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Abstract. 

Maximal cliques in various graphs with combinatorial significance 

are investigated. The Erdos, Ko, Ha.do theorem, concerning maximal sets 

of blocks, pairwise intersecting in s points, is extended to arbitrary 

t-designs, and a new proof of the theorem is given thereby. 

The simplest case of this phenomenon is dealt with in detail, namely 

cliques of size r in the block graphs of Steiner systems S(2,k,v). 

Following this, the possibility of nonunique geometrisation of such 

block graphs is considered, and a nonexistence proof in one case is given, 

when the alternative geometrising cliques are normal. 

A new Association Scheme is introduced for the 1-factors of the 

complete graph; its eigenvalues are calcu1ated using the Representation 

Theory of the Symmetric Group, and various applications are found, 

concerning maximal cliques in the scheme. 
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INTRODUCTION. 

A clique in a graph is a set of vertices such that any two are 

adjacent. By a maximal clique, in this thesis, we shall mean a clique 

which reaches a prescribed bound. Tbs ,bound that we shall be most 

interested in, in Chapters II, III, and TV is that given by a generalisation 

to t-designs (due to the author) of the Erdos, Ko, Rado Theorem. The 

graphs that we shall be conc.erned with in these chapters are the block 

graphs of. the designs, with the blocks of the design as vertices. They 

contain certain cliques which correspond to the sets of blocks through 

a point of the design. The afore-mentioned theorem states that in most 

cases these are the largest cliques in the block graph. We investigate 

the possibility of other cliques of the same size, paying particular 
,. 

attention in Chapter III to the simplest case, Steiner systems S(2,k,v). 

Following this we consider the possibility of nonunique geometrisation 

of a block graph. This requires the existence of another set of cliques, 

of the same size as our special cliques, on which can be defined a 

t-design with the same parameters as the original. We determine a 

relation between two such sets of geometrising cliques, in the case of 

2-designs, and consider in detail an extremal type of clique, which we 

call a normal clique, and show that an alternative geometrisation by 

normal cliques of the block graph of a 2-design gives rise to a symmetric 

design on the points of the original 2-design. 

Steiner systems can be viewed as maximal cliques in graphs derived 

from Assoc,ie._tio!l Schemes, the basic theory of which is dealt with in 

Chapter I. In Chapter V we define an association scheme on the 1-factors 
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of the complete graph on 2n vertices, give a method for determining 

its eigenvalues, and apply this method for the cases n= 4,5,6. The 

work relies heavily on the Representation Theory of the Symmetric Group. 

We again look at various maximal collections of 1-factors Viith 

combinatorial significance. 
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CHAPTER I. 

ASSOCIATION SCHEMES; CLIQUES AND DESIGNS THEREIN; FURTHER EIGENVALUE 

TECHNIQUES; Dfili'INITIONS. 

(1) Association Schemes. 

An association schem.e on a set _()_ of size v is a partition of 

the 2-subsets of fl into . m classes or relations R1, ••••••• , Rm 

satisfying 

(a) x E: Sl 9 \ fy 

(b) x j ye Sl , l x , y 3 E Ri 

for nonnegative integers (i = 1, ...... ,m) 

and p. . k ( i , j , k :: 1, ••• , m) • 
1J 

To each relation Ri we can associate a graph on _(l with adjacency 

matrix Ai of size v. If we let A0 = I, the identity matrix, we have 

J ::= Ao + A1 + • • • • . • • • -+ Am , 

where J is the v xv matrix of all 1 1s. 

Furthermore we have 
m 

:: Aj Ak= L Pijk Ai 
i::: 0 
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v1here the P· ·k's 1J 
with one or more subscripts zero are suitably defined. 

So the A. 1 s span an associative and commutative algebra Q , known 
J. 

as the Bose Mesner algebra of the scheme. 

Let V be the v-dimensional vector space over the complex numbers 

on which the matrices A. can be said to act. Then there exists an 
1 

orthogonal decomposition V ::: V 
0 

(f) v1 cf) ••..•. (t) V m (the eigenspaces 

of the A.'s, which are simultaneously diagonalisable) such that if 
J. 

Ei denotes the matrix of the orthogonal projection V ~Vi' then 

It is customary to take V
0 

= span f (1,1, ...... ,1).,.3 . The V. 's 
J. 

are known as the eigenspaces of the algebra, and dim V. = A.L • , say. 
1 I 1 

(2) Eigenvalues of the scheme, and Delsarte 1 s inequalities. 

We have 

for scalars Pj(k) which are known as the eigenvalues of the scheme. 

It is not difficult to show that the P j (k) 1 s, together _ with the ,1-A1' s 

determine all the parameters of the scheme. 

Delsarte (7) develops conditions on the distribution vector of a 

subset of elements of the scheme in terms of the eigenvalues. Given a 

subset Y sQ, its distribution vector a is an m + 1 dimensional 

vector with 



a. -
1 -

1 
\Y\ 

(5) 

Delsarte 1s inequalities state that 

m 

z. 
j .:: 0 

i = 1 to m. 

for i ~ 0 to m, 

and so a knowledge of the eigenvalues restricts the possible subsets of 

the scheme. 

Let _ ~y be the characteristic vector of Y. Then the inequalities 

are equivalent to the fact that 

m 

since 

(5) The Johnson and Hamming Schemes. 

The Johnson scheme is defined on ~(v), the set of all k-subsets 

of a v-set. There are k nontrivial relations, (as long as v ~ 2k4- l), 

depending on the intersection of the two sets, i.e. 

if and only if 

These schemes provide a general setting for the theory of statistical 

designs, and set intersection problems. 
v 

The Hamming scheme is defined on GF.( q) , the set of all vectors 
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in a v-<limensional vector space over a finite field. 
C.L t-L 

There v nontrivial 
A 

relations, depending on the number of nonzero entries in the difference 

!_1 - ~4, for two vectors in the space. These schemes are of use in the 

theory of error-correcting codes. 

The eigenvalues of the Johnson scheme are given by 

i 

p, (j) = 
I 

L 
u:o 

= E; (j), an Eberlein polynomial. 

For the Hamming _scheme . we have 

j 

P, (j) = 2. 
u:: 0 

u i 
(-q) (q - 1) 

i 
/Ai. = (q - 1) = Ye. 

(4) A simple application of eigenvalue methods. 

, 

Let us suppOSE? that we have a family Q_ of k-subsets of a v-set, 

(where v ~2k + 1), which pairwise intersect in at least one point. 

Then this is a coclique in the graph corresponding to empty intersection. 

We have the following bound due to Hoffman (18) on the size ~ of a 

coclique in a regular graph, namely 



,.J < -v A. 
V\. -- d -i\ 

(7) 

where v is the number of vertices, 

d is the valency, 

, 

/\ is the minimum eigenvalue of the adjacency matrix. 

By examining the eigenvalues Pk(j) cf the graph, we find 

/\ :: (
v - k - 1) 

: (-1) k - 1 

is the smallest eigenvalue of Ak. 

::. ( 
v - 1) . 
k - 1 

This is the simplest case of the theorem of Erdos, Ko, and Rado (12). 

(5) The code-clique theorem. 

A subset Y of an m-class association scheme is a clique with ·-:1 

respect to relations f R i ~ . i ~ N 3 for some subset N of [ 1, •••• , mj , 
if its distribution vector satisfies 

for all if N, i I o. 

It is a code with respect to these relations if 

at :: 0 for all i l- N. 
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Let Y be a code with respect to [ ~ i E: N ~ , and Z be 

a clique with respect to the same relations. Then 

For a proof see Delsarte (7). 

(6) t-designs in the Johnson scheme. 

A t-( v, k ,'A) design is an ordered pair·. ~ (X,~ ) , where X is a r 

set of size v, and <J3 is a family of k-subsets (blocks) of X 

with the property that any t-subset of X is contained in exactly I\ 

of the blocks of (}:;, • To avoid degenerate cases, it is assumed that . 

Consider a (~) by (~) matrix with rows indexed by 

fJ t~v), and columns indexed by rfJk(v), with 

if t c. B, 

if not. 

Then if ¢ y is the characteristic vector of the blocks of a t-design, 

' 

where j_ is the (~) column vector of all ones. 
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i.e o, 

(
v - t) 
k - t 

where j_ / is the l ~) column vector of all ones. 

It can be shown ~ - (7), that the row space of Nl:_,IC is V0 ® V1@ ••. {!)Ve. 

Hence, if ~y is the characteristic vector of a t-design, 

(7) The- ::. degree of a subset of cPK(v). 

This is defined to be one less than the number of nonzero entries 

in the distribution vector of t he subset. We have the following theorems 

due to Ray-Chaudhuri and Wilson (25). 

Theorem: If a subset Y of rfJK(v) has degree d, then 

Theorem: The number of blocks, J <J3/ , . of a 2s-design satisfies 

Proofs of these can be found in (7). 

Finally, we have the following; 

Theorem: Suppose we have a t-design Y of degree s, with t ~ 2&~·- 2. 

Then the restriction of the Johnson scheme to Y is an association 

scheme with s classes. 

See Cameron and Van Lint (5). 
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(8) Interlacing Theorems. 

In his thesis, W.Haemers (15) gives a full account of the method 

of interlacing for the eigenvalues of a square matrix and a square submatrix, 

and many applications in the theory of graphs and combinatorial structures. 

We give here one of his fUndamental theorems, which we shall make use.~ of 

in Chapter III. 

Definition: Suppose that A and B a~e square matrices over the complex 

numbers, of size n and m, respectively, with m ~ n. If 

/\ i (A) ?- Ai (B) >,., A n-m+i (A) for all i = 1 to m, 

· then the eigenvalues of B are said to interlace those of A. 

If there exists an integer k ~ o, k~ m, such that 

for i : 1 to k, 

and A n-mti (A): A i (B) for i :: k + 1 to m, 

then the interlacing is said to be tight. 

Theorem: Let S be a complex n x m matrix such that * S S :: Im , 

(where S~ is the complex conjugate transpose of S). Let A be a 

Hermitian matrix of size n. Define ~ 
B =- S A S • Th en, 

(i) the eigenvalues of B interlace those of A. 



(11) 

(ii) If /\ (B.) E. S A (A), A (A) ( for some 
i 2. i n-m+i J 

i €. f 1, ••••• ,m1 , then there exists an eigenvector y_ of B with 

eigenvalue /\ (B), such that S y is an eigenvector of A with the:·· same 
i 

eigenvalue. 

(iii) If for some k t- ~l, ••..• ,mj, A (A) ::: A (B) . 
i i 

for all i e.fl, •••• ,k5, and v is an eigenvector for B with value 
-1 

/\ . ( B) , th en S v 
]. -i 

is an eigenvector of A with eigenvalue /t (B) 
i 

(iv) If the interlacing is tight, then S B = A S • 

For our purposes, 
T o] . 

(9) Other Definitions. 

A Steiner system s(t,k,v) is a t-·(v,k,l) design. When A>l, 

we write a t-(v,k,~) design as an Sl\.(t,k,v). 

A symmetric block design is a 2-(v,k, '/\) design in which the number 

of blocks b ~ v. By the second theorem in section (7) of this _ Chapter, 

b~ v, which is Fisher's inequality. 

A pairwise balanced design is a pair (X,<'.8), where X is a set 

of size v and <J3 is a set of subsets of X, (of no prescribed size), 

such that any two points of X are contained in exactly one element 

of (j3 . 
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The block graph of an S(2,k,v), written BG(s(2,k,v)J , or BG 

when it is known which Steiner system we are talking about, bas as vertex 

set the b blocks of the Steiner system, and as edge set the pairs of 

incident blocks. Block graphs can be defined for more general designs. 

A partial geometry and a strongly regular graph are as defined in 

Bose (1). A strongly regular graph can also be regarded as a 2 class 

association scheme. 
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CHAPTER II. 

MAXIMAL CLIQUES IN THE BLOCK GRAPHS OF t-DESIGNS. 

(1) An extension of the Erdos, Ko, Rado theorem to t-designs. 

In (26) the following theorem is proved: 

Theorem: Let ~ represent the set of blocks of a t-(v,k,A) design. 

Given 0 < s < t ~ k, then there exists a function f(k,t,s) with the 

following property: suppose there is a set Q f (JS of blocks such tba t 

for all A,B € Q , then if v ~ f(k,t,s), 

\ Q_} ~ b s ~ the number of blocks through s pain ts. 

Furthermore, if v > f(k,t,s), then the~ only families of blocks reaching 

this bound are those consisting of all blocks through some s points. 

If s <. t - 1, then f(k,t,s)~ s .+(~) (k - s + l)(k - s). 

If s =- t - 1, then f(k, t,s)~ s + (k - s) (~/ • 

It is well known that for any s ~ t, the number of blocks, bs , 

through s points of X, is independent of the choice of these points, 

and 

( V - ~)i /(kt - SS) 
b 5 =A t _ '/ 
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Extensive use is made of the fact that 

Let tf> ~ v) denote the set of all k-subsets of a v-set. Then it 

may be regarded as a k-(v,k,l) design. So the theorem has the following 

theorem due to Erdos, Ko , and Ra.do, (12), as an immediate corollary: 

Theorem: Given o' < s ~ k ~ v, then there exists a function g(k,s) 

with the following property: suppose there is a set Q. of k-subsets 

of a v-set such that for all A, B €-Q, \ A (\ B \ ~ s; then if 

v~g(k,s), 

, the number of k-subsets containing an 

s-subset. 

Frankl (15) has shown that if s ~15, then, 

g(k,s) = (k - s +- 1) (s 4- 1) + s, 

and conjectures that this holds for all s. 

Proof of the theorem: 

Let Cl be a· family of blocks satisfying the conditions of the 

theorem. Let t be the set of s-subsets which are at the intersection 

of at least two blocks of ct. Let np be the number of blocks of Cl 
containing the s-subset p of the family e . Let /Cll= w. 



Count (p,B) 

(15) 

such that p€ l , 

> np~w (~) . 
~ 

p ~ B l:: Q , to obtain, 

Count (p,B,A) such that pt-£ 
' p ~ B (\ A' with A' B e Q 

z_ n .(n - 1) 
p~e p p 

w(w -1). 

Now if a is not the set of all blocks through an s-subset, then , 

for each p E e 
' 

there is some block BE Q. , with pf B. lmy 

other block A~ Cl which contains p, contains at least s points of 

B. So if d is the maximum· number of blocks of 03 which contain p 

and at least s points of B, then n p~ d. Hence, 

w{w - 1) ~ {d - 1) ~ n p ~ {d - l)w (~) , 

w - l ~ (d - 1) ( ~) and so 

If d (~) ~ b ' 
s 

we are done. 

The following lemma gives an upper bound for d. 
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Lemma: Let p be an s-subset, and B a block not containing p. 

Let d be the number of blocks containing p and at least s points 

of B. Then 

or 

then 

then 

(i) 

(ii) 

if 

if 

(iii) if 

s ~ t/2 and 2. 
v~k + 2t, 

t/2 < s <. t - 1 and v ~ s +(~) (k - s), 

s :. t - 1, 

Proof of (i): Take an s-subset p and a block B containing r points 

of p, for some r < s. 

s-r 1(- s 

f s-r 

Let dr be the number of blocks containing p and at least s points 

of B. 

Then 

since there are (
k - r) 
s - r s-subsets o.f B which contain all points 

of B n p, and these, together with the remaining s - r points of p, 

each determine a family of b2s-r blocks with tbe required property. 
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These families have in their union all such blocks. Clearly, 

8 r+1/er - (s - r){v - 2s + l)/(k .- r) (k - 2s + r + 1) 

) (v - ·2t)/k2
• 

So if 
'L 

2t, then r<s v~ k + e r+l > er for all - 1, 

and so d r ~e s-l =- A (k - s -t- 1) (
v _ s _ 1) I ( k _ s _ 1 ) 
t - s - 1 t - s - 1 . 

Hence d is bounded as required. 

Proof of (ii) and (iii): 

Let maximum number of blocks containing j points of X. 

then c~ = b-t ' 
·J .J 

So if j ~ t, 

but, if j t, then cj ~ )\. • 

Then with ~ as in the proof of case (i), 

(
k - r) 

~ ~ s - r ~s-r = 8r ' -~ 

So, if r < 2s - t, then ~·;'.~ 1{: =~)~(~)'A; 

if r ~ 2s - t, then ~ ~?i.(k - 2s <t- t) 
2t - 2s 

(k-r)(v - 2s + ~)/(~ -
2s + r) 

if r > 2s - t, then dr~ A s - r t - 2s + 2s+ r . 

It is clear, using the same argument as in (i), that, 
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d ~ max dr ~ max ( e 
0 

, es _ 1 ) 

as long as 
2. 

v ~ k + 2t. 

If s < t - 1, then d ~max (). (~) , A (v - t)/k ) • 

So if v~ t +(~) k, then d .$ .?\ (k - s - 1) b s + 1 • 

If s = t - 1, then d ~ max ( A ( ~) , A (k - t) ) ;: ( ~) A . 

So ends the proof of the lemma. 

We want 

In cases (i) and (ii), this requires 

i.e. (!) (k - s +- l)(k - s) ~ (v - s), 

or v ~ s ~ (k - s) (k - s -+ l) ( ~) , as in the statement of 

·- · ...,.. 

the theorem. 

In case (iii) this requires 
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2 

/\ ( ~) ~ 'A (v - t + l)/(k - t + 1) 

or v ~ s 4- (k - s) ( ks) 2 

We have strict inequality in [Cl{~ bs, when v satisfies these 

conditions, and Cl_does not consist of all blocks containing s points, 

so the other conclusions of the theorem hold. 

(2) Corollary: 
-· . 
blo·~s ;~ 

~ 
If v ~ k , then at-design, with t.:;:-.2, has disjoint 

Proof: We need only consider 2-designs. Suppose any two blocks of the 

design intersect. Then Q3 , the set of blocks of the design, satisfies 

the bound in the proof of the previous theorem, given by 

VThere s = 1. 

Hence 

If 
'2-

v pk , this is impossible. 

We provide another proof of this fact in Chapter rv. 

(3) @ a paper of Deza, Erdos, and Frankl. 

In this paper (11), the authors prove a number of theorems which extend 

the ideas of the Erdos, Ko, Rado Theorem. They define a (v,M,k)-system 
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Q C (Pk (v), such that for any two distinct A,B ~ Q , J A " B 1 ~ M. 

Let M = ~ m lt m2 , •••••• , mr) ' m1< m2.<········< m,.<k. 

Then they prove,among other things, the following; 

Theorem: If ()__ is a (v,M,k)-system, v ~ g(k,s) for all s < k, 

and 

r 

\ Q {~ c(k)TJ (v - mi )/(k - mi) 
. i = 2. 

then 

(i) tpere exists an m,-subset D of X such that D S B for all 

B ~ Q_ • 

(ii) (m~ - m1 ) I (m~ - m,) I I (m,.. - m,,._ 1 ) 

(iii) /! (v - m,)/(k - mJ ~(a/. 

Remarks on this theorem and its applicability to designs! 

(a) The condition that v is large compaired to k is very necessary. 

For consider the tight 4-<lesign 8(4,7,25). This is unique, (19), and 

any two distinct blocks intersect in 1 or 5 points. If we apply the 

theorem, we get I (B 1~ 22. 20 /6. 4 < 20, whereas the design has 255 

blocks. 

(b) The authors remark that equality in (iii) is realizable by the 

family of hyperplanes of any perfect matroid design. 

(c) For the case JMj ~ 2, the designs with this property are called 
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quasi-symmetric and are dealt with in Chapter DI. It is shown there that 
'2... 

v~k for these designs. However, it is also shown that the divisibility 

conditions for the intersectlon numbers (as in (ii) ) hold. 

(d) As was stated in Chapter I, I a..1~u;1) 
' 

for any (v,M,k)-system. 

In most cases : >' (iii) is stronger than this, but it must be said again 

that this only holds for large v. 
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CHAPTER III. 

CLIQUES OF SIZE r IN BGls(2,k,vil. 

'2.. 
(1) Cliques have size at most r for all v>k -k+l. 

To an S(2,k,v) we ascribe two more parameters , namely 

b :- v(v - l~ 
k(k - 1 ' 

r:-v-1 
k - 1 

where b is the number of blocks of the design, 

of blocks through each point of the design. 

We make use of the fact that BG[S (2 ,k, v )] 

and 

is 

· graph, since S(2·,k, v) is a partial geometry. BG 

k(r - 1), (r - 2) + (k - 1{, 

and so its adjacency matrix, A , satisfies 

' 

r . is the number 

a strongly regular 

bas parameters 

A L + ( 2k - r + 1) A - k ( r - k - 1) I :: ka. J 

Therefore A has eigenvalues 

k(r - 1) once, 

r - k - 1 v - 1 times, 

-k b - v times. 
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Now we look at the 5--dimensional algebra generated by A, (since 

'Z.. 
v / k - k + l, b > v). The second nontrivial idempotent of the algbra, 

is given by 

E 2. = [ I + A i\J J + ( J - A - I) ( - Ai. - 1) 
v - d - 1 

using the notation of Chapter I. 

}:· 

Let ~ be the characteristic vector of a clique of size w in 

BG. Then: the condition ¢'Ea_~ ~ 0 implies 

w ~ ~ w(w - 1) ~ 0 
d 

which in our case gives 

w ~ r. 

or 

If equality holds, then E 2 cP = 0, and so 

w,$l+d 
-'i\'L 

- A L + ( J - A - I) (k - 1) 4 = 0' 
r - 1 -k ( r - 1) + (!£ - 1) 

k 

A p = ( r - k - 1) ~ + k ..i = ( r - 1) rp + k (..i - p ) 

which implies that any vertex of B ' not in the clique of size r is 

adjacent to ey..actly k vertices of the clique. And su, in the terminology 

of Delsarte (7) this is a completely regular clique. 
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There are numerous ways of proving this result. Elementary counting 

methods have been used by Bose (1), and Neumaier (24); the latter would 

call this a regular clique of size r and nexus k, and shovTS that if 

an edge regular graph contains a regular clique of a given size and nexus 

then any other regular clique must have the same size and nexus. This 

is of interest in our study because it implies that the block graph of 

a Steiner system S(2,k,v) can only be the block graph of another Steiner 

system if it has the same parameters. 

One can also use the interlacing method of Haemers (15) to prove 

this result but it is very similar to the association scheme method. 

(2) The pairwise balanced design on C. 

We find the best way to look at this problem is to dualise and to 

consider the partial geometry on b vertices, with v lines of size r, 

such that any two lines meet at a unique vertex. BG is then the point 

graph of this partial geometry. A clique C of size r , not corresponding 

to the set of r blocks through a point, is then a . '~' set of r : . vertices 

of the geometry such that any two lie on some line of the geometry, and 

in fact the restrictions of the lines to the r vertices of C form a 

pairwise balanced design, except for the fact that this p.b.d. may 

have repeated blocks of size one. 

This p.b.d. has the property that for any two of its blocks, if 

they have combined size greater than k, they must meet. For suppose 

not. Then the lines of the partial geometry to which these correspond 

meet at some vertex outside the clique. But then this vertex is adjacent 
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to more than k vertices of the clique contradicting (1). We shall 

make repeated use of this property later in this chapter. 

We note ;,~h§l-f fo:r: any line L of the p. g. , if ~ f L , then 

Jcn1)~k. Otherwise a vertex x € L' C is adjacent to more than k 

vertices of C. This can also be seen in the following manner. Let 

B be a block in a clique c, and p a point of the design not on B. 

f 

So if C is not the set of blocks through a point p C contains at 

most k of the blocks through p , because there are only k blocks 

through p · ~pich;·,intersect. . B • 
-~-- - .. .· . ~- -- ·- .·- ' - . ·. 

We shall call a line of the partial geometry an i-line ~dtb respect 

to a certain clique C , of size r , if it contains i vertices of the 

clique. If the clique does not correspond to a_;_line, then i ~ k. 

Let n• • be the number of i-lines with respect to c. 

As can be done for any p.b.d. , we form -~he following system of 

equations for the n; 1 s. 

I(. :z_ 
D• 

I = v counting lines of the p.g. 
ic 0 

® 
I( 

.L in· = rk counting (x,L) , x € c, x ~ L. I 
1::- 0 

K 

L(i - l)inj :: r(r -1) counting (x,, x2.., L), X
1 

, x
2 

E c l"I 1 

i"=o 
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We shall apply these equations to particular cases. 

We may .rewrite these equations in terms of variables 

Let h be the number of lines which contain at least one vertex of C. 

2_ ll = h, 
l: !L..f\C..l>O 

;f_ 
~ 

: rk, 
L 

~ (~ - 1) :: r(r - 1) . 

These equations imply 

2_ (~ - r + k - it 
k 

and so h is a minimum when 

'1. 

h - rk 
r + k - 1 

r + k - 1 
k 

is a constant for each line L 

intersects C. 

, 

which 

Such a clique C , where any point covered by the r blocks ofi: C 

lies in a constant number of these blocks, we shall call a normal clique. 

We have shown that ·the blocks of a normal clique cover the minimum number 

of points of the design. It would also be nice to be able to find an 

upper bound for h , the number of points covered by blocks of C. 

Let n be the least integer greater than (r t k - l)/k. Then if 
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C is not normal, some point lies on at least n blocks of c, i.e. 

some line L of the p.g. intersects C in at least n vertices. 

But then any vertex x E L 'C lies on at most k - n other lines :,'.~ , : 

intersecting C, and so on at least n - 1 lines which do not intersect 

C. There are at least r - n such vertices. So n0 ~ (n - l)(r - n) 

and h ::=; v - (n - 1) (r - n) with equality if and only if 2. 
r = n - n + 1, 

and the p.b.d. on C is a projective plane of order n. 

More generally, if some point lies on m blocks of c, rn~~ > 

h~v - (m - l)(r - m), with equality if 
,_ 

r= m -m-4-1, and the p.b.d. 

is a projective plane of order m. 

This bound for h is not entirely satisfactory but we will see 

an example of a design later where both the upper and lower bounds are 

met. 

(5) If r > k'2- - k-+- 1, then the only cliques of size r in 

BG(s(2,k,vU are those corresponding to r blocks through a point. 

Let C be a clique which is not a line of the partial geometry; 

then any vertex x of C lies on exactly k lines, and any line 

through x contains at most k vertices of C. So, since any vertex 

of C lies on a line through x, 

I c1 ~ k(k - 1) + i. 

This result was known to Bruck (2) and Bose (1), and is also a 

special case of a theorem of Deza (10). 



(28) 

(4) The case where IC /"I L / = k. 

Suppose we have a line L of the partial geometry intersecting a 

clique C of size r in k vertices, (i.e. a point of S(2,k,v) 

covered by k blocks of the clique). 

Consider the subgraph of BG[S(2,k,v)] consisting of the r - k 

vertices of L ....._ C and the r - k vertices of C-..... L. Now any vertex 

of C '1 is already adjacent to k vertices of L (namely 1 ~ C ). 

80 it cannot be adjacent to any vertices of 1 ........ c~ In other words 

CAL is a pair of disjoint cliques of size r - k, with no edges between 

·. _them. Label the vertices of BG so that the first r - k- are vertices 

of C "-1 and t he next r - k are those of 1· ' c··. Then u - ( i -i ,.. ) 
- - .1.Lf'-lc. ' .>L . -1( 

is an eigenvector of the subgraph Ct:::.. L, with eigenvalue r - k - 1. 

But r - k - 1 is the second eigenvalue of _ BG, whereas C o. L has -

this eigenvalue with multiplicity two. Hence we can use part (ii) of 

the interlacing theorem of Haemers (15), (see Chapter I), which implies 

that g' = U.r.-1(.,-lr-><-, Ql,,--24°'-oc:)) is an eigenvector of BG with 

eigenvalue r - k - 1. Hence 

2(r - k) 

L a 1J, 
j::r-k+l 

2 (r - k) + 1 ~ i Sb. 

i.e. for any vertex x~ C 61, the number of vertices in C ,1 

adjacent to x is equal to the number of vertices in 1' C adjacent 

to x. (Note that this holds trivially for the vertices in C .fl 1~ • 
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Let ai be the number of vertices not in C u L, adjacent to i 

vertices of L '- C and i of C "'-...L. Then 

= b - 2r .,.. k, 

(r - k)(k - l)(r -1), counting (x,y), x.: L .... C 

y ~ BG -.... (L '-' C), x ,..., y, 

2:.:-i(i - l)ai : (r - k)(r - k -l)(k -1) counting (x,y,z) 

x,y ~ L - c, z "'-X,y. 

These equations will be applied in (11). 

It is possible to obtain similar equations when IC '1 L \: m < k, 

by making use of the fact that the complement of CAL is bipartite. 

We have never found a use for them, however. 

(5) The case r = k. 

An S(2,k,k!';- k + 1) is a projective plane of order k - 1. The 

point-block incidence matrix N of a projective plane satisfies 

N NT = (k - 1) I + J and NJ =: kJ (@) 

and so N is a nonsingular matrix of size v. 

A well known result of eyser (see Hall (16) ) , shO\'IS, by simple 

matrix manipulation, that equations (@) imply 
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N 
1 

N : (k - 1) I + J and N 
1

J c kJ 

So any two blocks of a projective plane meet in a point. Hence 

is the complete graph on 
~ 

k - k + 1 vertices. 

From now on we exclude the case r ; k from our investigations, as the 

block graph gives no information about the des i gn. 

( 6) The case r :::: k + 1. b :: k(k + 1). ) 

Take a point p and a block B such that Pf B ; t hen there are 

k blocks through p which intersect B and so one that does not. So 

point P4 B lies on a unique block I that B' n B= f. every B such 

There are k'l.. blocks which intersect B • Hence any block B lie_s 

in a parallel class of k blocks such that any point lies in exactly 

"2 
one of them., Hence .:.. _~BG S(2 1 k,k ) is the complete (k + 1)-partite 

graph with parts of size k. There are kf(+-
1 cliques of size r = k + 1, 

consisting of a block from each class; k 2.. of them correspond to · k~ 1 

blocks through a point. From this description it is easy to see how to 

extend an 
~ 

S(2,k,k ), an affine plane of order k, to an 
'2. 

S(2,k,k +k+-1), 

a projective plane, by adding k ~ 1 more points which correspond to 

the parallel classes, and one more block, the block at infinity, :_-, - _ _, 

containing these points. 

(a) k ~ 3, r:: 4, v:. 9, b ': 12. 

This is the unique affine plane of order 3. Its. block graph has cliques 

of the form 
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9 of this type, 

72 of this type, 

none of this type, 

because, if there were, let . B be the block through x,y. Then B 

intersects all four blocks of the clique, a contradiction. 

(b) k: 4, r: 5, v::; 16, b:: 20. 

The unique affine plane of order 4. 

Now it is possible that there are cliques of the form 

and they do exist, because all lines meet the line at infinity, 1 00 , 

in distinct points (since they already meet each other), in the extension 

PG(2,4). Now we have a set of six lines in PG(2,4) sa.ch that any point 

lies in 0 or 2 of them. This is the dual of an oval in PG(2,4) and 

it is well known that these exist, (see, for example, Biggs and White (0) ). 

In fact it is known that there are 168 of them and they divide into 

three orbits of size 56 under the action of the group PSL(3,4). The 



(32) 

ovals in a given orbit intersect in 0 or 2 points, and by the 

transitivity of PSL(3,4) each point lies in 16 of these ovals which 

pairwise intersect in one other point. R~turning to the dual set-up we 

have 16 dual-ovals containing L 00 such that any two of them have 

one further line in common. So in our block graph we have 16 5-cliques 

pairwise intersecting in a vertex of the graph. Since PSL(3,4) is 

doubly transitive on the lines of PG(2,4), and so transitive on the lines, 

not L00 , any block of AG(2,4) is at the intersection of two of our 

dual-ovals. Hence we have another geometrisation of the block graph. 

We notice that the sixteen cliques are normal cliques in the sense of 

section (2). 

Now the 5 blocks in the clique corresponding to the dual-oval 

cover 10 points of AG(2,4), and so there are six remaining points. 

Any line of PG(2,4) must meet all the lines of the dual-oval, and so 

must go through 3 of the 15 points covered by it in PG(2,4). Hence 

it contains two of the remaining 6 points. So these six points form 

an oval again. In this way we have 16 ovals in PG(2,4), disjoint 

from Lo0 , and in the same orbit under PSL(5,4). So they intersect 

in 0 or 2 points. Suppose o, and 02. are ovals disjoint from 

Loe and from each other. There ·are six lines exterior to 0 I , one 

of them Loci , and five others, each of which contain exactly 2 of 

the remaining 4 points (S). Consider three of them LI,-- L2, L~, such 

that L, meets L.z, and Lz. meets L~ in points • inside 0 2. • Then 

LI () s and L3 l'l. s are 2-subsets of s which are both disjoint from 

L2" s. This implies that IL I l"I Ll} :::- 2, a conflict. So /o I " o~) = 2. 

Hence the 16 ovals disjoint from Lo0 form a (16,6,2) symmetric design. 
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Hence their complements in AG(2,4) form a (16,10,6) design. 

This example illustrates a number of points we shall develop in 

Chapter IV. It is interesting to wonder whether for even k, larger than 

~·~ ·. one can produce the same sort of set-up. We shall show in Chapter IV 

that if it is possible to find a set of 4t~ dual-ovals which geometrise 

the block graph of AG(2,2t), then there exists a (4t\ 2t2. + t, t,,-t t) 

symmetric design associated with this construction. Such designs can 

be obtained from Hadamard matrices (see Hall(l6) ). 

(7) The case 2.. r=k -k+l. 

Let n ; k - 1, then v z:: nl+ nl.+ n + 1 and S(2,k,v) bas the same 

parameters as the points and lines of projective 3-space. 

(a) .Any clique of size r in BG, not consisting of r blocks 

through a point, is a subplane. 

We have equality in the bound in (3) which implies that any line 

of the partial geometry intersects C in 0 or k vertices. So the 

p.b.d. on C has replication number k and block size k and so is a 

projective plane. 

(b) If B(:L has cliques corresponding to subplanes 

then the Steiner system is the set of points and lines of PG(3,n) and 

so n must be a prime power. 

(i) Any two subplanes have at at most one block in common. 

If they have more than one, they (as cliques in BG) have an edge x,y 

in common and this lies on one of the lines L of BG. But BG has 
2.. 

'A = (r - 2) ~ (k - 1) 
'2. 

2 (k - 1) + k - 2. Let c and D represent 
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the subplanes. Ignoring the vertices of D for the moment, x and y 
'-

are already joined to the same 2 (k - 1) + k - 2 vertices, (since 

le n LI ~ k). Hence they cannot both be adjacent to any vertices not in 

c or L. Hence 
2-

k - k + 1 ~ 2k - 2, or (k - 2) (k - 1) .s -1, clearly 

impossible. 

(ii) Any edge lies in a unique subplane. 

Any subplane contains (n 'l..4- n + 1) (n'2.. ... r\)/2 edges, 

BG has (n':l...r n + l)(n2...+ l)(n + l)(n-z.~ n)/2 edges. 

There n~+n"l..~n+l subplanes with no edge in common, hence the resuJ,t. 

So we have another geometrisation of the block graph. 

(iii) Any triangle consisting of three blocks intersecting, but, 

not at a fixed point, lies in a unique subplane. 

AllY: subplane contains n'2..(n't.+- ~: ~ l)(n + l)n/6 
~\ '. . 

such trian_g1:_es, 

BG has (n,_-+- n + 1) (n'2.+ 1) (n "l+nl (n + l)n/6 such triangles. 

No triangle lies in more than one subplane, hence the result. 

Now take B1 , B2., B~ forming a triangle·, viz. 

and suppose B intersects B
1 

and B,. Then B B1 BL forms another 
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triangle, and so they lie in some clique corresponding to a subplane D, 

say. Let B1 B
2 

B
3 

lie in the clique C. Since 

we have C .:: . D;·7' and so B intersects B3 • Tb ere fore the blocks of 

our Steiner system satisfy the Pasch axiom and we have projective 3-space 

over GF(n) (since 5-space is necessarily Desarguesian). 

We have shown that the only BG of a design with these parameters 

which has nonunique geometrisation is that of the ~points and lines of 

projective 5-space. Moreover, there is a symmetric design between the 

points and planes of the design with parameters (n1 +ni.+n+ 1, n'2.+n4-l, n+l), 

and the cliques corresponding to subplanes are normal cliques. 

(e) Lorimer~ . construction. 

Lorimer (21) has given a method of constructing an · S(2,n +l,n1+n~-+n +l) 

which is resolvable, contains at least 2. n .+ n + 1 subplanes, and exists 

whenever there is a projective plane of order n. His method could 

conceivably give a large number of such designs for each n > 2 and will 

also be of use to us later because of a construction of De~niston (8), 

and so we will give it in some detail. 

Let '1T be a plane of order n. For each line L of .,,- , let Gr, 

be a set of n ~ 1 permutations of the points of L such that; 

(1) 1 € Gr, ' 

(2) Gr, is sharply transitive on the points of L. 

This requires, in effect, the existence of a Latin square of order n ~ 1, 

and the cyclic group of order n + 1 is one possibility. 
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assuming the identity in each GL is the same, and all other permutations 

are distinct. So lxl = 1 + n(n'2.+ n +-1). 

Blocks en X are of two types, 

L ~It 

(B) for xf. L, which we 

call the block determined by x and L. 

So the number of blocks is (n2.. + n + 1) (ni.+ 1). It is not difficult 

to check that these give a design with the required parameters on X. 

All blocks have size n + 1, so we only have to check that any two po~nts 

lie on some block. Truce f ~ GL, g 6 c,,. If M -= L then f,g~GL. 

If M"f L, let x be the point of intersection of L and M in Tr. 

Let N be the line through f- I (x) and g-'(x). Then f ,g ~ Bx L' 
' 

To prove the resolvability of the design we need to define a loop 

structure on X. First we do this for each L. Truce a particular x6 ~ L 

and define (fg) (x())::: f(g(x0 )) for f ,g € L. This mruces GL a loop 

with 1 as the identity. 

Now take f ~ Gu g ~ G1'1, M j L. 

the line of T\ through f (x) and g -r (x). 

(fg) (g- 1 (x)) = f (x), 

Let lx l = M n L and N be 

Define f g by 

so fg e GN. 

To show that our definition gives a loop on X, we need to show 

that the maps g -..,fg and g~gf are bijections. We do the first. 

g ~fg is certainly a bijection on GL. 

SUppose g,, g2 ~ X-.... GL and 

L t'\ M i. :: ~ xi ~ for i :o 1, 2. Since fg
1 

:: fg2. , these lines must be 
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the same, say N • But N meets L at f (x,) ~ f (x~) and so 

xl: x 2 : x say. So we have the following picture. 

N 

But fg,.,.. fg~ = h and h(g~l(J-F))-:: h(g;'(x)) = f(x) 

~ g:' (x) : g~ 1 (x) since G N is a loop, ~ gz. ~ g 1 • 

The other proof is similar. So X is a loop. 

Now we · consider the left cosets of the subloops G L. Let L be 

a line of Tr , and f ~ X ' G L. Say f E GM , M :f. L, M () L .: l y j . 

Put x = f(y). 

Let g €. GL, and let N be the line through x and g- 1 (y) • 

fg ~ GN is such that fg(g-1 (y)) :: f(y) = x. 

So 
-I -I 

( f g ) ( x ) :: g (y ) E L • 

Therefore fg ~ B::ic_, L. So fGL ~ B~ ... l . 

Conversely let h ~ Bx L" Then u :. h-
1 

(x) t: L. 
) 
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L 

Let gt: Gl be such that g(u) ~ y. Then h(g- 1 (y)) ... h(u):: x = f(y). 

So h ::: f g E fG L. • Therefore 

Now the collection of left cosets of G L .is a partition of the elements 

of X, and so the corresponding blocks form a spread. Ea.ch block G~ 

or Bx~ lies in one such spread, and so the design is resolvable. , 

Finally we show that X contains subplanes isomorphic to 1T . 

Let x~1T , and P 5= X contain 1 and every permutation in X 

which does not fix x. Then if P contains two points from a block 

of X , it contains the whole block, and P is a plane isomorphic to 

For suppose f ,g E: GL, f, g ~ P • f, g do not fix x , so x~ L, 

and so for all h E. Gl , h ~ P. 

, f ,g € P, 

=) x E L and M. Let f,g e B..:ir:: ... "'1> x1 N, but for all hE- B~,,N ' 
h _, (x) E. N so B .:x. 1'.l ~ P • 

~ 

The isomorphism ~:II~ PS X is such that cp(y)(y) = x. 

This implies that X contains n2 + n ~ 1 planes isomorphic to Tl , 

but it may contain more. 

The simplest case of this construction is for the plane of order 2. 

There is only one loop of three elements, and this gives rise to PG(S,2). 
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The next is that which arises from the plane of order 5. If we use the 

four permutations v 4 =~l, (12)(34), (13)(24), (14)(25)f for each 

loop G L , we do not get pr-oj ecti ve 5-space; its blocks are generated 

by the following base blocks (mod 15), (c.f. Denniston (8) ). 

B3 Bio Ds Db 

B 4 Bb C7 DI\ 

c«i c~ B2 Bs 

c12. cs D1 B7 

D1 B1 BI B 10 

It is invariant under the nonabelian group of order 59 

39 subplanes, images, under the group, of the points 

D1 D12CL C 2. 

D10 D2. B 11 C ~ 

and contains 

A B0 C0 D 0 B<c. c, Db Bi' Ce Ds- B~ Cc; Dci • 

(one element of the group, of order 3, multiplies suffices by 5) • . We 

will make further use of this design. 

One might wonder what would happen if some GL ts were given the 

V '+ loop structure, and some the C 't (cyclic group) structure. 

(8) The case '2-
r =- k - k. 

We show that there are no cliques of size 
'4 

k -k, except the lines 

in ·BG. Suppose there is a set of k~- k blocks (C) not all through 

the same point, and pairwise intersecting. Then each block of C contains 

k - 1 points which are covered by k blocks of C, and one point 

covered by k- 1 . blocks of C. But then there must be k of these 

(k - 1)-points. However no two can lie on a block of C . So there is 

some block Bf C containing at least two (k - 1)-points. Then B is 

adjacent to 2k - 2 blocks of C . .And 2k - 2 > k unless k: 2. 
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(9) Steiner systems with k = 3. 

We are only concerned with the cases r = 3,4,6,7. 

Our previous analysis has dealt with all these, so we know all about " 

cliques of size r in BG S(2,3,v) 

(10) Steiner systems with k = 4. 

We have six cases where we have to look, 

r = 4, 

v :: 13, 

5, 

16, 

8, 

25, 

9, 

28, 

12, 

37, 

13, 

40, 

and we only have to consider the two new cases r • 8, and r ~ 9. 

We make repeated use of the special property of the p.b.d. on C 

described in (2). To save much explanation we make extensive use of 

diagrams and indicate vertices of BG which are adjacent to more than 

k vertices of C (supplying our contradictions) by x. Lines through 

C are shown as smooth lines, where possible, and vertices as • • 

r -= 8, v = 25. 

Case n.., r 2. 
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These constructions are the only possible with 4-lines, 

so ll4:: o. 

Hence BG[S(2,4,25)] 

r c: 9, v = 28. 

n'+ = 5 

n~ s:- 1 

has no other cliques of size 8. 

n* c o, implies that all vertices lie on four 3-lines, and 

so the p.b.d. on C is AG (2, 5), but t his has disjoint blocks of 
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size 3. So BG[S(2,~ 1 28)] has no other cliques of size 9. 

(11) Steiner systems with k .:: 5. 

We have eight cases of interest: 

r - 5, 6, 10, 11, 15, 16, 20, 21, -
y .:: 21, 25, 41, 45, 61, 65, 81, 85, 

and need only consider the four new cases, r = 10,11,15,16. 

(a) r= 10! v= 41. 

Take a 3-line. Then there are only six 2-lines disjoint from it inside 

the clique, whereas there would have to be seven. There are only .two 

1-lines and they already meet inside C. 

n't :: 2, 

Let x,' XL' X3 be the remaining vertices on L the 5-line. Let Yr , Yz.. 

and Z I' Zz. be the remaining vertices on M, N (4-lines) respectively. 

Without loss of generality we have lines 1x,' z, ' Y, S ' [ XL, Zz.' Yi? ' 
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~ x.11 ~, y "L ~ , [x~, z 1 , Y, 1 , (since the line containing Xi~ must 

intersect N and does so in z 1 or z 2 ). But now the same applies 

for the linecontaining x1 y1 , but there is no point of N where it ... 

can intersect. 

ns = 1, 

n<t :: o, 



n"t- :: 3, 

first case, 

(44) 

Any line through z must intersect L, M, and N. There is one line 

through each of L (") M, L ~ N, M ~ N, and one other. But this one 

will have four vertices on it. We have already dealt with the case n+ = 4. 

n&+ ::: 5, 

second case, 

Now any other line must intersect each of L, M, and N. So all other 

lines, not through z, are 3-lines. If we delete z, the restriction 

to the nine remaining vertices of the clique must be AG(2,3). But this 

has disjoint 5-lines. 

At this point we can use equations @ of section (2). 

De -t n, + nz ~ ni -t n'+ -t" n~ = 41, 

n, ... 2na.+ 3n3 + 4n't.+- 5n$ = so, 

~+ 3n3. + 6n,_+1Q.ns = 45 . 
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If ns = o, and n~ .:5: 2, 

then n 1 + n ~ ~ 9, ~ n2. ~ 9, ==;> n 3 9 8. 

But the maximum number of pairwise intersecting 5-sets is seven. 

(b) r = 16, v = 65. 

If Us ; O, any vertex of C must lie on five 4-lines, (since there 

are 15 remaining vertices). But then we must have AG(2,4) on the 

16 vertices, which is impossible because this bas disjoint blocks. 

So n 5 > o. 

Now we make use of equations ~ of section (4). 

a 0 + a, + a~ + az + a't- = 181, 

a 1 + 2az. + 5a3 + 4a 'f = 660, 

a:r...+ 5a1 + 6aCf-,. 880. 

a, + a.2.. - 2a'+ ::- -220 9 a"'!-~ 110. 

A 4-ve~tex can only arise from a 5-line in C in the follo~~ng manner, 

(since four of the lines on which x lies must intersect L outside C). 

Each 5-line contains eleven 4-vertices, 

~ n 5 ~ 110 /11 + 1 = 11. 

Each vertex of C can lie ·on at most three 5-lines, 

-9 n5 .$. 3.16/5 < 10, a contradiction. 



( 46) 

( c) r = 15, v = 61. 

SUppose n.s: '> O. Applying equations @ , 
a 0 + a, + a2.. + a~ + a,,_ = 158, 

a, + 2aa.. -t- 3a 3 + 4ac.+ :: 560, 

a2. + 3a~ + 6a'+ = 720. 

~ a~~ so, ~ n5 ~ 9. 

But any vertex lies on at most three 5-lines. So 

The ref ore 

n 5 ~ 15. 3 /5 o: 9. 

and any vertex lies on exactly three 5-lines. Consider two vertices 

on a 5-line, viz. 

This gives at least seventeen vertices in C. 

So n ~ = O. 

This is the only possible set-up for the ~~ye lines through a vertex. 

There must then be five 3-lines such that any vertex lies on exactly 

one of them. This means that there are disjoint 3-lines. 
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(d) r = 11, v = 45. 

The most difficult case. 

(i) Suppose n s > o, i.e. 

Applying equations 

a 1 + 2a2. + 3as + 4a -c+-:: 240, 

a7.. .+- 3a ~ + 6a '+ = 240, 

and a4t = 0 or 6 (since ns : 1 or 2). 

then 

We have two possible sorts of 3-vertices, 

x of these vertices, y of these vertices. 

So D,s ::; 1, n.,.:: x/7, n3 :: y /8, D2. := y/9, 

-9 72 y, 7 I x, and x + y: 80. 

This is impossible. 
''-

n't- = 1, 
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n'S' = 2, 

n4t :: o, 

Let p and q be the two vertices not in L or M, and let r= LAM. 

Then, without loss 

{ y, , q , ZJ J 

f z. ?. '+ as the remaining vertices in L, M respectively. l I Ji: I 

f Y1 , p , zi 3 are the 3-lines through p. Now 

must be a 3-line for some j. Suppose, without loss, 

that j 1::- 2. Then lyl, p , z
3

) is disjoint from this. 

Hence n 5 :: o. 

Suppose v1e have three 4-lines through a vertex y. 

Then there is one remaining vertex z and every line through z must 

intersect L, M, and N. Hence we have another three 4-lines through 

z. Any line not through y or z must intersect each of L, M, and N, 

and so must be a 3-line. The restriction of the lines to these nine 

vertices must therefore be AG(2,3). This has disjoint 3-lines and a 

pair can be found which do not correspond to any of our 4-lines. 



(49) 

Hence any vertex has at most two 4-lines through it and so n+~ 5. 

Applying equations 0 
nc + n, + n:t -+ n~ + n..,. = 45, 

n, +- 2n 2 + 3n3. + 4n-r = 55, 

n:t ~ 3n1 ~ 6n"f" : 55, 

9 n1 + ~ : 2n~ 

If n't ~ 4, then n 1 4-- n1. ~ 8 1 n2.. ~ 8, 

or n3 ~ 7. 

But any two of these 3-lines must intersect in c, which is impossible 

if there are more than 7. 

If n't : 5 we have, 

L 

One vertex q is not covered by any of the 4-lines. It must lie on 

five 3-lines. But then one of these cannot intersect L in C. 

Hence we know all about mar..imal cliques of size r in BG S(2,5,v) 

We make use of the _unique geometrisa ti on of BG ls ( 2, 5, 45 LJ in 

Chapter V. 
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(12) Normal Cliques. 

In (5) we defined a normal clique C. Any point of an S(2,k,v) 

containing a normal clique C is covered by 0 or k
0

: r +k - 1 
k 

blocks of C. 

We must have k 0 ) k. Any line in the block graph is either a 0-line 

or a k0line. Any vertex outside C is adjacent to k vertices of C 

and so must lie on (k/k~) ·k0 -lines. 

The . k0 -lines form a p.b.d. on C with constant block size, i.e. 

we have an S(2,k0 ,r) on the vertices of the clique. 

Reverting to the S(2,k,v), we have that any block not in C must 

contain (k/k0 ) points covered by the blocks of C. Let S be the 

set of po in ts covered by !1.o __ £.locks of C. Then any block not in C 

must contain k - (k/k0 ) : n of these points, and of course any block 

in C contains none of them. And so S is a maximal n-arc of the 

design. We have stumbled on a set-up previously investigated by Morgan (23). 

We note that k and kD determine the parameters of the design. 

k ~ k 0 implies that we have a subplane in the design with r ::- kz - k + 1. 

k
0 

= 2 implies that we have a k/2 -arc in AG(2,k) where k is 

even. 

(a) k - 5 0- , k = 6 requires the existence of an 8(2,6,66) which 

has recently been constructed by Denniston (8), in such a way that the 

induced design on the 4-arc is the S(2,4,40) given by Lorimer and 

described in (7c). We give the blocks of the 2 (2,6,66) below , v:ith 
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suffices generated (mod 15). 

A Bo Co Do yo zo 

Bl Bio D.s Db yo y 2 c, c~ B2. BS y() y~ Dr D1'2.. C, C2. Y0 Y$ 

B 't B b c 7 DI\ y D z t c1l. c5 DI? B7 Y" z? J:li 0 D2. B 11 CS? Y0 z'l 

C" D:!. D ~ D1l. Z0 Zi n.,.~ Bl B\O Zo z'l Bf: C 1 C ~ C4 Z0 z., 

Y2 Y" Ys z,,_ z i,,z,1 

The thirteen blocks i Y2 , YI:., 1-s, Z~, z10, z12.J + i, pairwise intersect 

and form our normal clique C covering the 26 points ~Yi , Zt : i-= 0 ,12 J 
There are also at least 39 other maximal cliques in the design 

corresponding to the 39 subplanes in the S(2,4,40), and the blocks 

of each of these cover 39 points. 

We migi1 t ask whether it is possible to construct an S(2,6,66) 

using PG(3,3) as our 4-arc. It does not seem easy to do this, (9). 

To be able to construct an S(2,k,v) with a normal clique, it is 

necessary to find a set of kr/k 0 spreads in the S(2,n,v - rk/k.) on 

the n-arc such that any block lies in k/k0 of these spreads. We 

might call this a k/k0 -packing. 

(b) k0 ~ 4, k ~ 8 requires the existence of an 8(2,8,176) which has 

a maximal 6-arc on 126 points. There are at least two known 8(2,6,126) 

and one of these is defined on the 126 isotropic points of a unitary 

bilinear form on PG(2,25). 

We consider this design in some detail. Let 
l 

(x,y,z) ~ GF(25) 

be a representative of a projective point in PG(2,25). Then this paint 

is said to be isotropic if iX + yY + zz -:: 0, where x = x 5 is the 

Frobenius automorphism of GF(25). Clearly this is a good definition. 
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Any line of PG (2, 25) can be written in the form l (x,y, z): ax+ by+ cz = 0 1. 
Let [a,b,c] represent this line. Then by a slight abuse of language 

we will call a line isotropic if the point (a,b,c) is. Clearly, by 

this duality between points and lines, there are the same number of isotropic 

points as lines. 

The group PGU(3,5) of automorphisms of PG(2,25) preserving the 

unitary form is doubly transitive on the isotropic points. Let u ~ v 

be isotropic points. (u,v) =L u;vi f O, otherwise we would have a 

2--0.imensional totally isotropic subspace of a 3-dimensional nonsingular 

space. So by normalisation we can assume (u,v)= l. Let v1 be such 

that u,v lie in the line [wJ , i.e. (u,V1) =-<v,w/: O. Then u,v 

and w are independent and span the space. Again < w, w) f 0, otherwise 

we would have a totally isotropic 2--0.imensional subspace. So we have 

<u,u) :(v,v> :. o, (u,v) =(w,w> :: 1, (u,w) =(v,Vi):: 0. 

Any pair of distinct isotropic points can be extended to a basis in this 

manner and there is clearly a unitary mapping taking one basis to another. 

In a similar manner PGU(3,5) is transitive on the nonisotropic 

points and lines. 

Let us abbreviate to n-points, -lines for nonisotropic, and 

i-points, -lines for isotropic. 

Let w ~ GF(25) be such that 1 'l ' w : 1, w = -1. Consider the 

n-line [ l ,O ,o] Suppose it contains an isotropic point (O,l,z). 

Then this is isotropic if and only if 1 + z6 
: 0 (~ z-' :: -1, 

~ z is a primitive 12tb root of unity, 

'i 
z : \'i ' i ~ f 1, 3' 5' 7 ' 9' 11 3 . 

So any i-line contains 6 i-points. 
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Consider the i-line [0,1,wJ It contains the i-point (O,l,w). 

Any other point (x,y,z) on the line is such that y + wz '= O, or y: -wz. 

Then 6 b (,. b " " 6 {, x .+ y + z :: x +w z +- z : x, which is only zero if x = o. 

So any i-line contains one i-point. 

Suppose there are A i-points,lines, and B n-points,lines. 

Then, since any n-line contains 6 i-points, and any i-point lies 

on 25 n-lines, 

6B :: 25A also A + B = 651, 

so A = 126, and B = 525. 

By t he double transitivit;:,; of PGU(5,5) on I, the set of 126 

i-points, the restrictions of the 525 n-lines to I form an S(2,6,126). 

Furthermore (l,O,O) lies on 20 n-lines whose r estrictions are 

therefore disjoint in I, and the remaining six points of I, not on 

any of these 20 lines are (0,1, wi.) wbere i l: { 1, 5 ' 5 ' 7 ' 9 ' 11) and 

these all lie on the line [1,0,0] . So to any n-".-point there corresponds 

a spread of 21 blocks of I. Finally, considering the 25 n-points 

on an i-line, we -obtain a 1-packing of I. 

However, for our construction we require a 2-packing of 50 spreads, 

such that no spreads have more than one line in common. 

Consider the i-line x = 2y, i.e. [1,-2,0] 

It contains 25 n-points (2,1,x), x 'f 0, and ( 0 'O, 1) • 

<(2,1,x),(2,l,y))":: 0 <=> xj-: Ol.:=;>x-:. 0 or y:: O. 

So if p,q are n-points on the same i-line then ( p,q/ =f o, and so 

t he spreads S( p) and S (q) have no lines in common. So if p and q 

are n-points such that (p,q> ~ o, -then p and q lie on some n-line 
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[r J and furthermore q E:. LP] ~ [P] € S(q) and [ q] E: S (p) similarly. 

So S(p) and S(q) have two lines in common. This shows that we cannot 

find a set of fifty spreads with our required property, which all 

correspond to n-points. For suppose we could. Let s(p) be one of 

these, and consider the n-line [P] ~ S (p). Then [ p] must lie in 

another spread, say S(q). But then (p,q):: o, which implies that 

S(p) and S(q) have two lines in common. 

So to construct an S(2,8,176) from this design we need to find 

other spreads. I have not been able to learn of the existence of any. 

(13) Steiner Sys terns w:i th k ~ 6. 

The methods for k ::: 3,4,5 used in earlier sections in this 

chapter become very long and tedious for k~ 6. 
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CHAPTER IV. 

BG [sl. ( 2, k, v )] FOR GENERAL ')\ AND NONUNIQUE GEOMETRISATION. 

(1) BGlsa(2,k,v)] for ~>l. 

When A> 1 there is no guarantee that the blocks of the design 

have only two nontrivial intersection numbers. In fact if N is the 

point-block (v x b) incidence matrix of the design, 

the 

N N.,- = (r - A) I +'A J • A f (v - k) I + JJ . 
(k - 1) 

NTN iB· where 
i:D 

I 

Considering the design as a subset of the Johnson scheme J(v,k), 

B· 1 s 
l 

are adjacency matrices of subgraphs of the Johnson relations 

Ak_., and Bt< is the b x b identity matrix (assuming that there 

are no repeated blocks). 

In general we cannot d·efine an association scheme on the blocks of 

the design, (as we could in Chapter III), but it is possible sometimes, 

and if the design has only two intersection numbers we are guaranteed . 

a strongly regular graph. This is a special case of a theorem in Chapter 

I, section(7). Such 2-<l.esigns are called quasi-symmetric and were 

introduced .and investigated by Goethals and Seidel (14). We shall consider 

these first, because of their greater structure. 
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(2) Quasi-symmetric designs. 

We give a proof, found in (5), that the B. 1 s form a 
1 

2-class 

association scheme. Let x< y be the intersection numbers of the design. 

hence 

NTN : x(.J .-::I "'."" , B)-+ yB +kl, 

B -:: NTN - (k - x) I - xJ 
y-x ' 

and so B has eigenvalues, 

[rk - (k - x) - xv J / (y - x) 

~ r - 7\ - (k - x) J / (y - x) 

-(k - x)/ (y - x) 

once , 

v - 1 times, 

b - v times. 

Therefore B is the adjacency matrix of a strongly regular graph since 

it generates a 3-dimensional algebra. 

Since the eigenvalues are integers, we must have (y - x) J (k -: , x) 

and (y - x) I (r -A). The first of these conditions is similar to 

the second part of the theorem of Deza, Erdos and Frankl (see Chapter II). 

We wonder whether this holds more generally for designs. 

Suppose x > O, then any two blocks intersect, so we are not going 

to be able to extend the Erdos, Ko, Rado theorem to this case. Hovl8ver 
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consider a block A, and count (p,, p2 , B) such that p
1

, p
2 
f A, 

?\ ( v - k) ( v - k - 1) ~ rk (k - 1) (k - 2) , 

which implies that 
1. 

v ~ k - 1, and is a very generous bound. So there 

are no quasi-symmetric designs with x > 0 and 

If x = o, we look at the set of r blocks through a point p 

of the design. f;ny two intersect in y points, and (ignoring the case 

y = 1, which only occurs if it is a Steiner system), they intersect in 

y - 1 points apart from p. So there is a s1_1 (2,'A ,r) on the blocks 

through p, and therefore, 

(y -l)(r -1)::: (A-l)(k -1), and ').. ~ k - 1 (Fisher's inequa.li ty). 

~ v = 1 + r (k - 1) /A. ~ 1 + [1 + ( ~ - 1) (k - 1) J 
(y - 1) 

2-. 
k -k+l. 

(k - 1) 
/\ 

'l-So if v > k - 1, there are no quasi-symmetric designs with block-size 

k on v points, 

However we can do better in the case when x =. 0. Vie need y } k. 

So if y ::>1 and k is a prime then there are no quasi-symmetric designs 

of block-size k. 

We are interested in families of pairwise intersecting blocks. 

Using the clique bound of Chapter I, 
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w ~ 1 + d/-?i:L = 1 + (r - 1 )ky :- r , 
yk 

and so again such families have maximal size r, and by an argument 

similar to III (1), cliques of size r are regular vd th nexus 

k(k - y)?d?..- 1) • 
(r - 'A )y(y - 1) 

The block graphs of Hadamard 3-designs (these are quasi-syJJlilletric 

2-designs) a r e the complements of a 1-factor, and so it is easy to find 

families of r pairwise intersecting bJ.ocks, in this case. 

Note: There are on the whole ve"I"'J fev1 quasi-symmetric designs. We list 

possible parameter values for k ~ 12, x '::: o, y /' 1. 

s3 (2,4,8) y ~ 2, SS(2 ,6, 22) y:: 2, Ss(2,6,12) y-.:.. 3, s 't-( 2' 6' 21) y:: 2, 

s 7 (2,8,16) y.:4, S"t(2,9,27) y~ 3, Sc,(2,10,20) y:: 5, S0 (2,10,70) YI:' 2, 

s., (2,12,24) y::: 6, s 11(2,12,57) 1=- 3, s.s (2,12,100) y~ 2, El1 (2,12,112) y:: 2. 

(3) Cliques of size r in BG 11 isomorphic 11 to the set of r blocks 

.· through a point. 

The set of r blocks through a point have certain properties when 

regarded as a clique of size r in the graph v:i th ad jacency matrix 

P , 
- . l 
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For instance, for any block B in the clique c, 

~ (r - 1) ~ ('A - l)(k -1). 

When considering nonunique geometrisation of the block graph we .shall 

be looking for such cliques of size r. 

Let x F be the number of blocks of containing a particular 

point p of the design. Let h be the number of points covered by at 

least one block of C. Then, 

= h, 

rk, 

Now by analogy to equations 0 when A= 1 in III(2), we have 

1 L [xp -A ((v -1) -r (k - i/\ 1'"1.. = h 
/\~ l (k - l)k )j (v - 1) + (k ·- 1)4 

'2. 
(v - l)k 
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1... 

So h is a minimum of (v - l)k 
(v - 1) + (k - l)~ 

when x'f :?.[(v - 1) + (k - ltl 
(k - l)k J 

for any point p covered by 

the blocks of C. And so we have again characterized normal cliques. 

( 4) Nonunique geometrisation in BG[sa(2,k, v )] 

BGLs>.(2,k,v)] has a set of v cliques of size r corresponding 

to the sets of r blocks through points of the design. These cliques 

have the property that any two of them have 'A blocks (vertices) in 

common, and each edge of Bi is contained in exactly i of them. They 

are said therefore to geornetrise the block graph. We want to know whether 

we can find another set of · · v cliques with these properties. 

Suppose we can. Then \'le can form the v x b incidence matrix N2. 

of these cliques against blocks, i.e. 

if B E. C, 

otherwise. 

Let N, be the pcint-block incidence matrix of the design. Then 

N NI ::. z 2 

T 
iBi '; N, NI 

(r -A)l + J -::'/\[(v - k) I+ .r]:: N1 1~ 1 1 

(k - 1) 
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Now consider the v x v matrix, 

and so X(p,C) = the number of blocks of the design which contain p 

and lie in the clique C. 

'T r T (#. iBi) NT x x = N, N-' Ni N, : N 
I I 

' T ((r -'?\)I +'71.J y· ':; N, NI N, N, = 

Therefore X satisfies a matrix equation similar to that satisfied ·by 

the incidence matrix of a symmetric design. In the particular case when 

all the new geometrising cliques are normal, 

X(p,C) ~ I\ k 0 :.'Ar(v - 1) + (k - i)
1 J: if l k(k - 1) 

= 0 otherwise. 

p is covered by a block of C. 

Then Y : X/k0A is a (0,1)-matrix and satisfies 

y 
T 

y = 
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In other words, :.' there is a symmetric design governing the incidence be tween 

points and cliques, and the parameters of this design depend only on v 

and k and are independent of A . 

Note: We say a point p and a clique C of a design are incident if 

there is a block B such that p E B E C. 

Let k0 and n :. k/k0 be given. Then k :. nk 0 , and 

r :?._(nk
0

(k
0 

- l)+ l},, v :.'i\(nk
0

(k0 - 1) of- l)(nk
0 

- 1) + 1. 

In this instance there is nothing to be gained by applying the Bruck, 

Ryser,Chowla conditions, because the equation is always satisfied by 

(5) 

Y ~ L .. [(r -A ) I ~1A. JJ 
A.k. 

eometrisation b normal cli ues in BG S 2 k v) 

We know that for some k , for r :. k ;. 1 and 
~ 

r -:: k - k-+- 1, an 

S(2,k,v) exists whose block graph is geometrisable in more than one way 

and t be cliques of the second geometrisation are normal with respect to 

the first and vice versa, ( III(6) and (7) ) ~ · Furthermore in both cases 

there is a symmetric design between the points and the cliques. 

We examine the possibility of such an alternative geometrisation 

by normal cliques for other values of r (as a function of k) beginning 

with the case (2,k,v): (2,6,66). We prove t ha t there is no S(2,6,66) 

whose block gra :; h has t his structure, although as v:e have seen, · there is 
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a design with these parameters containing at least one normal clique. 

(a) Proposition: Any point-block pair (p,B) such that pf B, 

lies in exactly k/kD cliques. 

Proof: There are k cliques which contain B and each of these 

contains 0 or k 0 blocks through p. But for any block A through 

p which meets B, (there are k such), there is a unique clique containing 

B and A. They meet in a point, so they meet in a clique. So there 

are exactly k/k 0 cliques containing p and B. 

Note: This is the dual of the fact that there are k/k
0 

points 

covered by the blocks of a normal clique c, which lie in any block Bt 

(b)So, for k: 2k0 , consider the k cliques containing a block. 

Take one of these , C 1 say, and consider .the intersections of the k - 1 

other cliques with this one. They all contain the block, and any other 

point covered by C1 is contained in exactly one other clique. 

Let us now consider an S(2,6,66) and suppose its block graph has 

another geometrisation by normal cliques. Then the point-clique incidence 

is governed by a (66,26,10) symmetric design. So any two cliques have 

exactly 10 points in common, (i.e. there are 10 points covered by the 

blocks of both). They also have one block in common, so we have the 

following. 

c. 
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c
1 

and c
2 

have the block B in common and four other points 

Suppose and X' J lie on a block A which is in 

Cic (if j ~fl,2,3,(~, k: 1or2 ). Then A must intersect B. 

But then A contains at least three points of C
1 

, and so A E: c
1 

• . 

Similarly A t C~ • In which case C1 and C~ have two blocks in 

common, a contradiction. Hence no two of x1 , x~, ~' x_...,.lie in a block 

of c, or of c~ . 

The dual design on the blocks of C1 is an S(2,3,13). There are 

26 3-lines corresponding to the points covered by C 1 • Now x, , x2 , 

x~, x~ lie in no block of c,, and so correspond to four disjoint 3-lines 

in the 8(2,3,13). The remaining vertex is that corresponding to B. 

There are 5 cliques apart from C, which contain B and any point 

covered by C1 lies in exactly one of them. So in the S(2,3,13) each 

of c2 , •••••• ,c4 gives rise to a set of four disjoint 3-lines which 

do not contain ~. In other words the set of twenty 3-lines not . _ ·· .. 

containing xg can be divided into 5 parallel classes of four 3-lines. 

This can be done for any x B in C 

(c) We must now check that neither of the two nonisomorphic 

S(2,3,13)'s (see Hall(l6) ), have this special resolvability property. 

One such 8(2 1 3,13) bas blocks as given in the first two columns following 

and the other has the blocks of the second two columns. 
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A B 

0 2 8 1 5 4 0 2 8 e 5 4 

1 3 9 2 6 5 1 3 5 2 6 5 

2 4 t 3 7 6 2 4 t 3 7 6 

3 5 e 4 8 7 4 9 1 4 8 7 

4 6 .w 5 9 8 4 6 w 5 9 8 

5 7 0 6 t 9 5 7 0 6 t 9 

6 8 1 7 e t 6 8 1 7 e t 

7 9 2 8 w e 7 9 2 8 w e 

8 t 3 a 0 w 8 t 3 9 0 w "' 

9 e 4 t 1 0 9 e 3 t 1 0 

t w 5 e 2 1 t w 5 e 2 1 

e 0 6 w 3 2 e o 6 w 3 2 

w 1 7 0 4 3 w 1 7 0 w 3 

We consider the twenty blocks which do not contain the point 6. It is 

possible to find parallel classes of four blocks, i.e. 1 5 9, 2 4 t, 

e 8 w, 0 5 7, in A. 

First we need a proposition, 

Proposition: Given four disjoint blocks of an S( 2,3,13), the configuration 

below cannot occur. 
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Proof: First possibility; 

Dualising gives the following set-up, which requires at least 28 dual

points, i.e. 28 blocks in the design. 

Second possibility; 

Dualising gives the following, which this time requires 27 blocks. 

Hence neither of these configurations can occur. 
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Consider the blocks of A first, and the block 7 9 2. The three 

blocks through 6 which intersect 7 9 2 are 6 7 3 6 9 t , and 

6 2 5 • So 3 , t , and 5 must lie in different blocks of the parallel 

class containing 7 9 2 , by the proposition. The only block containing 

3 , disjoint from 7 9 2 , and not containing 6 , t , or 5 is 3 O 4 • 

But now all the blocks through t intersect 7 9 2 or 3 O 4 or 

contain 5 • Hence there is no parallel class containing 7 9 2. 

Consider now the blocks of B, and the block 7 ~ 9 2 again. Once 

more we have that 3 , t and 5 must lie in different blocks of the 

parallel class not covering 6. The only block containing 3 that will 

suffice is 3 0 4. As in 

7 9 2 or 3 0 4 , or contain 

A 

6 

all the blocks through 5 intersect 

or t • Hence there is no parallel 

class containing 7 9 2 and not covering 6 . 

So neither S(2,3,13) is resolvable at the point 6 . So we cannot 

have an S(2,6,66) whose block graph has an alternative geometrisation 

by normal cliques. 

It is possible to prove that a necessary condition for the exis~ence 

of an S(2,k.,v) with nonunique geometrisation by normal cliques of size 

r , with k: 2k0 , is the existence of an S(2,k0 ,r) with the special 

resolvability property, i.e. for any point cf the S(2,k0 ,r) , the blocks 

not containing that point are divided into k - 1 parallel classes of 

(r - l)/k0 blocks. 

The next case k ~ 8, k 0 = 4, v ~ 176, r ~ 25, requires the 

existence of a (176,50,14) symmetric design, and a special S(2,4,25). 

I have not been able to determine whether such an 8 (2,4,25) exists. 
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(6) An Sa(2,8,176) whose block graph is geometrisable in two ways. 

In her thesis, M.Smi th (28), following the wor~ ·:of G.~Higman (17), 

considers the doubly transitive representation of the Higman Sims group 

on 176 points. It turns out that there are two such representations, 

and a subgroup of index 176, isomorphic to PIU(5,5~), which does not 

fix a point in one representation, has two orbits, one of size 50 and 

the other of size 126. If we consider these sets of size 50 we 

obtain a symmetric block design on the 176 points with parameters 

(176,50,14). 

Furthermore the group bas subgroups isomorphic to s
1 

(the symmetric 

group on 8 letters), and these have orbits of size 8 and 168; (this 

was the method used by G.Higman to construct this representation). If 

we consider the orbits of size 8 , we obtain an 8~(2,8,176) design, 

and because the stabiliser of each block is S~ , the blocks must intersect 

in O,l or 2 points. (If they intersect in more, the condition that 

any two points have exactly two blocks through them is violated, by the 

8-fold transitivity of the block stabiliser on the points of the block). 

The blocks of size 8 , called conics by Higman, lie in exactly 

8 of the sets of size 50 of the symmetric design, (called quadrics 

by Higman). So they give an S~(2,8,176) on the quadrics with dual 

incidence. Finally any quadric contains exactly 50 conics, any two 

of which intersect in 1 or 2 points. So we have a new set of 176 

cliques of size 50 in BG[s2 (2,8,176n corresponding to another 

geometrisation of the block graph. Furthermore the cliques are normal, 

covering the minimum number, 50 , points of the design, and regular, 
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any other block containing exactly two of tbese points, intersecting 14 

of the blocks in one point, and one of them ~n two. 

The structure of the 50 bJ,"C)cks of size 8 intersecting in one' 

or two points is that obtained by taking the Moore grapb of valency 7, 

and constructing 50 blocks as follows. For any vertex x, let B~ 

be that vertex together with the 7 adjacent vertices. Then clearly, 

if x is adjacent to y, 

if not. 
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·cHAPTER V 

AN ASSOCIATION SCHEME FOR THE 1-FACTORS OF THE COMPLETE GRAPH, 

AND CLIQUES AND DESIGNS THERErn. 

(1) Definitions, and the Centraliser Algebra of a Permutation Group. 

A 1-factor of K 2~ is a collection of n edges of the complete 

graph on 2n vertices, such that any vertex lies on a unique edge. A 

given 1-factor can be identified with the fixed-point-free involution 

of S~ which interchanges the pairs of points that make up the edges 

of the 1-factor. The natural action of the symmetric group S2~ on the 

1-factors of K2 ~ is permutation equivalent to its action by conjugation 

on its fixed-point-free involutions. 

The Centraliser Algebra of a transitive permutation group G on 

a set D_ of size v, is the set of v x v matrices over the complex 

numbers which commute with all the permutation matrices of G. If the 

group G has rank m + 1 on .fl. (i.e. the stabiliser of a point has 

~ orbits on the remaining points), and the centraliser algebra is 

commutative, then the orbits of G on the 2-subsets of ll form an 

m-class association scheme, as defined in Chapter I. In fact, using the 

notation of Wielandt (30), for any orbit ~ of the stabiliser G1 , of 

the point 1, we can associate the following matrix Al:::. , where, 

if there is a d € 6. , g ~ G such that 

otherwise. (l,d)g :: (a,b)ft 
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It is not difficult to show that these matrices generate the centraliser 

algebra of the representation. Furthermore the sum over distinct orbits 

of the corresponding matrices is the all 1 matrix J . So if the algebra 

is commutative it can be regarded as an association algebra with m 

classes. 

For each g € G, let P(g) be the v x v permutation matrix defined 

by the action of g on fl . 
Theorem A: The centraliser of G on .() is commutative if the permutation 

character of G on D is the sum of distinct characters of G. 

Proof: Let :J 1 , D
2

, ••••• ,Dt" be the irreducible constituents of the 

permutation representation on il , i.e. for some unitary matrix U, 

any v x v permutation matrix P(g) in G has the following decomposition, 

U-1 P(g)U 

with 0' s outside the blocks on the main diagonal. We write this in· 

the form 
_, 

U P(g)U D -i. ( g ) , . . • , D~ ( g ) , • • • • . . . . . , 
\.. v--l 

ei. 

D,.(g), ... ,D,..(g)J 
I... -.- ) 

e,. 
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Then, if Q is the centraliser algebra, 

where e 1 :. 1, 

we.== the 
l 

ring of all e;x ei matrices over the complex numbers, 

Tfi:. the identity matrix of size 

irreducible, 

and x represents Kronecker product. 

f, , the degree of the 
c. i-th 

Clearly this is commutative if and only if ei~ 1 for all i. 

For the i-th conjugacy class f.i of G, define the i-th class 

matrix, 

Tb.en we have; 

c~ = L,1 P(g) 
g~~i 

Theorem B: All the class matrices belong to the centraliser algebra Cl. . 
They commute with each other. Furthermore, the centraliser algebra is 

commutative if and only if the class matrices generate Ct . 
Proof: 

c.' l 
for all h ~ G. 
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So if the class matrices generate ()__, it is commutative. 

Conversely, suppose Q is commutative. Ynen from theorem A, 

the representation has distinct constituents. 

Consider LX, (j )] , the character table of G. ( xi (j) ~ the 

value of the i-th character on the j-th conjugacy class). It is well 

kno\'m that its columns are orthogonal, and so , as a matrix, it is 

nonsingular. In particular, if we look at the matrix formed by the rows 

corresponding to the irreducible constituents in our permutation 

representation, it has fUll row rank, m+ 1 , and so it has a set of 

m+l independent columns. Consider this square submatrix, which with 

suitable renumbering, we can call 

[-xi (jil i,j : l, •••••••. ,m+l. 

It is nonsingular. 

Again, from the basic representation theory, 

and so, 
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is nonsingular, since 

Therefore the CJ Is are independent. But dim a= m + 1. Hence they 

span Cl . 

Theorems A and B can be found in Wieland t .. ( 50) • 

(2) The character of Szn on the 1-factors of K2 ". 

We give the proof of a theorem by Thompson (29), proved in a very 

different manner by Sar.J. and James, see (27), but perhaps known earlier, 

concerning the constituents of the permutation representation of S~~ 

on the 1-factors of Kz~· 

Theorem C: Let ')( be the character of this representation, and let 

xtrr) be the irreducible character of s :Z'\ corresponding to the 

partition 1T . .. Then 

if every part of "Ti is even, 

otherwise. 

In particular this representation has rank p(n), the number of partitions 

of n. 

Proof: (due to Thompson) 

(a) ( 'X, 'X ) = p(n) is not difficult; we do this in detail 

in the next lemma. 



(75) 

(b) We need to show if every part of TT is 

even. To do this we make use of the methods of the representation theory 

of the symmetric group over the complex numbers; see, for example, 

CUrtis and Reiner (6). 

Let T be a tableau associated with 1T • Then for each 

k-:: 1 to 2n, we have a position (ii<, j'IC), where the number k can 

be said to lie in the tableau. 

For each edge e :: 1 k , ~ J of K2 ,.,, set 

hT ( e ) = l j ~ - j { \ , v'f ( e ) : 

If u is a 1-factor, set 

~(u) = max h.r(e), 
e an edge of u 

"1-( e) = max vr7 ( e) 
e edge of u 

Since every part of -rr is even, there is a unique u: u(T), such that 

h~u(T)) : o, w7 (u(T)) -:; 1. 

e.g. for 2n ~ 6, 

T a:: 

Let C , R be the largest subgroup of S~~ which fixes each column, 

respectively row, of T. 

Set e(Cf ~ \cj9 1£ sg(c) c ' c !; c 

+ 
rRf':[ e(R) ~ r, 

r~ R 

e(T) = 
~ ~ 

e(C) e(R) then e(T) is a principal idempotent of 
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the group algebra QSZn , and 

dim QV. e(T):: (')(, )((1T)) , 

~here V is the vector space spanned by all the 1-factors of K2~. 

We need to show that V.e(T) ~ 0. We show that the coefficient of u(T) 

in u(T).e(T) is positive. 

Let f(T) = e(T) = L_ sg(c)cr. 
c E; c 
rf. R 

The coefficient of u(T) in u(T).f(T) is 

~ sg(c) 
(c,r) 
c E C, r '- R 
er fixes u(T) 

Suppose c € c, r ER, er fixes u(T). 

Then 

But 

( u ( T ) ) er -:. u ( T ) , 
_, 

u(T) .c ~ u(T) .r . 

w
1 

( u ( T) • c) -:: w T ( u ( T) ) :: 1, and 

(since the functions wT, h,- are constant on C-orbits, R-orbits, 

respectively), and so 
_, 

u(T).c:: u(T).r ~ u(T). 

Let C ':: C I • C 2 • • • • • • C 2. ~ • I • C 2f ' where 2f is the number of columns of 

T, and c. 
I 

moves only the points in column i. Then,obviously, c. 
I 

acts on column i in the same way as Ci+ 1 acts on column i + 1, for 

i odd. Hence sg(c 1 ) : sg(ci+-t). Eence sg(c) = 1. V!e certainly have 

u(T) ~ u(T).1.1 and so the result follows. 

We have included t his proof because r.e gener alise it J ater v:hen 
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considering designs in the scheme. 

(3) A useful lemma. 

Theorems A and C together imply that the 1-factors of K 2~ 

give rise to a scheme with p(n) - 1 classes. The main point of 

Theorem C is that it identifies the eigenspaces of the association 

scheme with certain irreducible representation subspaces of S,i""· We 

give a prcof that the rank of the representation is p(n) which will 

also be of use later. 

Lemma: Let f 1 , fL, f~ .be 1-factors of K~~· 

Then 1) For every partition 11 of n there corresponds a relation 

between the 1-factors. 

· 2) . If ff,, f2~ , and fr,, r3)E R(Ti) then there exists 

Oc s2 "' such that and 

3) There exists o-~ s2"' such that r, er: f
2 

and f~ er:: r, 

4) There exists () €: s2."" such that cs fixes at least n 

of the 2n points and r 1o-:: f2. • 

In fact, if f, + f2. (for definition see below) has x 

components of length 2, and y components of length greater than two, 

then there are exactly 2::/ permutations cr- '= s
2

"' which fix n ~ x 

points and such that f 1 ~:: f 2.. 

Proof: 1) . Take any two 1-factors f 1 , fz: their edges taken together, 

i.e. f 1 + f,, cover every vertex twice and so form a collection of 
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disjoint circuits of even length (including length 2, <::>) and so we 

obtain a partition 2rr of 2n into even parts, and so Ti is a 

partition of n. Conversely, given a. partition Tr of n, 2ii is a 

partition of 2n into even parts, and it is not difficult to find 

1-factors r,, fL such that the circuits of f 1 + f2. have lengths the 

constituents of 2Tr. 

2) Suppose f 1 + f2. and f 1 + f 1 have as components circuits of 

the same lengths, i.e. they both correspond to the same p~rtition of n. 

Consider first just f 1 + f'l., and the longest circuit c1 , of f 1 + fl., 

of length 2rn
1 

say. Then any point in this circuit lies on one edge 

of f 1 and one edge of f.,_ • Pick an arbitrar; point of the circuit 

and label it a 1 • Then go along the f 1 edge at a,, and label the 

adjacent point a~+l· Then go along the f~ edge at an+I and label 

the next point a2.. Continue in this manner until all the points of 

c, have been labelled, with labels a 1 1 • • • ,aM,,at"l-t-1'. •.,an .,.W\, • Now 

label the other circuits similarly, so we might have for n ':: 6, 

~l>/~b<~J ~t><1 
a., 

ll 
~7 a..d' 4:1.'t q,C> ~II <=41'1.. 

where f, edges are·continuous and f 2.. edges are dotted. 

Now produce a similar labelling for f 1 + f3 with labels b1 , ••• , b2"'. 

Then because f 1 + f '2 and f 1 + fl correspond to the same partition 

of n, there is a CJ"'- s2 "' such that al~ b1 , i = 1 to 2n, which 

fixes r, and maps f z to f.3 • 

3) For each circuit of f 1 + f, choose an orientation 
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of the points of c. Then f:5":: TT¥(ci) is such that f
1
l)': f2 and 

f:2.c-:f,. 

4.) In the same way as in 2) we consider a particular circuit c 

of f
1 

+ f 
2 

of length 2r greater than two, and label the vertices 

a 1 , •••• ,ar,an+t'····,al\+I". Then (a 1,a 2 , ••• ,a,..) and (a~r-_, •...• ,al\+I) 

are two such a-es2~ wbich fix at least r points of c and map the 

edges of f 1 to those of f~. Now, clearly, there can be no er~ S,__~ 

which maps the edges of f 1 to the edges of f2.. , and fixes two 

consecutive points of c. So any such <5 fixes at most r points of 

c , and no two consecutive ones, and so any <S v;hich fixes exactly 

r points of c , fixes alternate points. So anj edge of f 1 has one 

of its points fixed, and so the other point in the edge must go either 

to the point two ,to the left in an orientation of c, or to a point two 

to the right. This determines the action of er on the circuit. Finally 

the only way we can have . (Y mapping f I to f L. and fixing n + X points, 

is for it to fix each repeated edge and act in one of two ways on each 

circuit of length greater than two. Hence the result. 

1), 2), and 3) are enough to show that we have an association scheme 

with p(n) - 1 classes. 

4) will be of use later. 

(4) The eigenvalues cf the scheme. 

For the Johnson and Hamming schemes the eigenvalues are known in 

terms of the basic parameters and the Krawchuk and Eberlein polynomials. 

It does not seem possible to provide such a neat closed form for the 
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eigenvalues of our scheme, but we present a method for finding them, 

making use of theorem B. 

Clearly the class matrices here do not form a basis for the 

centraliser algebra, and there is no unique way of representing the Ai 's 

as linear combinations of the c41s. However, a canonical expression 

can be found in terms of the CJ 's for only those conjugacy classes 

whose elements fix at least n points, and in terms bf these the 

expression is unique. The reason for this is part 4) of the preceeding 

lemma. 

Now the number of conjugacy classes whose elements fix at least n 

points is exactly p(n) , and it turns out that we have a triangular 

system of equations connecting the CJ's and the Ai 1s. First we index 

the A;'s, CJ 1 s, and E~'s by partitions of n as follows: 

Let '"'ii be a partition of n • 

A(li) is the adjacency matrix corresponding to the relation R(1T) 

such that fr,, fz.)~ R(!r) if the circuits of f 1 +· f2. have as lengths 

the components of 2Ti. 

C(Ti) is the class matrix corresponding to the conjugacy class 

in S 2.tl\ whose cycle lengths are components of 'iT together with n 

fixed points. 

E(T\) is the projection matrix of v onto V(2ir?, the eigenspace 

of which is isomorphic as an s2 ""-modu1e to the Specht module s (2 Tf ') 

arising from the partition 2(li') of 2n , where Tr' is the partition 

conjugate to II . ~ne ordering of the partitions I\ of n follows 

that used by D.E.Littlewood (20) in his character tables of the symmetric 

groups. 
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The eigenvalues of the C ·
1 
's on the irreducible subspaces are we11 

known, and are easily calculated from the character table of s2~ , or 

if this is not available, by the methods of the representation theory 

of the symmetric group. We have, 

Yne main problem is to find aid ts such that 

This is done for the cases n :. 4,5,6, but beyond this point , the 

calculations become very involved. 

( 5) Computing the a i.( 's. 

We recall 

Ci (f1 , f~) =- the number of 

So a i J -:. the number of 

then f 1 cs : f2 • 

e. 
l 

such that if 

such that f 1 t:f' = f 2. • 

For small n, and for some i and j , this is a relatively sati.sfactory 

method for calculating the aiJ 's. However, the length of these computations 

increases rapidly with n , and for n ~ S,6, the following shorter 

method was used. 

The underlying idea is to pick a particular f 1 and to count the 

number of (J'" E. e . such that 
I 
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Calling this number b lJ , we have 

The calculation of the b;J 1 s falls into two parts. First, we find the 

number of e. 
' which contain certain edges of f, in their cycle 

structure in a prescribed manner, and then we find the number of ways 

in which we can choose such edges. The best way to illustrate the method 

is vrith an example: we do the case where n = 6, 

f I ': (1, 7) ( 2 1 8) ( 3 1 9) ( 4, 10) ( 5' 11) ( 6'12) 

First, there is the case where the 6-cycle consists of one point 

from each edge of the 1-factor. As we have remarked in part 4) of tbe 

lemma, this gives rise to a, 7 = 2. 

Second, there is the case where the 6-cycle contains 2 points 

from one edge of the 1-factor and four other points, one from each of 

four edges of the 1-factor. Then we have three subcases, 

I,_~. -_-..-, 

'· I \ 

s ... ' \~ 
I 

' I 
\ I 

Lf. ..__ - -· '3 

t~-·'2. I \ 
I ' 

$ / \. 7 
\ I 

\ I 
\ I 

tt ·- - -· 3 

'S-~ I \ 

S I \3 
'\ I 

\ I 
I 

4•- - - l 

48 (!" such that 

48 R(o ' 

giving 

R~ , 

"" a1,c. = 120.6.5.2 ::- 25 
2504 
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Third, there is the case where the 6-cycle contains two edges of 

the 1-factor and two other points, one from each of two of the remaining 

edges of the 1-factor. Then we have 8 subcases. 
I ,---('1 

. \ 

I \ 'f\._ __ j'-
'!- --•,? 
I \ 

+\ )~ 
\ i 

g"r= - =-'2. 
'F ~7 
I \ 

~ These contribute 
I 

1. 
80 .15 . 6. 2 :; 40 A~ 

720 

'2 

16.15.6.2 : 32 AJ.t. 
180 

8 R3. 
. 'Z 

24.15 .6 ·~·2 : 54 A'1 
160 

16 R"+-

16 R4 
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Fourth, there is the case where the 6-cycle contains 5 edges of 

the 1-factor. We then have 5 subcases. 

I 1 

48 . R 1 

24 R i. 

24 R~ 

8 

From all this we obtain, 

(6) The eigenvalues and the a;i's. 

Case n ::. 4 - p(4):: 5. 

These contribute 

48 . 20 r: 52 A I 
50 

64.20 ::; 8 A2. 
160 

8.20 = 160 A0 
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(1) Co .. A -C> - I 

(12) c. = 4A 0 + 2A 1 

(125) Cz.= 4A 1 + 2Ai.. 

(1234) C
5

.:- 12A 0 + 2A, -t 9A'L -t 2A
1 

(12) (34) C-t: l8A0 -+ 4A1 + 3Ai + 4A+. 

P matrix l't 2 12. 3 1 4 2 2 

\?1 1 12 32 48 12 1 

(?,2] l 5 -4 8 -2 20 

(4""] 1 2 8 -2 7 14 

l_4,2~] 1 -1 -2 ~ 4 -2 56 

[2-r] 1 -6 8 -6 3 14 

Case n :. 5. p(S) ':. 7. 

(1) Co :: Ao 

(12) c, = 5A0 + 2A 1 

(123) c, ~ 4A 1 +- 2A2. 

(1234) C.!>: 20A 0 + 2A 1 + 9Az. + 2Ai 

(12) (34) C+=- 30A0 + 6A 1 + 3A2. + 4A~ 

(12) (345) Cs : 36A, +10A2. + SA~+ 16A.,_ -t 4As 

(12345) c,:: 24A I+ 12A~ +l6A3 + 2A' • 

"f matrix lS" 2 i 1 3 1'1. 4 1 22.1 2 3 5 

l]_o] 1 20 80 240 60 160 384 1 

f s,2] 1 11 26 24 6 -20 -48 35 

[6,4] 1 6 -4 -26 11 20 -8 90 

[6,21.] 1 3 2 -8 -10 - 4 16 225 

[42 ,2] 1 0 -10 10 5 10 4 252 

&,21] 1 -4 2 6 -5 10 -12 300 

[2s] 1 -10 20 -30 15 -20 24 42 
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Case n ... 6 • p(6) = 11. 

(1) Co :: Ao 

(12) c, = 6A 0 + 2A 1 

(125) c2. -: 4A1 + 2A~ 

(1234) C3 : 30A 0 + 2A, + 9A
4 

+ 2Ai 

(12)(54) C~: 45A0 + 8A, + 3AL ~ 4A.,_ 

(12)(345) Cs c 48A I + 12A2. + 8A3+ 16A 4 + 4A, 

(12545) c, = 52A I +-12A 2. + 16A'! + 2A(. 

(125456) . C7= 160A
0

+ 52A
1

+62A2. + 40A ,.+ 52Acr+ 25At. + 2A 1 

(12)(5456) c! = 120A0 + 64A 1 + 66A, + 28A .3 + 24A't- + 18A S'-+ lOA & + 4Ap 

(12) (54) (56) c., = 140~ +- 56.A.., .... lOA i. + 4A, +- 8A't + 6As +- 8Acr 

(125) (456) c,o:: l60A
0 

+ 22A l. -t 8A\t + 52Att +- 8As + SA, + 4A 10 • 

16 2 l '+ 5 1
3 ~ 

. . 2~ 2.. 
P matrix 4 1 2 1 2 5 1 5 1 6 2 4 · 5 

[12] 1 50 160 720 180 960 2304 3840 1440 120 640 1 

[10,2] 1 19 72 192 48 80 192 -584 -144 -12 -64 54 

[8,4] 1 12 16 -18 27 24 -144 -48 108 50 -8 275 

[6,6] 1 9 -8 -78 55 120 -48 -24 -114 -27 136 132 

[8,2~] 1 9 22 12 -12 -60 -48 96 -24 - -12 16 616 

Cs ,4, 2J 1 4 -8 -18 5 0 32 16 -4 -2 -24 2675 

(4 t] 1 0 -20 30 15 -60 24 0 -60 30 40 462 

tG,2
1
] 1 0 4 -6 -21 12 24 -48 12 6 16 1925 

l_4\2~J 1 -5 -8 24 5 0 -24 -12 24 -9 4 2640 

8,24] 1 -8 12 -6 3 20 -24 48 -36 6 -16 1485 

[2"] 1 -15 40 -90 45 -120 144 -120 90 -15 40 152 
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Note: R~oth has calculated these P-matrices directly by co~puting the 

P·t 's - a monumental task - and the fi~res we have arrived at independently 
lq' IC. 

have each served as useful checks for the other. 

(7) Designs in the Scheme. 

In analogy with the Johnson and Hamming schemes, we wish to consider 

t-designs in this association scheme. Let us call a collection Y of 

1-facte;rs a t-design, if for any collection of t disjoint edges of K2"'", 

there are a constant number of 1-factors in the set Y which contain 

these edges. 

Consider the matrix NL which has columns indexed by all the 
'!;,W\ 

1-factors and rows indexed by sets of t disjoint edges, and 

Nt, •. ...(e, f) = [ 1 if the edges of e are contained in those 

o. otherwise. of f. 

If ¢,, is the characteristic vector of Y, the eondition that y is 

a t-design can be written 

or (Ne""" - k 'i\ J, ) 1 ::. o, for some constant k. 
J "'""' cp,, 

So we need to find out which irreducible representation subspaces make 

up the row space of NL • 
c:,'"""' 
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Lemma: Let N be an n x m matrix over tbe complex numbers with the 

property that a group G acts on both the rows and the columns of N. 

i.e. for all g ~ G, if P~g) is the permutation induced by g on the 

rows, and Q(g) that on the columns, 
_, 

P(g) N Q(g) = N • 

Then the row space (over C) and the column space (over C) of N 

decompos:e into isomorphic irreducible representation modules of G. 

Proof: There exist square matrices A of size rn , and B of size n , 

such that 

So 

Let 

Then 

So 

Hence 

- where r is the rank of N. A- I N B -- [QI "" 00] 

A-I P(g) 
-1 

A A 
_, 

N B B Q(g) B 
-1 

= p._ N B. 

-· ~ A P(g) A, B- 1 Q(g) B , 

:: [p II (g), 
P'2-,(g), 

t:· 
[Q~ (g), 

Q
11 

(g) e P
11 

(g) 

the row and column 

Q 11..(g)] . 
Q2..,,_(g) 

:] QI (g) :::. P, (g) [:· :] ' 

Q ·~ (g)J ::. f P., (g), :] Pz, (g)' 

and Q,2(g).:::.O, P<I (g) :::: O, for all g <:= G. 

spaces decompose into the same irreducibles. 
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Now consider NL • 
~, ...... It satisfies the conditions of the lemma, with 

acting on the rows and the columns. Since the row space is contained 

s 
2"""' 

in the representation module of s2""' on the 1-factors, any irreducible 

constituent scrr) of N must correspond to a partition 11 of I::.,""' 2m 

into even parts. On the other hand, the column space is a submodule of 

the representation of S2 ""'- on M(,v.) (the set of tableaux of typer), 

t where / = ( 2 , 2m - 2 t), i.e. 

We prove the following; 

2m = 2m - 2 t + 2 + . . • . . + 2 . 
'--v--' 
t times. 

Theorem: Let Tl= 2V and Tr ~(2t,2m - 2t) be a partition of 2m 

into even parts. Ynen S trr) S row(Nt """) , col (Nt- J . 
J ' 

Proof: Vle proceed in exactly the same manner as in the proof of 

Theorem C. 

Let T be a tableau corresponding to the partition Ti: 'ii,"" ... . :tTil< , 

where 1T1 ~2m - 2t, and 1T-~2 
I 

for all i > 1. 

Let S S:. R be the subgroup that acts as the symmetric group on 

the first 2m - 2t positions in the first row of the tableau. 

We define u(T) as in Theorem c, 

and v(T) =- 2_ u(T). s .. 
SE. S 

Now v(T) occurs as a vector in the row space of N since it 
l- 0\11. ' ~ 

is the characteristic vector of the set of 1-factors containing the 

t disjoint edges of u(T) which do not contain the letters in the first 

2m - 2t positions of T. 

Again consider the coefficient of u(T) in v(T).f(T), namely, 
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sg(c) 
ceC,r!:R 

u ( T) • er ~ u ( T) • S 

If u ( T) • er : u ( T) • s for s €. s, then u(T).c = u(T).sr·I . 

So wT ( u ( T) • c ) : w T ( u ( T) ) = 1, 

Hence u(T) .c -::. u(T). sr- 1 = u(T), 

and the remainder of the argument follows exactly as before. 

We have shown that 

row N.c, .... s;; span ~ E(2n) f 
TT,~m-t. 

Note: Thompson proves this for the case t ~2, but not by this me~~od. 

Let us look at the case m = 6, i.e. the 1-factors of K 1 ~. The 

Ai 1 s can be arranged in order depending on the number of edges that 

two 1-factors have in common. The Ei's can be arranged in the order 

in which they first appear in row( N t """). We have 
-,, 

(1 b) [12] 

(2,1'+-) g.o, 2] 

(3,11
) [s, 4] , [s, 2t.] 

(4,12.), ( 2'3-,1 z. ) [6, 6] ' [6 ' 4' 2] ' [6' 2 
1 J 

(5,1), (2,3,1) [ 4 3 ]' [ 4 2, 2 '] , [ 4 ' 2 Cf] 

(6), (4,2), (3 1
), (2"!l). [ 2"] . 
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These 1-factor schemes are not metric in tbe sense of Delsarte, 

but they bear a strong resemblance to the Johnson scheme, in that it is 

possible to define a generalised metric on the 1-factors, by saying · 

that two 1-factors are at distance i if they have n - i edges in 

common. One small difficulty arises in that there is no distance 1. 

However if d denotes the distance function, then 

for any three 1-factors 

From what we have just seen there is a similar partial order on the 

"!<'..IS 
~ l • 

(8) Particular Examples, and Applications. 

(a) 1-factors arising from an oval of n + 2 points in PG(2,n). 

In such a case n must be even, and to each of the n - 1 points 

outside the oval there corresponds a 1-factor of Kl"l-t2 , determined by 

the intersections of the lines through that point with the oval, (see 

Thompson (29) ). This set Y of 1-factors of K~2 has the property 

that no two of them have mo~e tha..~ one edge in common, (for if they did, 

they would correspond to the same exterior point), and so Y is a clique 

with respect to certain relations. Furthermore any pair of disjoint 

edges is contained in a unique 1-factor. Therefore Y is a 2-design, 

and we have, for the characteristic vector </Jy of Y; 
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This gives three equalities in Delsarte•s inequalities for the distribution 

vector. However the otber inequalities are not very strong in this case. 

One can also define two partial geometries on the set of n1 
- 1 

exterior points depending on whether or not they lie on a secant or an 

exterior line of the oval. Let us consider the case n ~ 10. Then vrn 

get a (5,11,5) partial geometry the dual of ~hich is an 8(2,11,45). 

It has been shown that a projective p1ane of order 10 has no automorphisms 

apart from the identity. Suppose we have an oval in the plane. Is it 

possible for the set of 99 1-factors arising from this oval, t here is 

a permutation g ~ S
1
'l. which fixes t he set as a whole. Euppose it. 

was. Then the block graph of the S(2,ll,45) would have an automorphism. 

But if g permutes the lines among themselves, then g could be exter:ided 

to an automorphism of the plane. Otherwise g would have to map the 

lines of the block graph to another set of geometrising cliques. But 

we have shown in III(ll) that none exist. So this set of 99 1-factors 

has no nontrivial automorphisms. 

(b) 1-factorisations. 

A 1-factorisation of K is a set of 2n - 1 1-factors of K2~ 

such that any edge lies in exactly one of them. Cameron (4) has asked 

for which relations between 1-factors is it possible to construct a 

1-factorisation such that any two of the 1-factors are related in the 

same way, and he gives a list of the known cases. A 1-factorisation 

of this type can be considered a s a clique id th respect to this relation. 

The figures we have calculated add only a little to what was already 
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(c) A proof of the isomorphism of A8 and PSL(4,2) using the 

techniques of this thesis. 

We consider the graph on the lGS 

to the relation (2,2), i.e. any two 

lie as follows, 

1-factors of K , corresponding 

1-factors are adjacent if they 

D D 
Then, from the P-matrix we obtain that : th.e · adj~cency matrix has least 

eigenvalue -2 and has constant line sums. We can apply the considerable 

theory of such graphs, fully recorded in (3), to obtain that G is the 

line graph of ~ome graph. Furthermore G has the same parameters as 

the flag graph of a symmetric design with parameters (15,7,3), and so 

is the flag graph of such a design. G has 3G cliques of size 7, 

corresponding to the points and blocks of this design. These must be 

1-factorisations such that the relations between the seven constituent 

1-factors are all (2,2). These are the only such 1-factorisations 

sir.ca the flag graph has only these 30 cliques of size seven. The 

parallel classes of AG(3,2) give such a 1-factorisation, and this has 

automorphism group of size 8.7.6.4 Therefore s8 is transitive on these 

30 1-factorisations, and Ag has two orbits of size 15. 

There are 35 partitions of 8 into two lots of 4. To any such 

partition we can associate nine 1-factors, and three of our 1-factorisations 

in the same orbit of A~, these being 
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<:. t,. <Zt7Jp P'I ,<~ 

c ~a. ~~~ 

~~l,,. J;>Q: c l~l ol under (hgf) 

a...~ tr e-----f' 
[_./~~ t><l <.. ~c\ - - - - - k under (hfg) ' :j 

In this way we obtain a set of 35 triples on the 15 1-factorisations 

in an orbit of A • The triples have 0 or 1 l~factorisation in 

common. And so we have an S(2,3,15) on one orbit, and the same 8(2,3,15) 

(corresponding to the· same 35 partitions) on the other orbit. And so 

it is doubly geometrisable. Hence it is projective 5-space over GF(2). 

A acts as a simpl~ group of automorphisms on it and, by comparing 

orders we see it must equal PSL(4,2). 
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