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Abstract

La classificazione dei materiali sulla base delle fasi topologiche della materia

porta allo studio di particolari fibrati vettoriali sul d-toro con alcune strut-

ture aggiuntive. Solitamente, tale classificazione si fonda sulla nozione di

isomorfismo tra fibrati vettoriali; tuttavia, quando il sistema soddisfa alcune

assunzioni e ha dimensione abbastanza elevata, alcuni autori ritengono in-

vece sufficiente utilizzare come relazione d′equivalenza quella meno fine di

isomorfismo stabile. Scopo di questa tesi è fissare le condizioni per le quali

la relazione di isomorfismo stabile può sostituire quella di isomorfismo senza

generare inesattezze. Ciò nei particolari casi in cui il sistema fisico quantis-

tico studiato non ha simmetrie oppure è dotato della simmetria discreta di

inversione temporale.
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Introduction

The dynamics of a quantum mechanical system has a mathematical for-

mulation in terms of the Hamiltonian, that is, a self-adjoint element of the

C∗-algebra A of all observable quantities. The possibility of continuously

deforming Hamiltonians of different systems into each other leads to the

classification of materials according to topological phases. Considering the

spectral projection of the Hamiltonian at the Fermi level, this classification

can be derived from the study of certain vector bundles over the d-torus,

where d is the dimension of the material, with eventual extra structure en-

coding possible symmetries. Typically, it is based on the homotopy classes

of these.

Moving from [EM, Paragraph 4.7], we argue in this thesis that a better

behaved theory can be developed using the equivalence relation of stable iso-

morphism instead of that of isomorphism, which actually turns out to be a

refinement of the former whose significance is not (very probably) physically

relevant.

In Chapter 1, we are going to define some basic mathematical tools such

as CW-complexes, bundles and vector bundles, we will recall their principal

pro-perties and then prove some useful results. More sophisticated construc-

tions will be described in Chapter 4 in order to take into account the presence

of symmetries. Namely, we will describe how the action of the group Z2 on

the base space of the vector bundle can endow it with specific extra struc-

tures called “Real” and “Quaternionic” vector bundles in [DG1, DG2].

The physical motivation is the content of Chapter 3, which also includes a
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description of the mathematical model of quantum mechanical systems and

an introduction to topological phases, with a particular attention to insula-

tors.

In Chapter 2 and Chapter 5, we will ilustrate the conditions under which

stable isomorphism and isomorphism of vector bundles are equivalent, so

that one can use the latter for the purpose of the classification of materials

with the assurance of not losing information about the physical situation.

In particular, in Chapter 2 we will outline the argument for the basic case

of vector bundles without any additional structure, referring to [HUS], and

we will generalize the same argument to the case of quantum systems with

time-reversal symmetry in Chapter 5. As we will point out in the conclusion,

the conditions on the dimension of the systems under which this argument

holds is either not modified (in the case of the even time-reversal symmetry

T +) or slighlty modified (in the case of odd time-reversal symmetry T -), as

already underlined in [EM].



Chapter 1

The background of the

non-equivariant problem

The properties of materials on which the classification of quantum me-

chanical systems is based are encoded by a complex vector bundle over the

d-torus Td. A wide range of results can be applied in order to simplify this

study when Td is described as a CW-complex. This chapter contains an

introduction of the main tools, namely, CW-complexes, bundles and vector

bundles, which will be necesary to develop the topic of this thesis. More

sophisticated tools will be instead presented in the following chapters.

References for Section 1.1 can be found in [HAT, MA1, HUS], whereas

Sections 1.2 and 1.3 refer mainly to [HUS].

1.1 CW-complexes

Let Dn be the unit disc {x ∈ Rn| |x| 6 1 } with boundary Sn−1.

Definition 1.1. A CW-complex X is a topological Hausdorff space X

which is a union of an increasing sequence of subspaces Xn constructed in-

ductively in the following way:

1. Start with a discrete set X0 whose elements are called 0-cells of X.

5



1.1 CW-complexes 6

2. Let Snα, Dn
α be copies of Sn and Dn. Inductively, form the n-skeleton Xn

from Xn−1 by attaching n-disks via attaching maps ϕα : Sn−1α → Xn−1.

Thus Xn is quotient space Xn−1 ∪ϕα Dn
α = (Xn−1∐

αDn
α)/{ϕα(x) ∼

x for x ∈ ∂Dn
α}. This construction is also described by the following

pushout diagram (see Definition 1.4):

∐
α Sn−1α Xn−1

∐
αDn

α Xn−1 ∪ϕα Dn
α = Xn

ϕα

i

3. Finally, set X =
⋃
nX

n with the weak topology, that is, a set A ⊂ X

is open (or closed) iff A ∩Xn is open (or closed) in Xn for each n.

The quotient of Dn
α in X under the quotient map is denoted by σnα and it

is called an n-cell. So, each cell σnα is associated to its characteristic map Φα,

that is defined as the (continuous) composition Dn
α ↪→ Xn−1∐

αDn
α → Xn ↪→

X. The subspace Xn is called the n-skeleton of X. A CW-complex is said

to be finite-dimensional provided X = Xn for some n ∈ N and the smallest

such n is the dimension of X. One can then also describe the topology on X

by saying that a set A ⊂ X is open (or closed) iff Φ−1α (A) is open (or closed)

in Dn
α for each characteristic map Φα.

The definition of the characteristic map facilitates the description of two

important properties of CW-complexes, namely:

• The restiction Φα(int(Dn
α)) of Φα to the interior of Dn

α is a homeomor-

phism onto its image, that is, a cell σnα ⊂ X; the interiors of these cells

are all disjoint and their union is X.

• For each cell σnα, the image Φα(∂Dn
α) of the boundary of Dn

α is contained

in the union of a finite number of cells of dimension less than n.

Definition 1.2. More generally, let X be a CW-complex and let A ⊆ X

be a closed subspace such that X − A is a disjoint union of open cells with

attaching maps. Then (X,A) is called relative CW-complex. The relative
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n-skeleton is indicated by (X,A)n and one says that (X,A) has dimension n

if X = Xn for n ∈ N.

Definition 1.3. A subcomplex of a CW-complex X is a subspace A ⊂ X

which is the union of cells of X and such that the closure of each cell in A is

contained in A. This also means that A is itself a CW-complex. Its topology

is the one induced by X. The pair (X,A) can also be viewed as a relative

CW-complex.

Remark 1. The mysterious letters “CW” refer to the following two properties

satisfied by CW-complexes:

1. Closure-finiteness : the closure of each cell meets only finitely many

other cells.

2. Weak topology : a set is closed if and only if it meets the closure of each

cell in a closed set.

Given two CW-complexes X and Y , the product X × Y has a natural

structure of CW-complex with cells σnα × σmβ , where σnα ranges over the cells

of X and σmβ ranges over the cells of Y . This construction is well-defined

since Dn × Dm ∼= Dn+m.

Remark 2. The CW-complex natural topology on X × Y is in general finer

than the product topology. However, this difference is small or even non-

existent in most cases of interest. For example, [HAT, Theorem A.6] states

that the two topologies coincide if either X or Y is compact or if both X

and Y have countably many cells.

Example 1.1. Sphere Sn.

• The sphere Sn has the structure of a CW-complex with just two cells,

σ0 and σn, where σ0 is a point x0 and the n-cell is attached by the

constant map ϕ : Sn−1 → σ0, x 7→ x0.

• Alternatively, one can build S0,S1,S2, ... inductively. The feature of this

construction is that each subsphere Sk for k < n is now a subcomplex
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of Sn, by regarding each Sk as being obtained inductively from the

equatorial Sk−1 by attaching two k-cells, the components of Sk − Sk−1.

Figure 1.1: Inductive construction of the spheres ...,S1,S2,S3, .... (Image

from [USM, p.108]).

Example 1.2. The 2-torus T2 = S1 × S1 has a CW structure with one 0-

cell σ0, two 1-cells σ1
a and σ1

b and one 2-cell σ2, as illustrated in the following

picture:

Figure 1.2: CW-complex decomposition of the 2-torus [HAT, p.5]

The d-torus Td is defined as the product of d copies of the unit circle:

Td = S1 × · · · × S1︸ ︷︷ ︸
d

and it has, consequently, a well defined CW-complex de-

composition. In particular, S1 being compact, the product topology on Td

coincides with the natural topology defined by the CW-complex decomposi-

tion by Remark 2.
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Before proving two basic results about CW-complexes, a reminder about

the topological concept of n-connectedness is needed:

Definition 1.4. A topological space X is said to be n-connected for n ∈ N
if πi(X) = 0 for every i 6 n, where πi(X) denotes the i-th homotopy

group and 0 the trivial group. Thus 0-connected means path-connected

and 1-connected means simply-connected. Since n-connected spaces are 0-

connected, the choice of a basepoint x0 is not significant when X is a space

that is n-connected for n > 0.

Definition 1.5. In category theory, given two morphism f : Z → X and

g : Z → Y , their pushout consists of an object P and two morphisms

i1 : X → P and i2 : Y → P which make the diagram

Z X

Y P

f

g i1

i2

commute and such that the set (P, i1, i2) is universal in the sense that, for

any other pushout (Q, j1, j2) of f and g, there exists a unique u : P → Q

also making the diagram commute:

Z X

Y P

Q

g

f

i1
j1

i2

j2

!u

Theorem 1.1. Let X be a CW-complex and let f : Xn → Y be a map

defined on the n-skeleton of X. Then f extends to a map g : Xn+1 → Y if

and only if f ◦ ϕα is nullhomotopic for all (n + 1)-cells σn+1
α with attaching

map ϕα : Sn → Xn.

Proof. “⇒” Assume there exists a map g : Xn+1 → Y such that the restric-

tion g|Xn is f . Then we have the following commutative diagram:
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∐
α Snα Xn

∐
αDn+1

α Xn+1

Y

i

ϕα

v
f

u

g

That is, f ◦ ϕα = g ◦ u ◦ i. In particular, f ◦ ϕα is nullhomotopic for

each α since it factors through the contractible space Dn+1.

“⇐” Assume now that f ◦ϕα : Snα → Y is nullhomotopic for all ϕα. Then it

can be extended to a map fα : Dn+1
α → Y , since if Hα : Snα× [0, 1]→ X

is a homotopy between f ◦ϕα and the constant map in z0 ∈ Sn, then for

example the map fα(z) =

Hα( z
|z| , 1− |z|), if z 6= 0

z0, if z = 0
is a continuous

extension of f ◦ ϕα. Therefore, it follows from the following diagram

that f ◦ ϕα = fα ◦ i:

Snα Y

Dn+1
α

f◦ϕα

i
fα

Writing down the pushout diagram∐
α Snα Xn

∐
αDn+1

α Xn+1

Y

i

ϕα

v
f

u

∐
α fα

g

we can conclude by the universal property of the pushout that there

exists a unique g : Xn+1 → Y such that the diagram commutes. In

particular, g is an extension of f .
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This theorem applies as well to relative CW-complexes (X,A). As a con-

sequence, it is not difficult to deduce the following:

Theorem 1.2. [HUS, Chaper 1, Theorem 1.2] Let (X,A) be a relative CW-

complex and let Y be a space that is n-connected in each dimension for which

X has cells. Then each map A→ Y extends to a map X → Y .

1.2 Bundles

Definition 1.6. A bundle ξ is a triple (E, p,X), where E and X are topo-

logical spaces and p : E → X is a continuous map. The space E is called the

total space, X the base space and p the projection of the bundle. For each

x ∈ X, the space p−1(x) is called the fiber of the bundle to x ∈ X. In case

every fiber is homeomorphic to a space F , then F is said to be the fiber of

the bundle ξ. In the following, the notation (Eξ, p,Xξ) to indicate the bundle

ξ = (E, p,X) will also be used.

Definition 1.7. A global section, or simply section, of a bundle is a

continuous map s : X → E such that p ◦ s =idX . This is equivalent to the

requirement: s(x) ∈ p−1(x) for every x ∈ X. A local section is defined

similarly but with domain restricted to an open subset U of X.

Example 1.3. The product bundle over B with fiber F is (X×F, pr1, X),

where pr1 is the projection over the first factor.

Proposition 1.3. Every section s of a product bundle θ has the form s(x) =

(x, f(x)) for a map f : X → F uniquely defined by s.

Proof. Let s : X → X ×F be a map. Then s(x) = (s̃(x), f(x)) for maps s̃, f

uniquely defined by s. Since for a product bundle (p ◦ s)(x) = s̃(x), then s is

a section of θ if and only if s̃(x) = x if and only if s(x) = (x, f(x)) for each

x ∈ X.

Given two bundles ξ1 = (E1, p1, X1) and ξ2 = (E2, p2, X2), it is possible to

define a “fiber preserving” map, as explained in the following definition:
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Definition 1.8. A bundle morphism (u, f) : ξ1 → ξ2 is a pair of conti-

nuous maps u : E1 → E2 and f : X1 → X2 such that p1 ◦ u = f ◦ p2. A

X-morphism between two bundles over the same base space X is then a

continuous map u : E1 → E2 such that p1 = p2 ◦ u.

E1 E2 E1 E2

X1 X2 X

u

p1 p2

u

p1
p2

f

Remark 3. One can define a category Bun whose objects are all bundles

ξ and whose morphisms are all bundle morphisms. Consequently, we say

that (u, f) is a bundle isomorphism provided there exists a morphism

(ũ, f̃) : ξ2 → ξ1 with f̃ ◦ f =idB1 , f ◦ f̃ =idB2 , ũ ◦ u =idE1 and u ◦ ũ =idE2 .

Example 1.4. A bundle ξ = (E, p,X) is said to be trivial with fiber F

provided ξ is X-isomorphic to the product bundle (X × F, pr1, X).

Remark 4. Proposition 1.3 also holds for trivial bundles [HUS].

Similar definitions are used to descibe the local properties of bundles:

Definition 1.9. Two bundles ξ1 and ξ2 over X are locally isomorphic

provided for each x ∈ X there exists an open neighborhood U of x such that

ξ1|U and ξ2|U are U -isomorphic. In particular, a bundle ξ over X is locally

trivial with fibre F provided ξ is locally isomorphic with the product bundle

(X × F, pr1, X).

A recurrent and often convenient way of building new bundles consists in

pulling back along a map on the base space of a given bundle:

Definition 1.10. Let ξ = (E, p,X) be a bundle with fibre F and let f :

X1 → X be a continuous map. The induced bundle or pullback bundle

of ξ under f , denoted f ∗(ξ), has as base space the space X1, as total space

E1 = {(x1, y) ∈ X1 × E | f(x1) = p(y)} and as projection the map (x1, y)
p17→

b1. The canonical morphism of an induced bundle is defined as the pair

(fξ, f) : f ∗(ξ) → ξ, where fξ : E1 → E is the projection onto the second
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factor fξ(x1, y) = y. The induced bundle has the same fibre F of the original

bundle ξ.

Proposition 1.4. Let ξ = (E, p,X) be a bundle, let f : X1 → X be a

continuous map and let (fξ, f) : f ∗(ξ)→ ξ be the canonical morphism of the

induced bundle.

1. If s is a section of ξ, then σ : X1 → E1 defined by σ(x1) = (x1, s(f(x1))

is a section of f ∗(ξ) with fξ ◦ σ = s ◦ f .

2. If f is a quotient map1 and if σ is a section of f ∗(ξ) such that fξ ◦ σ is

constant on all sets f−1(x) for x ∈ X, then there is a unique section s

of ξ such that s ◦ f = fξ ◦ σ.

Proof. 1. Using the definition of σ: p1(σ(x1)) = p1(x1, s(f(x1))) = x1.

So p1 ◦ σ =idX1 , that is, σ is a section of f ∗(ξ).

E1 E

X1 X

fξ

p1 p

f

σ s

Moreover, fξ(σ(x1)) = fξ(x1, s(f(x1))) = s(f(x1)).

2. Assume now that f is an identification and σ is a section as in the

hypothesis. Then we have the following diagram:

E1 E

X1 X

fξ

p1 p

f

(su)

σ s

Namely, one sets s(f(x1)) = (fξ◦σ)(x1) for every x1 ∈ X1. This is well-

defined because f is surjective and fξ ◦σ is constant on all sets f−1(x).

Moreover, s is continuous: given an open set A ⊂ E, (fξ ◦σ)−1(A) = A′

1f : X → Y between topological spaces (X, τX) and (Y, τY ) is a quotient map if it is

surjective and if a subset U of Y is open if and only if f−1(U) is open in X.
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is open in B1 because fξ ◦ σ is continuous, being the composition of

continuous functions; therefore, s−1(A) = f−1 ◦ (fξ ◦ σ)−1(A) = f(A′)

is open in X since f is an identification map.

Hence, s : X → E is a well-defined continuous function. It is also a

section of ξ since

(p ◦ s ◦ f)(x1) = (p ◦ fξ ◦ σ)(x1) = f((p1 ◦ σ)(x1)) = f(x1)

implies p ◦ s ◦ f = f , that is, p ◦ s =idX .

The following theorem describes a generalization of Theorem 1.1 to sec-

tions of locally trivial bundles (see Definition 1.9). This prolongation the-

orem is the fundamental step in the classification theory of vector bundles

over CW-complexes, as it will be shown in Chapter 2 and 5.

Theorem 1.5. Let ξ = (E, p,X) be a locally trivial bundle with fibre F ,

where (X,A) is a relative CW-complex. Suppose that the space F is (d− 1)-

connected, where d = dimX. Then all sections s of ξ|A prolong to a section

s∗ of ξ.

Proof. In order to prove this theorem, we proceed by induction on the dimen-

sion d of X. If d = 0, then necessarily A = X and there is nothing to show.

Let then X be of dimension d > 0 and assume the statement true for all the

spaces of lower dimension. This applies in particular to the (d− 1)-skeleton

of X. Thus there exists by inductive hyopothesis a section s′ of ξ|Xd−1 with

s′|A = s. Let C be a d-cell with characteristic map ΦC : Id → X, where the

unit d-cube Id replaces the d-disk Dd in view of the isomorphism Id ∼= Dd,

and consider the induced bundle Φ∗C(ξ) with base space Id. This inherits the

local triviality from ξ (see [HUS, §2.6]). Moreover, since Id is compact, it

is possible to dissect it into equal d-cubes K of edge-lenght 1/k such that

Φ∗C(ξ)|K is trivial.

By Proposition 1.4 (1), the section s′ defines a section σ′ of Φ∗C(ξ)|∂Id
which can be assumed to be defined on the (d − 1)-skeleton of Id dissected

into equal cubes K of edge-lenght 1/k, that is, σ′ is defined on Kd−1 for each

K. Since the induced bundle over each d-cube is trivial, σ′ is given by a
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map Kd−1 → F by Proposition 1.3. Applying the inductive hypothesis to

the relative CW-complex (K,Kd−1), σ′ can be extended to a section K → F

because the fibre F is (d − 1)-connected. Since this construction can be re-

peated fot all the d-cubes K, the prolongation over each of these leads to the

definition of a section σ of ϕ∗C(ξ).

Using now Proposition 1.4 (2) together with the natural morphism ϕ∗C(ξ)→
ξ, we get a section sC of ξ|C such that sC |C∩Xd−1 = s′|C∩Xd−1 . Finally, we

define the desired section s∗ of ξ that satisfies s∗|Xd−1 = s′ and s∗|C = sC .

The continuity of s∗ follows from the weak topology on X.

Suppose now that dimX = ∞, which implies that F is connected for every

d < ∞. In this case, given a section s of ξ|A and setting s−1 = s, we first

construct inductively sections sd of ξ|Xd such that sd|Xd−1 = sd−1. Then, we

define a setion s∗ of ξ by the requirement that s∗|Xd = sd.

1.3 Vector bundles

By adding particular requirements on the fibres of general bundles, it

is possible to define different subcategories. A remarkable example is that

of vector bundles, which are required to have an additional vector space

structure on each fibre. More precisely:

Definition 1.11. Let F denote the field of real numbers R, complex numbers

C or quaternions H. A vector bundle ξ over F is a bundle (E, p,X) together

with the structure of a finite-dimensional vector space over F for each fibre

p−1(x) =: Ex and such that the following local triviality condition is satisfied:

for each point of X there exist a natural number k, an open neighborhood

U and a U -isomorphism φ : U × Fk → p−1(U) called local coordinate chart

of ξ such that:

• (p ◦ φ)(x, v) = x for all x ∈ U and for all v ∈ F

• the restriction {x} × Fk φ→ p−1(x) is a vector space isomorphism for

each x ∈ U , that is, the map v → φ(x, v) is a linear isomorphism
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between Fk and p−1(x).

Let kx denote the dimension of the fibre p−1(x) for x ∈ X. Because of the

local trivializations, kx is constant on each connected component of X. If

kx is equal to a constant k on all X, then k is called the rank of the vector

bundle and the writing ξk will be used to indicate that ξ has constant rank k.

Vector bundles of rank 1 are called line bundles. Depending on F = R, C or

H, one talks about real, complex or quaternionic vector bundles, respectively.

Definition 1.12. Let ξ = (E, p,X) be a vector bundle of rank k and let

U ⊆ X be an open subset. A local frame of E over U is an ordered k-

tuple (s1, ..., sk) of local sections over U such that (s1(x), ..., sk(x)) is a basis

for the fibre Ex for each x ∈ U . It is called global frame if U = X.

The definitions of sections, morphisms, isomorphisms and induced bundles

previously introduced for general bundles apply as well to vector bundles.

But in this case they carry also additional properties, namely:

1. the projection p is an open map;

2. the sections of ξ form a module over the ring C(X,F) of continuous

F-valued functions on the base space;

3. if (u, f) is a vector bundle morphism between ξ1 = (E1, p1, X1) and

ξ2 = (E2, p2, X2), then the equivalence p2 ◦ u = f ◦ p1 holds and the

restriction u|p−1
1 (x) : p−11 (x)→ p−12 (f(x)) must be linear for each x ∈ X.

In particular, ifX1 = X2, then p2◦u = p1 and u|p−1
1 (x) : p−11 (x)→ p−12 (x)

is linear for each x ∈ X;

4. given a vector bundle ξ = (E, p,X) and a map f : X1 → X, the

induced bundle f ∗(ξ) = (E1, p1, X1) admits a unique vector bundle

structure with (fξ, f) : f ∗(ξ)→ f being a morphism of vector bundles.

Moreover, fξ : p−11 (x1) → p−1(x) is a vector space isomorphism for all

x1 ∈ X1.
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Proofs of these properties can be found, for example, in [HUS]. In particular,

property (2) implies that the set of sections of ξ cannot be empty since it

always contains the zero section, that is, the map s : X → E defined

by s(x) = 0 ∈ p−1(x) for each x ∈ X, where 0 denotes the null-vector of

Ex = p−1(x).

Example 1.5. The product vector bundle of rank k over F is θ =

(X × Fk, pr1, X), where pr1 is the projection on the first factor. The lo-

cal trivialization is realized setting U = X and φ =id. A vector bundle ξ is

said to be trivial if it is isomorphic to the product vector bundle θ.

Proposition 1.6. A vector bundle is trivial if and only if it admits a global

frame.

Proof. See for example [LEE, Corollary 10.20].

Example 1.6. Let ξ = (X×Fn, p,X) and η = (X×Fm, p,X) be two trivial

vector bundles. Then, a general vector bundle morphism ξ → η has the form

u(x, v) = (x, f(x, v)) for a map f : X×Fn → Fm linear in x (in analogy with

Proposition 1.3). Denoting by L(Fn,Fm) the space of linear transformations

Fn → Fm, one can also say that a map f : X ×Fn → Fm is continuous if and

only if x 7→ f(x, ·) as a function X → L(Fn,Fm) is continuous.

Remark 5. The category of vector bundles is denoted by VB. Its objects are

all vector bundles and its morphisms are all morphisms of vector bundles.

The composition is thus the composition of morphisms of vector bundles.

One can also define the subcategory VBX of vector bundles over a common

base space X. Given k ≥ 0, VBk denotes the full subcategory of vector

bundles of rank k, while VBk
X=VBX∩VBk.

Operations on vector spaces can usually be extended to vector bundles,

defining the same operations fiberwise. One particular example that will be

very useful in the following discussion is the Whitney sum:

Definition 1.13. The Whitney sum, or direct sum, of two vector bundles

ξ1 = (E1, p1, X) with fibre Fn and ξ2 = (E2, p2, X) with fibre Fm over a space

X is denoted by ξ1 ⊕ ξ2 = (E1 × E2, q,X) and it is defined fiberwise by
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• q−1(x) = p−11 (x)× p−12 (x)

• φ1⊕φ2 : U ×Fn+m → q−1(U) is a local chart of ξ1⊕ ξ2 if φ1 and φ2 are

local charts of the underlying bundles.

Consider now an X-morphism of vector bundles u : ξ → η, where ξ =

(Eξ, pξ, X) and η = (Eη, pη, X) with the notation intoduced in Definition

1.6. One can define three bundles:

• ker u, that is, the subbundle of ξ with total space {y ∈ Eξ |u(y) =

0 in η over pξ(y)},

• im u, that is, the subbundle of η with total space {u(y) ∈ Eη | y ∈ Eξ},

• coker u, that is, the quotient bundle of η with total space Eη/∼, where

∼ is the following equivalence relation: let y1, y2 ∈ Eη, then y1 ∼ y2 iff

pη(y2) = pη(y1) and y1 − y2 ∈ u(y) for some y ∈ Eξ.

The question whether these bundles are also vector bundles is not always

obvious, since it may happen that the property of local triviality is not sa-

tisfied. However, there is a case in which we can directly conclude with a

poitive answer, namely, when the morphism u is of constant rank.

Definition 1.14. Let u : ξ → η be a vector bundle X-morphism. Then u

is of constant rank k provided the linear map ux : p−1ξ (x) → p−1η (x) is of

rank2 k for each x ∈ X.

Theorem 1.7. Let u : ξn → ηm be an X-morphism of vector bundles of

constant rank k, where n = rank(ξ) and m = rank(η). Then keru, imu and

cokeru are vector bundles over X.

Proof. See [HUS, Chapter 3, Theorem 8.2].

Vector bundles are often given additional structures. For instance, they

can be equipped with a metric. This is always possible when the bundle is

defined over a paracompact space (e.g., on a CW-complex).

2The rank of a linear transformation f : V → W between finite dimensional vector

spaces V and W is defined as k = dim(V )− dim(ker f) = dim(im f).
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Definition 1.15. Let ξ be a vector bundle over X with fibre F . A metric

β on ξ is a function β : Eξ⊕ξ → F such that, for each x ∈ X, β|p−1(x)×p−1(x)

is an inner product on p−1(x).

Example 1.7. Let θk be the product bundle of rank k over X. Then

β(x, v, v′) = 〈v|v′〉 is a metric with 〈·|·〉 the euclidian inner product.

Theorem 1.8. Let 0 → ξ
u→ η

v→ ζ → 0 be a short exact sequence of

vector bundles over X, that is: u is a monomorphism, imu = ker v and v is

an epimorphism. Let β be a metric on η. Then there exists an isomorphism

w : ξ⊕ζ → η splitting the above exact sequence in the sense that the following

diagram is commutative:

η

0 ξ ζ 0

ξ ⊕ ζ

vu

i j

w ∼=

Here, i is the inclusion into the first factor and j is the projection onto the

second factor.

Proof. In order to prove this theorem, first of all we define two subsets Eξ′

and Eζ′ of Eµ by:

• Eξ′ := imu ⊂ Eµ;

• Eζ′ = {y′ ∈ Eµ : β(y, y′) = 0 for all y ∈ Eξ′ : pµ(y) = pµ(y′)} ⊂ Eµ;

thus, ζ ′ is a subbundle of µ consisting of vector spaces.

For each x ∈ X, let g : Eµ → Eξ′ be the projection of the fibre Eµ,x of µ onto

the fibre Eξ′,x of ξ′. This map is continuous, in fact, locally: let U ⊂ X be

an open neighborhood of x ∈ X and let e1, . . . , en be an orthonormal basis

of sections of U × F n, where F n is the fibre of ξ′. Suppose u : U × Fm →
U × F n is a X-monomorphism (Fm denotes the fibre of ξ) and β(x, y, y′) is

a metric on U × F n. Then g : U × Fm → U × F n is given by g(x, y) =
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(x,
∑

16n6m
β(x, y, u(ei))ei), which is continuous. Since g : µ → ξ′ is a X-

epimorphism, ker g is a vector bundle by Theorem 1.7. In particular, ζ ′ =

ker g is a vector bundle. Moreover, v|ζ′ : ζ ′ → ζ is an X-isomorphism since

it is an isomorphism on the fibres, and thus invertible.

Finally, we define an isomorphism w : ξ ⊕ ζ → µ setting:

• w|ξ equal to the isomorphism u : ξ → ξ′ ⊂ µ;

• w|ζ equal to the isomorphism (v|ζ′)−1 : ζ → ζ ′ ⊂ µ.



Chapter 2

Stability properties of vector

bundles

In order to classify vector bundles, one needs to find an appropriate equiva-

lence relation. As usual, this is given by isomorphism, that is, two vector

bundles are said to be in the same equivalence class if there exists an iso-

morphism between them. However, there exist cases under which a weaker

condition, namely, stable isomorphism, is sufficient, in the sense that in such

cases being stably isomorphic implies being isomorphic, too. In the first

section of this chapter we will point out some homotopy properties of vetor

bundles in order to use them to prove the main result about stable isomor-

phism in the second section. Both sections refer to [HUS].

2.1 Homotopy properties of vector bundles

By Definition 1.8, an X-isomorphism of vector bundles over a space X is

a morphism u : ξ1 → ξ2 such that there exists a morphism v : ξ2 → ξ1 with

v ◦ u =idξ1 and u ◦ v =idξ2 . The following theorem provides a criterion to

determine whether a X-morphism is an X-isomorphism.

Theorem 2.1. Let u : ξ1 → ξ2 be a X-morphism of vector bundles. Then

u is an X-isomorphism if and only if u|p−1
1 (x) : p−11 (x) → p−12 (x) is a vector

21
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space isomorphism for each x ∈ X.

Proof. ⇒ This is trivial, since if u is an isomorphism, that is, it admits

an inverse v, then the inverse of u|p−1
1 (x) : p−11 (x) → p−12 (x) is just the

restriction of v to the fiber p−12 (x), and this is an isomorphism of vector

spaces by the definition of morphisms of vector bundles (see p.16).

⇐ Let v : ξ2 → ξ1 be the map such that v|p−1
2 (x) is the inverse of the

restricted linear transformation u|p−1
1 (x) : p−11 (x) → p−12 (x). In order

to show that v is the inverse of u, it is sufficient to show that v is

continuous.

Let U be an arbitrary open subset of X and let φ1 and φ2 be local

coordinate charts of ξ1 and ξ2, respectively. It suffices to prove that v|U
is continuous. First, one can note that the composition φ−12 ◦ u ◦ φ1 :

U × Fn → U × Fm has the form (x, v) 7→ (x, fx(x, v)) by Example 1.6,

where x 7→ fx = f(x, ·) is a map U → L(Fn,Fm). Therefore, taking

the inverse: φ−11 ◦ u−1 ◦ φ2 has the form (x, v) 7→ (x, f−1x (x, v)), where

again x 7→ f−1x = f−1(x, ·) is a map U → L(Fm,Fn). Since these two

maps are continuous being the composition of continuous functions, the

restriction v : p−12 (U)→ p−11 (U) is also continuous by Example 1.6.

The next few theorems describe some homotopy properties of vector bun-

dles that will be necessary to understand and prove many results about the

stability of vector bundles that we will discuss in the next section.

Lemma 2.2. Let ξ be a vector bundle over X×I. Then there exists an open

covering {Uj}j∈J of X such that ξ|Uj×I is trivial.

Proof. For every (x, t) ∈ X × I there exist open neighborhoods Ux of x in X

and Ut of t in I such that ξ|Ux×Ut is trivial. Since I = [0, 1] is compact, we can

choose a finite a sequence 0 = t0 < t1 < ... < tn = 1 and open neighborhoods

Ui of x in X such that ξ|Ui×[ti−1,ti] is trivial for 1 6 i 6 n.

Define UJ =
⋂

16j6n
Ui. Now one can show that, given a vector bundle ξ over

X = X1∪X2, where X1 = A×[a, b] and X2 = A×[b, c], a 6 b 6 c, if ξ|X1 and
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ξ|X2 are trivial, then ξ is trivial [HUS, Chapter 3, Lemma 4.1]. Therefore,

applying this recursively, we can conclude that ξ|Uj×I is trivial. Repeting

this procedure for each x ∈ X, we get an open covering {Uj}j∈J of X, such

that ξ|Uj×I is trivial for all j ∈ J .

Theorem 2.3. Let r : X × I → X × I be defined by r(x, t) = (x, 1) and let

ξ = (E, p,X × I) be a vector bundle over X × I, with X paracompact. Then

there is a map u : E → E such that (u, r) : ξ → ξ is a morphism of vector

bundles and u is an isomorphism on each fibre.

Proof. See [HUS, Chapter 3, Theorem 4.3].

Corollary 2.4. With the notation in Theorem 2.3 there exists, after restric-

tion, an isomorphism (u, r) : ξ|X×{0} → ξ|X×{1}.

Proof. Set ξ1 = ξ|X×{0}, ξ2 = ξ|X×{1} and notice that r ≡ id on X × {0} ∼=
X × {1} ∼= X. The previous theorem guarantees the existence of a map

u : E → E such that (u, r) : ξ → ξ is a morphism of vector bundles and u

is an isomorphism on each fibre. Moreover, (u, r) : ξ|X×{0} → ξ|X×{1} is an

X-morphism and so, by Theorem 2.1 (u, r) : ξ1 → ξ2 is an isomorphism.

For the sake of completeness, we will state two other important applica-

tions of Theorem 2.3 in homotopy thoery. Proofs can be found in [HUS,

§3.4].

Theorem 2.5. Let f, g : X1 → X2 two homotopic maps, where X1 is a

paracompact space and let ξ be a vector bundle over X2. Then the induced

bundles f ∗(ξ) and g∗(ξ) are isomorphic.

Corollary 2.6. Every vector bundle over a contractible space is trivial.

2.2 Stability

Throughout this section, θk denotes the trivial bundle of rank k and X de-

notes an n-dimensional CW-complex. As before, F can be either R, C or H.
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Let c be dimRF. Moreover, the symbol dxe indicates the ceiling part of x,

that is dxe = min{l ∈ N | l ≥ x}.

Definition 2.1. Two vector bundles ξ and η overX are called stably equiv-

alent, short s-equivalent, provided there exists a natural number n such

that ξ ⊕ θn ∼= η ⊕ θn. Stable classes of vector bundles over X form a ring

over finite-dimensional spaces with the Whitney sum ⊕ inducing the addition

operation and the tensor product ⊗ the multiplication operation.

The aim of this section is to prove the following theorem:

Theorem 2.7. Let m = dn+2
c
− 1e. If ξk1 and ξk2 are two vector bundles of

rank k over X such that m ≤ k and ξ1 ⊕ θl and ξ2 ⊕ θl are isomorphic for

some l ∈ N, then ξ1 and ξ2 are isomorphic.

The proof of this theorem will be split into four steps. First of all, we will

mention a proposition whose content is of particular interest also indepen-

dently of the previous theorem, since it shows how it is possible to decompose

high-dimensional vector bundles in the Withney sum of a trivial bundle and

another bundle of lower dimension.

Proposition 2.8. If ξ is a vector bundle of rank k and d ≤ ck − 1, then ξ

is isomorphic to η ⊕ θ1 for some vector bundle η of rank k − 1.

Proof. Let ξ0 denote the subbundle of nonzero vectors, i.e., ξ0 = (E0, p,X0),

X0 = {x ∈ X | p−1(x) 6= 0}. Since 0 is not in E any more, the fibre of E0

is Fk \ {0}, and this is homotopy equivalent to the sphere Sck−1. From the

theory of homotopy groups, we know that πi(Sn) = 0 for each i 6 d − 1,

that is, Sck−1 is (ck − 2)-connected. This means in particular that Fk \ {0}
satisfies the condition in the hypothesis of Theorem 1.5: let m 6 d, then

m− 1 6 d− 1 6 ck− 2, so Fk \ {0} is (m− 1)-connected. Therefore, we have

a section s∗ of ξ0. Moreover, this can be seen as a nowhere vanishing section

of ξ.

I define now the X-morphism u : θ1 → ξ by u(b, a) = a s(b) for every

(b, a) ∈ Eθ1 = X×F. Since every section is a monomorphism, i.e., an injective
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X-morphism in the category VBX , u is a well-defined monomorphism too.

Set η = cokeru. This is a vector bundle by Theorem 1.7. Finally, X being

a CW-complex and so a paracompact space, it is possible to define a metric

on ξ and to apply Theorem 1.8. Hence, there exists an isomorphism between

ξ and θ1 ⊕ η.

Proceeding by induction, the previous proposition generalizes to the fol-

lowing corollary:

Corollary 2.9. Let m = dd+1
c
− 1e. Then each vector bundle ξk of rank k is

isomorphic to ηm ⊕ θk−m for some vector bundle η of rank m.

Proof. By induction on k ≥ m:

• if k = m, then ξk = ηk ⊕ θ0 is trivially true;

• assume the statement for all k = m+ j, j ∈ N and set k = m+ j + 1.

Now we have the following inequalities:

k = m+ j + 1 > d+1
c
− 1 + j + 1 = d+1

c
+ j

⇒ d 6 c(k − j)− 1 6 ck − 1

and, by Proposition 2.8, ξ is isomorphic to η1 ⊕ θ1 for a vector bundle

η1 of rank k − 1. Now we can apply the inductive hypothesis many

times to η and get

ξk ∼= ηk−11 ⊕ θ1 ∼= (ηm ⊕ θk−1−m)⊕ θ1 ∼= ηm ⊕ θk−m.

Remark 6. Taking into account the possible values of c, the constant m is

also consequently determined, specifically:

• m = d in the case of real bundles, i.e., ξk ∼= ηn ⊕ θk−n;

• m = dd−1
2
e for complex bundles, in particular, m = 0 for vector bundles

over base spaces X of dimension 1 and m = 1 for those over 2- and

3-dimensional spaces X;

• m = dd−3
4
e for quaternionic bundles; in particular, m = 0 every time

the base space X has dimension less than or equal to 3.
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Remark 7. In reference to the dimension d of the base space, Corollary 2.9

says that a vector bundle over a point is trivial since d = 0 ⇒ m = 0 in all

cases. In particular it has a basis.

Lemma 2.10. If u, v : θ1 → ξk are two X-monomorphisms of vector bundles

with d 6 ck − 2 then coker u and coker v are isomorphic over X.

Proof. As in the proof of Proposition 2.8 we can assume to have a nowhere

vanishing section of ξ0 that determines the monomorphism u : θ1 → ξ. Simi-

larly, a homotopy of monomorphisms u and v is then determined by a section

s of ξ0 × I = (ξ × I)0 over X × {0, 1}, where s|X×0 = u and s|X×1 = v.

The estimate on the dimension of X shows that dim(X×I) = d+1 6 ck−1.

In order to apply Theorem 1.5, one should check that the fibre F k \ {0} is

(m− 1)-connected for all m 6 n. In the situation of the theorem,

m 6 d < d+ 1 < ck − 1

from the previous estimate. Therefore, the section s of (ξ × I)0 prolongs to

a section s∗ of ξ × I over X × I with s∗|(ξ×I)0 = s.

The section s∗ determines a monomorphism w : θ1 → ξ × I given by

w(x, t, y) = y s∗(x, t) for (x, t, y) ∈ X × I × F
such that:

w|X×{0}(x, 0, y) = y s∗|X×{0}(x, 0) = y u(x) =⇒ cokerw|X×{0} ∼= cokeru

w|X×{1}(x, 1, y) = y s∗|X×{1}(x, 1) = y v(x) =⇒ cokerw|X×{1} ∼= coker v

Applying Corollary 2.4 to cokerw, which is a vector bundle because of Theo-

rem 1.7, there exists an isomorphism between cokerw|X×{0} and cokerw|X×{1},
that is cokeru ∼=coker v.

Finally, we can complete the proof of Theorem 2.7:

Proof of Theorem 2.7. Proceeding by induction on l > 1:

• l = 1. Since k > m > d+2
c
− 1 implies d 6 c(k − 1) − 2, it is easy to

verify that the inequality d 6 ck − 2 hold. Therefore, we can apply

Proposition 2.8 and Lemma 2.10 and obtain:
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ξ1
Prop.2.8∼= cokeru⊕ θ1

Lem.2.10∼= coker v ⊕ θ1
Prop.2.8∼= ξ2

where u, v : θ1 → ξki , i ∈ {1, 2}, are monomorphisms.

• Suppose the theorem is true for l. Then, for l + 1:

(ξk1 ⊕ θ1)⊕ θl
hyp∼= (ξk2 ⊕ θ1)⊕ θl

The terms inside the brackets are vector bundles of rank k + 1 and

Proposition 2.8 shows that they can be seen as the cokernels of monomor-

phisms θ1 → ξk+1. Therefore, they are isomorphic if d 6 c(k + 1) − 2

by Lemma 2.10, but this is true by hypothesis. Hence ξk1 ⊕ θ1 ∼= ξk2 ⊕ θ1

and by the induction hypothesis ξk1
∼= ξk2 .

Remark 8. Theorem 2.7 can be seen as a proper generalization of the unique-

ness theorem for vector spaces, which says that two vector spaces whose basis

have the same number of elements are isomorphic. Given two vector bundles,

we can then say that they are isomorphic provided their direct sums with a

trivial bundle of dimension l ∈ N are isomorphic.



Chapter 3

Quantum mechanical systems

In this chapter we are going to introduce the mathematical model for

quantum mechanical systems and we will explain how this helps to study the

topological properties of materials, referring to [ME1, ME2, DG1, AKH] in

the first section and to [BEL, EM, KEL, ME2] in the second section.

3.1 The single-particle model

Consider a single particle, e.g., an electron, moving in a crystal extended

infinitely in all directions in a d -dimensional space in the field generated

by all other electrons and nuclei. Typically, this is modelled as a vector

ψ in the Hilbert space L2(Rd, dx) ⊗ C2, that is, the tensor product of the

Hilbert space of square Lebesgue-integrable functions1 on Rd (where d is

usually 1, 2, or 3) and C2, which is introduced in order to take into account

the spin (up or down) of the particle. This space can also be described

1Given a measure space (X,Ω, µ), define L2(X,Ω, µ) = {f : X → C measurable :

(
∫
X
|f(x)|2dµ(x))1/2 <∞}, where | · | means the complex modulus. The space L2(X,ω, µ)

of square integrable functions is thus defined as the quotient of L2(X,Ω, µ) by the equiv-

alence relation that identifies functions equal almost everywhere, i.e. f ∼ g if and only if

µ({x ∈ X : |f(x) − g(x)| 6= 0}) = 0. L2(X,µ) is an Hilbert space for the inner product

〈f |g〉 =
∫
X
f(x)g(x)dµ(x). Given N ∈ N, the space L2(Rd,CN ) is defined analogously,

but with measurable CN -valued functions f : Rd → CN .

28
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as the space L2(Rd,C2) of square integrable functions with values in C2

[ME2]. In the absence of disorder, the atomic nuclei are in their equilibrium

positions and the system is translation-invariant with respect to a certain

lattice in Rd that can be chosen to be the standard lattice Zd. Moreover,

as a measure space, Rd can be decomposed as Rd = Zd × [0, 1)d, with the

Lebesgue measure corresponding to the product measure of the Lebesgue

measure on [0, 1)d and the counting measure on Zd. We may also replace

[0, 1)d by [0, 1]d because they differ by a set of measure 0. Therefore, the

approximation of the background space can be further simplified by means

of the following isomorphisms:

L2(Rd, dx) ∼= `2(Zd)⊗ L2([0, 1]d, dx)

where `2(Zd) is the space of square summable sequences2 on Zd. This leads to

L2(Rd, dx)⊗C2 ∼= `2(Zd)⊗L2([0, 1]d, dx)⊗C2. According to [ME1], the result

of this tensor product is equivalent to space of square summable sequences on

Zd with values in K := L2([0, 1]d,C2), the space of square integrable functions

on [0, 1]d with values in C2. In particular, the Hilbert space K describes all

possible states of the electron inside a unit cell of the crystal, that is, the

cube [0, 1]d.

Moreover, since most of the states in this cube have an energy that is too

high or too low to be physically relevant, it is reasonable to replace it with

a finite-dimensional subspace CN . As a consequence of this observation, one

usually defines the single particle Hilbert space H as

H = `2(Zd,CN) (3.1)

where CN takes account of the internal degrees of freedom of the system. In

particular, within this approximation, the Hamiltonian is a bounded oper-

ator H ∈ B(`2(Zd,CN))3, that is, there exists a constant M > 0 such that

2This is a particular case of L2-space for Ω = P(X) and µ being the counting measure.

In other words, `2(X) = {f : X → C :
∑
x∈X
|f(x)|2 < ∞}. It is an Hilbert space for the

inner product 〈f |g〉 =
∑
x∈X

f(x)g(x). Analogously, `2(Zd,CN ) = {f : Zd → CN , f =

(f1, . . . , fN ) :
∑
x∈Zd

|fi(x)|2 <∞ for all i = 1, . . . , N} [ME1].

3Given an Hilbert space H, B(H) denotes the space of bounded linear operators on X.
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‖H(ψ)‖ 6M‖ψ‖ for every ψ ∈ `2(Zd,CN).

The dynamics of a quantum mechanical system is decribed by the Hamil-

tonian H, that is, a self-adjoint operator on H such that, if ψt ∈ H is the

state of the system at the time t ∈ R, then it satisfies the differential equation

i}
d

dt
ψt = H(ψt), (3.2)

where typically H is the Schrödinger operator

H(ψ)(x) = − }2

2µ

3∑
j=1

∂2ψ

∂x2j
(x) + V (x)ψ(x) (3.3)

with µ the reduced mass of the particle, } the Planck constant and V : R3 →
R the external potential. In this description, given ψ ∈ H, the inner product

〈ψ,H(ψ)〉 ∈ R corresponds to the expectation value of the measurement of

H when the system is in the state ψ [ME1].

Within the approximation (3.1), the Hamiltonian H can also be repre-

sented as a matrix (Hk,m)k,m∈Zd whose blocks are the unique matrices Hk,m ∈
MN(C) such that (Hψ)(k) =

∑
m∈Zd

Hk,mψ(m) for all k ∈ Zd, ψ : Zd → CN

with finite support and where Hk,mψ(m) means matrix-vector multiplication.

From the discussion above, H is also supposed to satisfy the following two

important properties:

1. H is translation invariant : let n,m ∈ Zd and define the translation

(unitary) operator Tn : H → H by Tn(ψ(m)) = ψ(m − n). Thus,

translation invariant means that H satisfies TnH = HTn or, in matrix

representation: Hk+n,m+n = Hk,m for all k,m, n ∈ Zd. This property

can also be expressed by saying that H is Zd-periodic.

2. H is a controlled operator, that is, it has finite propagation in the sense

that there exists R > 0 such that if ψ1, ψ2 : Zd → CN have disjoint

supports of distance at least R, then 〈ψ1, H(ψ2)〉 = 0. Equivalently:

Hk,m = 0 for ‖k −m‖ > R.

These two assumptions yield a description of H in terms of a matrix with

just a finite number of non-zero blocks H̃n, n ∈ Zd, where the index of the
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block has been rewritten as H̃k−m := Hk,m.

Given a Hamiltonian in this form, [DG1] and [ME1] show that it is possible

to compute its spectrum using the Bloch-Floquet transform4 FB, which

is a generalization of the discrete Fourier transform. The result is that the

spectrum of H is the disjoint union of at most N compact intervals [ai, bi] ⊆
R, i ∈ {1, . . . , N}:

σ(H) =
∐

i=1,...,N

[ai, bi]. (3.4)

Each interval is called in physics energy band and its elements, which also

correspond to the eigenvalues of Ĥ := FBHF−1
B ∈ L2(Td,CN), are inter-

preted as the allowed energies of the system. Finally, one also defines the

Brillouin zone B := Rd/(2πZ)d as a particular unit cell in the reciprocal

lattice, i.e., the Fourier Transform of the direct (standard) lattice, such that

inside it the energy and momentum of an electron in the crystal vary con-

tinuously (without quantum jumps, see Section 3.2). Clearly, B ∼= Td, as

for example through the isomorphism B 3 (κ1, ..., κd) 7→ (t1, ..., td) = t ∈ Td

given by tj(κ) = (cos κj, sin κj), j = 1, ..., d.

The classification of materials in physics is based on the distribution of

these eigenvalues with respect to the Fermi level EF , which is defined as

the work required to add an electron to the body. Since this is a difference of

potentials, one can assume without loss of generality that EF = 0 and there-

fore all negative energies En < 0 correspond to the filled states, whereas

positive energies En > 0 correspond to the empty states. Materials can thus

be basically classified with regards to their electrical behaviour as follows:

• if the Fermi level EF belongs to the spectrum of the Hamiltonian H

of the system, it means that there are states with appropriate energy

for the electron to move in the crystal; the material is classified as a

conductor;

4Given ψ ∈ `2(Zd,CN ) and k ∈ Zd, the Bloch-Floquet transform FB is defined as

(FBψ)(x, κ) :=
∑
n∈Zd

eiκnψ(x− n). The result lies in the space L2(Td,CN ).
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• if the Fermi level EF does not belong to the spectrum of H but lies

in a band gap, which is an energy range where no electron state can

exist, then all empty states are above EF and therefore there is a finite

energy cost to excite the system above its ground state. In this case

the material is called insulator.

3.2 Topological phases and Bloch bundles

From the point of view of topology, the question one can ask is whether or

not the Hamiltonians of two different quantum systems can be continuously

transformed into each other. In case of a positive answer, one says that the

two systems are topologically equivalent. In other word, quantum sys-

tems are classified on the basis of homotopies between their Hamiltonians.

Following from the discussion in the previous section, one can deduce

that in a system without constraints on the Hamiltonian, like a conduc-

tor, all quantum systems are topologically equivalent, since in this situation

any two Hamiltonians H1 and H2 are linearly connnected along the path

(1 − t)H1 + tH2, which is continuous because the Hilbert space H in which

they lie is convex.

On the other hand, in the case of systems with an energy gap around

the Fermi level EF and with particular symmetries, the concept of topolocial

equivalence needs to be redefined. Two systems are now said to be topologi-

cally equivalent if their Hamiltonians can be continuously deformed into each

other without ever closing the gap and preserving the symmetries. Elements

of an equivalence class are said to have the same topological phase.

But in order to give sense to this discussion, the first question to answer is

about fixing a suitable background space and topology with respect to which

continuous paths should be considered.

One possible way to answer is to describe insulators by Hamiltonians on

some Hilbert space H and then consider continuous paths in B(H), i.e., the

space of bounded linear operator on H. However, for non-trivial systems, it
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turns out that any choice of topology on H is not completly satisfactory for

the purpose of the topological classification [KEL].

When dealing with more sophisticated systems, a different mathematical

approch becomes necessary (see for example [BEL, EM, KEL, DG1, DG2]).

We will sketch the idea of this new approach. A physical system can be

modelled as a C∗-algebra5 A endowed with the norm topology, with the

Hamiltonian being a self-adjoint invertible element H ∈ A , that is, such that

H∗ = H. In general, the set of insulators with observable algebra A corre-

sponds to the set of self-adjoint invertible elements of A and it is denoted

by A s.a.
inv (“s.a.” stays for self-adjoint, “inv” for invertible). The topological

phases are thus classified by π0(A s.a.
inv ), that is, the homotopy classes in A s.a.

inv .

As shown in [KEL], this can be turned into a group.

Within this approach, symmetries are automorphisms of order two of the

C∗-algebra. The topological phases of insulators with symmetries are clas-

sified in this case by the homotopy classes of elements belonging to just a

subspace of A s.a.
inv that is invariant under such symmetries. I will define and

discuss the properties of some of these symmetries in Chapter 5.

Now, ifH describes an insulator, it must have a spectral gap S = (E−, E+) ⊂
R\σ(H) enclosing the Fermi level and, therefore, χ(−∞,EF ] ∈ C(σ(H)), where

χ is the characteristic function on the subset (−∞, EF ] of the spectrum of H

and C(σ(H)) is the space of continuous function on the spectrum of H. The

spectral projection PS of the operator H with respect to EF in the C∗-algebra

A is defined as:

PS(H) := χ(−∞,EF ](H). (3.5)

The assumption S * σ(H) assures that the map z 7→ PS(H)(z), z ∈ Td

is continuous. Therefore, the dimension of the range

imPS(H)(z) := {v ∈ CN |PS(H)(z)v = v}
5A C∗-algebra is a Banach algebra A with a conjugate-linear involution ∗ : A → A

that satisfies (x · y)∗ = y∗ · x∗ for all x, y ∈ A and ‖x∗x‖ = ‖x‖2 for all x ∈ A [ME1]. An

involution over a set X is a function f : X → X such that f(f(x)) = x for every x ∈ X
(see also Definition 4.1).
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is constant over Td. Hence, it is possible to define a vector bundle ξ =

(E, p,B) on the Brillouin zone B ∼= Td setting as total space

E :=
∐
z∈Td

imPS(H)(z).

Thus, ξ = (E, p,Td) is a vector bundle with fibers imPS(H)(z) and rank

equal to k =TrCNPS(H)(z). It is also called Bloch bundle6.

Finally, since the spectrum is an algebraic invariant, one can associate

each gap to the equivalence class of its gap projection. And since A can also

be assumed to be separable, the number of equivalence classes of projections

in A is at most countable. After some functorial machinery [KEL], this set

of equivalence classes can be endowed with the structure of an abelian group.

This is also the norm-closed subalgebra A s.a.
inv of A where the classification

of insulators has to be considered.

Remark 9. This argument shows that there is a correspondence between iso-

morphism classes of gapped periodic systems and elements of VBk
Td . This is

actually an application of the Serre-Swan Theorem7, which states that there

exists a continuous bijection between isomorphism classes of vector bundles

over a topological space X and projections in MN(C(X)). Any topologi-

cally protected characteristic of such systems are translated into additional

structures of the corresponding vector bundle.

Remark 10. In absence of any other constraint on the system, one can de-

scribe the d-torus Td as a d-dimensional CW-complex and use the results

in the previous chapter to show the needlessness of a classification of Bloch

bundles (and thus of materials) up to isomorphism rather than up to stable

isomorphism. Concretely, in the case of a 3-dimensional crystal, n = 3 and,

consequently, with the notation of Theorem 2.7,

m =


4 if F = R

2 if F = C

1 if F = H

where F is intended as the fibre of the bundle.

6Named after the Swiss physicist Felix Bloch (1905–1983).
7Named after the French mathematician Jean-Pierre Serre (1926) and the american

mathematican Richard Swan (1933).
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Hence, given two vector bundles of this type, the property of being s-isomorphic

agrees with that of being isomorphic when the dimension of the bundles is

at least 4 in case of real vector bundles, at least 2 for complex vector bundles

and for quaternionic vector bundles of all dimensions different from 0.

Remark 11. This modeling of crystals through complex vector bundles on

the torus applies in particular to topological insulators. These form a

class of materials that are insulating in the bulk but can let current flow

on the boundary. Despite this flow, the property of being an insulator is a

consequence of an energy gap at the Fermi level EF in the spectrum of the

Hamiltonian H of the system, that means, we can construct the Bloch bundle

and classify topological insulators on the basis of other possible symmetries

of the system.

Example 3.1 (Topological insulator of class A). Quantum systems which

are not subject to any symmetry are denoted with A in the Cartan classi-

fication scheme of symmetric spaces. The study of these systems leads to

complex vector bundles without extra structure, which can be classified, up

to isomorphism, by the sets of equivalence classes VeckC(X) of complex vector

bundles of the corresponding dimension m over the base space X = Td.



Chapter 4

The equivariant problem

In order to give this discussion a more realistic physical significance, it

is necessary to add more structure to the Bloch bundle introduced in the

previous chapter. First of all, the base space X = Td has to be endowed with

an involution τ . Secondly, one can consider possible symmetry constraints

acting on the quantum system and encode them through unitary or antiuni-

tary operators that commute or anticommute with the Hamiltonian H of the

system. This will lead to the definition of “Real” and “Quaternionic” vector

bundles [AT, DU, DG1, DG2]. Starting from this chapter, we will describe

and discuss some of these situations.

4.1 Involution spaces and general G-spaces

In order to study quantum systems with symmetries, the first step is to

slightly modify the Bloch bundle in such a way as to take into account the

presence of an involution on the base space X. This involution is lifted to

the total space E of the bundle through the projection p. The result of this

construction is a particular case of a G-vector bundle.

The content of this section refers to [SHA, BL, MA2].

Definition 4.1. An involution τ : X → X over a topological space X is

a homeomorphism of period 2, i.e., τ 2 = 1. A topological space X together

36
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with an involution τ is called involutive space. The fixed point set of (X, τ)

is defined as

Xτ := {x ∈ X | τ(x) = x}.

Example 4.1. A basic example of involution is the complex conjugation

τ : C→ C, τ(x) := x.

An involutive space can also be seen as a G-space for G = Z2 = {±1} ∼=
{τ, idX}:

Definition 4.2. A topological groupG is a group endowed with a topology

such that both the addition and the inverse operations are continuous with

respect to this topology. A G-space X is a topological space X equipped

with a continuous action G × X → X of a topological group G such that

both

(1) ex = x (2) g(g′(x)) = (gg′)(x)

hold for any x ∈ X, g ∈ G and with e being the neutral element of G.

Definition 4.3. A map f : X → Y between G-spaces X and Y is said to

be equivariant or a G-map provided

f(gx) = gf(x) (4.1)

for all g ∈ G and for all x ∈ X. A homotopy between G-maps f0, f1 :

X −→ Y is a continuous map F : X × [0, 1]→ Y such that F (t,−) = ft(−)

for t = 0, 1 and F is a G-map as well with G acting trivially on I = [0, 1].

We write [X, Y ]G for the set of equivalence classes of equivariantly homotopic

maps between G-spaces X and Y .

From now on, all spaces will be assumed to be weak Hausdorff (i.e., the

diagonal X ⊂ X × X is a closed subset) and compactly generated (i.e., a

subspace is closed if and only if its intersection with all Hausdorff compact

subspaces is closed). Moreover, in order to assure that the product X × Y
between spaces with such properties is again compactly generated, we endow

it with the following topology: let {Ki} denote the family of compact subsets

of X×Y , then we say that a subset A ⊂ X×Y is closed if and only if A∩Ki
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is closed in Ki for each i. With this topology the product X × Y results to

be compactly generated because it can be shown that the closed subsets of

this topology and those of the induced topology are the same.

Remark 12. Let GU be the category of G-spaces with G-maps as mor-

phisms. Then G acts diagonally on the cartesian products of spaces endowed

with the topology introduced above and acts by conjugation on the space

Map(X, Y ) := {f : X → Y continuous} endowed with compact-open topo-

logy1, where X and Y are G-spaces, that is:

(g · f)(x) = gf(g−1x).

As a consequence, the G-homeomorphism:

MapG(X × Y, Z) ∼= MapG(X,Map(Y, Z))

holds for any G-spaces X, Y and Z [MA2]. Here, MapG(X, Y ) denotes the

space of G-equivariant maps X → Y in the subspace topology of all maps

X → Y , which are instead the elements of Map(X, Y ).

Let H be a closed subgroup of G. The space of fixed-points with respect

to H is defined as XH := {x ∈ X |hx = x for all h ∈ H}. In particular, it

is easy to see that x ∈ XH if H ⊆ Gx, where Gx = {h ∈ H |hx = x} is the

isotropy group of x. Let also G/H denote the orbit space, i.e. G/H = {gH :

g ∈ G}.

Remark 13. Endowing X with the trivial G-action, that is, g · x = x for

all g ∈ G and all x ∈ X, a fundamental property is the existence of the

G-homeomorphisms

MapG(G/H ×X, Y ) ∼= MapH(X, Y ) ∼= Map(X, Y H) (4.2)

obtained by sending φ ∈ MapG(G/H × X, Y ) to φ′ ∈ Map(X, Y H) given

by φ′(x) = φ(eH, x), with e being the neutral element of G; vice versa one

recovers φ from φ′ through φ(gH, x) = g φ′(x). This trick will be very useful

in the following discussion because it allows to go back and forth between

the equivariant and non-equivariant theories.

1The compact-open topology on the space Map(X,Y ) has a basis consisting of sets of

maps taking a finite number of compact sets Ki ⊂ X to open sets Ui ⊂ Y [HAT].
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4.2 G-CW-complexes

I have shown in the previous chapter that a periodic quantum system can

be represented by a vector bundle on the d-torus Td. Example 1.2 illustrates

that Td has a well defined CW-complex decomposition. In order to include

in this description an involution τ , or equivalently an action of the group Z2

on Td, a slightly more general form of CW-complex must be used (see also

[KEN, MA2, SHA]):

Definition 4.4. Let G be a discrete group and let H be a closed subgroup. A

G-CW-complex X is a union of sub-G-spaces Xn constructed inductively

as follows:

• X0 is the disjoint union of orbits G/H = {gH | g ∈ G}; the orbits gH

form a partition of G and this is the reason why they act as points in

the equivariant theory.

• Xn is constructed from the (n − 1)-skeleton by attaching equivariant

n-cells σnα of the form G/H × Dn via equivariant attaching maps

ϕα : G/Hα × Sn−1 → Xn−1; the group G acts on Dn, and therefore

on ∂Dn = Sn−1, trivially, i.e., as the identity, while it acts by left

multiplication on G/Hα.

• Set X =
⋃
n

Xn with the weak topology. The G-CW-complex X has

dimension n for the largest n ∈ N such that X = Xn.

This construction is also decribed by the following pushout diagram:∐
αG/Hα × Sn−1 Xn−1

∐
αG/Hα × Dn Xn = Xn−1 ∪ϕα (G/Hα × Dn)

ϕα

More general relative G-CW-complexes (X,A) for a G-space A are

defined analogously to the nonequivariant case, that is, the 0-skeleton is

replaced by the union of A and orbits G/H. Similarly, a G-CW-complex
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(Y,B) is a subcomplex of (X,A) provided B is a closed G-subspace of A

and Y n = Y ∩Xn in the CW decomposition.

Remark 14. Unlike the non-equivariant case, the product of two G-CW-

complexes is not always well defined, since problems may arise when looking

at the cell structure of the product of two orbits G/H ×G/K, as discussed

in [SHA]. However, if G is a disrete group, then the product of two orbits is

a disjoint union of orbits. Hence, the product of two G-CW-complexes is a

G×G-CW-complex.

Remark 15. The G-homeomorphism (4.2) applies to the equivariant attach-

ing maps ϕα. This means that a G-map ϕ : G/H × Sn → X can be reduced

to a non-equivariant map ϕ′ : Sn → XH .

Fix now G = Z2 = {±1}. This group has only two subgroups: the unit

{+1} and the full group Z2 itself. Therefore, there are only two possible

types of Z2-cells for each dimension n, namely:

• fixed cells σn := {+1} × Dn ∼= Dn with trivial G-action; the Z2-

boundary of a fixed cell is ∂σn = {+1} × ∂Dn ∼= ∂Dn ∼= Sn−1;

• free cells σ̃n := Z2 × Dn having trivial action on Dn and action by

permutation on Z2; the Z2-boundary of such a cell is ∂σ̃n := Z2×Sn−1.

Hence a Z2-CW-complex has the following structure:

• X0 = (
N0∐
i=1

σ0
i ) q (

Ñ0∐
i=1

σ̃0
i ),

where N0 is the number of fixed 0-cells σ0 ∼= {∗}, while Ñ0 is the

number of free 0-cells σ̃0 ∼= Z2. Notice that both N0 and Ñ0 can also

be equal to ∞;

• Xn := Xn−1 ⋃
ϕi

(
Nn∐
i=1

σni )
⋃
ϕ̃i

(
Ñn∐
i=1

σ̃ni ),

where ϕi : {+1} × Sn−1 → Xn−1 are the Z2-attaching maps of the

fixed cells, whereas ϕ̃i : Z2 × Sn−1 → Xn−1 are those of the free cells.

The symbols
⋃
ϕi

and
⋃
ϕ̃i

denote the union modulo the identification

ϕi(x) ∼ x for all x ∈ ∂σni resp. ϕ̃i(x) ∼ x for all x ∈ ∂σ̃ni .
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4.3 “Real” vector bundles

As previously pointed out, the presence of symmetries in a quantum sys-

tem is translated to the existence of automorphisms of the total space of the

Bloch bundle. The case of time-reversal symmetry, which we will discuss

in the rest of this thesis, gives rise to the interesting classes of “Real” and

“Quaternionic” vector bundles as previously reported by [DG1, DG2, AT].

Definition 4.5. A “Real” vector bundle, or R-vector bundle, over the

involutive space (X, τ) is a complex vector bundle p : E → X endowed with

a topological homeomorphism τE : E → E such that:

• τ 2E =idE, that is, τE is an involution;

• the projection p is real, in the sense that it commutes with the involu-

tions on X and E: p ◦ τE = τ ◦ p;

• τE is anti-linear on each fiber, i.e., τE(λz) = λτE(z) for every λ ∈ C, z ∈
E.

Remark 16. The terminology of “Real” vector bundles comes from the fact

that this notion can be seen as an extension of that of real vector bundle

as explained in [AT], namely, a space E with involution τE is isomorphic to

the complexification EC
R of the real subspace ER = {z ∈ E | τE(z) = z}. We

write R-VBX for the category of R-vector bundles over X and R-VBX for

that of R-vector bundles over the same space. Then one has the following

inverse relations:

1. R-VBX → R-VBX given by E 7→ ER

2. R-VBX → R-VBX given by E 7→ E ⊗R C =: EC ∼= E ⊕ iE

One can also prove that dimRE =dimCE
C (see [AT]).

An R-morphism u of R-vector bundles ξ1 and ξ2 over the same involutive

space (X, τ) is a vector bundle morphism commuting with the involutions,

i.e., u ◦ τE1 = τE2 ◦ u. The set of isomorphism classes of R-vector bundles
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of rank k over (X, τ) is denoted by VeckR(X, τ); here, k is intended as the

(constant) real dimension of the fibre of the bundle. The previous remark

suggests then the isomorphism:

VeckR(X) ∼= VeckR(X, idX) for all k ∈ N. (4.3)

The process of forgetting the “Real” structure and considering just the

complex bundle over X gives a map

j : VeckR(X, τ)→ VeckC(X) (4.4)

that is in general neither injective nor surjective.

Example 4.2. The set VeckR(X, τ) cannot be empty since it contains at least

the “Real” product vector bundle X × Cm → X endowed with the product

R-structure τ0(x, v) = (τ(x), v) given by the complex conjugation v 7→ v.

An R-vector bundle is R-trivial if it is isomorphic to the product R-bundle

in the category R-VBX .

Consider now the set Γ(E) of all the sections of an R-bundle over the

involutive space (X, τ). This is a module over C(X) as pointed out in Section

1.3. Moreover, it inherits from the R-structure of (E, τE) an anti-linear

involution τ ′ : Γ(E)→ Γ(E) defined as the composition

τ ′(s) := τE ◦ s ◦ τ (4.5)

Elements of the set Γ(E)′ = {s ∈ Γ(E) | τ ′(s) = s} of fixed points with

respect to τ ′ are said to be R-sections of the bundle. In the case of complex

vector bundles, the presence of a frame of complex sections is equivalent to

the triviality of the vector bundle, as already mentioned in Proposition 1.6.

A similar result holds for “Real” vector bundles [DG1, Theorem 4.8]:

Proposition 4.1 (R-triviality). An R-vector bundle is trivial if and only if

it admits a global R-frame, that is, a global frame composed of R-sections.

The following important result mentioned in [DG1] is a generalization of

Theorem 1.5 to the case of R-vector bundles and R-sections.
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Lemma 4.2 (Extension Lemma). Let (X, τ) be an involutive space, where

(X, τ) is a Z2-CW-complex. Let ξ = (E, p,X) be an R-bundle over (X, τ)

with τE the lift of τ and let also Y ⊂ X be a closed subset such that τ(Y ) = Y .

Then each R-section s : Y → E|Y prolongs to an R-section s̃ : X → E, that

is, a global R-section.

Proof. Theorem 1.5 guarantees already the existence of a section s∗ : X → E.

In order to get an R-section it is sufficient to exhibit a section s̃ that satisfies

τ ′(s̃) = s̃. This can be easily found defining s̃ = 1
2
(s∗ + τ ′(s∗)), in fact, by

(4.5):

τ ′(s̃) = τE ◦ s̃◦τ =
1

2
(τE ◦(s∗+τ ′(s∗))◦τ) =

1

2
(τE ◦s∗◦τ+τE ◦τE ◦s∗◦τ ◦τ)

=
1

2
(τE ◦ s∗ ◦ τ + s∗) =

1

2
(τ ′(s∗) + s∗) = s̃.

The definition of morphism between two complex vector bundles ξ and ξ′

over the same space X can be reformulated in terms of the homomorphism

bundle, i.e., the complex vector bundle HomC(E,E ′) → X. This has a

“Real” structure given by φx(v) = φx(v), where φx ∈ HomC(Ex, E
′
x) and

φx ∈ HomC(Ex, E
′
x). Hence a morphism u : E → E ′ is nothing but an R-

section of HomC(E,E ′).

By definition, an R-vector bundle is locally trivial in the category C-

VBX of complex vector bundles. Actually, its local triviality in the category

R-VBX of “Real” vector bundles can be proved as well.

Theorem 4.3 (Local R-triviality). Let ξ = (E, p,X) be an R-vector bundle

over the Z2-CW-complex X. Then ξ is locally trivial, meaning that for all

x ∈ X there exists a τ -invariant neighborhood U of x and an R-isomorphism

h : p−1(U) → U × Ck, where k ∈ N and the product bundle U × Ck → U
is endowed with the trivial R-structure given by the complex conjugation.

Moreover,

• if x = τ(x), then U can be choosen to be connected;

• if x 6= τ(x), then U can be choosen as the disjoint union of two open sets

U := U ′ ∪ U ′′ such that x ∈ U ′ and τ : U ′ → U ′′ is a homeomorphism.
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Proof. There are two different cases to be considered:

• x ∈ X is a real point, i.e., τ(x) = x and Ex ∼= Ck.

By the Extension Lemma 4.2, there exists a neighborhood U of x such

that E|U ∼= U × Ck.

• x 6= τ(x) = x.

A generic complex isomorphism Ex ∼= Ck induces a complex isomor-

phism Ex ∼= Ck. Define Y := {x, x}. Then E|Y ∼= Y × Ck. Again, the

Extension Lemma 4.2 gives an isomorphim E|U ∼= U × Ck, where U is

a τ -invariant open neighborhood of Y .

4.4 “Quaternionic” vector bundles

Definition 4.6. A “Quaternionic” vector bundle or Q-vector bundle

is a complex vector bundle p : E → X over an involutive space (X, τ)

endowed with a topological homeomorphism τE : E → E such that:

1. τ 2E|Ex = −idEx for all x ∈ X, that is, it is an anti-involution;

2. the projection p is equivariant, in the sense that it commutes with the

involution on X: p ◦ τE = τ ◦ p

3. τE is anti-linear on each fibre, i.e., τE(λz) = λτE(z) for every λ ∈ C,

z ∈ E.

A Q-morphism u between two Q-vector bundles ξ1 and ξ2 over the same

involutive space (X, τ) is a vector bundles morphism commuting with the

involutions, i.e., u◦τE1 = τE2 ◦u. The set of isomorphism classes of Q-vector

bundles of rank k′ over (X, τ) is denoted by Veck
′

Q(X, τ); here, k′ is intended

as the complex dimension of the fibre of the vector bundle.

The restriction of the anti-involution to a fibre Ex over a fixed point x ∈
Xτ endows Ex with a quaternionic structure2. In addition, a complex

2A complex vector space V has a quaternionic structure if there is an anti-linear map

J : V → V such that J2 = −id.
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vector space V can be endowed with a quaternionic structure if and only if

its complex dimension n is even: k′ = 2k, k ∈ N [DG2]. In this case, the

pair (V , J) results to be isomorphic to the space Hk = (C ⊕ C j)k with the

left multiplication by j, or equivalently, to the space C2k endowed with the

standard quaternionic structure v 7→ Qv, where Q is the real matrix:

Q :=



0 −1

1 0
. . .

. . .

0 −1

1 0


Here H denotes the skew-field of quaternions, that is,

H = R⊕ R i⊕ R j⊕ R k, i2 = j2 = k2 = ijk = −1

with respect to the basis (1, i, j, k). Or:

H = C⊕ C j = (R⊕ R i)⊕ (R⊕ R i) j, ij = k

with respect to the basis (1, j).

Example 4.3. The set Vec2kQ (X, τ) cannot be empty since it contains at

least the “Quaternionic” product vector bundle X×C2k → X endowed with

the product Q-structure τ0(x, v) = (τ(x), Q v) where v denotes the complex

conjugation. A Q-vector bundle is Q-trivial if it is isomorphic to the product

Q-bundle in the category Q-VBX .

Proposition 4.4. Let (X, τ) be an involutive and path-connected space. If

Xτ 6= ∅, then every Q-vector bundle over (X, τ) has even rank.

Proof. In order to support a quaternionic structure, the fibres Ex must have

an even complex dimension. The path-connectedness of X ensures, in addi-

tion, that this dimension is constant. Hence, any such Q-vector bundle has

even rank.

In analogy with the case of “Real” vector bundles, the following proposi-

tions hold (proofs and further references can be found in [DG2]):



4.4 “Quaternionic” vector bundles 46

Proposition 4.5. Let VeckH(X) be the set of isomorphism classes of vector

bundles over X with fibre Hk. Then

VeckH(X) ∼= Vec2kQ (X, idX) ∀k ∈ N. (4.6)

Proposition 4.6. The process of forgetting the “Quaternionic” structure

defines a map

j : VeckQ(X, τ)→ VeckC(X) (4.7)

such that j([0]) → [0], where [0] denotes the trivial class in the appropriate

category.

Let Γ(E) be the set of sections of a Q-vector bundle ξ = (E, p,X) over

the involutive space (X, τ). As for any vector bundle, it has the structure of

a module over the algebra C(X) and it also inherits from the “Quaternionic”

structure of the bundle an anti-linear anti-involution

τ ′ : Γ(E)→ Γ(E), τ ′(s) := τE ◦ s ◦ τ. (4.8)

In order to discuss the stability of “Quaternionic” vector bundles, it is

first necessary to indroduce the notion of “Quaternionic” pairs of sections.

Definition 4.7. Let U ⊂ X be a τ -invariant open set and let s1 ∈ Γ(E) be

a section of a Q-vector bundle ξ such that s1(x) 6= 0 for every x ∈ U . Define

s2 := τ ′(s1). (4.9)

The pair (s1, s2) is said to be a “Quaternionic” (or Kramer, [DG2]) pair

over U . It has the following properties:

1. τ ′(s2) = −s1, since τ ′(s2) = τE ◦ s2 ◦ τ = τ 2E ◦ s1 ◦ τ 2 = −s1;

2. s2(x) 6= 0 for every x ∈ U since τ ′ is a homeomorphism;

3. s1 and s2 are linearly independent: suppose s1 = λ s2 for λ ∈ C, then

s2
def
= τ ′(s1) = τ ′(λ s2)

(1)
= −λ s1 = −|λ|2s2 can be satisfied if and only if

λ = 0, that is, if and only if s1 and s2 are linearly independent.
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Given this definition, one can prove the following fundamental theorem

concerning the extension of Q-pairs of sections.

Lemma 4.7 (Extension Lemma for Q-pairs). Let (X, τ) be an involutive

space such that X admits a Z2-CW-decomposition and let ξ = (E, p,X) be a

Q-vector bundle over (X, τ) with anti-involution τE. Let Y ⊆ X be a closed

subset such that τ(Y ) = Y . Then each Q-pair (s1, s2) of ξ|p−1(Y ) extends to

a Q-pair (s1, s2) of ξ.

Proof. Consider the Q-pair {s1, s2}, where by definition s2 = τ ′(s1). Using

Theorem 1.5, there exists a section s1 of ξ that extends s1. Now set s2 :=

τ ′(s1): since s2|Y = s2, then (s1, s2) results to be a Q-pair extending (s1, s2).



Chapter 5

Topological quantum systems

with time-reversal symmetry

In this final chapter we will introduce the concept and role of symmetries

in physics referring to [RS, AKH] and we will focus from the second section

on to one of the three fundamental discrete symmetries, namely, the time-

reversal symmetry. The content of the last two sections is the core of this

thesis, since I will give proofs of the conditions under which isomorphism

and stable isomorphism of vector bundles with time-reversal symmetries are

equivalent, see also [DG1, DG2, EM]. This can also be seen as an “equivari-

ant” generalization of the results in Chapter 2.

5.1 Symmetries

In physics, a symmetry transformation consists in a change of point of

view that does not alter the results of possible experiments. In particular, in

quantum physics a symmetry is intended as a transformation that preserves

transition probabilities between states, since these determine the probability

of obtaining an expectation value after measurements [MUK].

The mathematical formulation of symmetries is given in terms of operators

on the Hilbert space H describing all the physical states and it is the main

48
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content of Wigner’s Theorem1. Before formulating this theorem, I will briefly

recall that an operator U on a Hilbert space H is said to be:

• unitary if U : H → H is bijective and such that 〈Uϕ,Uψ〉 = 〈ϕ, ψ〉;
consequently, unitary operators are linear;

• anti-unitary if U : H → H is bijective and such that 〈Uϕ,Uψ〉 =

〈ϕ, ψ〉 = 〈ψ, ϕ〉; anti-unitary operators are anti-linear, i.e., U(λv) =

λU(v).

Moreover, an operator U on H is said to commute, resp. anti-commute,

with the Hamiltonian H if HU = UH, resp. UH = −HU .

Remark 17. It can be easily seen from the definitions above that:

• the product of two anti-unitary operators is unitary

• the product of a unitary operator with an anti-unitary operator is again

anti-unitary.

A physical quantity is said to be conserved if its operator Q commutes

with H, that is, QH = HQ or, briefly, [Q,H] = 0, where [·, ·] denote the

commutator bracket2. In the case of continuous symmetries, Noether’s Theo-

rem3 states that every such symmetry has a corresponding conservation law.

In the scenario of quantum physics, a wider range of symmetries is admit-

ted, e.g., discrete symmetries. Therefore, Noether’s Theorem is not sufficient

anymore. A new description of symmetries is needed:

Theorem 5.1 (Wigner, 1931). Any symmetry transformation can be repre-

sented on the Hilbert space of physical states by an operator U that is either

linear and unitary or anti-linear and anti-unitary.

Proof. See for example [MUK].

1Named after Hungarian-American physicist Eugen Wigner, 1902–1995.
2Given two observables A and B, one of which bounded, their commutator is defined

as [A,B] = AB −BA.
3Named after the German mathematician Emmy Noether, 1882–1935.
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In addition, symmetries can commute or anti-commute with the Hamilto-

nian H of the quantum system.

In a more recent work (see [AZ]) it has been pointed out that there exists

a one-to-one correspondence between the symmetry type of single particle

Hamiltonians of gapped quantum systems and the set of symmetric spaces

previously introduced by Cartan4. In particular, only ten different classes

can be identified: this is the reason why this classification is called “Ten-

Fold Way”.

In order to get all these classes, it is sufficient to consider the three Fun-

damental (discrete) symmetries, namely:

• the time-reversal symmetry T , which is represented by an anti-

unitary operator UT that commutes with H and such that U2
T = ±1

• the particle-hole symmetry P , which is represented by an anti-

unitary operator UP that anti-commutes with H and such that U2
P =

±1

• the chiral symmetry C, which is represented by a unitary operator

UC that anti-commutes with H and such that U2
C = 1.

These three symmetries are not independent. In fact, whenever a system has

both T and P , then it has also C, whereas if it only has either T or P but

not both, then it cannot have C. On the other side, the absence of both T
and P does not influence the presence or absence of C. The following table

summarize the ten possible combinations [RS]:

4Named after the French mathematician Élie Cartan, 1869-1951. The classification

scheme dates back to year 1926.
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Cartan label T P C
A (unitary)

AI (orthogonal) +1

AII (symplectic) -1

AIII (ch.unit.) +1

BDI (ch.orth.) +1 +1 +1

CII (ch.sympl.) -1 -1 +1

D +1

C -1

DIII -1 +1 +1

CII +1 -1 +1

Table 5.1: The Ten-Fold Way: listed are the ten classes of single particle Hamilto-

nians H classified by their behaviour with respect to the three fundamental symmetries:

time-reversal T , particle-hole P and chiral C. The column “Cartan label” is the name of

the symmetric space according to Cartan’s classification scheme. The three last columns

describe the presence/absence of such a symmetry and their square.

5.2 Time-reversal symmetry

Definition 5.1. The time-reversal involution τ1 : Sd → Sd on the sphere

is defined as

τ1(z0, z1, ..., zd) := (z0,−z1, ...,−zd). (5.1)

Periodic quantum systems are described by Bloch bundles over the involutive

space (Td, τ), where the time-reversal involution τ is the diagonal map

τ := τ1 × · · · × τ1 (5.2)

with τ1 being the time-reversal involution over the 1-sphere given by (5.1).

In order to describe the Z2-CW decomposition of (Td, τ) it is just necessary

to find a proper Z2-CW decomposition of (S1, τ) in view of Remark 14. This is

described as follows. The only fixed points of τ1 on the unit circle are (±1, 0).

These correspond to fixed 0-cells σ0
± in the Z2-CW decomposition of S1 and
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together they form its 0-skeleton X0. Let `± := {(z0, z1) ∈ S1 | ± z0 > 0}
be the upper and lower hemispheres. The pair {`+, `−} can be seen as a free

1-cell σ̃1 since `+ and `− are conjugate to each other. The result of attaching

σ̃1 to X0 is therefore the full space (S1, τ1).

The Z2-CW decomposition of (Td, τ) can now be derived easily:

• The 0-skeleton is composed of N0 = 2d fixed 0-cells

σ0
ε1...εd

:= (σ0
ε1
, . . . , σ0

εd
) = σ0

ε1
× · · · × σ0

εd
,

where εi ∈ {+,−} for each i = 1, . . . , d.

• The 1-skeleton is composed of a total of Ñ1 = d 2d−1 free 1-cells defined

as

σ̃1
ε1...εj ...εd

:= (σ0
ε1
, . . . , σ0

εj−1
, σ̃1, σ0

εj+1
, . . . , σ0

εd
)

where the free 1-cell σ̃1 of (S1, τ) replaces the fixed 0-cell σ0
εj

for each

j = 1, . . . , d. There are no fixed 1-cells in this dimension.

• In order to define the 2-cells, one can notice that for each pair i < j

there are two cells

σ̃2
ε1...εi...εj ...εd

:= (σ0
ε1
, . . . , σ0

εi−1
, σ̃1, σ0

εi+1
, . . . , σ0

εj−1
, σ̃1, σ0

εj+1
, . . . , σ0

εd
)

σ̃2
ε1...εi...εj ...εd

:= (σ0
ε1
, . . . , σ0

εi−1
, σ̃1, σ0

εi+1
, . . . , σ0

εj−1
, τ(σ̃1), σ0

εj+1
, . . . , σ0

εd
)

with different behaviors under the Z2-action of τ . Counting all possible

combinations, one finds that there are in total Ñ2 = d (d− 1) 2d−2 free

2-cells (and again no fixed 2-cells).

• The decomposition proceeds analogously for higher dimensional cells,

so that one obtains that Td has no fixed n-cells for n > 1 but only free

n-cells in number equal to Ñn =
(
d
n

)
2d−n for each 1 6 n 6 d.

Let then (X, τ) = (Td, τ) as an involutive space, where X = B ∼= Td is the

Brillouin zone introduced in Section 3.1. Consider also again the Hilbert

space H = `2(Zd,CN) equipped with an anti-linear involution C : H → H
induced by the complex conjugation.

Definition 5.2. A topological quantum system B 3 z 7→ H(z) has a time-

reversal symmetry (T ε) of parity ε ∈ {±} if there is a continuous unitary-
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valued map z 7→ UT (z) such that:

1. UT (z)H(z)U∗T (z) = CH(τ(z))C

2. CUT (τ(z))C = εU∗T (z)

Systems having even time-reversal symmetry T + are in the class AI of Car-

tan’s classification scheme, whereas those with odd time-reversal symmetry

T − are in the class AII.

Consider a periodic topological quantum system in class AI or AII. In

order to study the topological properties of one these systems, one needs to

build the Bloch bundle ξ = (E, p,Td) over the involutive space (Td, τ). The

time-reversal involution on the base space is transfered through the Fermi

projection to the bundle ξ, which in this way gets as additional structure an

anti-linear homeomorphism τE : Ez → Eτ(z). In particular, when τ = T +,

ξ results to be a “Real” vector bundle, since in this case τ 2E = +1. On the

other hand, if τ = T −, then τ 2E = −1; the resultant Bloch bundle is in this

case a “Quaternionic” vector bundle over (Td, τ).

5.3 Stability properties of “Real” vector bun-

dles

Thanks to the particular CW-decomposition of (Td, τ), it is possible to

generalize the results in Chapter 2 about the equivalence between stable

isomorphism and isomorphism to the case of R-vector bundles ξ endowed

with an involution τE inherited from the time-reversal symmetry T + acting

on the base space Td. The first step consists in finding conditions under

which there exists a global R-section s of ξ, that is, an R-section s such that

s(x) 6= 0 for every x ∈ X. The existence of such a section will be in fact

necessary in the proof of Theorem 5.2, where it will allow to split off a trivial

R-vector bundle of rank 1 as a direct summand.
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Theorem 5.2 (Existence of a nowhere vanishing global R-section). Let

(X, τ) be an involutive space such that X has a finite Z2-CW-complex de-

composition of dimension d and let dτ be the dimension of the fixed-point

subcomplex. Let ξ = (E, p,X) be a k-dimensinal R-vector bundle over (X, τ).

If k > max {dτ , d/2}, then ξ has a nowhere vanishing global R-section.

Remark 18. Consider the zero section s0(x) = 0 ∈ Ex for all x ∈ X. This is

in particular an R-section since, for every x ∈ X:

τ ′(s0)(x) = (τE ◦ s0 ◦ τ)(x) = τE(s0(τ(x))) = τE(0) = 0 = s0(x) (5.3)

by the definition of s0 and the anti-linearity of τE.

Let ξ0 ⊂ ξ be the subbundle of non-zero vectors. Since ξ is a complex

vector bundle, each fibre E0,x of ξ0 is isomorphic to Ck \ {0} and therefore

2(k − 1)-connected, just as in Chapter 2. With the additional hypothesis

k > d/2, which implies d 6 2k − 1, each E0,x is (j − 1)-connected for each

j 6 d. The involution τE restricted to ξ0 turns it into an R-bundle as well.

Hence, an R-section of ξ0 can be seen as a nowhere-vanishing R-section of

ξ.

Proof. Firstly, suppose that X has no fixed cells in dimensions greater than

0. Then the maximum between dτ = 0 and d/2 is d/2 and therefore the

hypothesis becomes k > d/2. The steps of the proof under this assumption

follow mostly those of the proof of Theorem 1.5. As in that case, the claim

will be proved by induction on the dimension of the skeleton of X.

• If d = 0, then X0 is just a collection of fixed points {xj}N0
j=1 and conju-

gated pairs {(xj, τ(xj)}Ñ0
j=1. A global section s′ can be defined settings′(xj) ∈ EτE

x ∩ E0,x
∼= Rm \ {0} for fixed points

s′(xj) ∈ EτE
x
∼= Cm \ {0} for free pairs

together with the constraint s′(τ(xj)) := τE(s′(xj)) that makes s′ an

R-section: τ ′(s′) = τE ◦ s′ ◦ τ = τE ◦ τE ◦ s′ = s′.
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• Assume the claim true for the Z2-CW-subcomplexes Xj−1, 1 6 j 6 d

and let σ̃j ∼= Z2 × Dj be a free j-cell with equivariant attaching map

ϕ : Z2 × Dj → X. Since j > 1, there are no fixed cells by hypothesis.

Consider also the induced bundle ϕ∗(ξ0) over Z2 × Dj, that also has

an R-structure since the map ϕ is equivariant, then ϕ∗(ξ0) is locally

trivial by Theorem 4.3.

By the inductive hypothesis there exists a global R-section s′ of ξ|Xj−1

that defines an R-section σ′ of ϕ∗(ξ0)|Z2×∂Dj by σ′ := s′ ◦ ϕ. Since

Dj is contractible, ϕ∗(ξ0) is trivial, that is, it is isomorphic to the tri-

vial R-vector bundle over Z2 × Dj. So σ′ can be identified with an

equivariant map Z2 × ∂Dj → Ck \ {0}. The restriction of this map

{1} × ∂Dj → Ck \ {0} extends to a map {1} × Dj → Ck \ {0} since

j−1 6 d−1 6 2k−2 = 2(k−1) and πj−1(Ck\{0}) ∼= 0 by the previous

remark. This can be even further extended, because of the equivariant

constraint, to a map σ : Z2 × Dj → Ck \ {0}, which is indeed an R-

section of ϕ∗(ξ0). Using the natural isomorphism of induced bundles

(ϕξ, ϕ) : ϕ∗(ξ0)→ ξ0, it is possible to define an R-section s′′ of ξ0|σ̃j by

ϕξ ◦ σ = s′′ ◦ ϕ which satisfies s′′|Xj−1∩σ̃j = s′.

Finally, one defines a global R-section s of ξ0|Xj−1∪σ̃j by the require-

ments s|Xj−1 = s′ and s|σ̃j = s′′. The section s is continuous by the

weak topology property of vector bundles.

This procedure can be iterated for all free j-cells and since there are

no fixed cells, the claim results to be true on Xj.

Suppose now that dτ > 0 and consider the fixed-point subcomplex

Xτ . Because of the isomorphism (4.3), the fibres over the points

of Xτ are real vector spaces. By Theorem 2.8 a nowhere vanish-

ing section s′ exists if dτ 6 k − 1, which results to be true because

of the hypothesis k > dτ . Moreover, s′ is an R-section, that is,

τE ◦ s′ ◦ τ |Xτ = τE ◦ s′ = s′. In fact, if there was x ∈ Xτ such that

s′(x) 6= τE(s′(x)), then p(s′(x)) 6= p(τE(s′(x))), but since p commutes

with involutions of X and E, p(τE(s′(x))) = τ |Xτ (p(s′(x))) = p(s′(x)).



5.3 Stability properties of “Real” vector bundles 56

Therefore, the previous assumption leads to a contradiction. This also

means that s′ is an R-section.

Finally, consider the relative Z-CW-complex (X,Xτ ). Since Xτ is a

closed subset of X and the involution τ acts trivially on the fixed-point

subcomplex, the condition τ(Xτ ) = Xτ is satisfied. Hence, one can

apply Theorem 4.2 and extend s′ to an R-section s : X → E such that

s|Xτ = s′. This concludes the proof.

Proposition 5.3. Let (X, τ) be an involutive space such that X has a finite

Z2-CW decomposition of dimension d and let dτ be the dimension of the fixed-

point subcomplex. Then each R-vector bundle ξ of rank k over (X, τ) with

k > max {dτ , d/2} splits as ξ ∼= θk−mR ⊕η, where η is an R-vector bundle over

(X, τ) of rank m, m := dd−1
2
e and θk−mR denotes the trivial R-vector bundle

of rank k −m.

Proof. Let s be a global R-section, which exists by the previous theorem.

This defines a monomorphism u : θ1R → ξ by u(x, a) = a s(x) for eve-ry

(x, a) ∈ X ×C (see the proof of Proposition 2.8). The map u is equivariant:

(u ◦ τ)(x, a) = u(τ(x), a) = a s(τ(x)) = τE(a s(x)) = (τE ◦ u)(x, a)

⇒ u ◦ τ = τE ◦ u.

Let η1 denote cokeru. Then η1 is a vector bundle of dimension k − 1 by

Theorem 1.7 and it is endowed with the same R-structure as ξ because

of the equivariance of u. Since the base space X is paracompact, we can

apply Theorem 1.8 to the short exact sequence 0 → θ1R
u→ ξ

v→ η1 → 0

and thus get an isomorphism of R-vector bundles ξ ∼= θ1R ⊕ η1. This is R-

compatible because such isomorphism is defined through equivariant maps

(see also the proof of Theorem 1.8). Using now the same induction of the

proof of Corollary 2.9 applied to the particular case of c = 2, the claim follows

directly.

The following Lemma 5.4 and Theorem 5.5 show that, in the case of

vector bundles endowed with a “real” structure, the condition on the rank

that ensures the equivalence between isomorphism and stable isomorphism
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of vector bundles belonging to this class is not affected by the presence of

the even time-reversal symmetry T +.

Lemma 5.4. Let (X, τ) be an involutive space such that X has a finite Z2-

CW decomposition of dimension d and let dτ be the dimension of the fixed-

point subcomplex. Let u, v : θ1R → ξ be monomorphisms of R-vector bundles

with k > max {dτ , d/2}. Then cokeru and coker v are isomorphic over X.

Proof. As shown in Theorem 5.3, a monomorphism of vector bundles is de-

termined by an R-section of the subbundle of non-zero vectors ξ0. Therefore,

a homotopy between monomorphisms is also completely determined by an

R-section s of ξ0× [0, 1] = (ξ× [0, 1])0 over X ×{0, 1} such that s|X×{0} = u

and s|X×{1} = v. The interval I = [0, 1] is here naturally endowed with the

trivial action, that is, τ(t) = t for every t ∈ I. In other words, it is first

necessary to find a nowhere vanishing R-section of ξ × I over X × I.

Consider now the fixed-point subcomplex (X × I)τ = Xτ × I. As pointed

out in the proof of the Theorem 5.2, the fibres over points of Xτ × I are real

vector spaces and, as a consequence, a nowhere vanishing R-section s1 of

Xτ×I is a nowhere vanishing real section. This exists if dτ+1 6 (k+1)−1 = k

by Theorem 2.8, where we have also considered the fact that ξ × I has rank

(k + 1) over the (dτ + 1)-dimensional CW-complex Xτ × I. This condition

is guaranteed by the hypotheis k > dτ .

In order to prolong s1 to a global section defined on the whole X × I,

consider the relative Z2-CW-complex (X×I,Xτ ×I). Since the involution τ

acts trivially on the closed fixed-point subcomplex, τ(Xτ × I) = Xτ × I and,

by Theorem 4.2, there exists a global R-section s : X × I → E × I which

extends s1. Moreover, s determines a monomorphism w : θ1R → ξ × I given

by w(x, t, y) = y s(x, t) for every (x, t, y) ∈ X × I ×C \ {0}, which results to

be equivariant since s is. Hence, cokerw is endowed with an R-structure.

Finally, one can conclude as in the proof of Lemma 2.10 that cokeru and

coker v are isomorphic in view of the isomorphisms: cokerw|X×{0} ∼= cokeru

and cokerw|X×{1} ∼= coker v.
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Theorem 5.5. Let (X, τ) be an involutive space such that X has a finite

Z2-CW decomposition of dimension d, let dτ be the dimension of the fixed-

point subcomplex Xτ and set m := dmax {dτ , d/2}e. If ξ1 and ξ2 are two

k-dimensional R-vector bundles such that k > m and ξ1 ⊕ θlR ∼= ξ2 ⊕ θlR for

some l > 1, then ξ1 and ξ2 are isomorphic.

Proof. The proof of this theorem proceeds by induction on l > 1 exactly as

that of Theorem 2.7. By hypothesis, k > m > max {dτ , d/2}. Hence, we can

apply both Proposition 5.3 and Lemma 5.4.

The base case l = 1 goes as follows:

ξk1
Prop.5.3∼= cokeru⊕ θ1Q

Lem.5.4∼= coker v ⊕ θ1Q
Prop.5.3∼= ξk2 (5.4)

After that, the inductive step is the same as in the non-equivariant case,

that is, Theorem 2.7.

The involutive space over which the Bloch bundle is built is (Td, τ). In sec-

tion 1.2, we have described a Z2-CW-complex decomposition of (Td, τ) such

that there are fixed cells only dimension 0, that is, dτ = 0 and max {dτ , d/2} =

d/2. Therefore, given a quantum mechanical system with even time-reversal

symmetry T +, the classification up to isomorphism can be safely replaced by

the weaker classification up to stable isomorphism any time the dimension of

the corresponding Bloch bundle k is greater than 1 for 1- and 2-dimensional

systems (m = 1) and greater than 2 for 3-dimensional systems like crystals,

since in this case m = 2. These estimates are exactly the same found in

Theorem 2.7 for complex vector bundles (case c = 2). In other words, the

condition on the rank of R-vector bundles under which stable isomorphism

becomes isomorphism is the same as for complex vector bundles.
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5.4 Stability properties of “Quaternionic” vec-

tor bundles

As for the case of “Real” vector bundles, we are now going to prove a

series of propositions which will lead to the main result about the equivalence

between isomorphism and stable isomorphism of vector bundles endowed, this

time, with the odd time-reversal symmetry T −.

Proposition 5.6 (Existence of a global Q-pair of sections). Let (X, τ) be

an involutive space such that X has a finite Z2-CW-complex decomposition

of dimension d and let dτ be the dimension of the fixed-point subcomplex.

Let ξ = (E, p,X) be a Q-vector bundle over (X, τ) of rank 2k. If k >

max{dτ
4
, d+2

4
}, there exists a pair of sections (s1, s2) ∈ Γ(E) which is a global

Q-pair.

Proof. The proof of this theorem follows the same steps of Theorem 5.2, with

the only difference that in this case, instead of “Real” sections, Q-pairs of

sections are needed. In the following, we will sketch the proof focusing on

the new parts.

As in Remark 18, observe that the zero section s0(x) = 0 ∈ Ex for all

x ∈ X is τE-invariant and therefore the subbundle ξ|0 of non-zero vectors

can be endowed through τE with a “Quaternionic” structure over (X, τ).

The fibres of ξ0 are isomorphic to C2k \ {0}, which is 2(2k − 1)-connected,

i.e., πj(Ex) ∼= 0 for every 0 6 j 6 2(2k − 1). Given a Q-pair for ξ0, this can

also be seen as a global Q-pair for the original bundle ξ. The claim is that

this pair always exists when k > max{dτ
4
, d+2

4
}.

First, suppose that dτ = 0 and proceede by induction on the dimension of

the skeleton:

• In the base case of X0, one defines a pair of vectors (s′1(xj), s
′
2(xj)) ∈

E0,x × E0,x with s′2(xj) := τ ′(s′1)(xj) for fixed points xj = τ(xj) and

for j = 1, ..., N0; whereas for free pairs {xj, τ(xj)} one sets s′1 :=
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(s′1(xj), s
′
1(τ(xj))) ∈ E0,x × E0,τ(x) and s′2 := τ ′(s′1). In both cases

the result is a Q-pair of E0,x ∪ E0,τ(x).

• Assume the claim is true for the Z2-CW-subcomplex Xj−1, 1 6 j 6 d

and let σ̃j ∼= Z2 × Dj be a free j-cell with equivariant characteristic

map ϕ : Z2 × Dj → X. The induced bundle ϕ∗(ξ0) over Z2 × Dj

has a Q-structure since the map ϕ is equivariant. By the inductive

hypothesis there is a Q-pair of sections (s′1, s
′
2) of ξ|Xj−1 which can be

used to define a Q-pair (σ′1, σ
′
2) on ϕ∗(ξ0) by σ′j := s′j ◦ϕ. Since the Dj

is contractible, ϕ∗(ξ0) is trivial and therefore (σ′1, σ
′
2) can be identified

with a pair of linearly independent equivariant maps Z2×∂Dj → C2k \
{0}. Considering the inequalities j − 1 6 d− 1 6 4k − 4 = 2(2k − 2),

the following hold:

– πj−1(C2k \ {0}) ∼= 0 implies that the restriction of σ′1 to {1} ×
∂Dj → C2k \ {0} extends to a map {1} × Dj → C2k \ {0};

– the fact that σ′1 and σ′2 are linearly independent implies that σ′2

can be seen as a map Z2 × ∂Dj → (C2k/〈σ′1〉) \ {0} ∼= C2k−1 \ {0}
and since also πj−1(C2k−1 \{0}) ∼= 0, the restriction of σ′2 to {1}×
∂Dj → C2k−1 \ {0} extends to a map {1} × Dj → C2k−1 \ {0} as

well; by construction, this is also linearly independent with the

prolongation of σ′1.

– impose the equivariant constraints

σ′2(−1, x) := (τ0σ1)(1, x)

σ′1(−1, x) := −(τ0σ2)(1, x)

in order to get a Q-pair of sections (σ1, σ2) of ϕ∗(ξ0);

– using the natural isomorphism of induced bundles (ϕξ, ϕ) : ϕ∗(ξ0)→
ξ0, define a Q-pair of sections (s′′1, s

′′
2) of ξ0|σ̃j by ϕξ ◦ σi = s′′i ◦ φ

for i = 1, 2, which satisfies s′′i |Xj−1∩σ̃j = s′i;

– finally, define a global Q-pair (s1, s2) of ξ|Xj−1∪σj by the require-

ments that si|Xj−1 ≡ s′i and si|σ̃j ≡ s′′j . These sections are contin-

uous by the weak topology property of CW-complexes.
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The iteration of this procedure on all other free j-cells yields the claim

on Xj; by induction it is also valid on Xd = X.

Suppose now that dτ > 0 and consider the fixed-point subcomplex Xτ .

The fibres over its points are quaternionic vector bundles of dimension

k in view of Proposition 4.5. By Theorem 2.8, a nowhere vanishing

section s′1 : Xτ → E exists if dτ 6 4k− 1, condition that is guaranteed

by the hypothesis k > dτ/4. Define also s′2 := τ ′(s′1). Thus, (s′1, s
′
2) is

a Q-pair over Xτ .

Finally, consider the relative Z2-CW-complex (X,Xτ ). Since τ(Xτ ) =

Xτ , by Lemma 4.7 (s′1, s
′
2) extends to a Q-pair (s1, s2) defined on the

whole X.

Proposition 5.7. Let (X, τ) be an involutive space such that X has a finite

Z2-CW decomposition of dimension d and dτ = dimXτ . Then each Q-vector

bundle of rank 2k over (X, τ) with k > max{dτ
4
, d+2

4
} splits as ξ ∼= θ

2(k−m)
Q ⊕η,

where η is a Q-vector bundle over (X, τ), m := dd+2
4
e and θm−kQ denotes the

trivial Q-vector bundle over X × C2(k−m) of rank k −m.

Proof. Let (s1, s2) ⊂ Γ(E) be a global Q-pair of sections, which exists by

Proposition 5.6. This defines a monomorphism u : θ1Q → ξ by u(x, (a1, a2)) :=

a1 s1(x) + a2 s2(x) for every (x, a) ∈ X × C2; u is equivariant:

(u ◦ τ)(x, (a1, a2)) = u(τ(x), (a1, a2) = a1 s1(τ(x)) + a2 s2(τ(x))

= τE(a1 s1(x)) + τE(a2 s2(x)) = τE(a1 s1(x) + a2 s2(x)) = (τE ◦ u)(x, (a1, a2))

⇒ u ◦ τ = τE ◦ u
Now denote by η1 the cokeru, which is a vector bundle of dimension 2k − 2

by Theorem 1.7 and it is endowed with the same Q-structure as ξ because

of the equivariance of u. Since the base space X is paracompact, we can

apply Theorem 1.8 to the short exact sequence 0 → θ1Q
u→ ξ

v→ η1 → 0 in

order to get an isomorphism of Q-vector bundles ξ ∼= θ1Q⊕η1. Repeating the

argument for η1 and by iterating this procedure one gets the claim.

Lemma 5.8. Let (X, τ) be an involutive space such that X has a finite Z2-

CW decomposition of dimension d and dτ = dimXτ . Let ξ be a Q-vector
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bundle of dimension 2k over (X, τ) and let u, v : θ1Q → ξ be monomorphisms

of Q-vector bundles with k > dτ−3
4

. Then cokeru and coker v are isomorphic

over X.

Proof. This proof is analogous to Lemma 5.4 for the case of Q-pairs of sec-

tions. In particular, a homotopy between u and v can now be assumed to be

completely determined by a global Q-pair of sections (s1, s2) of the Q-vector

bundle (ξ × I) over X × I (I = [0, 1] endowed with the trivial action), such

that (a1s1(x, 0) + a2s2(x, 0))|X×{0} = u(x, a1, a2)

(a1s1(x, 1) + a2s2(x, 1))|X×{1} = v(x, a1, a2).

The requirement on these sections of being nowhere vanishing can now be

skipped since it is implicit in the definition of a Q-pair.

First, we consider the fixed-point subcomplex (X × I)τ = Xτ × I. Propo-

sition 4.5 shows that Vec2k+1
Q (Xτ × I,id) ∼= Vec

(2k+1)/2
H (Xτ × I). Therefore, a

nowhere vanishing Q-section s∗1 of Xτ × I is also a non-equivariant section of

the quaternionic vector bundle over Xτ × I with half dimension. In view of

Theorem 2.8, this exists if dτ +1 6 4(k+1)−1, that is, if dτ 6 2(2k+1) and

this is guaranteed by the hypothesis on k. Define also s∗2 := τ ′(s∗1). Hence,

(s∗1, s
∗
2) is Q-pair over the subcomplex Xτ × I. We need now to extend it to

a Q-pair (s1, s2) over the whole Z2-CW-complex X × I.

In order to do that, we consider the relative Z2-CW-complex (X×I,Xτ×
I). Since τ is the trivial involution, the equivalence τ(Xτ × I) = Xτ × I is

satisfied and we can use the extension Lemma 4.7 to get the desired global

Q-pair (s1, s2).

Finally, we can define an equivariant monomorphism w : θ1Q → ξ×I given

by w(x, a1, a2, t) = a1 s
∗
1(x, t) + a2 s

∗
2(x, t) for every (x, a1, a2, t) ∈ X × C2 \

{0}× I. Hence, cokerw is endowed with a Q-structure and the claim follows

from Lemma 2.10.

Theorem 5.9. Let m := dmax{dτ
2
, d+2

2
}e. If ξ1 and ξ2 are two 2k-dimensional

Q-vector bundles such that 2k > m and ξ1 ⊕ θlQ ∼= ξ2 ⊕ θlQ for some l > 1,
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then ξ1 and ξ2 are isomorphic.

Proof. From the hypothesism := dmax{dτ
2
, d+2

2
}e, it follows that k > max{dτ

4
, d+2

4
}

and thus we can apply both Proposition 5.7 and Lemma 5.8. Therefore, by

induction on l > 1:

• For the base case l = 1:

ξ2k1
Prop.5.7∼= cokeru⊕ θ1Q

Lem.5.8∼= coker v ⊕ θ1Q
Prop.5.7∼= ξ2k2

• The inductive step proceeds as in the proof of Theorem 2.7.

The involutive space (Td, τ) of the Bloch bundle has fixed cells only di-

mension 0, which means that dτ = 0. Hence, the value of the constant m

in the last theorem becomes m = dd+2
2
e. The physical meaning of this dis-

cussion is that, given a quantum mechanical system with odd time-reversal

symmetry T −, the classification up to isomorphism is equivalent to the classi-

fication up to stable isomorphism whenever the corresponding Bloch bundle

ξ has dimension k′ := 2k > dd+2
2
e. This is also the same estimate for a

non-equivariant complex vector bundle over a base space X of two higher

dimensions. For example, k′ must be greater than 2 for 1 and 2-dimensional

systems and greater than 3 for 3-dimensional systems.



Conclusions

The results obtained in Section 5.3 prove that the presence of the even

time-reversal symmetry on a quantum mechanical system does not alter the

stability properties of the corresponding Bloch bundle. This implies that

Theorem 2.7 is sufficient to deduce the condition on the rank k of an R-vector

bundle under which isomorphism and stable isomorphism are equivalent.

For quantum systems with odd time-reverse symmetry, Theorem 5.9 states

that in this case the lower bound on the rank of stable Q-vector bundle has

to be slightly higher, specifically, it agreed with the lower bound on the rank

of a complex vector bundle without symmetries over a base space X of two

higher dimensions.

The following table synthesizes these results for the case of low dimensional

systems:

d = 1 d = 2 d = 3 d = 4

complex vector bundles (no symmetries) 1 1 2 2

R-vector bundles (T + symmetry) 1 1 2 2

Q-vector bundles (T − symmetry) 2 2 3 3

Table 5.2: The table indicates the values of the constant m such that stably isomorphic

Bloch bundles (with or without symmetries) of rank k > m are also isomorphic. In the

first line, d is the dimension of the base space X.

As introduced in Section 5.1, quantum systems can be endowed with other

types of symmetries. An interesting development of this thesis would be to

extend the results of Chapter 5 about the stability properties of particular

vector bundles to all the other classes of symmetries.
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