
ALMA MATER STUDIORUM
UNIVERSITÀ DEGLI STUDI DI BOLOGNA

Scuola di Ingegneria e Architettura
Corso di Laurea Magistrale in Ingegneria e Scienze

Informatiche

FROM ARTIFICIAL INTELLIGENCE TO

ARTIFICIAL ART: DEEP LEARNING WITH

GENERATIVE ADVERSARIAL NETWORKS

Tesi di Laurea Magistrale di:
RICCARDO BENEDETTI

Relatore:
Prof. GIANLUCA MORO

Correlatore:
Ing. ROBERTO PASOLINI

ANNO ACCADEMICO 2018-2019
SESSIONE II

KEYWORDS

Generative

Adversarial

Network

Art

Deep Learning

DEDICATA AI MIEI GENITORI

E A MIA SORELLA ANNA

Contents

Abstract ix

Abstract (italian version) xi

1 A Deep Learning overview 1
1.1 AI, Machine Learning and

Deep Learning . 1
1.2 The need for Deep Learning 3
1.3 The cognitive system:

from Aristotle to Hebb 5
1.4 Artificial neural networks

over the years . 7
1.5 Learning approaches 10

2 The Art of Training 13
2.1 Standard Backpropagation 13
2.2 Input preprocessing . 16
2.3 Hyperparameters initialization

and tuning . 18
2.3.1 Weights . 18
2.3.2 Learning Rate 18

2.4 Rectifying activation function 20

3 Convolutional Neural Networks 23
3.1 Limitations of MLPs in

image processing contexts 23
3.2 An uniform representation

for heterogeneous data 24

vii

3.3 CNN structure . 26
3.3.1 Convolutional Layer 27
3.3.2 Pooling Layer 30
3.3.3 Flattening Layer 31
3.3.4 Fully-Connected Layers 32

3.4 Autopsy of a CNN . 33

4 Generative Adversarial Networks 37
4.1 The artificial artist . 37
4.2 The GAN system . 41

4.2.1 Structure . 41
4.2.2 Interaction . 43
4.2.3 Behaviour . 45

4.3 Mode collapse:
The Helvetica Scenario 47

5 Practical applications of GANs 51
5.1 Text to image generation 52
5.2 Image to image translation 56
5.3 Increasing image resolution 60
5.4 Predicting next video frame 63

6 Experimental Case:
Generating new Amazon products 67
6.1 Overview, goal and datasets 67
6.2 Data pre-processing . 69
6.3 GAN solution . 71
6.4 Setup of the experiment 74
6.5 Quantitative Results 77
6.6 Qualitative Results . 86
6.7 Possible future improvements

with Style GAN . 101

Conclusion 105

Acknowledgements 107

viii

Abstract

Neural Networks had a great impact on Artificial Intelligence and
nowadays the Deep Learning algorithms are widely used to extract
knowledge from huge amount of data.
This thesis aims to revisit the evolution of Deep Learning from the ori-
gins till the current state-of-art by focusing on a particular prospective.
The main question we try to answer is: can AI exhibit artistic abilities
comparable to the human ones?
Recovering the definition of the Turing Test, we propose a similar for-
mulation of the concept, indeed, we would like to test the machine’s
ability to exhibit artistic behaviour equivalent to, or indistinguishable
from, that of a human.
The argument we will analyze as a support for this debate is an in-
teresting and innovative idea coming from the field of Deep Learning,
known as Generative Adversarial Network (GAN).
GAN is basically a system composed of two neural network fighting
each other in a zero-sum game. The “bullets” fired during this chal-
lenge are simply images generated by one of the two networks.
The interesting part in this scenario is that, with a proper system de-
sign and training, after several iteration these fake generated images
start to become more and more closer to the ones we see in the reality,
making indistinguishable what is real from what is not.
We will talk about some real anecdotes around GANs to spice up even
more the discussion generated by the question previously posed and
we will present some recent real world application based on GANs to
emphasize their importance also in term of business.
We will conclude with a practical experiment over an Amazon cata-
logue of clothing images and reviews with the aim of generating new
never seen product starting from the most popular existing ones.

ix

x

Abstract (italian version)

Da sempre le reti neurali hanno avuto una grande rilevanza nel campo
dell’Intelligenza Artificiale e oggigiorno gli algoritmi di Deep Lear-
ning vengono ampiamente utilizzati per estrarre conoscenza da grandi
quantità di dati.
Questa tesi ha come obiettivo quello di ripercorrere l’evoluzione del
Deep Learning dalle orgini fino ad arrivare all’attuale stato dell’arte,
affrontando però l’argomento da un punto di vista differente. La do-
manda a cui cercheremo di dare una risposta è: quant’è lontana, ad
oggi, l’Intelligenza Artificiale dal mostrare capacità artistiche parago-
nabili a quelle di un normale essere umano?
Questa domanda può essere vista come una riformulazione della definizione
di “Test di Turnig”, in particolare vogliamo testare l’abilità di una
macchina di emulare l’artista in modo tale che i suoi risultati appa-
iano equivalenti, o indistinguibili, da quelli di un artista umano.
Lo strumento che intendiamo analizzare a supporto di questo dibat-
tito è un’idea innovativa e rivoluzionaria che viene dall’area del Deep
Learning ed è conosciuta col nome di Rete Antagonista Genera-
tiva (GAN).
Una GAN è un sistema che vede due reti neurali combattere l’un l’altra
in un gioco a somma zero. Le “armi” di questo combattimento sono
semplicemente immagini generate da una delle due reti.
La parte interessante di questo scenario è che, con un’opportuna pro-
gettazione delle reti, scelta del dataset e relativo addestramento, è
possibile arrivare a una situazione in cui le immagini generate iniziano
a sembrare talmente verosimili da rendere indistinguibile ciò che è ve-
ramente reale da ciò che non lo è.
Vi racconteremo inoltre alcuni aneddoti riguardanti le GAN che potreb-
bero accendere ulteriormente la discussione attorno alla domanda posta

xi

in precedenza e presenteremo alcune applicazioni esistenti basate su
GAN per enfatizzare la loro importanza anche nel mondo del business.
Infine, concluderemo la tesi con un pratico esperimento, utilizzando
un dataset Amazon di immagini provenienti da cataloghi di recen-
sioni e prodotti di moda, con lo scopo di generare immagini di nuovi
prodotti mai visti in precedenza, sfruttando le caratteristiche di quelli
piú popolari e piú venduti.

xii

Chapter 1

A Deep Learning overview

1.1 AI, Machine Learning and

Deep Learning

In the field of Computer Science, these three concepts are often er-
roneously employed in an almost identical manner, sometimes even
interchanged. The truth is they have a very different meaning.
In order to understand the difference between Artificial Intelligence,
Machine Learning and Deep Learning, can be useful to see them
as a series of concentric circles.

Figure 1.1: The AI hierarchy of concepts

1

2 CHAPTER 1. A DEEP LEARNING OVERVIEW

Into the large outer circle we have the Artificial Intelligence. Artifi-
cial Intelligence is the goal we would like to achieve. More specifically,
we want to create software or hardware able to think and solve prob-
lems just like a human being. The problems we are talking about are
those that most affect our everyday life and the humans are used to
figure out pretty easily. Unfortunately, machines are not provided of
a native ability to handle this kind of challenges, with some including
for instance text interpretation or image recognition.
The overall objective is a general AI, a highly smart system as the
ones we can see in science fiction, like C-3PO from Star Wars, which
is able to emulate the human behaviour through and through. At
the moment, we are not even nearly close to this kind of artificial in-
telligence, so in practice we have to refer to it as a (very)long-term
objective.
The example we have just been discussing is also referred as Strong
AI. Instead, what we have nowadays can be identified only as Weak
AI, which is the use of techniques and algorithms with the aim to
solving just some individual tasks.
Inside this big circle of the Artificial Intelligence we can find a smaller
circle that is the circle of Machine Learning. Machine Learning con-
cerns the use of big data set and a series of classification algorithms
that overturns the common approaches of computer programming. A
traditional programmer, in fact, is used to write algorithms increas-
ingly complex but in a way he knows exactly how it works every single
statement.
The basic idea of creating a classifier is quite different. The first step
consists in retrieving a significant amount of data, and then to create
a bunch of functions that can help us to understand which of these
data we are really interested in. This approach should lead a gradual
improvements of the results we get back and, moreover, the possibility
to obtain a system capable of making decisions based on the available
data, without writing all the specific algorithm.
Most of these classifiers are based on well-known mathematical func-
tions, like linear functions, polynomial functions, clustering of various
types, statistical functions and so on. Many classifiers can also pre-
dict some kind of future trends by exploiting time series, like the price
of a product, the forecast average selling estimates for the following

2

CHAPTER 1. A DEEP LEARNING OVERVIEW 3

months or even some indications about financial investments.
Nested inside the Machine Learning circle exists another sub-branch
called Deep Learning. All the Deep Learning techniques are based
on the artificial neural networks, a part of software that tries to repli-
cate, with some respects, the functioning of the brain cells.
From 2012 onwards, Google researchers efforts have been completely
revolutionized the state of art of Deep Learning. The term “deep”
refers to the number of levels, or layers, that characterizes the depth
of the neural network architecture. The way a neural network works is
even more interesting. It’s indeed the machine itself who determines
the classifiers by exploiting a set of data usually much larger than
the ones used in the ordinary Machine Learning. In other words, the
machine chooses and defines the specific classifiers to be used. These
classifiers are, in short, not pre-selected by the researchers, but seem
to have a significantly higher impact from a point of view of desirable
results we would like to expect.
When we talk about the three terminology: Artificial Intelligence,
Machine Learning and Deep Learning; we must be aware of their very
different meanings. The Artificial Intelligence is the goal we wish
to achieve, the Machine Learning is one of the possible approach to
dealing with it, and the Deep Learning is a particular advanced tech-
nique of Machine Learning the we could exploit, maybe now the most
promising one.

1.2 The need for Deep Learning

Deep Learning is a branch of Artificial Intelligence (in particular of
the Machine Learning) that deals with solving some kind of problems
through the use of multilayer neural networks.
It represents an innovative approach compared to the first Shallow
Networks that were composed by a low number of layers (typically
three: input, hidden and output layer) where the most part of the
neurons was situated in the broad intermediate.
Although there are studies that demonstrate how the Shallow Net-
works are able to solve the same problems as Deep Networks [1], the
layered approach is more desirable for a multitude of reasons. The

3

4 CHAPTER 1. A DEEP LEARNING OVERVIEW

most relevant one is about parameter reduction. It has been proven
the fact that states the representation power of a k-layer neural net-
work with polynomial many neurons needs to be expressed with ex-
ponentially many neurons if a (k-1)-layer structured is used. Further
supports come from the comparison with the human brain visual cor-
tex both in terms of structure, human neural network is effectively a
deep architecture, and in terms of behaviour, humans tend to repre-
sent concepts at one level of abstraction as the composition of concepts
at lower levels.

Figure 1.2: Shallow network Vs. Deep network

Relying on the previous assertions, some researchers [2] refer to the
Deep Learning also with the term “Hierarchical Feature Learning” be-
cause the main skill of these networks is to model high level abstrac-
tions starting from the lowest level characteristics, producing in prac-
tice an hierarchical structure of features. Deep learning algorithms, in
fact, seek to exploit the unknown structure in the input distribution in
order to discover good representations, often at multiple levels, with
higher-level learned features defined in terms of lower-level features.
The objective is to make these higher-level representations even more
abstract, with their individual features more invariant respect to most
of the variations that are typically present in the training distribution,
while collectively preserving as much as possible of the information of
the input.
The research fields involved range from the images recognition and
computer vision, to the voice recognition, to the discovery of new

4

CHAPTER 1. A DEEP LEARNING OVERVIEW 5

drugs, text analysis and much more.
Nowadays all the main technological giants invest in Deep Learning for
research and innovation purposes. In the forefront we find for example
Google, Facebook, Microsoft, Amazon, etc.

1.3 The cognitive system:

from Aristotle to Hebb

[3] The modern progresses about Artificial Neural Networks have been
made possible thanks to the human ambition of understandings the
functionality of our cognitive system. The first attempt is attributable
to Aristotle (300 B.C.) who ispired the Associationism Theory through
the following thought:

“When, therefore, we accomplish an act of reminiscence, we pass
through a certain series of precursive movements, until we arrive at

a movement on which the one we are in quest of is habitually
consequent. Hence, too, it is that we hunt through the mental train,

excogitating from the present or some other, and from similar or
contrary or coadjacent. Through this process reminiscence takes

place. For the movements are, in these cases, sometimes at the same
time, sometimes parts of the same whole, so that the subsequent

movement is already more than half accomplished.”

Inspired by Plato, Aristotle examined the processes of remembrance
and recall and brought up with four laws of association:

• Contiguity: Things or events with spatial or temporal proximity
tend to be associated in the mind.

• Frequency: The number of occurrences of two events is propor-
tional to the strength of association between these two events.

• Similarity: Thought of one event tends to trigger the thought of
a similar event.

5

6 CHAPTER 1. A DEEP LEARNING OVERVIEW

• Contrast: Thought of one event tends to trigger the thought of
an opposite event.

These ideas have been revisited and redrafted by many philosophers
or psychologists, especially from the 16th century onwards.
In addition to existing laws, David Hartley (1705-1757), as a physician,
proposed his argument that memory could be conceived as smaller
scale vibrations in the same regions of the brain as the original sensory
experience. These vibrations can link up to represent complex ideas
and therefore act as a material basis for the stream of consciousness.
This idea potentially inspired Hebbian Learning Rule, introduced by
Donald O. Hebb in his work The Organization of Behavior.
In 1949, Hebb stated the famous rule: “Cells that fire together, wire
together”, which emphasized on the activation behavior of co-fired
cells. More specifically, in his book, he wrote that:

“When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth process

or metabolic change takes place in one or both cells such that As
efficiency, as one of the cells firing B, is increased.”

This archaic paragraph can be re-written into modern machine learn-
ing languages as the following:

∆wi = ηxiy

where ∆wi stands for the change of synaptic weights (wi) of Neuron
i, of which the input signal is xi. y denotes the postsynaptic response
and η denotes learning rate. In other words, Hebbian Learning Rule
states that the connection between two units should be strengthened
as the frequency of co-occurrences of these two units increase.
Even though Hebb is considered the pioneer of neural network, it
should be noted that this rule raises some issues which can lead to a
form of unstableness: as co-occurrences appear more, the weights of
connections keep increasing and the weights of a dominant signal will
increase exponentially.
This problem has been solved by Erkki Oja (1982), who updated the

6

CHAPTER 1. A DEEP LEARNING OVERVIEW 7

HLR introducing a normalization factor. His updated learning rule
would later demonstrated that a neuron does nothing but approxi-
mating the behavior of a Principal Component Analyzer (PCA).

1.4 Artificial neural networks

over the years

The first important research in the ANN field dates back to 1943, when
a neurophysiologist, Warren McCulloch, and a mathematician, Walter
Pitts, speculated the inner workings of neurons and molded a primitive
neural network [4]. Their neural model was inspired by the behaviour
of electronic circuits, where the binary outputs are determined from
a linear weighted combination of inputs. Unlike modern ANNs, this
model was characterised by fixed weights, then non-adjustable over
the time. This learning aspect was introduced only from 1949, with
the Hebbian Learning Rule.
In 1958, Rosenblatt was investigating the area of vision systems and
in this context he implemented the first electronic device called Per-
ceptron [5]. Perceptron has represented the crucial transition from
biological to artificial systems.
Basically, the representation power of Rosenblatt Perceptron concerns
the definition of linear decision boundaries in order to handle basic
logical operations, such as AND, OR and NOT. Here, it has emerged
also a critical shortcoming highlighted by Minski and Papert (1969)
[6]. They showed how a single Perceptron cannot solve XOR and
NXOR since a non-linear decision boundary is required to properly
separate binary output classes.
From 1974 onwards, the breakthrough came from the introduction
of backpropagation and MultiLayer Perceptron (MLP). The neuron
weights are no longer perceived as fixed parameter and backpropaga-
tion put into practice the concept of learning by providing the network
a self-improvement approach.
It has also been proven how a simple MLP architecture can easily
figure out the XOR problem. Furthermore, MLP allows to model cog-
nitive processes such as classification, recognition, sensorimotor be-
haviours, association and memorization attitudes.

7

8 CHAPTER 1. A DEEP LEARNING OVERVIEW

Figure 1.3: Deep Learning milestones - Part 1

Figure 1.4: Deep Learning milestones - Part 2

8

CHAPTER 1. A DEEP LEARNING OVERVIEW 9

The learning aspect of MLP is implemented on the basis of Delta Rule
giving rise to first form of supervised learning, where the network can
improve itself by changing its weight according to the errors commit-
ted (represented as the difference between the predicted output and
the expected output).
Other remarkable works were carried out also in the context of un-
supervised learning. Kohonen (1981) introduced the Self-Organizing
Maps, a new kind of network that didn’t need of a external supervisor
but by exploiting the statistical properties of data can identify a series
of categorical patterns.
Researches about unsupervised learning proceed with Hopfield Net-
works and Boltzmann Machines, culminating in Deep Boltzmann Ma-
chines and Deep Belief Networks. In particular the self-organization
approach enables the modelling of hierarchical structure of features
where the abstraction level grows up over hidden layers. Then, by
investigating the latent data representation in these less wider hidden
layers, another interesting idea was proposed: can neural network be
used also as autoencoder? The answer is yes and in particular these
autoencoders can be successfully employed for task such as dimension-
ality reduction and data denoising.
Around the 2000s, the enthusiasm about neural networks research and
their practical applications gradually faded due to the unavailability
of vast data sets and adequate computational resources.
Only in 2009, when the first results about speech recognition raised
up, neural networks were reconsidered and expectations come back
to growth. In 2013, Convolutional Neural Networks were successfully
employed in Computer Vision tasks. In 2014, Recurrent Neural Net-
works were used for the first automatic translation models.
A further boost of encouragement came from the spread of Big Data
and low-cost increasingly fast GPUs. These two contributions repre-
sent in fact the crucial solutions to all the problems that had caused
the latest crisis, years earlier.
Currently we are able not only to analyze Big Data, but also to use
them to make predictions and extract further knowledge.
With a view into the future, we are now so building the launch pad
towards the Strong AI.

9

10 CHAPTER 1. A DEEP LEARNING OVERVIEW

1.5 Learning approaches

In Machine Learning, all known learning approaches basically share
the same principle: trying to learn what is the best output o to pro-
duce for each possible input i [7].
The previous assertion can be more accurately expressed in mathe-
matical terms: trying to find a function F: I → O as efficiently as
possible, where I is the set of possible inputs, and O the set of possible
outputs.
Beyond this principle, some machine learning approaches raised up
taking inspiration by real-life learning approaches, like training a pet
or teaching a child. These examples usually involve an alternation
of training and testing sessions, where the latter has the purpose of
checking the progresses achieved after training.
Unfortunately, not all the problems cannot be solved adopting a unique
standard approach and this often depends by the data we have at our
disposal. We can have examples of data where we have both the in-
puts and outputs: (i,o). In other cases, we can only have the inputs
i. Sometimes, instead, we have no direct access to the correct output,
but we can get some measure of the quality of an output o following
input i.
The approach used to deal with first kind of problems is also called
supervised learning. The idea consists in exploiting a large set of
training data encoded as pairs (i,o). The matching between input
and output is represented by a function which often depends by a large
number of parameters. The machine goal is to find an optimal assign-
ment for those parameters and, in case of neural networks, this can be
achieved by adjusting the neuron weights through backpropagation.
Typical examples are spam detectors which are trained on data set on
explicitly labelled spam and non-spam emails.
The welcomed outcome is to obtain a model able to generalize on fresh
unseen data, or in other words, the learning process should avoid to
overfit on training set.
The sore point of supervised learning is mainly related to the con-
struction of the data set. Since the data are required to be properly
hand labelled, it usually needed a huge manual effort. In general, most
of the problems have just input data without prior knowledge about

10

CHAPTER 1. A DEEP LEARNING OVERVIEW 11

output. Furthermore, many data mining scenarios start with no idea
about the kind of output are looking for. Often, the most desired
output is what you don’t expect and this can be discovered by deeply
investigating on input data, such as searching for correlation between
features or detecting outliers with clustering techniques. One refers to
these approach also as unsupervised learning.
In the field of natural language processing and text classification, in
particular, the idea of word embedding represents one of the most rel-
evant unsupervised models.
For sake of completeness, we briefly discuss also about a third kind of
learning which in recent years is leading impressing results. It covers
the category of problems in where it is possible to obtain an estimate
of the output quality. The approach we are talking about is known as
reinforcement learning.
Csaba Szepesvári [8] explained reinforcement learning as a learning
paradigm concerned with learning to control a system so as to max-
imize a numerical performance measure that expresses a long-term
objective. What distinguishes reinforcement learning from supervised
learning is that only partial feedback is given to the learner about the
learner’s predictions. Moreover, the predictions may have long term
effects through influencing the future state of the controlled system.
Thus, time plays a special role. The goal in reinforcement learning is
to develop efficient learning algorithms, as well as to understand the
algorithm merits and limitations. Reinforcement learning is of great
interest because of the large number of practical applications that it
can be used to address, ranging from problems in artificial intelligence
to operations research or control engineering.

11

12 CHAPTER 1. A DEEP LEARNING OVERVIEW

12

Chapter 2

The Art of Training

2.1 Standard Backpropagation

Back in 1998, Yann LeCun wrote “backpropagation can seem more of
an art than a science” [9].
The reason of that assertion is related to the fact that there is still no a
well-defined best practice to apply this technique. The parameters to
consider when designing a neural network are several, such as nodes,
layers, learning rates, dropout, epochs, training and test sets, and so
forth.

Figure 2.1: Gradient-based Learning Machine

13

14 CHAPTER 2. THE ART OF TRAINING

Backpropagation is the core of gradient-based learning methods.
The main goal of the training process is to minimize, through the it-
erations, a cost function which keeps track of the deviation from the
estimated output to the expected.
While the cost function decreases, the network should be able to better
generalize its predictions, from the training examples to new fresh
unseen.
So far the most widely used cost functions are the Mean Square Error
(also known as Sum Squared Error or Maximum Likelihood) and the
Cross Entropy (also known as Binary Cross Entropy or Bernoulli Neg-
ative Log-Likelihood). The first one is preferred in linear regression
contexts, for example in the forecasting models used to predict the
future trend of time series, while the Cross Entropy is more suitable
for classification problems, therefore it is commonly used in the area
of Image Recognition at the end of Convolutional Neural Networks to
determine the category of the objects detected [10].
The number of possible cost functions is not limited to these two. The
list includes also the Kullback-Leibler divergence (a measure of how
one probability distribution is different from a second), Generalized
Kullback-Leibler divergence, Exponentional cost, Hellinger distance,
Itakura-Saito distance [11].
Another important consideration concerns the ways we feed the data
into the model. There are two kind of approaches known as Batch
Learning and Stochastic Learning, both of them with benefits and
drawbacks.
Stochastic Learning is an online technique preferred over Batch be-
cause generally leads to faster computation and better results. Fur-
thermore, while Batch tends to converge directly to a minimum which
could not be the global one, Stochastic behaviour produces fluctua-
tions very useful in order to avoid to get stuck in local minima.
A third kind of hybrid approach has been proposed by G.B. Orr [12].
The idea is to provide adaptive mini-batches as an alternative to fixed
batch sizes, starting with one examples (pure stochastic) and then
gradually increase over the epochs until it reaches the full training
size (pure batch).
The advantage of mini-batches consists of removing the noise that can
be accumulated after many stochastic iterations. But this is not the

14

CHAPTER 2. THE ART OF TRAINING 15

only way, indeed it can also be achieved decreasing step by step the
learning rate (learning rate decay).

Figure 2.2: Stochastic, Batch and Mini-Batch
(credits: https://i.stack.imgur.com/lU3sx.png)

As the training proceed, some training examples can present very large
errors respect to the other. This can be an indication that the model
needs to be trained better on these data. In such cases it exists a
method called “emphasizing scheme” which prioritize the examples
with maximum information content, or in other words the most rel-
evant for the network. So basically, the frequency with which an
occurrence appears is proportional to the error previously committed
by the model on that occurrence.
On the other side, it is also important to point out that such a method
should be applied very carefully since may prove extremely counter-
productive in case are present some outliers inside the dataset.

15

16 CHAPTER 2. THE ART OF TRAINING

2.2 Input preprocessing

It happens very rarely that the input are fed the neural network “as
is”. In order to fast the convergence it is recommended to perform a
series of transformations on all the input variables.
The most common transformation is called “normalization” and is
performed combining two-step: shifting and scaling. The expected
result is to arrange each input close to zero with also uniform covari-
ances, through scaling. This is known as “mean cancellation” since
the overall mean should become close to zero.
Then it is required a more tricky step: remove eventual linear corre-
lation between the inputs, making them as independent as possible.
The solution lies in Principal Component Analysis, or Karhunen-Loeve
transformation, which by the way finds also application in image com-
pression [13].

Figure 2.3: Input transformation

As mentioned above, all these transformations are applied to the in-
put data in order to feed the input layer. But the general property
of a fully connected neural network states that the output of a layer

16

CHAPTER 2. THE ART OF TRAINING 17

becomes the input of the next one. Therefore, the output of a layer
should be even produced in an appropriate format in the interests of
the next layer.
This problem is addressed by the correct choice of a nonlinear activa-
tion function, such as the standard logistic function and the hyperbolic
tangent.

Figure 2.4: (a) Standard logistic function, (b) Hyperbolic tangent

Usually it is preferable an activation function symmetric about the
origin, like the hyperbolic tangent: f(x) = 1.7159 tanh (2

3
x). The

constants in the formula are experimentally determined to work prop-
erly with the transformations discussed previously.

17

18 CHAPTER 2. THE ART OF TRAINING

2.3 Hyperparameters initialization

and tuning

2.3.1 Weights

Before starting the training phase of a neural network, it is necessary
a proper initialization of a series of hyperparameters.
Let’s start by considering the connections between neurons in adja-
cent layers. As we know, the synapses in a ANN are transmitted by
exploiting this network of connections and each one is associated to a
particular weight which plays a crucial role during the overall training
process.
The weight set, usually represented as a multi-dimensional vector, is
the most dynamic hyperparameter of a neural network as a conse-
quence of applying backpropagation.
In order to avoid bad convergence, the weight must be initialized fol-
lowing some recommendations. First of all, they shouldn’t be neither
too small nor too large (this last case would cause the sigmoid satura-
tion). In both cases it will end up in very small gradients and therefore
very slow learning.
The best practice is given by the following rule: assuming you just
have a training set normalized and you picked the proper sigmoid, the
weights initialization should be randomly sampled from a distribution
with zero mean and standard deviation σw = m−1/2 (where m is the
number of connections feeding into the node, or fan-in).

2.3.2 Learning Rate

The learning speed is controlled by another hyperparameter so called
learning rate, η.
As well as for the weight initialization, a similar consideration can be
applyed about the learning rate which concerns the risk of picking a
too small or a too large value. Large value can lead to undesiderable
divergence while small value can strongly slow down the convergence.
The effect of different learning rates is pretty comprehensible with a
simple example of a one dimensional cost function and it is even easy
to decide the optimal learning rate ηopt for that.

18

CHAPTER 2. THE ART OF TRAINING 19

Figure 2.5: Learning rates comparison

Some empirical attempts suggest to treat the learning rate not as a
global constant but as a decreasing function. One can refer to this
approach as “learning rate decay” or “adaptive learning rate” [14].
The idea is to start with a reasonable large value and then gradually
dump it over the training epochs.
Some modern adaptive learning rate methods are nowadays widely
used: AdaGrad [15], ADAM [16] and RMSprop.
Another popular technique used along with stochastic gradient descent
is the Momentum. Intuitively, Momentum helps the convergence by
considering the previous iterations when calculating the new gradient.
This implies the capability of moving quickly towards the minima and
meanwhile smoothing eventual oscillations.

19

20 CHAPTER 2. THE ART OF TRAINING

Figure 2.6: Example of an exponential decay schedule
(credits: https://towardsdatascience.com/learning-rate-schedules-

and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1)

2.4 Rectifying activation function

The argument that motivated the research in the field of neural net-
works comes from the need of artificially emulating the mammalian
visual cortex behaviour.
Even if some activation functions like the logistic sigmoid or the hy-
perbolic function work well, the studies coming from computational
neuroscientists highlight that the neurons rarely reach their maximum
saturation regime and generally the portion of neurons activate at the
same time is between the 1 and 4% of the total.
This means the networks become highly sparse and more likely to be
linearly separable.
In order to inject this behaviour to the artificial neural networks, an
alternative kind of activation function had been proposed [17]. The
Rectified Linear Units, often indicated as ReLU, instead of enforcing
the sign symmetry or antisymmetry like the hyperbolic tangent, drops

20

CHAPTER 2. THE ART OF TRAINING 21

to zero the negative inputs by applying the function f(x) = max(0, x).
Statistically speaking, after an uniform weight initialization, the first
rectification should drop the 50% of hidden units output, which will
even more increase after eventual L1 regularization.

Figure 2.7: Example of sparse hidden activations produced by ReLU

The mathematical advantages are the elimination of the risk to incur
in the vanishing gradient, the gradient flow will be faster and so the
computation cheaper.
ReLU is widely used in convolutional neural network for object de-
tection but some noticed that the impact on the activations is quite
aggressive and may lead some drawbacks concerning the optimization
performance.
For this reason it exists also a smoother version named Softplus,
f(x) = log(1 + ex), which reduce the exact sparsity. However, some
experimental results belie this hypothesis and confirm the effective
power of ReLU, which still the best choice.

21

22 CHAPTER 2. THE ART OF TRAINING

Figure 2.8: ReLU and Softplus

22

Chapter 3

Convolutional Neural
Networks

3.1 Limitations of MLPs in

image processing contexts

So far, we have seen some best practices to keep in mind when training
fully-connected multi-layer networks useful for tasks such as general
supervised classification. We have also introduced the ReLU activation
function emphasizing the main advantages over the classical logistic
sigmoid and hyperbolic tangent, and we presented it as an efficient
choice for Convolutional Neural Networks.
In this chapter we will dive into the Convolutional Neural Networks,
in particular analyzing why they are so important in the field of com-
puter vision and image processing and what is the added value they
bring over the multi-layer perceptron.
The ability of multi-layer networks trained with gradient descent to
learn complex, high-dimensional, non-linear mappings from large col-
lections of examples makes them obvious candidates for image recog-
nition tasks but there are problems.
First of all, in order to feed an image to a neural network we need the
number of units of the input layer must be equal to the number of im-
age pixels. Thus, fully-connect the input layer with the adjacent hid-
den layer requires about several tens of thousand of connections, and

23

24 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

so weight parameters. While the network capacity grows, the hard-
ware computation dramatically blows up and the number of training
examples also should be increased (the network needs to learn more
information).
Another important limitation of fully-connected networks is that they
do not provide built-in invariance over the feature extraction phase.
The main challenge in image classification, OCR and face recognition
is to detect object which can appear with different position, scale level,
dimension and quality. Furthermore, since an object is represented by
a subset of adjacent pixel, the neural network should take care about
the topology of the input and the spatial features correlation.
The solution provided from the Convolutional Neural Network to han-
dle invariance and locality properties consists in sharing the weight
across the 2D space. This reduce drastically the number of indepen-
dent parameters to tune during the training.
So in conclusion, the usage of fully-connected architectures is reason-
able for those cases in which the order of the inputs is irrelevant for
estimating the output. Indeed, the possible correlations between the
inputs can be seen under two aspects: space and time.
Video processing is a typical context in which both should be con-
sidered. In that case, for example, a CNN can address the spatial
aspect about the single frames content while Recurrent Neural Net-
works (like LSTM [18] and GRU [19]) can be used to consider the
temporal sequence of frames.

3.2 An uniform representation

for heterogeneous data

Tabular data, images, text, video, audio and in general every kind
of data can be stored in the disk in a specific format. However it is
absolutely out of the question the possibility that a neural network
takes in input these files directly as they are.
Beyond the consideration about input preprocessing done in the 2.2,
each programming language or deep learning framework requires an
input representation independent from the nature of the data.
In general, each training examples is always represented as a numeri-

24

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS 25

cal vector or a matrix. These concept are generalized to higher-order
matrices, or more commonly tensors.
The tensor representation of an image is quite intuitive: two dimen-
sions are associated to the width and the height while the third one
depends from the specific color notation. Generally is RGB or BGR,
which indicates the red, green and blue channels.
In synthesis a color image is converted in an order 3 tensor of [0 to
255] values. In case of greyscale image the tensor degenerates in an
order 2 tensor, or in other terms a simple matrix.
Less obvious, instead, is how represent other kind of data always in a
numerical tensor format. Think for example about text data and in
particular the concept of word. In such case indeed, the representa-
tions should be able to express even more sophisticated kind of corre-
lations, like semantics and syntactic, and consider also the context in
which the words occur [20]. Some works are focused in dealing text
data as one-dimensional raw signal, just like occurs for image chan-
nels. In the paper [21], for example, the authors have been employed
Deep Convolutional Neural Network on a sequence of characters. The
main advantages of this approach are that don’t require the knowl-
edge about the syntactic or semantic structure of a language, works
independently from the specific language and may naturally learn ab-
normal character combinations, such as misspellings and emoticons.
The encoding process, also known as character quantization, covers
an alphabet of 70 characters (26 letters, 10 digits, 33 other chars and
the new line):

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 - , ; . ! ? : ’ " / \
| @ # $ % ˆ & * ˜ ‘ + - = < > () [] { }

Here, the character quantization has been performed via one-hot vec-
tors, the simplest raw technique to transform categorical data to bi-
nary values vectors where vectors has all the elements set to zero
except for one.
However there are many obvious reasons to avoid the usage of one-hot
encoding and choose more advanced techniques such as word embed-
dings.

25

26 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

Figure 3.1: Deep ConvNet Character-level for
text classification

3.3 CNN structure

Figure 3.2: LeNet-5 CNN architecture

The godfather of Convolutional Neural Network (CNN) is Yann
LeCun who in 1998 introduced the first prototype named LeNet-5 for
digits recognition. Yann LeCun is currently the director of the Face-
book AI Research Departement, in New York [22].
From 1998 to nowadays, several model has been proposed such as
LeNet, AlexNet, ZFNet, GoogLeNet, VGGNet. One of the most im-
pressive and cutting-edge model is probably the Inception-V3 [23].

26

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS 27

Figure 3.3: Inception-V3 CNN architecture

By observing the structure of the most famous CNNs, it’s possible to
identify 4 main categories of layer that are always employed for differ-
ent purposes:

• Convolutional Layers

• Pooling Layers

• Flattening Layers

• Fully-Connected Layers

3.3.1 Convolutional Layer

Convolutional layers represent the core of this kind of networks.
A convolutional operation can be expressed in pure mathematical
terms as:

(f ∗ g)(t) =

∫ ∞
−∞

f(τ) g(t− τ) dτ

27

28 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

This formula is very common in digital signal processing where the
integration concerns the continuous time domain. In our case the
image represents a discrete signal of pixel over the 2D space.

Figure 3.4: Convolution in CNN
(credits: https://www.superdatascience.com/computer-vision/)

The picture 3.4 shows a snapshot of a convolutional operation. Dur-
ing the execution, a feature detector (also known as filter or kernel)
performs a scan through the whole input image producing what is
called a feature map (also known as convolved feature or activation
map).
The feature map is the result of an element-wise matrix product and
as you can see the dimension of the input image has been reduced.
The reduction rate depends from a parameter called stride which de-
fines how many pixels the kernel has to be moved from the current
position at each step (in the example the stride is set to one).
The benefits of convolution are to implicitly emphasize certain feature
meanwhile discarding the worthless and also data reduction implies
less computation.
This process resembles in a much more similar way the human brain
behaviour, indeed when we look an image we don’t focus on the single
pixels but in a portion of pixel, an object or a set of features.
In practical, the convolutional process is even more widespread be-

28

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS 29

cause the feature detector is typically not just one, like in the exam-
ple, but are several and each one is applied on the input image and so
produces a different feature map.
The values of the kernel matrix are not randomly. They are stud-
ied and used by almost all the image processing applications to apply
some specific filtering techniques: blur, Gaussian blur, motion blur,
find edges, sharpen, emboss, mean and median filter and so on [24].
Finally, since the images are often characterized by high non-linearity,
especially on the border lines between distinct objects, it is a common
practice to apply the ReLU activation function to the generated fea-
ture maps in order to break those linearities [25].
In the 2.4 we briefly discussed about Softplus activation function as an
alternative of ReLU but we have seen that in the experimental context
Softplus brings no added value. ReLU is still the best choice but other
variants have been proposed in order to get even better accuracy.
The [26] investigates successfully about the usage of the PReLU, a
revisited ReLU with non-constant negative part where the coefficient
a is adaptively learned.

Figure 3.5: ReLU Vs. PReLU

In practical applications we often can see PReLU with the a small
and fixed coefficient a. This kind of activation function is commonly
known as Leaky ReLU.

29

30 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

3.3.2 Pooling Layer

The first stage of a deep CNN is typically characterized by a series of
alternated convolutional and pooling layers.
Pooling operation works likewise convolution but with some important
difference. The main strength is to injects to the neural network the
spacial invariance property.

Figure 3.6: Max Pooling in CNN
(credits: https://www.superdatascience.com/computer-vision/)

The operation is performed on the feature maps produced after the
convolution and, as for convolution, the input is scanned from top-left
to bottom-right by a square window that aggregate a set of pixel into
one. Again, the shift is regulated with a stride parameter and the
resulting feature map is reduced in favour of computation speed.
By contrast, now we don’t have to deal with feature detector and the
mapping function is determined by the specific kind of pooling opera-
tion used (the most common one is Max Pooling which filter out only
the maximum pixel value inside the window, as illustrated in Figure
3.6).
Intuitively, the information lost after the reduction are the very ones
which keep track of the spacial variance and potential noises, enabling
to focus only on the necessary features, therefore preventing overfit-
ting and leading to generalization.
Regarding the possible pooling operations, there are obviously some
alternative proposed over the Max Pooling. The reason why we high-

30

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS 31

lighted Max Pooling is not causal, indeed researches [27] demonstrate
Max Pooling is vastly superior for capturing invariances in image-like
data, compared to other operation like Subsampling, which instead
takes care of all pixel by averaging them (Average Pooling).

3.3.3 Flattening Layer

After getting through the sequence of convolution and pooling trans-
formations, the input is ready to be classified.
For this purpose, a classical CNN always ends with a multi-layer per-
ceptron composed by one or more fully-connected layers.
To make a bridge between the two stages and so feed the first fully-
connected layer, the feature maps have to be converted into one di-
mensional vectors.

Figure 3.7: Flattening in CNN
(credits: https://www.superdatascience.com/computer-vision/)

This consist of concatenating the matrix rows one after another and fi-
nally transposing everything in a column. As we can see, the operation
is pretty straightforward and doesn’t need any further explanation.

31

32 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

3.3.4 Fully-Connected Layers

Figure 3.8: Fully-Connected part of CNN
(credits: https://www.superdatascience.com/computer-vision/)

The last part of a CNN resembles most of the concepts already seen
in Chapter 2.
The objective is to reuse all the feature maps produced at the end of
the first stage and translate the information content into a classifica-
tion. The final classification should fire the neuron associated to the
detected object.
Assuming we are in a supervised learning context, the classification is
not immediate but may require a proper training with several forward
passes and backpropragation.
The Figure 3.4, 3.6, 3.7 and 3.8 are too simplistic. Real models nor-
mally consists in several millions of parameter and require high per-
forming GPU in order to accomplish the training in a reasonable time.
To make an example, let’s take a look to the ImageNet Challenge 2014
winning models, the deep CNNs VGG16 and VGG19 [28]. For the
classification task, images must be classified into one of 1000 different

32

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS 33

categories.
The VGG16 for example has a total of 138 millions of parameters.
Focusing only to the last 3 fully-connected:

Layer Number of Weights Number of Biases
fc1 (512× 7× 7)× 4096 4096
fc2 4096× 4096 4096
fc3 4096× 1000 1000

Take also in consideration that VGG state of the art has been nowa-
days overcame.

3.4 Autopsy of a CNN

This section is dedicated to a very amazing tool which is not only
funny to explore but to comprehend what happens under the hood of
a CNN, have a clear view of each layer, visualize in details every single
feature map and so on.
The name of this application is “3D Visualization of a Convolutional
Neural Network”, developed by Adam Harley [29] and available at
http://scs.ryerson.ca/~aharley/vis/conv/.
Visualizing a CNN is important not only for having a detailed under-
standing about how the model behaves but also to easily experiment
with the input and observe the result of the experimentation imme-
diately, underlying the strengths and the weaknesses. Furthermore,
this tool provide a full view about the hierarchical abstraction layer-
by-layer of the input till the output.
The CNN employed is trained on an augmented version of the MNIST
dataset which consist of classify 28× 28 pixel images of handwritten
digits.
The structure resembles exactly the sequence of layers described in the
previous section, indeed the input is processed through two couples of
convolutional-downsampling layers followed by two fully-connected.
Hence, the flattening layer is implicit.
The interactive functionality allows to explore every single layer, fea-
ture map and unit. For each unit is possible to check its weighted

33

34 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

input, the activation function applied and the relative output.
The user has simply to draw a 0 to 9 number into the canvas and
the classification is automatically performed. The correct prediction
appears as “first guess” and, since the output is a distribution of prob-
abilities across the overall possible ten digits, it’s also possible to check
the “second guess”.
We conclude the section with two screenshots and let the reader enjoy
the tool by following the link indicated at the beginning.

Figure 3.9: 3D Visualization of a Convolutional Neural Network -
part 1

34

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS 35

Figure 3.10: 3D Visualization of a Convolutional Neural Network -
part 2

35

36 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

36

Chapter 4

Generative Adversarial
Networks

4.1 The artificial artist

Generative Adversarial Networks first appeared in 2014 as a revolu-
tionary idea of the Google Brain researcher Ian J. Goodfellow [30].
Before going into the details of the GAN architecture, it could be use-
ful to understand what is the main idea behind this networks, which
are the expectations, which are the most impressing results obtained
so far and why GANs are also recognized as “‘artificial artists”.
The first positive feedback come from the illustrious opinion of Yann
LeCun, who referred to GANs as “the most interesting idea in the last
10 years in Machine Learning [31]”.
The capacity of a GAN is to be able to generate new “never seen”
data relying to the distribution of real world data. This potential is
not restricted only to the image domain but also text, music, video
and so on.
From a philosophical point of view, comparing a neural network with
an artist can be consider inappropriate and a terminological abuse.
An human being possesses native skills that are not provided to a ma-
chine, such as intuition, creativity, imagination and consciousness.
All these qualities lead to non-deterministic behaviours which is the
main prerogative of an artist.
Modern processors, which we use to train such neural networks, are

37

38 CHAPTER 4. GENERATIVE ADVERSARIAL NETWORKS

built on the basis of the Von Neumann architecture and on these pro-
cessors, the training processes run as an algorithm. Computational
theory refers to algorithm as a sequence of imperative instructions
which leads to a deterministic result.
Under these assumptions, a GAN is far away from being consider as
an artist in the true sense of the term. However, this adjective still
widely used because of the outcomes of GAN, which are often really
impressive.

Figure 4.1: Example of images generated via GANs

The New York Times in 2017 published an article titled “How A.I. Is
Creating Building Blocks to Reshape Music and Art” [32] to present
the world the work of some Google researches about GANs.

38

CHAPTER 4. GENERATIVE ADVERSARIAL NETWORKS 39

Figure 4.2: A GAN that generate imagescapes from existing
photography

(credits: DeepDream - https://deepdreamgenerator.com)

Figure 4.3: An artwork created using DeepDream
(credits: DeepDream - https://deepdreamgenerator.com)

39

40 CHAPTER 4. GENERATIVE ADVERSARIAL NETWORKS

A very interesting and recent anecdote that involves GAN occurred
on 25th October 2018.
On 23th October, the network media The Verge announced [33]: Christie’s,
an auction house with its headquarter in Paris, conducted a very un-
usual sale. As part of a three-day Prints & Multiples event, it’s auc-
tioning off the Portrait of Edmond Belamy, a canvas in a gold frame
that shows the smudged figure of what looks like an 18th century gen-
tleman. It’s expected to fetch a modest price, somewhere between
$7,000 and $10,000, but the artwork’s distinguishing feature is that it
was “created by an artificial intelligence,” says Christie’s. “And when
it goes under the hammer, [it] will signal the arrival of AI art on the
world auction stage.”

Figure 4.4: Portrait of Edmond Belamy, 2018, created by GAN

On 25th October, after the event, it came up the final sentence [34]:
Christie’s sells its first AI portrait for $432,500, beating estimates of

40

CHAPTER 4. GENERATIVE ADVERSARIAL NETWORKS 41

$10,000. The image was created using a machine learning algorithm
that scanned historical artwork.
The artwork was created by a collective named Obvious. The three
members of Obvious, a trio of 25-year-old French students, used a
GAN to create the picture [35]. The network was trained on a dataset
of historical portraits, and then it tried to create one of its own. Ob-
vious printed the image, framed it, and signed it with the objective
function used by the algorithm (as you can see in the botton-right
corner of the picture).
This event is destined to lights up even more the debate around the
concept of art in artificial intelligence.

4.2 The GAN system

4.2.1 Structure

The domain model is composed by two main actors: a Generative
Model (G) and a Discriminative Model (D).
Alongside the generator, the system needs to be supported with a
large database of real world images.

Figure 4.5: GAN conceptual architecture
(https://hackernoon.com/how-do-gans-intuitively-work-

2dda07f247a1)

41

42 CHAPTER 4. GENERATIVE ADVERSARIAL NETWORKS

Let’s start visualizing the structure of the individuals components.
Both the Generator and Discriminator are Deep Convolutional Neural
Networks. The duality G-D holds an important symmetric property,
indeed, they are mirror images of each other. In particular, the Gen-
erator is better recognized as a Deconvolutional Neural Network.
A Deconvolutional Neural Network is nothing else than a reverse CNN
in which the layers are also called transposed convolutional layers.

Figure 4.6: A DCGAN generator
(https://hackernoon.com/how-do-gans-intuitively-work-

2dda07f247a1)

The Discrimination, as mentioned before, is the convolutional coun-
terpart of the Generator.

42

CHAPTER 4. GENERATIVE ADVERSARIAL NETWORKS 43

Figure 4.7: A DCGAN discriminator
(https://hackernoon.com/how-do-gans-intuitively-work-

2dda07f247a1)

4.2.2 Interaction

The “fight” between G and D represents the classical zero-sum game.
The exact definition of zero-sum game from Wikipedia is:

“In game theory and economic theory, a zero-sum game is a
mathematical representation of a situation in which each

participant’s gain or loss of utility is exactly balanced by the losses or
gains of the utility of the other participants. If the total gains of the

participants are added up and the total losses are subtracted, they will
sum to zero. [36]”

In the specific case of GANs, the gain and loss correspond exactly to
the cost funtions of the two partecipants.
Generator and Discriminator are constantly in touch and work in tan-
dem. The first one (as the name should suggest) is responsible of
generating a stream of data, such as images.
These images are then submitted one by one to the Discriminator
which basically has to answer to the following question: how much is
this image likely to be similar to what we can see in the real world?

43

44 CHAPTER 4. GENERATIVE ADVERSARIAL NETWORKS

In short, is this real or a fake?
In order to understand what is real, the Discrimination needs to be
aware of the concept of reality. That’s why it must be provided a
dataset of real images alongside the Generator.
For example, let’s suppose our target is dogs. The dataset should con-
tain a large collection of photos of dogs of different races, in different
positions, different prospective, colors and so on... and the Generator
should produce new images that look as much as possible like dogs.
While the Discriminator get the data from both sources, it has to la-
bel each image as fake (coming from the Generator) or real (coming
from the dataset).
This classification, whatever is right or wrong, always favours the rise
of learning. Intuitively, every time the Discriminator guesses the pre-
diction the Generator knows that must improve itself, so the next time
has more chance to successfully fool his opponent. Alternatively, it is
Discriminator that needs to improve itself.
[NB: It must be emphasised that in this context, the verb “improve”
means backpropagation and parameter tuning.]
The whole interaction can also be modelled with the Actor-Critic
paradigm [37], as well as for Q-Learning in Reinforcement Learning[38].
Actor-Critic and GANs work in a very similar way from the prospec-
tive of the parallel training (which in GAN involves both G and D).
Training a GAN is indeed a very difficult task which needs to consider
even more aspects compared to the traditional learning practices dis-
cussed in Chapter 2.
The reason is pretty obvious; before we had single models with their
own private loss function, while now we have two which moreover they
need to be synchronized in order to accomplish the zero-sum game. A
lack of synchronization may degenerate in the mode collapse scenario,
discussed in the 4.3.
The main similarity between AC and GAN concerns the information
flow. One model produces data and pass it to the other model which
perform an evaluation.

44

CHAPTER 4. GENERATIVE ADVERSARIAL NETWORKS 45

Figure 4.8: GAN components interaction with the MNIST dataset

In order to better understand the idea behind the scenario is good to
make an analogy with a real world example. Quoting the words of Ian
J. Goodfellow:

“The generative model can be thought of as analogous to a team of
counterfeiters, trying to produce fake currency and use it without

detection, while the discriminative model is analogous to the police,
trying to detect the counterfeit currency.”

4.2.3 Behaviour

Let’s describe in more depth the algorithm governing the GAN frame-
work.
The minimax game is represented by the following objective function:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

The Generator G is associated to a distribution pg over data x and
its input noise vector is pz(z). D(x) defines the classification made by
the Discriminator, a floating value between 0 and 1 which measures
the probability that x came from the real dataset rather than pg.
The reason of max

D
is straightforward, we have to train D to maximize

45

46 CHAPTER 4. GENERATIVE ADVERSARIAL NETWORKS

the probability of assigning the correct label to both training examples
and samples from G.
Since we are playing to the zero-sum, we expect a counterpart to
minimize and that’s min

G
, which is expressed as log(1−D(G(z))).

In the objective function E indicates the binary cross-entropy loss
function, so that the overall goal is to maximize the cross-entropy of
the Discriminator and minimize the cross-entropy of the Generation.
In his paper, Goodfellow provides a pseudo-algorithm to describe the
training process.

Figure 4.9: GAN pseudo-algorithm

46

CHAPTER 4. GENERATIVE ADVERSARIAL NETWORKS 47

4.3 Mode collapse:

The Helvetica Scenario

As mentioned before, the process of training a GAN is nowadays sub-
ject of many debates and researches.
In particular the hardest part is related to how to train the generative
model than the discriminative.

It is easier to recognize a Monet’s painting than drawing one [39]

In order to avoid unpleasant effects, during the whole training it is
fundamental to keep a proper synchronization between the two ac-
tors.
The image below illustrates the backpropragation procedure on both
the discriminator and the generator.

Figure 4.10: Discriminator and generator training via gradient
descent

Due to these formulas, the main causes which can lead to bad conver-
gence of the model are:

47

48 CHAPTER 4. GENERATIVE ADVERSARIAL NETWORKS

• Vanishing gradient: the discriminator improves too fast re-
spect to the generator. Therefore it starts to guess all the pre-
diction so that the generator gradient dramatically fades out
causing the impossibility of learning.

• Non-convergence: Highlighted in research paper by Arjovsky
[40], he attempted to solve the vanishing gradient problem in-
cluding a reverse KL-divergence term to the original cost func-
tion. During his experiments he tried to freeze the generator
and train the discriminator from scratch, obtaining a fluctuat-
ing gradient and so an unstable model.

• Mode collapse

One of the most critical event to solve in GAN is known as mode
collapse.
Inspired by the parodistic 2002 science tv show, Look Around You,
Goodfellow compared the mode collapse in GAN as an equivalent of
the Helvetica Scenario.
In the first episode of the serie, the Helvetica Scenario is descibed as
an hypothetical phenomena which should be triggered by altering the
nucleus of a particle of calcium, leaving it in an unstable state and
causing an apocalyptic chain reaction [41].
In the GAN context, we refer to mode collapse the situation in which
the generator starts to produce always the same output and so cheat-
ing the discriminator forever. Thus, the overall training has to be
consider a flop, since the generator fails to learn the real-world data
distribution and gets stuck in a small space with extremely low vari-
ety.
A practical example can be observed in the experimental section of
the paper “Unrolled GAN” [42], where the author compared the re-
sult of their model, applied on the MNIST dataset, with the same
result obtained using a standard GAN. This latter case shows a situ-
ation of “Helvetica Scenario” in which the model collapse generating
continuously the same digit, an handwritten six.

48

CHAPTER 4. GENERATIVE ADVERSARIAL NETWORKS 49

Figure 4.11: GAN mode collapse with MNIST dataset

Mathematically speaking, mode collapse occurs when the model reaches
a spacial condition called Local Nash Equilibrium (LNE) associated
with a sub-optimal generative performance [43].
The objective of the training is instead to converge to a Global Nash
Equilibrium (GNE), which often can be arbitrary far from the ob-
tained LNE.
Quite solution has been proposed in literature to prevent as much as
possible the risk of mode collapse, such as GANGs (Generative Ad-
versarial Network Games) [44] and Coulomb GANs [45].
The first starts by formalizes the adversarial networks in a finite games
setting, finite GANGs. This kind of solution theoretically do not suf-
fer from LNE but in practice it is computationally intractable since
it intends to analyze all the possible candidate strategies which end
in a LNE. Therefore the authors came up with a solution based on
Resource-Bounded Best-Responses (RBBR) that looks for resource-
bounded NE (RB-NE), in particular it focuses to a subset of strate-
gies and using an heuristic search it try to deliver to new promising
strategies expanding the research space.
Regarding Coulomb GANs, the idea is to model the learning problem
as a potential field in which the generated examples repel each other
in order to avoid output replication.

49

50 CHAPTER 4. GENERATIVE ADVERSARIAL NETWORKS

The inspiration comes from the electrostatic physics where the elec-
trical charges situated in the space generate each one an electric field
which affects the whole system. In GAN, the possible generations are
the equivalent of the charges and to maintain a situation of global equi-
librium (in this case a Global Nash Equilibrium) should be disposed
in a proper configuration keeping proper distances.

50

Chapter 5

Practical applications of
GANs

Several applications originally developed in research context have nowa-
days found a place in the world as dominant technologies in favour of
the human progress, providing also a breakthrough in term business
and marketing. It’s the case for instance of the World Wide Web de-
veloped by Tim Barners-Lee in the laboratories of CERN and today
representing the greatest means of communication of ever.
The question we intend to give an answer in this chapter is: what the
future holds for GANs? Can GANs be used to bring an added value
to the Artificial Intelligence?
If we try to sell to companies a product presenting it as a random
image generator it would be quite difficult to find buyers willing to
invest on it.
In this respect, recent papers propose very interesting solutions which
involve the usage of GANs, in the hope that such ideas may help to
move towards a business direction.
We present four practical application of GANs analyzing aspects, im-
plementations, strengths, weaknesses.

51

52 CHAPTER 5. PRACTICAL APPLICATIONS OF GANS

5.1 Text to image generation

Although most of the works around GANs are focused on the image
domain, we mentioned that neural network can handle even different
kind of data under a proper tensor representation.
The paper “Generative Adversarial Text to Image Synthesis” [46] pro-
poses a novel solution in order to translate text in the form of single-
sentence human-written descriptions directly into image pixels.
The approach described take into account two main sub-tasks. The
first one is focused on learning the text features and the second aims
to properly use these features to generate an images which can be able
to fool the discriminator.
Connecting the two tasks is not straightforward for the reason that
the relation between the text description and the relative image rep-
resentation is typically multimodal. This means it doesn’t exist a
one-to-one relation among the two domains. As long as there can be
different descriptions for one image, at the same time there can be
several pixel configurations for one textual description. This property
can be exploited by a GAN-based solution providing the discriminator
with a “smart” adaptive loss function.
The problem of learning text representation is addressed through a
combination between a character-level CNN (a solution similar to the
one already mentioned in the 3.2) and a recurrent neural network (see
LSTM for instance).
In such way, the generator is fed with a embedding encoded represen-
tation of the natural language description alongside a random sample
from the noise vector. This input passes along the deconvolutional
layers of the network and output an image. The generator process
can be denoted as G : RZ × RT → RD where T, D and Z are respec-
tively the dimension of the text, image and noise vectors.
It’s important to point out that the same text vector associated to
different noise samples will lead to different output images, therefore
encouraging the generator to model the multimodal property men-
tioned before.
Discriminator side we have a convolutional network (whose structure
reflects symmetrically the generator) denoted asD : RD × RT → {0, 1}.
It basically receives the images produced by the generator supported

52

CHAPTER 5. PRACTICAL APPLICATIONS OF GANS 53

with the original text description and, as well as every GAN discrim-
inator does, it sentences how much the input seems real or fake, ex-
pressing the classification with a floating value between 0 and 1.

Figure 5.1: GAN architecture for text to image synthesis

From the previous explanation and by looking at the Figure 5.1 you
may notice something missing. It is the dataset of real images. In the
experimental part have been used two dataset: the Oxford-102 [47]
(8189 images of flowers of 102 categories) and the CUB [48] (11788
images of birds of 200 different categories).
Now, how these dataset have been employed to train the GAN? The
solution proposes two main approaches.
The first is called Matching-aware discriminator (GAN-CLS), where
the discriminator receives three possible combination of image-text
pairs: a real image coming from the datasets with its correct descrip-
tion, a real image with a mis-matching description, and a fake image
from the generator with its correct description.
After these information it’s the case to introduce the pseudo-algorithm
which defines the training process:

53

54 CHAPTER 5. PRACTICAL APPLICATIONS OF GANS

Figure 5.2: GAN-CLS training algorithm for text to image synthesis

An alternative contribution to GAN-CLS is supported by GAN-INT,
which consists in a text embedding data augmentation obtained by
interpolating training set captions in the embedding space.
The implementation of GAN-INT is made by altering the generator
objective with an additional term. Recalling the minimax function
proposed by Goodfellow in the original GAN paper, the generator
now assumes the following form:

Et1,t2∼pdata [log(1−D(G(z, βt1 + (1− β)t2)))]

where t1 and t2 are the two text embedding to interpolate and β is
the interpolation coefficient, which experiments recommend to set to
0.5 .
We leave the reader some images of qualitative results on both datasets,
birds and flowers, with a comparison between basic GAN, GAN-CLS,
GAN-INT and an hybrid of the last two.

54

CHAPTER 5. PRACTICAL APPLICATIONS OF GANS 55

Figure 5.3: GAN results for text to image synthesis on CUB dataset

Figure 5.4: GAN-CLS results for text to image synthesis on
Oxford-102 dataset

55

56 CHAPTER 5. PRACTICAL APPLICATIONS OF GANS

To prove the generalizability of the model, the authors also tried to
generate images with multiple objects and variable backgrounds ob-
taining even more impressive results.
Text to image synthesis is an application which can attract quite in-
terest in many Business-To-Customer domains especially those com-
panies which aim to gain and keep clients backing to the design of
their product.
Consider for instance furniture, automotive, clothing sectors and so
on. Collecting opinions, interviews, reviews expressed in natural lan-
guage and readily propose different visual prototypes in order to meet
the wishes of the crown is indeed one of the main ambitions of those
companies.

5.2 Image to image translation

Before delving into this next application, it is necessary to briefly
discuss about a particular kind of GANs: the conditional GANs
(cGANs) [49].
Previously we referred to GAN as a “random image generator” since
the multi-modal nature of the generation process cannot be controlled
in advance. Despite to this consideration, Conditional GAN were cre-
ated with the idea to somehow inject this capability and reduce as
much as possible the vagueness of the output distribution by provid-
ing an additional information to drive the generation towards a more
specific target.
Given y, vector representation of a class label, it is possible to condi-
tion the generation process by feeding y into the both the discriminator
and generator as additional input layer. The objective function of a
cGAN will consequently change in:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))]

Taking for instance the classical MNIST dataset, y should be the one-
hot encoded vector representing the 10 possible digits. Then, by condi-
tioning the model with one specific class, the generator should ideally
output different samples but each one belonging to that class.

56

CHAPTER 5. PRACTICAL APPLICATIONS OF GANS 57

Figure 5.5: Conditional Adversarial Network

The paper ”Image-to-Image Translation with Conditional Adversarial
Networks” [50] proposes another GAN-based solution which differs
from the previous for the fact that it focuses only on the image domain.
However, a general objective still hold: produce images on the basis
of certain input conditions.
These “input conditions” justify in a sense the need for Conditional
GAN.
The idea is to map input to output images where the input can be
raw quality, hand-drawn or architectural patterns, and the output is
an image as much as indistinguishable from the reality.
The solution proposed exploits a mix between standard GAN and
cGAN (justified by experimental evidences) in which the input image
is used as the conditioner of the output. An interesting peculiarity
lies in the noise modelling which is not the typical noise vector but
it’s implicitly injected in form of dropout across all generator network
layers. The standard GAN contribution is led by L1 regularization on
the generator side, indeed L1 results in less blurring compared to L2.
Next up, some experimental results on building facades which compare
L1, cGAN and a combination L1-cGAN with respect to the original

57

58 CHAPTER 5. PRACTICAL APPLICATIONS OF GANS

ground truth.

Figure 5.6: GAN results for image to image translation on a facades
dataset

The project related to this paper is called pix2pix and the open source
code is available on https://github.com/phillipi/pix2pix [51].
On Youtube can also be found a funny demonstration of the pix2pix
project titled “ARTIST Vs. PIX2PIX - Is this HUMOR or HOR-
ROR?!” [52] in which a young youtuber submits to the model some
hand-drawn picture made by himself obtaining very borderline results.
In the video, the model he uses is trained with a ground truth of hu-
man faces.
Further improvements has been made and even more implementation
has been released for different domains using the Tensorflow frame-
work. At https://affinelayer.com/pixsrv/ [53] it is possible to
play with them choosing between cats, shoes, handbags and facades.

58

CHAPTER 5. PRACTICAL APPLICATIONS OF GANS 59

Figure 5.7: edges2cats UI
(credits: pix2pix project)

Figure 5.8: edges2bags results
(credits: pix2pix project)

This tool can be seen as an alternative to the “text to image synthesis”,
indeed for an user point of view, the only difference is the way to
provide the input. Real world applications are so more or less the

59

60 CHAPTER 5. PRACTICAL APPLICATIONS OF GANS

same as before but now with a different prospective.
The version trained on human faces can represent, for instance, a
solution that supports police sketch artists in order to produce the
identikit of a suspect on the basis of the witness statements.

5.3 Increasing image resolution

In the field of Computer Vision, the term Super-Resolution refers to
the technique used to improve the resolution of digital images.
The researches about Super-Resolution are motivated by the huge
number of possible practical application in many sectors, from med-
ical diagnosis, in order to help doctor to have a better view of the
image of the patient labs, till satellite images analysis.
In the past, some solution have been proposed to perform Super-
Resolution such as trivially reducing the pixel size through CMOS
image sensors or using stochastic approach based on Bayesian estima-
tors [54].
Recently, some contributions coming from Artificial Intelligence achieved
the breakthrough. The solution we want to explore in this section is
once again a GAN-based solution, from the paper “Photo-Realistic
Single Image Super-Resolution Using a Generative Adversarial Net-
work” [55].
In order to have a good comparison for their results, the authors
started from already high-resolution images (HR). As a first step they
performed a downsampling operation on the HRs applying a Gaussian
filter and obtaining the relative low-resolution images (LR).
The objective of their GAN is to train a generating function that es-
timates for a given LR input image its corresponding HR counterpart
(SR). On the other side, the discriminator has to distinguish between
the real HR and the generated SR. In such a way, the generator is
encouraged to learn to create SRs that are highly similar to real HRs
and thus difficult to classify by the discriminator.
In that work they proposed a Super-Resolution Generative Ad-
versarial Network (SRGAN) for which they employ a deep residual
network (ResNet) with skip-connection for the generator.
Residual learning is useful when the CNN is particularly deep and so

60

CHAPTER 5. PRACTICAL APPLICATIONS OF GANS 61

there is the risk of information degradation and accuracy saturation.
Skip-connections allow the first layers to be connected not only to the
next ones but also to those far away. In typical encoder-decoder ar-
chitecture, skip-connections are represented as connection from each
encoder layer to the relative decoder layer (the layer of the same di-
mension), bypassing the bottleneck in the middle.
The advantage of this approach is to minimize the possible loss of in-
formation across the network passing them directly to the last layers
as a support for data reconstruction.

Figure 5.9: SRGAN architecture

In the Figure 5.9, the layer description is in the following notation: k
= kernel size, n = number of feature maps and s = stride.
The related work which led to the SRGAN solution is based on the
studies of Super-Resolution technique with Deep CNN, where the com-
mon practice consists not only in minimizing the MSE but at the same
time maximizing the Peak Signal-To-Noise Ratio (PSNR). The prob-
lems arise when the image presents very high texture details which

61

62 CHAPTER 5. PRACTICAL APPLICATIONS OF GANS

are hardly captured by MSE and PSNR metrics. This effect becomes
pretty evident in the image 5.11 if we look closely at the ornamental
motifs in the clothes of the little girl.
The results are presented as a comparison between the LR (bicubic
kernel with downsampling factor r = 4.), standard SRResNet opti-
mized for MSE, SRGAN and the original HR image.

Figure 5.10: SRGAN results - Part 1

62

CHAPTER 5. PRACTICAL APPLICATIONS OF GANS 63

Figure 5.11: SRGAN results - Part 2

5.4 Predicting next video frame

GAN solutions are even employed not only for strictly generative tasks
but also in predictive generative context.
An interesting case is when the input data are not independent of
each other but are correlated for instance along the time dimension.
That’s exactly the case of video data seen under the point of view of
the sequence of frames.
A lot of applications are indeed designed with the objective of predict-
ing the next state of a system relying on what already exists, while
others attempt to patch missing information which have been not cap-
tured for some reasons by a monitoring device or by a sensor.
In order to exploit these time correlations most Deep Learning solu-
tions employ Recurrent Neural Networks, as already mentioned in the
3.1.
In this section we explore the solution proposed in the paper “Un-
supervised Learning of Visual Structure using Predictive Generative

63

64 CHAPTER 5. PRACTICAL APPLICATIONS OF GANS

Networks” [56] where the authors designed a GAN-based architecture
integrated with LSTM in order to generate the prediction of the pos-
sible next frame of a video.
The motivation that led the author to choose a GAN solution is be-
cause traditional methods based on MSE tend to produce quite blurred
images, such as already seen in the previous section.
Considering that, their solution, called Predictive Generative Net-
work (PGN), is designed by exploiting a weighted combination of
MSE and Adversarial Loss.

Figure 5.12: Predictive GAN architecture

The parts which compose the PGAN are illustraded in Figure 5.12.
The Generative part takes in input the sequence of frames and encodes
them in a lower-dimensional feature space through a first CNN.
The temporal correlation between the frames is captured by a Long-
Short Term Memory, usually preferred over the simple RNN since it
helps to avoid the vanishing gradient. This choice becomes even more
important in a GAN context to reduce the risk of possible mode col-
lapse.
After the LSTM, a Deconvolutional NN performs the generation of
the image which should candidate to be the next frame.
On the other hand, the Discriminative counterpart starts exactly like

64

CHAPTER 5. PRACTICAL APPLICATIONS OF GANS 65

the Generative, taking in input the same sequence of frame and pro-
cessing it again through a CNN and an LSTM. After that, the Discrim-
inative receives also both the encoded representations of the generated
frame and the real one.
All these input are finally passed to a Multilayer Perceptron which
has to assign a probability of how much the final frame seems to come
from the ground truth, as well as it should minimize this value when
detects fake frames.
The model has been validated on a dataset of video showing face ro-
tations and the results demonstrate the effectiveness of the MSE/AL
approach over the standard MSE.

Figure 5.13: Predictive GAN results

65

66 CHAPTER 5. PRACTICAL APPLICATIONS OF GANS

66

Chapter 6

Experimental Case:
Generating new Amazon
products

6.1 Overview, goal and datasets

We conclude this thesis by proposing a possible application which in-
volves the usage of GAN.
The idea is to generate new images candidate to be new possible rev-
olutionary and innovative products which in a later stage can be de-
signed and sold by fashion companies. Our target is so clothing prod-
ucts like t-shirt, pants, shoes and so on.
In order to accomplish our objective we need to know which are the
features that make a product successful, what is the trend of the pub-
lic demand, which is the market orientation and even more statistical
information. These indication can be often obtained by extracting
reviews and ratings of already sold products from the well known big
e-commerce platforms, like Amazon, eBay, ePRICE...
By collecting the images of the most popular products we intend to
use these data to support the generator and discriminator of our GAN
to learn to produce images of not-yet-existing products that can be
used as a guidance for stylists and designers.
In every Machine Learning task, one of the most critical part is related
on how to obtain a dataset which reflects as well as possible the char-

67

68
CHAPTER 6. EXPERIMENTAL CASE:

GENERATING NEW AMAZON PRODUCTS

acteristics we want to exploit, represented both in implicit or explicit
ways. Moreover, the dataset should be large enough to consider all
the possible cases and avoid the model to overfit only on a subset of
them.
In our case, all of this has been possible thanks to the Professor Ju-
lian McAuley of the Computer Science Department of the University
of California San Diego (UCSD), who kindly provided the dataset we
used for our experiments, but originally built by himself for research
purposes in the context of recommender system [57, 58].
This dataset contains product reviews and metadata from Amazon,
including 142.8 million reviews spanning May 1996 - July 2014. For
our experiments we focused only on the “Clothing, Shoes and Jew-
elry” category.
The data we used were split in two files, one containing 5,748,920 re-
views and the other 1,503,384 products.
Each review is represented by the following attributes:

• reviewerID: ID of the reviewer (e.g. “A2SUAM1J3GNN3B”)

• asin: ID of the product (e.g. “0000013714”)

• reviewerName: name of the reviewer (e.g. “J. McDonald”)

• helpful: helpfulness rating of the review (e.g. [2, 3])

• reviewText: text of the review (e.g. “I bought this for my
husband who plays the piano. He is having a wonderful time
playing these old hymns. The music is at times hard to read
because we think the book was published for singing from more
than playing from. Great purchase though!”)

• overall: rating of the product from 0 to 5 (e.g. 4.0)

• summary: summary of the review (e.g. “Heavenly Highway Hymns”)

• unixReviewTime: time of the review in unix time (e.g. 1252800000)

• reviewTime: time of the review in raw format (e.g. “09 13,
2009”)

68

CHAPTER 6. EXPERIMENTAL CASE:
GENERATING NEW AMAZON PRODUCTS 69

And for each product metadata:

• asin: ID of the product (e.g. “0000013714”)

• title: name of the product (e.g. “Girls Ballet Tutu Zebra Hot
Pink”)

• price: price in US dollars at time of crawl (e.g. 3.17)

• imUrl: url of the product image
(e.g. “http://ecx.images-amazon.com/images/I/51fAmVkTbyL.
SY300.jpg”)

• related: asins of the related products split in four nested sub-
categories (also bought, also viewed, bought together, buy after
viewing)

• salesRank: sales rank information (e.g. “Toys Games”: 211836)

• brand: brand name (e.g. “Coxlures”)

• categories: list of categories the product belongs to (e.g. [[“Sports
Outdoors”, “Other Sports”, “Dance”]])

6.2 Data pre-processing

By taking a closer look to the original datasets we figured out many
critical aspect which require an accurate selection, cleaning and trans-
formation opererations before we proceed towards the GAN solution.
The first step is to merge the two datasets with a join operation on the
shared primary key asin. We have gone through the entire reviews
archive performing a group by asin and calculating number of review
and average rating for each distinct product.
From product metadata we extracted the relative imUrl attribute
in order to be able to retrieve the image of the product.
After that, we got left 1,136,004 products, obtaining so a first signifi-
cant reduction from the initial amount of 1,503,384. This is due to the
fact that 367,380 products appear to have zero reviews or no image
associated.

69

70
CHAPTER 6. EXPERIMENTAL CASE:

GENERATING NEW AMAZON PRODUCTS

This attribute selection let us focus only on the information we really
need and with a simpler data structure:

• asin: see previous section

• total revs: total number of reviews associated to the product
(e.g. 302)

• avg rating: average rating of the product from 0 to 5 on the
entire reviews (e.g. 4.2)

• imUrl: see previous section

The products we left are characterized by very different ratings and
number of reviews, while for our purpose we have to distinguish be-
tween the popular and successful ones from the unpopular and unattrac-
tive ones.
We defined two threshold values to filter the best products: a mini-
mum average rating of 4.00 and a minimum number of reviews set to
12. The reason why we have chosen these is to preserve an adequate
amount of images, not too little but not too much. Moreover, we have
to take into account a minimum number reviews in order to avoid un-
fair cases where, for instance, a product with one 5 stars review might
overtake a 4.9 with 100 reviews.
This filtering operation has further reduced the number of products
to 50,201 and, by exploiting the imUrl attribute, we started to collect
the images running a script to download one by one in a jpg format.
The final number of images collected is 49,774. Indeed, during the
download few urls seem to be unreachable.
Other inconvenient has been encountered also after the download. We
found some duplicated and some default Amazon images which state
“No image available”.
To remove duplicated and empty images we reuse a script [59] which
compute a hash for every file, allowing us to find and delete duplicated
even though their names are different.

70

CHAPTER 6. EXPERIMENTAL CASE:
GENERATING NEW AMAZON PRODUCTS 71

6.3 GAN solution

We built our solution starting with an already existing GAN which
operates on the Cifar10 dataset [60]. The CIFAR-10 dataset [61] con-
sists of 60000 colour images in 10 classes, with 6000 images per class
(airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck).
Starting from this solution we were able to analyze the qualitative and
quantitative results and then to make some proper considerations in
order to obtain a satisfactory result even on our dataset.
Because of long computational training time, we loaded and resized
all the images in a 64×64 pixel format. For the same reason we also
fed the model with mini-batches of 128 images (see Chapter 2.1).
The layered structure of the Generative and Discriminative convolu-
tional networks is resumed in the following pytorch notation:

Generative Network

1. ConvTranspose2d(input shape=100, output shape=512,

kernel size=(4, 4), stride=(1, 1), bias=False)

2. BatchNorm2d(512, eps=1e-05, momentum=0.1)

3. ReLU()

4. ConvTranspose2d(input shape=512, output shape=256,

kernel size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

5. BatchNorm2d(input shape=256, eps=1e-05, momentum=0.1)

6. ReLU()

7. ConvTranspose2d(input shape=256, output shape=128,

kernel size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

8. BatchNorm2d(input shape=128, eps=1e-05, momentum=0.1)

9. ReLU()

10. ConvTranspose2d(input shape=128, output shape=64,

kernel size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

71

72
CHAPTER 6. EXPERIMENTAL CASE:

GENERATING NEW AMAZON PRODUCTS

11. BatchNorm2d(input shape=64, eps=1e-05, momentum=0.1)

12. ReLU()

13. ConvTranspose2d(input shape=64, output shape=3,

kernel size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)

14. Tanh()

Discriminative Network

1. Conv2d(input shape=3, output shape=64, kernel size=(4,

4), stride=(2, 2), padding=(1, 1), bias=False)

2. LeakyReLU(negative slope=0.2)

3. Conv2d(input shape=64, output shape=128, kernel size=(4,

4), stride=(2, 2), padding=(1, 1), bias=False)

4. BatchNorm2d(input shape=128, eps=1e-05, momentum=0.1)

5. LeakyReLU(negative slope=0.2)

6. Conv2d(input shape=128, output shape=256, kernel size=(4,

4), stride=(2, 2), padding=(1, 1), bias=False)

7. BatchNorm2d(input shape=256, eps=1e-05, momentum=0.1)

8. LeakyReLU(negative slope=0.2)

9. Conv2d(input shape=256, output shape=512, kernel size=(4,

4), stride=(2, 2), padding=(1, 1), bias=False)

10. BatchNorm2d(input shape=512, eps=1e-05, momentum=0.1)

11. LeakyReLU(negative slope=0.2)

12. Conv2d(input shape=512, output shape=1, kernel size=(4,

4), stride=(1, 1), bias=False)

13. Sigmoid()

72

CHAPTER 6. EXPERIMENTAL CASE:
GENERATING NEW AMAZON PRODUCTS 73

The most relevant parts of these networks are the shapes of the in-
puts and the outputs. For the generative part, the input is a 100-
dimensional noise vector of random values and the output is a 3-
dimensional vector representing the RGB channels of the 64×64 image
generated. Discriminative side, the input obviously must match the
output of the generator and the final outcome is a single value classi-
fication between 0 and 1.
The activation functions Tanh, ReLU, Leaky ReLU and Sigmoid and
the parameters Kernel Size, Stride, Padding and Negative Slope are
set experimentally and their meaning have been discussed in Chapter
2 and 3.

Figure 6.1: Experimental GAN architecture

73

74
CHAPTER 6. EXPERIMENTAL CASE:

GENERATING NEW AMAZON PRODUCTS

6.4 Setup of the experiment

We start by providing two samples from the two dataset in order to
have a view of the images we deal with:

Figure 6.2: A sample of real images from the Cifar10 dataset

74

CHAPTER 6. EXPERIMENTAL CASE:
GENERATING NEW AMAZON PRODUCTS 75

Figure 6.3: A sample of real images from the Amazon product
dataset

We ran our GAN twice: one time using the images of the Cifar10
dataset and the second one using our Amazon Dataset. Following this
procedure we can prove the legitimacy of our results by comparing
them to which have already been technically demonstrated with suc-

75

76
CHAPTER 6. EXPERIMENTAL CASE:

GENERATING NEW AMAZON PRODUCTS

cess.
As we can see, our images show an higher quality respect to the Ci-
far10. Luckily, the resizing operation helps to alleviate this difference
and the GAN has shown the ability to manage it without particular
issues.
Recalling the overall GAN loss function, our target is to find a solution
for the following:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

In theory, the solution to this mini-max game is where pg = pdata, and
the discriminator guesses randomly if the inputs are real or fake. How-
ever, the convergence theory of GANs is still being actively researched
and in reality models do not always train to this point.
A possible convergence can be visualized over the training epochs by
plotting some statistics on 2D graphs. This is what we will do in the
next section where we show the quantitative results. In particular,
we focus on four indicators:

• Loss D: discriminator loss calculated as the sum of losses for
the all real and all fake batches. Mathematically speaking,
logD(x) + log(1−D(G(z)))

• Loss G: generator loss calculated. Mathematically speaking,
log(D(G(z)))

• D(x): average output (across the batch) of the discriminator
for the all real batch. This should starts around 1 and converge
to 0.5 as G improves, so that D become unsure that real images
are “really” real.

• D(G(x)): average discriminator outputs for the all fake batch.
This should starts around 0 and converge to 0.5 as G improves,
so that D is led to consider some fake images as real.

Regarding the qualitative results we will simply collect and show
some fake generated samples from the first to last training epoch. We

76

CHAPTER 6. EXPERIMENTAL CASE:
GENERATING NEW AMAZON PRODUCTS 77

will see the evolution of these samples which are expected to be noisy
and confused at the beginning and they will get better and better to-
wards the end.
We let the reader judge if these generated fakes can be considered
good enough to accomplish our goal.
The source code has been written for the pytorch library. We setup
the network parameters by initializing the weights of the convolutional
layers from a Normal distribution with mean=0 (stdev=0.2) and the
batch normalization layers with mean=1 (stdev=0.2). We used the
Binary Cross Entropy as a criterion for the loss funtion. We provided
two optimizer for D and G using Adam algorithm (an extension of
stochastic gradient descent) with learning rate = 0.0002, beta1 = 0.5
and beta2 = 0,999.
The training process is performed across a proper number of epochs
in which the dataset is split in mini-batches of 128 size, performing
for each epoch a number of iterations equal to (dataset length / 128).
For each iteration we submit the discriminator a mini-batch of real
images and a mini-batch of fake. Then, we update the discriminator
in order to maximize Loss D and the generator to minimize Loss G
(or equivalently maximizing log(1− (D(G(z))))).
All the experiments are carried out on a machine of the University of
Bologna (DISI department), equipped with two GPUs NVidia Titan
Xp.

6.5 Quantitative Results

The proper number of epochs has been determined in this way: first
of all, we ran the model on both datasets on a very large amount of
epochs (100 in our case); then we analyzed the trend of the indicators,
described in the previous section, over this long training process and
we looked for the specific epoch for which these indicators reached
their best values.
In a second step, we reran again the model on both datasets but this
time we set the epochs in a reasonable way, relying on the observations
above.

77

78
CHAPTER 6. EXPERIMENTAL CASE:

GENERATING NEW AMAZON PRODUCTS

We start this quantitative analysis showing the charts on the Cifar10
over 100 epochs. Here, another interesting fact is that not only we
have found the best epoch but also we found the exact moment where
the model suddenly fell in the mode collapse scenario.
We provide three kinds of chart: one to compare loss D and loss G over
the single iterations (1 iteration = 1 mini-batch = 128 images), the
second one is a more clear and aggregated prospective of the first one
but over the epochs (where all the iteration values have been averaged)
and the last one compares D(x) and D(G(z)) to show the accuracy of
the discriminative in classifying fake and real images.

Cifar10 dataset

Figure 6.4: Cifar loss chart over 40000 iterations

The best epoch is located between 5000 and 10000 iterations, where
the generator loss reaches his local minima (which can be seen as a
global minima if we do not consider the case of mode collapse).
Mode collapse occurs towards 15000 iteration, where the discriminator
loss explodes and stabilises between 25 and 30. On the other side, the
generator consequently falls to zero. This means the generator found
a way to fool the discriminator forever simply proposing each time

78

CHAPTER 6. EXPERIMENTAL CASE:
GENERATING NEW AMAZON PRODUCTS 79

the same identical image (in the qualitative analysis we will show the
guilty image).
Unfortunately the previous chart doesn’t allow us to identify exactly
the best epoch, so we need to replot it with in an epoch prospective.

Figure 6.5: Cifar loss chart over 100 epochs

Figure 6.6: Cifar disciminator chart over 100 epochs

79

80
CHAPTER 6. EXPERIMENTAL CASE:

GENERATING NEW AMAZON PRODUCTS

With this new kind of visualization we can say with more certainty
that the best number of training epochs is 21 an the mode collapse
happens above the 39.
The second chart reinforces our conviction since at 21 epochs we see
the discriminator classifications get closer to 0.5. Also note that in
the mode collapse all the fake images (or to be more precise “the fake
image”, since it is always the same) are recognized as real with a 100%
certainty.
Now we can rerun the model and show again this three charts, but
this time we resized the training to 21 epochs.

Figure 6.7: Cifar loss chart over 8000 iterations

80

CHAPTER 6. EXPERIMENTAL CASE:
GENERATING NEW AMAZON PRODUCTS 81

Figure 6.8: Cifar loss chart over 21 epochs

Figure 6.9: Cifar disciminator chart over 21 epochs

81

82
CHAPTER 6. EXPERIMENTAL CASE:

GENERATING NEW AMAZON PRODUCTS

Our Amazon products dataset

We can now replicate the same procedure on our dataset. It is time to
use the images of the best product obtained from the Amazon dataset.

Figure 6.10: Amazon loss chart over 40000 iterations

Figure 6.11: Amazon loss chart over 100 epochs

82

CHAPTER 6. EXPERIMENTAL CASE:
GENERATING NEW AMAZON PRODUCTS 83

Figure 6.12: Amazon disciminator chart over 100 epochs

Thanks to the results and charts about the Cifar dataset we can not
only select the best epoch for out dataset, but also make a comparison
between the two.
The main two evident aspects are the absence of mode collapse and
the need of less epochs to obtain good qualitative results. This doesn’t
mean the mode collapse will never occur but probably it requires more
and more training epochs compared to the Cifar case.
Second question: why do we need less epochs? Since the quality of
the images is better, one can think we should need more epochs and
not less. Well, the reason is that more quality usually means more
texture details to learn for the discriminator but also it is required a
greater effort from the generator to represent and then generate those
details.
In this context we have that the discriminative network starts to overfit
faster than the generative and that will bring to lose the synchroniza-
tion between the two, leading to a situation where the generative loses
any chance to beat the discriminative. We will discuss in the last sec-
tion about some possible advanced solutions to overcome the problem.
Replying the approach adopted for the Cifar, we estimated the best
number of training epochs up to 12, and we provide the refactored
charts.

83

84
CHAPTER 6. EXPERIMENTAL CASE:

GENERATING NEW AMAZON PRODUCTS

Figure 6.13: Amazon loss chart over 5000 iterations

Figure 6.14: Amazon loss chart over 12 epochs

84

CHAPTER 6. EXPERIMENTAL CASE:
GENERATING NEW AMAZON PRODUCTS 85

Figure 6.15: Amazon discriminator chart over 12 epochs

Most of the quantitative analysis about Machine Learning make use
of metrics like accuracy, precision, recall and F1 score.
Are those metrics are also suitable in the context of GANs? Since
the generative performance is mainly measurable in qualitative terms,
let’s focus for a moment on the discriminative network.
One interesting observation comes up if we compare the behaviour of
our discriminative network with the behaviour of traditional super-
vised classifiers.
In a traditional classification task we have that usually the model
starts with a very low accuracy and epoch by epoch it improves via
standard backpropagation of the errors, leading more and more in a
higher accuracy.
In GANs, the discriminative behaves in a complete opposite way.
That’s why the training process starts with a poor generator, so at the
beginning the discriminative shouldn’t have any particular difficulties
in distinguish fake images from the reals. As soon as the generative
improves, the discriminative loses his strength and decrease his accu-
racy getting more and more confused.
A GAN indeed has not the objective of minimizing an overall loss

85

86
CHAPTER 6. EXPERIMENTAL CASE:

GENERATING NEW AMAZON PRODUCTS

function or to maximize the accuracy of the discriminative because in
that way the generative wouldn’t have any chance to compete with his
counterpart. Instead, the intention is to keep a proper synchroniza-
tion and an equilibrium between his internal parts so the disciminative
tends to reach a situation of confusion, instability and inefficiency.
This argumentation justifies in a sense the alternative approach we
used to evaluate our quantitative results. This practice is also adopted
in many GANs papers, studies and experiments.
This analysis leads us to the following conclusion: relying on the ob-
servations related to the chart of Figure 6.15, we can assert that after
12 epochs of training on our Amazon dataset, the GAN reaches a state
where around 20% of the generated images are classified as real from
the discriminative network.

6.6 Qualitative Results

We conclude the analysis of the result with a rich illustration of the
“fake” images obtained from the generative network.
Regarding the Cifar10 dataset, we present some samples obtained at
epoch 21 and, as promised, we show what we get as soon as the model
started to collapse.
Next, we will switch to our Amazon dataset of products. We will see
the evolution of the GAN training from the first epoch to the twelfth
one in order to have a full understanding of how the GAN improved
epoch by epoch.
We have already provided before the samples from the original datasets,
so the reader can compare these with those.
We would point out again that all the images you will see have been
resized to 64×64 pixels in order to reach a compromise between having
reasonable computation times and reasonable quality results.

86

CHAPTER 6. EXPERIMENTAL CASE:
GENERATING NEW AMAZON PRODUCTS 87

Cifar10 dataset

Figure 6.16: Cifar fake samples at epoch 21

87

88
CHAPTER 6. EXPERIMENTAL CASE:

GENERATING NEW AMAZON PRODUCTS

Figure 6.17: Cifar mode collapse after epoch 39

88

CHAPTER 6. EXPERIMENTAL CASE:
GENERATING NEW AMAZON PRODUCTS 89

Our Amazon products dataset

Figure 6.18: Amazon products fake samples at epoch 1

89

90
CHAPTER 6. EXPERIMENTAL CASE:

GENERATING NEW AMAZON PRODUCTS

Figure 6.19: Amazon products fake samples at epoch 2

90

CHAPTER 6. EXPERIMENTAL CASE:
GENERATING NEW AMAZON PRODUCTS 91

Figure 6.20: Amazon products fake samples at epoch 3

91

92
CHAPTER 6. EXPERIMENTAL CASE:

GENERATING NEW AMAZON PRODUCTS

Figure 6.21: Amazon products fake samples at epoch 4

92

CHAPTER 6. EXPERIMENTAL CASE:
GENERATING NEW AMAZON PRODUCTS 93

Figure 6.22: Amazon products fake samples at epoch 5

93

94
CHAPTER 6. EXPERIMENTAL CASE:

GENERATING NEW AMAZON PRODUCTS

Figure 6.23: Amazon products fake samples at epoch 6

94

CHAPTER 6. EXPERIMENTAL CASE:
GENERATING NEW AMAZON PRODUCTS 95

Figure 6.24: Amazon products fake samples at epoch 7

95

96
CHAPTER 6. EXPERIMENTAL CASE:

GENERATING NEW AMAZON PRODUCTS

Figure 6.25: Amazon products fake samples at epoch 8

96

CHAPTER 6. EXPERIMENTAL CASE:
GENERATING NEW AMAZON PRODUCTS 97

Figure 6.26: Amazon products fake samples at epoch 9

97

98
CHAPTER 6. EXPERIMENTAL CASE:

GENERATING NEW AMAZON PRODUCTS

Figure 6.27: Amazon products fake samples at epoch 10

98

CHAPTER 6. EXPERIMENTAL CASE:
GENERATING NEW AMAZON PRODUCTS 99

Figure 6.28: Amazon products fake samples at epoch 11

99

100
CHAPTER 6. EXPERIMENTAL CASE:

GENERATING NEW AMAZON PRODUCTS

Figure 6.29: Amazon products fake samples at epoch 12

100

CHAPTER 6. EXPERIMENTAL CASE:
GENERATING NEW AMAZON PRODUCTS 101

6.7 Possible future improvements

with Style GAN

Cifar10, together with the MNist, are the most famous datasets be-
cause of their simplicity and indeed are almost always used in the
simpler Deep Learning application. Moreover, a lot of papers which
propose novel solutions attempt to demonstrate the effectiveness of
these solutions on those datasets.
With this experiment we provided a simple GAN application and we
tried to prove that our GAN can obtain good results even in a dif-
ferent context. In order to achieve these results, we processed and
transformed our original dataset to reflect a structure close to the one
of Cifar, in term of dataset size, image dimension and quality. In such
a way we obtained a compromise between a reasonable training time
and a reasonable quality of the results.
By exploiting more complex and advanced solutions it is possible to ob-
tain even better result. For sake of completeness we want to briefly dis-
cuss about one new interesting kind of GAN which is the one applied in
the online demo https://www.thispersondoesnotexist.com/ [62],
where each time you refresh the site, the algorithm will generate a
new facial image from scratch.
The algorithm behind this demo comes from a very recent paper (6th

February 2019) and it’s based on the idea of Style GANs [63], a solu-
tion motivated from the style transfer literature.
A Style-based generator differs from traditional generators in many
aspects. First of all, traditional generator can be treated as black
boxes in which the input is simply the noise vector (alongside a target
label in case of Conditional GANs) and the output is an image.
In Style-based generator, the input is not submitted only to the first
layer but it is re-submitted at each convolutional layer, so that also
the intermediate layers are conditioned by external stimuli.
Style GANs, such as Conditional GAN or InfoGANs, need for a latent
code in order to prevent from entangled representations. This latent
code first passes through a non-linear mapping network composed of
eight fully connected layers.
This operation allows to map the latent code into an intermediate la-
tent space W and extract learned affine transformations which are fed

101

102
CHAPTER 6. EXPERIMENTAL CASE:

GENERATING NEW AMAZON PRODUCTS

to the synthesis network generator before each convolution.
The Gaussian noise comes into play after the convolutions, just before
evaluating the non-linearity.

Figure 6.30: Traditional GAN (a) vs. Style GAN (b)

Some interesting outcomes from the Style GAN solution can be useful
also for our Amazon dataset. In particular, the generated images
exhibit a better quality respect to the inputs.
Furthermore, by running two latent codes it is also possible to perform
some kind of style mixing effects. This can be interesting in case
we want to obtain a new product as a mixed hybrid of two popular
products.
Style GAN has been tested on different dataset, especially human
faces, and one of the demo is also available online, as stated above.

102

CHAPTER 6. EXPERIMENTAL CASE:
GENERATING NEW AMAZON PRODUCTS 103

We conclude showing some interesting face combinations coming from
the experiments about style mixing using two latent codes.

Figure 6.31: Style GAN results for face mixing

103

104
CHAPTER 6. EXPERIMENTAL CASE:

GENERATING NEW AMAZON PRODUCTS

104

Conclusion

Can AI exhibit artistic abilities comparable to the human ones?
This is the question we posed at the introduction of the thesis.
The argument can be addressed from very different prospective such
as philosophical, mathematical, aesthetic and so on.
We do not presume to give an answer to a so delicate question and we
would like to leave the reader to take its own position about it.
With this thesis we hope we provided to the reader the means to think
about the possible implication of GAN for the progress of Artificial
Intelligence.
But before concluding we invite you to think about the following sce-
nario. Take the picture of the “Portrait of Edmond Belamy” (Figure
4.4) and show it to any person who has never seen it. Probably the
first question you will hear is “Who is the painter?”.
The form of the question would suggest that the person is taking for
granted the artist is a human being.
That’s the point.
The answer is not a “who”, but a “what”.

105

Acknowledgements

This thesis represents for me the bridge between my academic path
and my professional career.
For this reason I would like to mention both the University of Bologna
and the AKKA Technologies Group.
I wish to thank my thesis advisor, Professor Gianluca Moro, for the
support, the encouragement and the professionalism demonstrated in
these months.
A special thank also to the DISI (Dipartimento di Informatica - Scienza
e Ingegneria) department for having provided me the best hardware
resources, and to the Professor Julian McAuley of the Computer Sci-
ence Department of the University of California San Diego (UCSD),
who kindly provided the Amazon datasets, all this essential to accom-
plish the experimental part.
Many acknowledgements also to my company, AKKA Technologies
Toulouse, which allowed me to complete this thesis in France. In par-
ticular, I would like to mention my business managers, Xavier Jalabert
and Helene Posbic, and the AKKA Research department for having
given me the great opportunity to expand my technical skills in the
field of Data Science and Artificial Intelligence.
Thanks in addition to my french flatmates for putting up with me in
the last stressful months.
Finally, last but not least, my parents and my sister Anna, to whom
I dedicate this work. Thank so much for the love and the support
during these years.

107

References

[1] Yoshua Bengio,
Learning Deep Architectures for AI,
Dept. IRO, Université de Montréal

[2] Yoshua Bengio,
Deep Learning of Representations for Unsupervised and Transfer
Learning,
Dept. IRO, Université de Montréal

[3] Haohan Wang, Bhiksha Raj
On the Origin of Deep Learning,
Language Technologies Institute, School of Computer Science,
Carnegie Mellon University

[4] Warren S. McCulloch, Walter Pitts
A Logical Calculus of the Ideas Immanent in Nervous Activity,
The bulletin of mathematical biophysics, Volume 5, 1943

[5] F. Rosenblatt
The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain,
Cornell Aeronautical Laboratory
Psychological Review Vol. 65, No. 6, 19S8

[6] Marvin L. Minsky, Seymour A. Papert
Perceptrons: An Introduction to Computational Geometry,
MIT Press, Cambridge, 1969

[7] Pierre Lison
An Introduction to Machine Learning,

109

Language Technology Group (LTG)
Department of Informatics
HiOA, October 3 2012

[8] Csaba Szepesvári
Algorithms for Reinforcement Learning,
Draft of the lecture published in the Synthesis Lectures on Arti-
ficial Intelligence and Machine Learning series by Morgan Clay-
pool Publishers
June 9, 2009

[9] Yann LeCun, Léon Bottou, G. B. Orr, Klaus Robert-Muller
Efficient BackProp,
1998

[10] Rohan Varma
Picking Loss Functions - A comparison between MSE, Cross En-
tropy, and Hinge Loss,
2018

[11] G. B. Orr
A list of cost functions used in neural networks, alongside
applications,
https://stats.stackexchange.com/questions/154879/

a-list-of-cost-functions-used-in-neural-networks-alongside-applications

CrossValidated, 2015

[12] G. B. Orr
Removing noise in on-line search using adaptive batch sizes,
Department of Computer Science
Willamette University, 1997

[13] Luminita State, Catalina Lucia Cocianu, Vlamos Panayiotis
Network for Principal Component Analysis with Applications in
Image Compression,
2007

[14] Robert A. Jacobs
Increased Rates of Convergence Through Learning Rate Adapta-
tion,

Department of Computer Information Science
University of Massachusetts, 1987

[15] John Duchi, Elad Hazan, Yoram Singer
Adaptive Subgradient Methods for Online Learning and Stochastic
Optimization,
Journal of Machine Learning Research, 2011

[16] Diederik P. Kingma, Jimmy Lei Ba
ADAM: A Method for Stochastic Optimization,
ICLR, 2015

[17] Xavier Glorot, Antoine Bordes, Yoshua Bengio
Deep sparse rectifier neural networks,
Université de Montréal, 2011

[18] Sepp Hochreiter, Jurgen Schmidhuber
Long short-term memory,
Neural Computation Vol. 9, 1997

[19] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua
Bengio
Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation,
2014

[20] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey
Dean
Distributed Representations of Words and Phrases and their
Compositionality,
2013

[21] Xiang Zhang, Junbo Zhao, Yann LeCun:
Character-level Convolutional Networks for Text Classification,
Courant Institute of Mathematical Sciences, New York Univer-
sity, 2016

[22] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner:
Gradient-Based Learning Applied to Document Recognition,
Proc. of the IEEE, 1998

[23] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon
Shlens, Zbigniew Wojna:
Rethinking the Inception Architecture for Computer Vision,
2015

[24] Lode Vandevenne:
Image Filtering,
Lode’s Computer Graphics Tutorial

[25] C.-C. Jay Kuo:
Understanding Convolutional Neural Networks with A Mathemat-
ical Model,
Ming-Hsieh Department of Electrical Engineering
University of Southern California, Los Angeles, 2016

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun:
Delving Deep into Rectifiers: Surpassing Human-Level Perfor-
mance on ImageNet Classification,
Microsoft Research, 2015

[27] Dominik Scherer, Andreas Muller, Sven Behnke:
Evaluation of Pooling Operations in Convolutional Architectures
for Object Recognition,
20th International Conference on Artificial Neural Networks
(ICANN)
Thessaloniki, Greece, September 2010

[28] Karen Simonyan, Andrew Zisserman:
Very Deep Convolutional Networks for Large-Scale Image Recog-
nition,
Visual Geometry Group
Department of Engineering Science
University of Oxford, 2015

[29] Adam W. Harley:
An Interactive Node-Link Visualization of Convolutional Neural

Networks,
Department of Computer Science
Ryerson University
Toronto, Canada, 2015

[30] Ian J. Goodfellow:
Generative Adversarial Nets,
Departement d’informatique et de recherche opérationnelle
Universite de Montréal, 2014

[31] Yann LeCun:
What are some recent and potentially upcoming breakthroughs in
deep learning?,
https://www.quora.com/What-are-some-recent-and-potentially-upcoming-breakthroughs-in-deep-learning,
2016

[32] Cade Metz:
How A.I. Is Creating Building Blocks to Reshape Music and Art,
The New York Times, 2017

[33] James Vincent:
How Three French Students Used Borrowed Code To Put The
First AI Portrait In Christie’s,
The Verge, 2018

[34] James Vincent:
Christie’s sells its first AI portrait for $432,500, beating estimates
of $10,000,
The Verge, 2018

[35] Robbie Barrat:
art-DCGAN,
https://github.com/robbiebarrat/art-DCGAN

[36] Zero-sum game,
https://en.wikipedia.org/wiki/Zero-sum_game

[37] David Pfau, Oriol Vinyals:
Connecting Generative Adversarial Networks and Actor-Critic

Methods,
Google DeepMind, 2017

[38] Christopher J.C.H. Watkins, Peter Dayan:
Q-Learning,
Machine Learning, 8, 279-292, 1992

[39] Jonathan Hui:
GAN - Why it is so hard to train Generative Adversarial Net-
works!,
Medium, Data Science, 2018

[40] Martin Arjovsky, Léon Bottou:
Towards Principled Methods for Training Generative Adversarial
Networks,
ICLR, 2018

[41] Look Around You: : Season 1 Pilot - Calcium (2002)
https://www.youtube.com/watch?v=FBaVwwuErmU

[42] Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein:
Unrolled Generative Adversarial Networks,
ICLR, 2018

[43] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, Sepp Hochreiter:
GANs Trained by a Two Time-Scale Update Rule Converge to a
Local Nash Equilibrium,
LIT AI Lab & Institute of Bioinformatics,
Johannes Kepler University Linz
Austria, 2017

[44] Frans A. Oliehoek, Rahul Savani, Jose Gallego, Elise van der Pol,
Roderich Groβ:
Beyond Local Nash Equilibria for Adversarial Networks,
2018

[45] Thomas Unterthiner, Bernhard Nessler, Calvin Seward, Gunter
Klambauer, Martin Heusel, Hubert Ramsauer, Sepp Hochreiter:
Coulomb GANs: Provably Optimal Nash Equilibria via Potential

Fields,
LIT AI Lab & Institute of Bioinformatics,
Johannes Kepler University Linz
Austria, 2018

[46] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran,
Bernt Schiele, Honglak Lee:
Generative Adversarial Text to Image Synthesis,
University of Michigan, Ann Arbor, MI, USA
Max Planck Institute for Informatics, Saarbrucken, Germany
2016

[47] Maria-Elena Nilsback, Andrew Zisserman:
Automated flower classification over a large number of classes,
Proceedings of the Indian Conference on Computer Vision
Graphics and Image Processing, 2008

[48] Wah C., Branson S., Welinder P., Perona P., Belongie S.:
The Caltech-UCSD Birds-200-2011 Dataset,
Computation & Neural Systems Technical Report
CNS-TR-2011-001

[49] Mehdi Mirza, Simon Osindero:
Conditional Generative Adversarial Nets,
Departement d’informatique et de recherche opérationnelle
Universite de Montréal, 2014

[50] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros:
Image-to-Image Translation
with Conditional Adversarial Networks,
Berkeley AI Research (BAIR) Laboratory,
UC Berkeley, 2018

[51] Phillip Isola:
pix2pix,
https://github.com/phillipi/pix2pix

[52] Josiah Alan Brooks (Jazza):
ARTIST Vs. PIX2PIX - Is this HUMOR or HORROR?!,
https://www.youtube.com/watch?v=9cgFPttB_RQ

[53] Christopher Hesse :
Image-to-Image Demo
Interactive Image Translation with pix2pix-tensorflow,
https://affinelayer.com/pixsrv/

[54] Sung Cheol Park, Min Kyu Park, Moon Gi Kang:
Super-Resolution Image Reconstruction: A Technical Overview,
IEEE Signal Processing Magazine
Volume: 20, Issue: 3, May 2003

[55] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, An-
drew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan
Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi:
Photo-Realistic Single Image Super-Resolution Using a Genera-
tive Adversarial Network,
2017

[56] William Lotter, Gabriel Kreiman, David Cox:
Unsupervised Learning of Visual Structure using Predictive Gen-
erative Networks,
Harvard University of Cambridge
ICLR 2016

[57] R. He, J. McAuley:
Ups and downs: Modeling the visual evolution of fashion trends
with one-class collaborative filtering,
WWW, 2016

[58] J. McAuley, C. Targett, J. Shi, A. van den Hengel:
Image-based recommendations on styles and substitutes,
SIGIR, 2015

[59] Andres Torres:
Finding Duplicate Files with Python,
https://www.pythoncentral.io/

finding-duplicate-files-with-python/

[60] Hadelin de Ponteves, Kirill Eremenko:
Image Creation with GANs,

https://www.superdatascience.com/pages/

computer-vision

[61] Alex Krizhevsky:
Learning Multiple Layers of Features from Tiny Images,
Department of Computer Science
University of Toronto, Canada, 2009

[62] James Vincent:
ThisPersonDoesNotExist.com uses AI to generate endless fake
faces,
The Verge, 15th Feb 2019

[63] Tero Karras, Samuli Laine, Timo Aila:
A Style-Based Generator Architecture for Generative Adversarial
Networks,
NVIDIA, February 2019

List of Figures

1.1 The AI hierarchy of concepts 1
1.2 Shallow network Vs. Deep network 4
1.3 Deep Learning milestones - Part 1 8
1.4 Deep Learning milestones - Part 2 8

2.1 Gradient-based Learning Machine 13
2.2 Stochastic, Batch and Mini-Batch

(credits: https://i.stack.imgur.com/lU3sx.png) 15
2.3 Input transformation 16
2.4 (a) Standard logistic function, (b) Hyperbolic tangent . 17
2.5 Learning rates comparison 19
2.6 Example of an exponential decay schedule

(credits: https://towardsdatascience.com/learning-rate-
schedules-and-adaptive-learning-rate-methods-for-deep-
learning-2c8f433990d1) 20

2.7 Example of sparse hidden activations produced by ReLU 21
2.8 ReLU and Softplus . 22

3.1 Deep ConvNet Character-level for text classification . . 26
3.2 LeNet-5 CNN architecture 26
3.3 Inception-V3 CNN architecture 27
3.4 Convolution in CNN

(credits: https://www.superdatascience.com/computer-
vision/) . 28

3.5 ReLU Vs. PReLU . 29
3.6 Max Pooling in CNN

(credits: https://www.superdatascience.com/computer-
vision/) . 30

119

3.7 Flattening in CNN
(credits: https://www.superdatascience.com/computer-
vision/) . 31

3.8 Fully-Connected part of CNN
(credits: https://www.superdatascience.com/computer-
vision/) . 32

3.9 3D Visualization of a Convolutional Neural Network -
part 1 . 34

3.10 3D Visualization of a Convolutional Neural Network -
part 2 . 35

4.1 Example of images generated via GANs 38
4.2 A GAN that generate imagescapes from existing pho-

tography
(credits: DeepDream - https://deepdreamgenerator.com) 39

4.3 An artwork created using DeepDream
(credits: DeepDream - https://deepdreamgenerator.com) 39

4.4 Portrait of Edmond Belamy, 2018, created by GAN . . 40
4.5 GAN conceptual architecture

(https://hackernoon.com/how-do-gans-intuitively-work-
2dda07f247a1) . 41

4.6 A DCGAN generator
(https://hackernoon.com/how-do-gans-intuitively-work-
2dda07f247a1) . 42

4.7 A DCGAN discriminator
(https://hackernoon.com/how-do-gans-intuitively-work-
2dda07f247a1) . 43

4.8 GAN components interaction with the MNIST dataset 45
4.9 GAN pseudo-algorithm 46
4.10 Discriminator and generator training via gradient descent 47
4.11 GAN mode collapse with MNIST dataset 49

5.1 GAN architecture for text to image synthesis 53
5.2 GAN-CLS training algorithm for text to image synthesis 54
5.3 GAN results for text to image synthesis on CUB dataset 55
5.4 GAN-CLS results for text to image synthesis on Oxford-

102 dataset . 55
5.5 Conditional Adversarial Network 57

5.6 GAN results for image to image translation on a facades
dataset . 58

5.7 edges2cats UI
(credits: pix2pix project) 59

5.8 edges2bags results
(credits: pix2pix project) 59

5.9 SRGAN architecture 61
5.10 SRGAN results - Part 1 62
5.11 SRGAN results - Part 2 63
5.12 Predictive GAN architecture 64
5.13 Predictive GAN results 65

6.1 Experimental GAN architecture 73
6.2 A sample of real images from the Cifar10 dataset . . . 74
6.3 A sample of real images from the Amazon product dataset 75
6.4 Cifar loss chart over 40000 iterations 78
6.5 Cifar loss chart over 100 epochs 79
6.6 Cifar disciminator chart over 100 epochs 79
6.7 Cifar loss chart over 8000 iterations 80
6.8 Cifar loss chart over 21 epochs 81
6.9 Cifar disciminator chart over 21 epochs 81
6.10 Amazon loss chart over 40000 iterations 82
6.11 Amazon loss chart over 100 epochs 82
6.12 Amazon disciminator chart over 100 epochs 83
6.13 Amazon loss chart over 5000 iterations 84
6.14 Amazon loss chart over 12 epochs 84
6.15 Amazon discriminator chart over 12 epochs 85
6.16 Cifar fake samples at epoch 21 87
6.17 Cifar mode collapse after epoch 39 88
6.18 Amazon products fake samples at epoch 1 89
6.19 Amazon products fake samples at epoch 2 90
6.20 Amazon products fake samples at epoch 3 91
6.21 Amazon products fake samples at epoch 4 92
6.22 Amazon products fake samples at epoch 5 93
6.23 Amazon products fake samples at epoch 6 94
6.24 Amazon products fake samples at epoch 7 95
6.25 Amazon products fake samples at epoch 8 96

6.26 Amazon products fake samples at epoch 9 97
6.27 Amazon products fake samples at epoch 10 98
6.28 Amazon products fake samples at epoch 11 99
6.29 Amazon products fake samples at epoch 12 100
6.30 Traditional GAN (a) vs. Style GAN (b) 102
6.31 Style GAN results for face mixing 103

