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Abstract.

Maximal cliques in various graphs with combinatorial significance
are investigated. The Erdds, Ko, Rado theorem, concerning maximal sets
of blocks, pairwise intersecting in s points, is extended to arbitrary
t—designs, and a new proof of the theorem is given thereby.

The simplest case of this phenomenon is dealt with in detail, pamely
cliques of size r in the block graphs of Steiner systems S(2,k,v).
Following this, the possibility of nonunique geometrisation of such
block graﬁhs is considered, and a nonexistence proof in one case is given,
when the alternative geometrising cliques are normal.

A new Association Scheme is introducea for the 1l-factors of the
complete graph; its eigenvalues are calculated using the Representation
Theory of the Symmetric Group, and various applications are found,

concerning maximal cliques in the scheme.
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INTRODUCTION.

A clique in a graph is a set of vertices such that any two aré
adjacent. By a maximal clique, in this thesis, we shall mean a clique
which reaches a prescribed bound. The bound that we shall be most
interested in, in Chapters II, III, and IV is that given by a generalisation
to t-designs (due to the author) of the Erdds, Ko, Rado Theorem. The
graphs that we shall be concerned with in these chapters are the block
graphs of the designs, with the blocks of the design as vertices. They
contain certain cliques which correspond to the sets of blocks through
a point of the design. The afore-mentioned theorem states that in most
cases these are the largest cliques in the block graph. We investigate
the possibility of other cliques of the same size, paying particular
attention in Chapter III to the simplest case, Steiner systems S(2,k,v).

Following this we consider the possibility of nonunique geometrisation
of a block graph. This requires the existence of another set of cliques,
of the éame size as our special cliques, on which can be defined a
t—design with the same parameters as the original. We determine a
relation between two such sets of geometrising cliques, in the case of
2-designs, and consider in detall an extremal type of clique, which we
call a normal cliqué, and show that an alternative geometrisation by
normal cliques of the block graph of a 2-design gives rise to a symmetric
design on the points of the original 2-design.

Steiner systems can be viewed as maximal cliques in graphs derived

from Associetion Schemes, the basic theory of which is dealt with in

Chapter I. In Chapter V we define an association scheme on the l-factors
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of the complete graph on 2n vertices, give a method for determining
its eigenvalues, and apply this method for the cases n = 4,5,6. The
work relies heavily on the Representation Theory of the Symmetric Group.
We again look at various maximal collections of 1l-factors with

combinatorial significance.
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CHAPTER 1.

ASSOCIATION SCHEMES; CLIQUES AND DESIGNS THEREIN; FURTHER EIGENVALUE

TECHNIQUES; DEFINITIONS.

(1) Association Schemes.

An association scheme on a set Q of size v 1is a partition of
the 2-subsets of Q into m classes or relations Rj,..... «esR

satisfying
(a) xeﬂ::) (gy: gy,xSéRi gl:V;.

(b) x%yé& s gX,YBG Rs

=7l§z= 2, x5 € Ry, {Z’yséng}'pijk’

for nonnegative integers V¢ (i= 1l,......,m)

and P; i (B3, % 1yenssi)s

To each relation Rj we can associate a graph on ﬂ with adjacency

matrix Aj; of size v. If we let Ay = I, the identity matrix, we have
J = Ao+ A1+ eeeeenes AL,

where J 1is the v x v matrix of all 1's.

Furthermore we have
m

Ax Aj = Aj Ak:ZO Pijk Ai 5
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where the pijkls with one or more subscripts zero are suitably defined.
So the Ai's span an associative and commutative algebra Cl_ , known
as the Bose Mesner algebra of the scheme.

Let V be the v-dimensional vector space over the complex numbers
on which the matrices Ai can be said to act. Then there exists an
orthogonal decomposition V=V ® Vl@ ceee@®V, (the eigenspaces
of the Ai's, which are simultaneously diagonalisable) such that if

E; denotes the matrix of the orthogonal projection V=V, then

(:x_ m m
= span ?l&-i’ = span §'E- g .
Ti= o tY4:0

g

It is customary to take V_ = span §' Elgply smm o smaab) 3 . The V.'s

are known as the eigenspaces of the algebra, and dim Vi =/ij) say.

(2) Eigenvalues of the scheme, and Delsarte's inequalities.

We have Ay = Pj(O) E, + Pj(l) Eﬁ s P 4-Pj(m) Em,

for scalars Pj(k) which are known as the eigenvalues of the scheme.
It is not difficult to show that the Pj(k)'s, together with the m's
determine all the pgrameters of the schemé.

Delsarte (7) devélops conditions on the distribution vector of a
subset of elements of the scheme in terms of the eigenvalues. Given a
subset Y s=§2., its distribution vector a is an m +1 dimensional

vector with



(5)

B = i Zl{{y,zginﬁil, i =1 to m

= \Y|  v,z¢

Delsarte's inequalities state that
m

Z a5 Pi(j)/vjzo, for i=0 to m,
d = 8

and so a knowledge of the eigenvalues restricts the possible subsets of
the scheme.
Let ¢Y be the characteristic vector of Y. Then the inequalities

are equivalent to the fact that

T

m
since By = Mi Z Pi(J) As
/: j= 0 V., !

J

(3) The Johnson and Hamming Schemes.

The Johnson scheme is defined on pk(v), the set of all k-subsets
of a v-set. There are k nontrivial relations, (as long as v 2 2k+1),

depending on the intersection of the two sets, i.e.
{A,BS ¢ R, if and only if [AnBl = k- 1.

These schemes provide a general setting for the theory of statistical
designs, and set intersection problems.

v
The Hamming scheme is defined on GF(g) , the set of all vectors



(6)
[oG S
in a v-dimensional vector space over a finite field. There v nontrivial
relations, depending on the number of nonzero entries in the difference
Vv, — ¥,y for two vectors in the space. These schemes are of use in the
theory of error-correcting codes.
The eigenvalues of the Johnson scheme are given by

i

P, (3) = 2 (_1)‘1({1)(1; :{D(V b j)

uszo0

For the Hamming scheme we have
g : '
u G- V—u)(a)
P,-(j)-'z (a) (a-1) (j-u u )

u=0
i

(4) A simple application of eigenvalue methods.

Let us suppose that we have a family (:1_ of k-subsets of a v-set,
(where v 22k + 1), which pairwise intersect in at least one point.
Then this is a coclique in the graph corresponding to empty intersection.
We have the following bound due to Hoffman (18) on the size ™ of a

coclique in a regular graph, namely
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< ;\
v 5
X < re e

where v 1is the number of vertices,
d 1is the valency,
7\ is the minimum eigenvalue of the adjacency matrix.

By examining the eigenvalues P, (j) cf the graph, we find
(v -k -1
A = P(1) = (1)\ k-1

is the smallest eigenvalue of Ak

0
N
~
W o
)
[
[

l) - (E) - (v—l).

-1 v -k k-1
1 ) ( = +1

This is the simplest case of the theorem of Erdos, Ko, and Rado (12).

73
L
=
SN—r
4+
P
<
L
[ Ll

(5) The code—clique theorem.

A subset Y of an m-class association scheme is a clique with -
respect to relations {Ri s ie Njg for some subset N of'{l,....,m} ’
if dits distribution vector satisfies

a;= 0 for all i%N, id o0,

It is a code with respect to these relations if

ay= 0 for all ié€ N.
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Let Y be a code with respect to {Pi : ieN} s and Z be

a clique with respect to the same relations. Then

For a proof see Delsarte (7).

(6) t—designs in the Johnson scheme.

A t-(v,k,\) design is an ordered pair’ (X,B), where X is a_ -
set of size v, and @ is a family of k-subsets (blocks) of X
with the property that any t-subset of X is contalned in exactly A
of the blocks of 03 . To avoid degenerate cases, it is assumed that
o<t<k<v.

v v
Consider Nt,k a (t) by (k) matrix with rows indexed by

ﬁtgv), and columns indexed by ﬁk (v), with

Ny i (t,B) = z 1 if teB,

0 if not.

Then if ¢Y is the characteristic vector of the blocks of a t-design,

g,k ¢Y =Ad

v
where j is the (t) colum vector of all ones.
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{
l.e thk ¢y = k _J_ = O’

(¥2%)

where j’ is the (]&) colum vector of all ones.

It can be shown , (7), that the row space of NE;K is Vv,®& V& ...@DVk.

Hence, if géy is the characteristic vector of a t-design,
£ @, = Ezsi\[n ....... =B, @, = 0.

(7) The :degree of a subset of §73&(v).

This is defined to be one less than the number of nonzero entries
in the distribution vector of the subset. We have the following theorems

due to Ray-Chaudhuri and Wilson (25).
<v
Theorem: If a subset Y of CFL(V) has degree d, then 1Y}£§- d/.

Theorem: The number of blocks, }(fsl s of a 2s-design satisfies
v
(&1 > (7)

Proofs of these can be found in (7).

Finally, we have the following;

Theorem: Suppose we have a t-design Y of degree s, with t222s-- 2.
Then the restriction of the Johnson scheme to Y is an association
scheme with s classes,

See Cameron and Van Lint (5).



(10)

(8) Interlacing Theorems.

In his thesis, W.Haemers (15) gives a full account of the method
of interlacing for the eigenvalues of a square matrix and a square submatrix,
and many applications in the theory of graphs and combinatorial structures.
We give here one of his fundamental theorems, which we shall make use:of
in Chapter III.
Definition: OSuppose that A and B are square matrices over the complex

numbers, of size n and m respectively, with m<n. If
N1 2A,6) 2 A g (d) for a1l i=1 to m,

~then the eigenvalues of B are said to interlace those of A.

If there exists an integer k> 0, k< m, such that

9\1(A) :‘/\i(B) for i

n

1 to k,

and A ppei(A) = N\ 1(B) for 4

n
"
}
—
k-
o
=

-

then the interlacing is said to be tight.

*
Theorem: Let S be a complex n x m matrix such that S S= I,
(where s* is the complex conjugate transpose of S). Let A be a

3¢

Hermitian matrix of size n. Define Bx= S A S. Then,

(1) the eigenvalues of B interlace those of A.
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1) 12 A @ €3N W, A (W] tor some
i i n-m+i
ie 21,.....,m} s then there exists an eigenvector v of B with
eigenvalue 9 (B), such that S v is an eigenvector of A with the same
i
eigenvalue.
(i1i) If for some k € §1,.....,m%, (A) 9\ (B)
for all ie{l,....,kg, and y_i is an eigenvector for B with value
A (B), then Sv is an eigenvector of A with eigenvalue \ (B)
i i i

forall 1i=1,...,k.

(iv) If the interlacing is tight, then S B= A S .
For our purposes, S = [Ifn ’ O]

(9) Other Definitionms.

A Steiner system S(t,k,v) is a t-(v,k,1) design. When R>l,

we write a t-(v,k,’A) design as an Sa(tyk,v).

A symmetric block design is a 2-(v,k,\) design in which the number
of blocks b= v. By the second theorem in section (7) of thie Chapter,

b 2 v, which is Fisher's inequality.

A pairwise balanced design is a pair (X,03), where X is a set
of size v and @ is a set of subsets of X, (of no prescribed size),

such that any two points of X are contained in exactly one element

of@
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The block graph of an S(2,k,v), written BG[S(2,k,v)] , or BG
when it is known which Steiner system we are talking about, has as vertex
set the b blocks of the Steiner system, and as edge set the pairs of

incident blocks. Block graphs can be defined for more general designs.

A partial geometry and a strongly regular graph are as defined in
Bose (1). A strongly regular graph can also be regarded as a 2 class

association scheme.
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CHAPTER 1II.

MAXTMAT, CLIQUES IN THE BLOCK GRAPHS OF t-DESIGNS.

(1) An extension of the Erdds, Ko, Rado theorem to t-designs.

In (26) the following theorem is proved:
Theorem: Let represent the set of blocks of a t—(v,k,?\) design.
Given 0< s< t=<k, then there exists a function f(k,t,s) with the
following property: suppose there is a set CL& @ of blocks such that

for all 4,Be A, lAn BI > s ;3 then if v > f(k,t,s),
l CL} < bg = the number of blocks through s points.

Furthermore, if v > f(k,t,s), then theionly families of blocks reaching

this bound are those consisting of all blocks through some s points.

If s<t -1, then f(k,t,s)< 34(15() (k -s+1)(k - 8).

2

If s=t -1, then f(k,t,s)< s+ (k - s) (]g) x

It is well known that for any s< t, the number of blocks, be ,
through s points of X, is independent of the choice of these points,

and

oen (129/(29)
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Extensive use is made of the fact that
n n-1\_ n/
: 4 (r -1/" : S

Let é)év) denote the set of all k-subsets of a v-set. Then it
may be regarded as a k-(v,k,1) design. So the theorem has the following
theorem due to Erdds, Ko , and Rado, (12), as an immediate corollary:
Theorem: Given 0 <s< k=<v, then there exists a function g(k,s)
with the following property: suppose there is a set Q of k-subsets
of a v-set such that for a11 4,2 (], ]A A Blzs; then if

v 2 g(k,s),
o NPt
< \k - s/, the number of k-subsets containing an
s—subset.
Frankl (13) has shown that if s =15, then,
glkys) = (k = s +1)(s+ 1)+ s,

and conjectures that this holds for all s.

Proof of the theorem:

Let a be a family of blocks satisfying the conditions of the
theorem. Let f, be the set of s-subsets which are at the intersection

of at least two blocks of CL . Let n,. Dbe the number of blocks of a.

p
containing the s-subset p of the family € . Let !&l.—.w.
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Count (p,B) such that pe €. , peBe(l, to obtain,

Count (p,B,A) such that pe€ , pe Bah, with A,Be CL;

Z n (n —1)=Z(IAZBI) > w(w — 1).
pe€ P P ad B
A,BeQ

Now if a is not the set of all blocks through an s-subset, then ,
for each pe€ e ¥ there is some block BGQ , with p_jé B. Any
other block Ae CL , which contains p, contains at least s points of

B. So if d 1is the maximum number of blocks of @: which contain p

and at least s points of B, then nps d. Hence,
> :)
wiw - 1)< (d - 1) np=<(d -1)w\s/,
pe
k (k
w—-lsv(d—l)<s and so w< d\s ’

k
It 4 <s>—€. b gf e BEe done.

The following lemma gives an upper bound for 4.
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Lemma: Let p be an s-subset, and B a block not containing p.
Let d be the number of blocks containing p and at least s points
of B. Then

(1) if s<t/2 and v =k*+ 2t,

or (ii) if t/2<s<t -1 eand v;s+(]§) (k - s),
v—s-—l (k—s—l
then ds(k—s+l) t—-s—l t-s-1 ;
(1ii) if s= t - 1,

k
then d< (s) ;\

Proof of (i): Take an s-subset p and a block B containing r points

of p, for some r< s.

S- K=S .E

‘Fls-r

I
[}
s

-.—.J\_—...

b~ e

Let dp be the number of blocks containing p and at least s points

of B.

(k—r) (\(k—r>v-—2s+r k—2s+r
Then dpr < \s -r bogr> P \s-r/lt -2s+r t—ZS-\-r-er,say,

k - r)
since there are (S =T s—subsets of B which contain all points
of BN p, and these, together with the remaining s - r points of p,

each determine a family of by, .  blocks with the required property.



(17)

These families have in their union all such blocks. Clearly,
er+l/er =(s-r)(v-2s+1)/{k -7)(k - 28 +r +1)
> (v -2t) k%

Soif vk +2t, then e, >e,. forall r<s-1,

v—s—l)/ k—s-—l>
and so drses_l=‘>\(k—s+l) t-s-1 t-s8~-1/ .

Hence d is bounded as required.

Proof of (ii) and (diii):

Let ¢ maximum number of blocks containing J points of X.
So if j<t, ‘then ‘c’j‘-‘.-.: by s
but, if it then <A.

Then with d. as in the proof of case (i),
(k - r)
4 < \s-r/ cgp = epia

)

k-r1r k
So, if r<2s -t, then dr,__g?\(s - r)é <s)?\.

k—28+t)
if r=2s -t then d <A\ 2t-2s

k-r\/v-Rs+r (k—25+r
% r>2s - t, ‘then dr$?\ s-r)\t-2+r//\t -2=+r/.

It is clear, using the same argument as in (i), that,
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d = max d_ < max (eo y e _ 1)

= mmx (A{5), A m-s-1, ),

as long as v 2> k= + 2t.

If s<t-1, then d<Lmax (X(l;), A (v -t)k)

So if v t+(k) k, then d< A(k-s-1)0b
- s/ = N s+1°

If s=t-1, then d=<mex (7\(1;), N (k - t) )=(E)K

So ends the proof of the lemma.

In cases (i) and (.ii), this requires
k -s -1 k-s-1 v -
3\(5) (k - s+ 1) (X—s—l>/<t— l> t—:)/(t-s,
k
i.e. (s) (k -s+ 1)k -3s) £ (v-s),

k
or v2s+ (k-s)k-s+1) <s> , as in the statement of

e

the theersn.

In case (iii) this requires
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X
'A(s) < AN G-t+1)/(k-t+1)
o5 2
or v>s + (k - s) (S) .

We have strict inequality in [Q{S b when v satisfies these

s ?

conditions, and adoes not consist of all blocks containing s points,

so the other conclusions of the theorem hold.

(2) Corollary: If vZki, then a t-design, with t > 2, has disjoint

Proof: We need only consider 2-designs. Suppose any two blocks of the

design intersect. Then 03 , the set of blocks of the design, satisfies

the bound in the proof of the previous theorem, given by
Rl < alk
< d 5 vhere s = 1.

gopms (g) /( §)$}\kl

If v 2k , this is impossible.

We provide another proof of this fact in Chapter IV.

(3) On a paper of Deza, Frdos, and Frankl.

In this paper (11), the authors prove a number of theorems which extend

the ideas of the Erdos, Xo, Rado Theorem. They define a (v,M,k)-system
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Q S@k(v), such that for any two distinct A,Be QL , IA n B’ &€ M.
Let M =§m], mz,......,m,.g y D Oy < veens P
Then they prove,among other things, the following;

Theorem: If Cl. isa (v,Mk)-system, v >g(k,s) for all s< k,

-
and \a Zc(k)l ] (v - m)/(k - m;) then

: i=z2
(1) there exists an mpsubset D of X such that DB for all
Be O .
(i1) (m, - m,) ] (ms-mz_) I (mp = mpy) (k - mp).

@) [ )/ - m) 2 (Q}

=)

Remarks on this theorem and its applicability to designs:

(a) The condition that v is large compaired to k is very necessary.
For consider the tight 4-design S5(4,7,23). This is unique, (19), and
any two distinct blocks intersect in 1 or 3 points. If we apply the

®

theorem, we get

€£22.20/6.4 << 20, whereas the design has 253

blocks.

(b) The authors remark that equality in (iii) is realizable by the

family of hyperplanes of any perfect matroid design.

(c) For the case ,Ml = 2, the designs with this property are called
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quasi-symmetric and are dealt with in Chapter IV. It is shown there that
%
v<k for these designs. However, it is also shown that the divisibility

conditions for the intersection numbers (as in (ii) ) hold.

-
(d) As was stated in Chapter I, )CXlSGMO , for any (v,M,k)-system.
In most cases  (iii) is stronger than this, but it must be said again

that this only holds for large v.



CHAPTER III.

CLIQUES OF SIZE r IN Bals(2,k,v)].

(1) Cliques have size at most r for all v > kK - k& 1.

To an S(R,k,v) we ascribe two more parameters , namely

where b 1is the number of blocks of the design, and r  is the number
of blocks through each point of the design.
We meke use of the fact that BG[S(2,k,vi] is a strongly regular

"graph, since S(2,k,v) 1is a partial geometry. BG has parameters
.2 &
[b, K(r-1), (r-2)+ @&-17, ¥]
and so its adjacency matrix, A , satisfies

bR
2%+ (Bk-r+1)A - kc-k-1)I=kJ
Therefore A has eigenvalues

k(r - 1) once,
r-k-1 v -1 times,

-k b - v times.
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Now we look at the 3-dimensional algebra generated by A, (since
v> k-~ k+ 1, b>v). The second nontrivial idempotent of the algbra,

is given by

E, :[I-i-A?\;/o\ + (J-A-I) (-Ay -1) :’/_iz
v-4d-1 v

using the notation of Chapter I.
Let 96 be the characteristic vector of a clique of size w in

BG. Then the condition (b’ E2¢ > 0 inmplies
W + Apwlw-1) >0 or w1+ d ,
d =y
which in our cage gives

w<r.

If equality holds, then EZ’QA 0, and so

¢ -4 4+ (T-a-1) k-1d=o0,
T -1 Xk(r -1) + (vx - 1)
v k

s -x-DPrri= c-nPeri-B),

which implies that any vertex of B not in the clique of size r is
adjacent to exactly k vertices of the clique. And sv, in the terminology

of Delsarte (7) this is a completely regular clique.
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There are numerous ways of proving this result. Elementary counting
methods have been used by Bose (1), and Neumaier (R4); the latter would
call this a regular clique of size r and nexus k, and shows that if
an edge regular graph contains a regular clique of a given size and nexus
then any other regular clique must have the same size and nexus. This
is of interest in our study because it implies that the block graph of
a Steiner system S(2,k,v) can only be the block graph of another Steiner
system if it has the same parameters.

One can also use the interlacing method of Haemers (15) to prove

this result but it is very similar to the association scheme method.

(2) The pairwise balanced design on C.

We find the best way to look at this problem is to dualise and to
consider the partial geometry on b vertices, with v lines of size r,
such that any two lines meet at a unique vertex. BG is then the point
graph of this partial geometry. A clique C of size r , not corresponding
to the set of r blocks through a point, is then & ..set of 1. vertices
of the geometry such that any two lie on some line of the geometry, and
in fact the restrictions of the lines to the r wvertices of C form a
pairwise balanced design, except for the fact that this p.b.d. may
have repeated blocks of size one.

This p.b.d. has the property that for any two of its blocks, if
they have combined size greater than k, they must meet. For suppose
not. Then the lines of thé partial geometry to which these correspond

meet at some vertex outside the clique. But then this vertex is adjacent
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to more than k Qertices of the clique contradicting (1). We shall
make repeated use of this property later in this chapter.

We note ‘that for. any line L of the p.g. , if C % L, then
IC n L)s k. Otherwise a vertex x¢&€ L~ C 1is adjacent to more than k
vertices of C. This can also be seen in the following manner. Let

B be a block in a clique C, and p a point of the design not on B.

R k roiwf1

!
So if C 1is not the set of blocks through a point p , C contains at
most k of the blocks through p , because there are only k blocks
through p ' which intersect B .

We shall call a line of the partial geometry an i-line with respect
to a certain clique C , of size r , if it contains i vertices of the
clique. If the clique does not correspond to a.line, then i <k.

Let n; be the number of i-lines with respect to C.

As can be done for any p.b.d. , we form-tke following system of

equations for the n;'s.

B
I
<

counting lines of the p.g.

e
F

®

rk counting (x,L) , xe C, x ¢ L.

—~

[N
|

]

~—~
s
B
"

r(r - 1) counting (%, x,, L), %, x,& CAL
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We shall apply these equations to particular cases.
We may.rewrite these equations in terms of variables X = l La C) .

Let h be the number of lines which contain at least one vertex of (.

Z 3

= h,
L:|Lnc]>0
Zn - om

éiz_ XL(Xi -1) =2 r{r - 1)

These equations imply

x i S
;E (XL -r+k -1) = h - rk 5

k r+k -1
and so h is a minimum when

gér= T +~§ -1 is a constant for each line I which
intersects C.

Such a clique C , where any point covered by the r blocks of C
lies in a constant number of these blocks, we shall call a normal clique.
We have shown that the blocks of a normal clique cover the minimum number
of points of the design. It would also be nice to be able to find an
upper bound for h , the number of points covered by blocks of C.

Let n Dbe the least integer greater than (r + k - 1)/k. Then if
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C is not normal, some point lies on at least n blocks of C, i.e.
some line L of the p.g. intersects C 1in at least n vertices.

But then any vertex xe L ~C lies on at most k - n other lines 7.
intersecting C, and so on at least n - 1 lines which do not intersect
C. There are at least r - n such vertices. So n 2 (n -1)(r - n)
and h<v - (n-1)(r -n) with equality if and only if r=n-n+ 1,
and the p.b.d. on C 1is a projective plane of order n.

More generally, if some point lies on m blocks of C, m>n,
h<v - (m-1)(r - m), with equality if r= m - m+ 1, and the p.b.d.
is a projective plane of order m.

This bound for h 1is not entirely satisfactory but we will see
an example of a design later where both the upper and lower bounds are

met.

(3) If r>k- -k+ 1, then the only cliques of size r in

BG[S(Z,k,vi] are those corresponding to r blocks through a point.

Let C be a clique which is not a line of the partial geometry;
then any vertex x of C lies on exactly k 1lines, and any line
through x contains at most k vertices of C. So, since any vertex

of C 1lies on a line through x,

lo] < x - 1)+ 1.

This result was known to Bruck (2) and RBose (1), and is also a

special case of a theorem of Deza (10).
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(4) The case where lC n L}: k.

Suppose we have & line L of the partial geometry intersecting a
clique C of size r in k vertices, (i.e. a point of S(2,k,v)
covered by k Dblocks of the clique).

Consider the subgraph of BG[S(Z,k,v)] consisting of the r -k
vertices of L ~C and the r - k vertices of C~ L. Now any vertex
of C N1 is already adjacent to k vertices of L (namely L NC ).

80 it cannot be adjacent to any vertices of L~ C, In other words

CAL is a pair of disjoint cliques of size r -k, with no edges between
them. Label the vertices of BG so that the first r - k are vertices

of CNL and the next r -k are those of L ~C. Then u=( Jeo 33 rk)
_is an eigenvector of the subgraph .C AL, with eigenvalue r - k - 1.

But r -k -1 1is the second eigenvalue of BG, whereas C AL has

this eigenvalue with multiplicity two. Hence we can use part (ii) of

the interlacing theorem of Haemers (15), (see Chapter I), which implies
that u' = (Jmes-derws O4-26~.xy) is an eigenvector of BG with

eigenvalue r - k - 1. Hence

r -k 2(r - k)
Z a;A = Z au , 2(r - k)41 igh,
J =1 j=r - k+1l

i.e. for any vertex x%_ C AL, the number of vertices in C \L
adjacent to x 1s equal to the number of vertices in LN C adjacent

to x. (Note that this holds trivially for the vertices in Cn L) .



Let a; be the number of vertices not in C u L, adjacent to 1

vertices of L~C and i of C s~ L. Then

S & b - 2r + k,

]

e
5
"

(r -=k)(k -1)(r -1), counting (x,y), xe¢ L~C

ye BGN(L v C), xay,

Zi(i -1)a;, = | (r -k)(r -k -1)(k -1) counting (x,¥,2)

X,y € L~C, 2z ~Xx,7y.

These equations will be applied in (11).
It is possible to obtain similar equations when IC n L\: m <k,
by meking use of the fact that the complement of CA L dis bipartite.

We have never found a use for them, however.

(5) The case r = k.

An S(2,k,k* - k+ 1) is a projective plane of order k — 1. The

point-block incidence matrix N of a projective plane satisfies

NN = (k-1)T « J and NI = kJ (@)

and so N is a nonsingular matrix of size v.
A well known result of Ryser (see Hall (16) ), shows, by simple

matrix manipulation, that equations (@) imply
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N'N = (k-1) T +J and N'J ekJ

So any two blocks of a projective plane meet in a point. Hence
BG[S(2,k,k1 -k + 1)] is the complete graph on k" -k +1 vertices.
From now on we exclude the case r = k from our investigations, as the

block graph gives no information about the design.

(6) The case r=k+ 1. (v=k>, b=kk+1). )

Take a point p and a block B such that p#_ B ; then there are
k blocks through p which intersect B and so one that does not. So
every point pi B lies on a unique block B/ such that B'Nn B= #
‘There are kl blocks which intersect B . Hence any block B 1lies
in a parallel class of k Dblocks such that any point lies in exactly
one of them., Hence . BG S(2,k,k2) is the complete (k + 1)-partite
graph with parts of size k. There are ka cliques of size r=k+ 1,
consisting of a block from each class; k% of them correspond to k4 1
blocks through a point. From this description it is easy to see how to
extend an S(2,k,k"), an affine plane of order k, to an S(2,k,k +k+1),
a projective plane, by adding k + 1 more points which correspond to
the parallel classes, and one more block, the block at infinity, -
containing these points.

(a) k&3, rz4, v= 9,’ b = 12.
This is the unique affine plane of order 3. 1Its block graph has cliques

of the form
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9 of this type,
72 of this type,
none of this type,

because, if there were, let B be the bloc£ through x,y. Then B
intersects all four blocks of the clique, a contradiction.

(b) k=4, r= 5, v =16, b = 20.

The unique affine plane of order 4.

Now it is possible that there are cliques of the form

Lo

and they do exist, because all lines meet the line at infinity, L,

in distinct points (since they already meet each other), in the extension
PG(2,4). Now we have a set of six lines in PG(2,4) such that any point
lies in O or 2 of them. This is the dual of an oval in PG(R,4) and

it is well known that these exist, (see, for example, Riggs and Vhite (0) ).
In fact it is known that there are 168 of them and they divide into

three orbits of size 56 wunder the action of the group PSL(3,4). The
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ovals in a given orbit intersect in O or 2 points, and by the
transitivity of PSL(3,4) each point lies in 16 of these ovals which
pairwise intersect in one other point. Returning to the dual set-up we
have 16 dual-ovals containing L. such that any two of them have

one further line in common. So in our block graph we have 16 5-cliques
pairwise intersecting in a vertex of the graph. Since PSL(3,4) is
doubly transitive on the lines of PG(2,4), and so transitive on the lines,
not Le , any block of AG(2,4) 4is at the intersection of two of our
dual-ovals. Hence we have another geometrisation of the block graph.

We notice that the sixteen cliques are normal cliques in the sense of
section (2).

Now the & blocks in the clique corresponding to the dual-oval
cover 10 points of AG(R,4), and so there are six remaining points.
Any line of PG(R,4) must meet all the lines of the dual-oval, and so
must go through 3 of the 15' points covered by it in PG(2,4). Hence
it contains two of the remaining 6 points. So these six points form
an oval again. In this way we have 16 ovals in PG(2,4), disjoint
from Lo , and in the same orbit umder \PSL(S,4). So they intersect

in 0 or 2 points. Suppose O, and O, are ovals disjoint from

'
Lo and from each other. There are six lines exterior to Oi s One
of them L, , and five others, each of which contain exactly 2 of
the remaining 4 points (S). Consider three of them L,y L,, Ly, such

that L, meets L,, and L, meets L, in points -inside O Then

5 o
Ly S and L, nS are <-subsets of S which are both disjoint from
L,n S. This implies that |L,a I ) =2, a conflict. So [0, 0,)= 2.

Hence the 16 ovals disjoint from L _, form a (16,6,2) symmetric design.
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Hence their complements in AG(2,4) form a (16,10,8) design.

This example illustrates a number of points we shall develop in
Chapter IV. It is interesting to wonder whether for even k, larger than
‘ﬂ#i one can produce the same sort of set-up. We shall show in Chapter IV
thé%ai% it is possible to find a set of 4t* dual-ovals which geometrise
the block graph of AG(2,2t), then there exists a (4t7, 2t + t, t + t)

symmetric design associated with this construction. Such designs can

be obtained from Hadamard matrices (see Hall(186) ).

(7) The case r =k -k +1.

Let n sk -1, then v= n3+n*4+n +1 and S(2,k,v) has the same
parameters as the points and lines of projective J3-space.

(a) Any clique of size r in BG, not consisting of r blocks
through a point, is a subplane.

We have equality in the bound in (3) which implies that any line
of the partial geometry intersects C in O or k vertices. So the
p.b.d. on C has replication number k and block size k and so is a
projective plane.

(p) If BQ: has n e+ n-+n+ 1 cliques corresponding to subplanes
then the Steiner system is the set of points and lines of PG(3,n) and
so n must be a prime power.

(1) Any two subplanes have at at most one block in common.

If they have more than one, they (as cliques in BG) have an edge x,y
in common and this lies on one of the lines L of BG. But BG has

2 2
A= (r-2)+(k=-1) = 2(k-1) + k-2, Let C and D represent



(34)

the subplanes. Ignoring the vertices of D for the moment, x and ¥y
are already joined to the same 2(k - 15'4— k - 2 vertices, (since
IC n L] = k). Hence they cannot both be adjacent to any vertices not in
C or L. Hence k -k+1<2k -2, or (k- 2)(k -1)= -1, clearly
impossible.

(ii) Any edge lies in a unique subplane.

Any subplane contains (n*4+ n +1)(n*+ n)/2 edges,
2 2 2
BG has "+ n+ 1)@+ 1)(n+1)(n“+ n)/2 edges.

There n>+n“+n + 1 subplanes with no edge in common, hence the result.
So we have another geometrisation of the block graph.

(iii) Any triangle consisting of three blocks intersecting, but.
not at a fixed point,‘lies in a unique subplane.

Ay subplane contains n"(n*+n:+ 1)(n + 1)n/6 such triangles,
BG has (™+n+ 1)@*+ 1) (@3+0)(n + 1)n/6 such triangles.

No triangle lies in more than one subplane, hence the result.

Now take three}?locks B,y B,s By forming a triangle, viz.

B,

and suppose B dintersects B and B,. Them B B, B, forms another
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triangle, and so they lie in some clique corresponding to a subplane D,
sey. Let B, B, By lie in the clique C. Since lc a Df ;KB. g B,_%]Z B,
we have C = D3; and so B intersects Bz . Therefore the blocks of
our Steiner system satisfy the Pasch axiom and we have projective 3-space
over GF(n) (since 3-space is necessarily Desarguesian).
We have shown that the only BG of a design with these parameters
which has nonunique geometrisation is that of the- points and lines of
projective 3-space. Moreover, there is a symmetric design between the
iaoints and planes of the design with parameters 3+ 0" +n+ 1, n®+n+1, nsl),
and the cliques corresponding to subplanes are normal cliques.

(¢) LorimerXs construction.

Lorimer (21) has given a method of constructing an’ S(2,n+1,n%n +n+1)
which is resolvable, contains at least n4n+1 subplanes, énd exists
whenever there is a projective plane of order n. His method could
conceivably give a large number of such designs for each n > 2 and will
also be of use to us later because of a construction of Denniston (8),
and so we will give it in some detail.

Let TV be a plane of order n. For each line L of T, let G
be a set of n + 1 permutations of the points of L such that;

1) leg,
(2) G, is sharply transitive on the points of L.
This requires, in effect, the existence of a Latin square of order n+ 1,

and the cyclic group of order n + 1 1s one possibility.

ret x= | o,

Lew
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assuming the identity in each G, is the same, and all other permutations
are distinct. So le =1+n(@+n +1).
Blocks cn X are of two types,
(4) G ¢+ Lem |,
(B) for xf, Ly BxJinf: £ (x) e L} which we
call the block determined by x and L.
So the number of blocks is (n 4 n + 1)(n*+1). It is not difficult
to check that these give a design with the required parameters on X.
A1l blocks have size n + 1, so we cnly have to check that any two points
lie on some block. Teke f &G, , ge&G,. If M=L then f,ge Gy -
I M+ L, let x be the point of intersection of L and M in T,
Let N be the line through f"(x) and g~!(x). Then f,ze¢ Bse, L+
To prove the resolvability of the design we ﬁeed to define a loop
.structure on X. First we do this for each L. Take a particular x_,& L
and define (fg)(x,) = f(g(x,)) for f,g € L. This mekes G, a loop
with 1 as the identity.
Now take f € G, E€ Gu, MFL. Let {xf=MnL and N be

the line of 7T through f(x) end g~ (x). Define fg by

(fe)(g™' (x)) = £(x), so fge Gy-

To show that our definition gives a loop on X, we need to show
that the maps g-—>fg and g-—gf are bijections. We do the first,

Let f e G, ~ gli . g-—>fg is certainly a bijection on G .
Suppose g, g, € X\GL and fg, = fg, . Let g; € GM- and

1

LAM,; :gx‘-l for isz1,2. cince fg, = fg, , these lines must be
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the same, say N . But N meets L at f(x,) = f(x,) and so

X, = X, = X say. So we have the following picture.

L

N
ml o\

But fg, = fg, =h and h(g;' (%)) = b(g]'(x)) = £(x)
= g: (x) = g'l' (x) since Gy is a loop, = g, = g, -
The other proof is similar. So X is a loop.
Now we' consider the left cosets of the subloops GL' Let L be
a line of 7T , and f€ X NG, . Say fe G,, M$L, MnL=fyj.
Put x= £(y).

. o

3"(5)

Let g€ G_, and let N be the line through x and g '(y) .
fg ¢ G, is such that fg(g™ (y)) = f£(y) = x.

so (fg) (x) =g™'(¥) e L.
Therefore fg e B:c,L' So t‘GLQ Bbc,L‘

Conversely let h & B,,. Then u-= ' (x) € L.
J
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ws= l\.'(q’_)

let g e G be such that g(u) = y. Then hig™' (7)) = h(u) = x = £(y).
So h = fge€ fG,; . Therefore G = By, L -
Now the collection of left cosets of GL is a partition of the elements
of X, and so the corresponding blocks form a spread. Each block G
or By oL lies in one such spread, and so the design is resolvable.
Finally we show that X contains subplanes isomorphic to TT .
Let xeT , and P< X contain 1 and every permutation in X
which does not fix x. Then if P contains two points from a block
of X, it contains the whole block, and P is a plane isomorphic to

TT‘

For suppose f,ge G , f,eeP . f,g domnotfix x, so xe L,
and so for all he G, , heP.

Suppose f & GL\_ili, g ¢ GH\IJS , f,eeP, LN
= x el and M. Let f,8 € Bp,y, ng, but for all hé& Bypny
h™ (x) e N s0 By yE&P.

The isomorphism ¢ tTT = P< X is such that ¢(y) (y) =x .
This implies that X contains n*+na4 1 planes isomorphic to TT ,
but it may contain more.

The simplest case of this construction is for the plane of order 2.

There is only one loop of three elements, and this gives rise to PG(3,2).
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The next is that which arises from the plane of order 3. If we use the
four permutations Vg =§l’ (12)(34), (13)(24), (14)(25)? for each
loop G, , we do not get projective 3-space; its blocks are generated

by the following base blocks (mod 13), (c.f. Denniston (8) ).

A B, C, D,
B By, Dg Dp Cq Cq By Bg B, Plip By
B4Bp Cy Dy Cyy O Dy Boy Dy Dis By € p
C,DyDqDip ‘D, Bq By By, Be0) OgCy

It is invariant under the nonabelian group of order 39 , and contains
39 subplanes, images, under the group, of the points

A B, C, D,

D, B, C, Dy Bg Cg Dg Bq Cq Dgq .
(one element of the group, of order 3, multiplies suffices by 3).. We
will make further use of this design.

One might wonder what would happen if some G, 's were given the

V4 loop structure, and some the C‘r(cyclic group) structure.

(8) The case r =k - k.

We show that there are no cliques of size kzlak, except the lines
in "BG. Suppose there is a set of k- k blocks (C) not all through
the same point, and pairwise intersecting. Then each block of C contains

k — 1 points which are covered by k blocks of C, and one point .
covered by k - 1 blocks of C. But then there must be k of these

(k - 1)-points. However no two can lie on a block of C . So there is
some block E3¢.C containing at least two (k - 1)-points. Then B is

adjacent to 2k - 2 blocks of C . And 2k - 2>k unless k= 2.



(9) Steiner systems with k = 3.

We are only concerned with the cases r = 3,4,6,7.
Our previous analysis has dealt with all these, so we know all about

cliques of size r in BG S(2,3,v)

(10) Steiner systems with k = 4.

We have six cases where we have to look,
r = 4, 5, 8, 9, 12, 13,
v = 13, 16, 25, 28, 37, 40,
and we only have to conéider the two new cases r= 8, and r = 9,

We make repeated use of the special property of the p.b.d. on C
.described in (2). To save much explanation we make extensive use of
diagrams and indicate vertices of BG which are adjacent to more than
k vertices of C (supplying our contradictions) by x. Lines through

C are shown as smooth lines, where possible, and vertices as » .

r=8, v=2b5. .

Case ng=2R.

n, = 1.
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These constructions are the only possible with 4-lines,

S0 Na= Os

Hence BG[S(2,4,25ﬂ has no other cliques of size 8.

I‘=9, v = 28.

nqtl

x*L

n, = 0, implies that all vertices lie on four 3-lines, and

so the p.b.d. on C 1is AG(2,3), but this has disjoint blocks of
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size 3. So BG[S(2,4,28)] has no other cliques of size 9,

(11) Steiner systems with k = 5.

We have eight cases of interest:
r = 8§ 6, 10, 31, 15, 16, 20, AR
v & 2l, 25, 41, 45, 61, 65, 81, 85,
and need only consider the four new cases, r = 10,11,15,16.

(&) r= 10, v = 41.

ns = 2,

Take a 3-line. Then there are only six 2-lines disjoint from it inside
the clique, whereas there would have to be seven. There are only two

l-lines and they already meet inside C.

Let x;, %, X4 be the remaining vertices on L the O5-line. Let y,, ¥,

and z,, 2, be the remaining vertices on W,N (4-1ines) respectively.

Without loss of generality we have lines gxz, 2, yz} ) {x,_, Zg s ylg ’
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{xs, Zgy yz'i ’ {is, Z 353 y (since the line containing %7 mst

intersect N and does so in =z or

for the linecontaining

can intersect.

\ Z, ). But now the same applies

x ¥, , but there is no point of N where it.

X

>
@

A
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n, = 3, .z

first case,

Any line through =z must intersect L, M, and N. There is one line
through each of L nM, L NN, M NN, and one other. But this one

will have four vertices on it. We have already dealt with the case n4 = 4.

n, = 3,

second case,

Now any other line must intersect each of L, M, and N. So all other
lines, not through 1z, are 3-lines. If we delete 2z, the restriction
to the nine remaining vertices of the clique must be AG(2,3). But this

has disjoint 3-lines.

At this point we can use equations (:) of section (2).

np+ n, + n,+4 n,+ n

" 3 fn$=4l,

o

o+ fn,+ 2ng+ 4n,+ Sng = 50,

+ 32ng + Bne+10n 45,
By 3 ¢+ 10ng

[}
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If =n_= 0, and n, = 3,

then n,+ n, <9 = n,< 9 = nz= 8.

But the maximum number of pairwise intersecting 3-sets is seven.

(b) r=16, v = 65.

If no = O, any vertex of C must lie on five 4-lines, (since there
are 15 remaining vertices). But then we must have AG(2,4) on the
16 vertices, which is impossible because this has disjoint blocks.
So ng?> O.

Now we make use of equations of section (4).

8o + 8 + 8, + 84 +a+=l8l,

a,t Ra, + 3a; + 4ay 660,
az + Say+ 6a, = 880.
a, + a, —Ray = R0 = a, > 1l0.

A 4-vertex can only arise from a ©5-line in C in the following mamner,

L

>

(since four of the lines on which =x 1lies must intersect L outside C).
Bach b5-line contains eleven 4-vertices,

= ng> 110/11 + 1 = 11.
Each vertex of C can lie-.on at most three 5-lines,

= n, < 3.16/5 << 10, a contradiction.
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(¢) =15, v =6l.

Suppose ng¢ > O. Applying equations 5

p+ &8, + a, + a, + a, = 158,
8, + 2ap, *+ 3a, *+ 48, = 560,
a, 4+ dag + Bay = 7R0.

= a4 80, = nc.> 9.

But any vertex lies on at most three 5-lines. So ng < 15.3/5 = 9.

Therefore ng = 9,

and any vertex lies on exactly three 5-lines. Consider two vertices

cn a S-line, viz.

This gives at least seventeen vertices in C.

So ng = 0.

This is the only possible set-up for the five lines through a vertex.
There must then be five 3-lines such that any vertex lies on exactly

one of them. This means that there are disjoint 3-lines.
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() r = 11, v = 45.

The most difficult case.

(1) ©Suppose n¢g> 0, di.e. ng= 1 or 2.

Applying equations ’

8o + 8, + 8, *+ 84 4+ 84 = 82,

a, + 2a, + Jdag + 4a 4 = 240,
a, + 3a, + 6a, =240,

and &, = 0 or 8 (since 1ng=

If ng =1, then a4 =0 = 2 + 2, = 0, az= 80, a_=

We have two possible sorts of 3Z-vertices,

x of these vertices, y of these vertices.

So mng= L, Bas X7, ns = y/8, n, = ¥/9,
:§>72iy, 7,}:, and x4+ y = 80.

This is impossible.

5

+
"
-
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o]
A

"

N
(™

]
o
-
=

=L ;

Let p and q be the two verticesnot in L or M, and let r=1L n M.
< % ‘
Put g y}i‘ 3 {z:}‘ as the remaining vertices in L,M respectively.
. '3 2
Then, without loss { Yis P z33 are the 3-lines through p. UNow
{ Viy O 24} must be a 3-line for some Jj. Suppose, without loss,

that j = 2. Then {3, D, z,] is disjoint from this.

"

Hence neg 0.

Suppose we have three 4-lines through a vertex y.

N

Then there is one remaining vertex 2z and every line through 2z must

intersect L, M, and N. Hence we have another three 4-lines through
z. Any line not through y or =z must intersect each of L, M, and N,
and so must be a 3-line., The restriction of the lines to these nine
vertices must therefore be AG(2,3). This has disjoint 3-lines and a

pair can be found which do not correspond to any of our 4-lines.
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Hence any vertex has at most two 4-lines through it and so n, < 5.

Applying equations @ ’

Do, + D + D, 4 D, + Ny = 45,

n

n, +2n, + 3n, + 4dn, 55,

55,

n

Ny + 3n; 4+ 6ng
= 1, + D, = 2N, .
ir ng,6 <4, then n, 4+ 1n,<38, n, < 8,
= 3,2 2% or nz3”> 7.
But any two of these 5-lines must intersect in C, which is impossible
if there are more than 7.

It ng = 5 we have,

- .

One vertex q 1is not covered by any of the 4-lines. It must lie on

five 3-lines. But then one of these cannot intersect L in C.

Hence we know all about maximal cliques of size r in BG S(2,5,v) .
We make use of the unique geometrisation of BG{S(2,5,45)] in

Chapter V.
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(12) Normal Cliques.

In (3) we defined a normal clique C. Any point of an S(2,k,v)

containing a normal clique C is covered by 0 or k, =17 +k -1

k
blocks of C.

We must have kg| k. Any line in the block graph is either a 0-line
or a kgline. Any vertex outside C 1s adjacent to k vertices of C
and so mu$£ e va (k/ky) -ko-lines.
The. k,-lines form a p.b.d. on C with constant block size, i.e.
we have an S(2,k,,r) on the vertices of the clique.
Reverting to the S{(2,k,v), we have that any block not in C must
contain (k/ko) points covered by the blocks of C. Let S Dbe the
set of points covered by no blocks of C. Then any block not in C.
must contain k - (k/k,) = n of these points, and of course any block
in C contains none of them. 2And so S 1s a maximal n-arc of the
design. We have stumbled on a set-up previously investigated by Morgan (23).
We note that k and k, determine the parameters of the design.
k= k, implies that we have a subplene in the design with r = k* - k+ 1.
k, = & dimplies that we have a k/2 -arc in AG(R2,k) where k is

even,

(a) ko= 3, k=6 requires the existence of an 5(2,6,66) which
has recently been constructed by Denniston (8), in such a way that the
induced design on the 4-arc is the &(2,4,4C) given by Lorimer and

described in (7c). We give the blocks of the £(2,6,66) Dbelow , with
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suffices generated (mod 13).

A B, C,D, Y, 2,

By B, Dg Dy Yo Yo Cq Cy Ba Bg %, ¥, B, B, 8,0 T %
BBy 0D, X2, By Cx Dig Bo T, By Do D, By Cp ¥, Zg
Ch Dy Do DinZo Zy Do By By BrgZe 2y Be By Oy Uy 2, B

L, Ts Is ZH-Z B s

The thirteen blocks gYi, Yoy Yoy Zgs Zyps &23 4+ i, pairwise intersect
and form our normal clique C covering the 26 points gY}, Z. t i:(%123 ‘
There are also at least 39 gther maximal cliques in the design
corresponding to the 39 subplanes in the S(2,4,40), and the blocks
of each of these cover 39 points.

We migiit ask whether it is possible to construct an S(2,6,66)
using PG(3,3) as our 4-arc. It does not seem easy to do this, (9).

To be able to construct an S(2,k,v) with a normal clique, it is
necessary to find a set of kr/k° spreads in the &(2,n,v - rk/k,) on

the n-arc such that any block lies in k/k, of these spreads. We

might call this a k/k, -packing.

(b) k, =4, k= 8 requires the existence of an S(2,8,176) which has
a maximal 6-arc on 126 points. There are at least two known S(2,6,126)
and one of these is defined on the 126 isotropic points of a unitary
bilinear form on PG(2,25).

We consider this design in scme detail. Let (x,y,z)é,CEﬁzs)g
be a representative of a projective point in PG(2,25). Then this paint
is said to be isotropic if xX 4+ yy + 2z = 0, vwhere x = xs is the

Frobenius automorphism of GF(25). Clearly this is a good definition.
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Any line of PG(2,25) can be written in the form i(x,y,z): ax+by+cz:0§.
Let [a,b,c:l represent this line. Then by a slight abuse of language
we will call a line isotropic if the point (a,b,c) is. Clearly, by
this duaslity between points and lines, there are the same number of isotropic
points as lines.

The group PGU(3,5) of automorphisms of PG(2,25) preserving the
unitary form is doubly transitive on the isotropic points. Let u 4 v
be isotropic points. <u,v> :Zui'v-i % 0, otherwise we would have a
@—dimensional totally isotropic subspace of a 3-dimensional nonsingular
space. So by normalisation we can assume <u,v>=l. Let w Dbe such
that u,v 1lie in the line ['ﬁ] y i.e. <u,w> =<v,w> = 0. Then wv
and w are independent and span the space. Again <V\',W> ;l 0, otherwise
we would have a totally isotropic 2-dimensional subspace., So we have

lu, 1) :<v,v> = 0, <u,v> -.-<w,w> =1, <u,w> :G,w) = 0.
Any pair of distinct isotropic points can be extended to a basis in this
manner and there is clearly a unitary mapping .taking one basis to another.
In 2 similar manner PGU(3,5) is transitive on the nonisotropic
points and lines.

Let us abbreviate to n-points, -lines for nonisotropic, and
i-points, -lines for isotropic.

Let we GF(25) be such that w'': 1, w = -1. Consider the

n-line [l,0,0J . Suppose it contains an isotropic point (0,1,z).

6 4

Then this is isotropic if and only if 1+ z° = 0 & 27 = -1,

& z is a primitive 12th root of unity,
&S z=ow'y, de {1,3,5,7,9,113 :

So any i-line contains 6 i-points.

8}
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Consider the i-line LO,l,WJ . It contains the i-point  (0,1,w).
Any other point (x,y,z) on the line is such that y + wz = 0, or y= -wz.
Then x6+ yé+ z": x"+ wézé + z6: xé, which is only zero if x= 0.
So any i-line contains one i-point.

Suppose there are A i-points,lines, and B n-points,lines.
Then, since any n-line contains € 1-points, and any di-point lies
on 25 n-lines,

BB = R5A also A 4+ B = 851,
S0 A =126, and B = 525.
By the double transitivity of PGU(3,5) on I, the set of 126
i-points, the restrictions of the 525 n-lines to I form an £(2,6,126).
Furthermore (1,0,0) 1lies on 20 n-lines whose restrictions are
“therefore disjoint in I, and the remaining six points of I, not on
any of these 20 lines are (O,l,w.‘) where 1ie {1,5,5,7,9,113 and
these all lie on the line [1,0,0] . So to any n-point there corresponds
a spread of 21 blocks of I. Finally, considering the 25 n-points
on an i-line, we obtain a l-packing of I.

However, for our construction we require a 2-packing of 50 spreads,
such that no spreads have more than one line in common.

Consider the i-line x = Ry, 1.e. [l,-Z,O] p
It contains 25 n-points (8,1,x), =x# 0, and (0;0,1) .
L(2,1,%),(2,1,7) )5 0 &> xF= 0&Hx =0 or y =0,
So if p,q are n-points on the same i-line then <p,q># 0, and so
the spreads S(p) and S(q) bhave no lines in common. So if p and g

are n-points such that (p,q> = 0, ‘then p and q 1lie on some n-line
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[r] and furthermore q & Y_p] = [p:( € s(g) and [q]es(p) similarly.
So S(p) and S(q) have two lines in common. This shows that we camot
find a set of fifty spreads with our required property, which all
correspond to n-points. For suppose we could. Let S(p) be one of
these, and consider the n-line [p] € S(p). Then [p] must lie in
another spread, say S(q). But then {p,q)= O, which implies that
S(p) and S(q) bhave two lines in common.

So to construct an S(2,8,176) from this design we need to find

other spreads. I have not been able to learn of the existence of any.

(13) Steiner Systems with k > 6.

The methods for k = 3,4,5 wused in earlier sections in this

chapter become very long and tedious for k2= 6.
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CHAPTER IV.

BG[S,,‘(Z,k,v)] FOR GENERAL A , AND NONUNIQUE GEOMETRISATION.

(1) BGTS;\(z,k,v)J for A>1.

When A>1 there is no guarantee that the blocks of the design
have only two nontrivial intersection numbers. In fact if N is the

point-block (v x b) incidence matrix of the design,

N = (- 2T +1J.%[Ev-k) I +J] .

k -1)
k LS
NTN = Z iB, , where ZB; = J.
izD izo

Considering the design‘as a subset of the Johnson scheme J(v,k),
the B;'s are adjacency matrices of subgraphs of the Johnson relations
Ay .y and B, is the b x b identity matrix (assuming that there
are no repeated blocks).
In general we cannot define an association scheme on the blocks of
the design, (as we could in Chapter III), but it is possible sometimes,
and if the design has only two intersection numbers we are guaranteed
a strongly regular éraph. This is é special case of a theorem in Chapter
I, section(7). Such 2-designs are called quasi-symmetric and were
introduced .and investigated by Goethals and Seidel (14). We shall consider

these first, because of their greater structure.
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(2) Quasi-symmetric designs.

We give a proof, found in (5), that the B,'s form a R2-class

association scheme. Let x <y be the intersection numbers of the design.

N = x(J-I-B)+ yB+ kI,

hence B N'N - (k-x)I-xJ ,
¥y =X

and so B has eigenvalues,

[rk—(k—x)-xv]/(y—x) once ,
{r—?\-—(k—x)]/(y—x) v -1 times,
-k - x)/ (y - x) b - v times.

Therefore B 1is the adjacency matrix of a strongly regular graph since
it generates a 3-dimensional algebra.

Since the eigenvalues are integers, we must have (y - x) J (k =.x)
and (y - x) | (r =A). The first of these conditions is similar to
the second part of the theorem of Deza, Erdos and Frankl (see Chapter II).
We wonder whether this holds more generally for designs.

Suppose x 2~ 0O, then any two blocks intersect, so we are not going

to be able to extend the ®rdds, Ko, Rado theorem to this case. However
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consider a block 4, and count (p,, p,, B) such that p , p, 4 A,

Py €B, |Bna|>o0.

Alv -k)(v-k-1)<rkk -1)(k -2),
which implies that V’:skf'— 1, and is a very generous bound. So there
are no quasi-symmetric designs with x> 0 and v > B = 1,
If x= 0, we look at the set of r blocks through a point p
of the design. Any two intersect in y points, and (ignoring the case
vy = 1, which only occurs if it is a Steiner system), they intersect in
¥y -1 points apart from p. So there is a Sy_|(2,?.,r) on the blocks

through p, and therefore,

G-)(r-1)=(A-1)(%k -1), &and A< k -1 (Fisher's inequality).

%v: 14 r(k-l)/7\ = 1 +[l + (?\-l)(k—l)] (k - 1)
(r - 1) A

< x-x+ 1.

So if v > k> - 1, there are no quasi-symmetric designs with block-size
k on v points.

However we can do better in the case when x= 0. We need y [ k.
So if y 21 and k 1is a prime then there are no quasi-symmetiric designs
of block-size k.

We are interested in families of pairwise intersecting blocks.

Using the clique bound of Chapter I,
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w=1l+d/-A,=1+(r-1)ky = r,
vk

and so again such families have maximal size r, and by an argument

similar to III(1), cliques of size r are regular with nexus

k(k - p)A(A-1) .
(r-A)yly -1)

The blocg graphs of Hadamard 3-designs (these are quasi-symmetric
2—designs) are the complements of a 1l-factor, and so it is easy to find
families of r pairwise intersecting blocks, in this case.

Note: There are on the whole very few quasi-symmetiric designs. We list
possible parameter values for k<12, x=0, y>1.

83(2,4,8) y=2, 85(2,6,22) YR, 85(2,6,12) ye 3, S+(2,6,2l) TER,
87(2,8,16) y=4, S

2,9,27) y=3, 54(2,10,20) y= 5, §,(2,10,70) ye 2,

4 A
5,(2,12,24) y=8, 5,(2,12,57) =5, &,(2,32,100) y=2, §,(2,12,112) y= 2.

(3) Cliques of size r in BG "isomorphic" to the set of r blocks

~through a point.

The set of r blocks through a point have certain properties when

regarded as a clique of size r 1in the graph with adjacency matrix
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For instance, for any block B in the clique C,

Z \AnBj {E(p,A): pe An 33

(r-1)+4 (A -1)(k~-1).

Qo

1

When considering nonunique gecmetrisation of the block graph we shall
be looking for such cligues of size r.

Let xp be the number of blocks of C containing a particular
point p of the design. Let h be the number of points covered by at

least one block of C. Then,

Z 1. = b,
Z xp = rk,
Z XT (x]> - B”ZB;C\B, n B, [(I‘ - 1) +( 1) (k ~ 1)] s

= Z xf(xf—'h)z r(r -A).

Now by analogy to equations @ vhen A =1 in III(2), we have
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So h is a minimum of (v - l)kL
v-1)+ (x - 1)*

when X.T =Allv 1) + (k - 1) for any point p covered by
& - 1)k

the blocks of C. And so we have again characterized normal cliques.

(4) Nonunique geometrisation in BG[SA(2,k)vi]

BG S;‘(Z,k,v)] has a set of v cliques of size r corresponding
to the sets of r blocks through points of the design. These cliques
have the property that any two of them have A blocks (vertices) in
commen, and each edge of B, 1s contained in exactly 1 of them. They
are said therefore to geometrise the block graph. Ve want to know whether
we can find another set of ' v cligques with these properties.

Suppose we can. Then we can form the v x b incidence matrix N,

of these cliques against blocks, i.e.

N,(C,B) = { 1 if Be C,

0 otherwise.

Let N, be the pcint-block incidence matrix of the design. Then
|

k —
T ; ;
N, N, = é iB, = N, N, ,

2 2

N, N'= (£ -N)I + J :',\[(v o W5 +J] = N, N, .
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Now consider the v x v matrix,

and so X(p,C) = the number of blocks of the design which contain p

and lie in the clique C.

]
=
__Z
=
=
n
i
—~
H
I
v
S~
=
+
»
gy
~—
»

Wl -k\ 1+ (? +2(v -%)) 3
k-1 k-1
Therefore X satisfies a matrix equation similar to that satisfied by

the incidence matrix of a symmétric design. In the particular case when

all the new geometrising cliques are normal,

X(P,C)

"

2
A k, =?\{Cv -1) +(k - 1)‘J: if p 1is covered by a block of C.
k(& - 1)

"

0 otherwise,

Then Y= X/k,A is a (0,1)-matrix and satisfies

Y 1= 1 v - k>2 I+ v+ 2(v - k) %] .
k* |\k -1 E =1
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In other words,-there is a symmetric design governing the incidence between
points and cliques, and the parameters of this design depend only on v
and k and are independent of A .
Note: We say a point p and a clique C of a design are incident if
there is a block B such that p ¢ B € C.

Let k, and n = k/k, be given. Then k = nk,, and

r =A(wk,(k, -1)+1) , v =A(ok,(k, - 1)+ 1)(nk, - 1) + 1.
| _ . .
Then YY' = n"(kp,-1)1 -+[n (k, = 1) & nJ i

In this instance there is nothing to be gained by applying the Bruck,

Ryser,Chowla conditions, because the equation is always satisfied by

Y1 [(r-?\)x-«-?\J] .
Ak,

(5) Nonunique geometrisation by normal cliques in BG[S(Z,k,v)] ;

We know that for some k , for r= k+ 1 and r = k' - k4 1, an
S(2,k,v) exists whose block graph is geometrisable in more than one way
and toe cliques of the second geometrisation are normal with respect to
the first and vice versa, ( III(6) and (7) ).. Furthermore in both cases
there is a symmetric design between the points and the cliques.

Ve examine the possibility cf such an alternative geometrisation
by normal cliques for other values of r (as a function of k) beginning
with the case (2,k,v) = (2,6,66). We prove that there is no S(2,6,66)

whose block gra;h has this structure, although as we have seen, there is
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a design with these parameters containing at least one normal cligue.

(a) Proposition: Any point-block pair (p,B) such thet p ¢ B,
lies in exactly k/k, cliques.
Proof: There are k cliques which contain B and each of these
contains O or k, blocks through p. But for any block A through
p which meets B, (there are k such), there is a unique clique containing
B and A. They meet in a point, so they meet in a clique. So there
are exactly k/k, cliques containing p and B.

Note: This is the dual of the fact that there are k/k, points

covered by the blocks of a normal clique C, which lie in any block £3¢ c.

(b)So, for k = 2k,, consider the k cliques containing a block.
Take one of these , C, say, apd consider.the intersections of the k -1
other cliques with this one. They all contain the block, and any other
point covered by C, 1is contained in exactly one other clique.

Let us now consider an S(2,6,66) and suppose its block graph has
another geometrisation by normel cliques. Then the point-clique incidence
is governed by a (66,26,10) symmetric design. So any two cliques have
exactly 10 points in common, (i.e. there are 10 points covered by the
blocks of both). They also have one block in common, so we have the -

following.

C s
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C, and CZ have the block B in common and four other points
X,y X;5 Xgy Xge Suppose x; and xj lie on a block A which is in
Cx (14 je€$1,2,3,43, k=1or2 ). Then A must intersect B .
But then A contains at least three points of (C,, and so Ae C,

Similarly A€ C, . In which case C, and C, have two blocks in

1

common, a contradiction. Hence no two of x,, x,, X

Ly x;+lie in a block

of C, orof C, .
The dual design on the blocks of C, is an 5(2,3,13). There are

26  3-lines corresponding to the points covered by C, . Now Xx,, X,

Xny X4 1lie in no block of C;, and so correspond to four disjoint 3-lines

in the S(2,3,13). The remaining vertex is that corresponding to B.

There are 5 cliques apart from C, which contain B and any point

covered by C, lies in exactly one of them. So in the 8(2,3,13) each

of CyyevveesyCy gives rise to a set of four disjoint 3-lines which

do not contain X+ In other words the set of twenty 3-lines not ..

containing xg can be divided into 5 parallel classes of four 3-lines.

This can be done for any xR in C

(¢) We must now check that neither of the two nonisomorphic
S(2,3,13)'s  (see Hall(l6) ), have this special resolvability property.
One such S(2,3,13) has blocks as given in the first two colums following

and the other has the blocks of the second two columns.
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A B
028 154 OR 8 e 54
1389 2 65 135 2 65
R4t 376 R4t 37686
35e 487 491 487
4 6.w 598 46w 59 8
570 6t 9 570 8t 9
6 81 Tet 681 Tet
79 2 8 we 79 2 8 we
81t3 20w 8t3 90w
9e 4 t10 Sed t10
twb e 21 twb el
e 06 w 3R O w 3R
wl§? 043 wle? Ow3id

We consider the twenty blocks which do not contain the point 6. It is
possible to find parallel classes of four blocks, i.e. 13 9, 2 4 t,
e8w, 057, in A,

First we need a proposition,
Proposition: Given four disjoint blocks of an S(2,3,13), the configuration

below cannot occur.
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Proof: First possibility;

Dualising gives the following set-up, which requires at least 28 dual-

points, i.e. 28 Dblocks in the design.

+

g A A 4

Second possibility§

R |

Dualising gives the following, which this time requires 27 blocks.

Hence neither of these configurations can occur.
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Consider the blocks of A first, and the block 7 9 2. The three
blocks through 6 which intersect 7 92 are 67 3, 6 9t , and
625. So 3, t, and 5 must lie in different blocks of the parallel
class containing 7 9 2 , by the proposition. The only block containing
5 , disjoint from 7 9 2 , and not containing 6 , t , or 5§ is 304 .
But now all the blocks through t intersect 7 92 or 304, or
contain 5 . Hence there is no parallel class containing 7 9 2.

Consider now the blocks of B , and the block 7.9 2 again. Once
more we have that 3 , t and 5 must lie in different blocks of the
parallel class not covering 6. The only block containing 3 that will
suffice is 3 0 4. As in A , all the blocks through 5 intersect
792o0or 304, or contain 6 or t . Hence there is no parallel
class containing 7 9 2 and not covering 6 .

So neither S(2,3,13) is resolvable at the point 6 . So we cannot
have an S(2,6,66) whose block‘graph has an alternative geometrisation
by normal cliques.

It is possible to prove that a necessary condition for the existence -
of an S(R,k,v) with nonunique geometrisation by normal cliques of size
r , with k = 2k,, is the existence of an 5S(2,k,,r) with the special
resolvability property, i.e. for any point of the S(2,k,,r) , the blocks
not containing that point are divided into k - 1 parallel classes of
(r - 1)/k, blocks.

The next case k £ 8, k,= 4, v + 176, r = 25, requires the
existence of a (176,50,14) symmetric design, and a special $(2,4,25).

I have not been able to determine whether such an S(2,4,25) exists.
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(6) An S.(2,8,176) whose block graph is geometrisable in two ways.

In her thesis, M.Smith (R8), following the work'of G.Higman (17),
considers the doubly transitive representation of the Higman Sims group
on 176 points. It turns out that there are two such representations,
and a subgroup of index 176, isomorphic to PZU(5,51), which does not
fix a point in one representation, has two orbits, one of size &0 and
the other of size 1R6. If we consider these sets of size 50 we
obtain a symmetric block design on the 176 points with parameters
(176,50,14).

Furthermore the group has subgroups isomorphic to S, (the symmetric

4
group on 8 letters), and these have orbits of size 8 and 168; (this
was the method used by G.Higman to construct this representation). If
we consider the orbits of size 8 , we obtain an S5,4(2,8,176) design,

and because the stabiliser of each block is S the blocks must intersect

g’
in 0,1 or 2 points. (If they intersect in more, the condition that-
any two points have exactly two blocks through them is violated, by the
8-fold transitivity of the block stabiliser on the points of the block).
The blocks of size 8 , called conics by Higman, lie in exactly
8 of the sets of size 50 of the symmetric design, (called quadrics
by Higman). So they give an S5,(2,8,176) on the quadrics with dual
incidence. Finally any quadric contains exactly 50 conics, any two
of which intersect in 1 or 2 ©points. So we have a new set of 176
cliques of size 50 in BG[SQ(2,8,17Gi] corresponding to another

geometrisation of the block graph. Furthermore the cligues are normal,

covering the minimum number, 50 , points of the design, and regular,



any other block containing exactly two of these points, intersecting 14
of the blocks in one point, and one of them in two.
The structure of the 50 blocks of size 8 intersecting in one”
or two points is that obtained by taking the Moore graph of valency 7,
and constructing 50 blocks as follows. For any vertex x, let B,
be that vertex together with the 7 adjacent vertices. Then clearly,
\BII\B7\=2 2 if =x 41is adjacent to vy,

1 if not.
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‘CHAPTER V

AN ASSOCIATION SCHEME FOR THE 1-FACTORS OF THE COMPLETE GRAPH,

AND CLIQUES AND DESIGNS THEREIN.

(1) Definitions, and the Centraliser Algebra of a Permutation Group.

A l-factor of K., is a collection of n edges of the complete
graph on' Zn vertices, such that any vertex lies on a unique edge. A
given 1-factor can be identified with the fixed-point-free involution
of S,, which interchanges the pairs of points that make up the edges
of the l-factor. The natural action of the symmetric group S,, on the
l-factors of K., is permutation equivalent to its action by conjugation
on its fixed-point-free involutions.

The Centraliser Algebra of a transitive permutation group G on
a set L of size v, 1is the set of v x v matrices over the complex
numbers which commute with all the permutation matrices of G. If the
group G has rank x4+ 1 on O (i.e. the stabiliser of a point has
m orbits on the remaining points), and the centraliser algebra is .-
commutative, then the orbits of G on the R2-subsets of .(). form an
m-class association scheme, as defined in Chapter I. 1In fact, using the
notation of Wielandt (30), for any orbit /A of the stabiliser G,y of
the point 1, we can assoclate the following matrix A, , where,

AA(a,b) = {1 if there isa del, ge G such that

0 otherwise. (1,d)g = (a,b).
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It is not difficult to show that these matrices generate the centraliser
algebra of the representation. Furthermore the sum over distinct orbits
of the corresponding matrices is the all 1 matrix J . So if the algebra
is commutative it can be regarded as an association algebra with m
classes.

For each ge G, let P(g) be the v x v permutation matrix defined
by the action of g on Q 5
Theorem A: The centraliser of G on 171 is commutative if the permutation
character of G on _f). is the sum of distinct characters of G.

Proof: Let D,y Dyyecee. ,D. Dbe the irreducible constituents of the

-
permutation representation on Q , i.e. for some unitary matrix U,

any Vv x v permutation matrix P(g) in G has the following decomposition,

g P(g)U =

with O's outside the blocks on the main diagonal. We write this in

the form

07 P(@)0 x [ D,(8)s Dyl@)yeeesDa(@)seeenninns , Dy(g)yee-sDnE) ] -
o —

e, -
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Then, if Q is the centraliser algebra,

7O - {we,’ e T seeereens ....,'?_._f;rx IF'] ,

where e, = 1,

uq: the ring of all e;x e

. matrices over the complex numbers,

IF = the identity matrix of size fi , the degree of the i-th
irreducible,
énd x represents Kronecker product.

Clearly this is commutative if and only if e;=1 for all 1i.

For the i-th conjugacy class 'E; of G, define the 1-th class

matrix,

CC = Z P(g) .

ged;

Then we have;
Theorem B: All the class matrices belong to the centraliser algebra a .
They commute with each other. Furthermore, the centraliser algebra is
commutative if and only if the class matrices generate Q .

Proof:

p(n)”" C, P(b) = > P(h™! gh)

get;

= Z Plg) = O«

b
2, :

C.Cy= Z P(g)C. = Z_ e plz) =
la geei d

gee; d

for all h¢ G.

C. .

n
47
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So if the class matrices generate Cl_, it is commutative.

Conversely, suppose Cl, is commutative. Then from theorem A4,
the representation has distinct constituents.

Consider [X.‘(j )] » the character table of G. ( X;(j) = the
value of the i-th character on the j-th conjugacy class). It is well
knovm that its columns are orthogonal, and so , as a matrix, it is
nonsingular, In particular, if we look at the matrix formed by the rows
corresponding to the irreducible constituents in our permutation
representation, it has full row rank, m+ 1 , and so it has a set of
m 4+ 1 independent columms. Consider this square submatrix, which with

suitable renumbering, we can call

['X-, (j)] 1,52 1yeeneennn o+ 1.

It is nonsingular.

Again, from the basic representation theory,

% o) = 16Xz,
q¢ 1 £

and so,

U ¢, 0 = [,%]X,(j), lfgfl %X.(5) Tp gensssony l@ Fl X3 IFM'].

The matrix [Q}X;(j) " | r——" Lo |1X() (ﬁl}, ..... ..,}em,l

£, f

| ] fMH
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is nonsingular, since ['X‘ (j)] is.

Therefore the CJ's are independent. But dim Q: m + 1. Hence they

span Q.

Theorems A and B can be found in Wielandt. (30).

(2) The character of S,,. on the l-factors of K,,.

We give the proof of a theorem by Thompson (29), proved in a very
different manner by Saxl and James, see (R7), but perhaps known earlier,
concerning the constituents of the permutation representation of S,

on the l-factors of Kz .
n

Theorem C: Let X be the character of this representation, and let
T
?((0 be the irreducible character of S, corresponding to the

partition Tr . .Then

(X, %ﬂ_)) =§ 1 if every part of AT 1is even,

0 otherwise.

In particular this representation has rank p(n), the number of partitions

of n.

Proof: (due to Thompson)
(a) (X,X )=z p(n) 1is not difficult; we do this in deteil

in the next lemma.
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(b) We need to show ( X, 'X@) .7! 0 if every part of T+ is
even. To do this we make use of the methods of the representation theory

of the symmetric group over the complex numbers; see, for example,

Curtis and Reiner (6).
Let T be a tableau associated with YT . Then for each

k= 1 to 2n, we have a position (i,, j\c)’ where the number k can

be said to lie in the tableau.
For each edge e = gk ,‘QZ of K,, set
he(e) = \jK—j{\ , w(e) = \ i, - ig

If u is a 1-factor, set

h.T(u)= max h_‘.(e), v:.r(e)= max w_r(e)

e an edge of u e edge of u

Since every part of —Tt is even, there is a unique u = u(T), such that

h(u(T))= O, we(w(T)) = 1.

e.g. for 2n-= 6, = (4,2)

a?a\f, asac .

T = w(l) = =#8,

Let C , R be the largest subgroup of S,, which fixes each colum,

respectively row, of T.

Set e(C) = ‘C[dz sg(c) ¢,

cé&C

e(R)+= IR,-'Z - 8

rekR

-

+
e(T) = e(C) e(R) , then e(T) is a principal idempotent of
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the group algebra QSZn , and
dim Qv. e(T) = (X, XMy,
where V 1is the vector space spanned by all the 1l-factors of Kzn.
We need to show that V.e(T) # 0. We show that the coefficient of u(T)

in u(T).e(T) is positive.

Let f£(T) = e(T) lCl ‘R) = :Z: sg(c)er.
- ~ cen

The coefficient of u(T) in u(T).f(T) is

Z sg(c)

(cyT)
ceC, TeR
cr fixes u(T)

Suppose ce¢ C, T €R, cr fixes u(T).
u T}, u(T).c = u(T).r~' .
W @(D) = 1,

(since the functions Wy, he are constant on C-orbits, R-orbits,

Then (u(T))er

ol

But W (u(T).c) nd ho(u(T).r') = b (u(T)) = 0,
respectively), and so

u(T).c = w(T).r = (T .
Letk ©F 6, s8ynmunan 029”'CZF’ where 2f 1s the number of columns of
T, and c; moves only the points in column i. Then,obviously, c;
acts on column i1 in the same way as c;,( acts on columm i+ 1, for
i odd. Hence sg(c;) = sg(e;,,). Hence sg(ec)= 1. We certainly have

u(T) = u(T).1.1 and so the result follows.

We have included this proof because we generalise it Jater when
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considering designs in the scheme.

(3) A useful lemma.

Theorems A and C together imply that the 1-factors of Kon
give rise to a scheme with p(n) - 1 classes., The mein point of
Theorem C 1is that it identifies the eigenspaces of the association
scheme with certain irreducible representation subspaces of Sq.- Ve
give a prcof that the rank of the representation is p(n) which will

also be of use later.

Lemma: Let f,, f,, £, be l-factors of K, .
Then 1) For every partition 7T, of n there corresponds a relation
between the 1-factors.
2) 1t §{f,, £8 , and §f,, £,5€ R(TT)  then there exists
ce 82._‘ such that f,c= t‘, and fzo--: fg .
3) There exists ©e So,, such that fl o= f, and f &= £y
4) There exists &€& S, such that & fixes at least n
of the 2n points and f,&=f, .

In fact, if f,+ f, (for definition see below) has x
components of length 2, and y components of length greater than two,
then there are exac_:tly 2‘y permutations & ¢ Sln which fix n + x
points and such that f,o=f,.

Proof: 1) Take any two l-factors f,, f,: their edges taken together,

2°

1z 6 fl ¥ fz’ cover every vertex twice and so form a collection of
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disjoint circuits of even length (including length 2, <) and so we
obtain a partition 27 of 2n into even parts, and so Tr 1is a
partition of n. Conversely, given a partition Tr of n, 2 is a
partition of 2n into even parts, and it is not difficult to find
l-factofs f,, f, such that the circuits of f,+ f, have lengths the
constituents of RTr.

%) Suppose f,+ f, and f, + f; have as components circuits of
the same lengths, i.e. they poth correspond to the same partition of n.
Consider first just €, 4+ f,, and the longest circuit ¢, of f + f,,
of length 2m, say. Then any point in this circuit lies on one edge
of f, and one edge of f, . Pick an arbitrary point of the circuit
and label it a,. Then go along the f 6 edge at a,, and label the
adjacent point apns). Then go along the f, edge at 8p4y and label
the next point a,. Continue in this manner until all the points of
c, have been labelled, with labels BlyeeesBamsBasirceesBngem, e NOW

label the other circuits similarly, so we might have for n = 6,

a, a Q 4_{ Q‘
~ . - |
>/\ s g %, 7 t
-~ t
7 o g % ]
7 5 N ]
Qq Qg Aq Qo & ST

where f, edges are:continuous and f, edges are dotted.

b

Now produce a similar labelling for f,+ f; with labels b ,...,Db,, .

Then because f, + f, and f,+ f3; correspond to the same partition
of n, there isa o©¢ SZV\ such that a;—sb;, 1i=1 to 2n, which
fixes f, and maps f, to f; .

3) For each circuit c; of f + f, choose an orientation &)
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of the points of ¢ . Then o = WFT-Y(ci) is such that f & = f, and
f,o=¢f, .

4) In the same way as in 2) we consider a particular circuit c
of f, 4+ f, of length 2Z2r greater than two, and label the vertices
a,,....,ar,an+,,....,aﬂ+} « THED (B z8gywesayBpe) B8O (Bay susnas sBepat)
are two such 0&€S,, which fix at least r points of c¢ and map the
edges of f, to those of f,. Now, clearly, there can be no (e Sz“
which maps the edges of f, to the edges of f, , and fixes two
consecutive points of c¢. So any such & fixes at most r points of
c , and no two consecutive ones, and so any ( vwhich fixes exactly
r points of c¢ , fixes alternate points. So any edge of f,; has one
of its points fixed, and so the other point in the edge must go either
to the point two.to the left in an orientation of c¢ , or to a point two
.to the right. This determines the action of ¢ on the circuit. Finally
the only way we can have o mapping ‘f, to f, and fixing n + x points,
is for it to fix each repeated edge and act in one of two ways on each
circuit of length greater than two. Hence the result.

1), 2), and 3) are enough to show that we have an association scheme
with p(n) - 1 classes.

4) will be of use later.

(4) The eigenvalues cf the scheme.

For the Johnson and Hamming schemes the eigenvalues are known in
terms of the basic parameters and the Krawchuk and Eberlein polynomials.

It does not seem possible to provide such & neat closed form for the
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eigenvalues of our scheme, but we present a method for finding them,
making use of theorem B.

Clearly the class matrices here do not form a basis for the
centraliser algebra, and there is no unique way of representing the A;'s
as linear combinations of the CA'S' However, a canonical expression
can be found in terms of the Cé's for only those conjugacy classes
whose elements fix at least n points, and in terms of these CJ's the
expression is unique. The reason for this is part 4) of the preceeding
lemma.

Now the number of conjugacy classes whose elements fix at least n
points is exactly p(n) , and it turns out that we have a triangular
system of equations connecting the CJ's and the Ai's. First we index
the A.'s, CJ's, and E,/'s Dy partitions of n as follows:

Let 1 be a partition of n .

A(ar) 1is the adjacency matrix corresponding to the relation R(TT)
such that {f,, f;%g R(T) if the circuits of f,4+ f, have as lengths
the components of 2Tr.

C(Ti) is the class matrix corresponding to the conjugacy class

m

in S,, whose cycle lengths are components of together with n
fixed points.

E(TT) is the projection matrix of V onto V(2w), the eigenspace
of which is isomorphic as an S2nrmodule to the Specht module S@zn')
arising from the partition 2(T’') of 2n , where T’ is the partition
conjugate to T . The ordering of the partitions 7T of n follows
that used by D.E.Littlewood (2C) in his character tebles of the symmetric

groups.
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The eigenvalues of the C.'s on the irreducible subspaces are well
known, and are easily calculated from the character table of Sg. s OT
if this is not available, by the methods of the representation theory

of the symmetric group. We have,

K
A (C) = l-e-,i?((i)/ %) .
The main problem is to find aiy 's such that

1
C. = Z a: A
i 5= 1 lj p!

This is done for the cases n = 4,5,6, but beyond this point. the

.calculations become very involved.

(5) Computing the ay's.

We recall
C;(f,, f;) = the number of &€ €; such that f & = f

So &= the number of o é €, such that it {f,, £,{ € R;,

then f,& = f, .
For small n, and for some i and J , this is a relatively satisfactory
method for calculating the aiJ 's. However, the length of these computations
increases rapidly with n , and for n = 5,6, the following shorter
method was used.

The underlying idea is to pick a particular f;, and to count the

number of G e ei such that gf‘, f,cr} pa RJ 5
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Celling this number 'bu , Wwe have

. - b‘ °
a% q/%

The calculation of the b;&'s falls into two parts. First, we find the
number of o&& {2; which contain certain edges of f, in their cycle
structure in a prescribed manner, and then we find the number of ways

in which we can choose such edges. The best way to illustrate the method
is with an example: we do the case where n = 6, ff; =z(125456)z,

£, = (1,7)(2,8)(3,9)(£,10) (5,11) (5,12)

First, there is the case where the 6-cycle consists of one point
from each edge of the 1l-factor. As we have remarked in part 4) of the
lemma, this gives rise to a,; = &. |

Second, there is the case where the 6-cycle contains 2 points
from one edge of the 1-factor and four other points, one from each of

four edges of the 1l-factor. Then we have three subcases,

-

! F=—e

48 & such that 3f,, fe= € Ry,

48 R,

giving aq,= 120.6.5.2°525 .
) 2504

24 Ry o
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Third, there is the case where the

the 1l-factor and two other points, one from each of two of the remaining

edges of the 1-factor. Then we have

| o= =47
7%
/ \
‘f( /L 16 R3
\ /
3=~
lf_T:.\
/ \
/
BN »? 8 Ry
\ //
8\::2
I/m.\.’
/ \
2 }ﬂ? 16 R
3
\_\ //
Q‘—-—-‘s
RFT;'\"
/ \
ad z 32 Ry
A% /
o’y
| g— —@3
/ \\
2 7 8 R3
16 R‘+
16 Rz
8 R

6-cycle contains two edges of

subcases.

These contribute

80.15.6.2 = 40 Ag
720

2
16.15.6.2 = 32 A,
180

24.15.642%= 54 A
160

2
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Fourth, there is the case where the

the 1l-factor. We then have 5 subcases.
| 7
F—=\
/ \
‘2 16 &
L | / 2
\
3 - T®
! 7
/‘::\.
/ \
9 2 48 -
\ /
\
gv— — 3
1 7
F___..R
Vs \
e.<_____‘,-7— 24 R,
\ ’
o‘\izzjs
( ___\z
/ \
9 9 R4 R,
\ /
& 3
I P
/ \
q v; 3 8 R,
)

From all this we obtain,
Cq =160 Ay + 32 A, + 62 A, + 40 A, 4

The eigenvalues and the

(6)

ait's.
v

Case n= 4.

6-cycle contains

3

These contribute

48.20 , 32 &,
30
64.20 = 8 A,
160

8.20 = 160 A,

2 Ay +25 A, + 2 A

edges of

7



(1) Co= A, = I

(12) C, = 4A, + 24,

(128) C,= 4A, + 24,

(1234) Co= 124, + 24,4 94, + 24,

(12) (34) Cos 18A,+ 4A + BA,+ 44, .

P metrizx 1% 2,1 3.1 4 2,2

8] 1 12 52 48 12 1

[6,2] 1 5 —4 8 -2 20

] 1 2 8 2 7 14

la,e] | 2 = X 4 2 s

[2+] 1 -6 8 -6 3 14

Case n= 5. plE) = 7

(@) Cp = A,

(12) C, = 54, + 24,

(123) Cat 44, + RA,

(1234) Cy= 204, + 24, + SA, + 2A,

(12) (34) Cq= B0A, + BA + BA, + 4Ay

(12) (345) Og = 364, +10A, + BAg+16A, + 4A

(12345) C, = 24 +124,+164,+ 24y .

Pumatrix  1® 2,1 31 41 21 2,3 5 M
[10] 1 20 80 240 60 160 384 1
I8,2] A 11 26 24 6 -20 -48 35
[6,4] 1 8 -4 -28 11 20 -8 90
[6,2*] 1 5 2 -8  -10 4 16 225
[22] | 2 0 -0 10 5 10 4 252
E;,z‘] 1 -4 2 6 -3 10 -12 300
[2‘] 1 -10 20 -3 15 -0 24 42



(86)

Case n = 6 . p(6) = 11.

(1) Co= A,

(12) G, = A+ 2,

(123) Co= 4A + 24,

(1234) Cg= 30A,+ RA, + SA, + 24,

(12) (34) Coz 45h, + BA, + BA, + 4A,

(12) (345) Cge 484, + 124, + BA,+ 164, + 4Ac

(12845) Co = B2A+12A,+16Ay+ 24,

(123456) . Co= 160A + B2A, + 624, +40A g+ BRA,+ R5A, + 24,

(1R)(3456) Cy= 1R20A, + B4A + 66A, +2BA3+244, 41844104, + 44,
(12)(34)(56)  Cq= 140A,+ 564 +10A, + 4Ay + BAy + BAg + BA,

(123) (456) Cioz 160A,+ 224, + BA +32h, +B8Ag + BA, + 44, .

p matrix  1° 2,1% 3,1% 41" 231 2,351 51 6 2,4 2 5 Y
[12] 1 30 160 720 180 960 2304 3840 1440 120 640 1
[lo,e] | 1 19 72 132 48 80 192 -38¢ -144 -12 -64 54
[s,4] 1 12 16 -18 27 24  -144 -48 108 30 -8 275
I6,6] 1 9 -8 -78 55 120  -48 -24 -114 -27 136 132
Be,e’l | 1 09 22 12 a2 —60 48 96 -24 -12 16 616
6,421 2 & -8 -8 50 52 16 -4 -2 -24 2673
(a*] 1 0 -20 30 15 -60 24 0 -60 30 40 462
B2t 1 | 1 o 4 5 21 12 24 48 12 6 16 1925
[¢] | 1 s & 22 5 0 24 12 2 -9 42640
@,2“] 1 -8 12 -6 5 20  -24 48 -3 6 -16 1485
[2¢] 1 -15 40 -%0 45 -120 144 -120 90 -15 40 152
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Note: R.Roth has calculated these P-matrices directly by computing the
p'é 's — a monumental task - and the figures we have arrived at independently
[P RS 5

have each served as useful checks for the other.

(7) Designs in the Scheme. -

In analogy with the Johnson and Hamming schemes, we wish to consider
t-designs in this association scheme. Let us call a collection Y of

l-factcrs a t—design, if for any collection of t disjoint edges of LOX,

there are a constant number of l1-factors in the set Y which contain
these edges.
Consider the matrix Nb_w\which has columms indexed by all the
2

l-factors and rows indexed by sets of t disjoint edges, and

N, . (e,)f) = g 1  if the edges of e are contained in those

0. otherwise. of f.

¥t qbv is the characteristic vector of Y, the e¢ondition that Y is

a t-design can be written

N @y = 1

or (N

s kA Je,m) ¢‘I + 0, for some constant k.
So we need to find out which irreducible representation subspaces make

up the row space of N{:w\'

)
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Lemma: Let N be an n x m matrix over the complex numbers with the
property that a group G acts on both the rows and the columns of N.
i.e. for all geé G, if P(g) is the permutation induced by g on the
rows, and Q(g) that on the columns,

P(g) N Qg) = N .
Then the row space (over C) and the column space (over C) of N
decompoge into isomorphic irreducible representation modules of G.

Proof: There exist square matrices A of size m , and B of size n ,

such that
i I~ O
AT NB = where r is the rank of N.
0 0
So 2 ' pe) ar NBB Q@ B-A NB.
Let  P,(g) = A7 P(g) 4, Q,(e) = B alg) B,
s |Fn (g), Pn(g) = Qu (g), Q.(g)
b
Pi‘(g): Pu_(g) Qa,(8)s Qanle)
Then I'- 0 Ip 0
Ql(g) - P\ (g) 3
0 0 (¢} 0
Q(l (g)’ Qn-(g) = Pn (g)’ E O
0 0 :PZI,(g)’ 0
So Q, (g) = P, (g) and Q,,(8) =0, Py (g) =0, for all ge G.

Hence the row and column spaces decompoce into the same irreducibles.



Now consider Nh"“. It satisfies the conditions of the lemma, with Som
acting on the rows and the columns. Since the row space is contained

in the representation module of So.. On the 1l-factors, any irreducible
constituent SC‘.D of N!:,M must correspond to a partition v of 2m
into even parts. On the other hand, the column space is a submodule of

the representation of S on MCMA (the set of tableaux of type/pa),

©2ua
where M= (2t, 2m - 2t), i.e. 2m =2m - Rt + 2 +..... +2 .
t times.

We prove the following;

Theorem: Let Tr= 2y and T = (2F

,2m - 2t) be a partition of 2m
into even parts. Then st ¢ row(Ng p) 5 cOl (Ng.) -
Proof: VWie proceed in exactly the same manner as in the proof of
Theorem C.
| Let T be a tableau corresponding to the partition Tr. W,+ n..iﬁ;,
where T 28m - 2t, and TN;22 for all 1> 1.

Let S & R be the subgroup that acts as the symmetric group on
the first 2m - 2t positions in the first row of the tableau.

We define u(T) as in Theorem C,

and v(T) =—Z BT S «

sesS
Now v(T) occurs as a vector in the row space of N s since it
is the characteristic vector of the set of 1l-factors containing the
t disjoint edges of wu(T) which do not contain the letters in the first
2m — 2t positions of T.

Again consider the coefficient of u(?T) 4in +v(T).f(T), namely,
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2 sg(c) .

ce Cy TER

u(T).creu(T).S

If u(T).cr = u(T).s for seg S, then u(T).c = u(T).sr”!
So wT(u(T).c) = WT(U.(T))z 1, h

Hence u(T).c = u(T).sr~! = u(T),
and the remainder of the argument follows exactly as before.

We have shown that

Note: Thompson proves this for the case t =2, but not by this method,

Let us look at the case m =6, i.e. the l-factors of K ,. The
A;'s can be arranged in order depending on the number of edges that
two l-factors have in common. The E;'s can be arranged in the order

in which they first appear in row( N.,). We have

7

(1) [12]

(2,1%) [10,2]

(3,1%) [5,4] , [&,2%]

(4,1%), (2%1%) (6,6] , [6,4,2) , [6,2%]
(5,1), (2,3,1) [43], [4",2‘] , [4,2“]

©), (4,2), (39, (2). [2¢].
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These 1-factor schemes are not metric in the sense of Delsarte,
but they bear a strong resemblance to the Johnson scheme, in that it is
possible to define a generalised metric on the 1l-factors, by saying
that two 1-factors are at distance i if they have n - 1 edges in
'common. One small difficulty arises in that there is no distance 1.
However if d denotes the distance function, then

a(f, ,f,) + d(fz,f3)2; d(f,,fz),

f

for any three I1-factors f, f,, f, .

From what we have just seen there is a similar partial order on the

Fig
El s

(8) Particular Examples, and Applications.

(a) 1-factors arising from an oval of n + 2 points in PG(2,n).

In such a case n must be even, and to each of the n - 1 points
outside the oval there corresponds a l-factor of K,,, determined by
the intersections of the lines through that point with the oval, (see
Thompson (29) ). This set Y of l-factors of K,,, has the property
that no two of them have more than one edge in common, (for if they did,
they would correspond to the same exterior point), and so Y is a clique
with respect to certain relations. Furthermore any pair of disjoint
edges 1s contained in a unique 1l-factor. Therefore Y is a R2-design,

and we have, for the characteristic vector QSY of X;

a1 By = et 21y < Ty <O
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This gives three equalities in Delsarte's inequelities for the distribution
vector. However the other inequalities are not very strong in this case.

One can also define two partial geometries on the set of n%* -1
exterior points depending on whether or not they lie on a secant or an
exterior line of the oval. Let us consider the case n = 10. Then we
get a (5,11,5) partial geometry the dual of which is an $(2,11,45).

It has been shown that a projective plane of order 10 has no automorphisms
apart from the identity. Suppose we have an oval in the plane. Is it
possible for the set of 99~ l-factors arising from this oval, there is

a permutétion geé Sy which fixes the set as a whole. Cuppose it

was. Then the block graph of the 5(2,11,45) would have an automorphism.
But if g permutes the lines among themselves, then g could be extended
to an automorphism of the plane. Otherwise g would have to map the

lines of the block graph to another set of geometrising cliques. But

we have shown in III(11) that none exist. So this set of 99 1-factors
has no nontrivial automorphisms.

(b) 1-factorisations.

A l-factorisation of K is a set of 2n -1 1-factors of Kz,
such that any edge lies in exactly one of them. Cameron (4) has asked
for which relations between 1-factors is it possible to construct a
l-factorisation such that any two of the 1-factors are related in the
same way, and he gives a list of the knovm cases., A l-factorisation
of this type can be considered as a clique with respect to this relation.
The figures we have calculated add only a little to what was already

knovwn.
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(e) A proof of the isomorphism of Ag and PSL(4,2) using the
techniques of this thesis.

We consider the graph on the 1G5 1-factors of XK , corresponding
to the relation (2,2), i.e. any two 1l-factors are adjacent if they

lie as follows,

Then, from the P-matrix we obtain that the -adjacency metrix has least
eigenvalue -2 and has constant line sums. We can apply the considerable
theory of such graphs, fully recorded in (3), to obtain that G is the
line graph of some graph. Furthermore G has the same parameters as
the flag graph of a symmetric design with parameters (15,7,3), and so
is the flag graph of such a design. G has 3C cliques of size 7,
corresponding to the points and blocks of this design. These must be
l-factorisations such that the relations between the seven constituent
l-factors are all (2,2). These are the only such l-factorisations
since the flag graph has only these 30 cliques of size seven. The
parallel classes of AG(3,2) give such a 1-factorisation, and this has
automorphism group of size 8.7.6.4 Therefore Sg is transitive on these
30 1l-factorisations, and Ag has two orbits of size 15.

There are 35 partitions of 8 into two lots of 4. To any such
partition we can associate nine 1-factors, and three of our l-factorisations

in the same orbit of Ay, these being



In this way we obtain a set of 35 triples on the 15

in an orbit of A .

common .

(corresponding to the: same
it is doubly geometrisable.

A acts as a simple group of automorphisms on it and,
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The triples have O

And so we have an S(2,3,15)

Hence it is projective

orders we see it must equal PSL(4,2).

under

under

(hegf)

(hfg)

1-factorisations

or 1 1l-factorisation in

on one orbit, and the same

s(2,3,15)

35 partitions) on the other orbit. And so

3-space over GCF(2).

by comparing
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