
CARTA!!

The Cartesian Access ~ethod

for

Data Structures with n-dimensional Keys

Thesis by

Stephen Vaughn Petersen
~ajor, United States Air Force

In Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1979

(Submitted September 20, 1978)

-ii-

ACKNOWLEDGMENTS

I wish to thank Dr. Frederick B. Thompson for his guid
ance and support as my teacher and friend during my stay at
Caltech. fty graduate studies were supported by the Air
Force Institute of Technology, for which I am very grateful.
In addition, I am indebted to the Deputy Chief of staff/Data
Systems, Headquarters, strategic Air Command, for an assign
ment conducive to the pursuit of my project. In particular,
I extend my appreciation to Staff Sergeants Dennis D. Hewitt
and Thoaas c. Hovard for their assistance in testing and
production applications of the CARTA~ programs. So many of
my co-workers have provided support by listening to ideas,
proofreading, etc., that I aa unable to list them all by
name, but I offer my thanks to all.

My heartfelt thanks go to Captain Gene c. Bloom for his
support, encouragement and friendship; he managed to kick
me out of ruts and bottom dead center innumerable times.
Finally, I simply cannot do justice with any words here
except to say, "Thanks!" to my lovely wife sue, who has had
to endure much while I completed this project. Without her
love and support, this never would have been finished.

Opinions expressed in this paper are my own and are not
to be considered an official expression by the Department of
the Air Force. If any omissions or errors remain due to any
lack of thoroughness or general laziness on my part, they
are my own and I claim full responsibility for them.

-iii-

ABSTRACT

The Cartesian Access Method (CARTA~) is a data

structure and its attendant access program designed to

provide rapid retrievals from a data file based upon multi

dU.ensional keys; for example, using earth surface points

defined by latitude and longitude, retrieve all points

within x nautical miles. This thesis describes that data

structure and program in detail and provides the actual

routines as impleaented on the International Business

Machine (IBM) System/370 series of computers. The search

technique is analogous to the binary search for a linear

sorted file and seems to run in O(log(N)} time. An

indication of the performance is the extraction, in less

than 25 ailliseconds CPO time on an IBM 370, Model 3033, of

all points within a 10 ,000-foot circle from a geographic

data base containing approximately 100,000 basic records.

-iv-

TABLE OP CONTENTS

Acknowledgments

Abstract

Table of Contents

Illustrations

Chapter

I

II

III

IV

v

VI

VII

VIII

Introduction

Background and Problem Definition

An Unusual Dat~ Structure for the Real Line

Generalization to n-dimensional Space

An Application Programaer•s View of CARTA8

Inside CARTA~ for the ~aintenance Programmer

CARTAM in Use

Assessments and Recommendations

List of References

ii

iii

iv

v

1

5

9

25

41

63

81

102

105

Appendix

A

B

c

D

E

'P'

G

CARTAft Source

Subroutine VECTOR

VECTOR Source

-v-

Copy Books for COBOL Programs Using CARTAa

Index Load Program Source

VSAft File Definition Example

Circle Search Program Source

106

136

144

163

165

172

173

H Inclusion/Exclusion Area Search Program source 181

I PORTRAN Subroutine to Expand Longitude 191

Figure 3-1.

Figure 4-la.

Figure 4-lb.

Figure 4-2.

Figure 4-3.

Figure 5-1.

Figure 5-2.

Figure 6-1.

Figure 6-2.

Figure 7-1.

Figure 7-2.

Figure 7-3a.

Figure 7-3b.

ILLUSTRATIONS

Ring Structure Example

Cartesian Square Subdivision

Corresponding List Structure

Conditions for Intersection

Plov Chart of INTERSECTION_FUNCTION

Calling Sequence Requirements

Communication Block

DSECT of Communication Block

DSECT of PCBAREA

Circle Search Conditions

Performance Statistics

Inclusion Area Search Example

Exclusion Area Search Example

14

29

29

32

36

43

48

72

73

90

93

95

95

-1-

CHAPTER I

INTRODUCTION

The age of information is upon us. Whether the com

puter has been developed to allow us to manipulate that

information or to generate it is a moot question at this

time; ve do have large masses of data and must use the

coaputer to manage them efficiently. The corporate data base

has become an all-important entity in many, many cases, and

the management and retrieval of information has become a far

fro• trivial operation; witness the proliferation of data

base management systems on the market today. I am not

trying to address that massive subject; rather a small

corner concerned vith the efficient searching and retrieval

of pertinent information to answer some rather specific

questions.

It is extremely rare that a question is asked which

requires access to an entire data base to develop the answer.

In the vast majority of cases, ve only need to examine

certain rather small subsets of the available data. Many of

these instances involve the determination of a key value or

a range of key values which are then used to access the

appropriate record(s} to answer the original query. So far

-2-

these keys have been single-dimensional values used to probe

a linear sequential file of some particular organization.

There have been aany methods developed to solve these types

problems; Knuth devotes an entire volwae to them (8).

However, if the information is keyed by multi-dimensional

values, such as points in Cartesian space or locations on

the surface of the earth, existing methods do not readily

lend themselves to answer questions of proximity or nearness.

This paper presents a solution to the problem of

efficient probes into multi-dimensional data using a method

of quadrature to develop a data structure which has become

very useful for questions such as: •which resorts are within

a day's drive of my home?•; "How many doctors and dentists

are located in the state of Arizona?"; •what types of

navigation aids are available for an airline route from San

Francisco to ftoscow?•, etc. I shall develop this structure

and the implementation of some computer programs which

provide the answers to these and other similar questions.

The first of three main divisions of this thesis is a

step-by-step development of the data structure and its algo

ritha. In order to establish an initial environment,

Chapter II briefly describes some geographic data files in

use at Headquarters, Strategic Air Command (SAC) and the

methods that vere used to query those files. After exami

nation of the problem, the basic algorithm for our solution

-3-

is developed in Chapter III. This development is in one

dimension, specifically the real line, as illustration to

allow comparison with existing file search strategies, in

particular the binary search scheme. As such, the algorithm

and structure will appear very cuabersoae; the utility of

the aethod becomes apparent in Chapter IV as the structure

and algorithm are generalized to n dimensions.

The second section of this paper covers the technical

aspects of the actual implementation. Chapter v is intended

as a user•s guide for the programmer/analyst who plans to

use this n-dimensional programming techique to solve a

specific problem. The implementation is as a subroutine,

and this chapter describes the calling sequences and the

results that are to be expected. Chapter VI goes into the

internal workings of CABTAM and is maintenance information

intended for the assembly level programmer vho wishes to

both install the system on his own hardware and/or maintain

it while in use.

Once the reader is aware of the available operations,

a series of examples is presented in the third section to

deaonstrate the use of the system. Chapter VII describes

a fev of the current application programs in day to day use

at Headquarters SAC. These programs may prove to be useful

to the reader in their own right, but the main purpose is to

illustrate some aethods and show how the data structure may

-4-

be used. I hope that they will serve as jumping-off places

for solutions to existing problems that had been deemed

either unsolvable or too costly to solve using previously

known methods. Chapter VIII concludes with some thoughts

and recomaendations on possible future applications and

improvesents.

The appendices, with one exception, are listings of the

programs that have been in use at SAC for the last year.

Appendix B contains a detailed description of a distance

calculation function or metric used to compute geodetic

distances on the surface of the earth. This metric is used

throughout the examples in Chapter VII.

-s-

CHAPTER II

BACKGROUND AND PROBLEM ENVIRONMENT

The data structure and access techniques as described

in this thesis were developed primarily at Headquarters,

Strategic Air Command, Oaaha, Nebraska, and specifically

applied to geographic data files used by the Joint Strategic

Target Planning Staff. These particular files are used as

concrete examples and are not intended to imply that these

are the only possible applications; the method may be

applied to any multi-dimensional data file.

The first file that was examined consists of approx

imately 50,000 records describing points on the surface of

the earth. ~ost of the information in each of these records

is of no consequence to this discussion except for a unique

21 character key which can be used for retrieval of a

desired complete record, and the latitude and longitude

which specify the location of the item on the earth.

Queries against this file by location have been limited

to saall areas which allowed use of a limiting procedure

based upon a range of latitude values. This procedure

started vith an external sort based on the concatenation of

-6-

latitude and longitude into a single key used for sort

sequence. The resultant file vas then read a record at a

time, checking for inclusion inside a gross "box" defined by

constant latitude and longitude, storing candidate prime

keys in an internal table. Since the file is sorted vith a

major key of latitude, the read procedure is terminated vhen

the input latitude is greater than the upper limit of the

box. Note, however, that many records are read which will

fail the gross longitude check.

After the table of candidate keys is built in main

me•ory, a finer discrimination is made with an appropriate

metric to arrive at the final set of accepted records. Some

applications are summarizations that permit the packaging of

several distinct queries into a single program. Since each

candidate may then be examined for each criterion, a large

number of the disk input operations are eliminated.

Bovever, this method is absolutely memory-bound and cannot

afford a criterion resulting in a large candidate subset of

the original file.

An attempt at clustering has been applied to this geo

graphic data resulting in an "island" system. These islands

have been defined such that each island is disjoint from all

others with a ainiaum separation between any two adjacent

islands. The island assignment procedure is simply a scan

through the entire file as described above, looking for the

-7-

island that is less than the miniaua distance away from the

new point. Another way to consider the clustering is that

an island is the collection of all those points that are

within the maximum separation of another point. This does

manage to cluster points in manageable groups in most cases,

but occasionally islands grow to an unwieldy size. Those

islands are then manually broken up by using a smaller

separation distance.

once the islands have been assigned, a non-trivial

process, subsequent processing is usually done on an island

basis. An application program is given an island to

process, at which tiae all members of that island are read

into •ain meaory and the necessary fine discrimination is

applied to that subset. This methodology is not too

unaanageable as long as the number of members does not get

too large; anything over approximately 500 records begins

to degrade performance. The island approach also limits the

fine discrimination to a distance criterion no greater than

the ainiaum separation between islands. If the desired

distance is greater than the minimum separation, the method

breaks dovn completely since the search area may need more

than one island.

A second major file concerns points used to describe

country and coastal boundaries for mapping applications.

This data set contains approximately 100,000 data points

-8-

and is stored in a sequence suitable for display on an x-y

plotting device. The mapping software is capable of

discarding those points outside of the area being mapped,

but the entire file aust be read each ti•e, which drives the

computing tiaes to rather large values. When maps are being

prepared in a batch enYironment for hard-copy output to be

produced on a flat-bed plotter, the high CPO time say be

acceptable, but not in an interactive environment with maps

to be displayed on a CRT device. The only known method of

operation was to pre-build desired maps overnight, vhich

restricted a user to those, and only those, maps. If, for

any reason, the user changed his mind, new maps were not

available until at least the next day.

As can be seen, in many instances we have been strictly

memory-bound for area type queries after reading the entire

source file. The atte•pt at clustering the data has

improved this to some extent, but only if the distance cri

terion is not too great. Even so, programs have been

required to define internal table space to allow for the

aaxiaua size of a cluster and discriaination within the

cluster required a distance calculation from the point of

interest to every ae•ber of that cluster. The data

structure and techniques described in the remaining chapters

have removed these restrictions entirely.

-9-

CHAPTER III

AN UNUSUAL DATA STROCTUBE
POR THE REAL LINE

The problem of retrieval of information from a large

file is usually solved by determining a unique key for each

record, imposing an ordering operator (>} on the key field

and subsequently storing the data in a linear fashion on

secondary storage. Retrievals may then be accomplished by

several efficient search strategies, e.g., binary search,

hashing, etc. If the individual records are substantial in

size, indexes are useful in reducing secondary storage

access time, but the problem of searching the index has not

changed.

An order is imposed upon the key values to increase the

amount of available infoaration. A linear sweep of such a

file may be terminated when the key value becomes greater

then the desired argument, where a random ordering would

require examination of every key value in the file. This

linear probing of a sorted file results in an average access

of H/2 records, where I is the total number of keys in the

file of interest. A much faster technique is the so-called

binary search, which probes the median record in a sorted

-10-

file and determines which half might contain the desired

key, thus discarding the other half. Considering the

reaaining sub-file as a file itself, the median record of

the sub-file is then probed. This algorithm terminates

successfully when the desired key is found, or terminates

unsuccessfully when adjacent keys in the file bracket the

desired value. The binary search algorithm accesses an

average of approximately log2(N) records and is said to run

in log(NJ time. These algorithms have an underlying

assumption that the key values may be mapped one-to-one with

a subset of the integers in a meaningful way which allows

for the application of an ordering operator and subsequent

sorting of the file.

However, if the file consists of geographic data, for

exaaple, with latitude and longitude for coordinates, the

concept of ordering beco•es nebulous at best. It is true

that on a general purpose computer, the latitude and

longitude aay be defined in such a fashion as to each reside

in a computer word of, say, 32 bits. These two computer

words could be concatenated into a 64-bit key value, and

the file could then be sorted accordingly. A problem arises

when trying to decide which coordinate is to be considered

as the •ajor portion of the key. If latitude is chosen as

the aajor key, then data points with identical latitude will

be "close• together in the file, but data points with iden

tical lon9itude aay be •far" apart in the file structure.

-11-

Since points on the surface of the earth as denoted by

latitude and longitude have their ovn problems in r~lation

to a aetric, let us suspend consideration of geographic

points for nov and concentrate on a Cartesian space, i.e.,

the cross product of the real line, in n dimensions. The

si.llplest Cartesian space is the real line itself where

n = 1. Thus, the following discussion will be limited to

the one-dimensional case and may appear unnecessarily

complicated at times, but remember that the eventual goal is

the extension to n dimensions.

Let us examine a binary search strategy as applied to a

linear, sorted file. In particular, consider a "uniform

binary searchN as described by Knuth [8,pg 413) using Shar•s

modification.

Given a table of records Rl, R2, ••• , Rm, whose key

values are in increasing order Kl < K2 < ••• < Km, we can

search for a specified argument K, using algorithm C:

Cl[Initialize]

Seti:= 2**k where k = Llog2(m)~.
(NB: Llog2(•)~ is the floor of log2(m) or the

greatest integers log2(m); i.e., k = Llog2(m}~

is an integer such that k S log2{a) < k + 1.)

-12-

If K = Ki, algorithm terminates successfully.

If K < Ki, set d := 2**k, go to C2.

If K > Ki and a = 2••k, algorithm terminates

unsuccessfully,

but if • > 2**k, reset i := • + 1 - 2••j

where j = Llog2 (m-2••k}-' + 1,

(note that 2**k - 1 S m + 1 - 2**j s 2**k}

set d := 2**j, and go to c3.

C2(Decrease i]

If d S 1, algorithm terminates unsuccessfully;

else set d := d/2,

set i := i - d,

go to C4.

C3[Increase i]

If d S 1, algorithm terminates unsuccessfully;

else set d := d/2,

set i := i + d,

go to C4.

C4[Coapare]

If K < Ki, go to C2.

If K > Ki, go to C3;

otherwise K = Ki and

algorithm terminates successfully.

-13-

The choice of the underlying storage organization for

our table of records is a crucial consideration. If the

table is small enough to be contained entirely within the

priaary store of the computer, transformation of the index

value i into a displace•ent into the table is a simple

calculation. However, complete residence in primary store

may be prohibitively restrictive, as a table of any

appreciable size aust be on secondary storage. In addition,

the transformation of the index into a displacement into a

multi-dimensioned table becomes complex. For these reasons,

and others as will becoae apparent later, I have chosen to

store structural information in an explicit binary tree,

with •odifications. Instead of the left and right links of

the usual binary tree, I use the child and twin pointers of

a ring structure or circular list. This ring structure as

illustrated in figure 3-1* also includes the parentage

information usually provided by an up-link without needing

the additional pointer space in the record entry. A single

bit in each record serves to indicate when a tvin pointer is

in fact an up-link. It is also convenient to include an

*The usual depiction of chains in linked lists in diagrams
is from left to right. The usual representation of a
negative nuaber in a general purpose computer is with a
bit set to •1•. When a linked list chain is arranged in
ascending order based on a bit string of arithmetic signs,
ve then have an inversion between a picture of a line
segaent and the corresponding list. I hope this will cause
no problems to the reader.

-1 4-

*

(lJ
,....,
c..

:::: E .,.., C'il
~ x .u ~

I
(!.) (""")

"O ,...., :::: (lJ
"M ,.. .u)..,

0 u ::::

*
::l OJ)

).., "M
.u ·-~

C'il
er::

.u
C'il Ol

"O ::::
"H
~

-15-

explicit indication as to whether a particular record is the

positive or negative child of its parent record. This

indicator is a single bit in the one-dimensional case.

Since the file is being stored as an explicit binary

tree, note that additional records are being generated, and

the concept of an "i-th" record for the algorithm becomes

imprecise. Assuae for the moment that the key values (Ki)

are integers uniformly distributed over the interval -x to

+X where X = 2**x and x is the smallest integer greater than

or equal to log2(max(fKiC)), i.e.,

x - 1 < log2(max(tKit}) ~ x.

Then a root record with a key value of 0 and a delta of X

defines the interval = O±X as a cover for all key values of

interest, i.e., a line segment that contains all key values

within it. Dividing the interval in half, the root segment

now has a positive _child and a negative child at the next

level of detail. In the ring structure under consideration,

the positive child is reached fro• the child pointer of the

root record, while the negative child is reached by following

the twin pointer of the positive child. The negative child

record vill have the parent indicator set shoving that the

tvin pointer in that record points back to the parent,

closing the ring. Carried to the logical conclusion. each

record in the file defines a finite length line segment by

specifying the center coordinate value and a delta or line

length to either side of the center.

-16-

There are some important points to keep in mind about

the line segaents as defined by the file records. The

children of a given record subdivide the line segment as

defined by the parent record. In particular, if ve consider

a record as defining a set, which is exactly a line segment

in the one-diaensional case, the set intersection of records

connected by twin pointers is empty, vhile the union of

those same records is identical to the parent record. These

conditions of intersection and union also imply that the

the intervals defined by the records are only half-closed,

specifically, closed at the left end and open at the right

end. As an example, assume that we have a set of key values

such that -15 s Ki S +15. Then, x = 4, and the first few

generated binary tree records are:

Record num Key (Ki) Delta Twin ptr Child ptr Di rec
1 0 16 2
2 8 8 3 4 +
3 -8 8 1• 6
4 12 4 5 8 +
5 4 4 2• 10
6 -4 4 7 +
7 -12 4 3*
8 14 2 9 +
9 10 2 4*

10 6 2 11 +
11 2 2 5•

The asterisks in the tvin pointer column indicate the end of

the ring, i.e., the parent pointer. Note that the delta

value for each record defines the distance from the center

-17-

to either end of the line segment, i.e., delta is one-half

the length of the interval. Graphically this can be

represented by:

Record DUa -16 -8 0 +8 +16
1)
2)
3)
4 [}
5 E)
6 [)
1 [)
8 E-->
9 f--)

10 E)
11 E)

If the key values are dense in the integers, i.e., the

difference between consecutive keys is exactly one, then the

length is halved each time ve follow a child link or

descend one level in the tree. Also, if we follow the twin

link, unless marked as an up-link, ve remain at the same

level in the tree, but go to the complementary line segment.

However, since key values are very rarely dense in the

integers, stict adherence to the notion of equal deltas at

the same level in the tree would result in extra nodes which

have only one child instead of tvo. Therefore, ve eliminate

an extraneous node by replacing it in the ring with its only

child. Notice that nov delta values are not necessarily

halved when following a child link, nor are they equal along

a tvin chain. Thus, it becomes useful to explicitly carry

the delta value in the record entry.

-18-

The binary tree as stored on a secondary storage medium

contains two basic types of records: terminal records

corresponding to the original data points, and internal

nodes or branch points of the tree which have been generated

due to the structure definition. Each record, accessed

through a pointer of value P, consists of:

1) a key or coordinate value of the center of the

interval K (P)

2) a delta value of one-half of the length of the

interval

3) a child pointer

D (P)

Child (P)

Twin (P) 4)

5)

a twin pointer

if the record is a terminal, additional data

ger•ane to the original data record

6) various flags, such as:

a. node or terminal indicator

b. end of twin chain in ring, and

c. the sign of the difference between the record's

coordinate and the coordinate of the parent of

this record as a direction indicator Q(P}

It is obvious that construction of this explicit binary

tree generates overhead with the node records. Since extra

neous nodes have been eliminated, any record with a non-null

child pointer has tvo children. To determine just how much

overhead is generated, let t be the number of terminals

-19-

present, and let x be the number of generated nodes. If t•

and t• are subsets of t such that t• = 2**k' and t• = 2**k"

for some integers k' and k•, then the nuaber of nodes

generated for the appropriate subtrees are x• and x•.

Applying the suaaation of a geometric progression with a

ratio of 2, and noting that any two subtrees aay be

connected with one additional node, we obtain:

x• + x• = (t• - 1) + (t" - 1) + 1 = t• + t• - 1.

By induction, then,

x = t - 1.

When storing the tree on a secondary storage medium, it is

useful to have a master node, the root, at a location in the

file that is always known. The only location that is always

known is the first one; therefore, ve add an additional

node to the structure as the master root record, which makes

the total number of generated nodes equal to the number of

terainal records.

-20-

Wi th the structure as just defined, the earlier search

algoritha c is modified to give algorithm T to search for a

given argument K:

Tl[Initialize J

Set P := root.

T2[Compare J

Set D : = K - K (P) •

If D = 0 and D(P) = O, terminate successfully.

[Record is a node if D(P} > O.]

If D ~ O, go to T3;

else go to T4.

T3(D positive)

If D ~ D(P), terminate unsuccessfully;

else set P := Child(P),

go to T2.

T4[D negative]

If D < -D(P), ter•inate unsuccessfully;

else set P := Tvin(Child(P)J,

go to T2.

When searching for a specific argllllent K, algorithm T

aay seea unnecessarily complicated. However, if the search

is for all records with key values in the range K ± d,

algoritha T aay be extended in the following fashion with a

stack, as algorithm R':

-21-

B 1 1[Initialize]

Set P := root.

R 1 2[Coapare]

Set I> : = K - K (P) •

If D ~ O, qo to R1 3;

else go to R 1 4.

R•3[D positive)

If D ~ (d + D(P)), go to R1 6;

else go to B'S.

R '4[D negative)

If D < -(d + D(P)), go to R1 6;

else go to R'S.

R1 5(Check overlap]

If tDt ~ (d - D (P)),

present entire subtree as successful,

go to R'6;

else set P := Child(P),

push Tvin(P) to stack,

go to R'2.

R 1 6[Pop stack)

If stack is eapty, terminate;

else pop P := top of stack,

go to R'2.

-22-

Algorithm R• allows extraction of information from the

binary tree structure. However, before any extractions can

be performed, the tree aust be built. After initialization

and definition of the file by writing a aaster node record,

repeated insertions using algorithm r• will build the file.

I•l[Initialize insert]

Set K := key value of record to be inserted.

Set P :=root (pointer to master node).

1 1 2 Set D ·-.- K - K (P).

Set Q := sign(D).

If ID I < D (P) , go to 1 1 3.

If ID I > D (P) , go to I'S.

otherwise (IDt = D (P)) , so

if Q = "+", go to r•s (open end of interval) ;

else go to I'3 (closed end of interval).

I• 3[Inside]

Set p• := P.

Set p := Child (P) •

I•4[Walk ring]

If Q = Q (P) , go to 1•2.

If Q > Q (P), set P := Tvin (P) , ["+" < "-"]

go to I 1 4;

else CJO to r•s.

-23-

I'S[Outside; record(!) to be inserted was inside the

line segment defined by node(P') and was on the Q

side of the center of that segment. The existing

child on that saae side, record(P), defines a line

segment vhich does not include the nev record(I).

Replace record(P) in the ring with a new node(P•),

and aake the nev record(!) and record(P) children

of node (P") •)

Set D(P") := D(P').

Set K(P") := K(P').

Set Q(I) := Q.

Repeat [Adjust Becord (P")]

Set D (P") ·-.- D (P"} /2;

If Q (I) = ,
then set K (P") ·-.- K (P"} + D (P") ,

else set K (P") ·- K (P"). - D (P"l ; .-
Set Q (I) ·-.- sign (K (I) - K (P")} ;

Set Q (P) ·-.- sign (K (P} - K (P"}} ;

until Q (I} # Q (P) •

I•6[Adjust pointers]

If Q (I) < Q (P)

then

-24-

["+" < "-"]

set Child(P") :=I,

set Tvin(I) := P,

set Twin (P) := p• and mark as parent;

else

set Child{P"} := P,

set Tvin(P) :=I,

set Tvin(I) := P" and mark as parent.

The structure and techniques just described are much

too complicated for efficient application to data keyed from

the real line. However, the real line is simply the

degenerate case of the eventual goal, n-dimensional space,

and is described in detail for ease of illustration. As

will be seen in the next chapter, the n-dimensional case is

obtained from this development with quite simple extensions.

-25-

CHAPTER IY

GENERALIZATION TO n-DI~ENSIONAL SPACE

The last chapter discussed at some length a rather

unusual data structure for information keyed by a single

coordinate. In this chapter, I will present the extensions

to the data structure and algorithms which provide for the

n-diaensional case and give the rationale for the design.

One of the •ore obvious questions concerns the use of a

ring structure rather than the usual binary tree linkage of

elements. After all, each record carries two link pointers

while the ring has only two eleaents. The two pointers

could just as well have been left and right links, elimi

nating the requirement to walk over the positive record in

order to access the negative record. However, in extending

to a higher diaensionality, the number of pointers required

to define the structure increases exponentially.

In particular, in n-diaensional space, a given ring may

contain up to 2••n entries. The ring structure allows this

expansion of the nuaber of entries with no additional

pointer requireaents, while a separate pointer in the record

for each possible child rapidly consumes an inordinate

-26-

anount of space. The ring structure also accommodates the

absence of records very nicely, while individual pointers

would have null values in many cases. Then there are

additional physical liaitations imposed by the computer

hardware. As an exaaple, consider the IB~ 360/370 series of

computers which use an address of 24 bits. If individual

pointers vere carried in a record, an application vith 25

diaensions, for example, would require a record format with

2**25 pointers. This technique obviously would require a

record auch greater in size than the entire available

coaputer aemory.

The overhead generated by the tree structure is a

direct result of the node records that define the structure.

This overhead has been min1-ized to an extent by elimination

of extraneous nodes, i.e., those nodes which vould have only

a single child. I have shown that in the one-dimensional

case the nuabe~ of node records is equal to the number of

terminal records. Por the n-diaensional case, this number

becoaes an upper bound for the worst case situation where

any given node has only tvo children. !ost nodes in the

n-diaensional case will have more than two children; in

other words, a twin chain will nor•ally be longer than two

entries, but in no case will the length of the twin chain be

greater than 2••n.

-27-

The upper bound U for the nuaber of nodes in a file

with t terminal records is exactly equal to t. The lower

bound L is attained vhen every node has r = 2•*n children

or the tvin chain length is r. As was done for the one

di•ensional case, t could be broken down as a sumaation of

integer powers of r, but since r subtrees would have to be

joined under a junction node to maintain optimality, and we

are only interested in a lover bound, it is convenient to

assume that t is already an integer power of r- Using

the sum of a geoaetric progression once again, now with a

ratio of r between successive terms, the lower bound is:

L = 1 + (t - 1) / (r - 1) •

For an exaaple, assume n = 2 and t = 65,536 = 4••8. Then

the upper bound U = t = 65,536 node records, while the lower

bound L = 21,846 or roughly 0.3t node records. The approx

imate range of 0.3t to 1.0t therefore indicates the actual

number of nodes. Actual experience with a geographic data

file has resulted in a file structure with approximately

0.7t node records.

These considerations, then, dictate the use of a ring

structure while the record content as given in the last

chapter is extended for n dimensions as:

1) n key or coordinate values for the center of a

(hyper-) square Ki (P)

2) a delta value of one-half the length of a side

D (P)

-28-

3) a child pointer Child (P)

4) a twin pointer Twin (P)

5) application dependent data for terminal records

6) various flags:

a. node or ter•inal indicator

b. end of tvin chain indicator

c. a quadrant indicator of n sign bits of the

difference between each coordinate of the

record and the corresponding coordinate of the

parent record Qi (P)

ls an example of the list structure compared to an

actual square fro• a Cartesian space, see figure 4-1.

Figure 4-la shows the example square, while figure 4-lb

depicts the list as defined by the node and terminal

records. The root node A defines the outer square which is

then subdivided by the four children, B, c, D and E. The

square defined by node E is then subdivided further by its

children, F, G and z vhile the children of B, c and D are

not shown. Node G is then subdivided even further by H, x

and y. Again, the children of F and H are not shown. The

terainal record z specifies the only data point in the "+-"

quadrant of E, while the •--• quadrant is empty as indicated

by the absence of a corresponding record in the list.

Terainal records x and y likewise specify the only data

points in appropriate quadrants of G. Overall, the process

-29-

I\

1
·~----5 -----i.-1 ... ,...._----c------,~·

j l ·-----~ -A-t -,-t ~~-'
--E--F~~c;,y

t y r-~~
··~------Q----~1~~--------£---'--'-~1

l , ! .
Cartesian Square Subdivision

Figure 4-la

Correspondin~ List Structure

Figure 4-lb

-30-

of subdivision is continued until a quadrant of a given

square contains a lone terainal record; a node record is

never defined unless it would have at least two children.

The n+l-tuple (Kl(P),K2(P), ••• ,Kn(P),D(P)}, where

each coordinate Ki(P), in connection with D(P), defines a

half-open interval as in the one-dimensional case, defines a

square if n = 2, a cube if n = 3, and a hyper-cube if n > 3.

Since a cube may be considered a hyper-square, and examples

are presented in two dimensions much more facilely than in

higher dimensions, r shall use the term square in the

remainder of this paper to refer to the object defined by

the n+1-tuple • . In a similar vein, I shall use the term

rectangle vhen referring to the object defined by an ordered

pair of n-tuples; the first n-tuple is a vector of

coordinates defining the lover limits of the intervals or

the lover left corner, while the second n-tuple is a vector

of the upper limits of the intervals or upper right corner.

Note that in the case of the rectangle, the intervals

defining the sides are closed at each end.

The rectangle is used pri11larily in conjunction with an

area search request, algorithm R', but is also useful in

the insertion scheme, algorithm I', by allowing the

rectangle to degenerate to a point. In both instances, the

algorithms essentially ask the question, "Does a square as

-31-

stored in the file intersect with the search rectangle?

If it does, is the square totally inside the rectangle or

vice versa?• Let•s examine the area search first.

As will be seen when algorithm R• is extended to n

dimensions, the question of intersection is as stated above.

see figure 4-2 for some pictorial examples of possible

situations with a search rectangle as defined by x. Squares

A, B, c and D have non-empty intersections with X, but there

is insufficient information to make a positive decision;

the structure must be examined further at a finer level of

detail. Square E has an empty intersection with rectangle

X; therefore, ve may discard the entire subtree by

proceeding immediately along the twin chain. Square F is

totally enclosed by X; thus, the entire subtree may be

accepted as aeeting the search criteria.

Returning to square D for a moment, there is additional

information available, namely only one particular child of

the square could possibly be of use to the search request.

As will be seen, determination of the intersection involves

arithaetic on the coordinates; construction of a Q type bit

string is very simple. If such a bit string is constructed

for each of the linit vectors, high and low, and the bit

strings are then identical, the only child of interest will

be exactly that child with the same bit string Qi(P).

-32-

B

F

x
A

D c

E

Conditions for Intersection

Fig ure 4-2

-33-

The search application uses an ordered pair of n-tuples

or vectors to define the rectangle, while the insertion

algorithm uses a single vector as input for the record to be

inserted. If ve let that single vector be used twice, i.e.,

as a definition of a degenerate rectangle, the same set

intersection function may then be used in the insertion

algorithm. It vill turn out to be useful to allow insertion

of terminal records vith identical coordinates, although

differing ancillary data, which can be done by inserting a

node record with a zero-valued delta and then chaining term

inal records as children of that node. If the set inter

section function is able to indicate whether the degenerate

rectangle is totally inside the square and vice versa, and

if both conditions are true, then the identity intersection

would be indicated. Note that as a result of the half-open

character of the square definition intervals and the closed

nature of the rectangle defining intervals, the identity

intersection technically could never occur. However, since

computer arithmetic is finite in nature, the identity

intersection can occur, but only when the intersection is

between a degenerate rectangle and a node with a zero delta

or a ter•inal, i.e., a data point, which is exactly the

condition that the insertion algorithm will need.

-34-

Since the set intersection function is very important

to both the search and insertion algorithas, and will be an

extreaely high-use section of computer code, it is developed

here in detail.

Let the search rectangle X be defined by the ordered

pair of n-tuples ((x1,x2, ••• ,xn), (y1,y2, ••• ,yn)) where

xi ~ yi. The square A fro• the file is defined by the

n+l-tuple (a1,a2, ••• ,an,d), where the delta valued 2: O.

[In the following, the symbol & is for logical "and";

the symbol I is used for logical "or".]

1. At least part of the rectangle is outside of the

square if the intersection of X and ~A is not e•pty. The

intersection is not empty if there exists an i:

(ai - d > xi) I (yi . > ai + d) I (ai + d = yi & d ' 0) •

Rearranging terms,

(ai xi > d) I (yi ai > d) t (yi - ai = d # 0) •

Since d 2: 0 by definition, the two terms containing yi may

be co•bined, giving

(ai - xi > d) I (yi ai 2: d > 0) •

-35-

2. For the converse of condition 1, at least a portion

of the square is outside of the rectangle if the intersection

of A and -x is not empty, which is the case if there exists

an i:

(Xi > ai - d) I (a i + d > y i) •

Rearranging teras,

(ai - xi < d) I (yi ai < d).

3. The intersection of the rectangle X with the

square A is empty if there exists an i:

(ai - d > yi) I (ai + d < xi} J (ai + d = xi & d :I 0) •

Rearranging terms,

(ai - yi > d) I (xi - ai > d) I (xi - ai = d # O} •

As in condition 1, d ~ O allows the combination of the terms

containing xi giving

(ai - yi > d) f (Xi ai ~ d > 0).

Pigure 4-3 shows a flow chart of INTERSECTION_FONCTION

after combining the three tests; the two Q bit strings are

also set as appropriate.

(l)X -. in A

-(xi-ai)
Set xQi

>

(1) X -. in A

<O

<

-36-

- - - - - check high limit

(3) Empty

J check lov limit

>O

<

(2)1 , in x....---~ (3} Empty

Flov Chart of IHTERSECTION_FUNCTION

Figure 4-3

-37-

Algoritha I• may now be extended to n dimensions to

give us algorithm I:

I1[Initialize insert]

Set Ki := coordinate values of record

to be inserted.

Set P := root (pointer to •aster node) ..

!2 Execute INTERSECTION_FUNCTION (record(P),Ki,Ki).

If "Ki is inside record(PJ", go to I3 ..

If "Ki is outside record(P)", go to IS;

otherwise an identity intersection, go to !Sa.

I3[Inside]

Set p• := P.

Set P := Child(P).

14(Walk ring)

If Qi = Qi(P), go to I2 ..

If Qi> Qi(P), set P := Tvin(P},

go to 14;

else go to IS.

ISa(ldd a duplicate coordinate record)

Set Qi := all •+•.
If record(P) is a node, go to I7;

else set p• := P,

go to IS ..

["+" < "-")

-38-

IS[Outside; record(I) to be inserted was inside the

square defined by node(P•) and was in the Qi guad

rent of that square. The existing child in that

saae quadrant, record(P), defines a square which

does not include the new record(!). Replace

record(P) in the ring with a new node(P"), and make

the new record(!) and record(P) children of

node (P").]

Set D(P11} := D(P'}.

Set Ki (P") := Ki (P'} •

Set Qi (I) := Qi.

Repeat [Adjust Record(P")]

Set D(P11) := D(P")/2;

Por i = 1 to n, do begin;

If Qi (I) = •+ 11 ,

then set Ki (P"} := Ki (P ..) + D (P") ,

else set Ki (P") : = Ki (P") - D (P") ;

Set Qi (I) := sign (Ki (I} - Ki (P") J ;

Set Qi (P) : = sign (Ki (P) - Ki (P"}) ;

end;

until Qi(I) # Qi(P).

I6(Adjust pointers)

If Qi (I) < Qi (P)

then

-39-

["+" < "-"]

set Child(P") :=I,

set Tvin(I) := P,

set Tvin(P) := p• and mark as parent;

else

set Child(P") := P,

set Twin (P} := I,

set Tvin(I) := p• and mark as parent.

-40-

Finally, ve generalize algorithm R' to the

n-dimensional case of algorithm B:

R 1[Initialize]

Set P := root.

(Li is the low limit vector,

Hi is the high limit vector for rectangle X)

B2[Compare]

Execute INTERSECTION_PUNCTION(Ki(P) ,Li,Hi).

If "intersection of Ki(P) and Xis empty",

go to R3.

If •Ki(P) is inside x•, Present entire subtree

as successful,

go to R3;

else (overlap)

R3[Pop stack]

set P := Child(P),

push Twin(P) to stack,

go to B2.

If stack is empty, terminate;

else set P :=top of stack, (pop]

go to R2.

-41-

CHAPTER V

AN APPLICATION PROGBAM"ER 1 S VIEW
OF CARTA!!

The structure that has been defined in the last two

chapters is concerned only vith a aulti-dimensional key

value. Depending on the specific application, the full

gaaut of additional information ranging from nothing, to a

primary key into another file, to the entire data record

could be carried in the structure. Since the proposed

structure is applicable to aany situations, it has proven

useful to design a program that is concerned only with the

structure, letting the particular application provide the

necessary drivers specific to their own data and use thereof.

The data structure has been named a Cartesian Index as

a result of one of the earliest applications, a latitude/

longitude index of a geographic installation file. This

file consisted of records varying in length from 320 bytes

to 4,600 bytes that were keyed by a 21-byte key for many

purposes. The Cartesian file structure was built to provide

rapid answers to area search questions, but once the instal-

lations were determined, additional information vas usually

required. Therefore, the ancillary datua carried in the

-42-

Cartesia n file in the terminal records vas the 21-byte

priaary key value to be used for access into the •aster

file. The Cartesian file thus became a secondary index in

tvo-diaensional space; hence the name Cartesian Index.

The naae of the program used to probe the Cartesian

Index derives from IBft terminology. IBM provides many

different "access methodsM to process their various file

structures and the program I am describing herein is

intended to provide a aethod of access to the Cartesian

Index file; the naae CARTesian Access Method (CARTAM)

seeaed appropriate. In order to make CARTAM readily

available to an end user, it is vritten as a subroutine,

allowing the user's specific driver programs to be written

in any language supporting a CALL function, usually a high

order language.

Communication between the calling program and CARTAM is

through a set of calling arguments or parameters. Depending

on the function being requested, CARTAM expects from one to

six parameters as indicated by figure 5-1. (Function codes

are described in detail later.) A 28-byte communication

block is required for all requests and is used to pass

control and status inforaation between the driver progra~(s}

and CARTA!. It is the only parameter required when

logically connecting or logically disconnecting a file or

when deleting a record. When inserting data, CARTAa needs a

-43-

CALL CART AP! (, , , , , , }

(generic) pa rm COMP! OSER CO ORD LOW HIGH
function cnt BLOK DATA YECTB DEI.TA LIP!S LI.MS

LOAD
OP Elf [11 •
CLSE [1 1 *
ISRT (3) • • •
GR [6] * * • • • *
Gr xx (4) • • * *
CHNG (3) * • •
DLET [1 l *

Calling Sequence Requirements

Figure 5-1

vector of coordinate values and the ancillary data defined

by the user to be stored in the terminal record. For all

retrieval requests, CARTAM returns a user-data field, a

vector of coordinate values and a single delta value. The

GB request is treated in a special manner in that it is used

to initiate a rectangle or area search which requires the

tvo additional limit vectors defining the search rectangle.

A change request applies to the user data only, but CARTA~

vas designed to also ensure that the coordinates of the

ter~inal record vere not inadvertently changed by the driver

program which is why the coordinate vector is a required

-44-

arguaent. on the other hand, deletion of a record, be it

ter.inal or node, is an extreme change of coordinates and

user data; there is no requireaent to pass additional data

to CABTlft beyond the coamunication block. In all cases,

CARTA! looks for the required number of parameters and

ignores any additional arguments that may be supplied.

CABTAM will also allow, as an optional zero-th parameter, a

paraaeter count argument indicating the number of parameters

to be used. If present, this parameter count will be used,

and the actual number of arguments will not be checked

further. Note also that if the parameter count is present,

the total number of parameters is from two to seven, as

opposed to one to six.

Before any search queries can be answered, the

Cartesian file aust be defined and initially loaded. It is

assuaed that the data set has been allocated disk space;

see appendix F. Definition of the file consists of telling

CARTAM how aany coordinates are to be stored in a record,

i.e., the dimensionality of the file, and the type of

arithaetic to be used, such as integer or floating point.

It vas intended that a Cartesian file should be loaded as a

separate process, since certain efficiencies are gained

thereby; thus, the use of the LOAD command to logically

connect and define the file, followed by repeated use of the

insert (ISBT) coamand to store data records. As this

information is added to the Cartesian fi1e, a nev node

-45-

record is constructed if necessary to account for the

structure and the nev terminal record is added; the relative

byte address of the nev ter•inal is returned to the driver

prograa for any use that is desired. The load process is

terminated and the file is disconnected vith the CLSE

coaaand.

Once the file has been defined and loaded, subsequent

processing is initiated with OPEN to logically connect it

and any desired processing may then be performed. This

would normally be retrieYals, but the maintenance functions

of insert, delete and change are also permitted. The CLSE

coaaand logically disconnects the file as before.

This gives a very rough idea as to the various ways

that CARTAM is called. Since the communication block is

considerably more complicated than the remaining arguments,

let ae defer its description for a moment and describe the

foraats of the other parameters first.

The parameter count is always an optional arqument in

those languages that use the standard IB8 method of indi

cating the end of a variable length parameter list, naaely

the high order bit of the last address set to one. The IBn

supported languages COBOL and FOBTBAI alvays flag the last

address, vhile PL/I nor.ally does not. An assembly language

programmer has the option of setting the bit or not as he

chooses. If not, the parameter count argument aust be

-q6-

supplied. The parameter count field, parameter 0, specifies

the nuaber of additional parameters in the list. As such,

it aust be a 32-bit fullword binary integer of the

appropriate value.

The user-data area, parameter 2, is an input argument

to CARTA! for insertions and changes, and an output argument

for all retrievals. The user data is variable in length

with two 16-bit halfword binary integer fields in the

communication block controlling the actual length of the

user data.

Since CABTAft allows aost of the modes of arithmetic

normally used on the IBft 360/370 computers, the last four

parameters must take into account the length of individual

coordinate values. Por instance, if the arithmetic being

used is halfword integer, the unit of size is two bytes,

while double-precision floating-point arithmetic uses eight

byte values. Therefore, the delta value is a single unit

long as deterained by the aode of arithmetic vhile the

coordinate vector and the low and high limit vectors are

each n units long. The coordinate vector is an input field

for insertions and changes, and an output field for all

retrievals, as is the user-data area. The limit vectors are

explicit input fields fo~ a rectangle search initiation (GR}

and aust be distinct from the coordinate vector. They are

not •oved to an internal area by CARTA~; the location

-47-

pointers are retained and the vectors repeatedly reaccessed

during subsequent retrievals within the rectangle. Thus, the

liait-vector values should not be modified during those

retrievals except for unusual circumstances as they may be

illplicit input fields for other retrieval requests.

The reaaining paraaeter, the communication block, is

diagrammed in figure 5-2 and is now descibed in detail

below. Following the descriptions of the fields are the

lists of valid function codes and status codes as returned

by CARTlft.

DDNA!E

The eight-byte logical name of the file to be processed

is stored in DDBAME. Since CARTAft must retain much aore

than 28 bytes of bookkeeping information, e.g., file control

blocks, buffers, stack, etc., the DDNAME also serves as a

label for that additional main meaory area.

Function Code

The four-byte function code carries the request code

telling CARTlft which function is to be performed. For

retrieval requests it is probably better to consider this

code as a concatenation of up to four subfunction codes.

Valid function codes are described below.

0

4

8

12

16

20

24

-48-

DDNll!E

(8 Bytes)

Function Code
(4 Bytes)

Status Code
(2 Bytes)

!lode

Relative Byte Address (RBA)
(4 Bytes)

HORT

Pad

Number of ' Number of
Coordinates

!!aximum User
Area Length

(ft UAL)

Huaber of
Disk Beads

I Buffers

True User
Data Length

(TODL)

Number of
Disk Writes

Coaaunication Block (28 Bytes)

Figure 5-2

-49-

Status Code

The two-byte status code provides the indication as to

the success or failure of the CARTA8 request. A value of

EBCDIC blanks is returned if CARTA8 is able to perform the

function as requested. Non-blank values signal unsuccessful

· coapletion for a variety of reasons vhich may or may not be

actual error conditions. A complete list of status codes

follows the function codes.

Node or Terminal Indicator (NORT)

CARTAft returns a character to the driver program in

HORT on successful retrieval requests to allow differenti

ation between node and terminal records. The three possible

values returned by CARTA~ are:

1) N a node vas retrieved

2) T a terminal record was retrieved

3) X - a terminal record was retrieved, but the area

intended to receive the user data was too short to

accoaaodate all ancillary data as stored on the file.

-so-

Record RB.A

A relative byte address (RBA) is used internally by

CARTAft to build the structure pointers. Whenever CARTA~

successfully inserts or retrieves a record, the record RBA

is also returned to the driver program for use if desired.

A Get Direct retrieval function is provided to allow direct

entry into the Cartesian Index file. Examples of the use of

this value would be storage of the RBA in the master record

of the primary file as a cross-reference, or temporary

retention of the RBA for later retrieval of selected user

data not initially needed. As a cross-reference example,

consider obtaining a record from the primary file by some

means other than coordinate search and then desiring to

find all other records within a certain distance as defined

by a metric on the coordinates. Use of the RBA to position

directly to the corresponding terminal record in the

Cartesian Index and then climbing the structure to the

appropriate level may be auch faster than working down the

tree from the root.

The record RBA field is also used by CARTAe to return

additional error inforaation whenever a disk operation was

unsuccessful. Refer to (3,4] for an explanation of those

codes. Finally, when the file is closed, CARTA!! returns the

high used RBA as an indication as to the amount of space on

the file that vas actually used.

-51-

!axiaua User Area Length (!UAL)

The halfword integer in the !UAL field specifies the

length of the area that is being provided by the user for a

retrieval request. This number is the maximua number of

bytes that CARTA! will return, see NORT above, and is also

the length to which the user-data area will always be padded

vith the pad character, see Pad below.

True User Data Length (TUDL)

The actual length in bytes of the character string in

the user-data area is placed in the TODL field. This value

•ust be filled by the driver program on an insert request.

For retrieval requests, CARTA! stores the actual number of

of data bytes, not counting pad characters, that have been

placed in the user-data area of the driver program. This

value vil1 never be set by CARTAe to a value greater than

that currently stored in the !UAL field.

Humber Reads, Writes

Two halfword binary integer fields are incremented by

CARTA! each tiae a physical disk read or write is perforaed.

These fields are zeroed out during open processing. The

fields are maintained and presented for information only.

-52-

The remaining field definitions have meaning only when

CARTAM is requested to open the file: function code is LOAD

for initial file load or OPEN. Other than the mode, these

fields are alternate usages of the HORT and RBA fields.

!!ode Indicator

CARTAK allows the user to specify the type of arith

•etic to be used for the coordinates by supplying a value in

the mode indicator if the function is LOAD; otherwise,

CARTAft returns an appropriate value based on the particular

file. No further reference is aade to this field in subse-

quent calls. The four valid EBCDIC character values are:

1) B for 16-bit halfword integer binary,

2) p for 32-bit fullword integer binary,

3) E - for 32-bit single-precision floating point,

ii) D - for 64-bit double-precision floating point.

Pad Character

In aany cases, the user-supplied data being carried in

the terminal records are variable-length character strings.

On a retrieval request, the driver program specifies the

length of the area that is being provided to receive this

user data. When that area is too short, CARTAft so indicates

with an -x• returned in MORT. However, vhen the area is

longer than necessary, it will be padded out to the end with

the character supplied in the pad field of the communication

block.

-53-

Number of Coordinates

The dimensionality of the space being represented is

determined by the nu•ber stored in this halfword field, and

is the nuaber of coordinates carried in a record of the file.

The field is filled by the driver program if the function is

LOAD and filled by CARTlM if the function is OPEN.

A soaevhat arbitrary liait of 512 dimensions has been

imposed, aainly because a limit aust be established some

where. Storage •ust be allocated for the bit strings

generated by IHTERSECTION_FUNCTION, and 64 bytes was chosen.

A further limit is that the total length of a coordinate

vector must be less than one-half the length of a physical

record to allov storage of at least two logical records per

physical record.

Number of Buffers

CARTAM obtains main memory from the operating system to

use as buffers or page slots for disk input and output

operations. The driver program •ay specify the maximum

number of page slots that are to be acquired ($ 32} • CARTAM

always tries to acquire at least four page slots.

-54-

Valid Function Codes

LOAD

LOAD indicates to CARTAK that the file is being defined

and opened for the first time and that a series of

insertions is forthcoming. The driver program must specify

the aode of arithmetic and the number of coordinates to be

stored. The data set referenced by the logical file name

DDNA~E may be an empty data set or one that had previously

been used. However, any information present in the file

will be destroyed.

If a file is opened for LOAD, the only valid commands

are ISRT and CLSE. All others will be flagged as invalid

and ignored •

OPEN

After a file has been defined, loaded, and closed again,

subsequent processing is initiated with OPEN which logically

connects the file to the program. All function codes are

treated as valid, including ISRT which will extend the file.

If the data set is eapty, the open processing vill fail.

on return froa a successful open, CARTAK will have

filled the mode and nuaber of coordinates fields of the

the coaaunication block. A file aust be opened before any

other function codes will be recognized.

-55-

CLSE

CLSE requests a wrap-up, including final write of any

modified records to disk. Upon successful return, the

record RBA field will contain the high used RBA as an

indication as to actual space utilization of the file.

ISRT

A new record is inserted as a terminal record with the

ISR~ request. If necessary, a nev node record is also

built. The RBA of the new terminal record is returned for

the driver progra11•s use as desired.

G~

This is a request to Get !aster node record; it would

be used to start over at the root of the tree if performing

a specialized search procedure.

GP

Cli•bing the structure to a higher level is accom

plished by a Get Parent request. CARTAe retrieves the

parent record of the last record retrieved.

GT

The next record at the same level in the tree is

retrieved vith a Get Tvin request.

GC

The first record at the next level down in the tree is

accessed through a Get Child request.

-56-

GD

If the driver progra• has the record RBA available,

the corresponding record from the Cartesian file may be

retrieved directly with Get Direct.

GN

The Get Next record in hierarchical sequence function

is defined as: If the previous record accessed has a child,

get that child; if it has no child, get the next twin; if

there is no twin, i.e., the end of the twin chain was

reached, get the twin of the parent of the previous record.

Repeated requests using GH will walk through the entire

file structure in this sequence.

GNT

The sequence described for GN is modified by not

retrieving the child of the previous record. GNT vould be

used when it had been determined that a subtree is to be

discarded.

The last seven function codes, GM through GNT, are

provided as pri•itives for the unusual application that

needs to follow a peculiar search strategy. They vill each

clear parentage if it had been set earlier. The first five

of these codes aay also set parentage by adding a •p• as the

third character of the code, i.e., G~P, GPP, GTP, GCP, and

-57-

GDP. Parentage is set to limit a search to a particular

subtree of the file structure and is primarily used with the

next three function codes.

GNP

Unlike previous codes where a P in position three set

parentage, Get Next in Parent uses a previously set paren

tage to retrieve records in a hierarchical sequence within

a specified subtree. The GN function will walk though to

the end of the file regardless of the staring point, while

repeated use of GNP will traverse only the subtree as

defined when parentage was set.

If parentage has been set by the GR function described

belov, CARTA8 also performs a check using the

INTERSECTION_FUNCTION to determine if the record intersects

the search area. If the intersection is empty, the subtree

consisting of the record and its children is automatically

discarded and the twin record is immediately retrieved. If

the record is a node and the intersection is limited to a

single child of that node, that particular child is immed

iately retrieved, and it is noted that there will be no twin

of that record to be retrieved later. In both cases, the

check by INTERSECTION_FUNCTION is reapplied before returning

the record to the driver program. If the intersection is

neither empty nor a single child, the record is returned

with the appropriate information fields filled.

-58-

GNPT

Get Next in Parent, Twin, modifies the GNP sequence by

skipping the child retrieval and discarding the subtree.

This is done when the driver progra• applies a finer

discrimination on a record than CARTAft can apply such as a

true circle search as opposed to a rectangle search. The

decision was made to only perform the simple rectangle

search within CARTAH since specific applications could

conceivably use any type of aetric function for their

discrimination purposes.

GNPL

When the driver program makes the determination that it

really knows that a node record is acceptable, or, in other

words, it wants all of the subtree's terminal records with

out bothering to apply its discriminator, a Get Next in

Parent, Leaves, series of requests will flush the subtree,

presenting terminal records only. The term Leaves is used

since the character T was used for Twin.

-59-

GR or GA

An area search is initiated with either of the

equivalent Get Rectangle or Get Area requests. The

IBTERSECTION_PUHCTION will be used by CARTAa to check

records during this GR and subsequent GNPx requests. The

stack maintained by CARTA" is flushed and the search begins

at the •aster or root record, setting parentage for GNPx.

GR L

If the rectangle search is the exact search required by

the application, placing an "Ln in position four will direct

CARTAa to only return the terminals that are found inside

the search rectangle on subsequent GNP or GNPL requests.

After a GR L request, GNP and GNPL are equivalent.

-60-

CHNG

If a Cartesian file vas loaded with a substantial

a11ount of ancillary data in the terainal records, it is

useful to be able to aodify that information without having

to reload the entire file. The CHaNGe request tells CARTAM

to replace the user data in the terminal record that had

·been retrieved on the previous call. CABTAM checks to see

that the coordinates have not been inadvertently altered and

that the nev data string is not longer than the original

string. If the nev string is shorter, the terminal record's

data area vill be padded out to the original length vith

the pad character.

DLET

Any record in the Cartesian file may be DeLETed vith

the exception of the master root record. The structure

pointers are adjusted to logically re•ove the record and a

check is made to see if the ring nov contains only one child.

If so, the parent of the lone remaining child is replaced in

its ring by that sole child. Por integrity, CARTAM requires

that the record be retrieved on the previous call. Note

that either terminals or nodes may be deleted; deleting a

node effectively deletes the entire subtree. Note also that

CABTAM has no space reclamation capability -- deleting a

record removes it from the structure, but the space is then

unavailable for any future use until the file is reloaded?

-61-

Status codes as returned by CARTA~

~ (Tvo EBCDIC blanks} CARTAft successfully completed the

requested function. Nev information has been updated as

appropriate.

AD CART~ did not recognize the function code; invalid code.

AI An error occurred while trying to open the file.

A nuaeric error code [3, pgs 58-60) from the operating

system has also been placed in the RBA field of the

communication block.

lJ A logical error was detected during a disk operation.

A numeric error code [3, pgs 67-69) from the operating

system has also been placed in the RBA field of the

comaunication block as for AI.

Aft 1 aode error was detected: not H, P, E or D.

AO A physical error was detected during a disk operation.

A message was written to the program log and a numeric

error code [3, pg 70) has been placed in the RBA field

of the communication block as for AJ.

AX Too many coordinates were specified. The maximum is

512 or a total coordinate vector length less than

one-half of the length of a physical record.

-62-

cx An error was detected on a change request. The change

aust be on a terminal that vas retrieved on the previous

call, the length of the user data must be the same or

less, and the coordinates must not have been altered.

DX An error vas detected in a delete request. The record

to be deleted aust haYe been retrieved on the previous

call. The master root record cannot be deleted.

GE The requested record was not found. GE is typically

returned during GNPx processing.

G8 There are no more records in the subtree being flushed

by retrieving only terminals while using GNPL.

II A duplicate record, coordinates and user data, was

presented for insertion; the record was not inserted.

IU The user-supplied data to be stored with the terminal

record is too long. The total length of user data,

corrdinates, and six bytes of structure data must be

less than one-half the length of the physical record as

stored on disk.

SL A short parameter list was presented to CARTA~, e.g.,

calling CARTA~ with only the communication block and

user data area, but not with the coordinate vector for

an ISRT or CHBG.

-63-

CHAPTER VI

INSIDE CARTAa
POB THE 8AINTENANCE PROGRA8MER

The previous chapters have developed the basic algo

ri th• and described the program I call CARTAM from a point

of view intended for a prospective user of the system. This

chapter deals with the fine detail required by a programmer

assigned the task of reiaplementing the system on different

hardware or operating systea or fixing CARTAM should it

break.

The Cartesian Index file is a data structure maintained

on a secondary storage medium, specifically a direct access

disk or equivalent, which predicates usage of some sort of a

disk address as the pointer value in the node and terminal

records. The particular form of this disk address pointer

depends upon the specific choice of the access methods as

provided by IB~. Since we are concerned vith random access

to disk, there are actually only a few access methods avail-

able. The most primitive method of disk I/O provided by IBM

is the execute channel program (EXCP) access aethod. How-

ever, this is rather too primitive as I have no desire to

reinYent such things as physical error handling routines,

-64-

etc. The next alternative is the Basic Direct Access ~ethod

(BDA~) which would actually vork quite vell except that it

does not handle variable length records with any great faci

lity. If the records are defined as relatively large, then

the internal blocking and deblocking could become soaewhat

aessy, depending on the choice of notation for the record

identification. As will be seen later, though, BDAft would

have been quite acceptable.

The iapleaentation of CARTAM as described here uses

IBK•s Virtual Storage Access Kethod (VSAM) [3,4) for phys

ical access to the disk file structure. VSAM was primarily

intended as a high performance replacement for the Indexed

Sequential Access Kethod (ISAM), but does provide support

for three basic types of direct access file organizations

which can be used for alaost any application. Since VSA~

is used for basic systea support in later versions of

large operating systems as supplied by IBM, e.g., OS/VS2

!ultiple Virtual Storage (KVS) , and it isolates a pr09ram

fro• device dependencies better than other methods, it

seeaed to be a good choice.

The direct counterpart to ISAK as provided by YSAM is a

key sequential data set (KSDS) which is used to store data

ind~xed by a unique priaary one-dimensional key. However,

the whole intent of this paper concerns multi-dimensional

keys, so ve have no appropriate key to suggest use of a KSDS.

-65-

VSA8 also provides a counterpart to the BDA! file organi

zation knovn as a relative record data set (RRDS).

Unfortunately, an BRDS requires fixed length records which

are referenced by •relative record numbers•, and the

concerns of a BDA! data set are applicable here as well.

The third structure supported by VSAM is an entry

sequenced data set (ESDS) as a counterpart to the usual

sequential fi1e organization. However, VSAM does allow

rando• access to any position in the file by means of a

four-byte relative byte address (BBA), which turned out to

be ideal for ay purposes. An ESDS may be viewed as a unique

virtual address space defined by a four-byte address ranging

from 0 to 4,294,967,295. Early in the development process,

it vas intended to store node and terminal records as

distinct records maintained by VSAM. However, as the

development proceeded and more of the performance options

as provided by VSA!! vere incorporated, it became desirable

to perfora blocking and deblocking within CARTAM rather than

VSl!!. This becaae a very simple masking operation as VSAM

stores inforaation on secondary storage in units of control

intervals (CI) which may be almost any size from 512 bytes

to 32,768 bytes, but are physically stored as multiples of

a physical record vhich may be 512, 1024, 2048 or 4096

bytes in length. one of the performance options used by

CARTlM results in the see•ingly reasonable restriction

of li.lliting the CI size to that of a physical record or a

-66-

aaxia ua of 4,096 bytes. Each CI requires a miniaum of seven

bytes of control information, which leaves the remainder

available for CARTAft's use. Thus, the largest record that

aay be stored by CARTAft is 4,089 bytes, but a further limit

is rather arbitrarily iaposed to limit a logical record to

no more than half of a physical record in order to store at

least two information records in one block. Keeping all of

this in mind, CARTAft uses a VSAM ESDS as a logical memory of

four billion bytes, storing the Cartesian Index file as a

linked list with four-byte RBA pointer values.

An inability to extend a data set•s space on disk is

due to one of the performance options as used by CARTAK

which prevents i•mediate usage of an eapty or newly defined

VSA~ data set. Preformatting the data set with zero-filled

records the first time an eapty data set is opened solves

the initial problea, and once preformatted, all records in

the file may be retrieved on a random basis by relative byte

address. However, when the original space allocation is

exhausted, the data set will not automatically overflow

into secondary extents when records are being inserted. If

space is exhausted, there is no choice but to reallocate the

file with aore space and rebuild. As an indication of

the actual utilization of the file space, the high used RBA

is returned to the driver progra• when the file is closed.

-67-

Reflection at this point makes it obvious that the

relative record organization of VSA~ or even the Basic

Direct Access ftethod aay indeed be used. Careful selection

of the physical record size to a proper power of two will

allow CARTA! to operate with those file organizations with a

ainiau• of change to the code.

The Cartesian file is built with two basic types of

records, nodes and terminals. As mentioned earlier, these

records consist of:

1) coordinate value(s),

2) a delta value,

3) a child pointer,

4) a twin pointer,

5) user data if a terminal, and

6) various flags.

If ve examine some of these items, ve find that first

of all, a terminal record always has a null child pointer

since terminal records are, by definition, those records

with no children. The terminal record also corresponds to

an original data point which has a delta value equal to zero,

at least in teras of the file structure. The utility of a

node or terminal flag nov becoaes apparent. A single bit

se~es to indicate the presence of a child pointer and a

delta value or the mutually exclusive user data with, of

course, its length.

-68-

The delta value as carried in the record also deserves

so•e attention. While studying the algorithas, it becomes

apparent that delta should probably be an integer power of

two. In particular, consider a specific application on the

co•puter using integer arithaetic. If one starts with the

smallest non-zero delta value and proceeds through the tree

structure towards the root, the delta is obviously such an

integral power of two. Equally obviously, traversing the

tree in the direction away from the root requires integer

powers of two in order to prevent "gaps" due to a truncated

division. If we nov examine the usual internal represen

tation of our delta value, we find that, for integer arith

aetic, delta is stored as a fullword or halfword with

only a single bit set to one somewhere in the (half)vord.

A natural aethod of storing this number in less space is

to use a logarithmic representation, specifically log to

the base of two. The normal internal representation of a

floating point value is noraalized hexadecimal vith an

exponent and mantissa. For an integer power of two, this

mantissa is given by a single hexadeciaal digit that is

always in the leftaost position in the aantissa; only the

12 high order bits of a floating point delta are ever other

than zero. Thus, we can store our delta value in the node

record in only 12 bits, leaYing the other 4 bits of a half

word available for soae flags. Since a delta value is

defined to be a non-negative number, I use the sign bit of

-69-

the representation to indicate whether delta is stored as a

truncated floating point number or as a logarithm. There is

an apparent ambiguity for a representation of zero, since

it obviously cannot be stored as a logarithm. However, a

"true zero• as used by IBft for both integer and floating

point arithmetic is stored as all binary zeroes, so it works

out very nicely.

The Cartesian Index file records are now constructed as

follows. The length of the user data stored in a terminal

record is variable, but since a terminal has a defined

delta of zero, we may carry the length of the user data in

the space otherwise occupied by delta. The list pointers,

of course, are each four bytes long, while coordinate values

aay be tvo, four or eight bytes long, depending on the mode

of arithmetic being used. Finally, after packing everything

together into a record, ve have:

f~I TWIN I COORDS ••• f~f CHILD f
fOserData ••• t

DLF is the delta/length and flags field, two bytes long.

Expanding it out to the bit level:

0
10

1 11
1 451

If bit 15 = •1•, then "end of set" or record is the

last record on the tvin chain, i.e.,

TWIN actually points at the parent

record, closing the ring.

-70-

If bit 14 = •1 1 , then this record is a node, and bits

0-11 are the representation for delta.

if bit 0 = •1•, then bits 2-7 are the log2(delta)

and the antilog is obtained by

shifting a value of 1 to the left

this many positions,

otherwise, bits 0-11 are to be moved to a

work area and extended vith

zeroes to arrive at a represen

tation suitable for arithmetic.

If bit 14 = •o•, then this record is a terminal and

bits 0-11 represent a scaled binary

integer value depicting the length of

the user data string stored behind Q.

Bits 12 and 13 are unused.

The TWIN pointer is a four-byte field and is present in

all records~ Actual interpretation is modified by bit 15 in

the I>LF field.

The COORDS field contains the coordinate vector for the

record and is a*n bytes long where a = 2, 4 or 8 depending

on the aode of arithmetic.

Q is the quadrant indicator to label children of a

parent node and is a bit string that carries the sign of

the difference between coor.dinates of the record and the

corresponding coordinates of the parent record. The length

-71-

of this field is q bytes where q = (n + 7)/8 using truncated

integer division. The twin chain is also maintained in

sorted order using the Q field as an ascending sort-key.

The four-byte CHILD pointer appears only in node

records and points to the first of tvo or more records at

the next lower level in the structure. The coordinates and

delta of the node record define a square that completely

·covers al1 of its children. The records at the next lower

level define a disjoint set of squares whose union is less

than or equal to the parent square.

Pinally, the user-data field is a variable length field

carried in terminal records only. The actual length of this

area is determined by the 12 high-order bits of DLP.

The primary argument in the CARTAM calling sequence is

the communication block, which is where CARTAM receives all

request instructions and returns status and other infor

aation. Figure 6-1 shows the assembly dummy control section

(DSRCT) definition. As the DSECT is the assembly program's

view of the communication block described in the last

chapter, sost of the entries should be self-explanatory.

CO!U!BLOK

CBDDNA!!E
CBPU IfC
CBFUNC1
CBPUNC2
CBPUNC3
CBFUNC4
CBSTATUS
CBl!ODE
CBNORT
CBRBA
CB!!AXUDL
CBTROODL
CBtGETS
CBIPOTS

*
CBPAD
CBIXS
CBIBUFRS

DSECT
USI!IG
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS

*,R11
CL8
OCL4
c
c
c

· c
CL2
c
x .,.
B
H

· a
H

SPACE
REDEFINITION
ORG CBNORT
DS C
DS H
DS B

-72-

DDNA!!E OF PILE
POHCTIOlf CODE

RETURN STATUS
ftODE OP ARITHftETIC
HODE/TER!!INAL INDICATOR
RBA OP RECORD RETRIEVED/INSERTED
ftAXI!O!! LENGTH OF USER ABEA
TRUE LENGTH OF USER DATA
COUNTER FOR VSAM "GETS"
COUNTER POR VSAM •PUTS"

IN EFFECT WHEN FUNC = "LOAD•/"OPEN"

USER DATA AREA PAD CHARACTER
t COORDINATES
t PAGING BUFFERS TO BE USED

DSECT of Communication Block

Figure 6-1

In order for CARTA!! to operate, it needs a fair amount

of additional •ain memory for control blocks, buffers and

bookkeeping information. CARTA!! must also be prepared to

operate on more than one file at a time for the driver

applications. Therefore, CARTA!! obtains additional main

•emory for . each file that is opened. The character string

passed in as a DDNl!E is used as a label to identify that

block of •e•ory as it pertains to any particular file.

These blocks are linked on a bi-directional list and the

proper file control area as defined in figure 6-2 is

FCBAREA

FCBLABEL
PREVFCB
NEXTFCB

DSECT
USING
DS
DS
DS

*,R12
CL8
A
A

-13-

LABEL IS PILE DDNAME
BACKWARD AND

FORWARD LINKS

IFGACB DSECT=NO GENERATED ACB
IFGRPL DSECT=NO GENERATED RPL
DS OD

LNACBAR EQU IFGRPL-IPGACB
LNRPLlR EQU *-IPGRPL

CI SIZE
AV SP AC
ENDRBA
LRECL

DS
DS
DS
DS

MVNODCS DS
DS

BCDADD DS
DS

CURRBBA DS
BUPR@ DS
tSUBPOOL DS
LNGBUF DS
PB IO RT DS

DELWK DS
PRNTDEL DS

SPLT!!SKS DS
CU!SK DS
DSPMSK DS

DS

LODEARGS DS
LODECI DS
LODEDSP DS

DS

p
p
p
p

CONTROL INTERVAL SIZE
AVAILABLE SPACE
ERDING RBA
LOGICAL RECORD SIZE = CISIZE-7

l(NODEABEA) FOB MVCL INST
P (PLLNOD)
A
P (CHLDUDit)

p
A
ox
p

A

D
D

OXI.6
p

B

B

OXL6
p
H

H

RBA OP RCD W/ CORE ADDR IN RCDADD
LOCATION AND

LENGTH OP PAGING AREA
TOP OP LRU RING

EXPANDED DELTA FROM RETRIEVED RCD
EXPANDED DELTA FOR NODEAREA

MASKS TO SEPARATE REA'S INTO
CONTROL INTERVAL RBA

AND DISPLACEMENT

UNUSED

SEPARATED RBA TO BE LOADED

OllUSED

DSECT of FCBAREA

Figure 6-2 (Part 1 of 3)

DIRE Ci

l!ISCPLGS
ISRTONLY
PILEXTHD
FR ST IS RT
SEBDPAD

XTRAFRPI

SETI' REGS

SETPADDR
GRXL@
GRXBii
GR PL AG
TBl!ONLI
TPIPPRNT
STKPRNT
STKTOP

SETPLGS
SNGLCHLD
EMPTYSET
ENOTINX
XNOTINE
QSTRL
QSTRH
QSTRO

DS

DS
EQD
EQU
EQD
DS

DS

-74-

(MAXtBFRS)XL(L 1 DIRECTRY) PAGING DIRECTORY

XL3 MISCL FLAGS
B9 10000000• FILE OPENED FOR LOAD
B1 01000000 1 PILE HAS BEEN EXTENDED
a•ooooooo1• FIRST INSERTION HAS NOT BEEN DONE
C PAD FOR USER DATA AREA

1

DS XL4 1 80• R3 EX !ASK FOR BIT STRING
DS P•O• R4 COORDINATE VECTOR INDEX
DS l{QSTRL) RS BIT STRING ADDRESS
DS F R6 INDEX INCREMENT
DS F R7 INDEX LIPIIT VALUE
DS 1 R8 A (SET&M .O)
DS 1 R9 LOW SEARCH COORDINATES
DS 1 RlO HIGH SEARCH COORDINATES
EQU B9 10000000 1 IF SET, DOING "GR• SEARCH
EQU a•o1000000• IP SET, WANTS TERPIINALS ONLY
DS H POINT IN STACK OP TEMP PARENT
DS H POINT IN STACK OP PARENT
DS H TOP OF STACK

DS x•o• ZEROES TO CLEAR BIT STRINGS
DS X SET INTERSECTION FUNCTION FLAGS
EQU B•lOOOOOOO• INTERSECTION IS ONE CHILD ONLY
EQU B•ooooo100• INTERSECTION IS E~PTY
EQU B1 00000010 1 SO~E OP •SQUARE" OUTSIDE
EQU B1 00000001 1 SOME OF SEARCH OUTSIDE
DS XL64 BIT STRINGS
DS XL64 OP DIFFERENCE SIGNS
DS XL64

DS
DS

D
D

UNUSED
PER!ANENT PIECE OP STACK

STACK DS 128D
•-STACK ftlXSTKL EQtJ

DSECT of FCBAREA

Figure 6-2 (Part 2 of 3)

-75-

FILECNTL DS XL32 PILE CONTROL INFOR~ATION
ORG PILECNTL

BIOS DR BA DS p CURRENT HIGH USED RBA
FLl!ODE DS c H I F l E I D

DS c UNUSED
PLtCOOR DS H :I COORDINATES
PLLCY DS H (FLICOOR} * (FLLCOOR}

DELTA@ EQU 0,2 12 BITS
RCDFLGS EQU 1,1 4 BITS
PARENT EQU B1 0001 1 END OF TWIN CHAIN
NODRCD EQU B 1 0010 1 RECORD IS A NODE
TWIN@ EQU DELTA@+L 1 DELTAi,4 TWIN POINTER

(ISBT USES)

COORDSi EQU TWINi+L 1 TWINi START OF COORDINATE VECTOR
*QSTR@ EQO COORDSm+(FLLCV)
QSTRLM1 DS H Q STRING LENGTH MINOS 1
CHLDODi DS H CHILD PTRIUSER DATA DISPLACEMENT
FLLHOD DS H TOTAL LENGTH OF A NODE RECORD
* = L 1 DELT!@+L 1 TWIHi+(FLLCV)+(QSTRL~1+1)+L 1CHILDPTR <= 2000

•
ORG

NODEAREA DS
FCBLNG EQU

ORG
RPU!SG DS

SO FAR 16 BYTES ARE LEFT

XL2000 NODE CONSTRUCTION WORKSPACE
•-FCBLABEL HOPEFULLY < 4096
•-132
CL132 1 RPL KESSAGE AREA'

DSECT of PCBAREA

Figure 6-2 (Part 3 of 3)

located each time CARTAM is entered. If a file control area

cannot be located and the function code is other than OPEN,

LOAD or CLSE, a status code of 'AD• is returned indicating

an invalid function code. If an area is located and the

function code is OPEN or LOAD, a status code of 'AD' is

again returned.

-76-

FCBAREA defines an area of main memory that is acquired on

a page boundary, i.e., an even multiple of 4096. This is

the aain work area for CABTA~ for the particular file being

processed.

FCBLABEL is the file name from the communication block and

is used as the identifying label for the work area.

PRE'lFCB and NEXTFCB are forward and backward links for the

work area(s) and are anchored inside CARTAM directly. since

the register save area is also inside CARTAM, CARTAM is not

re-entrant, but is serially re-usable.

IFGACB and IFGRPL are IB!! supplied definitions of the access

control block and request parameter list for the VSAM access

method. CISIZE through LRECL receive information about the

file for later use. ENDRBA indicates whether the data set

already has information or if it must be preformatted; if

so, AVSPAC is used to find out how long the data set is.

The four vords be<Jinning at MVNODCS are set up to load the

control registers for an !!VCL or CLCL instruction, each of

which requires two addresses and two lengths. The fourth

register also carries a pad character as the high order byte.

CURRRBl is used to retain the RB! of the most recently

accessed terainal or node record. It is primarily used for

checking on a delete or change request.

-77-

BOFRi, tSUBPOOL and LHGBUF refer to the additional main

memory obtained for input/output buffers or the paging area.

PRIORT points at the top of the priority ring that is main

tained for the paging directory (DIREC@) in a least recently

used (LRU) manner.

DELWK is the work area for an expanded delta so that it may

be used in arithmetic stateaents. It is filled in the LODE

routine every tiae a nev record is accessed. PRNTDEL is the

corresponding expanded delta value for the record being con

structed in HODEAREA.

SPLT8SKS is composed of CIMSK and DSP~SK which are used to

split an RBA pointer into an RBA address of the control

interval and a displacement. DSPMSK = CISIZE - 1 because

CISIZE is an integer power of two as defined by VSAK. Then,

CIMSK is simply the one's complement of DSPKSK.

The masks are used as logical "andR masks against LODECI and

LODEDSP which compose LODEARGS. The paging directory is

then searched for LODECI; if not there, the oldest slot is

picked to read in the proper control interval. The trans

lation is co•pleted by adding LODEDSP to the page frame

address to arrive at the main memory address of the data

record being referenced.

MISCFLGS are aiscellaneous flags; use is obvious.

-78-

ITRAFRM is an extension of the paging directory. IBM

provides a PGBLSE macro to specify release of a virtual

aeaory area. This aacro is used in the input/output routine

as an attempt to gain efficiency by releasing a virtual page

just prior to a read operation so that the operating system

will not bring that page in from paging store simply to

write over it vith a nev record from disk. The parameters

for PGRLSB are the low address and the high address plus one

of the area to be released; these addresses are exactly the

page frame addresses as stored in the paging directory for

the page slot being released along with the address of the

next slot. XTRAFRM provides that "next slot" frame address

for the last paging directory entry.

SETFREGS through GRXH@ are preset values for the general

purpose registers R3 through RlO used in the set intersec

tion function. R3 contains a one bit mask to set a position

in the Q bit string as addressed by RS. R4 is the index

into the various coordinate vectors and is incremented by

the value stored in R6 in a BXLE instruction. R7 contains

the limit for B4, i.e., (R7} = n• (R6) - 1. RS has the

address of the entry point into the appropriate arithmetic

dependent code while R9 and R10 point at the lover and upper

liait vectors. The set function also assumes that Rl points

at the current node or terainal record being examined.

SETFLGS carries the results of the set intersection function

while QSTBH and QSTRL haYe been set according to the arith-

-79-

aetic differences during the course of the calculations.

QSTRO is used only during insertions to adjust the coordi

nates of the new node record being built as a parent.

T!PPRHT holds the location in the stack that is to be

considered a teaporary parent for the purpose of presenting,

without further checking, all terainal records in a subtree

that has been accepted.

STKPRHT holds the location in the stack that is to be

considered the parent leYel for Get Next within Parent pro

cessing vhile STKTOP always points at the top of the stack.

STACK is a 128 entry stack used to remember the parent

backtrack chain along vith the next twin entry. The parent

backtrack trail is retained primarily for insertions to

climb the parent chain in hopes that consecutive insertions

were relatively •close• to each other, thus reducing chain

chasing as much as possible. The twin pointers are retained

for GNP processing to negate the requireaent for input of a

parent record solely to retrieve the twin pointer when

accessing the parent's tvin. Each entry in the stack is tvo

words: the left word carries the parent backtrack trail,

the right word carries the next tvin. Upon exit from CARTA~,

the top entry of the stack has zero in the left position;

the right word has the child pointer of the record being

returned to the driver program, which is zero if the record

is a ter•inal. The second entry down in the stack has the

-eo-
RBA of the record being returned as the left side value

which vil1 be the parent as the stack grows. The right side

of this stack entry is the twin pointer from the returned

record unless the record is aarked as the end of a twin

chain. in vhich case. zero is stored. This entry is always

the next twin for GBP. As the stack is popped, either

because the child value at the top was zero or the subtree

is being bypassed. the twin value is picked up from the

right side and stored in the left side. The twin and child

pointers of that new record are then stored as before.

Obviously. if the twin pointer was zero. the stack is simply

popped one aore level.

FILECNTL is a 32 byte area of control information to be

stored on the file at RBA = o. This information is derived

fro• data provided vhen the function code was LOAD and then

stored in the file. When the function code is OPEN, these

32 bytes are retrieved from the file and stored here. Only

16 bytes are used at this time.

HIUSDRBA contains the number of bytes used by CARTA~ for

insertions. It is the actual RB! of the next available byte

in the YSlft file and is obtained and updated whenever a nev

record is inserted. If it has changed since the file was

opened. the control information is rewritten to the file.

FLftODE holds the EBCDIC character defining the mode of

arithmetic: H, F. E or D.

-81-

FLICOOR is a halfword integer value specifying the number

of coordinates (n) in a coordinate vector.

PLLCV contains the actual length of a coordinate vector

in bytes. (PLLCV) = (PLiCOOR) * 2, 4 or 8 as appropriate.

DELTAi through COORDSi are symbolic equates defining the

internal record structure. QSTRi vould be an equate to the

beginning of the Q bit string in the record, but, due to the

variable length of a coordinate vector, is stored as a value

equal to COORDSi plus the length of a coordinate vector.

QSTRL~1 holds the length of the Q bit string less one. The

IBK execute instruction requires this value for proper oper

ation. (QSTRLM 1) = ((FLtCOOR) - 1) /8 using integer di vision.

CHLDOD~ has the displacement to the child pointer for a node

which is also the displacement to the user data for a term

inal record. (CHLDUD@) = (QSTR@} + (QSTRLMl) + 1

PLLBOD holds the total length of a node for this file. The

value stored in PLLBOD is 4 more than that in CHLDUD@. In

order to be able to store at least two logical records per

physical record or control interval, the total length must

be less than an arbitrary 2000 bytes or one-half the

physical record length, whichever is smaller.

-82-

NODEABEl is work space to remember the contents of a

possible parent record for insertions. That information is

then aodified while constructing the actual record that is

to be entered into the file. RPLasG is an overlay of the

last 132 bytes and is used only by VSAM to return an error

message. If sach an error had occurred, any temporary

record would be useless anyway.

Appendix A contains the entire assembly listing of the

CARTAM routine. Within the routine are several logical

units that are described here.

The LODE section of code is a closed subroutine to con

vert an BB! to a aain aeaory address. The RBA is split into

a control interval RB! plus a displacement into that CI. If

the CI is already in memory, it is logically moved to the

top of the LBU ring, the displacement is added to the proper

frame address in Rl, the delta is expanded, the twin pointer

fro• the record is inserted in R2, and control is returned

to the point of call. If the CI was not in aain memory

already, the oldest slot is determined from the end of the

end of the LRO ring and the CI in that slot is written to

disk if it had been modified. The new CI is then read into

the fraae and treated as above. The logic of this section

of code was •odeled after the pa9ing scheme as described in

in BEL Paging Services [9].

-83-

The overall logic of CARTAM is actually quite simple.

On entry, a search is made for the proper FCBAREA, building

a new one if necessary, the function code is examined, and

control is transferred to the appropriate section. aost

retrievals eventually go through the RTNVALS section which

aoves the coordinate vector to the driver program's area

along with the user data if the record was a terminal. The

area receiving the user data is padded out with the pad

character in any case. The expanded delta value is also

placed in the proper location and the NORT indicator is set.

A Get Master record is a request for the master node

and would be issued if the driver program wished to restart

an unusual search strategy. The stack pointers are reset to

put the aaster RBA in the master (-1} position of the stack

which is then adjusted with twin and child pointers as usual.

The RBA for a Get Direct request probably will not be

found in the stack, but the stack is checked just to make

sure. Mote that a GD request will probably flush the stack

which must be considered in Get Parent and Get Next

requests.

The Get Twin and Get Child requests are simple pops of

the stack. If a zero value is picked up after the pop, an

indication of no record found is returned: STATUS = GE.

The Get Parent is slightly aore co•plicated due to the

possibility of GD requests flushing the stack. If the stack

-84-

is exhausted during the pop operation, the twin chain must

be followed to find the next parent record. All of the

requests so far described aay set parentage, in vhich case

the location in the stack of the record being returned is

stored in STKPRNT as a parent marker.

The Get Next and Get Next in Parent operate in a

similar fashion except that GNPx will terminate at the

parentage as stored in STKPRNT while GN will continue

through the tvin chains even after the stack is exhausted.

GNPx processing is also slightly more co•plicated because

the INTERSECTION_PUHCTIOH is used if the search had been

initiated by a GR request. If the INTERSECTION_PURCTION

determines that only one child of a node is useful, that

chil.d is retrieved iaaediately and the next twin entry in

the stack for that record is cleared, indicating no further

records a1ong that chain. If the record is a node and the

fourth position of the function code is an "Lft, a branch is

taken to the top of this section of code to immediately

retrieve the next record.

The insertion alqorith• atte•pts to take advantage of

resident records and any actual proximity of consecutive

inputs by popping the stack, using the parent backtrack

trail. The stack is repeatedly popped until a node record

is found vhich defines a square that actually contains the

point X which is to be inserted. INTERSECTION_FUNCTION is

-85-

invoked in each instance with the X coordinate vector used

as both the low and high limit vectors. When a good parent

has been found, CARTAM turns around and descends the tree

structure. Since a node P was found that contains X, it is

known in which direction X lies in relation to the center of

P because INTERSECTION_FUNCTION sets QSTRH and QSTRL in the

FCBAREA. Thus, CARTAM walks the child;tvin chain looking

for the child with a aatching Q string. If no record is

found with a matching Q string, X is inserted as a terminal

record in the proper position in the chain.

If a record c was found with a matching Q string,

INTEBSECTION_FUNCTION is invoked again to determine if X is

inside c. If truly inside, CARTAM treats record c as the P

node and loops back to continue with the descent. If the

intersection vas empty, a new node must be constructed to

replace c in the chain ve have been following. This new

node becoaes the parent of c and the new terminal X and the

coordinate values of the new node are adjusted to ensure

that C and X have differing Q strings in relation to their

new parent.

If the intersection of C and X vas an identity inter

section, the coordinates of X matched the coordinates of c

and c is either a terminal or a node with a zero-valued

delta. If c is itself a terminal, it is replaced in its

chain vith a new node with a delta defined as zero and both

-86-

c and I are chained as children of that new node. If c was

a node with zero delta, X is siaply added as another child.

In this case, all children, including c and x, have

identical Q strings, indicating an all positive direction.

Change and delete requests require that the record be

retrieved on the imaediately preceding call to CARTAM. A

change allows only the user data to be modified and it must

not be extended. To ensure that a change request is not

incorrectly used to change coordinates, CARTAM requires the

coordinate vector which aust still agree with the record in

the file. If the coordinates still match, and the record is

is indeed a terminal, the user data is aoved from the driver

program's area into the file record, replacing the user

defined data in entirety.

Only terainal records may be changed, but both terminal

and node records may be deleted. A record is logically

deleted by adjusting the pointers to skip over it. space is

not reclaimed! After the pointers have been adjusted, the

length of the chain is examined to ensure that the chain is

at least two mesbers long. If the chain has only one member.

the parent of the chain is replaced in its ring by the sole

remaining child.

-87-

CHAPTER VII

CARTA!'! Ilf USE

The preceding discussion gave some general search

algorithms with no particular rationale behind them. Let us

look at some specific applications that have been imple

mented at Headquarters, Strategic Air Comaand. Our computer

environment is an IBP! System 370, P!odel 3033, using OS/VS2,

P!ultiple Virtual Storage C"VS) as the operating system.

Secondary storage consists of IBP! 3330 P!odel 1 and P!odel 11

disks and IBP! 3350 disks. In all of my examples, the data

are points on the surface of the earth defined by latitude

(lat) and longitude (lng).

The first file is stored on 18 cylinders of a 3330 disk

voluae and contains roughly 100,000 terminal records as data

points, each carying an average of 15 bytes of user-defined

information. The latitude and longitude in this file are

stored as arc seconds in signed binary integers with the

convention of north and east positive. The driver program

to load this file executes in approximately 55 seconds of

central processor (CPO) tiae and 15 minutes elapsed time in

our normal batch production multi-programming environment.

-88-

The aetric function used to calculate distance on the

earth is an iaplementation of a great elliptic evaluation

which provides geodetic distance in meters; see appendix B

for a discussion of YECTOR. Since this metric function

tends to be expensive in computation, an estimator value has

been devised which provides an estimated radius in meters of

a circle guaranteed to completely enclose the square defined

by a node or ter•inal record•s coordinates. The value of

this estiaator E is:

E = 45.0 > 43.645 = sqrt(2)*(1852 meters/60 arc secs}

(1852 meters per nautical mile;

1 nautical mile per arc minute;

1 arc •inute per 60 arc seconds)

It aight see• that a better estimate of the radius for

a circumscribing circle could be obtained by using VECTOR

to aeasure the distance froa the center of the square to the

lover left corner for example. Unfortunately, so•e of the

nodes near the root of the tree carry latitude values in the

range of 1450. With VECTOR calculating geodetic distance,

a such saaller nuaber than expected is the result. Since

search strate9ies vil.1 not be attempting any accurate deter

mination of the inclusion of an area inside a node-defined

square, rather the reverse, the upper bound approach with

E vas chosen.

-89-

Probably the simplest application of CARTAM is to

search for those data points within an arbitrary circle.

As a first approximation to the desired circle with center

coordinates (latO,lnqO), define a search rectangle to

enclose the final desired circle. The delta latitude value

is the appropriate number of arc seconds equivalent to the

circle radius (DO) , while the delta longitude is that same

number of arc seconds divided by the cosine of the latitude

to allow for convergence at the poles. Therefore, the limit

vectors are:

lvec = (latl,lngl) and hvec = (lath,lngh) where

latl = latO - DO, lngl = lngO - (DO/cos(latO)),

lath= latO +DO, lngh = lngO + (DO/cos(latO)).

See figure 7-1 for the conditions that will be tested by

algorithm CS below. Within the diagram:

line AX = DELTA (A) * E

line BY = DELTA (B) * E

line CZ = search radius = DO

line CA = VECTOR distance from c to A

line CB = VECTOR distance fro• c to B

square A is inside search circle because

CA < CZ - AX

AX < CZ - CA

AX < - (CA - CZ)

-90-

Circle Search Conditions

Figure 7-1

-91-

square B is outside search circle because

CZ < CB BY

BY < CB - CZ

Moving •GR" to the function code initially, ve have:

Repeat

CALL CARTA!! (CO!!M_BLOK, USER_DATA,

COORDS, DELTA,

lvec, hvec) ;

if STATUS_CODE = SPACES, then begin;

Set AX := E * DELTA;

Set CA := VECTOR(lat0,lng0,lat1,lng1);

if AX ~ CZ - CA, then begin;

/* square A for example */

Set FUNC := 1 GNPL';

repeat

if TERMINAL, then

Present terminal records

as successful;

CALL CARTAM (COMM_BLOK, USER_DATA,

COORDS, DELTA) ;

until ST!TUS_CODE # SPACES;

Set FUNC := 'GNP ';

if STATUS_CODE = •Ga•, then

Set STATUS_CODE := SPACES;

end;

-92-

else

if AX < CA - CZ, then

Set FUNC := 1 GNPT 1 ;

/* discard subtree (square B) */

else

Set FUNC := 'GNP 1 ;

/* to examine next level down */

end;

until STATUS_CODE # SPACES;

This algorithm asks CARTAM for successive nodes and

tenainals inside an initial search rectangle. As a record

is returned by CARTAH, it is checked to see:

1) if it is entirely within the final circle, then all

terainals of the subtree are presented as found;

2) if it is entirely outside the final circle, the

subtree is discarded;

3) if neither condition is met, the tree structure is

descended one aore level to examine the children.

The process is continued until no aore nodes or terminals

remain in the search rectangle to be exaained. see

appendix G for a COBOL program written for this task.

This particular driver program vith the highly original

name of OHETE~E (variant of ONETIME} has been used exten

sively as a test vehicle during the development of CARTAM.

It was written to display the results of a primitive circle

-93-

Performance Statistics

Number of
search points 1 50 100 200 300 400

8 page slots

CPO seconds
for run .19 1.38 2.60 5.01 7.47 9.89

CPU seconds/
search point .19 .0243 .0243 -0242 .0243 .0243

Nuaber of reads/search point
ainiaua 22 16 16 16 16 16
a ode 22 24 24 22 24 24
mean 22 24.04 24.09 24.01 24.02 24.30
maxiaua 22 32 34 34 41 51

16 page slots

CPO seconds
for run .19 1.29 2.41 4.55 6.98 9.78

CPO seconds/
search point .19 .0224 .0224 .0219 .0227 .0240

Nuaber of reads/search point
mini11ua 21 15 15 15 15 15
mode 21 23/24 20/23 20 22 23
mean 21 22.28 22.23 22.14 22.19 22.43
maximua 21 30 30 30 35 36

32 page slots

CPO seconds
for run .20 0.95 1-69 3.17 4.83 6.55

CPO seconds/
search point .20 .0155 .0151 .0149 .0155 .0159

Nuaber of reads/search point
mini mu• 21 1 1 0 0 0
mode 21 10 12 12 11/12 12
mean 21 11. 74 11.15 10.69 10.77 10.68
aatlmu11 21 21 21 21 25 25

Figure 7-2

-94-

search as applied against the installation index file.

Input is the Cartesian Index file which is to be searched,

and a file of control cards, each of vhich contains the

latitude and longitude of the center of a search circle.

Test runs have usually been made with a 10,000 foot radius

for the search. The overall logic consists in reading a

control card, searching the Cartesian file for all data

points within 10,000 feet and printing the accepted records.

This procedure is then repeated for each card in the input

file. Figure 7-2 presents a table of selected statistics as

an indication of performance. The table is cumulative in

nature; the different lengths of runs are from termination

at specified numbers of control cards. For example, the

statistics for 300 points were obtained by extending the 200

point run by 100 more points. The entries for number of

reads are the nu•bers of physical disk accesses that vere

made for each control card read during the run.

An obvious extension to the circle search is a search

for those installations inside the area defined by the

aatheaatical union of k circles as shown in figure 7-3a.

We modify algorithm cs by defining the search rectangle to

include all circles and checking distances to the center of

each circle instead of just the one; initially setting a

flag to indicate •outside-all-circles•, a loop is executed

on the metric. Once again moving "GR• to the function code

initially, ve nov have:

-95-

+

+
+

+

t

Inclusion Area Search Example

Figure 7-3a

+ +

+ +

Exclusion Area Search Example
Figure 7-3b

+

-96-

Set ACCEPT_SQUARE := •inside-a-circle";

Set REJECT_SQUARE := "outside-all-circles";

Repeat

CALL CARTAft (CO!ft_BLOK, OSER_DATA,

COORDS, DELTA,

lvec, hvec) ;

if STATUS_CODE = SPACES, then begin;

Set AI := E * DELTA;

Set flag := •outside-all-circles";

for i = 1 to n, do begin;

if

Set CA := VECTOR(lati,lngi,lat1,lng1};

if AX ~ CZ - CA, then

Set flag := "inside-a-circle•

else

if AX > CA - CZ, then

Set flag := "overlap-a-circle";

end;

flag = ACCEPT_SQUARE, then begin;

Set FU?iC ·-.- 'GNPL I;

repeat

if TERftINAL, then

Present terminal records

as successful;

CALL CARTAa ccoaa_BLOK, USER_DATA,

COORDS, DELTA) ;

until STATUS_CODE # SPACES;

else

-97-

Set FUNC := 'GNP •;

if STATUS_CODE = 1G~ 1 , then

Set STATOS_CODE := SPACES;

end;

if flag = REJECT_SQUARE, then

Set FUNC := 'GNPT';

/* discard subtree */

else

Set FUHC := 'GNP •;

/* to examine next level down */

end;

unti1 STATUS_CODE # SPACES;

The converse exclusion search strategy as shown in

figure 7-3b is identical except that "inside-a-circle" is

now the discard criterion, while •outside-all-circles"

becoaes the present successful terminals. Note that the

distance check loop •ay be terminated i.Ilnediately if the

flag ever becoaes •inside-a-circle•. If the loop terminates

with the flag still set at the initial value, the subtree is

to be discarded. A rather neat prograJDing dodge is to use

CARTA8 1 s function-code as the flag for the various

conditions. Appendix B contains the COBOL progra11 which

performs this sort of search.

-98-

Algorithm cs may also be readily extended to provide a

band search, at least in Cartesian space with a Euclidian

•etric [d : SQRT(x2 + yz)]. A band search is defined as the

retrieval of all records within a given distance of a

straight line passing through an appropriately defined "GR"

search rectangle. As an example in two dimensions and

assuaing the appropriate units, the equation of the line is

given by: Ax + By + c = O. Normalizing this equation by

dividing by the SQRT(AZ + B2) results in a metric function

where the distance is determined by: d = ax + by + c. The

estimator E for a square defined by a file record is then

given by: E = tat + lbf, vhich, when multiplied by the

delta of the file record, gives the distance from the center

of the square to a line parallel to the search line and that

also passes through an appropriate corner of the square.

Therefore, by replacing the two lines of algorithm cs as

read:

Set AX ·-.- E * DELTA;

Set CA ·-.- VECTOR(lat0,lng0,lat1,lng1);

with:

Set AX ·-.- (far +- 'b r> * DELTA;

Set CA ·-.- ta*Xl + b*Y1 + CH

we DOV have a band search for Cartesian space with a

Etlclidian aetric.

-99-

Since CARTAft leaves the limit vectors available to the

driver prograa at all times, a soaevhat more extensive

modification of algorithm cs suggests itself for a nearest

neighbor search, by continually reducing the size of the

search circle. As the search circle can be legitimately

reduced only when a terminal record is examined, initialize

the function code to 'GR L' to retrieve terminals only.

Then the following algorithm will find the closest terminal

record within an initial distance CZ:

latl := latO - CZ;

lath := latO + CZ;

lngl := lngO - CZ/cos(latO);

lngh := lngO + CZ/cos{latO};

CALL CARTAft(CO!M_BLOK, USER_DATA,

COO RDS, DELTA, 1 vec, h vec) ;

Set function code := 'GNPL';

while STATUS_CODE = blanks do begin;

Set CA := YECTOR(lat0,lng0,lat1,lng1);

if CA < CZ then begin;

Set CZ := CA;

latl := latO - CZ; lngl ·- lngO - CZ/cos(latO}; .-
lath := latO + CZ; lngh ·- lngO + CZ/cos (la tO) ; .-
Save terminal information;

end;

CALL CARTA!(COMM_BLOK, USEB_DATA,

COO RDS, DELTA) ;

end;

-100-

When this algorithm terminates, the last terminal

record saved vill be the terminal closest to the initial

search coordinates. Conceptually, terminals in the upper

right quadrant ("++" direction) are successively examined,

reducing the size of the search circle (probably) each time,

until the closest terainal in that quadrant is found. Then

examination of the reaaining quadrants proceeds very quickly.

One final example has to do with a plotting application,

in particular the presentation of aaps with various levels

of detail upon a graphical display device. If a particular

area of the world were to be presented every time maps were

requested, it would be a simple matter to construct a sub

image for display and call it up from secondary storage as

required. However, if the areas to be •apped are defined by

limits specified at run-time along with user-determined

levels of detail, the number of pre-built maps becomes

prohibitive due to the geometric explosion of combinations.

The obvious soultion is to build the maps upon request.

Our second example file is built in the Cartesian Index

fonaat for this purpose, containing as data the set of

plottable points defining coastal and country boundaries.

There are approximately 100,000 points in this file also,

but this time our latitudes and longitudes are single

precision floating point numbers expressed as arc radians.

The ter•inal user-defined infor•ation contains a sequence

-101-

number for its relative position along the plotted line

as well as a coastal/country boundary indicator. once the

application program determines the aap limits from the user

for the session, CARTAM is requested to retrieve those

points within the rectangle defined by those limits. Using

the user-defined data stored with the terminal records,

these points may then be sorted internally, plotted and

displayed on the screen.

Using CARTAK to retrieve map points for construction of

background maps has resulted in a drastic reduction in map

preparation time. This is aptly illustrated by a comment in

an internal docuaent, STAKPS Graphics Utilities User's

Manual, 1 February 1977. •since creation of an image of a

aap background requires a considerable amount of time (up to

five minutes CPU) it would be impractical and inefficient to

build these backgrounds on-line. • •• the time required to

build the maps vould prohibit using them on the system."

While the •five minutes• refers to CPU time for an IBM

system 360, ftodel 85, and current experience has been on a

System 370, Model 3033, the same map backgrounds are nov

being built in roughly five seconds elapsed time. The per

formance has improved to the extent that pre-built maps are

no longer used; in fact, as the application user desires to

exaaine a smaller area, the map limits are recomputed and

the aap backgrounds are completely redone each time.

-102-

CHAPTER VIII

ASSESS!ENTS AND RECOftftENDATIONS

The past fev chapters have described the use of the

CARTA! routine and the associated Cartesian Index File with

soae examples of actual applications. These examples have

been liaited to two dimensions, specifically latitude and

longitude on the surface of the earth, but there has been no

intention to imply that CARTAM is limited to tvo dimensions.

Hor is it necessary that the coordinate values carry the

same units, such as arc measure in the case of latitude and

longitude. l better separation would be obtained if each of

the coordinates are scaled such that the ranges of values

are approximately the saae, but, again, there is no hard and

fast requirement imposed by CARTAM. As an example, the

installation file that was described earlier can very easily

be defined with three coordinates instead of tvo by adding

a coordinate carrying a numeric representation of a category,

for instance. Effectively, this would separate the instal

lations into categorical layers which may prove extremely

useful in some cases. Since CARTA! does not apply any

specific metric function to the records, the number and type

-103-

of coordinates is totally at the discretion of the user who

aay then apply whatever metric function is deemed appro

priate for discriaination.

A final thought has to do with possible optimizations

of the Cartesian file for large read-only applications. The

file as built by repeated insertions tends to have pointer

chains spread randoaly over the file, which increases the

number of physical retrievals from secondary storage. One

possibility vould be to recopy the Cartesian file once it

had been coapletely loaded. The initially-loaded file vould

be read in the Get Next hierarchical sequence and copied in

that order onto the final file. This would allow any

searches using the •GHP• philosophy to proceed in a mono

tonic manner through the final Cartesian file. The other

alternative might be to recopy the initial file in such a

way as to group as •any nodes of the saae level on the same

physical record (control interval) as possible, building a

many-way tree a la Knuth [8, pg 471). The usefulness of this

· •ay be open to conjecture if the majority of the searches

are small circle searches, since this type of search

proceeds down a single path of the tree for several levels.

-104-

The CARTA! routine has proven itself as a very useful,

generalized aethod to construct a aulti-dimensionally-keyed

file and provide extreaely rapid access to desired records

therein. The programs have been implemented in de•onstrated

efficient code and have proved themselves in a variety of

complex applications. With the help of this document,

additional applications of these techniques should be very

straightforward with implementation in a ainimua of time.

-105-

LIST OP REFERENCES

1. Everitt, Brian, Cluster Analysis. John Wiley & sons,
Kev York. (Printed in Great Britain) 1974

2. International Business aachines Corp., IB" system/370,
Principles of Operation. 5th ed. GA22-7000-5, 1976

3. ., OS/VS Virtual Storage Access aethod (VSA")
Prograamer•s Guide. 3rd ed. GC26-3838-2, 1976

4. ., OS/VS Virtual Storage Access Method (VSAM}
Options for Advanced Applications. 4th ed.
GC26-3819-3, 1976

5. ., OS/VS2 Access Method Services. 2nd ed.
GC26-3841-1, 1976

6. ., OS/YS2 Supervisor Services and Kacro
Instructions. 1st ed. GC28-0756-0, 1976

1. ., OS/VS2 System Programming Library: Data
Kanagement. 4th ed. GC26-3830-3, 1977

8. Knuth, Donald E., The Art of Computer Programming,
Volume 3. Addison-Wesley, Reading, Massachusetts, 1973

9. Thompson, F. B., The REL Paging Services. REL Project
Report No. 18. Pasadena, California. California
Institute of Technology, 1974

CART.U!

&C
&J
&K

&C
.A
&K
&J
.GO
&C.&I
&I

&LBL
&LBL

&LBL
&LBL

.LD1

.SKLD

-106-

APPENDIX A

CARTA!! SOURCE

TITLE • PROGRA1' TO HANDLE N-DI!!ENSIONAL INDEX *
MACRO DEFINITIONS•

!ACRO
REQOATE &N
LCLA &I,&J,&K
LCLC &C
SETC 1 R1

SETA 6
SETA 2
!IP (T 1 &N EQ 1 0 1) .A
SETC 1 &N'
AIP (1 &C• EQ 1 !' 1) .GO
SETA 1
SETA 15
AHOP
EQU
SETA
lIP
ftEND

l!ACRO
ZR
SR
1'EHD

!ACRO
LP AGE
DS
AI:F
AIP
All"
LR
AGO
L
BAL
ftEHD

&I
&I+&K
(&I LE &J} .GO

&R
&R,&R

&PG
OH
{T'&PG EQ 1 0 1).SKLD
(1 &PG• (1, 1) NE • (1) .LD1
(1 &PG 1 EQ 1 (R1) ') .SKLD
B1,&PG (1)
.SKLD
R1,&PG
R14,LDPAGE

&LBL
&LBL

.LDl

.SKLD

&C
SET& M .Ort

.M1
&A

SET&M .O!!

~2
&L
&c

SET& l! .oa

.!3
SET&r! .OM

.!4

.l'!S
SET&l!.00

.MED
SET&!! .00

.MALL

.l'!ALLP
SET&!!.01
SET&!!.02

lUCRO
!!PAGE
DS
!IP'
All"
lIF
LR
AGO
L
BAL
ft END

!UCRO

&PG
OH

-107-

(T 1 &PG EQ 1 0 1) .SKLD
('&PG' (1, 1) NE '(1) .LD1
(1 &PG 1 EQ • (R 1) 1 } .SKLD
Rl,&PG(l)
.SKLD
R1,&PG
R14,!!KPAGE

SETFONC &!!
LCLC &A,&C,&L
OSIHG SET&!!.O!!,R8
AIF (1 &M. HE •p ') .rn
SETC 1 L1

!!VC 0(4,RS) ,DELWK
AGO .MS

SUBJECT OP EXECUTE IN RTNVALS

ANOP
SETC
!IP'
l'SVC
AGO
ANOP
SETC
SETC
!IF
l!VC
AGO
AIP'
!!VC
AGO
!NOTE
AGO
ANOP
L
SRA
.lll'
BHP
AGO
lNOP

•&!!'
c•&e • NE •a'> .1'!2
0(2,RS),DELiK+2 SUBJECT OP EXECUTE IN RTNVALS
.MS

•&!!.
•&!!.
(I & !! • NE I E I) .!! 3
0(4,RS),DELWK SUBJECT OF EXECUTE IN RTNVALS
.l!ED
(1 &!! 1 NE 'D') .!4
0(8,RS},DELWK SUBJECT
.!!ED
8,'BAD TYPE CODE'
.HD

OP EXECUTE IN RTNVALS

RO,PRNTDEL
R0,1 HALVE DELTA
(1 &!' ME 1 F 1) .MALL

SET&!! .8
.MALLF

L&l! O,PRNTDEL
B&M.R 0,0
LT&!.R O,O

HALVE DELTA

BZ SHUDBVR
AHOP
ST&L
L&L
EX
BHO

O,PRNTDEL
O,PRNTDEL
R3,DELSIGN
•+6

ADD OR
T!! QSTRO-QSTRL(RS),O

-108-

LB&L.R 0,0 SUBTRACT DELTA BASED ON BIT STRING
l&A 0,COORDSi(B4,Rl)
ST&A O,COORDSi(R4,Rl)

SET&ft.0 L&A O,COORDS@(R4,Rl) COORDINATE IN PILE EI

SET&!! .1

SET&r!.2

SET&l!.3

SET&!!.4

SE'f&ft .S

SET&ft .6

SET&l!.7

SET&!! .8

SETNTRY!!
SETNTRY1
SETBTRY2
SETNTRY3
.liD

S&l O,O(R4,R10) COORDINATE FROM SEARCRJISRT XH
BP SET&!! .2
Bft SET&l!.1
C&C O,DELWK (EI - XH) = 0
BL SET&f!.3
B SET&ft.4

LP&L.R 0,0 (EI - XH) < 0
C&C O,DELWK
BL SET&f! .3
OI SETFLGS,XNOTINE PART OP SEARCH OUTSIDE
B SET&ft.4 "SQUARE"

EX R3,NEGHI 01 QSTRH-QSTRL(RS) ,0
C&C O,D.ELWK (EI - XB) > 0
BBH SET&!! .3
OI SETFLGS,E!!PTYSET INTERSECTION IS EMPTY
OI SETFLGS,EBOTINX PART OP "SQUARE" OUTSIDE

L&A 0,0 (R4,R9) LOW SIDE SEARCH COORDINATE XL
S&l O,COORDS~(R4,R1) .FILE COORDINATE EI
BP SET&!! .6
BZ SET&ft .5
EX R3,NEGLO OI QSTRL-QSTRL(RS) ,0
LP&L.R 0,0 (XL - EI} < 0
C&C
BL
BER
OI
BR

C&C
BL
OI
OI
BR
AIP
BZ
L
SRL
B
EQO
EQU
EQO
EQU
DROP
!!END

O,DELiK
SET&f!.7
R14
SETFLGS,XNOTINE
R14

O,DELWK
SET&l!.7
SETFLGS,E!!PTYSET
SETFLGS ,ENOTINX
R14
(•&! • HE •P 1) .lfD

SBUDNVR

PART OF SEARCH OUTSIDE

INTERSECTION IS E~PTY
PART OF "SQUARE" OUTSIDE

RO,PRHTDEL FULL iOBD INTEGER INFINITE DELTA
R0,1 APPEARS TO BE NEGATIVE
SET&f! .O 1
SET&ft.Oft-SET&!.Oft
SET&M.00-SET&M.Ol!
SET&f!.02-SET&!!.O!!
SET&l! .0-SET&P! .Ol!
RS

OFFSET FOR EX IN BTNVALS
OUTER LOOP OFFSET IN F4A
IBBER LOOP OFFSET IN F4A
LOOP OPFSET IN INTRSECT

-109-

* PUNCH A LINK EDITOR CONTROL CARD TO FORCE PAGE ALIGNMENT

CARTA!!

ID

PAST ID

PAM AD DR
PAR!!CNT

SAYEPPRO
SAYEPPR2
SETFSAVE

X'.l'NDSAVE
LODESAVE

MASTER PG

!AXIBFRS
!IlllBPBS

SHUD!VR
STKOYP'LO

PUNCH I PAGE CARTA!!'

TITLE I

CSE CT
USING

PROGRA! TO BANDLE N-DIMENSIONAL INDEX'

B
DC
DC
PRINT
ST!!
LR
STD
STD
CNOP
BAL
DROP
USING
DC

DC
EQU

DC
DC
DS
ORG
DS
DS
ORG
DC

•,B15
PASTID
AL 1 (L 'ID)
C1 CARTAI!.&SYSDATE •• &SYSTIME 1

HOGEN
R14,R12,12(R13}
R14,R13
FO,SAVEPPRO
P2,SAVEFPR2
0,4
R13,PASTCONS
R15
•,R13
18P'0 1

A (0)
PARMADDR,1

n•o•
D1 0 1

10P
SETPSAVE
p
7F

A (L 1 PILECNTL)

SAVE AREA

RBA OF MASTER PAGE

REQUATE
REQOATE P

EQO 32
EQtJ 4

ABE ID 97,DUrtP,STEP
ABEND 24,DU!!P,STEP

MAXI!UM NUMBER OF BUFFERS
MINIMUM NU~BER OP BUFFERS

COKl!!BLOK

CBDDIIAl!!E
CBPUllC
CBPONCl
CBFUHC2
CBPUNC3
CBPONC4
CBSTATUS
CBl!!ODE
CBNORT
CBRBA
CBlUXUDL
CBTRUUDL
CBIGETS
CBIPUTS

*
CBPAD
CBIXS
CBIBOP'RS

DIRECTRY
RBA
FRI!
P'LGS
CH'fLADDR
FWD

-110-

TITLE I PROGRAft TO HANDLE N-DIMENSIONAL INDEX
WORK AREA DEFINITIONS'

DSECT
USING *,R11
DS CL8
DS 0CL4
DS c
DS c
DS c
DS c
DS CI.2
DS c
DS I
DS F
DS H
DS H
DS H
DS H

REDEFINITION
ORG CBNORT
DS C
DS B
DS H
ORG

EQU 0,16
EQU 0,4
EQU 4,4
EQD 8,1
EQO 8,4
EQD 12,4

DDN AME OF FILE
FUNCTION CODE

RETURN STATUS
MODE OP ARITBl!!ETIC
NODEfTERl!!INAL INDICATOR
RBA OF RECORD RETRIEVEDlINSEBTED
!!AX LENGTH OF USER DATA AREA
TRUE LENGTH OP OSER DATA
COUNTER FOR VSAM "GETS"
COUNTER FOR VSAM "PUTS"

IN EFFECT WHEN FUNC = •LOAD"r•oPEN"

OSER DATA AREA PAD CHARACTER
COORDINATES
I PAGING BUFFERS TO BE USED

RBA OF PAGE IN PRAl!!E
FBAl!!E CORE ADDRESS

CORE ADDRESS OF VSAI!! CONTROL INFO
FWD LINK OH LRU RING

-111-

FCBAREA DSECT
OSilllG *,R12

FCBLABEL DS CL8 LABEL IS FILE DDNAME
PREVFCB DS A BACKWARD AND
NEXT PCB DS l FORWARD LINKS

IFGICB DSECT=NO GENERATED ACB
IFGRPL DSECT=NO GENERATED RPL
DS OD

LNACBAR EQU IFGRPL-IPGACB
LIRPLAB EQO •-IPGRPL

CI SIZE
AVSPAC
EN DR BA
LRECL

DS
DS
DS
DS

MYNODCS DS
DS

RCDADD DS
DS

CURRBBA DS
BOPB@ DS
ISUBPOOL DS
LNGBOP DS
PRIORT DS

DELWK DS
PRNTDEL DS

SPLTl'!SKS DS
CIMSK DS
DSP!!SK DS

LODE AB GS
LODE CI
LODEDSP

DIREC~

DS
DS
DS
DS
DS
DS

lUSCPLGS DS
ISRTOlfLI EQU
PILEXTND EQD
l'RSTISRT EQO
SENDPlD DS

p
p
p
p

CONTROL INTERVAL SIZE
AVAILABLE SPACE
ENDING BBA
LOGICAL RECORD SIZE = CISIZE-7

A(NODEAREA) FOR MVCL INST
F (PLLNOD)
A
P (CHLDUDii)

F
1
ox
F
A

D
D

OXL6
p
H

H
OXL6

F
B

BBA OP RCD W/ CORE ADDR IN RCDADD
LOCATION AND

LENGTH OF PAGING AREA
TOP OP LRU RING

EXPANDED DELTA FROM RETRIEVED RCD
EXPANDED DELTA FOR NODEAREA

!!ASKS TO SEPARATE RBA'S INTO
CONTROL INTERVAL RBA

AND DISPLACEMENT
UNUSED
SEPARATED RBA TO BE .LOADED

H UNUSED
(l'!AXIBPRS}XL(L'DIRECTBY) PAGING DIRECTORY

XL3 ftISCL FLAGS
B'10000000 1 FILE OPENED FOR LOAD
B1 01000000 1 FILE BAS BEEN EXTENDED
s•ooooooo1• FIRST INSERTION HAS MOT BEEN DONE
C PAD FOB OSER DATA AREA

XTRAPBft DS l

SETPREGS DS
DS
DS

XL4'80 1

P''O •
1 (QSTRL}

R3 EX ftASK POR BIT STRING
R4 COORDINATE VECTOR INDEX
RS BIT STRING ADDRESS

DS
DS

SETPADDR DS
GR XL it DS
GRXBi DS
GRP'LlG EQO
TR!ONLY EQU
TMPPRHT DS
ST.KPRHT DS
STKTOP DS

DS
SETFLGS DS
SHGLCHLD EQO
Er!PTYSET EQtJ
ENOTINX EQU
XNOTIHE EQO
QSTRL DS
QSTRH DS
QSTRO DS

DS
DS

STACK DS
!UXSTKL EQU

PILE CH TL DS
ORG

HIUSDRBA DS
PLft.ODE DS

DS
PLICOOR DS
FLLCV DS

-112-

P R6 INDEX INCREMENT
P R7 INDEX LIMIT VALUE
1 RS A(SET&r!.O)
A R9 LOW SEARCH COORDINATES
1 R10 HIGH SEARCH COORDINATES
B1 10000000 1 IP SET, DOING •GRM SEARCH
B1 01000000' IP SET, WANTS TERMINALS ONLY
H POINT IN STACK OP TEMP PARENT
H POINT IN STACK OF PARENT
H TOP OP STACK

x•o• ZEROES TO CLEAR BIT STRINGS
X SE'!' INTERSECTION FUNCTION FLAGS
B1 10000000 1 INTERSECTION IS ONE CHILD ONLY
B 1 00000100 1 INTERSECTION IS EMPTY
B1 00000010' SOME OP •SQUARE" OUTSIDE
B1 00000001' SOME OP SEARCH OUTSIDE
XL64 BIT STRINGS
XL64 OP DIFFERENCE SIGNS
XL64

D
D
128D
•-STACK

XL32
PILECBTL
F
c
c
H
H

UNUSED
PERMANENT PIECE OF STACK

FILE CONTROL INFORMATION

CURRENT HIGH USED RBA (ISRT USES)
H t F I E I D
UNUSED .
t COORDINATES
(FLICOOR) * (FI.LCOOR)

DELTAi EQU 0,2 12 BITS
RCDFLGS EQU 1,1 4 BITS
PARENT EQU B1 0001' END OF TWIN CHAIN
HODRCD BQO B'0010' RECORD IS A NODE
TWIBi EQU DELTAi+L 1 DELTA@,4 TWIN POINTER
COORDSi EQO TWINi+L'TWINi START OF COORDINATE VECTOR
•QSTRi EQO COORDSi+(PLLCV)
QSTBLMl DS H Q STRING LENGTH MINUS 1
CHLDUDi DS H CHILD PTRfOSER DATA DISPLACEMENT
l'LLNOD DS B TOTAL LENGTH OF A NODE RECORD
* = L 1 DELTAi+L'TWili+(PLLCV}+(QSTRLM1+1)+L 1 CHILDPTR <= 2000

..
OBG

NODE AREA DS
!'CBLHG EQO

OBG
RPIJ!SG DS

SO FAR 16 BYTES ARE LEFT

XL2000 NODE CONSTRUCTION WORKSPACE
*-PCBLABEL HOPEFULLY < 4096
•-132
CL132 1 BPL "ESSAGE AREA'

-113-

TITLE 1 PROGRAM TO HANDLE N-DiftENSIONAL INDEX *
CART Aft CSECT
PASTCONS ST

ST
ST
L
CLI
BNE
L
LA
ST
L
B

PASTPC LA
LA

CNTPC T!!
BO
LA
LA
BCT

STPCT STC
!VC
L
USING
LA

FINDPCB LR
L
CLC
BH
BLR
CLC
BE
B
DROP

LTORG

NULLABEL DC
DC
DC

ENDLABEL DC
DC
DC

INITIAL ENTRY'

B13,8(R14) LINK SAVE AREAS
B14 ,4(R13)
Rl,PARftADDR SAVE PARAftETER LIST ADDRESS
R11,0(R1)
O(R11),0 OPTIONAL PAR! COUNT PRESENT?
P.lSTPC
R15,0(R11) PARAftETER COUNT
R1,4(R1)
Rl,PARMADDR STEP PAST COUNT
R11,0(R1) ADDRESS OF COftftBLOK
ST PCT
B15,1 COUNT PARAMETERS
R0,5 NEED AT ftOST 6
O(R1) ,B 1 10000000 1

STPCT
R1,4 (Rl)
R 15, 1 (R15}
RO,CNTPC
R 15, P AR!!CNT
CBSTATUS,=C' ' INITIAL GOOD RETURN STATUS
R9, =A (NOP'CB)
NOFCB,R9
R12, NULLA.BEL
R8,R12
R12,NEXTFCB LOOK FOR PROPER P'CB
CBDDNAftE,FCBLABEL
PINDFCB
R9 NOT ON CHAIN; GO ~AKE A NEW ONE
CBFUNC,=C'CLSE' IS ON CHAIN; R12 IS NOW BASE
CLSE
CHKPUNC
R9

2F 1 0 1

A (0)
A (ENDLABEL)
2P 1 -1 1

1 (NULLABEL)
A (0)

HEAD AND

TAIL FOR PCB CHAIN

!!KPAGE

LDPAGE

LODE

LOD1

LODS

LOD7

LOD8

-114-

TITLE 1 PROGRA!! TO BANDLE N-DI~ENSIONAL INDEX *

!!VI
B

!!VI

ST!!
ST
ST
STH
NC
BZ
LA
L
LTR
BZ
LR
LR
CLC
BRE
OI
!!VC
!!YC
ST
L
AH
ST
ZR
T!!
BNO
T!!
BO
L
H
B
IC
LA
SLL
ST
Lft
L!!
L
Tft
BNOR
ZR
BR

CONVERT AN RBA TO A CORE ADDRESS'

LOD5+1,X 1 PO•
LODE

LODS+1,x•oo•

R14,B4,LODESAVE
Rl,CURRRBA

ftABK A CI AS ftODIPIED

LOAD ONLY; WILL NOT BE CHANGED

Rl,LODECI BBA OF CI +
B1,LODEDSP DISPLACE!!ENT
LODEARGS,SPLT~SKS

LERADXTO ZERO RBA IS AN ERROR
R4,PRIORT-PWD START AT TOP OF PRIORITY LIST
RO, FWD (R4)
RO,RO
LOD2 CI WAS NOT IN CORE
B3,R4
B4,RO
LODECI{3) ,RBA(B4)
LODl
PLGS(R4),*-* ~ARK IF NECESSARY
PWD(L 1 FWD,R3),FWD(B4) RESET LBU LIST
PWD(L 1 FWD,R4),PRIORT
R4,PRIORT
B1,PB!!(R4} GET CORE ADDRESS
R1,LODEDSP
R1,RCDADD
R2
RCDFLGS(Rl),NODRCD
LOD8 TERMINAL HAS NO DELTA STORED
DELTAa(R1) ,B 1 10000000 1

LOD7 STORED AS LOG2
R2,DELTA@ (Rl)
R2,=X 1 PFP00000 1 CLEAR GARBAGE
LOD8
R15,DELTA@(R1) TAKE ANTILOG2
B2,1
R2,0 (R15)
R2,DELiK STORE EXPANDED DELTA
R14 ,RO,.LODESAVE
R3,R4,.LODESAVE+20
B2,TWINi(R1) EXIT WITH TWIN PTR IH R2
RCDFLGS(R1) ,PARENT
R14
B2 ZERO B2 FOR END OF TWIN CHAIN
R14

LOD2 LA
MODCB
Tl!
BZ
NI
L.l
AH
STH
PUT

-115-

R2,.IFGRPL
RPL=(R2),AREA=(*,FRM(R4}) ,ARG=(S,RBA(R4})
FLGS(Rq),X 1 F0 1 IS IT MARKED?
LOD4
PLGS(R4),X 1 0P 1 CLEAR !ARK FLAG
R14,1
R14 ,.CBIPU'l'S
R14,CBIPUTS
RPL=(R2} WRITE OUT MODIFIED CI

LOD4 !VC RBA(L'RBA,R4),LODECI RBA OP CI TO READ
L.l Rlq,.1
AB R14,.CBIGETS
STB R14,CBIGETS
L RO,.PR!(R4) TRY TO TELL MVS NOT TO BOTHER
L R1,FRM+L 1 DIRECTRI(B4) PAGING IN AREA
PGRLSE LA=(O),.HA={1)
GET RPL= (R2)
B LOD5

XTLS'l' EXLST LERAD=(LERADXT,A) ,SYNAD=(SYNADXT,.A)

LERADXTO LA R0,.16 LOGICAL ERROR EXIT
ST RO,CBRBA
B LEBADXTl

LERADXT SHOWCB RPL=(l},lREA={S,.CBRBA} ,.LENGTH=4,.FIELDS=PDBK
LERADXTl MVC CBSTATUS,=C 1 AJ'

B B'l'N

SYNADXT !VC
LH
STH
LA
f!VC
WTO
MVC
B

WTOMSG WTO

LTORG

RPL!SG+10(2),WTO!SG+2 PHYSICAL ERROR EXIT
R15,.RPLf!SG+4
R15,RPL!SG+8
R15,.RPLMSG+4(R15)
0(4,R15),.WTO!SG+8
MP=(E,RPLMSG+8) DISPLAY ERROR MESSAGE ON JES
CBSTATUS,=C 1 AO' LOG
RTN

'1234 1 ,ROUTCDE=(11) ,DESC=(6),MF=L

-116-

TITLE • PROGBlft TO BANDLE N-DiftENSIONAL INDEX *
PERFORft REQUESTED RETRIEVE FUNCTION'

CHKPUBC LB B7,PLLCY LENGTH OF COORD VECTOR
LH R8,QSTRL!1 LENGTH OF Q BIT STRING - 1
CLC CBPUNC,=C 1 ISRT 1

BE ISRT
T! !ISCFLGS,ISRTONLY
BO HOTG
L R1,RCDADD
ZR B15 SHOULD BE 1 •G• REQUEST
CI.I CBPUNC1,C•G•
BH HOTG
BL CHKDLCH
CLI CBPUNC2,C 1 A'
BL lfOTG
CLI PAR!ClfT,4
BL SHRTLIST
IC R15,CBPUNC2
IC R15,CftDTBL(R15)
B llOTG (B 15)

C!DTBLX DC
C!DTBL EQO

ORG
DC
ORG
DC
ORG
DC
ORG

SHBTLIST ftVC
B

NORCD eve
B

POPIT ZR
LH
AB
Bl!R
STH
L
BR

CBKDLCH CLC
BE
CLC
BE

BOTG l!VC
B

64x•oo•
C!DTBLX-C 1 A1 +1
C!DTBL+C 1 A1 C1 ABCD 1

ALl(GR-NOTG,0,GC-NOTG,GD-NOTG)
C!DTBL+c•n• C'!NOPQR'
ALl(G!.-NOTG,GN-BOTG,0,GP-NOTG,0,GR-NOTG}
Cl!DTBL+C 1 T1

ALl(GT-lfOTG)

CBSTATUS,=C 1 SL 1 TOO PEW lRGO!ENTS
RTB

CBSTATUS,=C 1 GE 1

RTB

BO POP STACK FOR !!OST •G• REQUESTS
R14,STKTOP
R14,=1L2(-L 1 STACK)
B15
R14,ST1CTOP
R0,ST1CK+4(R14)
B15

CBFUBC,=C 1 CHNG 1

CHRG
CBPUNC, =C•DLET'
DLET

CBSTATUS,=C 1 AD' INVALID CODE
BTl\1

-117-

GP BAL R15,POPIT POP CHILD
Bl! HOR CD
BAL R15,POPIT POP TWIN
B!! HOB CD
BAL R15,POPIT POP TO PARENT
B!! GPHS
L RO,STACK (R14)
B GET IT

GPNS L RO,TWIB@(Rl) RAH OUT OP STACK ENTRIES
LTR BO,RO
BZ lfOBCD FOLLOW TWIN CHAIN BACK OP
Tl! RCDPLGS(Rl),PARENT
BO GET IT HERE IT IS
LPAGE (RO)
B GPHS

GT BAL R15,POPIT POP CHILD OPP STACK
Bl! lfORCD THEN POP TllIN

GC BAL R15,POPIT POP TOP OP STACK
Bl! llORCD
LTR BO,RO
BZ IIORCD
B GET IT

GR B GRCODE AREA SEARCH INITIALIZATION

GN CLI CBl'UlfC3,C 1 P 1 GET NEXT
BE GNPCODE (WITHIN PARENT)
BAL R15,POPIT
BNf! GNOOl
Tl! RCDPLGS(R1) ,NODRCD STACK WAS EMPTY;
BlfO GHT FOLLOW CHILD CHAIN
LH R15,CHLDUD@
L RO,O(RlS,Rl}

GN001 LTR RO,RO
BZ GNT
CLI CBPUNC3,C'T 1 IS SUBTREE TO BE SKIPPED?
BNE GET IT

GNT BAL R15,POPIT YES; SKIP SUBTREE
BM GIITNS
LTR RO,RO
BZ GBT
B GET IT

GNTBS L BO,STACK STACK WAS El'!PTY;
GHTNS1 LTR RO,RO FOLLOW TWIN CHAIN

BZ HOR CD
LP!GE (RO)
L RO,TWINii (Rl)
Tl! RCDPLGS(R1) ,PARENT
BO GllTNSl
B GET IT

GM

GD

GDLOOP

L
!!VC
B

LH
LH
L
xc
BXLE
CL
BBB
STB

-118-

RO,!ASTERPG GET !ASTER PAGE
STKTOP,=AL2(-L 1 STACK)
GET IT

B15,=AL2(-L 1 STACK) GET DIRECT
R14,STKTOP CHECK STACK TO SEE
RO,CBRBA IP IT IS THERE
STKTOP,STKTOP
B14,B15,GETIT
RO,STACK (R14)
GD LOOP
B14,STKTOP START STACK WITH THIS RECORD

GETIT XC GRXL~(L 1 GRXL@+L 1 GBXH~+L 1 T~PPRNT+L 1 STKPRNT) ,GRXI.a
LPAGE (BO)
BAL R15,PUSHTW PUSH TWIN OF LATEST RECORD
CLI CBPOBC3,C'P' PARENTAGE TO BE SET
BHE GETITNC
STB R14,STKPBNT REnE!BER PARENTAGE POSITION IN
CLI CBPUBC4,C 1 L 1 STK
BBE GETITHC
STB R14,T!PPRNT
OI GRXHii,TR!OHLY

GETITNC BAL R15,PUSHCH POSH CHILD OP LATEST RECORD
RTNVALS L R3,PARftADDR

L! R4,B5,8(R3) A(COORDVEC,DELTA)
L R15,SETFADDR
EX O,SETNTRYft(RlS) AN nvc INST TO MOVE DELTA
LA R6 ,COORDSii (Rl)
LR B5,B7
!VCL R4,R6 novE COORDINATE VECTOR
L B4,4(R3} A(USERDATA)
LB BS,CB!AXUDL
LB R14,CHLDUD~ NOW TO ~OVE USER DATA
AR R14,R1
ZR R15
!VI CBNORT,C'N' INDICATE A NODE FOR STARTERS
Tfl RCDPLGS(Rl},NODRCD
BO flVUDAT NONE TO ftOVE
!VI CBNORT,C•T•
LH R15,DELTAi(R1) LENGTH OF USER DATA (*16)
SBL RlS,4 DIVIDE BY 16

ftVUDAT STH R15,CBTRUUDL
ICfl R15,B'1000 1 ,SENDPAD LOAD PAD CHARACTER
!V~L R4,R14 !OVE USER DATA AND PAD AREA
BBL *+8
flVI CBNORT ,c•x• WAS A SHORT (TRUNCATED) MOVE

RTNRBA ftVC CBRBA,CURRRBA RETURN RBA TO CALLER
RTN LD PO,SlVEFPRO

LD P2,S!VEPPR2
L R13, 4 (R13)
RETURN (14,12),T,RC=O

PUSH CH ZR
ZR
Tf!
BHO
LB
L

PUSHTW LB
CH
BB
ST
ST
LA
STB
BR

POPITP ZR
LB
CB
BHH
CB
BNH
AH
B!
STB
L
BR

GNPG!! XC

GR CODE

T!
BHO
BI
ftYC
B

CLI
BL
L
ftYC
!!VI
IC
CLI
BlfE
01
!!VI
l'!VC
LPAGE
B

-119-

RO ZERO TO LEFT SIDE
R2
RCDPLGS(Rl) ,NODRCD CHILD (IP ANY) TO RIGHT
PUSHTW SIDE
R2,CHLDODi
R2,0 (R2,R1)
R14,STKTOP IP POSHING TWIN, CURRENT RBA
R14,=lL2(ftlXSTKL-L•STACK) IN LEFT SIDE
STKOVPLO BECO!ES PARENT
RO, STACK (R14) FOR ALL ABOVE IT
R2,STACK+4(R14) IN STACK
R 14 ,L •STACK (R 14)
R1'1,STKTOP
R15

R2
B14,STKTOP
R14,T!PPRNT
GHPG!!

POP STACK POR GNP PROCESSING

!ARKED AS TE!P PARENT?
YES

R14,STKPRNT MARKED AS PARENT?
NOR CD
R14,=AL2(-L 1 STACK)

YES

HORCD STACK IS EMPTY
R14,STKTOP
R2,STACK+4 (R14}
R15

T!PPRNT,TMPPRNT PINISHED SUBTREE
GRXHi,TR!!ONLY
HOR CD
GRXHi,:t•PF•-TRMONLY
CBSTATUS, =C 1 G1' •
RTB

PAR!CBT,6 AREA SEARCH SETOP
SHRTLIST
R15,PAR!!ADDR
GBILi(L 1 GRXLi+L 1 GRIHi),16(R15} ADDRS OP LI!IT
GRXHi,GRPLAG VECTORS
TftPPRBT(L 1T!PPRNT+L 1 STKPRNT),T~PPRNT
CBFUHC4,C 1 L 1

•+8
GRXHi,TR!!OtfLY
SETPLGS,0
STKTOP,=AL2(-L'STACK)
8ASTERPG START WITH !!ASTER PAGE
GHP4

-120-

GNPCODE l!VI
BAL
CLI
BHE
T!!
BO
STH
OI
B

SETFLGS,O
R15 ,POPITP
CBFUNC4,C 1 L 1

GNPO
GRXH@,TRl!O!lLY
GIIP2
R14,Tl!PPR1fT
GRXB@,TR!!ONLY
GBP2

LAST BCD READ IS TO BE MARKED
TO RETRIEVE ALL TER!!INALS OF

SUBTREE

GNPO

GNPl
GNPOCO
GNP2

GNP4

GHPS

CLI
BNE
!!VI
BAL
LTR
BZ
LPAGE
Tr!
BBO

CBFUNC4,C 1 T 1 IS CHILD SUBTREE TO BE
GNP2 DISCARDED?
SET!'LGS,O
R15,POPITP
R0,R2
GBP1
(RO)
SET!'LGS,SNGLCHLD LOOKING FOR A SINGLE CHILD?
GHP4

LA R14,COORDSa(R7,Rl)
EX R8,CLQRL CLC 0(0,R14),QSTBL
BL GNP2 NOT YET
BH GBPl !ISSED IT
ZR R2 FOUND IT; NEED NO MORE

BAL
!!VI
Tl!
BNO

R15,PUSHTW
SETFLGS,0
GRXH@,GR!'LAG
GNPS

GR PROCESSING?

BAL B15,INTRSECT
B GBPl +0 EMPTY INTERSECTION; DISCARD
CLC QSTRL,QSTRH +4
BHE *+8
OI SETFLGS,SNGLCHLD

BAL
Tl!
BNO
Tl!
BO
Tl!
BO
B

R15,PUSHCH
RCDFLGS(Rl),NODRCD
RTNYALS RETURN ALL TER!!INALS
SETPLGS,SNGLCHLD IP ONLY ONE CHILD OF
GNPOCO INTEREST, GET IT I!!ftEDIATELY
GRXHi,TR!!ONLY
GNPl CALLER WANTS TERMINAL OHLY
RTNVALS

CLQRL
NEGLO
BEGBI
DELSIGN

-121-

TITLE 1 PROGBA" TO BANDLE N-DII!ENSIONAL INDEX
INSERT FUNCTION'

CLC O(O,R14),QSTRL
OI QSTRL-QSTBL(R5) ,O
OI QSTRH-OSTRL(RS) ,O
T!! QSTRO-OSTRL(RS),O

ISRT CLI PARI!CBT,3
SHRTLIST
R15,PAR!!ADDR

BL
L
L
L
LA
ST.I!
T!!
BO
LB
AH
SLL
c
BHH

ISBT07 !!YC

ISRT08

ISRT09
ISRT10

ISRT 12

*

B

T!!
BNO
HI
LPAGE
BAL
NOP
B

BAL
BAL
BB!!
ZR
STH
L
LPAGE
BAL
B
TM
BHO
B

R6,4~B15) ADDRESS OP USER DATA
R4,8(R15) ADDRESS OP COORDINATE VECTOR
R5,0(R4)
R4,B5,GRXL()
CBTRUUDL,B 1 10000000 1

ISRT07 UD TOO LONG
R15,CBTRUUDL
R15,CHLDUDit
R15,1 TOTAL LENGTH KOST BE LESS THAN
R1S,LRECL HALP OP THE LRECL
ISRT08
CBSTATUS,=C'IU' USER DATA TOO LONG
RTN

!ISCPLGS,PRSTISRT
ISRT09
l!ISCPLGS,X'FP'-PRSTISRT
l!ASTERPG PIRST INSERTION
RlS,CALCQSTR
0
P6HEWTB!!

ON A LOAD

R15,POPIT TOP OP STACK IS PROBABLY ZEROS
R15,POPIT
ISRT12
R11.&
R14,STKTOP
R9,ST1CK-L 1 STACK(R14} CLII!B PARENT DIRECTION
(R9) UNTIL NODE CO~PLETELY COVERS
RlS,IBTBSECT NEW COORDS
ISRT10 +O
SETPLGS,ENOTIBX +4
ISRT10
B2

B2

C3

QE

Lft
!!VCL
!!VC
LH
BAL
LTR
BZ

LP AGE
L.l
EX
BH
BE
ST
ST
LTR
BBZ
B

LA
EX
BAL
IOP
T!!
BZ
BO
ST
ST
B

-122-

R2,R5,!!VNODCS
R2,R4
PRNTDEL,DELWK
R10,STKTOP
R15,POSHCH
R9,R2
SHUDNVR

RE!!E!!BER CONTENTS OF NODE
AS PROBABLE PARENT

(R9) LOOK FOR CHILD IN SA"E DIRECTION
R14,COORDSa(R7,Rl) AS HEW COORDINATES
R8,CLQRL CLC 0(0,R14),QSTRL
F6NEWTR!! !!ISSED IT
QE
R9,STACK(R10) NOT YET
R2, STACK+4 (Rl 0) (PUSH TWIN)
R9,R2
C3
F6BEWTRM NOT ON CHAIN INSERT TER!!INAL

B14,COORDSa+HODEAREA(R7}
B8,MVQBL
RlS,CALCQSTR ARE NEW COORDS INSIDE RECORD?
0
SETPLGS,E!!PTYSET+ENOTINX
XE!!ATCH MATCHING POINT COOBDS
F40 NO; E"PTY INTERSECTION
R9,STACK(R10) YES; TOTALLY INSIDE
R2,STACK+4 (R10)
B2

CALCQSTB LA
B

R14,QCALC
INTRO

CALC A FULL Q BIT STRING

INTRSECT LA R14,IHTRTEST EXIT !!!ED. IF NO INTERSECTION
IBTRO ST! R3,B10,SETFSAVE

L!! R3,R10,SETFREGS
!!VC SETFLGS(L 1 SET'FLGS+L 1 QSTRL+L 1 QSTRH+L'QSTRO),SETFLGS-1

B SETHTRY3(R8)
INTRTEST TM SETPLGS,E"PTYSET

BO IBTREXIT EXIT TO +O IF E~PTI
QCALC SRA R3,1

BNZ INTRLOOP
Ll R3,B 1 10000000' NEXT BYTE ON Q STRING
Ll RS, 1 (RS)

IHTRLOOP BXLE R4,R6,SETNTRY3(R8)
Ll R15,4(R15) EXIT TO +4 IF FOLL LOOP WAS RON

INTREXIT L! R3,R10,SETFSAVE
BR B15

P40

P4A

F4B

P4C

P4D

XEPUTCH

ST ft
!!VC
LA
EX
LA
ST
LA
Lft

l!VC
!!VC
Lft
BAL
SRA
BHZ
LA
LA
BXLE
CLC
BE
ST
CLI
BNE
L
LH
LA
SRA
BNZ
STH
inc
Ll!
B

Tl!
BO
Lft
!VCL
xc

-123-

B1,R10,SETPSAVE
TWINi+NODEAREA,TWINi(Bl)
R14,COOBDS@+MODEABEA(R7)
B8,!!VQLR
Rl,COORDSii (Rl)
R1,GRXL~
R1,HODEAREA NODEAREA HOLDS NEW NODE INFO
R6,R10,SETPREGS+12

QSTRO,QSTRL
SETPLGS(L•SETPLGS+L•QSTRL+L'QSTRH),SETFLGS-1
B3,B5,SETPREGS
R14,SETNTRY1(R8) ADJUST COORDS IN NODEABEA
R3,1 !HD CALCULATE Q1 S
F4B
R3,B•10000000•
RS,1 (RS)
R4,R6,SETNTRY2(R8}
QSTRL,QSTRB
F4A STILL SAftE Q, ADJUST AGAIN
R10,GRXLi RESET GRXLii
SETNTRY1+L 1 SETP00(R8) ,X'8A' •sRA" OPCODE?
P'ID
R14,PRNTDEL
R15,=XL2•7F00 1 CALC LOG2(DELTA)
a1s,x•100 1 (R15)
R14, 1
P'4C
R15,PRNTDEL
DELTAa(2,Rl),PRNTDEL
R1,R10,SETPSAVE QSTRL IS FOR LAST RECORD READ
PSNEWNOD QSTRH IS FOR NEW TERMINAL

RCDPLGS(Bl) ,NODBCD COORDS !!ATCH W/ DELTA = 0
XE!!ATCHO
B2,R5,!!VNODCS RECORD IS A TERMINAL;
R2,R4 NEED A PARENT NODE W/ DELTA
DELTA@+NODEAREA,DELTA@+NODEAREA OF ZERO

FS!E WNOD OI
LH
BAL
CLC
BH
BE
L
ST
B

XE!!ATCBO ST
ST
LH
BAL

P6l!CHTRl! L
F6!!CHLP LPAGE

LH
LB
LR
LB
AR
CLCL
BE
ST
LTR
BNZ

P6NEiTRI! LH
AH
!!VI
!VO
LA
LR
L
LR
!!VCL
EX
BAL
LH
LR
l!VCL
B

I.ISTAT l!VC
B

r!VQRL !VC
!!VQLR l!VC
!!VQMB !5VC

-124-

RCDPLGS+NODEAREA,NODRCD
B1,PLLNOD LENGTH OP A NODE
R14,XTHDSLOT
QSTRL,QSTRH
P6NEWTBI! NEW TERMINAL GOES FIRST
F61!ClfTRl! IP EQUAL, ~UST BE DUP COORD
R15,STACK+4(R10) HEW TERl!INAL GOES SECOND
R15, STACK (R 10)
P6HEWTRl!

R9,ST!CK(R10) RECORD IS A NODE i/ DOP COORD
R2,STACK+4(R10) CHILDREN
R10,STKTOP
B15,POSHCH

R0,STACK+4(R10} OH DUP COORDS, CHCK USER DATA
(BO)

R15,CBTRUUDL
R14,R6
R5,R15
R4,CHLDUDi
B4,Rl
R4,R14
II.STAT DUPLICATE RECORDS; NO INSERTION
RO,STACK (R10)
R0,R2
P6!!CHLP

Rl,CBTRUUDL
Rl,CHLDUD~ TOTAL LENGTH OP A TERMINAL
RCI>FLGS+NODEAREA,0
DELTA@+NODEAREA,CBTROUDL USER DATA AREA LNGTH
R4,COORDSa+NODEAREA
R5,B7
R2,GRXH~
R3,RS
R4,R2 ftOVE COORDINATE VECTOR IN
R8,8VQHH ftVC O(O,R4} ,QSTRH
R14,XTNDSLOT
RS,CBTROUDL R4 IS ALREADY SET
B7,R5
R4,R6 "OVE USER DATA IN
RTHRB!

CBSTATUS,=C 1II 1

RTHRBA

0(0,R14},QSTRL
QSTBL (0) ,O (R14)
0 (0, R4), QSTRH

XTBDSLOT ST
OI
L
LB
HR
AR
c
BlfH
LR
11
AL

XTBDO AR
ST
LB
CB
BL
L
ST
LTR
BZ
!!PAGE
!VC
ST
Tl!
BNO
BI
OI
B

-125-

R14,XTNDS.lVE
!ISCPLGS,FILEXTHD
R4,HIUSDRBA NEXT AVAILABLE RBA
R5,DSP!!SK
R5,R4
RS,Bl
RS,LRECL ROOM IN CI?
XTNDO YES
R5,R1 BO,
R4,CI!SK STEP TO NEXT CI
R4,CISIZE
R1,R4
Rl,HIUSDRBl NEW AVAILABLE RBA
R10,STKTOP IF DOING ISRT, STACK
R10,=.lL2(L 1 STACK) SHOULD NEVER HAVE < 1 ENTRY
SBUDNVR
Rt,STACK-L 1 STACK(R10}
R4,STACK-L 1 STACK(R10) NEW RECORD GOES TO LEFT
R1,R1 . SIDE
XTBD1
(R1) IHSERT NEW RECORD ON TWIN CHAIN
TVIB~+NODEAREA,TWIN@(Rl)
R4,Tli;Ilf~ (Rl)
RCDFLGS(R1),PARENT
XTifD2
BCDPLGS(R1),X'PF 1 -PARENT BCD JUST LINKED TO
RCDFLGS+NODEAREA,PABENT WAS END OF TWIN CHAIN
XTBD2

XTND1

XTND2

XTND3

!!PAGE
LB
L
ST
LA
ST

T!!
BIO
LB
ST
!!PAGE
!!VC
ST
TM
BNO
or
OI
LA
EX

ST
LA
BAL
!!PAGE
L
L
L
AR
!VI
STH
STB
SR
STB
L~

T!!
BNO
LR
ftVCL
L
BR

-126-

STACK-2*L 'STACK (R 10)
B14,CHLDUDi
R2,0(B14,Rl}

INSERT NEW RECORD AS
FIRST CHILD OF PARENT

B4,0 (R1lf,R1}
R14 ,NODEAREA
R2,TWIN@ (R14)

RCDPLGS+NODEAREA,HODRCD
XTND3
Rllf ,CBLDUDi
B2,RODEAREA(R14)
(R2)
TWIHi+HODEAREA,TWIN@(Rl)
R 4, TWIN~ (R 1)
RCDFLGS(R1) ,PARENT
•+8
BCDFLGS+NODEAREA,PARENT
RCDPLGS(R1) ,PARENT
R14,COORDSi(R7,R1)
R8,!!VQRL KYC

R2,STACK-L 1 STACK+4(R10)
Rl,NODEAREA
R15,PUSBCH

0(0,R14),QSTRL

(R4) LOAD AND PlARK NEW er
R15,LRECL
R14,PRIORT
R14,FRM (R14)
B14,R15 POINT AT AND THEN
O(R14),0 ADJUST VSA!! CONTROL INFORMATION
RS, 1 (R14)
RS,3 (R14)
RlS,RS
R15,5 (R14)
R2,R5,MVNODCS
RCDFLGS+NODEAREA,NODRCD
•+6
R5,R3 FULL LENGTH IF NODE
R4,R2
R14,XTHDSAYE
R14

-127-

TITLE ' PROGRA!! TO HANDLE N-DIMENSIONAL INDEX *
CHANGEtDELETE FUNCTIONS•

CHNG CLI PlR!!CNT,3

CHNGX

DLETX

DLET

DLET01

BL SHRTLIST
CLC CBRBA,CURRRB! MUST HAVE JUST BEEN RETRIEVED
BNB CHHGX
Tft RCDFLGS(R1) ,NODRCD
BO CBBGX CAN'T CHANGE DATA ON A NODE
L R9,PAlHfADDR
L R6,8 (R9)
LR R3,R7
LA R2,COORDS@(R1)
CLCL R2,R6 ENSURE COORDINATES WEREN'T CHANGED
BNE CHNGX
LB RS,DELT!i(R1)
SRL R5,4

.L R6,4 (R9)
LB R7,CBTRUUDL
CLR R7,R5 CHECK LENGTH
BH CHJIGX
!PAGE CBRBA
LH R4,CHLDUDi
AR R4,R1
ICft R7,B 1 1000 1 ,SENDPAD
ftYCL R4,R6 REPLACE USER DATA FIELD
B BTN

l!VC
B

!!VC
B

L
CL
BHH
CL
BRE
xc
LH
!!VC
L
LR
SH
BIU!

ZR
L
T!!
BO
LP AGE
B

CBSTATUS,=C'CX'
RTN

CBSTATUS,=C'DX'
RTB

R6,CBBBA
R6,!!ASTERPG CAN'T DELETE MASTER RECORD
DLETX
R6,CURRRBA !!UST HAVE BEEN JUST RETRIEVED
DLETX
CBRBA,CBRBA
R9,CHLDUDi
RCDPLGS+RODEAREA,RCDFLGS(R1) SAVE FLAG
R3,TWIBi(R1) ARD TWIN POINTER
R10,STKTOP
R10,=AL2(3*L'STACK)
DLET03

B10 PARENT NOT IN STACK
RO,TWINi(R1) WALK TWIN CHAIN TO FIND IT
RCDFLGS(Rl) ,PARENT
DLET02 FOUND IT
(RO)
DLET01

DLET02

DLET03

ST

LP AGE
ST
LA
EX
l!YC
CL
BNE

-128-

RO ,STACK (R10)

STACK(RlO} STARTING AT PARENT OP "X",
R2,STACK+ll (B10) (ENSURE PRNT'S TWIN IN STACK)
R14,COORDSi(R7,R1) LOOK POR PREDECESSOR
BS,ftVQLB !!YC QSTRL(O) ,O(R14)
QSTRH(TiIBa+L•TWIN~),O(R1) SAVE Q, TWIN PTR,
B6,0 (R9,B1) FLG
DLETTWI!I

DLETCHLD !!PAGE
ST
LPAGE
LTR
BZ

STACK (R10)
R3,0 (R9,R1)
(R3)
R2,R2
LOHETWIH

PARENT WAS PREDECESSOR; !!ARK
SUCCESSOR IS NOW FIRST CHILD

WHOOPS; LONE REl!AINING CHILD

DLETTWIN

DLETT1

DLET?f VR

DLETT2

DLETT3

ST R3,STACK+L 1 STACK+4(R10) DELETED RECORD WAS
ZR RO FIRST OP ONLY TWO CHILDREN. LEAVE
ST R0,STACK+L•STACK(R10) STACK W/ SUCCESSOR AS
LA R15,2*L'STACK(R10) FIRST (UNRETRIVED) CHILD
STH R15,STKTOP OP PARENT OP "X"
B RTB

L
LR
LPAGE
CLR
BE
LTR
BNZ
ABEND

ST
!PAGE
ST
Tl!
B!IO
OI
ZR
CLR
BE
ST
ZR
ST
ST
LA
STH
B

RO,O (B9,R1)
R4,RO
(BO)
R2,R6
DLETT2
RO,R2
DLETT1
95,DOMP,STEP

PARENT NOT D!"!!EDIATE PREDECESSOR
REl!EftBER FIRST CHILD
WALK TWIN CHAIN

RO,STACK+L•STACK(R10) SAVE IN LEPT SIDE OF
(RO) STACK
R3,TWIN@(R1}
RCDFLGS+IODEABEA,PARENT WAS 11xn ON END OF
DLETT3 CHAIN?
RCDFLGS(R1),PARENT
R3
R4,R0 IS PREDECESSOR FIRST CHILD?
LOHECHLD YES
R3,STACK+L•STACK+4(R10) LEAVE STACK i/
RO PREDECESSOR II PLACE OF "I", BOT SHOW
R0,STACK+2*L'STACK(R10) NO CHILD AS CHILD OF
R0,STACK+2*L 1 STACK+4(R10) PRED(X) HAS BEEN
R15,3•L 1 STACK(R10) PRESENTED EARLIER.
R15,STKTOP
RTN

-129-

•
LOIETWIN "PAGE (R3)

RECORD DELETED WAS ONE OF ONLY TWO
ON CHAIN

PREDECESSOR IS PARENT ZR R4

LOHECHLD HI
MVC
JII
oc
LA
EX
L
AR
BBi!

ZR
LOHE01 L

TM
BO
LP AGE
B

LOlfE02 ST

LOBE03

LONE OS

LONE10

LONE 11

LONE12

L
LP AGE
ST
CL
BE
L
LA

LP AGE
CLR
BE
LTR
BHZ
B

ST
LTR
BBZ
ST
LA
LR
B

ST
ST
Ll
STH
!!PAGE
ST
B

RCDPLGS(Rl) ,X 1 PF 1 -PARENT REPLACE
TWIWi(L 1 TWINi,R1) ,TiINi+QSTRH TWIN POINTER,
BCDPLGS+QSTRH,PAREHT
RCDPLGS(L 1 RCDPLGS,R1),RCDPLGS+QSTRH ITS FLAG,
R14,COORDSa(R7,R1) AND Q STRING
R8,l!VQRL !YC 0(0,R14},QSTRL
R5,STACK(B10) RBA OF PARENT TO BE REPLACED
R10,=1L2(-L 1 STACK)
LOlfE03

R10
RO,TWIWi(Rl)
RCDPLGS(R1) ,PARENT
LONE02
(RO)
LOBE01
RO, STACK (R10)

RO, STACK (RlO)
(RO)
R2,STACK+4(R10) ENSURE PARENT'S TWIN IN STACK
RS,O (R9,R1)
LOBE10 REPLACED PARENT FIRST ON CHAIN
RO,O(R9,R1)
R9,TWilfii

(RO)
R5,R2
LONE10
RO,R2
LORE OS
DLETNYR

REPLACED PARENT IS ALONG TWIN CHAIN

R4,STACK+L 1 STACK(R10) STORE PREDECESSOR IN
R4,R4 STACK
LOHE11
R3,STACX+L 1 STACK+4(B10) PRED(X) IS A PARENT
R15,2*L 1 STACK(R10) SUCCESSOR IS NON-NOLL
Rl&,R3
LOHE12

R3,STACK+2*L 1 STACK(R10) PRED(X) IS NON-NULL
R3,STACK+2*L 1 STACK+4(R1~ SOCC IS NOLL
R15,3*L 1 ST1CK(R10)
R15,STKTOP
(RO)
R4, 0 (R9,R1) STORE AS CHILD OB TWIN
RTB

HOFCB

-130-

TITLE 1 PBOGRA~ TO HANDLE ff-DIMENSIONAL INDEX *
!ODE DEPEIDEBT "SET• FUNCTIONS'

LTORG

PUSH PBINT
PRINT GEN

SETPUHC P

SETFUBC H

SETPUNC E

SETPUffC D

POP PRINT

TITLE • PROGRA! TO HANDLE N-DI~ENSIONAL INDEX *
IBITIALIZATION SECTION'

USING HOPCB,B9
CLC CBPUNC,=C 1 CLSE' DID NOT FIND
BE RTlf
CLC CBPUHC,=C 1 0PEN 1

BE NEW PCB
CLC CBPUNC,=C 1 LOAD 1

BNE NOTG INVALID FUNCTION CODE
LH R2,CBIXS
CH R2,=AL2(8*L 1 QSTRL)
B11H CBK!IODE
!VC CBSTATUS,=C 1 AX 1

B RTN

-131-

CHKl!'JODE CLI
BL
CLI
BH
CLI
BNE

CBMODE,C 1 D1

l!ODEERR ERROR
CB!!ODE,C 1 H1

MODEERR ERROR
CB!!ODE,C 1 G1

NEW PCB
l!'JODEERR l!'JVC

B
CBSTATUS, =C 1 AM'
BTN

NEWP'CB

AXEBR

LB R7,SPFCBLNG+2
GETMAIN RU,LV=(R7},BNDRY=PAGE,SP=SUBPOOLI
LR R6,R1
LA R14,CBDDNAl!'JE
LA R15,L 1 CBDDHAKE
l!'JVCL R6,Rl4
ST Rl,NEXTFCB-FCBAREA(R8)
ST R1,PREVFCB
ST R12,NEXTFCB-FCBAREA(R1)
LR B12,R1
ST RB,PREVFCB
GENCB BLK=ACB,DDNAl!E=(*,CBDDNAKE),EXLST=XTLST, *

LENGTH=LHACBAR,WAREA=(S,IFGACB), GEN AN ACB *
!AREA=(S,RPLl!'JSG) ,l!'JLEN=LeRPLMSG, FOR FILE *

CLC
BE
!!VI
l!VC
STB
ZR
IC
SLL
LB
S'l'H
LB
MH
STH
BCTR
SRL
STH
LA
STH
LA
CH
BNH
l!YC
B

MACRF=(CNV,DIR,ICI,IN,OUT,UBF)
CBFUHC,=C 1 0PEN 1

OPENINIT
l!'JISCFLGS,ISRTONLY+FBSTISRT
FU!ODE ,CBMODE
R2,FLICOOR
B3
R3,CBl!'JODE
R3,3 MODE CHARACTER * 8
R4,l!'JODETBL-8*C 1 D1 +6(R3) INFINITE DELTA/FLAGS
R4,DELTA@+NODEAREA FOR !!'JASTER RECORD
R4,l!'JODETBL-8*C'D'+4(R3) LENGTH OF COORDINATE
R4,FLtCOOB
R4,FLLCV LENGTH OF COORDINATE VECTOR
R2, 0 FLOOR ((tX+7} /8) - 1
R2,3 = FLOOR ((IX-1) /8)
R2,QSTRLl!'J1 LENGTH OF Q BIT STRING ~!NUS 1
B5,L 1 DELTA@+L 1 TWIN~+l(R4,R2)
B5,CHLDODm DISPLACEMENT TO CHILDfUSER DATA
B5,4(R5)
R5,=AL2(L 1 NODEAREA)
STLNOD
CBSTATUS,=C 1 AX 1

CLSB3

-132-

STLHOD STH RS,PLLHOD FINAL NODE LENGTH
LA R5,L 1 PILECNTL(B5)
ST RS,HIUSDRBA
xc XTNDSAVE,XTNDSAVE
Ll R8,CARTINIT
BAL R 10 ,OPNil'lIT
CLC HIUSDRBA,LRECL
BB AXERR LRECL TOO Sl'ULL
Lft R4,R6,CISIZE
LTR R6,R6
BNZ CLSINIT
BCTR RS,O EMPTY DATA SET; PREFORMAT cr•s.
L R2,PRIORT
l!ODCB RPL=PRPL,AREALEN=(*,CISIZE), * RECLEN=(*,LRECL) ,AREA=(*,FR!!(R2))

INITLOOP PUT RPL=PRPL
BXLE R6,R4,INITLOOP

CLSINIT CLOSE CARTilfIT NOW DOWN TO WORK WITH REAL ACB
LA R8,IPGACB
BAL R6,P!ODOPH
L R3,l!ASTERPG
!!PAGE (R3) INITIALIZE MASTER PAGE
LR R4,R1
SR R4,B3
L R5,LRECL
LA B14,PILECNTL
L B15,BIUSDRBA
l!VCL B4,R1'4
B FIBI NIT

l!ODETBL DC A(SETDOM) ,a•oa•,XL2'7F83' D
DC A(SETEOM) ,B'04 1 ,XL2'7F83 1 E
DC l{SETF0l!),H 1 04 1 ,XL2 1 9F03 1 F
DC 2P'0' G
DC A(SETHOM) ,B 1 02 1 ,XL2 1 8F03• H

* OPENINIT LA
BAL
L
LP AGE
LR
SR
KYC
!VC
MVC

FINillIT l'!VC
ST
!!VC
BAL
ZR
IC
SLL
LA
ZR
LA
LH
LB
BCTR
L
ST!!
LA
LH
L
LH
ST!!
B

!!ODO PH !!ODCB
OPEN
LTR
BZR

SHOW CB
!!VC
B

RB,IPGACB
RlO ,OPlHNIT
R3,1USTERPG
(R3)
R4,R1
R4,R3

-133-

OPEN AN EXISTING FILE

PILECNTL,0(R4) BRING IN FILE CONTROL INFO
CB!!ODE,PLMODE RETURN !!ODE
CBtXS,FLICOOR & I COORDS
SENDPAD,CBPAD SAVE USER AREA PAD CHARACTER
R3,STACK-L 1 STACK KASTER PAGE RBA IN PERM STK
STACK-L 1 STACK+4(L'TWINi),TWINi(R1)
R15,PUSHCH
R15
R15,FLMODE
R15,3
R3,B 1 10000000 1 PRESET REGS FOR "SET" FUNCTION
R4 INDEX
R5,QSTRL A(Q STRING)
R6,l'!ODETBL-8•C'D'+4(R15} INDEX STEP
R7,FLLCV
R7,0 INDEX LIMIT
R8,MODETBL-8*C 1 D1 (R15} A(!!ODE SPECIFIC CODE}
R3,R8 ,SETFREGS
R2,NODEAREA A(NODEAREA)
R3,FLLBOD L 1 NODE
R4,RCDADD !(CURRENT RECORD)
RS,CHLDUD• L'NODE W/O CHLD PTR OB USER DATA
R2,R5,MVNODCS PRESET VALUES FOR l'!VCL INSTRS
RTN

ACB=(R8),DDHAME=(*,CBDDNAME)
((R8))
R15,R15
B6
ACB=(R8),AREA=(S,CBRBA} ,LENGTH=4,FIELDS=ERROR
CBS TA TUS, =C 1 AI'
CLSE3

-134-

OPNINIT BAL B6,l!ODOPN

SETFRM

SHOWCB ACB=(RS) ,AREA=(S,CISIZE),LENGTH=12, *
FIELDS=(CINV,AVSPAC,ENDBBA)

L R6,CISIZE
BCTR R6,0
STH R6,DSPMSK RBA DISPLACEMENT MASK
L R14,ENDLABEL
XR R14,R6
ST R14,CIMSK 1 1 5 COMPLEMENT OF DSPMSK
SH R6,=H 1 6 1

ST R6,LRECL
LH RO,CBIBUFRS LOAD I BUFFER PAGES BEING REQ.
XC CB#GETS(L 1 CBIGETS+L'CBIPOTS),CBIGETS
CH R0,*+10
BNH *+8
LA RO,ftAXIBPRS
l!B R0,CISIZE+2
ST B0,PRNTDEL+4 MAXIMUM AMOUNT OP CORE REQ.
LA RO,ftINIBPRS
KH RO,CISIZE+2
ST RO,PRNTDEL MINIMUM AMOUNT OP CORE REQ.
LA RS,PRNTDEL
LA R3,BUPR@
GETMAIH VU,LA=(RS),A=(R3) ,BNDRY=PAGE,SP=SUBPOOLI

L R1,BUPR@
L R14,CISIZE
L R 15, L?IGBUF
l!VI ISUBPOOL,SOBPOOLi
SR R15,R14
AR R15,R1
LA R3,DIRECit
ST R3,PRIORT
L RO,ENDLABEL LOAD A MINUS 1

LR
LA
Ll
ST!!
BXLE
I.C
ST
GEN CB

BR

R4,R3 INITIALIZE PAGING DIRECTORY
R2, 0 (R6,R1) (R 1) + (LRECL)
R3,L'DIRECTRY(R4)
R0,R3 ,RBA (R4)
Rl,R 14 ,SETFBl!
PWD(4,R4),FWD(R4) CLEAR LAST LINK
Rl,PRft(R3) STORE IN XTRAFR! FOR PGRLSE
BLK:RPL,ACB=(S,IFGACB), GENERATE AN RPL
LENGTH=LNRPLAR,WAREA:(S,IFGRPL),
ftSGAREA=(S,RPL~SG),~SGLEN=L 1RPL!SG,

AREALEN=(*,CISIZE},
OPTCD=(CNV,DIR,SYN,NUP)
RlO

* • •
*

CLSE

CLSEO

CLSEl

CLSE2

CLSE3

CLSEll

PIVC
T!!
BNO
M.PAGE
s
!!V'C
LA
L
T!!
BZ
MOD CB
HI
PUT
L
LTR
BNZ

-135-

CBRBA,BIUSDRBA
!!ISCFLGS,FILEXTND
CLSEO
ftASTERPG
R1, !USTERPG
BIUSDRBA-FILECNTL(L'HIUSDRBA,Rl) ,BIUSDBBA
R4,IFGRPL
R2,PRIORT
FLGS(R2),X'F0 1

CLSE2
RPL=(B4),AREA=(*,FB!!(R2)) ,ARG=(S,RBA(R2)}
FLGS(R2),X'0F 1

BPL=(R4) WRITE OUT ANY M.ARKED CI'S
R2,FWD (R2)
R2,R2
CLSE1

LA R4,IFGACB
CLOSE ((R4)}
L RO,LllGBUF
LTR RO,RO
BZ CLSE4
L R1,BUFR@
FREEftAI!f R,A={l),LV=(O)
LPI B14,R15,PREVFCB
ST R14,PREVFCB-FCBAREA(R15)
ST R15,BEXTPCB-FCBAREA(R14)
L BO,SPFCBLNG
FREEPIAIN R,A=(R12),LV=(O)
B RTN

CABTINIT ACB
PRPL RPL

PIACRF=(ADR,SEQ,NCI,OUT,NUB) ,EXLST=XTLST
ACB=CARTINIT,OPTCD=(ADR,SEQ,NUP,MVE},
ARG=XTNDSAVE

SUBPOOLI EQU
SPFCBLNG DC

LTORG
END

17 SOB POOL NUMBER
ALl(SUBPOOLi) ,AL3(FCBLNG}

*

-136-

APPENDIX B

Subroutine VECTOR

VECTOR is a subroutine written as an imple1tentation of
the Schrieter-Thoaas aethod to co•pute the great elliptic
distance and normal section azimuth between two sets of
geodetic coordinates on a selected spheroid. The method vas
obtained froll ACIC Technical Report Number 80, •Geodetic
Distance and Azimuth Computations for Lines over 500 Miles.•
The following comments vere extracted from that report
concerning "Types of Positions".

If the results of a distance and azimuth compu
tation are to have any meaning, the terainal points
used as basic data must be geodetically related, i.e.,
the end points must be derived from field measure1tents
originating from a fixed point and computed along a
common surface (ellipsoid) • The starting point is
usually defined in terms of latitude and longitude,
either astronoaical or geodetic, and the ellipsoid by
the parameters a and b. If the initial point is fixed
astrono1tically, the surfaces have what is known as an
astro-orientation. Geoaetrically, this means that the
geoid and ellipsoid surface coincide at that point and
the fixed starting position is common to both surfaces.
To the geodisist it means that the norital to the ellip
soid coincides vith the local vertical at that point
and the components of the deflection of the vertical
are zero. The astro-geodetic orientation differs froa
the preceding in that it compensates for the surface
departure by correcting the angles between the geoaet
rical. normals and the true local verticals.

Positions on the earth's surface defined vith
respect to such initial quantities fora a geodetic
system or datua. Those deriTed froa different datums
are unrelated and consequently are unusable for inverse
co11putations. The results would be in error and the
magnitude of the error would correspond to the effect
of the differences in the intial quantities of their
datua. Certainly, accurate distance and aziauth cannot

-137-

be expected if the terminal points of the line are
referred to different ori9ins and possibly computed
along different surfaces of unequal size.

Generally, the positions available for an inverse
computation are of three types:

a. Geodetic positions such as described above.
b. Astronomic positions, latitude and longitude of

which have been derived instrumentally by direct
observations of celestial bodies.

c. !ap positions obtained from cartographic
sources.

Type a. are the most accurate although one very
seldom finds tvo points as videly separated as 6000
miles referred to the saae datUlll. The second type, b.,
astronomic points, refer to positions on the geoid and
should not be used since the geoid is not a geoaetrica1
surface. To use these for computational purposes is to
assume that the two surfaces are coincident and the
definition of each point identical on both surfaces.
This assumption could easily result in distance errors
as large as tvo kilometers vhich are as likely to occur
on 500 aile lines as for the 6000 mile lines.

Map positions are adequate as basic data for such
computations if they have been taken from large scale
maps (1:50,000 or greater) of geodetic accuracy. It is
difficult to say precisely what effect such points
would have on the accuracy of the final results for the
length and azimuth of the line. However, assuming the
terminal points to be charged with a 25 aeter error,
the corresponding errors are approximately one second
in azimuth and a maxiaua of fifty meters in distance.

The following derivation has been extracted fro• the
ACIC report, rearranged and expanded to better relate to the
actual subroutine. symbols in capital letters are actual
labels of variables as they appear in VECTOR for the aost
part.

PHI 1 = <P 1 initial latitude

PHI2 = <P 2 terainal latitude

LA!!DA 1 = A.1 initial longitude

LAl!DA2 = A.2 terainal longitude

DELAMD = !:::.\ = A.2 - A 1

-138-

(Note: The report shows A. 1 - A. 2 , but the sign convention
there is positive west; VECTOR uses positive east.)

SINDL = sin (6A.)

SIN2DL = sin2 (6A.)

COSDL = cos (6A.)

TANBl = tan(S 1) = (b/a)•tan(¢ 1)

TANB2 = tan(S 2) = (b/a)•tan(¢ 2)

where

and

a is the semi-major ellipsoid axis
b is the semi-minor ellipsoid axis
f = (a-b}/a is defined as the flattening

(Note that many ellipsoids are defined in terms of
a and 1/f .)

Then b/a = (a-a+b)/a = a/a - (a-b)/a = 1 - f.

Q = tan(¢1)/tan{¢2)

QINV = 1/Q = tan(¢ 2)/tan(¢1)

= f (b/a) •tan(¢ 1) J • ((b/a) •tan(¢ d J

D 1 = Q - cos (6 A.)

D 2 = Q1NV - cos(6A.)

s = Q• {D 2 2 + sin2 (6A.)} = (1/Q) • {D 1 2 + sin2 (6A.) J

= (1/Q} •[{Q - cos (6A.)} 2 + sin2 (6A.))

= (1/Q)•{Q2 - 2•Q•cos(6A.) + cos2(6A.) + sin2(6A.)J

:: (1/Q} • (Q2 - 2•Q•cos (6A.) + 1)

:: Q - cos(tiA.) + 1/Q - cos(6A.)

PS = P•S

-139-

[Hold in floating point register F6 the value

JI = (2•D1 •Dz)/(P+cos (6A.) J J

cot (6cr) = {P+cos (6A.) }/{fPS+sin2 (6 A.)'J

COT2SG = cot2 (6cr) = {P+cos (t,;\)} 2/ {PS+sin2(LH)1

(then H • = 1.5• (0-1/Q) 2 /{1+cot2 (6cr) J]

given 1/n = (2 + 1/n0) • {PS+sin2 (6 A.) J /PS - 2

no = (a-b) / (a+b)

1/'Jl 0 = (a+b) / (a-b)

= (a+b + a-b) / (a-b) - 1

= 2•a/ (a-b) - 1

= 2/f - 1 = ELLIP

1/n = (2+ELLIP)•{PS+sin2(6A.)}/PS - 2

= [(2+ELLIP). {PS+sin2 (6A.)} J/PS - 2•PS/PS

= ((2+ELLIP) • {PS+sin 2 (6A.) J - 2•PS]/PS

n = PSI[2• {PS+sin2 (6A.)} + ELLIP• {PS+sin2 (6 A.)) - 2•PS]

= PS/[ELLIP• {PS+sinZ (6A}} + 2•sin2 (6A.)]

I = 1 - n + (5/4) •n 2

= [(5/4) •n - 1) •n + 1

COTDW = cot (6w) = cot (6cr) •ff - 2•J - (3/2) •HJ

= cot(t.cr)•[I - (n/S)•(2•D 1 •D 2)/{P+cos(6A.)}

- {n/S} ih {1.5• (Q-1/Q} 2J/{1+cot2 (6cr)}]

= cot(t.cr)•{I - (n/S)•J' - (n/SJ2•H'J

= y'cot2(t.crf•[I - (n/S)• {J' + (n/S}•H'J]

t.w = cot-• (COTDW)

DSTNCE(in meters} = I•a•t.w

-140-

In all of the calculations, 6A is to be the polar
angle< TI (180°}. But since cos(2TI - a} = +cos(a) and
distance calculations used on1y sin 2 (6A}, where
sin(2TI - a) = -sin(a), the direction of 6A has aade no
difference so far. However, azimuth calculations need the
proper sign on sin(6A). Note first that if 6A is zero, the
heading is to be determined by comparing the aagnitude of
initial and terminal latitudes. If ¢z ~ ¢i, aza = 0°, else
azm = 180.0°. If 6A is not zero, but sin (6A} is zero, i.e.,.
6A = TI,. azm = o.oo.

It turns out that no adjustaent need be made to the
sign of sin(6A). First consider the line on the surface of
the earth that is being measured. Since 6A = Az - Al and a
positive east convention bas been assumed, 6A > TI only when
the line being measured crosses the international date line.
Here 6~. > TI would indicate using the identity
sin(2TI - a) = -sin(a), since the polar angle of interest is
2TI - 6A. However, due to crossing the date line, the sign
of this angle is wrong according to a positive east
convention. Thus the desired angle is actually -(2TI - 6A)
or 6A - 2TI, but the -2TI may be dropped. Therefore, we end
up with sin (6A) again and no further adjustments need be
made to calculate the aziauth as:

cos cs 1). {tan cs 2) -tan cs 1) •cos (6A) J. r 1-e2cos2 cs 1) I

sin (6A)

where E 12 is the elliptic arc forward azimuth (heading)

and ez is the major eccentricity squared

ESQD = ez = (aZ - b2}/a2

cos(Si) = ycos 2 (S1>'

cosZ(Si) = 1/sec2(Si) = 1/{l+tan2(Sl)J

1 - ezcosZ(S 1) = 1 - e2/(l+tan2(S1JJ

= {l+tan2 CS 1) -e2J /{l+tanz (Si)}

cos (S 1) •yl-ezcosz (Si>' = y{secz (S 1) -e21jsec2 (Si)

(
{tan (S 2)-tan CS 1) •cos (6A) J •ysec2 (Si) -ez')

E
12

= cot-i
sin foA} •sec 2 (S 1)

The arccot function returns an ang1e between -rr and TI.
if E12 < O, add 2TI to give a heading between o0 and 3600.

-141-

When the coordinates are expressed in degrees, minutes
and seconds, linkage in a calling program is made by:

CALL VECTOR (alatd,alat11,alats,alond,al.on11,alons,alonev ,
blatd,blata,blats,blond,blonm,blons,blonev,
dstnce,(head,]i)

where:

alatd, alata, alats - latitude of the initial point in
degrees, minutes, seconds (4-byte
arguaents)

alond, alona, alons - longitude of the initial point in
degrees, minutes, seconds (4-byte
arguments}

alonev - heaisphere of the initial longitude point;
•w• is vest. (1-character argument)

blatd, etc. - latitude, longitude and hemisphere of the
terminal point

dstnce the computed distance between point •a• and
point 'b' (single or double precision real/
coap-1 or comp-2 (see i below)}

head - the forward azimuth measured clockwise from
north. If head is omitted or is initialized
to a value of 999.0, the aziauth computation
is suppressed. (single or double precision
real/co•p-1 or comp-2 (see i below}}

i the unit of measure that dstnce and head are to be
coaputed in; i is defined as a four byte argument,
but is actually interpreted as two halfwords, i'
and ift with coapatibility to a fullword integer.
If the lower (bytes 3 and 4) halfword, i" < O,
then dstnce is returned as a double precision real
(coap-2) value, otherwise as a single precision
(coap-1) value. The units are based on the abso
lute value where:

ti• I = 1 returns
2
3
4
else

nautical miles,
feet,
statute 11iles,
kilometers,
aeters.

-142-

If the upper (bytes 1 and 2) halfword, i• < O,
then head is returned as double precision real
(coap-2), otherwise as a single precision value.
The units returned are specified by the absolute
value where:

fi't = 0 or 1 returns
2
3
else

degrees,
minutes,
seconds,
radians.

If coordinates are expressed as deqrees, minutes and
seconds and are grouped in a 16 word array of 4-byte argu
ments arranged as:

array (01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

alatd
alat11
ala ts
alatns
alond
alonm
alons
alonew
blatd
bl a ta
bl a ts
blatns
blond
blonm
blons
blonew

then use the calling sequence:

CALL VECTOR (array,dstnce,(head,]i)

Words 4, 8, 12 and 16 of the array are 14 (Hollerith} or
PIC X(4) character data with blank fill.

-143-

When the coordinates are expressed in radians or
coaposite arc seconds, the linkage is:

CALL VECTOR (alat,alon,alonev,blat,blon,blonew,
dstnce ,[head,]i)

where alonev, blonev, dstnce, head and i are as described
above and alat, alon, blat and blon are the latitude and
longitude of the initial and terminal points in units of:

1) radians if in floating point
2} arc seconds if in binary integer.

A variant of this call is:

CALL VECTOR (alat,alon, blat,blon,
dstnce ,[head, Ji)

where longitude hemisphere indicators are omitted and the
latitude and longitude are signed values with north and east
as positive.

Known Limitations
Accuracy has been tested only to 6000 statute miles.

Due to the ratios of tangents that are calculated, points
that are exactly on the equator (0°} and mathematically
•close" to the poles (±90°} will cause an abort due to a
divide by zero check. However a latitude close to the
equator may be specified as approximately in the range of
10-10 arc seconds to prevent the divide by zero condition.

Remarks
The arguments listed as "4-byte argumentsn may be

either single precision real/comp-1 or signed binary full
word integer/comp. There is one exception: if the latitude
and longitude are being supplied as arc radians, and the
distance is being requested in double precision, then the
latitude and longitude are also assuaed to be double
precision values. The results are always returned as
floating point values, either single precision/coap-1 or
double precision/coap-2 as requested by the signs of i•
and i".

The alias RADVEC aay be used in place of VECTOR in any
of the calls described.

-144-

APPENDIX C

VECTOR SOURCE

VECTOR TITLE '*** SUBROOTINE(S) VECTOR/RADVEC ***'
*AUTHOR: ftAJ. S. V. PETERSEN, HQ SAC/ADINSD; EXT. 3952
* DATE WRITTEN: 1 HOV 76

* REFERENCE: ACIC TECHNICAL REPORT NUl'JBER 80,
* "GEODETIC DISTANCES AND AZIMUTH COMPUTATIONS
* POR LINES OVER 500 MILES"

* DISTANCES ARE CALCULATED AS A GREAT ELLIPTIC, USING THE
* SCHREITER-THOKAS KETHOD AS DESCRIBED IN APPENDIX I OP THE
*REPORT. SOKE OP THE COMPUTATIONS HAVE BEEN ~ANIPULATED
*INTO A DIFFERENT FORK TO FACILITATE PROCESSING.
* SOKE ERRORS ALSO APPEAR IN THE WRITE-UP, WHICH HOPEFULLY
* HA VE BEEN CORRECTED.

* IP THIS ROUTINE IS ASSEMBLED WITH AN ASSEKBLER THAT ALLOWS
* THE •SYSPARK" OPTION, THE SPHEROID USED POR A BASE OF
* CALCULATION !'JAY BE CHANGED AT ASSEl'JBLY TIME. ENTER THE
* NAKE OF THE DESIRED SPHEROID AS THE SYSPARK VALUE AS:
* SYSPARft(AIRY)
* SY SPARK (A.!'! .S .)
* SYSPARl'J(BESSEL)
* SYSPARft(CLARK 1866)
* SYSPARl'J(CLARK 1880)
• SYSPAR!!(INTERNATIONAL)
* SYSPlR!! (HAYFORD) SAKE AS INTERNATIONAL
• SYSPAR!!(KRASSOVSKY)
* THE DEFAULT SPHEROID IS THE CLARK 1866 DATUM.

&IB!360

.I BE CO
&AIRY

.IBEC1
&Al!S

.IREC2
&BESSEL

.IREC3

.IREC3A
&CLK1866

.IREC4
&CLK1880

.IRE CS

.IRE CSA
&HAYFORD

.IREC6
&KRSVSKY
.IREC99

GBLB
SETB
GBLB
GBLB
AIP
AIF
SETB
AGO
AIF
SETB
AGO
AIF
SETB
AGO
AIF
ANOP
SETB
AGO
AIF
SETB
AGO
AIP
AIF
!NOP
SETB
AGO

&IBl!360 SET TO l FOR USE ON 360
0
&AIRY,&AMS,&BESSEL,&CLK1866,&CLK1880,&HAYFORD
&KRSVSKY
(&IBM360) .IREC3A NO &SYSPARl! ON 360
(1 &SYSPARM 1 NE 'AIRY').IRECl
1
.IREC99
(1 &SYSPARM 1 NE 1 A.M.S. 1).IREC2
1
.IREC99
(1 &SYSPARM 1 NE 'BESSEL').IREC3
1
.IREC99
(1 &SYSPARM 1 NE 'CLARK 1866 1).IREC4
CLARK1866 IS THE DEFAULT DATUM

1
.IREC99
(1 &SYSPARM 1 NE 'CLARK 1880') .IRECS
1
.IREC99
('&SYSPARM' EQ 'INTERNATIONAL') .IRECSA
(1 &SYSPARM 1 NE 'HAYFORD') .IREC6

1
.IREC99
(1 &SYSPARM 1

1
NE 1 KRASSOVSKY'}.IREC3A AIF

SETB
ANOP
PUNCH 1 ALIAS RADVEC'

-146-

VECTOR CSE CT
USING *,R15
B PASTCOHS
DC AL 1 (L 'VCTID)

VCTID DC C1 VECTOR/RADVEC'
lIF (&IBP! 360) .SKDT
DC c•.&sYSDATE •• &SISTIP!E'

.SKDT !NOP
RADVEC EQU VECTOR

ENTRY RADVEC

SAVEAREA DC 9D•O•

OHIT DC D1 1852.' P!ETERS/HAOTICAL P!ILE
DC D'0.3048' l!ETERS/l"OOT
DC D 1 1609.34 4 • ~ETERS/STATUTE MILE

· DC D' 1000 •• PIETERS/KILOMETER
NU HITS EQU (*-UNIT) /8

PI DC D•3.141592653589793238462643•
TWOPI DC D1 6.283185307179586476925286•
RADDEG DC D1 57.29577951308232087679816' DEGREES/RADIAN

DC D1 3437.746770784939252607890 1 lUNUTES/RADIAN
DC D1 206264.8062470963551564734' SECONDS/RADIAN

NA OHS EQU (*-RADDEG)/8

UHZR1 DC XL8'4E00000000000000 1

DL40VPI DC XL8 1 41145F306DC9C883 1 4/PI

PO EQU 0
P2 EQU 2
F4 EQU 4
P6 EQO 6
RO EQU 0
Rl EQU 1
R2 EQO 2
R3 EQU 3
R4 EQU 4
RS EQU 5
R6 EQO 6
R7 EQU 7
RS EQU 8
B9 EQU 9
R10 EQU 10
Rll EQU 11
B12 EQU 12
R13 EQO 13
R14 EQU 14
R15 EQU 15

-147-

CONST DC D1 4.848136811095359936E-6 1

DC D1 60.0 1

DC D1 60.0 1

ACTC1 DC XL8 1 BP1E31FF1784B965 1

ACTC2 DC XL8 1 COACDB34COD1B35D 1

ACTC3 DC XL8'412B7CE45APSC165 1

ACTC4 DC XL8 1 C11A8P923B178C78 1

ACTCS DC XL8'412AB4PD5D433PP6 1

ACTC6 DC XLB 1 C02298BB68CFD869 1

ACTC7 DC XL8 1 41154CEE8B70CA99 1

ONE DC D1 1 .. o•
ACTC9 DC IL8 1 411BB67AE8584CAB' SQRT (3)
ACTD1 DC D•o.o•

DC XL8 1 C0860A91C16B9B2C 1 -.52359884
PIOV2 DC XL8'411921PB54442D18 1 PI/2

DC XL8 1 4110C152382D7365 1

ACTCE DC XL4 1 0E000000 1

ACTCP2 DC XL4 1 F2000000 1

ACTC3A DC XL4 1 3A100000'
AC'l'C40 DC XL4 1 40449851'

SCA DC XL8 1 3778PCEOESAD1685 1 SIN
DC XL8 1 B66C992E84B6AA37 1 cos

SCB DC XL8 1 B978C01C6BEF8CB3 1 SIN
DC XL8 1 387E731045017594 1 cos

sec DC XL8 1 3B541EOBP684B527' SIN
DC XL8'BA69B47B1E41AEF6 1 cos

SCD DC XL8 1 BD265A599CSCB632 1 SIN
DC XL8 1 3C3C3EAOD06ABC29' cos

SCE DC XL8 1 3EA335E33BAC3FBD 1 SIN
DC XL8 1 BE155D3C7E3C90F8 1 cos

SCP' DC XL8 1 C014ABBCE625BE41 1 SIN
DC XL8 1 3P40F07C206D6AB1' cos

SCG DC XL8 1 40C90PDAA22168C2 1 PI/4 SIN
DC XL8 1 C04EF4P326P91777' cos

PIOV4 EQO SCG
ZERO EQU ACTD1

TCTA DC IL8 1 C41926DBBB1P469B 1

TCTB DC XL8 1 4532644B1E45Al33'
TCTC DC XL8 1CSBOP82C87113B68 1

TCTD DC XL8 1 C58AFDD0A41992D4 1

TCTE DC XL8 1 44APPA6393159226 1

TCTP' DC IL8 1 C325FD4A87357CAF'
TCTG DC XL8 1 422376F171F72282'

-148-

* REFERENCE ELLIPSOID CONSTANTS

* * A = SE~I-KAJOR AXIS (METERS}
* P = FLATTENING = (A-B)/A
* PINV = 1/F
* ESQD MAJOR-ECCENTRICITY SQUARED
* = (A**2 - B**2)/A**2
* BOVRA SEMI-MINOR/SEMI-MAJOR = 1 - F
* NO = (A-B)/(A+B)
* ELLIP = 1/NO = 2*FINV - 1
• • •

A 1/F B

• RECl AIP (NOT &CLK1866).REC2
.RECDF ANOP
* CLARK 1866

F
E**2

• 6378206.4000 294.978698 6356583.8000 .00339007530393
* .00676865799729

A DC D•6378206.40 1

ESQD DC D'.00676865799729 1

BOVRA DC D'0.99660992469607•
ELLIP DC D1 588.957396•

AGO .REC99
.REC2 AIP (NOT &HAYFORD).REC3
* INTERNATIONAL (HAYFORD)
* 6378388.0000 297.000000 6356911.9461 .00336700336700
* .00672267002233

A DC D1 6378388.00•
ESQD DC D'0.00672267002233 1

BOVRA DC D'0.996632996632996632 1

ELLIP DC D1 593.0 1

AGO .REC99
.REC3 AIF (HOT &KRSVSKY}.REC4
* KRASSOYSKY
• 6378245.0000 298.300000 6356863.0188 .00335232986926
• .00669342162297

A
ESQD
BOVRA
ELLIP

DC
DC
DC
DC
AGO

D'6378245.0 1

D'0.00669342162297'
D'0.99664767013074 1

D1 595.6 1

.REC99

-149-

.REC4 AIF (NOT &CLK1880).REC5
* CLARK 1880
* 6378249.1450 293.465000 6356514.8695 .00340756137870
* .00680351128285

A
ESQD
BOVRA
ELLIP

.RECS
* AIRY

DC
DC
DC
DC
AGO
AIF

D1 6378249.1450'
n•.00680351128285'
D'0.9965924386213•
D1 585.930 1

.REC99
(NOT &AIRY) .REC6

* 6376542.0000 299.300000 6355237.1487 .00334112930170
* .00667109545840

A
ESQD
BOYRA
ELLIP

.REC6

DC D1 6376542.00•
DC D'.00667109545840 1

DC D'0.9966588706983•
DC D'597.60 1

AGO .REC99
AIF (NOT &AftS).REC7

* A .PI .S.
* 6378270.0000 297.000000 6356794.3434 .00336700336700
• .00672267002233

A DC D1 6378270.00•
ESQD DC D'0.00672267002233'
BOVRA DC D'0.996632996632996632'
ELLIP DC D1 593.0 1

AGO .REC99
.REC7 AIF (NOT &BESSEL) .RECDF
* BESSEL
* 6377397.1550 299.152813 6356078.9628 .00334277318503
• .00667437223749

A
ESQD
BOVRA
ELLIP

DC
DC
DC
DC

.REC99 Alf OP

0 1 6377397.1550 1

D'.00667437223749 1

D'0.99665722681497 1

0 1 597.305625•

-150-

WKlBEA DC D'0'

COORDS DS OD
LAMDA2 DC D'O' LONGITUDE TERMINAL POINT
PHI2 DC D•O• LATITUDE TERMINAL POINT
LA!!DA 1 DC D1 0' LONGITUDE INITIAL POINT
PHI1 DC D•O• LATITUDE INITIAL POINT

SINDL DC o•o• SIN (DELAMD)
SIN2DL DC 0 1 0 1 SIN**2 (DELAMD)
COSDL DC o•o• COS (DELA.MD}
TANBl DC D'0' TAN (BETA 1) = (B/A) *TAN (PHil)
TANB2 DC D 1 0 1 TAN (BETA2)
s DC D 1 0 1 Dl + D2
PS DC 0 1 0 1 P*S
DELA.l'!D EQD LAl'!DA 1 LA.l'!DA2 - LAMDA 1
COT2SG EQU LAMDA2 COT**2 (DELTA_SIGMA)
TB2 EQU COT2SG TEMP STORE
COTDW EQU COT2SG COT(DELTA_OMEGA)
TANPH1 EQU LAMDA2 TAN (PHil}
Dl EQU LAMDA2 Q - COSDL
SWITCH EQU s
I EQU PS 1 - N + 1.25*N**2
IJH EQU s I - 2*J - 1.S*H

TEl!P2 DC D'O'
PCOSDL DC p1Q I P+COS (DELAMD) (NEED THE SIGN)
SCQ EQU PCOSDL+3

MIN!! DC XL4'35400000 1

C24l'!8 DC P 1 24,-8 1

PAST CONS

CNTPRl!S

EOFLST

*
BTBL

*
WBNGNBR

NOHE AD
NOBE AD@

-151-

STM R14,R12, 12 (R13)
LR R2,R13
LA R13,SAYEAREA
DROP R15
USING SAVEAREA,R13
ST R2,4 (R13)
ST R13,8 (R2)
,.VI SWITCB,O
LM R4,RS,c2qaa
LA R6,STORAD
LR R2,Rl COUNT THE NUMBER OF PARMS
LA R11',4 PASSED
LA R15,(17-1)*4-8(R1}
T!! a (R2) ,x •ao • ABSOLUTE MINIMUM IS THREE
BO EOPLST
BILE R2, R 14 ,CNTPR!!S
B WlUlGNBB

LM R10,R12,0 (B2) A(DSTNCE,HEAD(?) ,IUNIT}
SR R2,R1
SRL R2,2
IC R14,BTBL(B2)
B WRNGNBR(R14)

IABGS = 3, 4, 5, 6, 7, 8, 9,
DC
DC

DC
DC
B

LR
EQO
LA
IC
B

AL1(NOBEAD@,ARG4@,0,NOHEAD@,ARG7@,NOHEAD@,ARG9@}
AL1(0,0,0,0,0,0,NOHEAD@,ARG17@,0)

10 --- 15, 16, 17
I'B2E0 1 ,H'32' THIS INVALID OPCODE TERMINATES
CL32 1 WRONG NU!BER OF ARGUMENTS PASSED'
RTN

R10,R11 OPTIONAL AZIMUTH PARAMETER MISSING
NOHEAD-WRNGNBR
R11,=E 1 999.0 1 SUPPRESS THE CALCULATION
R14,BTBL+l(R2)
WRNGNBR (R 14)

* • •
ARG17
ARG17i
DP!SBAD

CNVRT17

CV17POSI
CV17R

-152-

VECTOR (ALATD,ALATP!,ALATS, ALNGD,ALNGM,ALNGS,AEW,
BLATD,BLAT!,BLATS, BLNGD,BLNGM,BLNGS,BEW,
DSTNCE, <HEAD,> IUNIT}

LA
EQU
LD
LA
L
LA
l'!YC
TP!
BM
BZ
L
LPR
ST
PIVI
OI
AD
MD
BXH
BR

R14,DMSRAD
ARG17-iRNGNBR
FO,ZERO
R3,16
R15,0 (Bl)
R1,4(R1)
WKAREA (4) ,O (R 15)
WKAREA,X 1 FF''
CV17R
CV17POSI
RO,iKAREA
RO,RO
RO,WKAREA
WKAREA,X 1 80 1

VKAREA,X•46 1

FO,WKAREA
FO,COHST {R3)
R3,R5,CNVRT17
R6

INDEX

MOVE IN VALUE

REAL*4
POSITIVE INTEGER*4
NEGATIVE INTEGER*4

P!AKE NEGATIVE
INTEGER. MAKE AN UNNORI'! REAL

TO CHECK EAST/WEST AND STORE.

•
*

ARG7
ARG7ii

ARG9
ARG9@
RADS EC

ARGSEC

STORAD

STVL

-153-

VECTOR (LATR1, LNGR1, <AEW,> LATR2, LNGR2, <BEW,>
DSTNCE, <HEAD,> IONIT)

LA
EQO

LA
EQU
L
LA
TPl
BNM
SDR
LE
T!!
BNOR
LD
BR

L
LPR
ST
!!VI
TM
BNO
II
LD
zim
BR

XI
BNZ
L
LA
CLI
BNE
LCDR
STD
BXH
B

R6,STVL
ARG7-WRNGNBR

R14,RADSEC
ARG9-iRNGNBR
R15,0 (R1)
R1,4 (Rl)
O(R15),X 1 PF'
ARGSEC
FO,FO
PO,O (R15)
2(R12),X'80 1

R6
PO,O (R15)
R6

RO, 0 (R15)
RO,RO
RO,WKAREA
WKAREA,X 1 46'
0 (R 15) , X' 8 0 '
•+8
WKAREA,x•so•
FO,WKAREA
FO,CONST
R6

SWITCH,1
STVL
R15,0 (Rl)
Bl, 4 (Rl)
O(R15),C'W'
STVL
P'O,PO
PO,COORDS (R4)
R4,R5,0 (R14)
DONECVRT

LOAD A SINGLE PRECISION RADIAN
INPUT VALUE UNLESS THE DISTANCE

IS REQUESTED IN DOUBLE PRECISION

REAL*8 RADIANS

INTEGER SECONDS

MAKE NEGATIVE

CONVERT TO RADIANS

BRANCH ON LATITUDE

COMPLEMENT ON WEST

(FO) = COORDS (0) = LAP!DA2

*
ARG4
ARG4@

* ARRDf!S

CNVRT4

CV4POSI
CV4R

WORS

*

-154-

VECTOR (LTLNARR, DSTNCE, <HEAD,> IUNIT)

L
EQO
LA

LD
LA
MVC
LA
Tl'J
Bf!
BZ
L
LPR
ST
~VI

OI
AD
l'JD
BXH
CLI
BE
CLI
BNE
LCDB
STD
LA
BXH
B

R 15 ,O {Rl)
ARG4-WRNGNBR
R1, 4(R1)

PO,ZERO
R3,16
WKAREA (4) ,O (R 15)
R15,4 (R15}
WKAREA, X •pp•
CV4R
CV4POSI
RO,WKAREA
RO,RO
RO,WKAREA
WKAREA,x•ao•
WKAREA,X•46•
PO,WKAREA
F0,CONST(R3)
R3,R5,CNVRT4
0 (R 15) , C' S '
WORS
o (R 15) ,c•w •
•+6
FO,PO
PO,COORDS {R4)
Rl5,4 (R15)
R4,R5,ARRDl'JS
DONCVRT

ARRAY OP 16 WORDS; SAl.'JE
ORDER AS
ARG17 PARMS, BUT ADD A
WORD FOR LAT NORTH/SOOTH

REAL*4
POSITIVE INTEGER*4
NEGATIVE INTEGER*4

MAKE NEGATIVE
INTEGER. l'JAKE AN UNNORl.'J REAL

IGNORE E, N
COMPLEMENT WEST, SOUTH

(FO} = COORDS(O) = LAl.'JDA2

-155-

DONE CV RT DS OH

* LD FO,LAl'!DA2
SD PO,Ll!!DA 1
STD FO,DELAl'!D POLAR ANGLE
BNZ KALLSIN
STD PO,SINDL SIN (0) = 0
STD PO,SIN2DL
LD F6,PHI1 IS THIS A ZERO DISTANCE CALL?
CD F6,PHI2
BE STD ST YES
LD PO,ONE cos (0) = 1.
B STCOSDL

KALLSIN LA B15,4 SINE OP NEGATIVE VALUE
Bl'! •+6
SR R15,R15 SINE OP POSITIVE VALUE
BAL R7,SC1
STD PO,SINDL
!!DR FO,PO
STD FO,SIN2DL
LD FO,DELA!!D
LA R15,2 COSINE OF VALUE
BAL R7,SC1

STCOSDL STD PO,COSDL
LD FO,PHil
BAL R7,TANG
Tl'! PHI1,x•eo•
BNO •+6
LCDR PO,PO
STD FO,TANPHl
l'!D PO,BOVRA
STD P'O,TANBl PARAl'!ETRIC LATITUDE
LD P'O,PHI2
BAL R7,TANG
Tr! PHI2,X'80 1

BNO •+6
LCDR PO,FO
LDR P6,PO
LD P4,TANPH1
DDR P6,F4 QINV = 1/Q
DDR F4,PO Q = TAN (PHI 1) /TAN (PBI2)
l'!D PO,BOVRA
STD PO,TABB2
l'!D P'O,TANB1 (PO) = p
LDR F2,F4
SDR F2,F6 (P2) = Q - 1/Q
SD F4,COSDL (F4) = D1
STD P4,D1
SD P6,COSDL (F6) = D2
ADR P4,F6
BZ SZE RO

-156-

STD F4,S s = D1 + D2
!!DR F4,FO
STD F4,PS P*S
LTDR F4,F4
BNP SZERO
AD F4,SIN2DL PS + SIN**2 (DELAl!D}
AD FO,COSDL p + COS (DELA!!D)
STE FO,PCOSDL
DDR F6,FO D2/(P+COS(DELA~D})
P!D F6,D1 Dl*
ADR F6,F6 2*
f!DR FO,FO (P+COS(DELA!!D))**2
DDR FO,P'4 /(PS+SIN**2(DELA!!D})
STD FO,COT2SG = COT**2{DELSIGMA)
AD PO,ONE
MDR F2,P2 (Q-1/Q) **2
DDR P2,P'O / (COT2SG+1)
rm P2,=n•1.s• 1.5• "H"
P!D P'4,ELLIP
AD 1'4,SIN2DL
AD P4,SIH2DL
LD PO,PS
DDR PO,F4 (FO) = N
LD F4,=n•1.2s• (1.25
P!DR F'l,FO *N
SD P4,0NE -1)
!DR F4,FO *N
AD P4,0NE +1
STD P4,I = I
DD FO,S (PO} = N/S
P!DR F2,FO
ADR P2,F6
MDR P2,FO
SDR Fll,F2
LD F2,COT2SG
BAL R7,SQT
!!DR FO,F4
LD F2,0NE
BAL R7,ACT
Tl! PCOSDL,x•ao•
BNO CAL CL
SD PO,PI
LPER PO,PO

CALCL P!D FO,I
CA LC LE l!D FO,A (PO) = DISTANCE IN ~ETERS

LH R15,2 (R12) CHECK DISTANCE UNITS
LPR R15,R15
BZ STD ST
c R 15, =l (NU NITS)
BH STD ST
SLA R15,3
DD PO, UNIT-8 (R 15)

-157-

STDST Tl'! 2 (R 12) , X' 8 0 '
BNO STD STE
STD PO, 0 (R10) RETURN AS "DSTNCE" VALUE REAL*8
B CHKAZM

STDSTE DS OB
AIP (&IBPI360) .V1
LRER FO,FO ON A 370, WE CAN ROUND NICELY

.v1 STE PO,O(R10) RETURN AS "DSTNCE" VALUE REAL*4

CHKAZl'! CLC 0 (4,Rll) ,=E 1 999.0 1 AZil'!UTH DESIRED?
BE RTN

LD P4,SINDL
LPDR FO,P4
BliZ CALCHEAD
LD F6,PHI1 SIN {DELAPID) = 0
T!! COSDL,X'80'
BNO CHO
LCER P6,P6 (POLAR ANGLE IS PI)

CHO CD F6,PHI2 IF COS(DELAMD)*PHil < PHI2
BHH STHD HEAD = o.o;

LDPI LD PO,PI ELSE HEAD = 180
B STHDPI

CALCHEAD LD P2,TANB1
l!DR F2,!'2
AD P'2,0NE
MDR F4,P'2 SINDL*SEC2B 1
STD F4,SINDL
SD F2,ESQD
STD F2,TB2
BAL R7,SQT
LD P'4,TANB2
LD F6,TANB1
MD F6,COSDL
SDR P'4,P6
!!DR FO,F4
STD P'O,TB2
LD F2,SINDL
LPER P2,F2
LPER FO,!'O
BZ CH1
STE F2,TEMP2
L R14 ,TEI!P2
STE PO,TEMP2
s B 14, TE!!P2
c R14,ACTCE
BNH CH2

CH1 LD PO,PIOV2
B CHSGH

-158-

CH2 TM TB2,x•so•
BNO CHA CT
c R14,ACTCF2
BL LDPI

CH ACT BAL R7,ACT
CHSGN Tl! TB2,x•so•

BNO *+10
LCDR PO,FO
AD FO,PI
TM. SINDL,X 1 80 1

BNO *+10
LCDR FO,FO
AD FO,TWOPI

STHDPI LB R15,0{R12) CHECK AZIMUTH UNITS
LPR B15,R15
BZ STCNV GIVE DEGREES ON 0 OR 1

* COULD BE A 1 IP A NEGATIVE FULL WORD WAS GIVEN AS FLAG
BCTR B15,0
c R15 ,=A (NAUNS)
BHL STHD RADIANS ON ALL ELSE
SLL R15,3

STCNV ftD F0,RADDEG(R15)
STHD Tl! o {R12) ,x•ao•

BNO STHDE
STD FO,O (Rll)
B RTN

STHDE DS OH
AIP (&IBM360) • V2
LRER FO,PO ROUND ON A 370

.V2 STE FO, 0(Rl1}

RTN L R13,4(R13)
RETURN (14, 12) ,T,RC=O

SZERO LD FO,ZERO
Tl! COSDL,x•eo•
BZ STD ST
LD F0,=D 1 3.1362 1 ELLIPTIC CIRCUMFERENCE
B CAL CLE

SQT

SQT1

LPDB
BZR
SB
IC
LA
SRDL
STC
LE
l!YC
AE
!!E
LTR
BN!!
AER
AER
DER
AUR
H.BR
LER
DER
AUR
BER
LDR
DDR
!WR
BDB
DDR
SDR
BER
SU
AO
ADR
BR

LTORG

-159-

FO,P2
R7
R14,B14
B14,TB2
B14,x•31• (R14}
R14, 1
R14,TB2
F6,TB2
TB2+1(3),=X 1 423A2A 1

F6,TB2
P6,=X •48385F07•
R15,R15
SQT1
1'6,P6
P6,1'6
P2,F6

SQUARE ROOT FUNCTION
RETURN ON ZERO

P6,P2
P6,P6
F2,PO
P2,F6

REFINE USING HERON'S METHOD
(NEWTON-RAPHSON}

P6,F2
P6,F6
P2,PO
P2,F6
F6,P2
F6,P6
FO,P'6
F0,F6
FO,PO
P0,TB2
PO,TB2
!'O,P6
R7

-160-

SCl BAL R14,0CTANT SINE/COSINE
LA R15,8 CALC COSINE?
Tl! SCQ,X 1 03 1

Bl! scs YES
SB R15,R15 NO, CALC SIN

scs CE P4, PUN!!
BH SC6
LD PO,ZERO
B SC7+2(R15)

SC6 !!DR PO,PO
LDR P2,FO
l!D PO, SCA (R15)
AD PO,SCB (R15}
MDR PO,F2
AD PO,SCC (R15)
l!DR PO,F2
AD PO, SCD (R15)
!!DR PO,P2
AD FO,SCE (R15)
!!DR PO,P2
AD FO,SCP (R15}
!!DR PO,P2
AD PO,SCG (R15)
B SC1(R15)

SC1 !!DR PO,P4 POR SIN
B sea
HOPR 0 SPACE TO 8 BYTES
l!DR FO,F2
AD PO,ONE

sea Tl! SCQ,X 1 04 1 IS SCQ 4 TO 11
BZR R7
LCDR PO,PO
BR R7

OCTANT LPDR FO,PO
l!D FO,DLZIOYPI
CE FO,ONE
BL OCTl
LDB P4,PO
Ai P4,URZR1
STD P4,TEMP2
AD F4,UNZR1
SDR FO,F4
AL R15,TEMP2+4

OCT1 STC R 15 ,SCQ
T!I SCQ,X 1 01 1

BZ OCT2
SD PO,ONE

OCT2 LPDB F4,PO
BR Rl4

-161-

TANG SR R15,B15 TANGENT FUNCTION
BAL R14,0CTANT
LD F2,TCTG
LD F6,0NE
CE F4, l'!INI!
BL TCT2
!!DR FO,PO
LDR F6,PO
AD P6,TCTP
MDR P6,PO
AD P6,TCTE
!!DB F2,FO
AD P2,TCTA
f!DR P2,FO
AD P2,TCTB

TCT2 !!DR F2,PO
AD F2,TCTC
l!DR PO,P6
AD PO,TCTD
!!DR PO,P4
T!! SCQ,I'03'
B!! TCT3
DDR PO,F2
B TCT4

TCT3 DDR P2,PO
LDR PO,P2

TCT4 Tl! SCQ,X 1 02 1

BZR R7
LCDR PO,FO
BR R7

-162-

ACT CDR PO,F2 ARCCOTANGENT FUNCTION
BH ACT02
BL ACT01
LD P0,PIOV4 (X) = 1, LOAD PI/4 AND RETURN
BR R7

ACT01 DDR PO,F2
LA Rl,16
B ACT03

ACT02 DOB P2,PO
LDR PO,F2
SR R1,R 1

ACT03 LA R14,ACTD1
LD P4,0NE
CE PO,ACTC3A
BNH ACT OS
CE PO,ACTC40
BNH ACT04
LDR F2,FO
!ID PO,ACTC9
SDR FO,P4
AD P2,ACTC9
DDR PO,P2
LA R14 ,8 (R 14)

ACT04 LDB P6,FO
!!DR PO,PO
LD P4,ACTC7
ADR F4,PO
LD P2,ACTC6
DDR P2,.F4
AD F2,.ACTC5
ADR P2,PO
LD F4,ACTC4

ACTOS DDB P'4,P2
AD P4,ACTC3
ADR F4,PO
LD P2,ACTC2
DDR P2,P4
AD F2,ACTC1
!!DR PO,F2
!!DR PO, P'6
ADR F0,F6
SD PO, 0 (R 1,R 14)
LPEB PO,.FO
BR B7

END

-163-

APPENDIX D

COPY BOOKS FOR COBOL PROGRAMS USING CARTA~

CARTCB07 CO~ftUNICATION BLOCK.

05 DDNA!E PIC X(8) VALOE 1 GEOINDEX 1 •

05 FUNCTION-CODE VALUE 1 0PEN 1 •

10 FUNCTION-CODE-1 PIC X.
10 FUNCTION-CODE-2 PIC X.
10 FUNCTION-CODE-3 PIC X.
10 FONCTION-CODE-4 PIC X.

88 CONTINUE-WALK VALUE ' '
88 DISCARD-SUBTREE VALUE 'T'.
88 KEEP-ALL-CHILDREN VALUE 'L'.

05 STATUS-CODE PIC XX.
88 GOOD-CARTAM-OPEN VALUE ' '
88 SOCCESSPUL-CARTAM VALUE ' '
88 MORE-PATH VALUE ' '
88 END-OF-PARENT VALUE 'GE'.

05 MODE-INDICATOR PIC X.
05 USER-DATA-PAD-CHARACTER PIC X VALUE ' '
05 MORT-INDICATOR REDEFINES OSER-DATA-PAD-CHARACTER

OS

PIC X.
88 NODE
88 TERMINAL-ELEMENT
88 TERMINAL-W-SHORT-KEY

OPEN-INFO-AREA.
10 NUMBER-OF-COORDINATES

VALUE
VALUE
VALUE

'N'.
'T'.
•x•.

PIC 9(4) COMP SYNC VALUE 2.
10 MAX-NUMBER-BUFFERS

PIC 9(4) COMP SYNC VALUE 32.
05 RECORD-RBA REDEFINES OPEN-INFO-AREA

PIC 59(9) CO~P
05 MAX-USER-AREA-LENGTH PIC 9(4) COMP
05 TRUE-USER-DATA-LENGTH PIC 9(4) COKP
05 NUMBER-YSAM-READS PIC 9(4) COMP
05 BUftBER-VSA"-iBITES PIC 9(4} COMP

SYNC.
SYNC VALUE O.
SYNC VALUE O.
SYNC VALUE O.
SYNC VALUE O.

-164-

CARTFNCS CAB TU! FUNCTION CODES.

01 CARTA!!-FUNCTION-CODES.
03 CARTAM-OPEN PIC xx xx VALUE 'OPEN'.
03 CART AM -LOAD PIC xx xx VALUE 9 LOAD '.
03 CARTA!!-ISRT PIC xx xx VALUE 9 ISRT 1 •

03 CARTAM-CHNG PIC xx xx VALUE 'CHNG•.
03 CARTAM-DLET PIC xx xx VALUE 'DLET'.
03 CARTAM-cLOSE PIC xx xx VALUE 1 CLSE •.
03 GR PIC xx xx VALUE 'GR •
03 GRL PIC xx xx VALUE 'GR L 1 •

03 GI! PIC xx xx VALUE 'GM •
03 Gl!P PIC xx xx VALUE 1 GMP '·
03 GNP PIC xx xx VALUE 'GNP '.
03 GNPT PIC xx xx VALUE 1 GNPT 1 •

03 G?IPL PIC xx xx VALUE 1 GNPL'.
03 SUB-FUNCTIONS.

05 88-CONTINOE-WALK PIC X VALUE I •
05 88-DISCARD-SUBTREE PIC X VALUE 'T' •
05 88-KEEP-ALL-CHILDREN PIC X VALUE •t•.
05 FILLER PIC X VALUE • I

03 GP PIC XXXX VALUE 'GP •
03 GPP PIC XXXX VALUE 'GPP •
03 GT PIC XXXX VALUE 'GT •
03 GTP PIC XXXX VALUE 'GTP '
03 GC PIC XXXX VALUE 'GC t

03 GCP PIC XXXX VALUE 'GCP •
03 GN PIC XXXX VALUE 'GN' '

-165-

APPENDIX E

INDEX LOAD PROGRAM SOURCE

IDENTIFICATION DIVISION.
PROGRAM-ID. NTBNDLIX.
DATE-WRITTEN. NOY77.
DATE-COMPILED.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT NTB-FILE ASSIGN TO NTBVSA~

ORGANIZATION IS INDEXED
ACCESS IS SEQUENTIAL
RECORD KEY IS V-NTB-KEY
PILE STATUS IS PILE-STATUS.

SELECT NDL-FILE ASSIGN TO NDLVSA~
ORGANIZATION IS INDEXED
ACCESS IS SEQUENTIAL
RECORD KEY IS V-ZBKEY
FILE STATUS IS PILE-STATUS.

-166-

DATA DIVISION.

FILE SECTION.

FD HTB-FILE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 0 RECORDS
RECORD CONTAINS 276 TO 4596 CHARACTERS
DATA RECORD IS VSAM-NTB-RECORD.

COPY VSAr!NTB.

66 V-IBLATLNG RENAMES V-IBLAT THRO V-IBLNG-DIR.

FD NDL-FILE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 0 RECORDS
RECORD CONTAINS 340 TO 1840 CHARACTERS
DATA RECORD IS VSAM-ZB-ZO-RECORD.

COPY JLPVZBZO.

66 V-ZBLATLNG RENA~ES V-ZBLAT THRO V-ZBLNGSGN.

-167-

WORKING-STORAGE SECTION.

77 EOF-SWITCH PIC 9 VALUE o.
88 EOF VALUE 1.

77 RETURN-STATUS PIC X(OLI) VALUE SPACES.
88 SUCCESSFUL VALUE • 0000 ••

11 DISPOSITION PIC x (03) VALUE 1 SHR•.

11 PILE-STATUS PIC x {02) VALUE SPACES.

01 COMMUNICATION-BLOCK.
COPY CARTCB07.

01 OSER-DATA-AREA.
05 KEY-FEEDBACK-AREA.

10 ?lDL-KEY.
15 ISL PIC 9 (5).
15 DGZ PIC x (3} •
15 REV PIC x.

10 PILLER PIC X (15) •
05 FILLER REDEFINES KEY-FEEDBACK-AREA.

10 NTB-KEY.
15 ISL PIC 9 (5) •
15 CAT PIC 9 (5) -
15 iAK PIC 9 (4) -
15 BEN PIC x (6) •
15 ELT PIC x.

10 PILLER PIC x (3) -
66 NDL-IGZ RENAl!ES ISL OF NDL-KEY

THRO DGZ OP NDL-KEY.

-168-

01 COORDINATE-VECTOR.
05 NDX-LAT PIC S9 (9) COMP SYNC.
05 NDX-LON PIC S9 (9) COMP SYNC.
05 BOX-DELTA PIC S9 (9) COMP SYNC.

01 WK-LAT-LNG.
03 WK-LAT.

05 WK-LATD PIC 9 (02) VALUE o.
05 WK-LATl'I PIC 9(02) VALUE o.
05 WK-LATS PIC 9 (02) VALOE o.
05 WK-LAT-DIR PIC I (01) VALUE SPACE.

03 WK-LONG.
05 iK-LOHGD PIC 9 (03) VALUE o.
05 WK-LONG!! PIC 9(02) VALUE o.
05 WK-LONGS PIC 9 (02) VALUE o.
05 WK-LONG-DIR PIC X(Ol) VA LOE SPACE.

01 ALLOCATED-DSM.
03 PILLER PIC x (04) VALUE 1 JLP.•.
03 FILLER PIC x (08) VALUE 1 VSAMNDL.•.
03 FILLER PIC x (05) VAL OE 'ZBZ0. 1 •

03 REV-POR-DSN PIC x (01) VALUE "B' •
03 PILLER PIC x (01) VALUE SPACE.

01 DD-RAl!!E PIC x (08) VALUE 1 NDLVSAM I

01 DUf!l!!Y-DD-NAME.
03 PILLER PIC x (07) VALUE 'DUMKYDD'.
03 DUMMY-DD-NAME-REV PIC x (01) VALUE 'B'.

01 VALUE-OP-BEV-TABLE PIC X(03) VALUE 'BCD'.
01 TABLE-OF-REV-VALUES

REDEFINES VALUE-OF-REV-TABLE.
03 REV-LETTER PIC I OCCURS 3 TIMES

INDEXED BY REV-NDX.

01 ACCUMULATORS.
03 ONE-CON
03 TOTAL-ISRTS
03 TOTAL-GETS
03 TOTAL-POTS

PIC S9(06} COMP SYNC VALUE +1.
PIC S9(06) COMP SYNC VALUE +0.
PIC S9(06) COMP SYNC VALUE +O.
PIC S9(06) COMP SYNC VALUE +0.

-169-

PROCEDURE DIVISION.

000-0PEN-IHITIALIZE.
MOVE 24 TO MAX-OSER-AREA-LENGTH.
!OVE 'LOAD' TO FUNCTION-CODE.
ftOYE 1 F 1 TO MODE-INDICATOR.

* OPEN INDEX PILE FOR INTEGER COORDINATES.
CALL 1 CARTA8 1 USING COMMUNICATION-BLOCK.
MOVE +21 TO TRUE-USER-DATA-LENGTH.
ftOVE 1 ISRT 1 TO FUNCTION-CODE.

010-0PEN-PILES.
OPEN INPUT NTB-FILE.
PERFORM 100-CONVERT-CALL-NTB THRO 100-EXIT

UNTIL EOF.
MOVE +9 TO TRUE-USER-DATA-LENGTH.
PERFORM 200-0PEN-C'LOSE-NDL-FILES THRO 200-EXIT

VARYING REV-HDX FROM 1 BY 1
UNTIL REV-NDX > 3.

900-LAST-CALL-TO-CARTOR.
DISPLAY 'TOTAL I READS = 1 TOTAL-GETS,

•, TOTAL I WRITES = • TOTAL-PUTS,
1 , TOTAL I INSERTS= 1 TOTAL-ISRTS, ' 1

!OVE 1 CLSE 1 TO FUNCTION-CODE.
CALL 1 CARTAM 1 USING COMMUNICATION-BLOCK.

GOBACK.

100-CONVERT-CALL-NTB.
BEAD NTB-FILE

AT END
MOVE 1 TO EOP-SWITCH
CLOSE NTB-PILE
GO TO 100-EXIT.

MOVE V-IBLATLNG TO WK-LAT-LNG.
MOVE V-NTB-KEY TO NTB-KEY.
PERFORM 500-CONVERT-CALL THRO 500-EXIT.

100-EXIT.
EXIT.

-170-

200-0PEN-CLOSE-NDL-FILES.
~OVE REV-LETTER (BEV-NDX) TO REV-FOR-DSN,

DUMMY-DD-NAME-REV.
CALL 1 ALLOCD 1 USING RETURN-STATUS,

DD-NAME,
ALLOCATED-DSN,
DISPOSITION.

IP SUCCESSFUL

ELSE

MOVE 0 TO EOP-SWITCH
OPEN INPUT NDL-PILE
PERFORM 300-CONVERT-CALL-NDL THRO 300-EXIT

UNTIL EOF
CALL 1 DEALLC 1 USING RETURN-STATUS,

IP SUCCESSFUL
NEXT SENTENCE

ELSE

DD-NAME

DISPLAY 'STATUS = <•, RETURN-STATUS,
'>, DDN =',DD-NAME

~OVE •0000 1 TO RETURN-STATUS

DISPLAY 'STATUS = <', RETURN-STATUS,
•>, DDN = ', DD-NAME,
1 , DSN = 1 , ALLOCATED-DSN

~OVE •0000 1 TO RETURN-STATUS.
CALL 'DEALLC' USING RETURN-STATUS,

DUfU!Y-DD-NUIE.
IP NOT SUCCESSFUL

DISPLAY 'STATUS = <•, RETURN-STATUS,
1 >, DDN = 1 , DUMMY-DD-NAME

!OVE •oooo• TO RETURN-STATUS.
200-EXIT.;.

EXIT.

-171-

300-CONVERT-CALL-NDL.
READ HDL-P'ILE

AT END
MOVE 1 TO EOF-SWITCH
CLOSE MDL-FILE
GO TO 300-EXIT.

MOYE V-ZBLATLNG TO WK-LAT-LNG.
!OVE V-ZBKEY TO HDL-IGZ.
MOVE V-ZBREV TO REV OP' NDL-KEY.
PERFORM 500-CONVERT-CALL THRU 500-EXIT.

300-EXIT.
EXIT.

500-COHVERT-CALL.
COMPUTE NDX-LAT = (60 * WK-LATD + WK-LATP!)

* 60 + WK-LATS.
IP' WK-LAT-DIR = 1 5 1

COMPUTE HDX-LAT = - NDX-LAT.
COKPUTE NDX-LOR = (60 * WK-LONGD + WK-LONGM)

* 60 + WK-LONGS.
IP' WK-LONG-DIR = 'W'

COMPUTE NDX-LON = - NDX-LON.
CALL 1 CARTAM 1 USING COMMUNICATION-BLOCK,

USER-DATA-AREA,
COORDINATE-VECTOR.

ADD IU!BER-VSAM-iRITES TO TOTAL-POTS.
ADD NUMBER-VSAM-READS TO TOTAL-GETS.
MOVE ZEROES TO NU!BER-VSAM-iRITES,

NU!BER-YSAM-READS.
IP SUCCESSFUL-CARTA!

ADD ONE-COH TO TOTAL-ISRTS
ELSE

DISPLAY 'STATUS CODE = (1 STATUS-CODE,
'>, KEY = <',

KEY-FEEDBACK-AREA '>.•.
500-EXIT.

EXIT.

//DFDLGEO
//STEPCAT
//SY SPRINT
//VSNTB
//SY SIN

DEFINE

/*

-172-

APPENDIX F

VSA! PILE DEFINITION EXA~PLE

EXEC PG~=IDCAMS,REGION=256K
DD DISP=SHB,DSN=AMASTCAT
DD SYSOOT=A
DD UNIT=3330,VOL=SER=VSAM02,SPACE=(TRK,1)
DD *
CLUSTER(-
NAME{VSAM.NTB.GEONDX}-
PILE (VSNTB) -
VOLUME (VSAM02) -
CYLINDERS(15)-
SHAREOPTIONS(1}-
CISZ(4096)-
NOHINDEXED-
RECORDSIZE(4089 4089)-
SPEED-
UHIQOE-
OWNER (ADWNSD)) -
DATA(-

NAME(VSAM.NTB.GEONDX.DATA))
CATALOG(AMASTCA~

-173-

APPENDIX G

CIRCLE SEARCH PROGRA.!t SOURCE

ID DIVISION.
PROGRA8-ID. ONETEP!E.
DATE-WRITTEN. MAY 77.
DATE-COP!PILED.
REMARKS.

ENVIRONP!ENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT COORD-FILE ASSIGN TO UT-S-DATAIN.
SELECT PRINT-FILE ASSIGN TO OT-S-PRINTER.

DATA DIVISION.
PILE SECTION.

FD COOBD-FILE
LABEL RECORDS ABE STANDARD
BLOCK CONTAINS 0 RECORDS.

01 FILLER PIC X(SO).

FD PRINT-PILE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 0 RECORDS.

01 PRINT-REC PIC X (132} •

-174-

WORKING-STORAGE SECTION.

01 COPH!UNICATION-BLOCK.
COPY CARTCB07.

01 CONTROL-CARD.
03 CNTRL-RADIUS COMP-1 SYNC VALUE +3.0E+3.
03 CNTRLCRD-RADIUS-SECS COMP-1 SYNC.
03 CITRLCRD-RADIUS-IN-ftETERS COMP-1 SYNC.
03 CBTRL-UNITS PIC XX VALUE 1 MT'.

88 NAUT-MILES VALUE 'NM'.
88 KILO-METERS VALUE 1 Kft'.
88 PEET VALUE 1 FT 1 •

88 METERS VALUE 1 MT 1 •

COPY CARTFNCS.

01 COORD-WORK-AREA.
03 PILLER PIC x (8) VALUE SPACES.
03 ADN-NUMBER PIC x (4) VALUE SPACES.
03 FILLER PIC x (21) VALUE SPACES.
03 LAT-IN.

05 LAT-DEG PIC 99 VALUE ZEROS.
OS LAT-ft IN PIC 99 VALUE ZEROS.
05 LAT-SEC PIC 99 VALUE ZEROS.

* 05 LAT-NS PIC x VALUE SPACES.

* 88 SOUTH VALUE 1 S 1 •

03 LON-IN.
05 LON-DEG PIC 999 VALUE ZEROS.
05 LON-MIN PIC 99 VALUE ZEROS.
05 LON-SEC PIC 99 VALUE ZEROS.
05 LON-EW PIC x VALUE SPACES.

88 WEST VALUE 1 W1 •

03 PILLER PIC X (33) VALUE SPACES.

01 KEY-FEEDBACK-AREA.
05 NDL-KEY.

10 ISL PIC 9 (5) •
10 DGZ PIC x (3) •
10 REY PIC x.

05 PILLER PIC x (15) •

-175-

01 RESULT-AREA.
03 INPUT-TO-OUTPUT.

05 PILLER PIC x (8) VALUE SPACES.
05 A DH-OUT PIC x (4) VALUE SPACES.
05 FILLER PIC x (68) VALUE SPACES.

03 PILLER PIC X(2) VALUE SPACES.
03 IGZ-OOT.

05 REV PIC x.
05 PILLER PIC x.
OS ISL PIC ZZZZ9.
05 DGZ PIC xxx.

03 PILLER PIC X (3) VALUE SPACES.
03 DIST-OUT PIC ZZZ,ZZ9.9 VALUE • o.o•.
03 PILLER PIC X VALUE SPACES.
03 DIST-UNITS PIC XX VALUE SPACES.
03 FILLER PIC X {26) VALUE SPACES.

01 LIMIT-VECTORS.
03 LOW-LU!ITS.

OS LOW-LAT PIC S9 (8) COMP SYNC.
05 LOW-LON PIC S9 (8) COMP SYNC.

03 HIGH-LIMITS.
05 HIGH-LAT PIC S9 (8) COl'!P SYNC.
05 HIGH-LON PIC S9 (8) COMP SYNC.

01 WORK-AREA.
03 LATR CO~P-2 SYNC VALUE ZERO.
03 LATO PIC S9{8) COMP SYNC VALUE ZERO.
03 LONO PIC S9(8) COMP SYNC VALUE ZERO.
03 CABTAM-COORDINATE-VECTOR.

05 LATl PIC S9(8) COMP SYNC VALUE ZERO.
05 LON1 PIC S9{8) COMP SYNC VALUE ZERO.

03 DSTNCEl COMP-1 SYNC VALUE ZERO.
03 AZIMUTH1 COMP-1 SYNC VALUE 9.99E+02.
03 DSTNCE2 COMP-1 SYNC VALUE ZERO.
03 ESTIMATOR COMP-1 SYNC VALUE 4.SE+Ol.
03 MDX-DELTA PIC 59(9} COMP SYNC.
03 ANSWER-FACTOR COMP-1 SYNC VALUE ZERO.
03 IPLAG PIC S9(8) COMP SYNC VALUE +5.
03 ONE-CON PIC 59(8} COMP SYNC VALUE +1.
03 8AX-B-G-CELLS PIC 59(8) COMP SYNC VALUE +100.
03 SECRAD CO~P-1 SYNC VALUE .48481368E-05.
03 NOM-ADN5 PIC 59(4) COMP VALUE +1000.
03 NONE-FLAG PIC X VALUE LOW-VALUES.

88 NOHE-IN VALUE HIGH-VALUES.

-176-

01 HISTO-GRAM SYNC.
03 H-G-!HN
03 H-G-KAX
03 H-G-CELL-ZERO
03 H-G-CELLS PIC
03 B-G-CELL-KAX

LINKAGE SECTION.
01 PAR!!-FIELD.

PIC 59 (8) COr!P.
PIC 59 (8) COMP.
PIC S9(8} COMP.

59(8) COMP OCCURS 100
PIC 59(8) COMP.

03 PARK-LENGTH PIC 9(q) COMP.
88 VALID-PARM-PASSED VALUE 7.

03 PARK-RADIUS PIC 9(5).
03 PARK-UNITS PIC XX.
03 PARM-BOPPERS PIC 99.
03 PARK-NUM-ADNS PIC 999.

Til'!ES.

-177-

PROCEDURE DIVISION USING PARM-FIELD.

0000-DRIVER.
MOVE 24 TO MAX-OSER-AREA-LENGTH.
MOVE CARTAM-OPEN TO FUNCTION-CODE.
IP PARM-LENGTH NOT < 9

MOVE PARM-BUFFERS TO ftAX-NOMBER-BOFFERS.
CALL 1 CARTAM 1 USING COMMUNICATION-BLOCK.
IF NOT GOOD-CARTAM-OPEN

DISPLAY 'BAD OPEN RETURN CODE'
GOBACK.

OPEN INPUT COORD-FILE
OUTPUT PRINT-PILE.

MOVE ALL LOW-VALUES TO BISTO-GRAM.
MOVE +1000000 TO H-G-MIN.
IF PARM-LENGTH NOT < 1

MOVE PARM-RADIUS TO CNTRL-RADIOS
MOVE PARM-OMITS TO CNTRL-UNITS.

IF PARM-LENGTH NOT < 12
MOVE PARM-NUM-ADNS TO NUM-ADNS.

IP' NAOT-!ILES
COMPUTE CNTRLCRD-RADIUS-SECS = 60.0 *

(CNTRL-RADIUS)
MOVE +1852.0 TO ANSWER-FACTOR

ELSE
IP KILO-METERS

ELSE

con.POTE CNTRLCRD-RADIUS-SECS = 60.0 *
(CNTRL-RADIUS I 1.852}

MOVE +1000.0 TO ANSWER-FACTOR

IF FEET

ELSE

COMPUTE CNTRLCRD-RADIOS-SECS = 60.0 *
(CNTRL-RADIUS I 6080.0)

MOVE +0.3048 TO ANSWER-FACTOR

COMPUTE CNTRLCRD-RADIUS-SECS = 60.0 *
(CNTRL-RADIUS I 1852.0}

MOVE +1.0 TO ANSWER-FACTOR.
COMPUTE CNTRLCRD-RADIOS-IN-~ETERS =

CNTRL-BADIUS * ANSWER-FACTOR.

-178-

0100-PROCESS-LOOP.
READ COORD-FILE INTO COOBD-WORK-AREA

AT END GO TO 0100-FINISH-UP.
ftOVE CNTRLCRD-RADIUS-SECS TO HIGH-LON.
MULTIPLY HIGH-LON BY +1.1 GIVING HIGH-LAT.
COMPUTE LATO = (LAT-DEG * 60 + LAT-MIN) * 60

+ LAT-SEC.
* IP SOUTH COMPUTE LATO = - LATO.

COMPUTE LONO = (LON-DEG * 60 + LON-ftIN) * 60
+ LON-SEC.

IF WEST COMPOTE LONO = - LONO.
COMPUTE LATR = LATO * SECRAD.
CALL 'BAFSID' USING LATR, HIGH-LON.
COMPUTE LOW-LAT = LATO - HIGH-LAT.
COMPUTE LOW-LON = LONO - HIGH-LON.
COMPOTE HIGH-LAT =LATO + HIGH-LAT.
COMPOTE HIGH-LON = LONO + HIGH-LON.
WRITE PRINT-REC FROM COORD-WORK-AREA

AFTER ADVANCING 3 LINES.
MOVE SPACES TO RESULT-AREA.
MOVE CNTRL-ONITS TO DIST-UNITS.
MOVE ADN-NOftBER TO ADN-OUT.
MOVE HIGH-VALUES TO NONE-FLAG.
MOVE ZERO TO NUMBER-VSAM-READS.
MOVE GR TO PONCTION-CODE.
CALL 1 CARTA1'! 1 USING COMMUNICATION-BLOCK,

KEY-FEEDBACK-AREA,
CARTAM-COORDINATE-VECTOR,
MDX-DELTA,
LOW-LIMITS,
HIGB-LilUTS.

PERFORM 0200-WALK-PATB THRO 0200-WALK-PATH-EXIT
UNTIL NOT MORE-PATH.

IF NONE-IN
MOVE CNTRL-RADIUS TO DIST-OUT
MOVE 'NONE IN 1 TO IGZ-OUT
WRITE PRINT-REC PROM RESULT-AREA.

IF HOl!BER-VSAM-READS > H -G-MAX
MOYE NUMBER-VSAa-READS TO H-G-MAX.

IF NUftBER-VSAa-READS < H-G-MIN
!OVE HU!BER-VSAft-READS TO H-G-MIN.

IF NOMBER-VSAM-READS < ONE-CON
ADD ONE-COB TO H-G-CELL-ZERO

ELSE
IF NUMBER-VSAM-READS > MAX-H-G-CELLS

ADD +1 TO H-G-CELL-MAX
ELSE

ADD +1 TO H-G-CELLS (NU~BER-VSAM-READS) •
SUBTRACT 1 FROM HOM-ADNS.
IP Nml.-ADNS > 0

GO TO 0100-PROCESS-LOOP.

-179-

0100-.FilfISH-UP.
DISPLAY 'MIN I READS = ', H-G-MIN,

1 ; MAX t READS = 1 , H-G-MAX,
'; CELL(O) = 1 , H-G-CELL-ZERO,
1 ; CELL(101) = 1 , H-G-CELL-MAX.

IP H-G-MAX > 100
MOYE +100 TO H-G-KAX.

PERFORM H-G-DISPLAY VARYING NUMBER-VSAM-READS
PROM 1 BY 1 UNTIL NUMBER-VSAl!-READS > H-G-IUX.

!OVE CARTAK-CLOSE TO FUNCTION-CODE.
CALL 'CARTA!' USING COMMUNICATION-BLOCK.
CLOSE COORD-FILE

PRINT-PILE.
GOBACK.

H-G-DISPLAY.
DISPLAY 1 CELL(', NUMBER-VSAM-READS, 1) = 1 ,

H-G-CELLS (NUMBER-VSAM-READS).

-180-

0200-WALK-P!TH.
MOVE GNP TO FUNCTION-CODE.
MULTIPLY MDX-DELTA BY ESTIMATOR GIVING DSTNCE2.
CALL 1 VECTOR 1 USING LAT1 LONl

LATO LONO
DSTMCEl !FLAG.

SUBTRACT CBTRLCRD-RADIUS-IN~ETERS FROM DSTNCE1.
IF DSTNCE2 < DSTNCEl

MOVE 88-DISCABD-SUBTREE TO FUNCTION-CODE-4
ELSE

IP DSTNCE2 NOT > - DSTNCE1
MOVE 88-KEEP-ALL-CHILDREN TO FONCTION-CODE-4
PERFORM 0300-KEEP-ALL THRO 0300-KEEP-ALL-EXIT

UNTIL NOT MORE-PATH
MOVE 88-CONTINUE-WALK TO FUNCTION-CODE-4.

CALL 1 CARTAM 1 USING COMMUNICATION-BLOCK,
KEY-FEEDBACK-AREA,
CARTAM-COORDINATE-VECTOR,
NDX-DELTA.

0200-WALK-PATH-EXIT.
EXIT.

0 300-KEEP-ALL.
IF TRUE-USER-DATA-LENGTH = 9

CALL 1 VECTOR 1 USING LATO LONO
LAT1 LONl
DSTNCE1 !FLAG

MOVE CORR NDL-KEY TO IGZ-OUT
DIVIDE DSTNCE1 BY ANSWER-FACTOR

GIVING DIST-OUT
MOVE LOW-VALUES TO NONE-FLAG
WRITE PRINT-REC FROM RESULT-AREA

AFTER ADVANCING 1 LINE.
CALL 1 CARTAM 1 USING COMMUNICATION-BLOCK,

KEY-FEEDBACK-AREA,

0300-KEEP-ALL-EXIT.
EXIT.

CAB TAM-COORDINATE-VECTOR,
HDX-DELTA.

-181-

APPENDIX H

INCLUSION/EXCLUSION AREA SEARCH PROGRAM SOURCE

ID DIVISION.
PROGRAl'!-ID. XCLODOR2.
DATE-WRITTEN. ftAY 77.
DATE-COMPILED.
REl'!ARKS.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

PILE-CONTROL.
SELECT CNTRLCRD ASSIGN TO OT-S-CONTROL.
SELECT LAUNCH-POINT-FILE ASSIGN TO UT-S-LAUNCH.
SELECT SORT.ED-FILE ASSIGN TO UT-S-SRTNULL.
SELECT SORTED-OUTPUT-PILE ASSIGN TO UT-S-NTBS.

-182-

DATA DIVISION.

FILE SECTION.

SD SORTED-FILE.
01 SELECTED-RECORD.

03 PRil!ARY-KEY PIC x (21) •
03 FILLER PIC x (15) •

FD CNTBLCRD
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 0 RECORDS.

01 FILLER PIC X(80).

FD LAUNCH-POINT-FILE
LABEL RECORDS ARE STANDARD
RECORD CONTAINS 21 CHARACTERS
BLOCK CONTAINS 0 RECORDS.

01 LP-DATA PIC X(21).
• READ INTO LP-DATA-AREA.

FD SORTED-OUTPUT-FILE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 0 RECORDS.

01 OUT-REC-S PIC X(36).

WORKING-STORAGE SECTION.

01 SIXTY PIC S9 (8) CO!!P
01 COl!MONICATION-BLOCK. COPY CARTCB07.

01 NDX -VECTORS.
05 MDX-LAT PIC S9 (8}
05 NDX-LON PIC 59 (8)
05 MDX-DELTA PIC S9 {8)

01 LI!!IT-VECTORS.
05 LOW-LilUTS.

10 LOW-LAT PIC S9 (8}
10 LOW-LON PIC S9 (8)

05 HIGH-LIMITS.
10 HIGH-LAT PIC S9 (8)
10 HIGH-LON PIC S9 (8)

SYNC VALUE +60.

COMP SYNC.
COMP SYNC.
COl!!P SYNC.

COMP SYNC.
COMP SYNC.

COl!!P SYNC.
COMP SYNC.

-183-

01 CNTRLCRD-IN.

* COLS 1 2 3 4 5

* 12345678901234567890123456789012345678901234567890
• > 2500Kft 55N+/-2S 090E+/-090 ISLEIISLEI

* LAT LONG LOW HIGH
03 FILLER PIC X.

88 EXCLUSION-AREA-SEARCH VALUE I) I•

88 INCLUSION-AREA-SEARCH VALUE '<' -
03 FILLER PIC X(LI).
03 CNTRL-RADIUS PIC 9 (5} •
03 CNTRL-UNITS PIC XX.

88 NAOT-ftILES VALUE 'NM'.
88 KILO-.l!ETERS VALUE 'KM'.
88 FEET VALUE 'FT'.
88 METERS VALUE 'MT'.

03 FILLER PIC X (S) •
03 CNTRL-CENTER-LAT-DEG PIC 99.
03 PILLER PIC x.

88 CNTRL-SOUTH VALUE •s •.
03 FILLER PIC XXX VALUE •+/-'.
03 CNTRL-DELTA-LAT PIC 99.
03 PILLER PIC X.
03 CNTRL-CENTER-LON-DEG PIC 999.
03 FILLER PIC x.

88 CNTRL-WEST VALUE 'W' •
03 PILLER PIC XXX VALUE •+/-'.
03 CNTRL-DELTA-LON PIC 999.
03 PILLER PIC x (4} •
03 !UN-ISLE PIC 9 (5} •
03 MAX-ISLE PIC 9 (S) •
03 FILLER PIC x (3}.
03 LP-DATA-AREA.

05 LATD PIC 99.
05 LAT!'! PIC 99.
OS LATS PIC 99.
05 NS-DIR PIC x.

88 LP-SOUTH VALUE •s•.
05 PILLER PIC x.
05 LOND PIC 999.
05 LON! PIC 99 .
05 LONS PIC 99.
05 Eil-DIR PIC x.

88 LP-WEST VALUE 'W'.
05 LP-RADIUS PIC 9 (S) •

03 FILLER PIC X (6) •
01 CNTRLCRD-TRANSPORl'! REDEFINES CNTRLCRD-IN PIC x (80} •

COPY CARTFNCS.

-184-

01 RESULT-AREA.
03 KEY-OUT.

05 ISL PIC 9 (5) •
05 P'ILLER PIC x (16} •

03 LAT-OUT.
05 LAT-DEG PIC 99 VALUE ZEROS.
05 LAT-MIN PIC 99 VALUE ZEROS.
05 LAT-SEC PIC 99 VALUE ZEROS.
OS LAT-NS PIC x VALUE SPACES.

03 LOH-OUT.
05 LON-DEG PIC 999 VALUE ZEROS.
05 LON-MIN PIC 99 VALUE ZEROS.
05 LON-SEC PIC 99 VALUE ZEROS.
05 LON-EW PIC x VALUE SPACES.

01 WORK-AREA.
03 LATR COMP-2 SYNC VALUE ZERO.
03 MAXIMUM-RADIUS-IN-METERS COMP-1 SYNC.
03 CNTRLCRD-RADIUS-IN-METERS COMP-1 SYNC.
03 ABS-LAT PIC 9(8) COMP SYNC VALUE ZERO.
03 DSTICE1 COftP-1 SYNC VALUE ZERO.
03 SECRAD COftP-1 SYNC VALUE .48481368E-05.
03 DSTNCE2 COMP-1 SYNC VALUE ZERO.
03 ESTIMATOR COMP-1 SYNC VALUE 4.SE+Ol.
03 LAT-LNG-WORK-AREA PIC S9(8} COMP SYNC VALUE ZERO.
03 IP'LAG PIC 59(8) COMP SYNC VALUE +5.
03 TOTAL-NUMBER-READS PIC 59(6} COMP SYNC VALUE ZERO.
03 MIN-ISLE-NUMBER PIC 9 (5) COMP-3 VALUE ZERO.
03 MAX-ISLE-NUMBER PIC 9(5) COMP-3 VALUE ZERO.
03 NUMBER-RECORDS PIC 9(5) CO~P-3 VALUE ZERO.
03 NOHE-P'LAG PIC X VALUE LOW-VALUES.

88 NONE-IN VALUE HIGH-VALUES.
03 OUTSIDE-ALL-CIRCLES PIC X VALUE SPACE.
03 INSIDE-A-CIRCLE PIC X VALUE SPACE.
03 LP-END-PLAG PIC XXX VALUE SPACES.

88 END-OF-LPS VALUE 'END'.
03 NUMBER-OF-LAUNCH-POINTS USAGE INDEX.

01 LAUNCH-POIBT-DATA SYNC.
03 LP-TABLE OCCURS 100 TI!ES INDEXED BY LAUNCH-POINT.

05 LP-LAT PIC S9(8} SYNC COHP.
05 LP-LON PIC 59(8) SYNC COMP.
05 LP-DELTA-LAT PIC S9(8) SYNC COMP.
05 LP-DELTA-LON PIC 59(8) SYNC COMP.
05 LP-RADIUS-IN-METERS SYNC COMP-1.

-185-

PBOCEDORE DIVISION.

0000-DRIVER.
CALL 1 TIMEAX 1 USING INTERVAL.
MOVE 21 TO MAX-USER-AREA-LENGTH.
MOVE CARTAM-OPEN TO PUNCTION-CODE.
CALL 1 CARTA8 1 USING COMMUNICATION-BLOCK.
IP NOT GOOD-CARTAM-OPEN

DISPLAY 'BAD OPEN RETURN CODE'
GOBACK.

OPEN INPUT CHTRLCRD.

0000-CNTL-LOOP.
READ CNTRLCRD INTO CNTRLCRD-IN

AT END MOVE CARTAM-CLOSE TO FUNCTION-CODE
CALL 'CARTA!' USING COMMUNICATION-BLOCK
CLOSE CHTRLCRD
GOBACK.

TRANSFORM CHTRLCRD-TBANSPORM FROM SPACES TO ZEROES.
MOVE MIN-ISLE TO MIN-ISLE-NUMBER.
MOVE MAX-ISLE TO MAX-ISLE-NUMBER.
MULTIPLY CNTRL-CENTER-LAT-DEG BY 3600 GIVING NDX-LAT.
IP CNTRL-SOUTH COMPOTE NDX-LAT = - NDX-LAT.
MULTIPLY CNTRL-DELTA-LAT BY 3600 GIVING NDX-DELTA.
C~MPUTE LOW-LAT = NDX-LAT - NDX-DELTA.
COMPUTE HIGH-LAT = NDX-LAT + NDX-DELTA.
MULTIPLY CNTRL-CENTER-LON-DEG BY 3600 GIVING NDX-LON.
IP CNTRL-WEST COMPUTE NDX-LON = - NDX-LON.
MULTIPLY CNTRL-DELTA-LON BY 3600 GIVING NDX-DELTA.
COMPOTE LOW-LON = NDX-LON - NDX-DELTA.
COMPUTE HIGH-LOH = NDX-LON + MDX-DELTA.
MOVE CNTRL-RADIUS TO LP-RADIUS.
~OVE ZEROS TO CNTRLCRD-RADIUS-IN-METERS,

MAXIMUM-RADIUS-IN-~ETERS,

NUMBER-RECORDS.
IP INCLUSION-AREA-SEARCH

MOVE 88-DISCARD-SDBTREE TO OUTSIDE-ALL-CIRCLES
MOVE 88-KEEP-ALL-cHILDREH TO INSIDE-A-CIRCLE

ELSE
MOVE 88-KEEP-ALL-CHILDREN TO OUTSIDE-ALL-CIRCLES
MOYE 88-DISCARD-SUBTBEE TO INSIDE-A-CIRCLE.

SET LAUHCH-POIHT TO 1.
PERFORM 0010-CNVRT-COORDS THRU 0010-EXIT.
MOYE !AXIftDft-RADIOS-IN-ftETERS

TO CNTRLCRD-RADIOS-IN-METERS.
MOVE ZERO TO MAXIMUM-RADIUS-IN-METERS

IF LP-LAT (1) = ZERO
OPEN INPUT LAUNCH-POINT-FILE

-186-

PERFORM 0010-READ-LADNCH-POINTS THRU 0010-EXIT
VARYING LAUNCH-POINT FROM 1 BY 1
UNTIL (LAUNCH-POINT > 100) OR END-OF-LPS

CLOSE LAUNCH-POINT-PILE.
ftOVE HIGH-VALUES TO MONE-FLAG.
MOVE GR TO FUNCTION-CODE.
SORT SORTED-FILE ON ASCENDING KEY PRIMARY-KEY

INPUT PROCEDURE CARTAM-RETRIEVAL
GIVING SORTED-OUTPUT-FILE.

DISPLAY 'PINAL STATUS = 1 ,

'; NUM READS = 1 ,

•; t INSTS =
GO TO 0000-cNTL-LOOP.

• ,

0010-READ-LAUNCH-POINTS.
READ LAUNCH-POINT-FILE

AT END

STATUS-CODE,
NUMBER-VSAM-READS,
NUMBER-RECORDS.

ftOVE 'END' TO LP-END-FLAG
GO TO 0010-EXIT.

TRANSPORft LP-DATA FROM SPACES TO ZEROS.
ftOVE LP-DATA TO LP-DATA-AREA.

-187-

0010-CNVRT-COOBDS.
SET NUMBER-OF-LAUNCH-POINTS TO LAUNCH-POINT.
IF LP-RADIUS = ZERO

MOYE CNTBLCRD-RADIUS-IN-METERS TO
LP-RADIUS-IN-METERS (LAUNCH-POINT)

ELSE
IP HAUT-MILES

COMPUTE LP-RADIUS-IN-METERS (LAUNCH-POINT) =
LP-RADIUS * 1852.0

ELSE
IP KILO-METERS

COMPOTE LP-RADIOS-IN-METERS (LAUNCH-POINT) =
LP-RADIOS * 1000.0

ELSE
IP PEET

COMPUTE LP-RADIOS-IN-METERS (LAUNCH-POINT) =
LP-RADIOS * 0.3048

ELSE
~OVE LP-RADIUS

TO LP-RADIOS-IN-METERS (LAUNCH-POINT) •
IP LP-RADIUS-IN-METERS (LAUNCH-POINT)

> MAXIMUM-RADIUS-IN-f!ETERS
MOVE LP-RADIUS-IN-METERS (LAUNCH-POINT)

TO MAXIMUM-RADIUS-IN-METERS.
COMPOTE LP-LAT (LAUNCH-POINT)

= ((LATD * 60 + LATM) * 60 +LATS).
IP LP-SOUTH

COMPUTE LP-LAT (LAUNCH-POINT)
= - LP-LAT (LAUNCH-POINT) •

COMPUTE LP-LON (LAUNCH-POINT)
= ((LOND * 60 + LONM) * 60 +LONS).

IP LP-iEST
COMPUTE LP-LON (LAUNCH-POINT)

= - LP-LON (LAUNCH-POINT) •
COMPOTE LP-DELTA-LAT (LAUNCH-POINT) ROUNDED =

34 * LP-RADIUS-IN-l!ETERS (LAUNCH-POINT) •
MOVE LP-LAT (LAUNCH-POINT) TO ABS-LAT.
IF ABS-LAT + LP-DELTA-LAT (LAUNCH-POINT) < 324000

COMPUTE LATR ROUNDED
= LP-LAT (LAUNCH-POINT) * SECRAD

CALL 'HAPSID' USING LATR.
LP-DELTA-LON (LAUNCH-POINT)

ELSE
KOVE 1500000 TO LP-DELTA-LON (LAUNCH-POINT) •

0010-EXIT.
EXIT.

-188-

CARTA!-RETRIEVAL SECTION.

WALK-RETRIEVAL-PATH.
CALL 1 CARTAft' USING CO!ftUNICATION-BLOCK,

KEY-OUT,
MDX-VECTORS,
NDX-DELTA,
LOW-LIMITS,
HIGH-LIMITS.

IP NOT MORE-PATH

ELSE
GO TO CARTAM-RETRIEVAL-EXIT

MOVE GNP TO FUNCTION-CODE
!OYE NDX-LAT TO ABS-LAT
IP (ABS-LAT + NDX-DELTA) NOT > 324000

* INITIALIZE TO OUTSIDE-ALL
MOVE OUTSIDE-ALL-CIRCLES TO FUNCTION-CODE-4

MULTIPLY NDX-DELTA BY ESTIMATOR GIVING DSTNCE2
PERFORM 0200-CHK-LPS THRU 0200-CHK-LPS-EXIT

VARYING LAUNCH-POINT FROM 1 BY 1 UNTIL
(LAUNCH-POINT > NUMBER-OF-LAUNCH-POINTS)

IF KEEP-ALL-CHILDREN
PERFORM 0300-KEEP-ALL THRO

0300-KEEP-ALL-EXIT UNTIL NOT MORE-PATH
IF STATUS-CODE = 1 GM 1

MOVE 88-CONTINUE-WALK TO
TO FUNCTION-CODE-4

MOVE SPACES TO STATUS-CODE.

GO TO WALK-RETRIEVAL-PATH.

*

•

-189-

0200-CHK-LPS.
COMPUTE ABS-LAT = NDX-LAT - LP-LAT (LAUNCH-POINT) •
IF ABS-LAT NOT >

BDX-DELTA + LP-DELTA-LAT (LAUNCH-POINT)
COMPUTE ABS-LAT = NDX-LON - LP-LON (LAUNCH-POINT}
IF ABS-LAT :SOT >

NDX-DELTA + LP-DELTA-LON (LAUNCH-POINT)
CALL •VECTOR• USING NDX-LAT

NDX-LON
LP-LAT (LAUNCH-POINT)
LP-LON (LAUNCH-POINT)
DSTNCE1 !FLAG

SUBTRACT LP-BADIUS-IN-METERS (LAUNCH-POINT)
PROM DSTNCE1

IF DSTNCE2 NOT > - DSTNCE1

ELSE

TOTALLY INSIDE A RANGE CIRCLE
MOVE INSIDE-A-CIRCLE TO PUNCTION-CODE-4
SET LAUNCH-POINT

TO NUMBER-OP-LAUNCH-POINTS

IF DSTNCE2 > DSTNCE1
OVERLAPS A RANGE CIRCLE

MOVE 88-CONTINUE-WALK
TO FUNCTION-CODE-4

IF DSTHCE2 > PIAXIPIUl!-RADIUS-IN-METERS
SET LAUNCH-POINT TO

HUMBER-OF-LAUNCH-POINTS.
0200-CHK-LPS-EXIT.

EXIT.

-190-

0300-KEEP-ALL.
IP (NOT NODE) AND (ISL NOT < MIN-ISLE-NUMBER

AND NOT > MAX-ISLE-NUMBER)
MOVE LOW-VALUES TO NONE-FLAG
PERFOR! 0350-EXPAND-COORDS

THRO 0350-EXPAND-COORDS-EXIT
RELEASE SELECTED-RECORD PROM RESULT-AREA
ADD +1 TO NUMBER-RECORDS.

CALL 'CARTAM' USING COMMUNICATION-BLOCK,
KEY-OUT,
MDX-VECTORS,
NDX-DELTA.

0300-KEEP-ALL-EXIT.
EXIT.

0350-EXPAND-COORDS.
IP NDX-LAT < 0

CO!PUTE LAT-LNG-WORK-AREA = - NDX-LAT
MOVE 1 S 1 TO LAT-NS OF LAT-OUT

ELSE
MOYE NDX-LAT TO LAT-LNG-WORK-AREA
MOVE 1 N• TO LAT-NS OP LAT-OUT.

DIVIDE LAT-LNG-WORK-AREA BY SIXTY
GIVING LAT-LNG-WORK-AREA
REMAINDER LAT-SEC OP LAT-OUT.

DIVIDE LAT-LNG-WORK-AREA BY SIXTY
GIVING LAT-DEG OF LAT-OUT
REMAINDER LAT-MIN OF LAT-OUT.

IP NDX-LON < 0

ELSE

COMPUTE LAT-LNG-WORK-AREA = - NDX-LON
MOVE 1 W1 TO LON-EV OP LON-OUT

MOVE NDX-LON TO LAT-LNG-WORK-AREA
MOVE 1 E 1 TO LON-EV OP LON-OUT.

DIVIDE LAT-LNG-WORK-AREA BY SIXTY
GIVING LAT-LNG-WORK-AREA
REMAINDER LON-SEC OP LON-OUT.

DIVIDE LAT-LNG-WORK-AREA BY SIXTY
GIVING LON-DEG OF LON-OUT
REMAINDER LON-BIN OF LON-OUT.

0350-EXPAND-COORDS-EXIT.
EXIT.

CARTAM-RETRIEVAL-EXIT.
EXIT.

-191-

APPENDIX I

FORTRAN SUBROUTINE TO EXPAND LONGITUDE

SUBROUTINE BAPSID (ALAT, ISID)
ISID = ABS(1.1*ISID/COS(ALAT))
RETURN
END

