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Abstract 
 

Although every individual has a unique biology, most medicine still relies on the 

one-size-fits-all approach, which often fails in the treatment of heterogeneous diseases like 

cancer. An emerging approach to disease treatment is precision medicine, in which a 

specific treatment is tailored for individual patients using their biological information, 

including their genome, phenome, and proteome. Two clinical actions are important for 

implementing precision medicine in cancer therapies: choosing the correct drugs via patient 

stratification and choosing a suitable drug dosage and duration via drug response 

monitoring.  

After selecting the potential drug candidate, it is crucial to monitor tumor response 

to drug therapy because cancer is a dynamic disease that can develop drug resistance. 

Although non-invasive tumor imaging techniques such as magnetic resonance imaging, 

computed tomography, and positron emission tomography can assess physical size and 

metabolic activity of tumors, these techniques have poor time resolution and cannot capture 

the dynamic changes of bio-molecules implicated with drug resistance. Thus, to effectively 

monitor drug response, supplemental diagnostic or prognostic markers must be routinely 

measured from patient biopsies. Unfortunately, routine monitoring of multiple biomarkers 

from patient biopsies is impractical, as conventional analytical assays require large sample 

amounts (up to 100-1000 mg of tissue or 10 mL of blood).  

In response to this challenge, this thesis describes the development of various 

microfluidic technologies that can perform multiplexed measurements (up to 20-plex) 

using minute amounts of sample (104-105 cells or 30µL of blood) in a miniaturized 
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analytical platform (maximum 75 × 26 × 1 mm footprint). We applied these technologies 

for drug screening and drug response monitoring in glioblastoma multiforme, a highly 

lethal brain tumor, assaying two different types of patient biopsies: cancer cells and blood. 

First, we developed an integrated microfluidics-chip/beta particle imaging system 

that can screen for effective therapies using small amounts of patient-derived cell lines. 

Since glioblastoma cells have abnormally high glycolytic activity, this was used as a read-

out for drug response. Single cells were isolated in micro-traps, and their glycolytic activity 

was quantitated using a radioactive probe. This platform can assess potential drug targets 

directly from patient biopsies without administering drugs to the patient. 

Second, we developed an in vitro diagnostic test that can monitor tumor drug 

resistance by measuring up to 14 proteins in finger-prick volumes of blood. This test relies 

on microfluidics and microarray patterning of antibodies to carry out multiplexed 

sandwich-type immunofluorescence assays. Using this technology and conventional tumor 

imaging techniques, we linked proteomic signatures to tumor growth, establishing 

diagnostic and prognostic models in two clinical treatment cases of bevacizumab and 

buparlisib. Moreover, we adopted the multiplexed proteomic measurement platform to 

rapidly screen out small peptide binding agents that target an oncogenic protein in 

glioblastoma.  

The microfluidic tools developed here are sample-efficient and highly informative, 

and we propose that these techniques could enable routine evaluation of drug response in 

a precision medicine workflow. 
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Chapter 1 

Introduction 

 

 

1.1 The concept of precision medicine 

		
 Physicians have traditionally relied on average results from clinical trials to determine 

therapeutic strategies, and they often find patients who do not respond or benefit from the 

treatment.1 The non-responders are subsequently prescribed the next candidate treatment 

ad nauseam, until no options remain. Such trial-and-error medicine is not only a financial 

burden on the healthcare system, but also presents a health risk for patients who experience 

adverse side effects and/or patients with time-sensitive diseases such as cancer. We are 

now entering the era of precision medicine, also known as personalized medicine,1 in which 

physicians cater a treatment regimen to a patient’s response and genetic predisposition, 

giving ‘the right drug for the right patient at the right dose and time.’2 In this new clinical 

paradigm, physicians design therapeutic strategies based on patients’ unique drug targets, 

diverse genetic backgrounds, and environmental factors—such individual variability often 

determines the efficacy of medical treatments.1–5 The increasing importance of precision 

medicine has promoted the Obama administration to launch the Precision Medicine 

Initiative in 2015 with the budget of $55 million, aiming “to enable a new era of medicine 

through research, technology, and policies that empower patients, researchers, and 
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providers to work together toward development of individualized care.” This government-

led research effort focuses on constructing treatment pipelines for cancer in the short-term 

and expanding these strategies to encompass other diseases in the future.6 

 

1.2 Analyzing patient biopsies for precision medicine in targeted cancer 

therapy 

 

A patient’s biological information is critical for the implementation of precision 

medicine, especially in targeted cancer therapy. Targeted cancer therapy is the use of drugs 

such as small molecular weight chemical compound or biologics (e.g. antibody or 

recombinant proteins) to modulate molecular targets (e.g. proteins, peptides, or nuclei 

acids), altering specific functional activities associated with tumor proliferation.4,5 To 

design effective targeted therapy, clinicians can extract two types biological information 

from tumor biopsies: (1) a patient’s genotype and phenotype, which is useful for 

identifying drug targets, and (2) a patient’s characteristic drug response, which is important 

for determining effective drug dosage and timing. These two types of biological 

information are further described below in the context of precision medicine. 

First, a patient’s genotype and phenotype can be quantitatively measured from tumor 

biopsies so that clinicians can stratify patients into subpopulations and determine their 

inter-patient variabilities from large cohorts. The relevant genotype of a patient, such as 

the presence of oncogenes and genetic mutations, can be determined by DNA sequencing 

technologies such as Next Generation Sequencing, which is significantly decreasing in cost 

and improving in efficiency.5 Some examples of important cancer genes include EGFR or 
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IDH1 mutation in glioblastoma,7,8 BRAF mutation in melanoma,9 KRAS mutation in 

pancreatic and colorectal cancer,10 and BRCA1/2 mutation in breast and ovarian 

cancer.11,12 The phenotype of a patient are the traits linked to functional molecular profiles 

in the downstream of genes,3,13 which includes gene expressions, protein abundance, and 

metabolic activities. For instance, cancer cells typically have altered profiles of tumor 

suppressor/oncogenic gene expressions, signaling transduction pathways, and/or 

glycolysis/glutaminolysis activities.14,15 The information collected from the genotype and 

phenotype enable clinicians to identify potential drug targets for precision medicine. 

 Second, a patient’s response to drug intervention can broadly alter the tumor 

phenotype, ranging from proliferation rate to signaling circuitry. Recently, several studies 

demonstrated in vitro assays for drug response, using it to guide precision medicine in a 

research setting.16–18 In one assay, cancer cells from tumor biopsy were simultaneously 

cultured in a petri-dish and a xenograft mouse. The in vitro cell cultures were used to 

rapidly screen drugs determined by the genotype of the cells. Subsequently, the mouse 

models were used to validate potential drug candidates, measuring changes in tumor size 

and other phenotypes. Based on these results, potential combination therapies can be 

further tested using the same workflow.18 In the clinical settings, tumor proliferation are 

assessed by well-established, non-invasive imaging techniques such as magnetic resonance 

imaging (MRI), computed tomography (CT), and positron emission tomography (PET). 

Physicians can monitor drug responses by measuring physical sizes or metabolic activities 

of the tumor.19 However, due to logistical challenges of sampling tumor biopsies, it is 

difficult to conduct detailed longitudinal studies of the tumor phenotype. Without knowing 

the molecular drug response of the tumor, clinicians are hard-pressed to prevent the 
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development of drug resistance in targeted therapy. A potential solution is the use of blood 

plasma, which can be collected regularly from patients. Accordingly, many researchers 

have been investigating the use of plasma biomarkers to track the drug response of 

tumors.20 

 As mentioned above, the most straightforward way to extract a patient’s biological 

information is studying the patient’s biopsies such as cancer cells and blood plasma. 

However, due the large sample requirement of current analytical techniques, it is difficult 

to run multiple assays in parallel, limiting the amount of information that can be extracted. 

These challenges can potentially be resolved through the use of microfluidic tools, which 

enable rapid, high-throughput analysis of biological samples in small volumes. Moreover, 

this liquid-handling technology can be easily adapted to any sample type and is 

compatibility with conventional analytical methods such as microscopy, mass 

spectrometry, immunoassays, and polymer chain reaction (PCR), with improved limit of 

detection in quantitating DNAs, RNAs, and proteins. In the current state-of-the-art, these 

tools can isolate rare living cells from patient biopsies, characterize them for mechanical 

and biological phenotypes, and manipulate them for culture and drug response studies.20–

23 Therefore, microfluidics holds great promise for deep analysis of patient biopsies to 

guide precision medicine in the clinic. Harvested cancer cells can be profiled for genes, 

transcripts, proteins, and metabolites at the single-cell level. Circulating DNAs, RNAs, 

proteins, and tumor cells in plasma can be isolated and studied for their diagnostic and 

prognostic capacities in the context of cancer.  
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1.3 Single cell cancer metabolic measurement for studying the drug 

responses of cancer cells 

 

Intratumoral heterogeneity is an emerging hallmark of cancer and is a critical 

challenge for targeted cancer therapies.24–26 Individual cells within a tumor can have highly 

heterogeneous genotypes and phenotypes, which decreases the effectiveness of targeted 

therapies in cancer patients.27,28 Intratumoral heterogeneity originates from two major 

characteristics: 1) mutational polyclonality, and 2) diverse cell signaling and metabolic 

networks (despite identical genetic backgrounds). Recently, these features of heterogeneity 

have been investigated using single-cell analysis tools,29 which enable genomic, 

transcriptomic, proteomic, and metabolic studies that characterize cellular heterogeneity in 

a tumor.30–35 For example, in a recent single cell transcriptomic study, researchers 

discovered that a subpopulation of drug-resistant cells exist in various abundances among 

patient-derived melanoma cell lines.36 

 Abnormal metabolic activity is another widely accepted hallmark of cancer.14 Beyond 

the function of generating energy, the tumor metabolome is closely related to the genotypes 

and molecular phenotypes of the cancer cells. For example, an established cancer-related 

metabolic abnormality, known as the Warburg effect, is characterized by an accelerated 

rate of aerobic glycolytic activity in cancer cells (i.e. increase consumption of glucose), 

and it is associated with oncogenic activation and loss of tumor suppressors. Other 

metabolic signatures, such as upregulated consumption of glutamine, have been recently 

implicated in tumor proliferation. The increased consumption and metabolism of glucose 

and glutamine enables cancer cells to produce the cellular intermediates and building 
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blocks required for proliferation.14,15,37 Thus, cancer can be viewed as a metabolic disease 

caused by the summation of gene mutations, dysfunctional genetic regulation and 

expression, and the consequent aberrant protein signaling and metabolism. Furthermore, 

the metabolic profiles of cancer can be used to monitor drug response to targeted therapy 

treatment. For example, PET and magnetic resonance spectroscopy (MRS) are often used 

in the clinic to non-invasively measure the average metabolic activities of tumors, which 

can help determine the therapeutic efficacy of a drug.38,39  

 Measuring the metabolic activities of tumors at the single-cell level can enable the 

study of cellular heterogeneity and abnormal metabolism (both hallmarks of cancer) and 

may provide deep insights for drug responses as well as identifying potential drug targets. 

Although the average metabolic activities of treated tumors can be used to assess drug 

efficacy, it is equally important to analyze metabolism at the single-cell level, finding cells 

that are potentially drug resistant with outlying metabolic activities. The genotypes and 

phenotypes of these outliers should investigated to understand the molecular basis of their 

differential metabolism and other associated features, including proliferation and protein 

signaling. By targeting the specific features of these outliers, clinicians can potentially 

suppress the development of drug resistance in cancer. Thus, single-cell metabolic analysis 

may become an important new approach to assess the overall drug response of a tumor.  

 Currently, there are two class of approaches that can measure single-cell metabolic 

activities: 1) destructive methods, such as mass spectrometry and cytometry (MS and 

CyTOF), and 2) non-destructive methods, such as PET. In the first approach, cellular 

components are typically digested, ionized, and detected by their molecular weight and 

unique fragmentation signature. Matrix-assisted laser desorption/ionization (MALDI) and 
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electrospray ionization (ESI) are major ionization methods, and the time-of-flight (TOF) is 

a widely used mass analyzer. Liquid chromatography (LC) is often included in the front 

end of mass spectrometry (LC-MS), so that molecules can be first separated based on their 

physicochemical properties. Metabolic activities in various samples have been analyzed, 

ranging from dissociated/cultured cell suspensions to tissue slices. As demonstrated in 

CyTOF, target molecules can be chemically modified or labeled with metal-tagged 

antibodies for increased quantitation capacity. Recently, the sensitivity of MS has been 

improved to obtain comprehensive single cell metabolome profiles.40,41 In the second 

approach, metabolite analogs are introduced in the cell via cellular uptake. These 

metabolite analogs are structurally similar to target natural metabolites, but contain 

chemical moieties that produce photons for detection and quantitation by PET. Examples 

of glucose analogs include 18F-flurorodeoxyglucose (18F-FDG) and 2-(N-(7-nitrobenz-2-

oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG). In the case of 18F-FDG, beta-

decay of 18F produces a positron, which, upon meeting an electron, will annihilate and 

produce two gamma ray photons. While this approach largely relies on the availability of 

the analog molecules, this method is not disruptive, and thus has more flexibility in 

integrating with other molecular analysis techniques such as DNA sequencing and 

immunofluorescence protein assays for further characterization of single cells.35,42–44 

  



8 
	
1.4 Plasma proteomics for monitoring the drug responses of patient 

tumors 

  

Blood plasma is the reservoir of biological signals secreted from the entire body, and 

these signals are often employed for monitoring patient therapeutic responses. Plasma is 

straightforward to collect from patients, and contains quantifiable biological information 

that presumably reflects biological responses to perturbations. Thus, it can potentially be 

used for the molecular characterization of drug response in cancer patients, especially when 

combined with a non-invasive imaging technique to assess tumor growth. There is an 

increasing number of reports that demonstrate the importance of plasma DNA, RNA, 

proteins, and circulating tumor cells in tumor progression. Among these potential markers, 

proteins are the read-out which can be readily interpreted as biological functions in the 

cell.45–48 This feature is particularly useful for targeted therapy since it is straightforward 

to determine a potential drug target for a given protein biomarker. However, to date, there 

are only two accepted single-protein markers that can be used for monitoring drug response 

in tumors: cancer antigen (CA125) for ovarian cancer and prostate-specific antigen (PSA) 

for prostate cancer. To overcome the limited diagnostic power of single-protein markers, 

proteomic classifiers of cancers, composed of multi-protein panels, have been developed 

with improved cancer diagnostic capacity.49  

 Mass spectrometry and immunoassays are the major analytical modalities for plasma 

proteins. As described in the previous section, MS analysis of plasma proteins are typically 

performed using LC-MS, in which peptide fragments from digested proteins are separated 

by liquid chromatography, ionized by electro spray, and analyzed by a mass analyzer. 
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Peptides of similar masses can be further distinguished via tandem MS (MS/MS), which 

identifies peptides based on their unique MS/MS fragmentation signature. Depending on 

the purpose of study and the dynamic range of measurement, non-targeted or targeted 

proteome profiling can be performed. Non-targeted mass spectrometry focuses on 

discovering novel protein markers.45–47 Immunoassay is an antibody based method for the 

targeted proteomics. This method relies on the high specificity and affinity of antibodies 

binding to antigens. Immunoassay is compatible with a variety of platforms including 

paper-based lateral flow devices, well plate, flow cytometry, microarray, etc., and this 

versatility makes it a very popular technique. Immunoassays can be classified as 

homogeneous, in which the antibody-antigen interaction occurring in solution, or 

heterogeneous, in which the interaction occurring on a surface. Quantitation mode could 

be either competitive or non-competitive, which requires labeled exogenous antigens or 

labeled detection antibody, respectively. Labels are typically fluorophores or enzymes, 

which transduces/amplifies antibody-antigen binding events into color, fluorescence, or 

luminescence readouts.21–23     

 

1.5 Thesis overview: developing microfluidic platforms for precision 

medicine in glioblastoma multiforme 

 

Glioblastoma multiforme (GBM) is a highly lethal, difficult to resect, malignant brain 

tumor with a survival time of 12-15 months. To selectively eradicate cancer cells, current 

treatments mostly rely on radiotherapy and drug intervention, although drug delivery is 

impeded by the brain blood barrier (BBB). Additionally, the somatic mutation landscape 
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of GBM is highly diverse and heterogeneous, with subpopulations that elude targeted 

therapies by rapid clonal evolution of drug resistant cells.50,51 

 GBM is perhaps the disease where precision medicine is needed the most, and it starts 

with the analysis of tumor biopsies. Since this cancer is highly variable, patients’ genotype 

and phenotype should be used to stratify patients according to known databases and 

identify ‘personalized’ drug targets. To narrow down the drugs of interest, drug response 

should be tested in vitro using cells harvested from the tumor. Ideally, phenotypic changes 

or proliferation of these cells should be measured after mono- or combination treatment of 

drug candidates at several doses. While the patient receives a selected targeted therapy, the 

tumor response is monitored via non-invasive imaging and molecular measurement of 

blood plasma. The major technical challenge of precision medicine is the extraction of 

useful, multidimensional biological information from limited amounts of tumor and plasma 

biopsies. 

 To address this challenge, this thesis describes the development of technologies for 

analyzing patient biopsies. These technologies rely on microfluidic platforms to 

miniaturize analytical systems, enabling the manipulation and multiplexed analysis of 

small amounts of sample. Specifically, we developed two distinct technologies that can 

measure drug response in GBM. The first method enables metabolic analysis of patient-

derived cancer cell lines at the single-cell level (chapter 2), while the second method 

enables multiplexed proteomic measurements in patient plasma (chapter 3 and 4). These 

microfluidic methods are designed to be very sample efficient and easily deployable in the 

clinic.  
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 In chapter 2, we report an integrated microfluidic chip and beta particle imaging 

system, known as the Betabox. We showed its capability to measure the glycolytic activity 

of single cells of a human derived GBM cell line, using 18F-fluorodeoxylglucose (18F-FDG) 

as a glucose analog probe. The microfluidic chip was designed, optimized, and validated 

for single cell resolution. We then measured the short-term kinetic responses of single 

GBM cells under EGFR inhibition, targeting a receptor tyrosine kinase signaling pathway. 

This assay can be performed in less than 3 hours and requires small amount of cells (as low 

as 10,000 cells per chip). Since Betabox is a non-disruptive technique, it can be combined 

with other analysis techniques including optical imaging of cell sizes and 

immunofluorescence staining. Furthermore, we showed that Betabox can identify GBM 

cells that do not respond to targeted therapy, which suggested its utility as a rapid drug 

screening platform. Chapter 2 has been taken in part from Technology, 2015, 3 (4), 172-

8.42 

 In chapters 3 and 4, we introduce a microfluidic method that can profile the plasma 

proteome to monitor the response of GBM patients to bevacizumab and buparlisib targeted 

therapy treatment, respectively. In chapter 3, we performed a longitudinal study, analyzing 

patient proteome profiles during bevacizumab treatment, an anti-angiogenic therapy of 

inhibiting vascular endothelial growth factor (VEGF) signaling pathways. From initial 

measurements of 35 proteins from 62 patient samples, we developed a proteome classifier 

composed of 14 predictive protein makers. In order to validate these markers, we analyzed 

a larger pool of 516 serum samples from 105 GBM patients. Measured plasma protein 

levels from 128 samples were also correlated with patient tumor volumes in mm3 using 

analysis of functional neuroimages (AFNI). A mathematical model was developed to 



12 
	
describe the relationship between tumor responses and the 14 protein levels. In chapter 4, 

we measured 9 plasma proteins to monitor recurrent GBM patient responses to buparlisib, 

a phosphoinositide 3-kinase (PI3K) inhibitor. Monthly collected 153 plasma samples were 

used in this study. Proteomic classifier was developed and evaluated for its diagnostic and 

predictive capacity of early drug response. Both chapters have been taken in part from 

manuscripts in preparation. 

In chapter 5, we extend the microchip technology developed for chapters 3 and 4 to 

screen protein catalyzed capture agents (PCCs). PCCs are triazole-closed macrocyclic 

peptides that serve as synthetic antibody surrogates. PCCs can be engineered to target any 

epitopes, including ones that are not easily addressable by antibodies. Also, due to the 

cyclic backbone, PCCs have superior physicochemical and biological stability compared 

to other biologics. A library of one bead one compound (OBOC) is screened against a 

synthetic epitope fragments of target protein, which typically results in 10-20 hits from 2 

million sequences of the library.52 However, a huge technological bottleneck exists in 

validating the hits using the full protein target. Conventional enzyme-linked 

immunosorbent assay (ELISA) in the 96 micro-well format takes 10-36 hours to measure 

the binding affinity of one single hit (or a month to characterize all 20 hits). To streamline 

this process, we developed a PCC screening platform using microfluidic technologies 

developed in chapters 3 and 4. Within 12 hours, this platform can simultaneously validate 

14 PCCs that target the allosteric regulating sites of KRas, a protein whose mutation is 

implicated in GBM.53 This chapter has been taken in part from a manuscript in preparation. 
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Chapter 2 

Quantitative assessments of glycolysis from single cells 

 

 

2.1 Introduction 

Recent advances in single cell proteomics, genomics, and transcriptomics methods 

have shown promise towards uncovering fundamental biological phenomena that are 

unresolved when bulk cell populations are interrogated.1,2 By contrast, single cell metabolic 

assays have remained relatively unexplored, although recent progress in both mass 

spectrometric3 and microchip methods is promising.4 The rapid response of cellular 

metabolic responses to many drugs makes metabolic assays a valuable tool for rapid 

screening assays and investigating early biological responses to treatments. Such assays, if 

carried out at the single cell level, have the potential to identify metabolic outliers—i.e. 

individual cells exhibiting responses to drugs that are well above or below the population 

average. The identification of such outliers in a manner that permits further analysis at the 

genomic or transcriptomic level may offer new insights for understanding therapeutic 

resistance.  

We report on an integrated microfluidic chip / beta-particle imaging camera (the 

Betabox) that is a first step for enabling such questions to be explored. An accelerated rate 

of aerobic glycolysis within many tumors (the Warburg effect) provides the diagnostic 

basis for using a glucose analog, 2-deoxy-2-[F-18]fluoro-D-glucose (18F-FDG), as a 
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positron emission tomography (PET) in vivo molecular imaging probe5 of the rate of 

glycolysis within tumors. 18F-FDG PET can also be used to image the metabolic responses 

of those tumors to drugs. In a similar manner, 18F-FDG can serve as a radio-labeled probe 

to measure altered states of glycolysis in cancer cells in vitro, including alterations in 

glycolytic rates that are induced by therapeutic interventions. We recently reported on a 

microfluidic platform mated to a beta particle imaging camera of the Betabox.6–8 The 

Betabox was used to analyze the short time frame (~hour) influence of targeted inhibitors 

on glycolysis in cell populations. We measured the glycolytic response of the model 

glioblastoma (GBM) cell line, U87EGFRvIII, to inhibition of the epidermal growth factor 

receptor (EGFR) by erlotinib.6 As anticipated from PET 18F-FDG in cancer patients, 

erlotinib treatment of the U87EGFRvIII cells reduced the rate of glycolysis, although, 

surprisingly, that reduction was uneven over the 4-hours following start of treatment. This 

uneven decrease in glycolysis was accompanied by oscillations in the levels of various 

phosphoproteins downstream of EGFR signaling. 

In the present study, we report on a redesign of Betabox that permits a similar kinetic 

study, but at the level of single cells. The modified Betabox is shown to be sufficiently 

sensitive and quantitative that the variance of glycolysis across a statistical number of 

single cells is resolved for the first time. The assay is non-destructive to the cells, and the 

results may be integrated with optical microscopy measurements that permit the rates of 

glycolysis to be compared against cell size. 
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2.2 Materials and methods 

2.2.1 Betabox assay platform  

The Betabox assay platform consists of a silicon-based β-particle imaging camera 

(Betabox camera) and a polydimethylsiloxane (PDMS)-based microfluidic chip (Betabox 

device). The Betabox camera was validated and operated as previously described. The 

design in this paper is developed based on the general considerations of previous work. 

The current version of the Betabox device, however, has improved the measurement 

sensitivity about 20% by implementing a thinner bottom PDMS film (13 µm, instead of 50 

µm used in previous report) between position-sensitive avalanche photodiode (PSAPD, 

Radiation Monitoring Devices) and the cells. This improvement in measurement sensitivity 

enables single cell-based metabolic measurements. To make the fabrication process 

simpler, all the features, including the dust filter and cell traps are moved to the top layer. 

The Betabox microchip device has 3 key features: 1) a cell trap array, 2) inlet filters, 

and 3) a perfusion channel (Figure 2.1 and Figure 2.6, Appendix A). Different designs 

permitted different numbers of cell traps (1-, 7-, or 40-cell traps) depending on the purpose 

of the study. Each individual cell trap consists of 2 micro hurdles with 5µm gap. The shape 

of the cell trap was optimized to minimize the chance of trapping more than one cell per 

chamber (Figure 2.6c). We utilized two different configurations of solution inlets. By 

sharing a single inlet for all the channels, we can test a single condition per device (Figure 

1b). Testing multiple conditions, such as in a kinetic study, is enabled by placing 

independent inlets/outlets for each channel (Figure 2.6d). The inlet filters are essential for 

preventing dust, cell debris, or clumped cells from blocking the active region of cell traps. 

Detailed shape, layout, and dimensions of the filter region are shown in Figure 2.6b. Two 
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sets of inlets and filters are placed upstream to minimize the failure rate of the device due 

to unexpected clogging.  

Analysis on single cells can be achieved by measuring multiple devices for a single 

condition. As described in Figure 2.2, the Betabox signals can be adjusted to a single time 

point (usually the first or the last time point) based calibrations against the decay of 18F-

FDG radioactivity. Cell loading efficiency for cell traps is around 90%. However, a single 

trap can capture two or more cells and trapped single cells can be lost during the handling. 

The final loading efficiency for single cells is 50-80%. Currently up to 20 Betabox devices 

can be measured in a single day and the yield of single cell measurement will be improved 

through the further optimization of the test protocol. 

 

2.2.2 Betabox device fabrication  

The Betabox device consists of 2 PDMS layers fabricated by standard soft lithography 

methods. The top layer is ~5mm thick, and contains all the described key features of the 

Betabox device in microchannels with ~30 µm height. The top layer is molded with a 

master fabricated by standard photolithography with SU-8 2025 photoresist (Microchem) 

on a silicon wafer. The master is treated with trimethylsilyl chloride (TMCS, Sigma 

Aldrich) for 10 minutes before each use. 10:1 mixture (w/w) of PDMS prepolymer and 

curing agent (Sylgard 184®, Corning) was poured onto the master, degassed in a vacuum 

chamber, and baked at 80oC for 2 hours. The cured PDMS slab was peeled off from the 

master, and holes for inlets and outlets were punched. The bottom layer used in this study 

is ~13 µm thick, and it does not contain any features. 25mm×75 mm sized, 1mm thick, pre-

cleaned glass slides (Gold Seal® Rite-on® Microslides, Gold Seal® Products) were 
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cleaned with piranha solution (3 Sulfuric acid : 1 hydrogen peroxide, v/v) at 120oC for 20 

minutes followed by through rinsing with distilled water and drying at 80oC for 20 minutes. 

Dried glass slides were treated with TMCS for 30 minutes. The degassed 10:1 mixture 

(w/w) of PDMS prepolymer and curing agent was poured onto the treated glass slide and 

was spun at 4000 rpm for 1 minute followed by baking at 80oC for 1 hour. The top and 

bottom PDMS layers were irreversibly bonded by plasma treatment (PDC-32G, Harrick 

Plasma) for 1 minute. 

 

2.2.3 System evaluation with radioactive phantoms  

Radioactive phantoms were prepared based on the Betabox device layout by printing 

a mixture of ink and 18F-FDG solution on Epson Ultra Premium photo paper GLOSSY 

with an inkjet printer (Canon iP4700 printer). The ink cartridge was emptied prior to 

printing the radioactive phantoms. 1mL of ink mixture containing 3.7×107 Bq/ml 18F-FDG 

was prepared and injected into the ink cartridge. The level of radioactivity was adjusted 

with a radiometer (ATOMLABTM 500 BIODEX). β-particles, generated from the 

disintegration of printed 18F-FDG pattern, were captured by the Betabox with 5 minutes of 

acquisition time. The results were used to check the measurement error of the Betabox by 

location and to calibrate the decay of 18F-FDG radioactivity (Figure 2.2 and Table 2.2, 

Appendix B). 

 

2.2.4 Cell culture and drug treatment  

GBM39 primary neurospheres and HK393 cells were cultured in Dulbecco’s Modified 

Eagle Media Nutrient Mix F-12 (DMEM/F12, Invitrogen) supplemented with B27 
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(Invitrogen), Glutamax (Invitrogen), Heparin (1μg/mL), Epidermal Growth Factor (EGF, 

20ng/mL, Sigma), Fibroblast Growth Factor (FGF, 20ng/mL, Sigma), and 100 U/mL of 

penicillin and streptomycin (Gibco) in a humidified 5% CO2 (v/v) incubator, at 37°C. For 

the drug treatment, 1 million cells were suspended in 10 mL of media containing 1 μM 

erlotinib (ChemieTek / Selleckchem). The cells were then treated for designated periods of 

time and processed for tests. For the growth curve experiments, GBM39 primary 

neurospheres and HK393 cells were cultured in the same media conditions with or without 

1 μM erlotinib. Cells were counted and passaged with medium replenishment every 3-4 

days. 

 

2.2.5 The Betabox assay procedures  

1) 18F-FDG treatment. Single cell suspension was prepared from the GBM39 

neurospheres, HK393 cells, or the erlotinib treated, pre-dissociated GBM39 / HK393 cells. 

1×106 cells / mL were treated with 3.7×107 Bq/mL 18F-FDG in the glucose free medium 

(Table S1) in a 5% CO2 (v/v) humidified incubator at 37oC for 1 hour. After treatment, 

cells were washed with the full medium three times to remove residual unbound 18F-FDG. 

2) Betabox measurement. The device was first filled with glucose free medium before the 

assay was executed. 5-10 µL of 18F-FDG treated GBM39 / HK393 cells, prepared at a 

concentration of 2×106 cells / mL in the glucose free medium, were loaded by applying 

negative pressure with a 1mL syringe from the outlet. After cell trapping, about 80 µL of 

glucose free media was flown to remove untrapped cells. For the measurement, the Betabox 

device was aligned with the Betabox camera and image was acquired for 5 minutes. A 

custom-coded Matlab (Natick) program was used to control the Betabox, collect, and 
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analyze the data. After radioactivity measurement, optical images of the captured cells 

were recorded with a microscope (Nikon Eclipse Ti-S) for cell count and size 

measurement. 

3) Data analysis. Depending on the Betabox device design, 20 or 30 rectangular regions 

of interest (ROIs) were set on the radio-image, and the total measured β-particle count in 

each ROI was quantified by the custom-coded Matlab program. The average of the total β-

particle count from all the empty chambers was used as the background level. This 

background level was subtracted from the total β-particle count for each chamber with 

cells. Counts per minute (CPM) refers to the actual total β-particle counts from a chamber 

divided by the acquisition time (5 minutes for this study). CPM/cell values were calculated, 

dividing CPM by the number of captured cells in a chamber. CPM/cell data, from multiple 

Betabox assays in a day, were adjusted considering the time interval between the assays 

based on the calibration data. Since the detected decay of the 18F-FDG radioactivity exactly 

follows the theoretical prediction, all the data obtained at different time points could be 

adjusted to the ones at a single time point for direct comparison. Cell size was measured 

from the optical image with ImageJ (NIH). The equivalent diameter of each cell was 

calculated based on the 2D area of captured cells. Cell volume calculated with the 

equivalent diameter (with the assumption that a cell has a spherical shape) was used for the 

correlation analysis.  

 

2.2.6 Statistical analysis 

The levels of glycolysis were measured as CPM/cell and mean values plus and minus the 

standard deviation were also presented along with the single cell measurement values. To 
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compare control and erlotinib-treated groups with various treatment times unpaired, two-

tailed student t-tests were performed to determine whether the conditions produced 

significantly different results. P values less than or equal to 0.005 were considered 

statistically significant. For the correlation analysis between cells size and glycolysis level, 

Spearman correlation value was calculated between cell volume and CPM and the 

correlation value was 0.36 (p value=0.006). 

 

2.3 Results and discussion 

 
 

Figure 2.1 The Betabox and device design. (a) Image of the Betabox. The Betabox device is placed 
on the active camera region for the measurement. (b) CAD image of the Betabox microfluidic 
device. (c) Optical image of the single cell trap with a captured cell (top) and examples of the 
flexible designs of cell traps (bottom). 
 

The Betabox is composed of two chips; a position-sensitive silicon avalanche 

photodiode detector to image and measure beta-particle emission from probes radio-

labeled with positron emitting isotopes, 14C, 18F, etc., and a polydimethylsiloxane (PDMS) 

microfluidic chip for capturing cells in culture media. The microfluidic chip is placed on 
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the Si camera. The layout of the Betabox with representative examples of microfluidic chip 

designs containing cell traps are illustrated in Figure 2.1. The Si camera can image and 

measure beta particle emission simultaneously from each of the cell traps. The Si camera 

of the Betabox has been previously validated and described elsewhere.7,8  

The microfluidic chip is a 2-layer device fabricated with standard photolithography 

and rapid prototyping methods (see Appendix A).9 The chips used for this study have either 

4 or 5 cell capture microchambers in each of 5 or 6 separate channels, respectively. Thus, 

each microfluidic chip has either 20 or 30 chambers as an array format of 4 by 5 or 5 by 6. 

All the chambers can be used for a single test condition by sharing a common inlet (Figure 

2.1b). A modified design with separate inlets and outlets for each channel permits 5 or 6 

independent assays per chip, such as those required to perform a kinetic study (Figure 2.6d, 

Appendix A). Several features in the chip design promote high signal sensitivity and single 

cell spatial resolution. The first feature is a thin bottom membrane of the chip that separates 

the cells from the camera, and is designed to minimize signal attenuation of the beta 

particles emitted by radio-labeled probe in the microfluidic chip. We tested several 

membrane thicknesses by utilizing various spin coating speeds during the PDMS bottom 

layer fabrication step (Figure 2.7, Appendix A). A 13 μm-thick membrane was found to 

offer an optimized combination of signal sensitivity and mechanical strength, and yielded 

20% increase in the sensitivity for detecting the beta particle emission from the radio-

labeled probes relative to our previous design (Figure 2.7, Appendix A).6 A second design 

feature is the cell traps, which draw from previous literature.10,11 The cell traps, coupled 

with the transparent microfluidic chip, permit direct observation and recording of which 

traps contain single cells. The optical image can be registered with the Si camera image to 
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assign rates of glycolysis to the individual cells. A third feature is the inlet filters, which 

are designed to prevent particles and clumped cells from clogging the active areas of the 

microfluidic chip. Design details are shown in Figure 2.6, Appendix A.  

The Betabox performance was evaluated by using phantoms that were printed using 

an inkjet on glossy photographic paper. The printed pattern replicated the microfluidic chip 

design, with each location containing 18F-FDG (Figures 2.1b and 2.2a).7,12 The Si camera 

recording of beta particle emission from each location of the phantom showed a 5% of 

coefficient of variation (CV) (Table 2.2, Appendix B). This variation is likely attributable 

to small variations in the PDMS membrane thickness, but, whatever the source, the low 

CV value indicates that the intrinsic error of the Betabox is low. A related, previously 

reported evaluation that was designed to account for the inkjet printer error revealed a CV 

of below 2%.7 A time course measurement of the 18F decay curve from the phantom was 

also recorded over a 12-hour period at 15-minute intervals (Figure 2.2b). The measured 

time-dependence of the activities follows the known 18F half-life of 109.8 minutes. This 

result provides calibration data for combining results from multiple independent Betabox 

measurements, thus significantly increasing the statistical sampling of the single cell 

measurements. 

The Betabox design, with its 5 independent microchannels, each designed with a 

selected number of cell traps, permits kinetic assays of glycolysis under drug treatments at 

the single cell level (Figure 2.6d, Appendix A). As a demonstration, we measured the 

alteration in glycolysis of a patient-derived, EGFR over-expressing glioblastoma 

neurosphere tumor model (GBM39) to EGFR inhibition with erlotinib. We determined 

glycolysis at 1, 4, 12, and 24 hours following start of treatment versus the untreated control 
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(Figures 2.3a to 2.3d). To validate the single cell platform, experimental assays were 

compared. The first was the Betabox design with 5 independent channels, each containing 

4 chambers with 40-cell traps (Figure 2.6d, Appendix A). The ~40-50% reduction in 

glycolysis following 24 hours erlotinib treatment (Fig 2.3a, b) is in reasonable agreement 

with both in vivo measurements (using 18F-FDG PET) of a GBM39 mouse xenograft tumor 

model.4  The Betabox platform, applied to cell populations, has also been previously 

validated against bulk in vitro radioassays using standard methods.6  These results indicate 

that the 40-cell trap design (Fig 2.1c) yields a reliable population-based analysis.  

 

 
 
Figure 2.2 The Betabox calibration. (a) Image of the printer layout used for evaluating the Betabox 
performance (left) and the actual acquired image of the printed pattern with the Betabox (right). 
Signal is collected from each ROIs shown in the image. (b) 18F-FDG activity imaged with the 
Betabox for 12 hours. Printed 18F-FDG pattern shown in (a) was used to measure the decay of 18F-
FDG activity. The activities acquired with the Betabox exactly follow the expected decay of 18F-
FDG activity with the known 18F-FDG half- life, 110 min. 
 
 

The second assay was with the Betabox designed for single cell resolution: 5 

microchannels, each containing 4 chambers with a single cell trap (Figure 2.1c, bottom).  

GBM39 cells have been shown previously to exhibit decreased glycolysis with 18F-FDG 

upon erlotinib treatment.13 The 40-trap device captured a slightly increased signal with 1-

hour treatment, followed by a significant decrease at 12 and 24 hours (Figure 2.3b). 
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Averaged signal intensities of single cells showed a similar response, although the single 

cell measurements provided additional information that demonstrated the heterogeneity of 

glycolytic alterations within individual cells (Figure 2.3d). For a more in-depth analysis of 

the heterogeneity, we chose two conditions (control vs. 24 hours erlotinib treatment) and 

tested them with five sets of microfluidic chips per condition. These independent 

measurements were corrected for the decay of 18F activity based on the calibration data and 

then, for each separate condition, combined. Out of 100 cell traps, 43 and 46 traps captured 

single cells for the control and the drug-treated condition, respectively. Erlotinib treatment 

decreased glycolysis by approximately 40%, with a standard deviation that was decreased 

by ~55%, relative to control. This measured variance in glycolysis of GBM39 cells is an 

important aspect of the Betabox technology as the metabolic outliers may have value for 

understanding therapeutic resistance.14  

 

 
Figure 2.3 The Betabox measurement of GBM 39 cells with erlotinib treatment. (a) Image of the 
18F-FDG activity of 30-50 GBM 39 cells under erlotinib treatment with various treatment times (0, 
1, 4, 12, and 24 hours). (b) Quantified 18F-FDG activity per cell from (a). (c) Image of the 18F-FDG 
activity of single GBM 39 cells under erlotinib treatment with various treatment times (0, 1, 4, 12, 
and 24 hours). (d) Quantified 18F-FDG activity per cell from (c). (e) 18F-FDG activity of GBM39 
single cells with/without erlotinib treatment measured with multiple devices. 
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Figure 2.4 Cell size vs. 18F-FDG uptake of GBM39 cells. (a) 18F-FDG uptake level of single 
GBM 39 cells. Representative images of actual cells in two extreme cases are shown as well. (b) 
Scatter plot of 18F-FDG uptake level versus cell size shows no correlation between the two 
parameters. 

 

The transparency of the PDMS microfluidic chip, coupled with knowledge of the cell-

trap locations, permit simultaneous measurements of cell morphology and size. GBM39 

cells, by their nature, are characterized by a broad distribution of cell sizes. In these 

Betabox studies, it is straightforward to determine whether the heterogeneity in cell size is 

associated with a corresponding heterogeneity in glycolysis. We investigated this 

relationship for 58 single cells. Images of cells for the two extreme cases are shown in 

Figure 2.4a. Even though the two extreme cases point to a correlation between cell size and 

glycolysis, only a weak positive correlation (Spearman correlation of 0.36 with p-value of 

0.006) was detected when the whole population was analyzed (Figure 2.4b).  Using a single 

cell barcode chip (SCBC) platform, we recently reported on a combined analysis of 

metabolites and phosphoprotein signaling pathways from statistical numbers of single cells 

separated from a GBM39 tumor model.  In that study, we found that two metabolic 

phenotypes dominate the measured cellular heterogeneity: 80% of the cells exhibit high 
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glucose uptake and low cAMP and cGMP, while 20% of the cells exhibit high cAMP and 

cGMP, but low glucose uptake.4  Unlike the Betabox, the SCBC analysis is destructive to 

the cells, and so the gene regulatory networks that underlie this metabolic heterogeneity 

could not be identified.  However, the single cell Betabox platform should permit the 

metabolic outliers to be further analyzed via exome or transcriptomic analysis.  This is a 

major power of the platform.  

 

Figure 2.5 Early metabolic response is a predictive marker for a long-term drug efficacy. (a) 
Metabolic activity of GBM39 cells with / without erlotinib treatment. 24 hours of treatment 
decreased ~20% average 18F-FDG uptake (control: 96 cells and drug treated: 106 cells) (b) 
Metabolic activity of HK393 cells with/without erlotinib treatment. 24 hours of treatment increased 
~35% average 18F-FDG uptake (control: 133 cells and drug treated: 137 cells). (c) Growth curves 
of GBM39 and HK393 cells with / without erlotinib treatment. The growth of HK393 cells was not 
affected by erlotinib treatment whereas the growth of GBM39 cells was inhibited. (*, p<0.05; ****, 
p<0.001). 
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Furthermore, the Betabox can be a rapid assay platform to screen potentially effective 

drugs for model GBM cell lines (Figure 2.5). Previous 18F-FDG PET clinical studies 

reported that early metabolic responses of cancer patients to a drug treatment may be a 

predictive marker for long-term drug efficacy.15,16 Here the metabolic responses were 

defined by the changes in 18F-FDG uptake, and the decrease of measured activities after 

short-term drug treatment predicted the long-term drug efficacy. We demonstrated that the 

Betabox can be also used for the same drug efficacy assessment in vitro. The metabolic 

responses of 2 GBM cell lines, GBM39 and HK393, to 24 hours erlotinib treatment were 

measured by the Betabox. GBM39 cells showed the decrease in 18F-FDG uptake whereas 

HK393 cells actually showed the increase. Then, the growth of GBM39 and HK393 cells 

was monitored during 19 days with / without erlotinib. As expected, only the growth of 

GBM39 cells were inhibited by erlotinib treatment. This observation corresponded to those 

previous studies and proposed that the Betabox platform can be used in the drug screening 

process. 

 

2.4 Conclusion 

We have demonstrated the Betabox design that has sufficient sensitivity and spatial 

resolution to provide images and robust/quantitative measurements of glycolysis with 18F-

FDG in single cells. We applied this technology for quantitative assays of glycolysis in 

single GBM cells over a time period of a few hours following erlotinib treatment. The 

variance in glycolysis across a statistical number of single cells was resolved. For both 

control and drug treated GBM39 cells, the variation in glycolysis across single cells was 

broad, with standard deviation values of approximately 92% and 66% of the average, 
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respectively. Furthermore, this variation exhibited only a weak correlation with the broad 

distribution of cell sizes that are characteristic of the GBM39 cells. We also showed that 

this platform can be used for the rapid screening of potentially effective drugs for model 

GBM cell lines. The Betabox assay is non-destructive to the cells, and so further molecular 

analysis of the radioassayed cells should permit deeper insights into this heterogeneity.17 

In addition, there is a wide range of available PET probes for various metabolic, signal 

transduction, synthetic processes associated with disease states. The Betabox can thus serve 

as a valuable tool for quantitating the heterogeneity of various biological functions in single 

cells and for helping explore the implications of that heterogeneity in disease and disease 

treatments.18 
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2.6 Appendix A: Supplementary figures 
 

 
 
Figure 2.6 Betabox device image and dimensions. (a) Actual Betabox device image. (b) Image of 
the filter region and dimensions of key features. (c) Image of the single cell trap region with 
dimensions. (d) CAD image of the Betabox device with individually accessible channels.  
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Figure 2.7 Bottom layer thickness effect to the sensitivity of the Betabox measurement. (a) 
Thickness of the PDMS layer with various spin speeds. (b) Image of the 18F-FDG activity measured 
from the actual Betabox devices with two different bottom layer thickness: 13μm (4000 rpm) and 
55μm (1000 rpm). All the channels are filled with 18F-FDG solution with 3.7×107 Bq/ml of 
concentration. (c) Quantified activities from the images in (b). Signal is increased about 20% by 
using higher spin speed, 4000 rpm than 1000 rpm. 
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2.7 Appendix B: Supplementary tables 

 

Table 2.1 The list of the media and the ingredients used. 

 
Full Medium 

Ingredient (Manufacturer) Concentration 
Dulbecco’s Modified Eagle Media Nutrient Mix F-12  
(DMEM/F-12, Gibco®, Life Techonologies) 

 

GlutaMAXTM (Gibco®, Life Techonologies) 1X 
B27® Supplements (Gibco®, Life Techonologies) 1X 
Heparin sodium salt from porcine intestinal mucosa (Sigma Aldrich) 1 µg/mL 
Epidermal Growth Factor (EGF, Sigma Aldrich) 20 ng/mL 
Fibroblast Growth Factor (FGF, Sigma Aldrich) 20 ng/mL 
Penicillin-Streptomycin mix (Gibco®, Life Techonologies) 1X 

 
Glucose Free Medium 

Ingredient (Manufacturer) Concentration 
Glucose free DMEM medium (Gibco®, Life Techonologies),  
GlutaMAXTM (Gibco®, Life Techonologies) 1X 
B27® Supplements (Gibco®, Life Techonologies) 1X 
Sodium Pyruvate (Gibco®, Life Techonologies) 1X 
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Table 2.2 The average and the coefficient of variation (CV) of the actual signals from different 
chamber locations of the Betabox device. 
 

4 by 5 chamber layout  5 by 6 chamber layout 

ROI ID Total Activity  ROI ID Total Activity 

1 27754  1 23439 
2 28000  2 25010 
3 28381  3 24083 
4 27299  4 24848 
5 24602  5 24667 
6 25910  6 21889 
7 25762  7 25124 
8 24746  8 23622 
9 24940  9 24902 
10 25458  10 22958 
11 25784  11 20981 
12 24417  12 24179 
13 25786  13 23086 
14 26060  14 24394 
15 26850  15 22188 
16 25142  16 21810 
17 23959  17 24281 
18 24469  18 23576 
19 24048  19 25192 
20 23503  20 22510 

 

 21 20443 
 22 23064 
 23 23111 
 24 23800 
 25 22116 
 26 21923 
 27 22982 
 28 21966 
 29 23085 
 30 22613 

Average 25643.5  Average 23261.4 
STDEV 1405.18  STDEV 1261.83 
CV (%) 5.48  CV (%) 5.42 
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Chapter 3 

Plasma proteomic measurement for monitoring and 
predicting glioblastoma patient responses to 
an anti-angiogenic drug treatment 
 

 

3.1 Introduction  

Quantifying patient tumor response during drug treatment is important in 

monitoring efficacy and resistance development during cancer therapy. Non-invasive 

imaging techniques, such as Magnetic Resonance Imaging (MRI), Computed Tomography 

(CT), and Positron Emission Tomography (PET), are well established for tracking physical 

sizes and metabolic activities of tumor during therapy.1 However, imaging examinations 

usually require time intervals of at least one month because of both safety concerns and 

costs. This time interval is sometimes too broad to effectively monitor tumor responses and 

capture the initiation of drug resistance. Moreover, images are often poorly evaluated to 

detect tumor growth, which fails to capture the early drug resistance development. As a 

result, patients often receive treatments that are no longer effective to treat their tumors, 

yielding elevated risk and economic burdens.2 Therefore, time intervals for monitoring 

tumor responses should be precisely and reasonably tuned depending on tumor types.  

Glioblastoma multiforme (GBM), the most common type of brain tumor with a 

survival time of 12 - 15 months, is exemplary of a highly lethal tumor that needs response-



43 
 
monitoring with fine time resolution. Contemporary therapeutic strategies for GBM are 

limited, thus leading to short survival time. For primary GBM patients, surgical resection 

is first executed and then combinatory therapy of radiotherapy and temozolomide treatment 

are administered for suppressing secondary tumors. However, some tumor cells remain 

after surgical resection, which forces clinicians to rely on targeted drug treatment despite 

the limited drug delivery capacity by the blood brain barrier. The high heterogeneity of 

GBM lowers the therapeutic efficacy of the drug and resistance subpopulations quickly 

proliferate. Once a patient develops a secondary tumor, clinical options become extremely 

limited. With only 3 FDA approved drugs for recurrent GBM, median survival times of 

recurrent GBM patients reduces to 8-10 months.3–5 

This study focuses on the clinical case of the bevacizumab treatment, an anti-

angiogenic drug, in a group of recurrent GBM patients. Bevacizumab is a humanized 

monoclonal antibody targeting vascular endothelial growth factor (VEGF).6 The rationale 

for this targeted therapy is based on the observation that tumor cells induce surrounding 

endothelial cells to develop bulky vascular structures in order to increase nutrient supplies. 

Cancer cells secret VEGF which stimulates the vessel formation of endothelial cells via 

receptor tyrosine kinases (RTKs) signaling. Bevacizumab depletes available VEGF 

proteins in tumor microenvironment and hence inhibits the vessel formation. In 2009, FDA 

approved this drug for treating recurrent GBM after a clinical trial.7 However, subsequent 

clinical trials have not successfully shown prolonged overall survival, and only a small 

subset of the recurrent GBM patients benefited.5  
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We hypothesize that a panel of plasma protein markers can be employed for 

monitoring patient therapeutic responses to the bevacizumab treatment. Above all, blood 

contains rich biological information such as DNA, RNA, proteins, and circulating tumor 

cells associated with tumor proliferation and drug response.8,9 Blood sampling is also 

minimally invasive and thus can be frequently executed. Among those tumor relevant 

biomarkers, proteins are particularly useful in that their functions are clearly understood, 

and we might be able to characterize what functional changes occur during therapy. In the 

context of cancer biology, unique proteomic signatures associated with drug resistance 

might guide us to define the next drug targets. However, single plasma protein biomarkers 

have shown limited diagnostic power, and only 2 markers, CA-125 for ovarian cancer and 

PSA for prostate cancer, were approved by FDA for diagnosing tumor status. Instead, 

proteomic classifiers, defined as a function of multiple selected protein markers, have been 

developed and evaluated for cancer diagnosis with the aid of the technological 

development in proteomics tools in mass spectrometry and immunoassays.10–12 For 

example, OVA1, composed of 5 marker proteins including CA-125, displayed higher 

predictive capacity in ovarian cancer diagnosis than a sole maker of CA-125.     

For this work, patient proteome profiling was performed by multiplexed, sandwich 

immuno-fluorescence assays on a microchip.13,14 This technology has two components: a 

DNA barcode chip and a DNA-encoded antibody library (DEAL) (Figure 3.2). First, up to 

20 orthogonal single-stranded DNA (ssDNA) oligomers were flow-patterned in parallel 

within 50 µm channels on a microscope glass slide. This process was engineered for the 

mass production over 20 DNA barcode chips. Second, DEAL was prepared by conjugating 

capture antibodies with ssDNA oligomers complementary to barcode DNAs. Then, 16 
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individual assays of finger-prick volume (30 µL) were simultaneously performed on the 

barcoded glass surface. An array of ssDNA oligomers is converted into an array of 

antibodies by hybridizing the DNA patterns with the DEAL antibody conjugates, and the 

locations of antibody conjugates are designated by their DNA sequences. Then, serum 

samples and fluorescence labeled detection antibodies are sequentially loaded. The glass 

slide is finally scanned, and the collected fluorescence signals are digitized for quantitation. 

Fluorescence intensity can be converted into absolute quantity (ng/mL) with calibration 

curves from recombinant proteins. 

We first identified 14 serum protein markers for diagnosing GBM tumor responses 

to the bevacizumab treatment. From an initial pool of 62 patient samples, 35 plasma 

proteins were measured, and tumor responses associated with each sample were clinically 

evaluated as binary variables.15 We then found 14 proteins with the high classification 

capacity of patient treatment responses among 35 proteins by developing a multivariate 

statistical model. We sought to validate our model to a larger group of samples in order to 

evaluate those 14 serum proteins as the predictive markers of the drug responses. Thus, we 

measured 14 proteins in 516 serum samples from 105 GBM patients who were receiving 

the treatment. We sought a robust model of the drug responses as a function of serum 

proteins, so that the drug efficacy and its resistance development can be readily assessed.  

Furthermore, the longitudinal changes of patient tumor volumes were quantitatively 

assessed by analysis of functional neuroimages (AFNI) software.5,16,17 This approach can 

quantitatively track the volumetric changes of tumor during treatment and resolve the 

qualitative assessment of tumor responses, which cause inaccurate diagnostics.18 To test 
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this idea, we chose a group of patients who first responded to the drug but later showed 

drug resistance during blood sampling periods. Using the AFNI software, we obtained 

contrast material-enhanced T1 weighted subtraction maps from those patients’ MRI scan 

data and estimated tumor volumes in mm3 scale. We then generated a mathematical model 

combining plasma proteomic signatures with tumor volumes to predict tumor drug 

responses.  

 

3.2 Materials and methods 

3.2.1 Study design 

Plasma samples were collected from 105 primary or recurrent GBM patients who 

were treated with bevacizumab as a part of the standard care. Plasma sampling periods 

mostly included before, during, and after the bevacizumab treatment. Drug doses varied 

depending on patients. Majority of patients had received the standard radiation therapy 

before the bevacizumab treatment. More patient clinical characteristics can be found in 

Table 3.1, Appendix A.  

3.2.2 Plasma collection and processing 

 Patient blood samples were collected and processed by standard phlebotomy 

procedures. 10mL of blood drawn from a patient was first collected in a tube containing 

anti-coagulant (BD Vacutainer Yellow Acid-citrate-dextrose (ACD) Blood Collection 

Tubes). Tubes were centrifuges at 1500×g in a refrigerated centrifuge (3-5C). ~200µL 

Plasma samples were aliquoted into cryogenic vials and stored at -80C. Samples were 
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processed within 2 hours of blood draw. The aliquoted samples were thawed and used only 

once for the multiplexed sandwich immunofluorescence assay. 

3.2.3 DNA-barcode chip fabrication and DNA-encoded antibody library (DEAL) 

preparation 

Methods for DNA-Encoded Antibody Library (DEAL) preparation, DNA barcode 

patterning, and PDMS microwell slab fabrication were previously described.14,19 Lists of 

DNA sequences and antibodies are summarized in Appendix A, Table 3.2 and 3.3.  

3.2.3.1 DNA-patterning on a glass slide   

A mold of 50 µm wide and 40 µm high patterns was first prepared with SU8 2025 

(Microchem) by the standard photolithography. Mold surface was treated with 

trimethylchlorosilane (TMCS, Sigma Aldrich). Sylgard 184 (Dow Corning) was mixed 

(pre-polymer : curing agent = 10:1), degassed, poured on the mold, and cured at 80C for 

2 hours. Cured PDMS slab was cut, peeled from the mold, inlet and outlet punched, and 

aligned with a poly-L-lysine (PLL) coated glass slide (Thermo Scientific). The aligned 

PDMS slab and PLL glass slide were bonded at 80C for 2 hours. 15 channels were used 

in this study. After bonding, 0.1% PLL solution (Sigma Aldrich) was flown through the 

channel and dried overnight by air flow overnight, using solution loading devices. Details 

about the solution loading devices can be found in chapter 5 of this thesis. Then, DNA 

solution of single stranded DNA (ssDNA) oligo B-Q (Bioneer, Inc) was loaded in the PLL-

deposited channel by airflow, using the solution loading devices (Table 3.2, Appendix A). 

Dimethyl sulfoxide (DMSO, American Type Culture Collection) phosphate buffered saline 

(PBS) at pH 7.4 (Corning) were used for preparing ssDNA solution. The ssDNA solution 
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was dissolved in DMSO/PBS (2:3) solution, and mixed with BS3 

(bis(sulfosuccinimidyl)suberate), ThermoFisher Scientific) linker solution in PBS. This 

DNA-solution filled PDMS-glass assembly was incubated at incubated at room 

temperature for 2 hours in a humidifier chamber. The PDMS slab was peeled off after the 

incubation, and the DNA patterned glass slide was washed with 0.02% SDS once and 

Millipore water three times sequentially. The glass slide was spin-dried with a Miniarray 

microcentrifuge (VWR). A region of DNA pattern near one edge of the glass slide were 

incubated with Cy3-complemenaty ssDNA solution (Integrated DNA Technologies) in 1% 

BSA in PBS at 37C for 1 hour for the DNA pattern quality assessment. The region was 

scanned with Axon GenePix 4400A (532nm at PMT 450, laser power 15%, 10µm/pixel), 

and the fluorescence intensity was measured. 

3.2.3.2 DNA-antibody conjugation 

Anti-streptavidin mouse monoclonal antibody was first reconstituted in PBS and 

desalted using a Zeba (ThermoFisher Scientific) spin column (Table 3.3, Appendix A). 

Succinimidyl 4-hydrazinonicotinate acetone hydrazine (S-HyNic, Solulink) in anhydrous 

N,N-dimtheylformamide (DMF, Solulink) solution was added to the antibody solution and 

incubated at room temperature for 2 hours. In parallel, ssDNA oligo B’-Q’ (Bioneer, Inc) 

was dissolved in PBS and mixed with S-4FB in DMF solution (Table 3.2, Appendix A). 

The mixture was incubated at room temperature for 2 hours. Each reaction mixture was 

buffer exchanged into a pH 6.0 citrate buffer using Zeba spin columns. These buffer-

exchanged solutions were combined, and incubated at room temperature for 2 hours and 

then at 4C overnight. The DNA-antibody conjugate was purified by FPLC (GE, 
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Pharmacia Superdex 200 gel filtration column), and the purified conjugate was 

concentrated by a centrifugation (Millipore, Amicon Ultra-4, MWCO 10kDa). 

3.2.3.3 Multiplexed sandwich immunofluorescence assays for protein measurements 

1) Microarray preparation. A 16 microwell PDMS slab and a DNA-patterned glass slide 

were first aligned. The DNA-antibody conjugate was prepared in the BSA solution (1% in 

PBS) was pipetted in each microwell and incubated at 37C for 1 hour in order to hybridize 

ssDNA on the glass with the antibody conjugates. Surface was washed with 1X PBST. 

Additional surface blocking was done with BSA solution (1% in PBS) at 37C for 1 hour. 

2) Patient serum sample loading. Patient serum samples were thawed and centrifuged at 

21130 × g for 5 mins. Supernant was added to the microwells and incubated at room 

temperature with gentle shaking for 1 hour. After the incubation, the surface was washed 

with 1× PBST.  

3) Detection antibody loading. Detection antibody cocktail solution was prepared in the 

BSA solution (1% in PBS) and pipetted in the each microwell. It was incubated at room 

temperature for 1 hour. Surface was washed with 1X PBST. Streptavidin-Alexa Fluor 647 

conjugate solution was prepared in the BSA solution (1% in PBS), and the same procedures 

were performed as the detection antibody solution during loading, incubating, and washing. 

4) Fluorescence readout. The 16 well PDMS was peeled off, and the microarray slide is 

washed with 1X PBS, 0.5X PBS, and Millipore water sequentially. The microarray slide 

was spin-dried with the miniarray microcentrifuge. The slide is scanned by an Axon 

GenePix 4400A (635nm: PMT 600, laser power 80%, 10µm/pixel and 532nm: PMT 450, 
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laser power 10%, 10µm/pixel). The scanned image was digitized, and fluorescence signal 

intensities were extracted using the manufacturer’s software.  

3.2.4 Clinical data acquisition 

 Patient tumor progression was monitored by magnetic resonance imaging (MRI). 

Details of MRI scan conditions can be found in reference 5.5 Clinicians interpreted MRI 

data and assign categorical variables for the tumor progression. Values are 0 for responders 

(stable disease, i.e. the drug responsive period of responders) and 1 for non-responders 

(progressive disease, i.e. the non-responsive period of responders and all the treatment 

cycles of non-responders).  These binary values were linked to the measured 14 plasma 

protein levels.   

3.2.5 Analysis of functional image analysis 

 AFNI was performed for the MRI scan data from 23 patients as previously 

described.16,17 Tumor volumes were estimated using this software. If MRI data on the exact 

plasma sampling date were available, estimated tumor volumes were accepted as they were. 

If MRI data were not available on the same plasma sampling dates, the range of tumor 

volume was estimated with the 2 MRI scan data closest to the sampling date (maximum ± 

1 month). Then, assuming a constant change rate of tumor volumes between those 2 time 

points, tumor volumes on the sampling date were estimated.  

3.2.6 Statistical analysis 

Pairwise comparison of protein levels in two groups (tumor growth vs. no growth) 

was performed by two-tailed Mann-Whitney test. Spearman’s rank method was used for 
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obtaining correlation coefficients between protein levels and tumor sizes. Only the 

coefficients, with Bonferroni-corrected statistical significance, were summarized in 

Appendix A, Table 3.8. 

3.2.7 Data analysis 

All the statistical analysis was performed with XLSTAT (Addinsoft) software. We 

screened the most predictive markers of GBM patient responses to the bevacizumab 

treatment by partial least square discriminant analysis (PLS-DA).20–22 We used a data set 

of 62 patient samples with 35 measured protein levels, and this data set was obtained from 

a previous study.15  Both raw and feature scaled protein levels were separately tested with 

PLS-DA. Variable importance in the projection (VIP), calculated by the software, was used 

as the measure of the predictive capacity of individual protein markers. More detailed 

description of PLS-DA can be found in chapter 4 of this thesis. 14 proteins with the highest 

VIP were selected to the follow-up measurement of 516 samples from 105 GBM patients. 

The data set of 14 protein levels and the GBM patient responses was analyzed by principal 

component analysis logistic regression method.23 Here in this modeling, the used protein 

levels were either raw or normalized with the estimated tumor volumes. A logistic 

regression was separately performed for the modeling of estimated tumor volumes and 

GBM patient responses.  
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3.3 Results and discussion 

 

Figure 3.1 PLS-DA modeling of the 35-plex proteome data of 62 samples. Raw protein levels were 
used here. (a) Receiver operating characteristic curve of the model with the area under the curve of 
0.923. (b) Projection of the data points onto 2 components of the fitted model. (c) Variance 
importance in the projection of the 35 protein markers. 95% confidence interval shown as the bars. 

 

PLS-DA models of patient responses and 35-plex proteome were fitted in two data 

sets: raw protein levels and feature scaled protein levels (Figure 3.1 and Figure 3.9, 

Appendix B). The fitted models showed robust classification capacity with the area under 
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the curve (AUC) of 0.923 (raw protein levels, Figure 3.1a) and 0.914 (normalized protein 

levels, Figure 3.9a in Appendix B). Proteomics data points, projected onto two components 

from original 35 dimensional spaces, were well-separated, which confirmed the robust 

classification capacity (Figure 3.1b and Figure 3.9b, Appendix B). In each data set, we 

obtained classification functions of responders and non-responders (Table 3.4 and 3.6, 

Appendix A) and VIP of all the 35 protein markers (Figure 3.1c, Figure 3.9c, Table 3.5, 

and Table 3.7, Appendices A and B).  

Total 14 protein markers among 35 protein markers were selected from the two 

fitted PLS-DA models. Since VIP is the measure of predictive capacity of individual 

markers, we looked at protein markers with top 12 greatest VIP values in each model. 10 

proteins were shown in common, 1) growth factors and receptor proteins such as 

transforming growth factor 1 (TGF β1), hepatocyte growth factor (HGF), vascular 

endothelial growth factor receptor 2 (VEGF R2), 2) cytokines such as interleukin(IL)-12, 

IL-23, macrophage inflammatory protein-1 α (MIP-1α, i.e. CCL3), monocyte chemotactic 

protein 1 (MCP-1, i.e. CCL2), and 3) enzymes such as matrix metalloproteinase-2 (MMP-

2), plasminogen activator inhibitor (Serpin E1), chitinase-3-like protein 1 (Ch3L1). 

Additionally, IL-13 and IL-10 were found from the raw protein level model, and stromal 

cell-derived factor 1α (SDF-1α, i.e. C-X-C motif chemokine 12) and tumor necrosis factor 

α (TNFα) were from the feature scaled protein level model. A total of 14 proteins, 

combined from those top 12 predictive markers in each PLS-DA model, were selected as 

the protein panel for the sandwich-type immunofluorescence assay. These screened protein 

markers are highly related, implying the multi-collinearity between them (Figure 3.10). 
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Figure 3.2 Raw scan image. (a) Raw scan of a barcode chip after the 14-plex plasma proteomic 
measurement. Total 16 plasma samples were measured (scale bar: 3mm). (b) A single well 
magnified in the raw scan. Each well contains 2 sets of antibody arrays for the 14-plex sandwich-
type immunofluorescence assays. Cy3 fluorescence, shown as a green stripe, indicated the spatial 
location of other barcode stripes which identified analytes. Fluorescence intensities were digitized 
from a line scan, shown as a white box (scale bar: 1.5mm). (c) Digitization results. A red graph 
represented signals from the immunofluorescence assays and a green graph were from the location 
indicator of Cy3 fluorescence. Identities of each analyte were labeled. 

 

We then sought to validate the classification capacity of this screened protein panel 

to diagnose the drug responses of a large pool of patient samples. DEAL conjugates and 

DNA barcode chips were prepared, validated, and calibrated as previously described 

(Figure 3.2 and Figure 3.11, Appendix B).13,14 We performed the 14-plex proteomic 

measurement of total 516 samples from 105 patients in this study, and relevant clinical data 
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were also obtained (Figure 3.3). This raw data set was divided into several sub-data sets 

depending on blood sample dates (before, during, after the bevacizumab treatment) and 

drug responses (responder and non-responder). However, none of the 14 protein levels 

were significantly different from responders and non-responders during the bevacizumab 

treatment in this large sample pool of 350 samples (Figure 3.4).  

 

Figure 3.3 Raw protein levels from the 14-plex proteomic measurement. Total 516 samples from 
105 GBM patients were measured including before, during, and after the bevacizumab treatment. 
Averages and standard deviations of the measured 14 proteins were shown. 

 

We hypothesize that the qualitative assessment of patient drug responses, e.g. 

scores, might cause the inaccurate classification of drug responses. The assessment is 

typically performed by clinicians, as longitudinal comparison of patient MRI scan data sets 

at several time points. This method intrinsically accompanies the variations between 

clinicians who evaluate the drug responses, and clinical interpretation is often challenging 
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for some MRI scan data sets.18 Therefore, these issues may contribute to the lack of 

difference in the blood signatures of responders and non-responders. 

 

Figure 3.4 Raw protein levels in the 350 samples collected from GBM patients during the 
bevacizumab treatment. Blue (n=221) were responders and red (n=129) were non-responders. No 
protein levels were significantly different between responders and non-responders. Averages and 
standard deviations were shown. 

  

 AFNI is an alternative option to quantitatively assessing patient drug responses, 

thereby resolving the issues in the clinical evaluations (Figure 3.5 and Figure 3.12, 

Appendix B).16,17 This open-source software provides tools for processing and analyzing 

the MRI scan data, and have two key features to estimate tumor volumes. First, this 

software provides the subtraction function between MRI data from different conditions, for 

precisely defining tumor lesion (Figure 3.5a – 3.5c). Since MRI contrast agents are 

designed to specifically target tumor, and the contrast material-enhanced region in the scan 

images is tumor lesion. In the manner of background subtraction, only the tumor lesion can 

be selectively highlighted by subtracting T1 weighted MRI scans (background) and 
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contrast material-enhanced T1 weighted MRI scans (signal). It is very useful function 

because a user does not need to compare two separate MRI data sets for finding tumor 

legions anymore. Also, it basically reduces human error and variations in the clinical 

interpretation of the challenging data sets. Second, this software supports tools to draw 

region of interest (ROI) on the scan images for estimating tumor volumes (Figure 3.5d and 

Figure 3.12a, Appendix B). Depending on the scan conditions, this software calculates the 

mm3 volume per pixel of a scan image and estimates the volume of ROI. Thus, patient 

tumor volumes can be acquired by integrating the estimated ROI volumes in individual 

scan images in a MRI data set (Figure 3.12b, Appendix B).  

For AFNI, we categorized GBM patient groups depending on drug responses. 

Based on medical history and sampling dates, we could divide the 105 patients into 3 

subgroups: patients who were 1) responsive early but non-responsive later, 2) responsive 

all the time, and 3) non-responsive all the time. Since the AFNI requires high labor input, 

we decided focused on the first subgroup (subgroup 1) and estimated 128 tumor volumes. 

We looked at correlations between individual protein levels and estimated tumor volumes 

(Table 3.8, Appendix A). There were no significant correlations found, and no protein 

markers in our panel could be directly used for getting tumor volumes. We also looked at 

correlations of tumor volume changes vs. protein marker levels / protein marker level 

changes, but no correlations were found (data not shown).     
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Figure 3.5 Analysis of functional neuroimages (AFNI). (a) T1 weighted MRI scan image. (b) 
Contrast material-enhanced T1 weighted MRI scan image at the same location of (a). (c) Image 
subtraction between (a) and (b). Only the enhanced region visualized and highlighted a tumor lesion. 
(d) Selected ROI for the volume estimation with the AFNI program. Each pixel in an image has a 
designated volume depending on MRI scan conditions. Multiple MRI scans will be integrated into 
tumor volumes (mm3). 

 

Next, we investigated if the estimated tumor volumes can be used for normalizing 

measured protein levels and thus improving the drug response classification via plasma 

proteomic signatures (Figure 3.6). The idea was essentially to resolve the inter- and intra-

patient variability existing in patient blood. In other words, plasma protein levels vary not 

only among patients in the same drug response status but also among different time points 
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of a same patient. Since we did not know an internal standard for quantitatively assessing 

such biological noises during the drug treatment, we hypothesized that tumor volumes 

could be used instead. This hypothesis surprisingly worked well for the subgroup 1, making 

all the normalized protein levels in the drug responses significantly different. 

 

Figure 3.6 Subgroup 1 data with or without normalization to estimated tumor volumes (n=128).  
(a) Raw protein levels between responders (blue, n=66) and non-responders (red, n=62).  
(b) Normalized protein levels. (*, p<0.05; **, p<0.005; ***, p<0.0005; ****, p<0.0001). Averages 
and standard deviations were shown. 
 



60 
 

We further generated a model to link the normalized protein levels and drug 

responses in the patient subgroup 1, using the PCA logistic regression method. We 

randomly split the entire data set into a training set (103 samples) and a prediction set (25 

samples). Then we make a model based on the training set and apply the fitted model to 

the prediction set. The accuracy of the model in the prediction set basically represents the 

quality of model. We repeated 5 iterations of this modeling work and calculated average. 

First of all, we compared diagnostic capacity of the fitted models in the training set in 

Figure 3.7. As expected, the model with the normalized protein levels showed the highest 

AUC value (Figure 3.7a), although either raw protein levels or tumor volumes also showed 

moderate AUC values (Figure 3.7b and 3.7c). We also applied the same modeling method 

to the entire raw protein level data set of all the patient subgroups (n=350), the trained 

model had relatively poorer capacity (Figure 3.7d). Confusion matrices and parameters of 

the models in Figure 3.7 can be found in Table 3.9-3.20, Appendix A. 

Model validation results are summarized in Figure 3.8. We calculated the model 

accuracy from the obtained confusion matrices (Figure 3.8a and b, confusion matrices from 

the additional 4 iterations were not shown). The model with the normalized protein levels 

showed 83.8 ± 2.66% (the training set) and 73.5 ± 7.18% (the prediction set), whereas other 

models with either raw protein levels or tumor volume had lower accuracies (raw protein 

level model: 71.1 ± 3.39 % in the training set and 66.4 ± 7.20 % in the prediction set; tumor 

volume model: 67.4 ± 2.23 % in the training set and 64.0 ± 8.49 % in the prediction set). 

AUC values in the training set were 0.907 ± 0.0190, 0.804 ± 0.0377, and 0.766 ± 0.0341 

respectively, and the normalized protein level showed the highest values (Figure 3.8c). 

Again, this modeling method was applied to the entire raw protein level data set, we 
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obtained 68.4 ± 0.824 % accuracy in the training set, 65.4 ± 3.41 % accuracy in the 

prediction set, and AUC of 0.687 ± 0.0183. All of these findings propose that the protein 

levels normalized to tumor volumes should be used for developing the classifiers which 

can the best predict the drug responses of GBM patients in the bevacizumab treatment.  

 

 

Figure 3.7 Receiver operating characteristic of the developed models in the training sets (one of 5 
iterations, closest to the average). (a) Subgroup 1 with normalized protein levels. (b) Subgroup 1 
with raw protein levels. (c) Subgroup 1 with estimated tumor volumes only. (d) All subgroups with 
raw protein levels. 
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Figure 3.8 Summary of the model evaluation. (a) Model accuracy in the training data sets. (b) 
Model accuracy in the prediction data sets. (c) Area under the curves in the training data sets. 
Averages and standard deviations were shown. 

 

 3.4 Conclusion  

Here we have demonstrated the miniaturized and multiplexed immunofluorescence 

assay platform as a proteomics tool. We investigated the plasma proteomic signatures of 

GBM patients associated with the drug responses to the bevacizumab treatment. 14 the 

most predictive protein markers were screened from 35 proteins of 62 patient samples 

measured in a previous study. Then, those 14 protein levels in a large panel of 516 patient 

plasma samples were measured. Measured protein levels from the 350 patient samples 

during the bevacizumab treatment were associated with the drug responses, and the 

developed model had a moderate prediction accuracy of 65.4 ± 3.41%. In order to develop 
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a diagnostic model with a higher prediction capacity, tumor volumes of a patient subgroup 

(n=128) were quantitatively estimated from patient MRI scans by the computational image 

analysis tool. Although no single protein markers were significantly correlated with the 

tumor volume, all of these quantities, taken together, yielded a powerful diagnostic model 

with the prediction accuracy of 73.5 ± 7.18%. This approach can be expanded to the rest 

of patient subgroups.  

The general workflow of this approach can be readily implemented in clinical 

settings. The modular design of these devices enables barcodes to bear virtually any panel 

of antibodies. Thus, the multiplexed measurement of biomarkers is straightforward for any 

disease. Moreover, their bulk fabrication reduces cost and increases the throughput at 

which diagnoses are made. Because of our small sample chambers, these devices inherently 

require finger-prick volumes of blood, drastically improving patient compliance. As a 

result, this platform is well-suited for the future integration into routine tumor drug 

response monitoring. 

 

3.5 References  

(1)  Kim, M. M.; Parolia, A.; Dunphy, M. P.; Venneti, S. Nat. Rev. Clin. Oncol. 2016, 

13 (12), 725. 

(2)  Prasad, V.; De Jesus, K.; Mailankody, S. Nat. Rev. Clin. Oncol. 2017, 14 (6), 381. 

(3)  Cloughesy, T. F.; Cavenee, W. K.; Mischel, P. S. Annu. Rev. Pathol. Mech. Dis. 

2014, 9 (1), 1. 



64 
 
(4)  Prados, M. D.; Byron, S. A.; Tran, N. L.; Phillips, J. J.; Molinaro, A. M.; Ligon, K. 

L.; Wen, P. Y.; Kuhn, J. G.; Mellinghoff, I. K.; De Groot, J. F.; Colman, H.; 

Cloughesy, T. F.; Chang, S. M.; Ryken, T. C.; Tembe, W. D.; Kiefer, J. A.; Berens, 

M. E.; Craig, D. W.; Carpten, J. D.; Trent, J. M. Neuro. Oncol. 2015, 17 (8), 1051. 

(5)  Ellingson, B. M.; Gerstner, E. R.; Smits, M.; Huang, R. Y.; Colen, R.; Abrey, L. E.; 

Aftab, D. T.; Schwab, G. M.; Hessel, C.; Harris, R. J.; Chakhoyan, A.; Gahrmann, 

R.; Pope, W. B.; Leu, K.; Raymond, C.; Woodworth, D. C.; de Groot, J.; Wen, P. 

Y.; Batchelor, T. T.; van den Bent, M. J.; Cloughesy, T. F. Clin. Cancer Res. 2017, 

Epub ahead of print (doi: 10.1158/1078-0432.CCR-16-2844).  

(6)  Ferrara, N.; Hillan, K. J.; Gerber, H.-P.; Novotny, W. Nat. Rev. Drug Discov. 2004, 

3 (5), 391. 

(7)  Cohen, M. H.; Shen, Y. L.; Keegan, P.; Pazdur, R. Oncologist 2009, 14, 1131. 

(8)  Westphal, M.; Lamszus, K. Nat. Rev. Neurol. 2015, 11 (10), 556. 

(9)  Siravegna, G.; Marsoni, S.; Siena, S.; Bardelli, A. Nat. Rev. Clin. Oncol. 2017. 

(10)  Wulfkuhle, J. D.; Liotta, L. a; Petricoin, E. F. Nat. Rev. Cancer 2003, 3 (4), 267. 

(11)  Li, X.; Hayward, C.; Fong, P.-Y.; Dominguez, M.; Hunsucker, S. W.; Lee, L. W.; 

McLean, M.; Law, S.; Butler, H.; Schirm, M.; Gingras, O.; Lamontagne, J.; Allard, 

R.; Chelsky, D.; Price, N. D.; Lam, S.; Massion, P. P.; Pass, H.; Rom, W. N.; 

Vachani, A.; Fang, K. C.; Hood, L.; Kearney, P. Sci. Transl. Med. 2013, 5 (207), 

207ra142. 



65 
 
(12)  Borrebaeck, C. A. K. Nat. Rev. Cancer 2017, 17 (3), 199. 

(13)  Fan, R.; Vermesh, O.; Srivastava, A.; Yen, B. K. H.; Qin, L.; Ahmad, H.; Kwong, 

G. a; Liu, C.-C.; Gould, J.; Hood, L.; Heath, J. R. Nat. Biotechnol. 2008, 26 (12), 

1373. 

(14)  Xue, M.; Wei, W.; Su, Y.; Kim, J.; Shin, Y. S.; Mai, W. X.; Nathanson, D. A.; Heath, 

J. R. J. Am. Chem. Soc. 2015, 137 (12), 4066. 

(15)  Vermesh, O. 2011, http://resolver.caltech.edu/CaltechTHESIS:04272011-

115528661 

(16)  Cox, R. W. Comput. Biomed. Res. 1996, 29, 162. 

(17)  Ellingson, B. M.; Kim, H. J.; Woodworth, D. C.; Pope, W. B.; Cloughesy, J. N.; 

Harris, R. J.; Lai, A.; Nghiemphu, P. L.; Cloughesy, T. F. Radiology 2014, 271 (1), 

200. 

(18)  Chinot, O. L.; Macdonald, D. R.; Abrey, L. E.; Zahlmann, G.; Kerloëguen, Y.; 

Cloughesy, T. F. Curr. Neurol. Neurosci. Rep. 2013, 13 (5), 347. 

(19)  Shi, Q.; Qin, L.; Wei, W.; Geng, F.; Fan, R.; Shik Shin, Y.; Guo, D.; Hood, L.; 

Mischel, P. S.; Heath, J. R. Proc. Natl. Acad. Sci. 2012, 109 (2), 419. 

(20)  Szymańska, E.; Saccenti, E.; Smilde, A. K.; Westerhuis, J. A. Metabolomics 2012, 

8, 3. 

(21)  Xia, J.; Wishart, D. S. Nat. Protoc. 2011, 6 (6), 743. 

(22)  Pérez-Enciso, M.; Tenenhaus, M. Hum. Genet. 2003, 112 (5–6), 581. 



66 
 
(23)  Aguilera, A. M.; Escabias, M.; Valderrama, M. J. Comput. Stat. Data Anal. 2006, 

50 (8), 1905. 

  



67 
 
3.6 Appendix A: Supplementary tables 

 

Table 3.1 Patient clinical characteristics for this trial (last updated on 05.18.2017) 

  Numbers 

Patient follow-up 
information 

Deceased 99 
Alive 1 

Unknown 5 

Age (years) 
Mean 59.0 

Median 60.5 
Range 28 - 89 

Overall Survival  
(days), unknown patients 

excluded 

Mean 1111.3  
Median 644.5 
Range 219 - 6957 
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Table 3.2 Single stranded DNAs used in this study. 

Name DNA Sequence 

B 5'-NH2-C6-AAA AAA AAA AAA AGC CTC ATT GAA TCA TGC CTA -3' 

B' 5'-NH2-C6-AAA AAA AAA ATA GGC ATG ATT CAA TGA GGC -3' 

C 5'-NH2-C6-AAA AAA AAA AAA AGC ACT CGT CTA CTA TCG CTA -3' 

C' 5-NH2-C6-AAA AAA AAA ATA GCG ATA GTA GAC GAG TGC -3' 

D 5'-NH2-C6-AAA AAA AAA AAA AAT GGT CGA GAT GTC AGA GTA-3' 

D' 5'-NH2-C6-AAA AAA AAA ATA CTC TGA CAT CTC GAC CAT-3' 

E 5'-NH2-C6-AAA AAA AAA AAA AAT GTG AAG TGG CAG TAT CTA -3' 

E' 5'-NH2-C6-AAA AAA AAA ATA GAT ACT GCC ACT TCA CAT-3' 

F 5'-NH2-C6-AAA AAA AAA AAA AAT CAG GTA AGG TTC ACG GTA-3' 

F' 5'-NH2-C6-AAA AAA AAA ATA CCG TGA ACC TTA CCT GAT-3' 

G 5'-NH2-C6-AAA AAA AAA AAA AGA GTA GCC TTC CCG AGC ATT-3' 

G' 5'-NH2-C6-AAA AAA AAA AAA TGC TCG GGA AGG CTA CTC-3' 

H 5'-NH2-C6-AAA AAA AAA AAA AAT TGA CCA AAC TGC GGT GCG-3' 

H' 5'-NH2-C6-AAA AAA AAA ACG CAC CGC AGT TTG GTC AAT-3' 

K 5'-NH2-C6-AAA AAA AAA AAA ATA ATC TAA TTC TGG TCG CGG-3' 

K' 5'-NH2-C6-AAA AAA AAA ACC GCG ACC AGA ATT AGA TTA-3' 

L 5'-NH2-C6-AAA AAA AAA AAA AGT GAT TAA GTC TGC TTC GGC-3' 

L' 5'-NH2-C6-AAA AAA AAA AGC CGA AGC AGA CTT AAT CAC-3' 

M 5'-NH2-C6-AAA AAA AAA AAA AGT CGA GGA TTC TGA ACC TGT-3' 

M' 5'-NH2-C6-AAA AAA AAA AAC AGG TTC AGA ATC CTC GAC-3' 

N 5'-NH2-C6-AAA AAA AAA AAA AGT CCT CGC TTC GTC TAT GAG-3' 

N' 5'-NH2-C6-AAA AAA AAA ACT CAT AGA CGA AGC GAG GAC-3' 

O 5'-NH2-C6-AAA AAA AAA AAA ACT TCG TGG CTA GTC TGT GAC-3' 

O' 5'-NH2-C6-AAA AAA AAA AGT CAC AGA CTA GCC ACG AAG-3' 

P 5'-NH2-C6-AAA AAA AAA AAA ATC GCC GTT GGT CTG TAT GCA-3' 

P' 5'-NH2-C6-AAA AAA AAA ATG CAT ACA GAC CAA CGG CGA-3' 

Q 5'-NH2-C6-AAA AAA AAA AAA ATA AGC CAG TGT GTC GTG TCT-3' 

Q' 5'-NH2-C6-AAA AAA AAA AGA CAC GAC ACA CTG GCT TAT-3' 
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Table 3.3 List of capture and detection antibodies used in this study. 

DNA Protein Manufacturer 
Capture Ab 
Catalog # 

Detection Ab 
Catalog # 

B’ TGFb1 R&D DY240 
C’ VEGF R2 R&D DY357 
D’ IL12 eBioscience 14-7128-82 13-7129-85 
E’ HGF R&D DY294 

F’ IL13 
BD 554570  

eBiosience  13-7138-81 
G’ MMP2 R&D DY1496 
H’ Serpin E1 R&D DY1786 
I’ MIP1a R&D DY270 
K’ Ch3L1 R&D DY2599 
L’ IL23 eBioscience 14-7238-85 13-7129-85 
N’ IL10 eBioscience 16-7108-85 13-7109-85 
O’ MCP1 eBioscience 16-7099-85 13-7096-85 
P’ SDF1a R&D DY350 
Q’ TNFa eBioscience 16-7348-85 13-7349-85 
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Table 3.4 The fitted classification functions of the PLS-DA model with raw protein levels.  

Variable Responder Non-responder 
Intercept 5.311E-01 4.689E-01 

IL2 1.836E-05 -1.836E-05 
MCP1 -3.286E-05 3.286E-05 

IL6 1.562E-05 -1.562E-05 
GCSF -1.120E-05 1.120E-05 
MIF 3.265E-05 -3.265E-05 
EGF 1.537E-05 -1.537E-05 

VEGF -1.379E-05 1.379E-05 
PDGF 4.807E-05 -4.807E-05 
TGFa -9.965E-06 9.965E-06 
IL8 -6.374E-06 6.374E-06 

MMP3 5.040E-06 -5.040E-06 
HGF -3.866E-05 3.866E-05 
IP10 2.793E-06 -2.793E-06 

SDF1a -9.881E-07 9.881E-07 
IGFBP2 6.461E-06 -6.461E-06 
IGFBP5 -4.348E-05 4.348E-05 
MIP1a -4.485E-05 4.485E-05 
TGFb1 -2.108E-04 2.108E-04 
Ch3L1 1.104E-05 -1.104E-05 

VEGFR3 -2.496E-05 2.496E-05 
TNFa -1.568E-05 1.568E-05 

C3 -1.377E-05 1.377E-05 
MMP2 -1.211E-04 1.211E-04 
IL10 3.375E-05 -3.375E-05 
IL1b -3.983E-05 3.983E-05 
IL12 -7.947E-05 7.947E-05 

MMP9 -1.142E-05 1.142E-05 
TGFb2 3.961E-05 -3.961E-05 
GMCSF 2.288E-05 -2.288E-05 

CRP -5.066E-06 5.066E-06 
VEGF R2 8.319E-05 -8.319E-05 

IL13 2.758E-05 -2.758E-05 
IL23 -3.468E-05 3.468E-05 

Serpin E1 3.641E-05 -3.641E-05 

Fibrinogen 1F3 -6.714E-06 6.714E-06 
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Table 3.5 VIPs of the PLS-DA model with raw protein levels 

 

Variable VIP 
Standard 
deviation 

Lower bound 
(95%) 

Upper bound 
(95%) 

TGFb1 1.856 0.386 1.100 2.612 
VEGF R2 1.825 0.267 1.301 2.348 

HGF 1.485 0.338 0.823 2.146 
IL12 1.460 0.236 0.997 1.922 

MMP2 1.449 0.384 0.696 2.201 
MIP1a 1.227 0.237 0.764 1.691 
MCP1 1.187 0.225 0.747 1.628 
IL23 1.186 0.109 0.971 1.400 

SDF1a 1.163 0.229 0.715 1.611 
Ch3L1 1.154 0.367 0.434 1.873 
TNFa 1.030 0.295 0.452 1.608 

Serpin E1 1.017 0.409 0.215 1.818 
TGFb2 1.003 0.317 0.382 1.625 

IL8 0.991 0.231 0.537 1.444 
Fibrinogen 1F3 0.917 0.275 0.379 1.456 

GCSF 0.867 0.273 0.332 1.402 
IL6 0.866 0.252 0.372 1.360 

VEGF 0.858 0.260 0.348 1.368 
IL13 0.850 0.488 -0.107 1.806 
IL2 0.829 0.396 0.053 1.604 
CRP 0.821 0.245 0.340 1.301 
TGFa 0.816 0.465 -0.095 1.727 
PDGF 0.782 0.428 -0.056 1.620 

C3 0.770 0.305 0.171 1.369 
MIF 0.760 0.306 0.160 1.360 
IL10 0.718 0.448 -0.160 1.596 

MMP9 0.681 0.329 0.037 1.325 
IL1b 0.672 0.383 -0.078 1.423 

GMCSF 0.605 0.449 -0.276 1.486 
MMP3 0.528 0.336 -0.131 1.186 

VEGFR3 0.510 0.388 -0.250 1.270 
EGF 0.502 0.377 -0.238 1.242 

IGFBP2 0.495 0.346 -0.184 1.173 
IGFBP5 0.466 0.485 -0.484 1.416 

IP10 0.217 0.318 -0.405 0.840 
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Table 3.6 The fitted classification functions of the PLS-DA model with feature scaled protein levels.  

Variable Responder Non-responder 
Intercept 0.119 0.956 

IL2 0.179 -0.027 

MCP1 -0.099 0.148 

IL6 0.116 0.049 
GCSF -0.005 0.124 
MIF 0.197 -0.051 
EGF 0.126 0.004 

VEGF -0.043 0.118 
PDGF 0.180 -0.054 
TGFa -0.055 0.083 
IL8 -0.043 0.090 

MMP3 0.175 -0.013 
HGF -0.233 0.215 
IP10 0.113 0.003 

SDF1a -0.067 0.100 
IGFBP2 0.074 0.026 
IGFBP5 0.006 0.047 
MIP1a -0.153 0.150 
TGFb1 -0.300 0.266 
Ch3L1 0.262 -0.084 

VEGFR3 0.006 0.057 
TNFa -0.090 0.126 

C3 -0.017 0.123 
MMP2 -0.164 0.194 
IL10 0.235 -0.072 
IL1b -0.033 0.104 
IL12 -0.247 0.223 

MMP9 0.025 0.092 
TGFb2 0.152 -0.034 
GMCSF 0.151 -0.029 

CRP -0.020 0.113 
VEGF R2 0.335 -0.175 

IL13 0.284 -0.134 
IL23 -0.135 0.151 

Serpin E1 0.295 -0.101 
Fibrinogen 1F3 -0.088 0.122 
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Table 3.7 VIPs of the PLS-DA model with feature scaled protein levels 

Variable VIP 
Standard 
deviation 

Lower bound 
(95% CI) 

Upper bound 
(95% CI) 

TGFb1 2.177 0.583 1.034 3.320 
VEGF R2 1.820 0.474 0.890 2.750 

IL12 1.815 0.443 0.948 2.683 
HGF 1.732 0.413 0.923 2.542 
IL13 1.474 0.609 0.280 2.668 

MMP2 1.440 0.566 0.331 2.548 
Serpin E1 1.343 0.659 0.051 2.636 

MIP1a 1.186 0.424 0.355 2.018 
Ch3L1 1.166 0.762 -0.328 2.660 
IL23 1.141 0.416 0.325 1.957 
IL10 1.032 0.591 -0.126 2.191 

MCP1 1.031 0.364 0.318 1.744 
TNFa 0.892 0.473 -0.035 1.819 

Fibrinogen 1F3 0.862 0.518 -0.154 1.878 
MIF 0.821 0.499 -0.158 1.799 

PDGF 0.785 0.482 -0.159 1.729 
VEGF 0.730 0.430 -0.113 1.572 
SDF1a 0.695 0.407 -0.103 1.492 

C3 0.692 0.540 -0.366 1.751 
GCSF 0.670 0.364 -0.044 1.384 

IL2 0.659 0.533 -0.385 1.703 
CRP 0.644 0.632 -0.595 1.884 
IL1b 0.630 0.615 -0.576 1.836 

TGFb2 0.613 0.541 -0.447 1.673 
MMP3 0.586 0.529 -0.450 1.622 

GMCSF 0.582 0.499 -0.396 1.561 
IL8 0.581 0.358 -0.120 1.281 

TGFa 0.575 0.479 -0.364 1.513 
MMP9 0.436 0.425 -0.397 1.269 
EGF 0.371 0.486 -0.581 1.323 
IP10 0.335 0.659 -0.956 1.625 

VEGFR3 0.287 0.490 -0.673 1.247 
IL6 0.239 0.247 -0.246 0.724 

IGFBP5 0.237 0.424 -0.594 1.069 

IGFBP2 0.156 0.267 -0.367 0.679 
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Table 3.9 Confusion matrix of the training set (Normalized protein level, subgroup 1) 

from 
\ to 

0 1 Total % 
correct 

0 46 10 56 82.14% 
1 6 41 47 87.23% 
Total 52 51 103 84.47% 

 

Table 3.10 Confusion matrix of the prediction set (Normalized protein levels, subgroup 1) 

from 
\ to 

0 1 Total % 
correct 

0 7 3 10 70.00% 
1 2 13 15 86.67% 
Total 9 16 25 80.00% 

 

Table 3.11 Confusion matrix of the training set (Raw protein level, subgroup 1) 

from 
\ to 

0 1 Total % 
correct 

0 33 18 51 64.71% 
1 12 40 52 76.92% 
Total 45 58 103 70.87% 

 

Table 3.12 Confusion matrix of the prediction set (Raw protein level, subgroup 1) 

from 
\ to 

0 1 Total % 
correct 

0 8 7 15 53.33% 
1 2 8 10 80.00% 
Total 10 15 25 64.00% 
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Table 3.13 Confusion matrix of the training set (tumor volume only, subgroup 1) 

from 
\ to 

0 1 Total % 
correct 

0 42 10 52 80.77% 
1 24 27 51 52.94% 
Total 66 37 103 66.99% 

 

Table 3.14 Confusion matrix of the prediction set (tumor volume only, subgroup 1) 

from 
\ to 

0 1 Total % 
correct 

0 13 1 14 92.86% 
1 8 3 11 27.27% 
Total 21 4 25 64.00% 

 

Table 3.15 Confusion matrix of the training set (Raw protein level, all subgroups) 

from 
\ to 

0 1 Total % 
correct 

0 172 10 182 94.51% 
1 76 22 98 22.45% 
Total 248 32 280 69.29% 

 

Table 3.16 Confusion matrix of the prediction set (Raw protein level, all subgroups) 

from 
\ to 

0 1 Total % 
correct 

0 36 3 39 92.31% 
1 25 6 31 19.35% 
Total 61 9 70 60.00% 
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Table 3.17 Model parameters of the fitted training set (Normalized protein level, subgroup 1) 

Source Value Standard error 
Lower bound 

(95%) 
Upper bound 

(95%) 

Intercept 2.138E+00 5.799E-01 1.001E+00 3.274E+00 

TGFb1 -1.883E+01 1.555E+01 -4.931E+01 1.165E+01 

VEGF R2 -6.993E-01 1.063E+00 -2.782E+00 1.383E+00 

IL12 -6.317E+01 1.763E+01 -9.773E+01 -2.862E+01 

HGF 2.466E+00 1.441E+00 -3.586E-01 5.290E+00 

IL13 1.132E+01 9.019E+00 -6.353E+00 2.900E+01 

MMP2 2.933E+00 6.735E+00 -1.027E+01 1.613E+01 

SerpinE1 -3.930E+00 2.884E+00 -9.582E+00 1.722E+00 

MIP1a -8.065E+00 6.525E+00 -2.085E+01 4.723E+00 

Ch3L1 -3.838E-02 1.581E-01 -3.483E-01 2.716E-01 

IL23 1.460E+01 5.762E+00 3.305E+00 2.589E+01 

IL10 -1.476E+01 8.231E+00 -3.089E+01 1.372E+00 

MCP1 2.253E+00 2.504E+00 -2.654E+00 7.161E+00 

SDF1a -2.597E-01 1.037E+00 -2.292E+00 1.773E+00 

TNFa -4.830E+00 3.418E+00 -1.153E+01 1.869E+00 

 

Table 3.18 Model parameters of the fitted training set (Raw protein level, subgroup 1) 

Source Value Standard error 
Lower bound 

(95%) 
Upper bound 

(95%) 

Intercept 1.330E+00 1.136E+00 -8.964E-01 3.556E+00 

TGFb1 1.418E-03 1.393E-03 -1.311E-03 4.147E-03 

VEGF R2 -4.432E-04 2.589E-04 -9.506E-04 6.421E-05 

IL12 -2.013E-03 1.483E-03 -4.920E-03 8.946E-04 

HGF 2.733E-04 2.491E-04 -2.149E-04 7.614E-04 

IL13 1.929E-03 9.353E-04 9.584E-05 3.762E-03 

MMP2 5.050E-04 5.085E-04 -4.916E-04 1.502E-03 

SerpinE1 -2.333E-03 1.005E-03 -4.303E-03 -3.630E-04 

MIP1a -8.393E-04 6.460E-04 -2.106E-03 4.269E-04 

Ch3L1 1.566E-05 4.028E-05 -6.328E-05 9.461E-05 

IL23 -1.290E-04 3.558E-04 -8.264E-04 5.684E-04 

IL10 2.720E-05 1.823E-03 -3.546E-03 3.600E-03 

MCP1 -2.190E-04 2.359E-04 -6.814E-04 2.434E-04 

SDF1a 2.318E-04 2.778E-04 -3.128E-04 7.764E-04 

TNFa 5.273E-05 4.014E-04 -7.339E-04 8.394E-04 
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Table 3.19 Model parameters of the fitted training set (Tumor volume, subgroup 1) 

Source Value Standard error 
Lower bound 

(95%) 
Upper bound 

(95%) 

Intercept -9.569E-01 3.183E-01 -1.581E+00 -3.331E-01 

Tumor 
Volume 

1.181E-04 3.339E-05 5.262E-05 1.835E-04 

 

 

Table 3.20 Model parameters of the fitted training set (Raw protein level, All subgroups) 

Source Value Standard error 
Lower bound 

(95%) 
Upper bound 

(95%) 
Intercept -7.054E-01 5.101E-01 -1.705E+00 2.944E-01 

TGFb1 3.824E-04 5.100E-04 -6.172E-04 1.382E-03 

VEGF R2 -1.952E-04 8.077E-05 -3.535E-04 -3.693E-05 

IL12 -5.970E-04 5.718E-04 -1.718E-03 5.237E-04 

HGF 2.418E-05 6.724E-05 -1.076E-04 1.560E-04 

IL13 4.490E-04 2.921E-04 -1.235E-04 1.022E-03 

MMP2 2.477E-04 1.672E-04 -8.000E-05 5.754E-04 

SerpinE1 -3.602E-04 2.401E-04 -8.308E-04 1.104E-04 

MIP1a -4.126E-04 2.223E-04 -8.483E-04 2.314E-05 

Ch3L1 4.440E-05 1.793E-05 9.268E-06 7.954E-05 

IL23 -1.440E-04 1.454E-04 -4.290E-04 1.410E-04 

IL10 -1.865E-04 2.520E-04 -6.804E-04 3.073E-04 

MCP1 2.583E-06 1.028E-04 -1.990E-04 2.041E-04 

SDF1a -5.525E-05 1.466E-04 -3.425E-04 2.320E-04 

TNFa 2.454E-04 1.649E-04 -7.781E-05 5.687E-04 
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3.7 Appendix B: Supplementary figures 

 

 

Figure 3.9 PLS-DA modeling of 35-plex proteome data of 62 samples. Feature scaled protein 
levels were used here. (a) Receiver operating characteristic curve of the model with the area under 
the curve of 0.914. (b) Projection of the data points onto 2 components of the fitted model. (c) 
Variance importance in the projection of the 35 protein markers. 95% confidence interval shown 
as the bars.   
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Figure 3.10 Protein-protein interaction map of 14 protein markers measured in this study. STRING 
(Search Tool for the Retrieval of Interacting Genes/Proteins), a web-based open source software, 
was used to map out these interactions (https://string-db.org/). Most of the proteins are highly 
related with each other which causes the multi-collinearity in the data set. (FLT1, Fms-related 
tyrosine kinase 1, i.e. vascular endothelial growth factor/vascular permeability factor receptor; 
IL12B, IL-12 p40; IL23A, IL23; CCL2, MCP-1; CCL3, MIP-1α; CXCL12, SDF-1α). 
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Figure 3.11 Technology validation. (a) Calibration curves. A four-parameter logistic model was 
fitted to all 14 proteins (b) Cross-talk validation of the antibody panel used in this study. 
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Figure 3.12 Operation of AFNI software. (a) Software interface. Basic information of MRI scan 
slices was shown at the upper left corner with available program functions. Tools to visualize scan 
slices and to draw ROIs were shown at the upper right corner. ROI was drawn on the tumor and 
highlighted in red. Selected tumor location (cross points of green lines) was displayed in 2 
trajectories (x-y and y-z planes). (b) MRI scan slices of a GBM patient with ROIs drawn. ROIs 
were stacked and integrated into tumor volume. 
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Chapter 4 

Plasma proteomic measurement for diagnosing and 
predicting the early responses to a phosphoinositide 3-
kinase (PI3K) targeted therapy in recurrent 
glioblastoma 

 

 

4.1 Introduction 

  The phosphoinositide 3-kinase (PI3K) signaling transduction pathway plays a 

pivotal role in regulating various cellular functions such as metabolism, protein synthesis, 

proliferation, and apoptosis. PI3K phosphorylates phosphatidylinositol 4,5-bisphophate 

(PIP2), a phospholipid in cell membranes, into phosphatidylinositol 3,4,5-trisphophate 

(PIP3) which is a secondary messenger to activate the downstream protein kinase B (Akt) 

and mechanistic target of rapamycin (mTOR) effector pathways sequentially. There are 3 

classes of PI3Ks, and class I is most implicated in cancer. The class I PI3K is a heterodimer 

of p110 catalytic subunit and p85 regulatory subunit. The p85 subunit binds to the 

phosphotyrosine residues of the activated receptor tyrosine kinases (RTKs) and 

consequently activates the p110 subunits. There are additional regulators in the PI3K 

pathway. PIP3 is dephosphorylated by phosphatase and tensin homolog (PTEN) as the 

negative regulation mechanism. Rat sarcoma protein (Ras), a class of GTPase, can activate 

the p110 subunit. Oncogenic activation of this complicated cellular signaling machinery is 
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frequently associated with most of cancer types, and the diverse genetic alterations in PI3K, 

RTKs, PTEN, and RAS have been reported to cause this dysfunction. Particularly in 

glioblastoma multiforme (GBM), the genetic alterations of PI3KCA (a gene encoding the 

p110α subunit), epidermal growth factor receptor (EGFR), or PTEN account for 63-86% 

of primary and 31% of secondary tumor patients.1–3    

Buparlisib, also known as BKM120, is small molecule inhibitor of pan-class I PI3K 

and is orally deliverable to tumor patients. It acts as an ATP-competitive inhibitor for all 

four p110 subunit isoforms, exhibiting the greatest inhibitory potency to the p110α subunit. 

This drug was developed by a structure-guided approach which involved a series of 

modifications on its functional groups. In the development process, pharmacokinetic 

assays were performed to evaluate in vitro and in vivo inhibitory effects of the drug analogs 

in terms of PI3K activity, Akt phosphorylation, and tumor proliferation. Buparlisib 

specifically inhibited the proliferation of cancer cell lines bearing PI3KCA mutations but 

neither PTEN nor KRas mutations. However, this drug is still tested in clinical trials in 

several types of solid tumors including breast cancer, lung cancer, colorectal cancer, brain 

cancer, skin cancer, ovarian cancer, and prostate cancer.2,4–6               

As discussed in chapter 3, there is an outstanding need for quantitative biomarkers 

or classifiers that can differentiate responders from non-responders for GBM patients 

treated with targeted inhibitors. We thus sought to obtain a biomarker signature that could 

differentiate responders to buparlisib from non-responders in patients with recurrent GBM 

via serum proteomic analysis. The same methodology of the microchip-based sandwich 

immunofluorescence assay was employed in this study as the bevacizumab clinical trial in 
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chapter 3. We collected serum samples from each patient at several points over the time-

course of the trial, and then analyzed that serum for the levels of a panel of relatively 

general plasma protein biomarkers that we have observed as abundant in the serum of GBM 

cancer patients. The panel was comprised of immune markers, including the cytokines 

Interleukin (IL)-1, IL-12, IL-2, and transforming growth factor 1 (TGF 1), the matrix 

metalloprotease 9 (MMP9), protease inhibitor Serpin E1, the angiogenesis associated 

vascular endothelial growth factor receptor 2 (VEGF R2) and its ligand VEGF, and 

Complement component 3 (C3). Because these measured protein levels show the inter-

individual variability in the GBM patients, we normalized the measured levels for each 

patient to what was measured for that patient pre-treatment. 

 

4.2 Materials and methods 

4.2.1 Study design 

This study was conducted as a part of a clinical study entitled, “A phase II study of 

BKM 120 for patients with recurrent glioblastoma and activated PI3K pathway.” 

Registered clinical trial identifier number is NCT01339052, and more detailed information 

about this study can be found in the clinical study depository of the U.S. National Institutes 

of Health, at https://clinicaltrials.gov/.7 

  In summary, 65 recurrent GBM patients (≥ 18 years of age & Karnofsky 

performance status ≥ 60) participated in this study. These patients had not received more 

than 2 prior therapies before this clinical trial. They were classified into 2 cohorts, one 
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which received surgery (cohort 1, n = 15) and the other which did not receive surgery 

(cohort 2, n = 50). Cohort 1 received the monotherapy of buparlisib (100mg/day, 8-12 days 

prior to surgery and 28-day cycles after surgery). Cohort 2 received the same therapy with 

the same dose for 28-day cycles. Buparlisib was taken orally by the patients, and the 

treatment continued until disease progression occurred or the patients suffered 

unacceptable toxicity. Patient cohort clinical characteristics for this trial can be found in 

Appendix A, Table 4.1. 

4.2.2 Plasma collection and processing 

 Patient blood samples were collected and processed as follows. On the first day of 

each drug treatment cycle, 8-10mL of blood was drawn from a patient and transferred to a 

tube containing anti-coagulant (BD Vacutainer Yellow Acid-citrate-dextrose (ACD) Blood 

Collection Tubes). Samples were mixed thoroughly by inverting tubes 8-10 times. Tubes 

were centrifuges at 1500×g in a refrigerated centrifuge (3-5C). ~200µL Plasma samples 

were aliquoted into cryogenic vials and stored at -80C. Samples were processed within 2 

hours of blood draw. The aliquoted samples were thawed and used immediately for the 

sandwich immunofluorescence assay. 

4.2.3 DNA-barcode chip fabrication and DNA-encoded antibody library (DEAL) 

preparation 

The methods for DNA-Encoded Antibody Library (DEAL) preparation, antibody 

Alexa Fluor 647 (AF647) conjugation, cross-reactivity validation of DEAL conjugates and 

detection antibodies, DNA barcode microarray patterning, and 16-microwell PDMS slab 
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fabrication are previously described.8,9 Procedures are briefly described here. Lists of DNA 

sequences and antibodies are summarized in Appendix A, Table 4.2 and 4.3. 

4.2.3.1 DNA-patterning on a glass slide   

Each mold of 50 µm wide and 40 µm high patterns was prepared with SU8 2025 

(Microchem) by standard photolithograpy methods. The mold surface was treated with 

trimethylchlorosilane (TMCS, Sigma Aldrich). Polydimethylsiloxane (PDMS) barcode 

slab was prepared as follows. Sylgard 184 elastomer was mixed (pre-polymer : curing 

agent = 10:1, Dow Corning), degassed, poured on the mold, and cured at 80 °C for 2 hours. 

Cured PDMS slab was cut, peeled from the mold, inlet and outlet holes punched, and 

aligned with a poly-L-lysine (PLL) coated glass slide (Thermo Scientific). The aligned 

PDMS slab and PLL glass slide were bonded at 80 °C for 2 hours. 10 channels were used 

in this study. After bonding, a 0.1% PLL solution (Sigma Aldrich) was flown through the 

individual channels and dried overnight by air flow overnight, using solution loading 

devices. Details about the solution loading devices can be found in chapter 5 of this thesis. 

Then, the solutions of single stranded DNA (ssDNA) oligo B to M (Bioneer, Inc.) were 

loaded in the PLL-deposited channels by airflow, using the solution loading devices. Stock 

ssDNA solutions were first prepared in a mixture of dimethyl sulfoxide (DMSO, American 

Type Culture Collection) and phosphate buffered saline at pH 7.4 (PBS, Corning). The 

ssDNA solutions were mixed with bis(sulfosuccinimidyl)suberate (BS3, ThermoFisher 

Scientific) linker solution in PBS immediately before flowing. This DNA-solution filled 

PDMS-glass assembly was incubated at incubated at room temperature for 2 hours in a 

humidifier chamber. The PDMS slab was peeled off after the incubation, and the DNA 
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patterned glass slide was washed with 0.02% SDS once and Millipore water three times 

sequentially. The glass slide was spin-dried with a Miniarray microcentrifuge (VWR). A 

region of DNA pattern near one edge of the glass slide was incubated with a cocktail of 

Cy3 conjugated B’- M’ (Integrative DNA Technologies) in 1% BSA in PBS at 37 °C for 1 

hour for DNA pattern quality assessment. The region was scanned with an Axon GenePix 

4400A machine (532nm at PMT 450, laser power 15%, 10µm/pixel), and the fluorescence 

intensity was measured.   

4.2.3.2 DNA-antibody conjugation 

Each capture antibody was first reconstituted in PBS and desalted using a Zeba spin 

column (ThermoFisher Scientific). Succinimidyl 4-hydrazinonicotinate acetone hydrazine 

(S-HyNic, Solulink) in anhydrous N,N’-dimtheylformamide (DMF, Solulink) solution was 

added to the antibody solution and incubated at room temperature for 2 hours. In parallel, 

individual ssDNA oligos B’-L’ (Integrative DNA Technologies) were dissolved in PBS 

and mixed with succinimidyl 4-formylbenzoate (S-4FB, Solulink) in DMF solution. The 

mixture was incubated at room temperature for 2 hours. Each reaction mixture was buffer 

exchanged into a pH 6.0 citrate buffer using Zeba spin columns. These buffer-exchanged 

solutions were combined, and incubated at room temperature for 2 hours then at 4C 

overnight. The DNA-antibody conjugate was purified by Fast protein liquid 

chromatography (FPLC, GE Pharmacia Superdex 200 gel filtration column), and the 

purified conjugate was concentrated by centrifugation (Millipore, Amicon Ultra-4, MWCO 

10kDa). 
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4.2.3.3 Antibody Alexa Fluor 647 conjugation 

Only the C3 detection antibody (Abcam, ab14232) was conjugated with AF647. 

The antibody was first desalted using a Zeba spin column and buffer exchanged into 

Phosphate Buffer Saline (PBS, Irvine Scientific). Antibody was reacted with AF647-

succinimidyl ester (Life Technologies) following the manufacturer’s protocol.   

4.2.4 Multiplexed sandwich immunofluorescence assays for protein measurements 

Sandwich immunofluorescence assay was performed for measuring proteins in the 

patient serum samples. Procedures were as follows. 

1) Conversion of DNA barcode microarray into capture antibody microarrays. A 16-

microwell PDMS microwell slab was dried by air-blowing and aligned with the DNA 

barcode glass slide. The capture antibody cocktail solution was added to the microwells 

and incubated at 37 °C for 1 hour. The cocktail solution of the DEAL conjugates and Cy3-

M’ was prepared in 1% Bovine Serum Albumin (BSA, Sigma Aldrich) in PBS. Cy3-M’ 

was used as a reference for the DNA pattern order. Unbound DEAL conjugates and Cy3-

M’ were removed by washing the microwells with 1× PBST (Cell Signaling) 3 times. 

Washing was performed by aspirating the solution in the microwells (from the previous 

step) and adding 1× PBST solution sequentially. After washing, all the microwells were 

blocked with 1% BSA in PBS at 37 °C for 1 hour. Residual 1% BSA in PBS was removed 

by washing the microwells with 1× PBST once.  

2) Patient serum sample loading. Patient serum samples were thawed and centrifuged at 

21,130 × g for 3 mins. Only the supernatant was added to the microwells and incubated at 
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room temperature with shaking for 1 hour. Residual patient serum samples were removed 

by washing the microwells with 1× PBST once.  

3) Detection antibody cocktail loading. The detection antibody cocktail solution was 

added to the microwells and incubated at room temperature for 1 hour. The cocktail 

solution was prepared in 1% BSA in PBS by mixing and diluting all the stock solutions of 

biotin-labeled detection antibodies, AF647 conjugated streptavidin (Life Technologies), 

and AF647 conjugated C3 antibody stock. Residual detection antibody cocktail was 

removed by washing the microwells with 1× PBST once. 

4) Fluorescence readout. The PDMS microwell slab was peeled off and the barcode glass 

slide was washed with 1× PBS, 0.5× PBS, and Millipore deionized water sequentially. The 

barcode glass slide was spin-dried and scanned by an Axon GenePix 4400A (Molecular 

Devices) at 10µm/pixel resolution: (635nm: PMT 600, 80% power, 532nm: PMT 400, 10% 

power). Signals from the two color channels were collected and digitized, and the 

fluorescence signals of barcodes were extracted by the manufacturer’s software. 10 spots 

per barcode lane were extracted for calculating the values of average and coefficient of 

variation. 

4.2.5 Clinical data interpretation 

 Patient tumor progression was monitored by magnetic resonance imaging (MRI) or 

computed tomography (CT) during the drug treatment. Patients were classified as 

responders when one or both following conditions were fulfilled: 1) a patient showed stable 

disease and 2) progression free survival was 6 months or longer. Clinicians determined the 

stable disease status, and this patient status implied that a tumor neither grew or shrunk. 
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The rest of patients were classified as non-responders. For the responders, their best 

response time point was also determined, and the drug treatment cycles completed before 

the best response time points were considered as the drug responsive period. Categorical 

variables were assigned as 0 for responder (stable disease i.e. the drug responsive period 

of responders) and 1 for non-responder (progressive disease i.e. the non-responsive period 

of responders and all the treatment cycles of non-responders). These binary values were 

associated with the measured 9 plasma protein levels.   

4.2.6 Data analysis 

4.2.6.1 Statistical methods 

 A two-tailed Mann-Whitney test was used for the pairwise comparison of 

individual protein levels between responders and non-responders. Correlation coefficients 

were calculated by Spearman’s rank method, and only the correlation coefficients with 

statistical significance were accepted after the Bonferroni correction.  

4.2.6.2 Partial least square discriminant analysis 

Since the number of observations is low and the multi-collinearity between 

measured proteins is high (Figure 4.8, Appendix B), Partial Least Square Discriminant 

Analysis (PLS-DA) was performed to predict the membership of observations to the 

categories of responders and non-responders.10,11 PLS-DA was performed with XLSTAT 

(Addinsoft) statistical software.  

The goal of PLS-DA is to obtain a linear relationship between the measured protein 

levels and the patient responses to the drug treatment. The measured protein levels of each 
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patient were normalized by the protein levels of that patient before the treatment, in order 

to consider the protein level variations between individual patients. PLS-DA begins with a 

matrix in which the numbers of columns is the numbers of measured proteins and the 

numbers of rows is the numbers of patient samples. We seek a solution to that matrix that 

best resolves the responders from the non-responders with the most stable model. 

Specifically, K is the number of categories (total 2, for either responder or non-responder) 

of the dependent variable Y (the patient response). For each patient, we have 9 proteins 

measured. For each category ak (k=1,2), we obtain a separate classification function F, so that 

we obtain one fit that applies to all responders, and a second for all non-responders. 

0
1

( , )
p

i k i ij
j

F y a b b x


     

Here, b0 is the fitted intercept of the linear model associated each category ak, p 

(total 9) is the number of measured proteins (also called explanatory variables) and bi are 

the coefficients that weigh each protein within the model. A given patient i is associated to 

class k (responder or non-responder) depending on which model best describes blood 

protein levels measured from that patient.  Formally, this is written as: 

* arg max ( , )i k
k

k F y a     

In the trial, most patients were treated for 1 or 2 cycles, with a non-statistical 

number of patient proceeding for additional cycles. Thus, we developed the model using 

patient responses at the end of Cycle 1 treatment, and validated the model by predicting 
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patient responses at the end of Cycle 2 treatment. The number of patients treated 3 or more 

cycles was too small to develop a model. 

4.3 Results and discussion 

 

Figure 4.1 Raw data image. (a) Raw scan of a barcode chip after the 9-plex plasma proteomic 
measurement. Total 16 plasma samples were measured (scale bar: 3mm). (b) A single well 
magnified in the raw scan. Each well contains 2 sets of antibody arrays for the 9-plex sandwich-
type immunofluorescence assays. Cy3 fluorescence, shown as a green stripe, indicated the spatial 
location of other barcode stripes which identified analytes. Fluorescence intensities were digitized 
from a line scan, shown as a white box (scale bar: 1.5mm). (c) Digitization results. A red graph 
represented signals from the immunofluorescence assays and a green graph were from the location 
indicator of Cy3 fluorescence. Identities of each analyte were labeled. 
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Figure 4.2 Raw measurement data of all the patient plasma samples (n=153). Averages and 
standard deviations of the measured 9 proteins were shown. 

 

We simultaneously measured 9 proteins in total for the 153 plasma samples 

collected from cohort 1 and 2 by the sandwich-type immunofluorescence assay (Figure 4.1, 

Figure 4.2, and Figure 4.9, Appendix B). The average coefficient of variation of the protein 

measurement was 8.85%, and the range was 1.64%-28.89%. We first observed the 

interpatient variability in the measured protein levels and hypothesized that relative 

changes in the protein levels, not absolute values, might be linked to the patient drug 

responses. Thus, we normalized a patient’s protein levels during all the drug treatment 

cycles to the patient’s protein levels in pre-treatment.  We then divided the raw data set 

into several sub-data sets by the following criteria: 1) cohort, 2) drug treatment cycles, and 

3) clinically determined drug responses in each cycle. Both raw and normalized protein 

levels of each cohort are plotted in Appendix B, Figure 4.10-4.15. 
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Figure 4.3 Assessment of the explanatory and predictive power of the model in the cohort 2 for the 
cycle 1 treatment. The explanatory power of the model increases with more components included, 
shown as increase of R2X and R2Y. However, the predictive power of the model decreases 
simultaneously, shown as decrease of Q2. 

 

We used PLS-DA for fitting patient responses in cohort 2 at the end of Cycle 1 

treatment to either responders or non-responders. A danger of PLS-DA models is that they 

have the potential to over-fit the data, in which case the model explains 100% of the 

observations, but is not robust towards making new predictions. We sought a model that 

had an optimal trade-off between explanatory power and predictive power. Figure 4.3 

provides the guidance for choosing an optimal model. In this plot, we evaluate the 

explanatory power of the model for the protein levels (R2X cum; green bars) and for the 

patient responses (R2Y cum; red bars) as the numbers of components in the fit are increased. 

When 4 or more components are included in the fit, 100% of the protein observations are 

explained. However, we also estimate the robustness of the model by ‘leave one out’ cross-

validation computations (Q2 cum; blue bars). The most predictive model is the least robust. 
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Based upon this cross-validation test, we utilized the single-component fit, as it should 

have the most predictive power.   

 

Figure 4.4 Variable Importance of the Projection (VIP) of the protein markers in the Figure 4.3 
model. VIP values represent the predictive capacity of the protein markers. These values are 
obtained from the single-component fit and their 95% confidence intervals are shown. 

 

As mentioned, the PLS-DA model was fitted by defining, for each patient, a 

baseline prior to the start of Cycle 1 treatment, and by analyzing changes in those protein 

levels after completion of the Cycle 1 treatment. Based upon the PLS-DA model, we 

evaluated which proteins exhibited the greatest predictive capacity (Figure 4.4). Proteins 

IL-1and MMP9 exhibited the most predictive capacity, while IL-2 and C3 had no 

predictive power. The fitted classification functions that were determined by the end of 

Cycle 1 data are summarized in Appendix A, Table 4.4. The confusion matrix at the end 

of Cycle 1 is provided in Appendix A, Table 4.5. The model fits 12 of 17 responders 
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correctly, and fits 12 of 17 non-responders correctly, providing a ROC curve with the 

accuracy of 0.720 (Figure 4.5a). 

 

Figure 4.5 ROC curves. (a) ROC curve at the end of Cycle 1 treatment (b) ROC curve at the end 
of Cycle 2 treatment based on the model prediction. 

 

We then tested the predictive capacity of the PLS-DA model by using the model to 

predict patient responses during treatment Cycle 2. The Confusion Matrix of the predicted 

patient responses for Cycle 2 and the ROC curve is provided in Figure 4.5b. and Appendix 

A, Table 4.6. The predictive capacity of the model for the Cycle 2 patient responses with 

the accuracy of 0.722 is apparently similar to its explanatory capacity for the Cycle 1 

patient responses with the accuracy of 0.720, albeit with fewer patient samples. 

Nevertheless, this gives us some confidence that serum proteomics can provide insights 

into predicting patient responses to this targeted inhibitor. Additional analyses of further 

cycles of therapy treatment were not done, given the small number of patients who 

proceeded beyond Cycle 2 treatment.  
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The serum protein levels of patients in the cohort 1were analyzed separately, but 

again by developing a PLS-DA model using Cycle 1 measures and validating that model 

by predicting patient responses through Cycle 2. This analysis was statistically poor, 

because there were very few patients who underwent both surgery and drug treatment. The 

fitted classification functions and confusion matrices are summarized in Appendix A, 

Table 4.7-4.9.  

 

Figure 4.6 Cohort 2 raw protein levels in pre-treatment. Samples were classified by the drug 
responses after Cycle 1 treatment. Responders (blue, n=18) had higher IL-2, TGF β1, C3, IL-1β, 
and IL-12 levels compared to non-responders (red, n=17). (*, p<0.05; **, p<0.005). Averages and 
standard deviations were shown. 

 

Interestingly, the cohort 2 responders and non-responders after Cycle 1 treatment 

had different proteomic signatures in their pre-treatment (Figure 4.6). Raw protein levels 

of IL-2, TGF 1, C3, IL-1, IL-12 in responders were higher than those in non-responders. 

Moreover, their protein-protein correlation networks were distinctive (Figure 4.7). All the 

determined correlation coefficients were above 0.6, which showed only positive 
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correlations between the 9 measured proteins. More proteins were correlated in the non-

responders than responders. Although this observation has to be further validated with 

higher sample numbers, it may imply that we can find the proteomic classifiers to predict 

the Cycle 1 drug responses. Such classifiers would be a powerful tool in that we can predict 

initial patient responses based on the one-time measured protein levels before 

administering the drug.  

 

Figure 4.7 Pre-treatment protein-protein networks of cohort 2 responders and non-responders after 
Cycle 1 treatment. 

 

4.4 Conclusion  

 We developed the proteomic classifiers for diagnosing the early drug responses of 

recurrent GBM patients after the first 28-day cycle of buparlisib treatment. These 

classifiers could predict the drug responses of the next cycle of the treatment. We also 

found that these classifier models worked with the normalized protein levels to the pre-
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treatment levels. The diagnostic and predictive capacities of the model can be useful for 

monitoring the patient drug responses, which can save time and costs for the drug treatment 

particularly. This study was limited to a cohort of patients who did not have surgery due to 

small number of samples, but the findings can be further extended and applied to patients 

who had both surgery and the drug treatment. In general, this 9-plex proteomic 

measurement is performed from a finger-prick volume of a patient blood, and its operation 

is straightforward and easy. Therefore, this platform can be readily implemented in clinical 

settings for routine drug response monitoring. 
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4.6 Appendix A: Supplementary tables 

 Table 4.1 Patient cohort clinical characteristics for this trial (last updated on 03.26.2015). 

  
Cohort 1 
(n=15) 

Cohort 2 
(n=50) 

Patient follow-up 
information 

Deceased 9 40 
Alive 6 8 

Unknown 0 2 

Progression Free Survival 
(Months) 

Mean 4.7 1.8 
Median 1 1 
Range 0-21 0-11 

Overall Survival  
(Months) 

Mean 27.6 15.5 
Median 23 9 
Range 2-66 0-63 

# of treatment cycles 
completed (Cycles) 

Mean 5.3 2.2 
Median 2 1 
Range 0-23 0-10 
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Table 4.2 Single stranded DNAs used in this study. 

Name DNA Sequence 

B 5'-NH2-C6-AAA AAA AAA AAA AGC CTC ATT GAA TCA TGC CTA -3' 

B' 5'-NH2-C6-AAA AAA AAA ATA GGC ATG ATT CAA TGA GGC -3' 

C 5'-NH2-C6-AAA AAA AAA AAA AGC ACT CGT CTA CTA TCG CTA -3' 

C' 5-NH2-C6-AAA AAA AAA ATA GCG ATA GTA GAC GAG TGC -3' 

D 5'-NH2-C6-AAA AAA AAA AAA AAT GGT CGA GAT GTC AGA GTA-3' 

D' 5'-NH2-C6-AAA AAA AAA ATA CTC TGA CAT CTC GAC CAT-3' 

E 5'-NH2-C6-AAA AAA AAA AAA AAT GTG AAG TGG CAG TAT CTA -3'

E' 5'-NH2-C6-AAA AAA AAA ATA GAT ACT GCC ACT TCA CAT-3' 

F 5'-NH2-C6-AAA AAA AAA AAA AAT CAG GTA AGG TTC ACG GTA-3' 

F' 5'-NH2-C6-AAA AAA AAA ATA CCG TGA ACC TTA CCT GAT-3' 

G 5'-NH2-C6-AAA AAA AAA AGA GTA GCC TTC CCG AGC ATT-3' 

G' 5'-NH2-C6-AAA AAA AAA AAA TGC TCG GGA AGG CTA CTC-3' 

H 5'-NH2-C6-AAA AAA AAA AAT TGA CCA AAC TGC GGT GCG-3' 

H' 5'-NH2-C6-AAA AAA AAA ACG CAC CGC AGT TTG GTC AAT-3' 

K 5'-NH2-C6-AAA AAA AAA ATA ATC TAA TTC TGG TCG CGG-3' 

K' 5'-NH2-C6-AAA AAA AAA ACC GCG ACC AGA ATT AGA TTA-3' 

L 5'-NH2-C6-AAA AAA AAA AGT GAT TAA GTC TGC TTC GGC-3' 

L' 5'-NH2-C6-AAA AAA AAA AGC CGA AGC AGA CTT AAT CAC-3' 

M 5'-NH2-C6-AAA AAA AAA AGT CGA GGA TTC TGA ACC TGT-3' 

M' 5'-NH2-C6-AAA AAA AAA AAC AGG TTC AGA ATC CTC GAC-3' 
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Table 4.3 List of capture and detection antibodies used in this study. 

DNA Protein Manufacturer 
Capture Antibody 

Catalog # 
Detection Antibody 

Catalog # 
B’ IL-2 R&D Systems DY202 (KIT) 
C’ VEGF R&D Systems DY293B (KIT) 
D’ TGFb1 R&D Systems DY240 (KIT) 
E’ C3 abcam ab17455 ab14232 
F’ IL-1b ebioscience 14-7018 13-7016 
G’ IL-12 ebioscience 14-7128 13-7129 
H’ MMP9 R&D Systems DY911 (KIT) 
K’ VEGF R2 R&D Systems DY357 (KIT) 
L’ Serpin E1 R&D Systems DY1786 (KIT) 
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Table 4.4 The fitted classification function of the cohort 2 determined at the end of Cycle 1 
treatment. 

 b0 bIL2 bVEGF bTGFb1 bC3 bIL1b bIL12 bMMP9 bVEGFR2 bSerpinE1

F(R) 1.21 -0.0561 -0.104 -0.0838 -0.0513 -0.109 -0.0902 -0.114 -0.0994 -0.0928 

F(NR) -0.208 0.0561 0.104 0.0838 0.0513 0.109 0.0902 0.114 0.0994 0.0928 

 

Table 4.5 Confusion matrix for the cohort 2 group at the end of Cycle 1 treatment. 

 

 

 

 

 

 

 

Table 4.6 Confusion matrix for the cohort 2 group at the end of Cycle 2 treatment based on the 
model’s prediction. 

  

Patient category 
Predicted 
responder 

Predicted      
non-responder 

Total % correct 

Responder 12 5 17 70.6% 

Non-responder 5 12 17 70.6% 

Total 17 17 34 70.6% 

Patient category 
Predicted 
responder 

Predicted       
non-responder 

Total % correct 

Responder 6 2 8 75.0% 

Non-responder 3 6 9 66.7% 

Total 9 8 17 70.6% 
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Table 4.7 The fitted classification function of the cohort 1 determined at end of Cycle 1 treatment. 

 b0 bIL2 bVEGF bTGFb1 bC3 bIL1b bIL12 bMMP9 bVEGFR2 bSerpinE1 

F(R) 0.160 -0.337 0.0344 0.0932 -0.143 -0.0977 0.223 -0.0274 0.144 0.216 

F(NR) 0.840 0.337 -0.0344 -0.0932 0.143 0.0977 -0.223 0.0274 -0.144 -0.216 

 

 

Table 4.8 Confusion matrix for Cohort 1 at the end of Cycle 1 treatment. 

 

 

 

 

 

 

Table 4.9 Confusion matrix for the cohort 1 at the end of Cycle 2 treatment base on the model 
prediction. 

 

 

  

Patient category 
Predicted 
responder 

Predicted non-
responder 

Total % correct 

Responder 1 2 3 33.3% 

Non-responder 0 5 5 100% 

Total 1 7 8 72.5% 

Patient category 
Predicted 
responder 

Predicted non-
responder 

Total % correct 

Responder 2 1 3 66.7% 

Non-responder 0 3 3 100% 

Total 2 4 6 83.3% 
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4.7 Appendix B: Supplementary figures 

 

Figure 4.8 Protein-protein interaction map of 9 protein markers measured in this study. STRING 
(Search Tool for the Retrieval of Interacting Genes/Proteins), a web-based open source software, 
was used to map out these interactions (https://string-db.org/). Most of the proteins are highly 
related with each other which causes the multi-collinearity in the data set. (FLT1, Fms-related 
tyrosine kinase 1, i.e. vascular endothelial growth factor/vascular permeability factor receptor; 
IL12B, IL-12 p40).  
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Figure 4.9 Calibration curves. A four-parameter logistic model was fitted to all the proteins 
markers except IL-2.  

 

 

Figure 4.10 Box plot of the measured raw protein levels during the drug treatment. Data were 
classified by cohort and drug response. Cohort 1 is shown in blue (responders) and red (non-
responders) and cohort 2 are shown in dark green (responders) and orange (non-responders).  
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Figure 4.11 Raw protein levels of cohort 1 in pre-treatment. Samples were classified by the drug 
responses after Cycle 1 treatment. Due to small sample size, no statistical test was performed 
between responders (blue, n=3) and non-responders (red, n=5). Averages and standard deviations 
were shown. 
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Figure 4.12 Cohort 1 raw protein levels during the treatment. Responders (blue, n=18) had higher 
levels of all the measured proteins than non-responders (red, n=11). (*, p<0.05; **, p<0.005; ***, 
p<0.0005; **** p<0.0001). Averages and standard deviations were shown. 
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Figure 4.13 Cohort 1 normalized protein levels during the treatment. Protein levels in pre-treatment 
was used for the normalization. All the normalized values of responders (blue, n=18) and non-
responders (red, n=11) were not different with statistical significance. Averages and standard 
deviations were shown. 
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Figure 4.14 Cohort 2 raw protein levels during the treatment. Responders (blue, n=41) had higher 
level of IL-2 than non-responders (red, n=39). (*, p<0.05). Averages and standard deviations were 
shown. 
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Figure 4.15 Cohort 2 normalized protein levels during the treatment. Protein levels in pre-treatment 
was used for the normalization. The normalized values of VEGF, TGF β1, IL-1β, IL-12, MMP9, 
VEGF R2, and Serpin E1 levels were higher in responders (blue, n=41) than non-responders (red, 
n=39). (*, p<0.05; **, p<0.005). Averages and standard deviations were shown. 
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Chapter 5 

A barcoded rapid assay platform for the efficient 
evaluation of epitope-targeted binders against KRas 
protein 

 

 

5.1 Introduction 

Protein-catalyzed capture agents (PCCs) are a class of synthetic antibody surrogates 

that have been demonstrated, for a number of protein targets, to mimic the epitope targeting 

ability and high avidity of monoclonal antibodies.1 Further, PCCs can be engineered to 

have combined properties that are difficult to achieve for biologics, such as combinations 

of physical and biological stability, in vitro or in vivo target recognition, and, in one 

example, cell penetration.2 State-of-the-art PCCs are identified by carrying out an in situ 

click screen3 of a synthetic, strategically modified polypeptide fragment (the synthetic 

epitope, or SynEp) of the protein target against a synthetic one-bead-one compound 

(OBOC) library of macrocyclic peptides. The comprehensive OBOC library typically 

contains the roughly two million sequences that result from using all combinations of an 

18-20 amino acid basis set to construct a variable 5-mer region.  

PCC leads are identified through a single generation screen that will typically yield 

on the order of five to ten hits. Once identified, those hit peptides are tested for binding to 

the full-length protein, often in various levels of serum background and under different 
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blocking conditions. These assays represent a limiting factor in the production of high 

quality PCCs.  They are carried out on 96-well plates using a sandwich Enzyme-Linked 

Immunosorbent Assay (ELISA) format, and may involve running 50 to 100 multi-point 

assays in series. In addition to being laborious, the assays also consume significant amounts 

of the chemical and biological reagents used in the assays. Finding a more efficient solution 

to carrying out such assays might be useful for the production of other artificial antibody-

type ligands, such as other classes of peptides or aptamers.4–6 

 

Figure 5.1 Overview of the B-RAP Technology. (a) The individual SAC-DNA conjugates (b) The 
biotinylated PCC ligands are added to the SAC-DNAs and allowed to complex. (c) The individual 
SAC-DNA-ligand solutions are pooled and the cocktail is added to individual microwells on the 
DNA barcode. (d) The SAC-DNA-ligand conjugates self-assemble with the DNA barcode to 
produce a fully assembled B-RAP assay. 

 

To address this challenge we report here on the barcoded rapid assay platform (B-

RAP), which is a microchip platform designed so that the entire set of candidate PCC 

ligands may be rapidly evaluated in parallel, using minimal quantities of reagents (Figure 

5.1). Simultaneous testing of all PCCs under identical environments means that all assays 
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are subject to the same uncertainties, thus permitting a direct comparison of the EC50 values 

for the entire set of hit peptides. The B-RAP technology draws from the Nucleic Acid Cell 

Sorting (NACS)7 and DNA-Encoded Antibody Libraries (DEAL) methods.8–11 The B-RAP 

process starts with a microscope slide that is flow-patterned with a distinct set of ssDNA 

oligomers. PCC candidates are prepared with a biotin label, and then assembled onto 

cysteine-modified streptavidin (SAC) scaffolds that have been labeled with 

complementary ssDNA oligomers.12–14 Once assembled, these reagents are combined into 

a cocktail, and assembled onto specific stripes of the barcode pattern using DNA 

hybridization.15 The microchip surface itself is partitioned into microliter volume wells, 

each of which contains multiple copies of the full barcode. The B-RAP technology can be 

used to simultaneously assay a full panel of candidate PCCs over a range of target protein 

concentrations (or other conditions), so that the EC50 binding values for each candidate 

PCC are simultaneously measured.  

Here we report on the use of the B-RAP technology to analyze the results from an 

epitope targeted in situ click screen against the Kirsten rat sarcoma (KRas) protein.16 The 

oncoprotein variants of KRas are implicated in driving ~20-25% of all human cancers 

including almost all pancreatic cancers.17 Ras proteins have largely evaded targeting by 

traditional therapeutic techniques,18–21 but recent work has shown that specific mutant 

isoforms may be targetable.22 We targeted conserved epitopes denoted Switch I (aa 25-40) 

and Switch II (aa 56-75), which are known to allosterically influence KRas activity.23  
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5.2 Materials and methods24 

5.2.1 Preparation of the barcode rapid assay platform  

We utilized DNA flow-patterned barcode chips, biotinylated peptides, and SAC-

DNA to assemble a miniaturized barcode of candidate PCCs for testing in a surface 

Immunofluorescent assay (IFA). Microfluidic flow patterning of 50 μm wide, 100 μm pitch 

ssDNA barcodes starts with adhering a polydimethylsiloxane (PDMS) microchannel mold 

onto a poly-L-lysine (PLL) coated glass microscope slide (Figure 5.4a, Appendix A). 

Reagents were introduced into the microchannels using a pins and tubing-free flow system 

that greatly simplified the preparation of barcoded microchips relative to previous 

protocols (Figure 5.5, Table 5.2, Appendix A and B).25,26 The PDMS mold was patterned 

with microwells at each microchannel inlet (Figure 5.4a (i,ii), Supporting Information). 

Reagents (3-5 μL) are micropipetted into the microwells, and then two machined acrylic 

plates are clamped across the top and bottom of the inlet region. The top acrylic plate 

contains a cavity that encompasses all inlet microwells.  Thus cavity is pressurized to fill 

the microchannels in about 20 minutes (Figure 5.5b, Appendix A). The design tolerates 

higher inlet pressures, which enables the use of narrower dimension microchannels than 

used here.  Initially 3μL of PLL (0.1% (w/w) in H2O) is flow patterned and dried overnight 

before flow 5μL of 300 μM of each ssDNA (Table 5.3, Appendix B) with 2mM 

bis(sulfosuccinimidyl)suberate) (BS3) crosslinker. Some 20-25 DNA barcoded chips are 

readily prepared in parallel using this approach (Figure 5.4c, Appendix A). The edge of the 

barcode is used to validate the coverage density and uniformity of the molecular patterns 
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using Cy3-labeled complementary ssDNA (Figure 5.5 and 5.6, Appendix A). Once 

validated, the barcoded slides are vacuum-sealed for up to six months storage before use.  

The second component of the B-RAP technology that is independent of the specific 

identities of any PCC candidates to be tested, is the library of DNA-Encoded Streptavidin 

(SAC-DNA) constructs used to assemble individual biotinylated PCC candidates onto 

specific barcode lanes. The SAC protein was conjugated with ssDNA complementary to 

the barcode DNA oligomers (Table 5.3, Appendix B).  This was done using N-

succinimidly-4-formylbenzaldehyde (S-4FB) and maleimide 6-hydrazino-nicotinamide 

(MHPH), followed by fast protein liquid chromatography (FPLC) purification (Figure 5.7, 

Appendix A).  

The performance of the library of fifteen SAC-DNAs15,27 was evaluated by 

hybridizing library elements onto the flow patterned ssDNA barcodes.  The barcodes were 

then incubated with varying amounts of the fluorophore probe biotin-A20-Cy3 (Biotin*, 

50-400nM) (Figure 5.8a, Appendix A). The resulting surface fluorescence was measured 

and compared to the fluorescence signal from the bottom edge barcode validation region 

(Figure 5.8a, Appendix A). The fluorescent output at 532 nm (F532) of the captured 

biotinylated probe was lower than the F532 of the validation region (45 to 65k).  This is 

likely a result of the large size of the SAC protein relative to the Cy3 fluorophore. A 

minimum F532 value of 25k was set as indicative of a functionally active SAC-DNA 

conjugate.  
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5.2.2 KRas protein expression and purification 

The KRas protein isoform 4B was expressed from transformed BL21(D3) E. coli 

cells as a His6-tagged protein28 and purified by FPLC using a Ni-NTA resin (Figure 5.9, 

Appendix A). The fractions with pure KRas were dialyzed into tris-buffered saline (TBS, 

pH=7.4), aliquotted, and stored at -80.0 °C until needed.   

5.2.3 Preparation of Switch I and Switch II SynEps and scrambled SynEps 

The synthetic epitopes (SynEps 1 and 2) were 11-12 amino acid polypeptides with 

sequences extracted from the allosteric switch regions of Kras (Figure 5.2a and Table 5.4, 

Appendix B). The SynEp1 differs from the wild-type sequence as it is missing a valine 

residue. An azido click handle was added via substituting residue-similar azido-amino 

acids, as shown in Figure 2A.  Rearranged version of the SynEps were also prepared, and 

used in a pre-screen step to remove possible interferents. All epitopes were synthesized on 

biotin Novatag resin and purified using semi-preparative high performance liquid 

chromatography (HPLC) (Figure 5.10a, 5.11a, 5.12a, 5.13a, Appendix A).  The appropriate 

fractions were identified using matrix-assisted laser desorption ionization time-of-flight 

mass spectrometry (MALDI-TOF MS) (Figure 5.10b, 5.11b, 5.12b, 5.13b, Appendix A).  

Each SynEp was dissolved in DMSO, quantified using a Nanodrop 2000 

spectrophotometer, and stored at 4 oC.  

5.2.4 Library preparation and in-situ library click screen 

A comprehensive OBOC library of 5-mer variable peptide macrocycles, using an 

18 amino acid basis set, was prepared as previously reported.1 The macrocyclic peptides 
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are closed with a 1,4 triazole using Cu(I) catalyzed click chemistry.  These macrocycles 

are designed to present a propargylglycine click handle (Appendix C and D). The in situ 

library click screen was a dual SynEp version of a previously reported protocol.1 After 

removing the beads that bound to the scrambled SynEps during a pre-clear screen the 

remaining library was incubated with both SynEp1 and SynEp2 (Appendix C and D). After 

incubating with an anti-biotin capture and alkaline-phosphatase conjugated 2° antibody, 

the hit beads were identified by their deep purple color.  Hit beads were stored at RT in 0.1 

M hydrochloric acid until sequenced. For sequencing, hit beads were decolorized in N-

methyl pyrrolidine (NMP), and sequenced by Edman degradation (Table 5.4, Appendix B). 

Hit compounds were then scaled up on biotin Novatag resin following previously 

established protocols,1 purified, and then stored at 4 oC until ready for use.  

5.2.5 Surface immunofluorescent assays on the barcoded rapid assay platform 

The barcode patterned microchip surface was partitioned into 16 individual 

microwells using a molded PDMS template. Individual biotinylated PCC candidates were 

complexed to specific SAC-DNA conjugates, combined into a cocktail, and then self-

assembled, via DNA hybridization, onto designated barcode stripes (Figure 5.1). 

Incubation with a specific concentration of the target protein preceded incubation with a 1° 

capture antibody (ab) and then a fluorophore-conjugated 2° detection ab. During assay 

execution, each well represents a different target concentration or assay condition. 
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5.3 Results and discussion 

5.3.1 Optimizing B-RAP technology assay conditions 

 

Figure 5.2 Identification of SynEps for the dual epitope in-situ click screen, and the resulting PCC 
ligand hits from the library screen. (a) The regions of the allosteric KRas switches that comprise 
the SynEps used for the dual-epitope in-situ library click screen. The crystal structure is a ray-trace 
from pdb file 4dst. (b) The sequences of the PCC ligands resulting from the dual-epitope screen. 
aSimilar sequences are reported for a bead due to the nature of certain amino acids co-eluting on 
an Edman degradation trace or the size of the peaks preventing determination of which residue 
came first. bThese ligands had two fractions with the correct mass after HPLC purification and 
both were tested on the platform. 

 

The in situ click screen against the Switch I and II KRas SynEps yielded five beads 

from which nine candidate sequences were determined (Figure 5.2b).  Biotinylated 

candidate ligands were then tested using a single-point immunofluorescence assay on the 

B-RAP platform (Figure 5.15, Appendix A) in order to identify appropriate blocking 

conditions. Modification of the protein incubation solution to include the nonionic 

surfactant Polysorbate 20 (Tween20) was found to minimize non-specific binding between 

the KRas protein and the unmodified PLL surface. 
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Running the laser at full power resulted in over-saturation of the scanned barcode 

so a test of different power settings was conducted to identify the ideal setting. The ideal 

power setting would avoid early saturation in order to utilize the entire dynamic range of 

the detector (0-65.5k) when generating binding curves. A laser power setting of 40% was 

settled on after testing a variety of power settings (10-80%). 

5.3.2 Validation of the B-RAP technology 

Following optimization of the assay conditions the B-RAP technology was 

subjected to statistical tests to assess the variance in assay results measured within an 

individual microwell, between microwells on the same chip, and between different 

microchips. The average percent coefficient of variation (%CV) seen along an individual 

barcode stripe in the wells above background (500 nM to 400 μM KRas) was ~15%. 

The %CV between wells on the same microchip under identical conditions was ~9%. Each 

microwell contains between two to three full copies of the DNA barcode. For the same 

barcode lane in different full barcode sets in the same microwell, the fluorescence output 

was measured to have an average %CV of ~14% (Figure 5.16a, Appendix A). The global 

average %CV for identical barcode lanes between two assays run in parallel by different 

users was ~18% with an average %CV of ~15% for the 1 μM to 400 μM range of KRas 

protein (Figure 5.16b and 5.16c, Appendix A). Additionally, the average fluorescence 

output (F635) from a full line scan of the same area extracted using a discrete ten-block data 

extraction was compared to the average F635 resulting from the data-block extraction, and 

the values from the full-line scan were contained within two standard deviations of the 

data-block extraction’s average F635 (Figure 5.17, Appendix A). As a result, we concluded 
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that the variance in assay output on the same barcode and between different barcodes was 

low. 

5.3.3 Measuring the EC50 of the allosteric binding PCC ligands 

 

Figure 5.3 Full binding curves for L1-L9 and the corresponding EC50 values. (a) The raw scan of 
the barcode after running the KRas protein binding curves. (b) The worked up graphs for the 
allosteric PCC ligands. (c) The EC50 values derived from the B-RAP technology and the multi-
well ELISA technology. aNot calculated due to non-saturation of graph. 

 

After characterizing the B-RAP technology, we used the chip to record, in parallel, 

full binding curves for 15 candidate KRas ligands (Figure 5.3) and determined the EC50 

values for each ligand (Figure 5.3c). These measurements were comprised of a 13-point 

concentration series, with each point collected in decaplicate. The EC50 values enabled the 

ranking of the ligands, and the best binders were identified to be L1, L2, and L8 

respectively. Some of the EC50 values between the B-RAP technology and multi-well 

ELISA assays diverge significantly (Figure 3c), with the ELISA data consistently fitting to 
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higher EC50 values. This likely arises from two reasons. First, the ELISA assays are 

absorbance measurements, and thus have a significantly smaller dynamic range then the 

B-RAP fluorescent assays. Second, the ELISA assays use enzymatic amplification to 

generate a signal, while the B-RAP assays use no amplification. These two factors mean 

that the B-RAP assays are characterized by a higher signal to noise. This is especially true 

for micromolar binders, since assays of such relatively weak binders are of typically lower 

signal-to-noise. The true amino acid sequences for each hit peptide were distinguished from 

the artifact sequences that arose from uncertainties in the Edman degradation sequencing. 

The true hits are identified as L1, L2, L5, L7, and L8.  

 

5.4 Conclusion 

In summary we report on the development and validation of a barcode rapid assay 

microchip platform for the simultaneous evaluation of fifteen PCC agents in up to sixteen 

unique assay conditions. A miniaturized Biotin* binding assay was also developed to verify 

the biotin binding ability of the DESL set. The B-RAP technology was used to identify the 

best allosteric KRAS binders from a pool of ligands derived from a dual SynEp library 

click screen in a single day. The savings in terms of time and material with the significant 

gain in data points advances our program for rapidly developing PCC agents against 

proteins of therapeutic interest (Table 5.1, Appendix A). The tool permits a more than 10-

fold time in savings and a more than 100-fold reduction in biological reagents relative to 

traditional multi-well plate assays. Current efforts involve advancing the identified best 

binders through a series of medicinal chemistry optimizations with the intent of linking the 
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best allosteric ligands to PCC agents developed against the mutated G12DKRas protein. 

Additionally, efforts are ongoing to develop conditions for running a two-color fluorescent 

assay with B-RAP. The ability to use a pair of orthogonal fluorescent-tagged antibodies 

would allow for a competition pull-down assay in order to assess the difference in affinity 

for two structurally related proteins. 
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5.6 Appendix A: Supplementary figures 

          

Figure 5.4 High throughput patterning of DNA barcode chips. (a) (i) Solution loading device 
design and flow patterning set up with (ii) the solution loading device and (iii) the pins and tubing. 
(b) Measured flow rates under various inlet pressures using the solution loading device. (c) 
Simultaneous flow patterning of 21 DNA barcode chips. 
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Figure 5.5 DNA barcode chip layout and validation. (a) The 50 µm barcode chip layout. (b) The 
Cy3-DNA validation results. 
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Figure 5.6 Comparison of barcode quality across an entire microchip. Measuring the barcode 
quality across the entire microchip reveals that all of the barcode lanes meet the minimum F635 
requirement for good levels of ssDNA patterning as highlighted by the dashed line on the graph. 

 

 

Figure 5.7 Representative SAC-DNA FPLC trace.  
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Figure 5.8 Biotin binding evaluation of the DESL set with a Biotin* probe on the barcoded rapid 
assay platform. (a) The biotin probe used to perform the Biotin binding affinity test for the DESL 
set using the B-RAP technology. (b) The output of the Biotin binding test on the DNA barcode. 

 

 

 

 

Figure 5.9 Representative KRas protein FPLC trace. 
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Figure 5.10 SynEp1. (a) HPLC trace (b) MALDI trace.  
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Figure 5.11 Scrambled SynEp1. (a) HPLC trace (b) MALDI trace.  
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Figure 5.12 SynEp2. (a) HPLC trace (b) MALDI trace.  
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Figure 5.13 Scrambled SynEp2. (a) HPLC trace (b) MALDI trace.  
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Figure 5.14 Ligand L9. (a) HPLC trace (b) MALDI trace.  
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Figure 5.15 Single point immunofluorescence Assay on B-RAP technology with KRas protein. 

 

Figure 5.16 Statistical validation of the B-RAP technology. (a) Comparing the individual DNA 
barcode repeats in a given microwell at 5μM KRas reveals that extracting data from a single 
barcode repeat is sufficient. (b) The %CV for 1 μM to 400 μM KRas with the average %CV 
indicated by the black dashed line. c. A plot of the F635 values for both plates plotted against each 
other. 
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Figure 5.17 A comparison of the average line-scan with an averaged data block extraction. (a-c) A 
comparison of the full-line scan with the average F635 resulting from averaging ten discrete data 
block extractions and the corresponding standard deviations at three distinct concentrations of 
KRas. 
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Figure 5.18 KRas binding curves without dummy ligand correction. (a) The KRas protein binding 
curves for the allosteric PCC ligands that were run on the B-RAP technology without dummy ligand 
correction. (b) The EC50 values for L1a to L9b. aL6 was run separately. 

 

 

Figure 5.19 Representative binding curves using a 96-well plate ELISA. Representative binding 
curves of ligands run on a multi-well plate ELISA (a) A good binder on the multi-well ELISA 
platform and (b) A bad binder on the multi-well ELISA platform. 
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5.7 Appendix B: Supplementary tables 

Table 5.1 A comparison of the multi-well ELISA platform and the rapid assay platform. 

Criteria ELISA Platform B-RAP Platform 

Curves per Assay 1 15 

Relative amount PCC
a 26.7 1 

Relative amount Protein
b 112.5 1 

Unique [Protein] 12 16 

Time to Run (h) 10-36 8-10 

# Data Points
c 96 2400 

 

aThe relative amounts of PCC agent are the amounts required to run one binding curve on 
either platform. 

bThe relative protein amounts are the amounts needed to run one binding curve on either 
platform. If the total amounts required for running each platform were compared the ratio 
would be 7.5:1. 

cThe number of data points refers to the theoretical maximum of data points if the entire 
platform for both assay set-ups was utilized. 

 

Table 5.2 Solution loading plates flow patterning versus tubing flow patterning for the fabrication 
of six devices. 

Solution loading steps Solution loading plates Using tubings 

Poly-L-lysine loading 12 min > 24 min 

Poly-L-lysine flow setting 10 min 20 min 

DNA tubing prep N.A. 30 min 

DNA Loading 22 min 50 min 



140 
 
Table 5.3 ssDNA sequences for SAC-DNA conjugation and DNA barcode patterning. 

Name DNA Sequence 

B 5'-NH2-C6-AAA AAA AAA AAA AGC CTC ATT GAA TCA TGC CTA -3' 

B' 5'-NH2-C6-AAA AAA AAA ATA GGC ATG ATT CAA TGA GGC -3' 

C 5'-NH2-C6-AAA AAA AAA AAA AGC ACT CGT CTA CTA TCG CTA -3' 

C' 5-NH2-C6-AAA AAA AAA ATA GCG ATA GTA GAC GAG TGC -3' 

D 5'-NH2-C6-AAA AAA AAA AAA AAT GGT CGA GAT GTC AGA GTA-3' 

D' 5'-NH2-C6-AAA AAA AAA ATA CTC TGA CAT CTC GAC CAT-3' 

E 5'-NH2-C6-AAA AAA AAA AAA AAT GTG AAG TGG CAG TAT CTA -3' 

E' 5'-NH2-C6-AAA AAA AAA ATA GAT ACT GCC ACT TCA CAT-3' 

F 5'-NH2-C6-AAA AAA AAA AAA AAT CAG GTA AGG TTC ACG GTA-3' 

F' 5'-NH2-C6-AAA AAA AAA ATA CCG TGA ACC TTA CCT GAT-3' 

G 5'-NH2-C6-AAA AAA AAA AAA AGA GTA GCC TTC CCG AGC ATT-3' 

G' 5'-NH2-C6-AAA AAA AAA AAA TGC TCG GGA AGG CTA CTC-3' 

H 5'-NH2-C6-AAA AAA AAA AAA AAT TGA CCA AAC TGC GGT GCG-3' 

H' 5'-NH2-C6-AAA AAA AAA ACG CAC CGC AGT TTG GTC AAT-3' 

K 5'-NH2-C6-AAA AAA AAA AAA ATA ATC TAA TTC TGG TCG CGG-3' 

K' 5'-NH2-C6-AAA AAA AAA ACC GCG ACC AGA ATT AGA TTA-3' 

L 5'-NH2-C6-AAA AAA AAA AAA AGT GAT TAA GTC TGC TTC GGC-3' 

L' 5'-NH2-C6-AAA AAA AAA AGC CGA AGC AGA CTT AAT CAC-3' 

M 5'-NH2-C6-AAA AAA AAA AAA AGT CGA GGA TTC TGA ACC TGT-3' 

M' 5'-NH2-C6-AAA AAA AAA AAC AGG TTC AGA ATC CTC GAC-3' 

N 5'-NH2-C6-AAA AAA AAA AAA AGT CCT CGC TTC GTC TAT GAG-3' 

N' 5'-NH2-C6-AAA AAA AAA ACT CAT AGA CGA AGC GAG GAC-3' 

O 5'-NH2-C6-AAA AAA AAA AAA ACT TCG TGG CTA GTC TGT GAC-3' 

O' 5'-NH2-C6-AAA AAA AAA AGT CAC AGA CTA GCC ACG AAG-3' 

P 5'-NH2-C6-AAA AAA AAA AAA ATC GCC GTT GGT CTG TAT GCA-3' 

P' 5'-NH2-C6-AAA AAA AAA ATG CAT ACA GAC CAA CGG CGA-3' 

Q 5'-NH2-C6-AAA AAA AAA AAA ATA AGC CAG TGT GTC GTG TCT-3' 

Q' 5'-NH2-C6-AAA AAA AAA AGA CAC GAC ACA CTG GCT TAT-3' 
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Table 5.4 Synthetic epitopes and PCC ligands characterization table. 

 

*Multiple piperidine adducts and aspartamide formation observed. 
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Table 5.4 Synthetic epitopes and PCC ligands characterization table (continued). 
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Table 5.4 Synthetic epitopes and PCC ligands characterization table (continued). 
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Table 5.4 Synthetic epitopes and PCC ligands characterization table (continued). 
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5.8 Appendix C: Supplementary materials  

5.8.1 Barcode microfabrication and validation 

Chrome masks of the custom barcode design were purchased from University of 

California, Los Angeles, Nanoelectronics Research Facility, and Karl Süss MA/BA6 mask 

aligner (SÜSS MicroTec AG) was used for UV exposure. Silicon wafers (Wafernet Inc.), 

SU8-2025, and SU8 developer (Microchem Corp) were used for the barcode mold 

fabrication. Anhydrous dimethylsulfoxide (DMSO), sodium dodecyl sulfate (SDS), and 

bis(sulfosuccinimidyl)suberate) (BS3) used in barcode fabrication were purchased from 

American Type Culture Collection (ATCC), Sigma Aldrich, and ThermoFischer Scientific 

respectively. The Sylgard 184 elastomer, and poly-L-lysine coated glass slides used in 

DNA barcode microfabrication were purchased from Dow Corning and ThermoFischer 

Scientific respectively. The poly-L-lysine (PLL) solution (0.1% (w/w) used for barcode 

fabrication and secondary blocking in the IL-17F protein assay was purchased from Sigma 

Aldrich. All ssDNA used for barcode fabrication and barcode validations were purchased 

from either Bioneer Inc. or IDT Inc. 

5.8.2 Protein expression, purification, and refolding 

The Bacto Tryptone (Tryptone) and Bacto yeast (yeast) for the preparation of LB 

broth media were purchased from Becton, Dickinson, and Company. The ampicillin 

sodium salt, chloramphenicol, and isopropyl β-D-1-thiogalactopyranoside (1,6-IPTG, 

dioxane free) used for protein expression from E. coli were purchased from Sigma Aldrich. 

The one-shot B21(D3) Ε. coli cells and PQE80 vector (His6-tagged human KRas Isoform 

4B (residues 1-169)) used for expression of KRas protein were purchased from Life 
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Technologies and Qiagen respectively. Lysozyme (L6876), DNAse I (10104159001), and 

RNAse A (R6513-10MG) used for lysing cells containing cysteine-modified streptavidin 

(SAC) were purchased from Sigma-Aldrich. Cells containing KRas protein were lysed 

using a constant pressure cell disruptor (Constant Systems Ltd., Scotland, UK). Surfactants 

Triton X-100 and polysorbate 20 (Tween20) were purchased from Sigma Aldrich. The 20x 

phosphate buffered saline with 0.05% Tween 20 (PBST) and phosphate buffered saline 

(PBS) used for protein purification and immunofluorescent assays (IFAs) were purchased 

from Cell Signaling Technology and Corning respectively. The sodium bicarbonate 

(NaHCO3), ammonium acetate (NH4OAc), sodium acetate (NaOAc), sodium chloride 

(NaCl), Imidazole, tris(hydroxymethyl)aminomethane (Tris), 

tris(hydroxymethyl)aminomethane hydrochloride salt (Tris•HCl), Guanidinium chloride 

(Guan•HCl), magnesium chloride pentahydrate (MgCl2•5H2O), and beta-mercaptoethanol 

(βME) used in protein purification and IFA assays were purchased from Sigma Aldrich. 

The 2-imminobiotin agarose resin, Superdex 75 (10/300) increase column, and Ni-NTA 

superflow cartridge used for fast protein liquid chromatography (FPLC) purification were 

purchased from Sigma Aldrich, GE Healthcare Life Sciences, and Qiagen respectively. 

The Amicon Ultra-15 and Ultra-4 centrifugal filters used to concentrate protein samples 

were purchased from EMD Millipore. 

5.8.3 SAC-DNA conjugation and DESL set validation 

The tris-(2-carboxyethyl)phosphine hydrochloride (TCEP), anhydrous N,N-

dimethylformamide (DMF), N-succimidly-4-formyl benzaldehyde (S-4FB) and maleimide 

6-hydrazino-nicotinamide (MHPH) used for the conjugation of ssDNA to Cysteine-
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modified Streptavidin (SAC) were purchased from Sigma Aldrich and Solulink. The 

biotin-A20-Cy3 (Biotin*) probe used to test the biotin binding ability of the DESL set and 

used as a biotinylated blank for IFA assays was purchased from IDT Inc. The 

complementary ssDNA used for conjugation to SAC were purchased from Bioneer Inc. 

5.8.4 In situ library screen and hit bead sequencing 

The mouse anti-biotin-alkaline phosphatase conjugated antibody (ab) (#A6561), 

goat anti-rabbit-alkaline phosphatase conjugated ab (#A8025), rabbit anti-Ras ab (CST 

#3965), used for the combined anti screen/pre-clear and the subsequent product/target 

screens were purchased from Sigma Aldrich and Cell Signaling Technology respectively. 

The combined 5-bromo-4-chloro-3-indoyl phosphate (BCIP)/ nitro blue tetrazolium (NBT) 

(#S3771) used to develop hits during the library screens was purchased from Promega. The 

concentrated hydrochloric acid used to quench the BCIP/NBT development was purchased 

from Sigma Aldrich. Sequencing of bead hits occurred via Edman degradation sequencing 

on a Procise Protein Sequencer (Applied Biosystems, California). 

5.8.5 Peptide synthesis and purification 

Fmoc-protected amino acids were purchased from Anaspec, AAPTec, Bachem, 

ChemPep, and Sigma-Aldrich. Biotin NovaTag™ resin was obtained from EMD 

Chemicals, Inc. and used for the synthesis of biotinylated peptides and epitopes used for 

the screens using standard Fmoc/tBu coupling and cleavage protocols. The peptide one-

bead-one compound (OBOC) library was prepared on Tentagel Resin purchased from 

RAPP Polymere. The Fmoc-protected propionic acid polyethylene glycol (PEGn) linkers 

were purchased from ChemPep Inc. The L-Ascorbic Acid and copper (I) iodide (CuI) used 
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for click reactions were purchased from Sigma Aldrich. The N-methyl pyrrolidine (NMP), 

1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid 

hexafluorophosphate (HATU), and N,N’-diisopropylethylamine (DIPEA) used in peptide 

synthesis were bought from EMD Chemicals, Inc., ChemPep, and Sigma-Aldrich 

respectively. Piperidine, trifluoroacetic acid (TFA), and triethylsilane (TESH) were 

purchased from Sigma-Aldrich. The diethyl ether used to precipitate crude peptide was 

purchased from JT Baker. The Omnisolv grade acetonitrile (MeCN) used for peptide 

purification was purchased from EMD Millipore. Unless otherwise stated, peptide 

preparation was performed using a Titan 357 Automatic Peptide Synthesizer (AAPPTec, 

Louisville, KY) or a Liberty 1 Automated Peptide Synthesizer (CEM, North Carolina). 

Mass analysis was performed using a Voyager De-Pro matrix assisted laser desorption 

ionization time-of-flight mass spectrometer (MALDI-TOF MS) (Applied Biosystems, 

California). The crude peptides were dissolved in either DMSO (Sigma Aldrich) or (1:1) 

MeCN/doubly distilled water (MQ H2O) w/ 0.1% TFA before purification by a gradient of 

0% to 50% acetonitrile in MQ H2O with 0.01% (v/v) TFA using a RP-HPLC (Beckman 

Coulter System Gold 126 Solvent Module and 168 Detector) using a C18 reversed phase 

semi-preparative column (Phenomenex Luna 10 µm, 250 × 10 mm). The concentration of 

peptides and epitopes was determined using a Nanodrop 2000 Spectrophotomer 

(ThermoFischer Scientific Inc., Massachusetts).  
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5.8.6 B-RAP immunofluorescence assays and multi-well enzyme-linked 

immunosorbent assays 

The Bovine Serum Albumin (BSA, Biotin free A1933-25G) used in the IFAs and 

multi-well enzyme-linked Immunosorbent assays (ELISAs) was purchased from Sigma-

Aldrich. The non-fat dry milk powder used in the enzyme-linked Immunosorbent assays 

(ELISAs) was purchased from Best Value. The rabbit anti-Ras (CST #3965), Goat anti-

rabbit IgG HRP-linked (CST #7074), goat anti-rabbit HRP-linked (CST #7074), goat anti-

mouse-Alexafluor 647 conjugated (ab150115), goat anti-mouse-Alexafluor 647 

conjugated (ab150115), goat anti-rabbit-Alexafluor 647 conjugated (ab150079), and 

mouse monoclonal IL-17F (#TA319596) antibodies were purchased from Cell Signaling 

Technologies, Abcam, and Origene respectively. Recombinant human His-tagged IL-17F 

(ab167911) was purchased from Abcam. The ELISAs were run on either 96-well clear 

Pierce Neutravidin Plates (#15129) or Pierce Neutravidin Coated Plates (#15127) 

purchased from ThermoFischer Scientific. The TMB Microwell Peroxidase Substrate 

System (#50-76-00) that was used to develop ELISAs was purchased from KPL. The 

sulfuric acid (H2SO4(aq)) used to quench the enzymatic amplification reaction in the ELISAs 

was purchased from JT Baker. The 96-well ELISA plates were read using a Flexstation 3 

plate reader (Molecular Devices LLC, Sunnyvale, CA). All barcode slides were scanned 

using an Axon GenePix 4400A (Molecular Devices LLC, Sunnyvale, CA). 
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5.9 Appendix D: Supplementary methods 

5.9.1 DNA barcode chip patterning and validation 

The DNA barcode chips were prepared by micro channel-guided flow patterning 

as described in References 24 and 25 of the main text. A PDMS slab having the micro-

channels was made by soft lithography on a silicon wafer. Its mold was designed as Figure 

5.5a and prepared with SU8 2025 negative photoresist. The fabricated mold contained 

microfluidic circuits of 20 parallel channels with 50 μm width and ~40 μm height. 

Sylgard® 184 PDMS pre-polymer and curing agents were mixed in a 10:1 ratio, degassed, 

poured ~60g of the mixture on the mold, and baked for two hours at 80 °C for curation. 

The cured PDMS slab peeled off from the mold, cut into individual microfluidic molds, 

and the inlet and outlet holes of the microfluidic circuits were punched with the sizes of 

two mm and 0.5 mm respectively. The number of the inlets and outlets punched out were 

determined by the number of single stranded DNAs (ssDNAs) used in the assay, and fifteen 

orthogonal ssDNAs (B-Q, Table S2) were used in this study. The slab was then aligned 

with a PLL glass slide, and bonding occurred with baking at 80 °C for two hours. After 

cooling briefly, the inlet wells were loaded with 3 μL of a 0.1% PLL solution, and the PLL 

solution was flowed and dried by 13.8 kPa nitrogen gas blowing through the solution-

loading device overnight. The next day, C6 amine-modified DNA solutions (300 μM in 

(3:2 (v/v)) PBS/DMSO) were individually mixed (1:1) with a 2 mM BS3 cross-linker 

solution in PBS. Each freshly prepared mixture was flown through a channel under 13.8-

20.6 kPa nitrogen gas using the solution-loading device for 1 hour, and then only the 

assembled PDMS slab and bonded PLL slide was incubated at room temperature for 2 
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hours in a humidified chamber. After incubation, the PDMS slab was removed, and the 

DNA patterned PLL slides were washed with a 0.02% aqueous SDS solution, doubly 

distilled water (MQ H2O) (3x), and spun dry. 

To validate the DNA barcode chips, a 5’-modified Cy3-labeled complementary 

ssDNA cocktail was prepared in 1% BSA in PBS (50nM each ssDNA). The validation 

occurred over two rounds (B, D, F, H, K, N, P, M then C, E, G, I, L, O, Q) in order to check 

for channel leaks and crossover. A 120 μL aliquot of the validation solution was applied to 

a small region at the bottom edge of the DNA barcode before incubating at 37 °C for one 

hour. After incubation, this region was washed with 1% BSA in PBS, PBS (2x), and the 

slide was spun dry before being scanned by Axon GenePix 4400A (532nM, PMT 450, 

Power 15%) (Figure 5.5b).  

5.9.2 Expression of cysteine-modified streptavidin (SAC) protein 

The SAC protein was expressed using a modification of the procedures reported by 

Sano and Cantor.12 A 100 mL starter culture of autoclaved LB media (10.0 g Tryptone, 

5.00 g yeast, 10.0 g NaCl per L H2O) was prepared by inoculating with 50 μL of 100 mg/mL 

of ampicillin (final concentration 50 μg/mL) and 100μL of 34 mg/mL chloramphenicol (final 

concentration 34 ug/mL) followed by a sterile pipet scraping of a 50% (v/v) glycerol stock 

containing transformed E. coli BL21(D3) cells. The starter culture incubated overnight at 

37 °C and 250 RPM before adding 10.0 mL of starter culture aliquots to six 2800mL 

Fernbach-Style Culture Flasks containing 1.00 L autoclaved LB media with 500 μL of 100 

mg/mL of ampicillin (final concentration 50 μg/mL), 1000 μL of 34 mg/mL chloramphenicol 

(final concentration 34 ug/mL), and 1000μL of 40% (w/w) autoclaved glucose (final 
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concentration 0.4% (w/w). The flasks were left to culture at 37.0 °C, 250 RPM until A680 = 

0.500 and induction was triggered with 1000 μL of a 400 mM 1,6-IPTG solution (final 

concentration 400 μM). Expression continued at 37.0 °C, 250 RPM for four hours before 

spinning down the cells at 6000 RPM, 5 minutes @ 4 °C. Cells were resuspended in 50 mL 

of a 10 mM Tris, 1 mM EDTA, 130 mM NaCl buffer @ pH=8.0 and spun down (2x). The 

cells were flash frozen in N2(l) and stored at -80.0 °C until needed. 

5.9.3 Isolation of SAC IB from E. coli cells 

The cell pellet was thawed in ice before resuspending in two 50-mL falcon tubes 

with 40 mL of TEX buffer (30mM Tris, 2mM EDTA, 0.1% TritonX). Each tube was 

charged with 40 mg fresh lysozyme powder (Final concentration 1.0 mg/mL), vortexed until 

mixed, and allowed to lyse for 30min while tumbling @ RT. The solution was very viscous 

after lysis. The DNA and RNA were degraded by adding 400 μL of 10 mg/mL DNAse and 

RNAse in TE Buffer (10 mM Tris, 130 mM NaCl, 1 mM EDTA) (final concentration 10 

μg/mL), 960 μL of 500 mM MgCl2 (Final concentration 12 mM), and 40 μL of 1 M MnCl2 

(Final concentration 1 mM) to each tube of cell lysate and the solution was allowed to 

digest for 30 minutes while tumbling @ RT. After digestion, the solution was spun down 

@ 7800 RPM, RT for 10 minutes. The resulting pellets were both washed in 40 mL TEX 

buffer and spun down @ 7800 RPM, 5 minutes at RT. Pellets were washed with 40 mL 

buffer minus Triton X again before spinning down @ 7800 RPM, 5 minutes at RT once 

more. Each pellet was taken up in 10 mM Tris and spun down @ 7800RPM, 10 minutes 

@ RT, aliquotted, and stored at -80.0 °C until needed. If the final pellet is light brown, then 

some DNA is still present. This will be removed at the beginning of the refolding procedure. 
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5.9.4 Refolding and purification of SAC protein 

The procedure described here is a modification of the procedure developed by Sano 

and Cantor.12 

***After the initial denaturing keep all solutions at 4 °C*** 

An IB aliquot was dissolved in 1000 μL denaturing buffer (6 M Guanidine • HCl 

@ pH=1.5 with 10 mM βME), vortexed, spun down at 13,000 RPM, 2min @ RT, and 

filtered using a 0.45 μM filter. The resulting solution should be clear and nearly colorless. 

The A280 was measured on a Nanodrop2000 spectrophotometer, and the concentration of 

denatured SAC monomer was calculated. The extinction coefficients for the proteins, 

peptides, and epitopes were calculated using the peptide properties calculator 

(http://biotools.nubic.northwestern.edu/proteincalc.html). The denatured SAC solution 

was diluted to 1000 μL in denaturing buffer and added dropwise to a rapidly stirring 

solution of refolding buffer (50 mM NH4OAc, 150 mM NaCl, 10 mM βME @pH=6.0) 

(Final [SAC] ~4 μM). The stir rate was then decreased, and the solution was covered in 

aluminum foil and allowed to refold overnight. After sterile filtration the resulting solution 

was concentrated to 10-15 mL using Amicon Millipore filters (10,000-30,000 MWCO) 

before dialyzing the refolded SAC protein in Buffer A (50 mM NaHCO3, 500 mM NaCl, 

10 mM βME @ pH=11.0) until the solution had a pH of ~11 (about 2 hours). The crude 

protein was then diluted (1:1) with buffer A, mixed with 2 mL of 2-iminobiotin agarose 

resin, and allowed to incubate with tumbling in the cold room for one hour. After 

incubation the supernatant was eluted (3x) before eluting with buffer A until A280 went to 

baseline. Pure SAC was eluted with buffer B (50 mM NaOAc, 50 mM NaCl @ pH=4.0) 
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until A280 went to baseline again. Fractions with pure SAC were pooled and dialyzed 

against a PBS solution (PBS, 10 mM βME, pH=7.5) overnight. The SAC was concentrated 

to ~1 mg/mL final concentration, divided into 100 μL aliquots, and stored at -80 °C.   

5.9.5 Preparation of the DESL SAC-DNA conjugates 

For each planned SAC-DNA conjugation, two Zeba columns were prepared (3x 

300 μL 5 mM TCEP in PBS, 3.9k RPM, 1 min @RT). Each 100 μL aliquot of SAC was 

desalted in two separate Zeba columns to remove the βME (3.9k RPM, 2 min @RT). After 

transferring to eppendorf tubes, 6 μL anhydrous DMF was added followed by 6 μL MHPH 

(100 mM in anhydrous DMF). Separate eppendorf tubes were charged with 80 μL of 500 

mM DNA in PBS followed by 10 μL anhydrous DMF and 10 μL S-4FB (100 mM in 

anhydrous DMF). The SAC and DNA solutions were vortexed gently, briefly spun down, 

and left to react at RT in the dark for four hours. For each conjugation in progress, four 

Zeba columns were buffered exchanged with citrate buffer (150 mM NaCl, 50 mM sodium 

citrate, pH=6.0) (3 x citrate buffer, 3.9k RPM, 1 min @ RT). The SAC and DNA solutions 

were desalted separately (2 x 3.9k RPM, 2 min, @ RT) before combining each SAC aliquot 

with a unique ssDNA solution. The solutions were vortexed gently, briefly spun down, and 

left to react in the dark @ RT overnight. The reactions were quenched by placing @ 4°C. 

Each SAC-DNA conjugate was purified by FPLC using a Superdex75 Increase column 

(isocratic in PBS, 0.5 mL/min, 0.5 mL fractions, 75 minutes). Fractions containing pure SAC-

DNA were pooled and concentrated using Amicon Ultra-4 Centrifugal filters (30k MWCO): 

3900 RPM, 30 minutes @ 4°C. The concentrated SAC-DNA proteins were quantified 

using a Nanodrop2000 spectrophotometer in the ssDNA nucleic acid mode and stored at 
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4 °C until needed. The exctinction coefficients for the ssDNA strands were calulated using 

the IDT oligo analyzer (https://www.idtdna.com/calc/analyzer). 

5.9.6 DESL set biotin binding capacity validation protocol 

Buffers used: 

Wash buffer: PBS + 0.05% Tween20 (PBST) 

Blocking Buffer: PBS + 1% BSA 

*Wash steps used 50 μL/well 

*Incubation steps used 30 μL/well 

**After loading the Biotin* probe change pipette tips every time that you aspirate or add 

solution to a well to prevent cross contamination** 

A prefabricated PDMS template was aligned onto the DNA barcode and the 

microchip slide was taped into a 10 cm petri dish. The wells were washed with PBST before 

loading blocking buffer and placing the platform into a 37 °C incubator for one hour. A 

cocktail containing 50 nM of each SAC-DNA in PBS was prepared and added to the pre-

blocked wells. The SAC-DNA conjugates were allowed to hybridize to the DNA barcode 

at 37 °C for one hour before washing the wells with PBST (3x). Each well was loaded with 

50 nM, 100 nM, 150 nM, 200 nM, 300 nM, or 400 nM Biotin* in PBS (Figure 5.8), and 

the platform was left to shake covered at RT for one hour. The wells were washed with 

PBST (3x) before peeling off the PDMS slab and dipping the barcode into PBS, (1:1) 
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PBS/MQ H2O, MQ H2O (2x). The barcode was then spun dry and read on the Genepix 

(532 nM, PMT 450, Power 15%).  

5.9.7 Expressing and purifying WT KRas protein 

The KRas protein was expressed and purified using a modification of the procedure 

reported by Kuriyan.28 A starter culture of 100 mL of autoclaved LB media was inoculated 

with 100 μL of 100 mg/mL of ampicillin (final concentration 100 μg/mL) followed by a 

scraping of a 25% (v/v) glycerol stock containing transformed E. coli cells. The starter 

culture was left in an incubator at 37.0 °C, 250 RPM overnight before adding 10.0 mL 

starter culture aliquots to six 2800 mL Fernbach-Style Culture Flasks containing 1.00 L 

autoclaved LB media with 1000 μL of 100 mg/mL of ampicillin (final concentration 100 

μg/mL). The flasks were left to culture at 37.0 °C, 250 RPM until A680 = 0.500-0.600 and 

induction was triggered with 1000 μL of a 250 mM 1,6-IPTG solution (final concentration 

250 μM). The cells were then left to express overnight at 18.0 °C, 250 RPM before being 

spun down, resuspended in Buffer A (20 mM Tris, 500 mM NaCl, 20 mM imidazole, 5 

mM MgCl2, pH=8.0), flash frozen in N2(l), and stored at -80.0 °C until needed. After 

thawing and douncing, the cells were lysed using a cell disruptor, the cell wall lysate spun 

down at 8000 RPM, 4 °C for 20 minutes, sterile filtered, and purified using FPLC with a 

Ni-NTA superflow cartridge and a gradient of Buffer A to Buffer B (20 mM Tris, 300 mM 

NaCl, 250 mM imidazole, 5 mM MgCl2, pH=8.0). Fractions containing pure KRas were 

pooled and dialyzed against Tris buffered saline (TBS) (25 mM Tris, 150 mM NaCl, 10 

mM MgCl2, pH=7.5) overnight. The resulting solution was concentrated using Amicon 
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Ultra-15 centrifugal filters (10k MWCO), quantified,2 separated into aliquots, flash frozen 

in N2(l), and stored at -80.0 °C until needed.  

5.9.8 In situ library click screen combined preclear/anti-screen 

The in-situ click dual SynEp library screen followed a procedure similar to the one 

outlined in Reference 1 from the main text using 450 mg of Pra-capped one-bead-one-

compound (OBOC) library. Blocking was performed overnight at 4 °C with blocking 

buffer (1% BSA and 0.1% Tween20 in TBS). After washing with blocking buffer (3 x 3 

minutes) incubation with 25 μM of each scrambled SynEp in binding buffer (0.1% BSA 

and 0.1% Tween20 in TBS) occurred overnight at 4 °C. The library was washed with TBS 

(3 x 1 minute) then stripped with 7.5 M Gua•HCl (pH=2.0) at RT for one hour to remove 

any non-covalently bound scrambled SynEps. Ten rinses with TBS preceded another 

incubation with blocking buffer at RT for one hour. After five quick rinses of the library 

with blocking buffer the library was incubated with a cocktail of a (10,000:1) dilution of 

the mouse anti-biotin-alkaline phosphatase conjugated ab, (1,000:1) dilution of the rabbit 

anti-Ras ab, and a (10,000:1) dilution of the goat anti-rabbit-alkaline phosphatase ab in 

binding buffer to perform the preclear and anti-screen in one assay. Washes (5 x 3 minutes) 

with a high salt buffer (25 mM Tris•HCl, 10 mM MgCl2, 700 mM NaCl, pH=7.4), and a 

low salt buffer (5 x 3 minutes) (25 mM Tris•HCl, pH=7.4). The developing buffer was 

prepared with 66 μL of BCIP (50 mg/mL in 70% DMF) in 10mL of developing buffer (100 

mM Tris•HCl, 150 mM NaCl, 1 mM MgCl2) and incubated with the library beads in a 

20cm petri dish for ten minutes before adding 66 μL of NBT (50 mg/mL in 70% DMF) and 

incubating for an additional fourteen minutes. The beads were then washed 5x with TBS, 
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and stored in 0.1 M HCl(aq) in a 20 cm petri dish. Any beads that turned purple during the 

combined preclear/anti-clear were promiscuous binders and consequently were picked out 

using a 10-μL micropipette and discarded. After removing all of the sticky beads the 

remaining beads were washed with 7.5 M Guan•HCl (pH=2.0) for 30 minutes, rinsed with 

MQ H2O (10x), and incubated in NMP overnight to remove any trace purple coloring. Final 

rinses with MQ H2O (3x), TBS (7x) preceded an overnight incubation at 4 °C with blocking 

buffer. 

5.9.9 Library click-screen product screen 

The pre-blocked library was washed with blocking buffer (3 x 5 minutes) before 

loading 25 μM of each SynEp in binding buffer and incubating at RT overnight. After 

rinsing with TBS (3x) the library was incubated with 7.5 M Guan•HCl (pH=2.0) for one 

hour at RT before rinsing with TBS (10x). The library underwent an additional 1 hour 

incubation with blocking buffer at RT before rinsing with blocking buffer (5x), and 

incubating with a (10,000:1) dilution of the mouse anti-biotin-alkaline phosphatase 

conjugated ab in binding buffer for one hour at RT. Development of the library followed 

the same procedure as the preclear/anti-screen, and the darkest beads were set aside for 

Edman degradation sequencing. The remaining ~50 light purple beads from the product 

screen were prepped following the same procedure after the preclear/anti-screen and 

screened again, using appropriately scaled amounts of reagents, against 25 μM of the full-

length KRas protein. After developing additional beads were picked for a total of seven 

dark beads from the product/target screens of which five beads yielded readable sequences 

by Edman degradation sequencing. 
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5.9.10 Peptide preparation and purification 

All cyclic peptides and epitopes were prepared following the procedures outlined 

in Reference 1. The peptides and epitopes were isolated using the following procedure. The 

resin was rinsed with DCM (5x) and dried under vacuum.  A 20 mL scintillation vial was 

charged with a stir-bar, resin, and cleavage solution (95% TFA, 2.5% TESH, 2.5% H2O) 

and allowed to stir at room temperature for 2-2.5 hours.  The solution was then filtered into 

40mL of cold diethyl ether, vortexed for 10 seconds, and stored at 4 °C overnight.  The 

precipitated protein was centrifuged into a pellet at 4500 RPM for 10-15 minutes prior to 

decantation of the supernatant.  The crude peptides were dissolved in either DMSO or (1:1) 

MeCN/H2O w/0.1% TFA before HPLC purification, and lyophilization of desired fractions. 

The resulting lyophilized powder was dissolved in DMSO, quantified, and stored at 4 °C 

when not in use. For characterizing PCC ligands and epitopes, expected masses were 

calculated using the mass calculator at the following (Figure 5.10, 5.11, 5.12, 5.13, and 

5.14): http://www.lfd.uci.edu/~gohlke/molmass/?q=C152H224N32O38S2Na. 

5.9.11 Measurement of PCC ligand KRas EC50 with the barcode rapid assay platform  

Buffers used: 

Wash buffer: PBS + 0.05% Tween20 (PBST) 

Blocking Buffer: PBS + 1% BSA 

Protein Incubation Buffer: Tris-buffered saline (TBS) + 0.05% Tween20 (TBST) 

1° ab buffer: PBS + 5% BSA 
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2° ab buffer: PBS + 1% BSA 

*Wash steps used 50 μL/well 

*Incubation steps used 30 μL/well 

**The plate must be covered during incubation steps to protect the fluorescent blank** 

**After loading the KRas protein change tips every time that solution is aspirated or 

added to a well to prevent cross-contamination** 

A pre-fabricated PDMS template was aligned onto the DNA barcode microchip, 

and the microchip was taped into a 10 cm petri dish. The wells on the platform were wet 

with PBST before filling with blocking buffer and placing into a 37 °C incubator for 1hr. 

Concurrently, 40 μL 1% BSA in PBS solutions containing 750 nM of a SAC-DNA and 

3.75 μM of one biotinylated PCC ligand or biotin-A20-Cy3 blank were prepared for each 

member of the DESL library. The biotinylated ligands were allowed to complex with the 

SAC protein for one hour before pooling the SAC-DNA-ligand solutions (final [SAC-

DNA-ligand conjugates] = 50 nM). The blocking buffer was aspirated and each well was 

loaded with the SAC-DNA-ligand conjugates cocktail for hybridization with the DNA 

barcode at 37 °C for one hour. The wells were washed with PBST (3x) before loading 

serially diluted solutions of KRas protein in protein buffer (0 to 400 μM). After shaking at 

RT for one hour, the wells were rinsed with PBST (5x), making sure to pipet up/down with 

the first addition of PBST. A (100:1) dilution of CST rabbit anti-Ras Ab (#39655) in 1° ab 

buffer was added to each well before shaking at RT for one hour. After rinsing the wells 

with PBST (3x), the wells were loaded with a (200:1) dilution of Abcam goat anti-rabbit-
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Alexafluor 647 linked ab (ab150079) in 2° ab buffer before shaking at RT for one hour. A 

final rinse of the wells with PBST (3x) proceeded peeling off the PDMS slab from the 

barcode microchip and dipping the barcode into the following solutions: PBS, (1:1) PBS: 

MQ H2O, MQ H2O (2x). After being spun dry, the barcode was read on the Genepix (635 

nM, PMT 600, PWR 40%; 532 nM, PMT 450, PWR 15%). Data was extracted using 10 

data blocks/barcode lane, double background corrected using the ab only well fluorescence 

and dummy ligand fluorescence in each well, and graphed in Graphpad (4-parameter mode 

with the Hill coefficient set=1) (Figure 5.3 and 5.18). The peeled off PDMS slab was rinsed 

under MQ H2O and stored in MQ H2O until further use. 

5.9.12 Measurement of PCC ligand KRas EC50 using the multi-well ELISA technology 

Buffers used: 

- Blocking Buffer: TBS + 5% milk + 0.05% Tween20 

- Antibody (ab) Buffer: TBS, 5% BSA, 0.05% Tween20 

- Binding Buffer:  TBS, 0.1% BSA, 0.05% Tween20  

*All steps were completed at room temperature 

*All wash steps used 200 μL solution/well 

*All incubations used 100 μL solution/well except for the 5% milk blocking step, which used 

200 μL solution/well 

A 96-well Pierce Neutravidin Plate was washed with binding buffer (3 x 5 minutes 

@ RT) before loading plate with a 1μM solution of either blank (biotin-PEG5-NHAc) or 

biotinylated PCC ligand. The plate incubated for two hours before washing with binding 
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buffer (3 x 5 minutes). Blocking buffer was added to each well and the plate blocked for 

one hour before undergoing washing with binding buffer (3 x 5 minutes). Each well was 

loaded with either binding buffer or KRas solution (0300μM), and the plate was 

incubated for 30 minutes. Plate washing with binding buffer (3 x 5 minutes) preceded 

incubating the plate with a (1000:1) dilution of 1° antibody (ab) rabbit anti-Ras (CST #3965) 

in ab buffer for thirty minutes. The plate was washed with binding buffer (3 x 5 minutes), 

loaded with a (2000:1) dilution of 2° ab goat anti-rabbit, HRP-linked ab (CST #7074) in 

ab buffer, and incubated for an additional thirty minutes. The plate was rinsed with binding 

buffer (3 x 5 minutes), TBS (1 x 5 minutes), loaded with a (1:1) mixture of TMB Peroxidase 

Solution and TMB Peroxidase Solution B, and developed with occasional agitation for 8-

12 minutes. After quenching the enzymatic reaction with 1M H2SO4(aq) (100μL) the plate 

was read within ten minutes. The data was double background corrected using the ab only 

absorbance and dummy ligand absorbance, plotted using Prism GraphPad 7 (4-parameter 

mode with the Hill coefficient set=1), and an EC50 value was calculated (Figure 5.19). 
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