφ sinφ cos2 φ

− cos2 φ cosφ sinφ

⎞
⎠
. (4.105)

Then the matrix
⎡⎢⎢⎢⎢⎣
A−1
φ

⎛
⎝

0

−1

⎞
⎠
,A−1

φ∗
⎛
⎝

1

0

⎞
⎠

⎤⎥⎥⎥⎥⎦
=
⎛
⎝
− sinφ cosφ cos2 φ

− sin2 φ cosφ sinφ

⎞
⎠
. (4.106)

has a vanishing determinant, showing the columns of this transformation are linearly
dependent: the body vector Ẑ = (0,−1)T is mapped by A−1

φ to the same vector as
X̂ = (1,0)T is by A−1

φ∗ . This completes the prescription of drawing ellipsoids in two
dimensions, assuming Ẑ is faithfully represented by −x2.

4.5.2.2 Faithful projections and shear

Having shown how to draw the theZ axis of a sphere in two dimensions, it remains to
be shown that this operation is well-defined. To accomplish this goal, we show how a
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faithful projection map is the same as isochoric simple shear of the Euclidean plane.
Before stating the result, we introduce some terminology; further background may
be found in reference [50], ch. 2. In the problem of isochoric (volume-preserving)
simple shear, one layer (the horizontal, say) of a rectangular area element translates
by a factor γ relative to another. The linear transformation

F =
⎛
⎝

1 γ

0 1

⎞
⎠
= RU = VR, (4.107)

is broken down into a stretch U (V) along two so-called principal axes, followed
(preceded) by a rotation R. F is known as the deformation gradient, and it sends
vectors in a body-centered material basis to equivalent positions in a fixed basis.
Matrices A−1 and A∗−1 of Eqs. (4.101) and (4.105) also refer material vectors to a
fixed basis, but without changing the their relative angles.

Let (−x1,−x2) = (z, x) be the coordinates of an orthonormal fixed basis
(relative to (−x1,−x2)), and (Z,X) an orthonormal material basis oriented at a
positive angle φ from the fixed basis. In Figure S4.1C, the material basis is an
element in the third quadrant with +Z originally (φ = 0) aligned with z and +X with
x. If shearing preserves area, detU = detV = 1, and the relationship between the
two bases is

⎛
⎝
Z

X

⎞
⎠
= RTV−1

⎛
⎝
z

x

⎞
⎠
=
⎛
⎝

cosφ − sinφ

sinφ cosφ

⎞
⎠
⎛
⎝
α−1 0

0 α

⎞
⎠
⎛
⎝
z

x

⎞
⎠
=
⎛
⎝
α−1z cosφ − αx sinφ

α−1z sinφ + αx cosφ

⎞
⎠
.

(4.108)
(Observe that RT in Eq. 4.108 corresponds to a counterclockwise rotation of φ > 0,
the result of undoing a clockwise one.) A square in the material basis (Z,X) is
bounded by the lines Z = 0 and X = 0; these values in Eq. (4.108) determine the
lines

x = α−2 cot (φ)z (4.109a)

x = −α−2 tan (φ)z, (4.109b)

which get transformed into the unit square if the shear is undone. At φ = 0, the
complementary stretchesα andα−1 operating respectively on the z and x coordinates
transform the material points as

(z,αz)↦ (αz, z) (4.110a)

(z,α−1z)↦ (αz,α−2z) . (4.110b)
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As shown in Figure S4.1C, Eq. (4.110a) transforms the leg OA into OA′ by
reflection over the dashed 45○ line, preserving the angle φ relative to one of the axes.
The angle φ and the corresponding φ1, defined by OC ′, satisfy

tanφ = 1

α
= α−1 (4.111a)

tanφ1 =
α−2

α
= α−3, (4.111b)

as seen by putting z = 1 in Eqs. (4.110). From Eqs. (4.109), the sheared shape is
bounded by the lines

x = α−1z (4.112a)

x = −α−3z. (4.112b)

Eq. (4.112a) defines the material element that shortens in Figure S4.1C, whereas
(4.112b) defines the one that lengthens; clearly they need not be orthogonal.

Shear is completed by a negative rotation of 2ψ = 2 (π
4 − φ) that reorients

axis (4.112a) with the body Z axis, in agreement with the interpretation of shear as
a shift by a factor γ in one direction. From Figure S4.1D the shift factor may be
calculated as

γ = tan(π
2
− φ − φ1) =

1

tan (φ + φ1)

= 1 − tanφ tanφ1

tanφ + tanφ1

= 1 − α−1α−3

α−1 + α−3
= α

2 − α−2

α + α−1
= α − α−1. (4.113)

The quadratic (4.113) is readily solved to give the relationship

α = γ
2
+
√

1 + γ
2

4
; (4.114)

together with (4.111a) and the double angle formula, it gives as well that

φ = 1

2
tan−1 (tan 2φ) = 1

2
tan−1 ( 2

α − α−1
) = 1

2
tan−1 (2

γ
) . (4.115)

Eqs. (4.113)-(4.115) are well-known results from continuum mechanics. They
illustrate the important fact that simple shear is completely characterized by either
γ, α, or φ. Although φ is restricted by (4.115) to the range (0, π4 ), negative shears
may be defined by the observation made above that a positive rotation by φ is the
same as a negative rotation φ∗ = π

2 − φ. If the material element is an element of
the fourth quadrant with +Z originally aligned with −x1 and +X with −x2, then
negative rotation by φ∗ defines the same element OABC in Figures S4.1C and D,



133

but with the lineOC preserved during shear instead ofOA. One reasons this by the
convention that the stretch α in Eqs. (4.109)-(4.112) was arbitrarily assigned to the
line sloping at the cotangent of the rotation angle.

Having introduced the parameters that define simple shear, we are in a
position to state the following result:

Theorem 4.5.1. A projection map PM ∶ R3 → R2 of a vector in R3 onto a plane
M ⊆ R2 is faithful if and only if the basis vectors v1,v2 of M represent a simple
shear of the standard basis of R2.

Proof. To show sufficiency, consider the sequence in Figure S4.1E. Suppose the
sphere is oriented so that an observer looks down the body Y axis onto an element
of the third quadrant of the ZX plane (panel i.). Projection in this orientation
is clearly faithful, because the basis vectors Ẑ and X̂ map to unit vectors in the
−x1 = −x1 and −x2 = −x2 directions in the fixed basis. Then any vector in the ZX
plane has the samemagnitude when referred to coordinates ofM . Next suppose that
Ŷ is exposed by rotation of the sphere about through π

2 −φ about some vector in the
ZX plane (panel ii.). What vector should rotate with Ŷ in order that Ẑ be faithfully
projected into M? If the ZX element is first rotated through a counterclockwise
angle φ, then the Z and Y vectors rotate together (panel iii.). Some information in
the Z direction is lost, however, when only sinφ in that direction is projected onto
the fixed x2 axis (panel iii.). But use of the metric tensor in Eq. (4.92b) in the
rotated basis shows that ∥x2∥ = 1

∣sinφ∣ , so that

∥PM (Ẑ)∥ = ∥sinφ ⋅ x2∥ = ∣sinφ∣ ⋅ ∣ 1

sinφ
∣ = 1. (4.116)

Thus the requirement that Ẑ be faithfully projected entails rotation by φ. But prior
rotation of a ZX area element by φ is equivalent to simple shear of that element.
Therefore, the projected vectors PM (Ẑ) = v1 and PM (X̂) = v2 define the sides of
a skew element inM . Another way to understand why shear is faithful in Ẑ is that
the deformation gradient (4.107) leaves the Z axis invariant if the X coordinate is
zero (see Figure S4.1C and D).

To prove the only if direction, we seek conditions in which the original Ẑ
unit vector and the planarv1 direction vector satisfyPM (Ẑ)⋅v1 = 1 andPM (Ẑ)⋅v2 =
0, so that two unit vectors from different bases have the samemagnitude. First define
by N the plane spanned by x1 and x2, and let the angle between PN (Ẑ) and −x1

when the planes ZX and N are superimposed be φ. Then PN (Ẑ) has magnitude
1

∣sinφ∣ in the planar −x2 direction, as prescribed by the metric tensor (4.92b). But
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the vector −x2 ∈ N onto which Ẑ is projected undergoes a stretch of α−1 = tanφ,
by virtue of its being along the principal shear axis x2 = α−1x1 (cf. Eq. (4.112a)).
Then,

PN (Ẑ) ⋅(−x1) = ∥PN (Ẑ)∥ ⋅∥−x1∥ ⋅cosφ = ( 1

sinφ
⋅ tanφ) ⋅(1) ⋅cosφ = 1. (4.117)

By hypothesis, a rectangular element bounded by unit vectors −x1 and −x2 in the
plane N undergoes isochoric shear into vectors v1 and v2 in a planeM . Then −x1

and v1 are related by a rigid rotation Rφ (−x1) = v1 through an angle φ, and the
matrix for projection ontoN (cf. Eq. (4.90)) is fj ⊗Ei for basis vectors fj ofN and
Rφ (fj) ofM . Regarding −x1 as a linear function over PN (Ẑ) and using the metric
tensor gij to transform from an orthonormal (v1,v2) to a skew (v1,v2) basis ofM ,
we find that

PN (Ẑ) ⋅ (−x1) = ⟨PN (Ẑ) ,R−φ (v1)⟩ = ⟨Rφ (PN (Ẑ)) ,v1⟩
= ⟨[Rφ (−x1)⊗Ei +Rφ (−x2)⊗Ei] Ẑ,v1⟩
= ⟨[v1 ⊗E + v2 ⊗Ei] Ẑ,v1⟩
= ⟨[(1 + g11)v1 ⊗Ei + g12v

2 ⊗Ei] Ẑ,v1⟩
= ⟨PM (Ẑ) ,v1⟩ = PM (Ẑ) ⋅ v1, (4.118)

comparison of which to Eq. (4.117) allows us to conclude that PM (Ẑ) ⋅ v1 = 1.
Then if v1 has unit magnitude, PM (Ẑ) does as well. Therefore, shearing of the
basis elements of the Euclidean plane leads to faithful projection of Ẑ.

The consequence of Theorem 4.5.1 is that the rotated basis defined by the
metric tensor is a faithful projection of Ẑ. Although some information is necessarily
destroyed because we cannot see all of the Z axis, the underlying plane onto which
it is projected has been distorted to such an extent so as to preserve the illusion of
depth.
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Figure 4.8 (preceding page): Autonomous evolution of gene expression in thepresence of
strained gradients of RNA polymerase. (A) Input RNAP distributions at three loci versus
the transformed coordinate (left) and real space (right). Locus 1 is gaussian distributed in
s′ (µ = 0.1`, σ = 0.5`), locus 2 exponentially (λ = 3`), and locus 3 uniformly. The density
of RNAP at locus 2 in real space (bottom) is substantially higher than at the other loci.
(B) Straining the cumulative RNAP allocation profiles. The three-dimensional plots show
the cumulative fraction of RNAP allocated to gene i compared to genes j and k. Strain
is measured by the angular deviation of the tangent lines ti,j from the identity line (where
RNAP is allocated with no bias). The unstrained profile (black) is subject to the angular
momentum evolution equations (4.30) initiated from s′ = 0.1`, and bends to accommodate
the constraint of constant total RNAP (blue). (C) Conversion of the output RNAP allocation
profiles in real space s (left) to gene expression profiles (right) by the diagonal cost functions
Ii. Parameters are I1 = 3, I2 = 6, I3 = 12, ` = log (10) (in s′), and L = 10 (in s). The dotted
regions of the profile in B are excluded because the RNAP fraction goes above 1.

Figure S4.1 (preceding page): Projection mapping and shear. (A, B) Two rotated bases
for drawing a three-dimensional sphere in two-dimensions. The horizontal and vertical
ellipses defined byEqs. (4.100) are shown in blue and red. For the sphere r1 = r2 = r3 = 100.
The rotations are defined by φ = π

6 (A) and φ∗ = π
3 (B). The −x2 axis is a faithful projection

of the Ẑ (A) or X̂ (B) axis. Insets show the definitions of the angles, with the unit vectors
drawn to reflect their different magnitudes. (C, D) Simple shear defined by the rotation
angle φ of an XZ element relative to a square element in the fixed basis (−x1,−x

2). The
square element OABC with side length L = 5 in the third quadrant undergoes stretches
α = cotφ and α−1 along vectors parallel toOC ′ andOA′ (C), followed by negative rotation
of 2ψ (D), resulting in shear by γL of BC relative to OA. (E) Shearing of anXZ element
of the body (i.) is equivalent to faithful projection of the basis vectors. Rotation by φ about
Ŷ and subsequent rotation of π2 − φ about X̂ (ii.) preserves an amount sinφ of the Ẑ when
it is projected on principal axis v1 in the (x1,x

2) plane (iii.). The projection is faithful
because the rotated basis (x1,x2) has unit vectors with magnitude 1

∣sinφ∣ (iv.).
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