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Abstract

We give an introduction to the two fundamental methods to solve one-
dimensional integrable systems: the Coordinate Bethe Ansatz and the Alge-
braic Bethe Ansatz. We focus particularly on two widely studied Heisenberg
chains: the XXX model and the XXZ model.

After that we present a brief overview on the quench scenario, which has
led in the last decade to a great progress in the �eld of out-of-equilibrium
physics.

The fundamental techniques devoted to implement the quench approach
are the Generalized Gibbs Ensemble (GGE) and the Quench Action (QA).

We treat in more details the GGE approach, based on the in�nite set of
local conserved charges of an integrable system. Recently the GGE technique
has been improved, adding to the set of local conserved charges, the so called
quasilocal conserved charges.

We �nally propose a way to construct a set of quasilocal charges for the
XXZ model in the gapless regime, through the so called Y-system, a hierar-
chic system of equations, which usually appears in the context of integrable
theories.



Abstract

Diamo un' introduzione sui due metodi fondamentali per risolvere sistemi
integrabili in una dimensione: il Coordinate Bethe Ansatz e l'Algebraic Bethe
Ansatz. Concentriamo particolarmente la nostra attenzione su due catene di
Heisenberg ampiamente studiate: il modello XXX e il modello XXZ.

Successivamente presentiamo una breve panoramica nell'ambito del quench
(in inglese il verbo to quench signi�ca spegnere), che ha portato negli ultimi
dieci anni a grandi progressi nel campo della �sica del non-equilibrio.

Le tecniche fondamentali usate per implementare l'idea del quench sono
l' Ensemble di Gibbs Generalizzato e l'Azione Quench.

A�rontiamo con più dettagli la tecnica dell' Ensemble di Gibbs General-
izzato, costruito attraverso l' insieme in�nito di cariche conservate locali di
un sistema integrabile.

Recentemente la tecnica dell' Ensemble di Gibbs Generalizzato è stata
migliorata, aggiungendo all'insieme di cariche conservate locali, le cosiddette
cariche conservate quasilocali.

Proponiamo in�ne un procedimento per costruire un insieme di cariche
quasilocali per il modello XXZ nel regime critico, detto anche senza gap
(salto), attraverso il cosiddetto Y-system, ovvero un sistema gerarchico di
equazioni, che appare spesso nel contesto delle teorie integrabili.



Chapter 1

Introduction

From the exact solution of the Ising model by Onsager in 1944 up to that of
the hard hexagon model by Baxter in 1980, the statistical mechanics of two-
dimensional systems has been enriched by a number of exact results. One
speaks of exact models once a convenient mathematical expression has been
obtained for a physical quantity such as the free energy, correlation functions
or other features of the physical model. Linked to two-dimensional classical
models, one-dimensional quantum models such as the linear magnetic chain
and Bethe's famous solution have certainly contributed to the understanding
of fundamental excitations in many-body systems and have signed the begin-
ning of a proli�c branch of Statistical Mechanics: Integrable Models and the
technique used to solve them, such as the various Bethe Ansatz approaches
(Coordinate Bethe Ansatz, Algebraic Bethe Ansatz, Thermodynamic Bethe
Ansatz, Asymptotic Bethe Ansatz, Nested Bethe Ansatz). Related to Bethe
Ansatz a wide �eld of mathematical physics has been also in�uenced, i.e.
group theory. With the Bethe Ansatz, many-body dynamics can be reduced
to two-body dynamics. The many-particle scattering matrix is equal to the
product of two-particle ones. This leads to the self consistency relation for
the two-particle scattering matrix, which is the Yang-Baxter equation, the
central concept of exactly solvable models. The role of Yang-Baxter equation
goes beyond the theory of dynamical systems. It is very important in group
theory, particularly in quantum group theory, as we stated above.

Recently the study of the thermodynamics of integrable systems has at-
tracted a lot of attention, particularly the analysis of the time evolution of
the physical model. The quantum quench is a modern application of these
issues.

A quantum quench is an instantaneous change in the parameters that
determine the dynamics of an isolated quantum system e.g. the masses or
coupling constants of its Hamiltonian. From an experimental point of view
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this is a feasible way to bring the system out-of-equilibrium and study its
evolution under the quantum mechanical laws, in isolation from the envi-
ronment. In particular, the scienti�c interest in quantum quenches started
growing after the experimental realization of global sudden changes of the in-
teraction in cold atom systems, a novel technology where quantum statistical
physics can be experimentally demonstrated and probed.

Due to the con�uence of various features, these quantum systems are
in many ways near-ideal systems for the study of nonequilibrium quantum
phenomena. Firstly, quantum gases can exhibit a remarkably high degree of
isolation from environmental sources of decoherence and dissipation. Thus,
to an excellent approximation, during duration of experiments they can be
regarded as closed quantum systems. Further, the dilute nature of these
gases and exceptionally low temperatures result in long timescales of dy-
namical e�ects (typically on the order of milliseconds or longer) allowing
for timeresolved studies of nonequilibrium processes resulting from phase-
coherent many-body dynamics. Secondly, an array of techniques have been
developed to dynamically tune various parameters of the Hamiltonian gov-
erning these quantum gases. This has made it possible to realize various
prototypical nonequilibrium processes such as quantum quenches discussed
above.

From a theoretical point of view the problem consists in preparing the
system in a particular trial state, which is typically the ground state of
some Hamiltonian, and study its evolution under a di�erent Hamiltonian.
Apart from being one of the simplest and well-posed ways to study out-
of-equilibrium quantum physics, quantum quenches also give rise to a fun-
damental long-standing open question of central importance in statistical
physics, the question of thermalization: how do extended quantum physical
systems tend to thermal equilibrium starting from an arbitrary initial state?
Of particular interest is the case of (1+1)-dimensions where a discrimination
between integrable and non-integrable systems is possible.

For generic systems it is expected that after a su�ciently long time they
reach a steady state in which the expectation values of some class of relevant
observables are described by a thermal Gibbs ensemble (canonical ensemble).
The choice of the class of observables generally follows the idea that they are
supported on subsystems which in the thermodynamic limit are in�nitely
smaller than the rest of the system. The rest of the system can then act as
a heat bath, leading to thermalization.

Thermalization, however, is only expected to hold for systems with generic,
i.e. nonintegrable dynamics. Integrable models are models that exhibit fac-
torization of the scattering matrix and can be solved exactly. Their classical
counterparts possess as many integrals of motion as their degrees of freedom
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and this fact prevents thermalization of an arbitrary initial state, as not all
of the micro-states of equal energy respect the conservation of all other inte-
grals of motion. This property is also expected to hold at the quantum level.
In a seminal experiment it was observed that a trapped (1+1)d Bose gas,
initially prepared in a non-equilibrium state, does not thermalize but tends
instead to a nonthermal momentum distribution. The absence of thermal-
ization suggests as a possible reason the integrability of the system which
approximates a homogeneous (1+1)d Bose gas with point-like collisional in-
teractions, a typical integrable model, even though the con�ning potential
used in the experiment breaks the homogeneity and therefore integrability of
the system. This experiment triggered an intense discussion about the role
of non-integrability in the thermalization process. It was soon conjectured
that in an integrable case the system does exhibit stationary behavior for
long times, described however not by the usual Gibbs ensemble but a Gener-
alized Gibbs Ensemble (GGE) where new Lagrange multipliers, in addition
to temperature related to energy, are introduced into the density matrix, one
for each integral of motion, for accounting their conservation.

The GGE can be derived by applying the maximum entropy principle
under the constraint provided by the conserved local-charges, therefore the
idea is very natural in the framework of statistical mechanics. Most initial
studies of GGE were carried out in theories equivalent to free fermions or
by numerical studies of relatively small systems. More recently it became
possible to examine interacting integrable systems such as the 1D Bose gas,
the XXZ Heisenberg spin chain or �eld theories. The validity of the GGE for
interacting theories has been called into question by a series of recent studies.
A crucial step in this direction was the development of the Quench Action
approach, which provided an alternative way to study the time evolution
using the overlaps of the initial state with the eigenstates of the post-quench
Hamiltonian.

The di�erent way of study quantum quench has suggested that the GGE
can describe better the out-of-equilibrium dynamics if it is enriched by a set
of quasilocal charges, in addition to the above mentioned local charges. In
this thesis we want to construct a set of quasilocal charges for the gapless
regime of the XXZ model, taking advantage of the relation (see papers of
Destri and de Vega written in the early nineties) between this model and the
sine-Gordon model. The point of contact of the two theories (observe that
one is a �eld theory and the other is a lattice model) is the Y-system, i.e. a
set of functional equations peculiar to integrable models.

In the �rst two following chapter we give a brief introduction to spin
chains and to Coordinate and Algebraic Bethe Ansatz, used to solve them.
In the fourth chapter we study with more details the technique of quantum
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quench and we give some new recent advances in this �eld. The �fth chapter
is devoted to the description of how to de�ne quasilocal charges and we give
some example on how to construct them. The last chapter contains our
attempt to construct a set of quasilocal charges for the XXZ model in the
gapless regime.



Chapter 2

Spin chains

2.1 A simple Heisenberg chain: the XXXmodel

2.1.1 Introduction to the model

The Hamiltonian of the Heisenberg spin-1/2 chain with N sites and periodic
boundary condition Sj+N = Sj is

H = −J
N∑
n=1

Sn · Sn+1 = −J
N∑
n=1

[
1

2

(
S+
n S
−
n+1 + S−n S

+
n+1

)
+ SznS

z
n+1

]
, (2.1)

where Sn = 1/2 (σxn, σ
y
n, σ

z
n), σαn are Pauli matrices acting on the nth sites

and S±n ≡ Sxn ± iSyn are spin �ip operators. Since for each sites the possible
spin con�gurations are only up and down and each Sn acts on the nth site,
the Hamiltonian acts on the tensor product of N two dimensions Hilbert
spaces, which gives a 2N dimensions total Hilbert space. The basis vectors
which span the latter space are |σ1...σN〉, where σn =↑ represents an up spin
and σn =↓ a down spin at sites n. For subsequent calculations it is useful to
see how S±n operates on each site. Knowing that

S+ =

(
0 1
0 0

)
, S− =

(
0 0
1 0

)
, (2.2)

if we have two basis state | ↑〉 =

(
1
0

)
and | ↓〉 =

(
0
1

)
then

S+| ↑〉 = 0, S−| ↑〉 = | ↓〉, Sz| ↑〉 =
1

2
| ↑〉,

S−| ↓〉 = 0, S+| ↓〉 = | ↑〉, Sz| ↓〉 = −1

2
| ↓〉. (2.3a,b)
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The fundamental commutation relations (with ~ = 1) are[
Szn, S

±
m

]
= ±S±n δnm,

[
S+
n , S

−
m

]
= 2Sznδnm. (2.3)

The Heisenberg Hamiltonian enjoys a rotational symmetry about the z-axis,
so that the projection of the total spin on this axis Sz =

∑N
n1 S

z
n is conserved

and [H,Sz] = 0. Since the magnetization is conserved it is useful to consider
separately sectors de�ned by the number of Sz = N/2 − R, where R is the
number of down spins.

With these tools we can begin studying the model, starting from the
vacuum state, de�ned by all spins up and so R = 0. Giving |0〉 = | ↑↑ ... ↑〉
and observing that from the (2.3a,b) the operators S+

n S
−
n+1 and S

−
n S

+
n+1 give

zero and that SznS
z
n+1 gives −1/4 acting on the vacuum state, we have

H|0〉 = E0|0〉, E0 = −J
4
N. (2.4)

The states in the sector R = 1, i.e. all spins up except than one, are
constructed from the vacuum state, using the lowing operator:

|n〉 = S−n |0〉, n = 1, ..., N. (2.5)

However these are not eigenstates of the Hamiltonian, but we can obtain an
eigenstate by a linear combination of the latter states:

|ψ〉 =
1√
N

N∑
n=1

eikn|n〉, (2.6)

for wave numbers k = 2πm/N,m = 0, ..., N − 1.
We proceed with the calculation of the eigenvalues of (2.6). We have

− J√
N

N∑
n=1

[
1

2

(
S+
n S
−
n+1 + S−n S

+
n+1

)
+ SznS

z
n+1

] N∑
j=1

eikjS−j |0〉 =
E√
N

N∑
j=1

eikjS−j |0〉.

(2.7)
We calculate separately each summand, using the fundamental commutation
relations:

N∑
n,j=1

S+
n S
−
n+1S

−
j e

ikj|0〉 =
N∑

n,j=1

S−j S
+
n S
−
n+1e

ikj|0〉+ 2
N∑
n=1

SznS
−
n+1e

ikn|0〉, (2.8)

N∑
n,j=1

S−n S
+
n+1S

−
j e

ikj|0〉 =
N∑

n,j=1

S−j S
−
n S

+
n+1e

ikj|0〉+ 2
N∑
n=1

S−n S
z
n+1e

ik(n+1)|0〉,

(2.9)
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N∑
n,j=1

SznS
z
n+1S

−
j e

ikj|0〉 =
N∑

n,j=1

S−j S
z
nS

z
n+1e

ikj|0〉−
N∑
n=1

S−n S
z
n+1e

ikn|0〉−
N∑
n=1

SznS
−
n+1e

ik(n+1)|0〉.

(2.10)
Collecting all members we have

N∑
n,j=1

S−j e
ikj

(
− J√

N

)[
1

2

(
S+
n S
−
n+1 + S−n S

+
n+1

)
+ SznS

z
n+1

]
|0〉

+

(
− J√

N

) N∑
n=1

[
SznS

−
n+1e

ikn + S−n S
z
n+1e

ik(n+1) − S−n Szn+1e
ikn − SznS−n+1e

ik(n+1)
]
|0〉 =

E
1√
N

N∑
j=1

eikjS−j |0〉. (2.11)

Observing that Szn+1 and S
−
n always commute, that Szn|0〉 = 1/2|0〉, using

the periodicity of the chain and shifting the sums where it is necessary, we
obtain

E0|ψ〉+
−J
2

(
eik + e−ik − 2

)
|ψ〉 = E|ψ〉, (2.12)

so that E = E0 + J(1− cos k). The vectors (2.6) represent the so called
magnon excitations.

We now turn to the R = 2 sector, where a generic state can be written as

|ψ〉 =
∑

1≤n1<n2≤N

f(n1, n2)|n1, n2〉, (2.13)

where |n1, n2〉 ≡ S−n1
S−n2
|0〉, i.e. there are two down spins respect to the

vacuum state. In order to |ψ〉 being an eigenstate of the Hamiltonian we
will �nd a relation between the eigenvalue E and f(n1, n2). To this purpose
we don't use directly the commutation relations, but we calculate how each
operator acts on the basis state. First of all we have to distinguish the case
in which the down spins are not adjacent and case in which they are. Taking
into account the (2.3a,b) we have that

N∑
n=1

S+
n S
−
n+1|m1,m2〉 =

{
|m1,m1 + 2〉 if m2 = m1 ± 1,

|m1 + 1,m2〉+ |m1,m2 + 1〉 otherwise.

(2.14)
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To justify the latter equation we see that the operator
∑

n S
+
n S
−
n+1 acts non-

trivially on |m1,m2〉 only when n = m1 and when n = m2, if m1 and m2 are
not consecutive and only when n = m1 + 1 in the other cases.

With similar argument we have

N∑
n=1

S−n S
+
n+1|m1,m2〉 =

{
|m1 − 1,m1 + 1〉 if m2 = m1 ± 1,

|m1 − 1,m2〉+ |m1,m2 − 1〉 otherwise.
.

(2.15)

The
∑

n S
z
nS

z
n+1 operator gives a contribution −1/4 for each pair of mis-

aligned adjacent spins and a contribution 1/4 for all other adjacent pairs
spins. If the two down spins are not adjacent, there are four pairs of mis-
aligned spins; if the down spins are adjacent there are two such pairs. In this
way we deduced that

N∑
n=1

SznS
z
n+1|m1,m2〉 =

{(
N−2

4
− 1

2

)
|m1,m1 + 1〉 if m2 = m1 ± 1,(

N−4
4
− 1
)
|m1,m2〉 otherwise.

(2.16)

Now we want to �nd a relation between the eigenvalue E of |ψ〉 and
f(n1, n2), so that |ψ〉 is an eigenstate of H. To this aim it is convenient to
split the case of adjacent down spins from the others:

H|ψ〉 =
∑

n2>n1+1

α(n1, n2)|n1, n2〉+
N∑
n=1

β(n1, n2)|n, n+ 1〉. (2.17)

Demanding |ψ〉 to be an eigenstate with eigenvalue E is equivalent to
have:

α(n1, n2) = Ef(n1, n2) for n2 > n1 + 1 (2.18)

β(n, n+ 1) = Ef(n, n+ 1). (2.19)

It follows that



10 CHAPTER 2. SPIN CHAINS

− 2

J
H|ψ〉 =

∑
n2>n1

f(n1, n2)
N∑
m=1

(
S+
mS
−
m+1 + S−mS

+
m+1 + 2SzmS

z
m+1

)
|n1, n2〉 =∑

n2>n1+1

f(n1, n2) (|n1 + 1, n2〉+ |n1, n2 + 1〉+ |n1 − 1, n2〉

+|n1, n2 − 1〉+
N − 8

2
|n1, n2〉

)
+

N∑
n=1

f(n, n+ 1)

(
|n, n+ 2〉+ |n− 1, n+ 1〉+

L− 4

2
|n, n+ 1〉

)
=
∑
n2>n1

f(n1 − 1, n2)|n1, n2〉+
∑

n2>n1+2

f(n1, n2 − 1)|n1, n2〉+∑
n2>n1+2

f(n1 + 1, n2)|n1, n2〉+
∑
n2>n1

f(n1, n2 + 1)|n1, n2〉

+
∑

n2>n1+2

N − 8

2
|n1, n2〉

+
N∑
n=1

f(n, n+ 1)

(
|n, n+ 2〉+ |n− 1, n+ 1〉+

L− 4

2
|n, n+ 1〉

)
, (2.20)

where in the last step we shifted the �rst sum so as to get |n1, n2〉 in every
term. We now change the sums over n1 and n2 such that all these sums all
run over n2 > n1 + 1, remembering that it is necessary to subtract the terms
that we add in doing so and vice-versa.
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− 2

J
H|ψ〉 =

∑
n2>n1+1

(f(n1 − 1, n2) + f(n1, n2 − 1) + f(n1 + 1, n2)+

f(n1, n2 + 1) +
N − 8

2
f(n1, n2)

)
|n1, n2〉

+
N∑
n=1

(f(n− 1, n+ 1)|n, n+ 1〉 − f(n, n+ 1)|n, n+ 2〉

−f(n+ 1, n+ 2)|n, n+ 2〉+ f(n, n+ 2)|n, n+ 1〉)

+
N∑
n=1

f(n, n+ 1)

(
|n, n+ 2〉+ |n− 1, n+ 1〉+

L− 4

2
|n, n+ 1〉

)
=

∑
n2>n1+1

(f(n1 − 1, n2) + f(n1, n2 − 1) + f(n1 + 1, n2)+

f(n1, n2 + 1) +
N − 8

2
f(n1, n2)

)
|n1, n2〉

+
N∑
n=1

(
f(n− 1, n+ 1) + f(n, n+ 2) +

L− 4

2
+ f(n, n+ 1)

)
|n, n+ 1〉.

(2.21)

Comparing the coe�cients of this equation with α(n1, n2) and β(n, n+1)
and remembering the values of E0 we obtain

2(E − E0)f(n1, n2) = J(4f(n1, n2)− f(n1 − 1, n2)− f(n1, n2 − 1)−
f(n1 + 1, n2)− f(n1, n2 + 1)) for n2 > n1 + 1 (2.22)

and

2(E − E0)f(n, n + 1) = J(2f(n, n + 1)− f(n− 1, n + 1)− f(n, n + 2)).
(2.23)

The trick to determine the coe�cients f(n1, n2) is due to Bethe and is
the �rst step to implement the so called coordinate Bethe Ansatz technique.
The idea is to make an attempt with

f(n1, n2) = Aei(k1n1+k2n2) + A
′
ei(k1n2+k2n1). (2.24)
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With this ansatz the �rst condition on the eigenvalue E and f(n1, n2) is
automatically satis�ed by

E = E0 + J
∑
j=1,2

(1− cos kj) (2.25)

which also gives a relation between the coe�cients A and A
′
:

A

A′
≡ eiθ = −e

i(k1+k2) + 1− 2eik1

ei(k1+k2) + 1− 2eik2
. (2.26)

This relation can be put in the real form

2 cot
θ

2
= cot

k1

2
− cot

k2

2
, (2.27)

as is shown in Appendix A.
Imposing the periodic boundary condition f(n1, n2) = f(n2, n1 +N), we

derive the relation between the phase θ and the momentum k1 and k2:

eik1N = eiθ, eik2N = e−iθ. (2.28)

Taking the logarithm of the last equations and taking into account the
polydromicity of complex logarithm, we obtain the fundamental form of the
Bethe equations:

Nk1 = 2πI1 + θ, Nk2 = 2πI2 − θ, (2.29)

where Ij = {0, 1, ..., N − 1}.
The total momentum of this state is

K = k1 + k2 =
2π

N
(I1 + I2). (2.30)

This state can be interpreted as the interaction of two magnons with mo-
menta k1 and k2 and phase shift θ. Since the momentum can have real or
complex solutions, the magnons either scatter o� each other or form bound
states.

2.1.2 The generic solution

The case with generic R overturned spins is a generalization of the case
R = 2, so the �rst step is writing the state of the system as

|ψ〉 =
∑

1≤n1<...<nR≤N

f(n1, ..., nR)|n1, ..., nR〉. (2.31)
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Knowing the ansatz for two overturned spins, we can use the following
expression for the coe�cients f(n1, ..., nR):

f(n1, ..., nR) =
∑
P

ei
∑R
j=1 kPjnj+

i
2

∑
l<j θ(kPl,kPj), (2.32)

where the sum extends over all R! permutations P of the assignments of
momenta to each overturned spin and where we introduce the antisymmetric
phase shift θ(kl, kj) = −θ(kj, kl).

The energy eigenvalue becomes

E = E0 + J
R∑
j=1

(1− cos kj). (2.33)

From the consistency equations for the coe�cients f(n1, ..., nR) the phase
shift is related to momenta as

eiθ(kj ,kl) = −e
i(kj+kl) + 1− 2eikj

ei(kj+kl) + 1− 2eikl
(2.34)

or equivalently

2 cot
θ(kj, kl)

2
= cot

kj
2
− cot

kl
2
, j, l = 1, ..., R. (2.35)

The periodic boundary condition f(n1, ..., nR) = f(n2, ..., nR, n1 + N)
allows to write the Bethe equations

Nkj = 2πIj +
∑
l 6=j

θ(kj, kl), j = 1, ..., R, (2.36)

where Ij ∈ {0, 1, ..., N − 1}.
Now it is convenient to parametrize the momenta in a di�erent way,

introducing the rapidities λj:

cot
kj
2

= λj (2.37)

or using the complex representation of cotangent and the identity arctan(x)+
arcot(x) = π/2

kj =
1

i
ln
λj + i

λj − i
= π − θ1(λj), (2.38)

where
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θn(λ) ≡ 2 arctan
λ

n
. (2.39)

The energy and the momentum k of an individual magnon are

p0(λ) =
1

i
ln
λ+ i

λ− i
= k, (2.40)

ε0(λ) = −J dk
dλ

=
2J

λ2 + 1
= J(1− cos k). (2.41)

The subscript 0 re�ects what we will call 0-complex in the next subsection.

2.1.3 String hypothesis

Now we want to analyze the interesting advantages of using the rapidities
parametrization. Using the complex representation of cotangent and knowing
that cot(θ/2) = (λ1 − λ2)/2, in the R = 2 case the (2.29) become

(
λ1 + i

λ1 − i

)N
=
λ1 − λ2 + 2i

λ1 − λ2 − 2i
, (2.42)(

λ2 + i

λ2 − i

)N
=
λ2 − λ1 + 2i

λ2 − λ1 − 2i
. (2.43)

If Im(λ1) 6= 0, the left hand side (LHS) in the �rst of the preceding
equations grows (or decrease) exponentially in N . Therefore in the thermo-
dynamic limit the LHS is strictly zero or in�nity and the right hand side
(RHS) has to do the same. So we must have

λ1 − λ2 = ±2i =⇒ λ1,2 = λ± i. (2.44)

The energy and momentum of this state are:

p1/2(λ) = p0(λ+ i) + p0(λ− i) =
1

i
ln
λ+ 2i

λ− 2i
= k, (2.45)

ε1/2(λ) = ε0(λ+ i) + ε0(λ− i) = −J dk
dλ

=
4J

λ2 + 4
=
J

2
(1− cos p1/2). (2.46)

For R > 2 the Bethe equations become in terms of rapidities(
λj + i

λj − i

)N
=

R∏
k 6=j

λj − λk + 2i

λj − λk − 2i
. (2.47)
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Now we assume that the so called string hypothesis is valid, i.e. the
complexes solutions of the Bethe equations are organized into complexes (or
strings) of 2M + 1 rapidities characterized by the same real value λM and
di�erent, equidistant, imaginary parts. M can assume half-integer values
0, 1/2, 1, ... and rapidities have the structure

λ(M)
m = λM + 2im, m = −M,−M + 1, ...,M − 1,M. (2.48)

Denoting by νM the number of comlexes of lengthM , a state with a given
magnetization satis�es

R =
∑
M

(2M + 1)νM . (2.49)

The energy and momentum of a M-complex are obtained by summing
over all rapidities within one string. By construction there are a lot of can-
cellations and the two quantities have a simple form:

pM(λM) =
M∑

m=−M

p0(λM + 2im) =
1

i
ln
λM + i(2M + 1)

λM − i(2M + 1)
= π − θ2M+1(λM),

(2.50)

εM(λM) =
M∑

m=−M

ε0(λM + 2im) =
2J(2M + 1)

λ2
M + (2M + 1)2

=
J

2M + 1
(1− cos pM).

(2.51)

Since we can interpret each rapidity as a particle and since rapidities are
strictly connected with phase shift we can obtain scattering matrix elements
through simple products. The scattering matrix element of a M-complex
with a single magnon (0-complex) can be obtained considering the scattering
of each particle with the magnon in order to fall in the case R = 2 and use
both value of λ1,2 as in (2.44). So we have

S0,M(λ0−λM) = S0,M(λ) =
M∏

m=−M

(λ+ i) + 2im+ i

(λ+ i) + 2im− i

M∏
m=−M

(λ− i) + 2im+ i

(λ− i) + 2im− i

=
λ+ 2iM

λ− 2iM

λ+ 2i(M + 1)

λ− 2i(M + 1)
. (2.52)

For the scattering of two complexes of lengthM andM
′
as written in the

lectures of Faddeev [5] we have
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SM,M ′ (λ) =
M+M

′∏
L=|M−M ′ |

S0,L(λ). (2.53)

Now we want to describe the system in terms of the number of complexes
νM for each type M and by the real part of the j-th complex of length M
λM,j, where j = 1, ..., νM . Rearranging the (2.47) in terms of complexes we
can write

eipM (λM,j)N =
∏
M ′

ν
M
′∏

j
′

(M
′
,j
′
)6=(M,j)

SM,M ′ (λM,j − λM ′ ,j′ ), ∀M ; j = 1, ..., νM .

(2.54)

Taking the logarithm of the latest equation, introducing the (half-)integer
(according to the value ofM) quantum number IM,j due to the polidromicity
of logarithm and making use of the already known identity

1

i
ln
λ+ in

λ− in
= π − 2 arctan

λ

n
= π − θn(λ), (2.55)

we have

Nθ2M+1(λM,j) = 2πIM,j +
∑

(M ′ ,j′ )6=(M,j)

θM,M ′ (λM,j − λM ′ ,j′ ), (2.56)

where

θM,M ′ (λ) =
M+M

′∑
L=|M−M ′ |

(θ2L(λ) + θ2L+2(λ)) , (2.57)

and L = 0 is intended to be excluded.

In string hypothesis each state is thus characterised by the number of
complexes νM and the Bethe numbers IM,j. However not all quantum num-
bers are allowed. In fact since the chain is limited and is a one-dimensional
lattice the momenta are constrained within a Brillouin zone. In particular
an in�nite rapidity λ∞M = ∞ corresponds to a momentum at the edge of
Brillouin zone and de�nes a natural bound for the quantum numbers. Since
arctan(±∞) = ±π/2, inverting (2.56) we have
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I
(∞)
M = −

∑
M ′ 6=M

(
2 min(M

′
,M) + 1

)
νM −

(
2M +

1

2

)
(νM − 1) +

N

2
. (2.58)

The presence of min(M
′
,M) is due to the absolute value in the subscript

of the sum in (2.57). The second term in RHS is obtained by considering
the sum on j with M = M

′
(1/(2π)θM,M(∞) = 1/2π

∑2M
L=1(π + π) + π =

2M+1/2) and since j 6= j
′
we have νM−1 terms. Since adding a M-complex

shifts this boundary by 1/(2π)θM,M(∞), the maximum quantum number that
characterizes a �nite rapidity, before it joins the rapidities at the edge, is

ImaxM = I
(∞)
M −

(
2M +

1

2
− 1

2

)
=
N − 1

2
−
∑
M ′

J(M,M
′
)νM ′ , (2.59)

where

J(M,M
′
) =

{
2 min(M

′
,M) + 1 if M 6= M

′
,

2M + 1
2
, if M = M

′
.

(2.60)

and where the additional shift 1/2 in (2.59) takes into account that adding
a rapidity shifts the Bethe numbers from integer to half-integer and vice-
versa.

Since the inverse of the tangent is an odd function, we have that

ImaxM = −IminM , (2.61)

which implies that the allowed Bethe numbers (we call them vacancies)
for a M-complexes are

PM = 2ImaxM + 1 = N − 2
∑
M
′

J(M,M
′
)νM ′ (2.62)

2.1.4 The Anti-ferromagnetic case: J = −1

To study the anti-ferromagnetic regime we have to �nd �rstly the ground
state which is intuitively di�erent from the completely polarized ground state
of section 2.1.1. The ground state is obtained by putting the spins alterna-
tively up and down, so that Sz = 0 and R = N/2. From (2.49) the ground
state con�guration must be composed only by 0-type complexes, i.e.

ν0 =
N

2
, νM = 0,M ≥ 1

2
. (2.63)
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The number of vacancies are

P0 = N − 2J(0, 0)ν0 =
N

2
. (2.64)

which equals the number of particles. Hence

− N

4
+

1

2
≤ I0,k ≤

N

4
− 1

2
. (2.65)

Excited states over ground state are constructed by progressively taking
away particles from it and moving them into complexes, i.e. we will charac-
terised the excited states by κ with

ν0 =
N

2
− κ. (2.66)

For κ = 1 we cannot add any complexes (we can not overcome R = N/2)
and so we have R = N/2−1, which implies Sz = 1. The number of vacancies
in this case is

P0 = N − 2 · 1

2

(
N

2
− 1

)
=
N

2
+ 1, (2.67)

which exceeds the number of particles by two. This means that Bethe
numbers of a state in this sector are all the allowed quantum numbers but
two and the choice of this two holes characterizes the state.

For κ = 2 we have two possibilities: we can keep νM = 0 for M ≥ 1/2
and have a state with magnetization Sz = 2. The second possibility is to
have ν1/2 = 1 and νM = 0 for M ≥ 1, so that R = N/2 and Sz = 0. The
vacancies are

P0 = N − 2 · 1

2

(
N

2
− 2

)
− 2J

(
0,

1

2

)
=
N

2
, (2.68)

P1/2 = N − 2 · 1

2

(
N

2
− 2

)
J

(
0,

1

2

)
− 2J

(
1

2
,
1

2

)
= 4− 3 = 1. (2.69)

The number of vacancies for quantum numbers allows for two holes, while
there is no freedom for the 1/2-complex, whose state is therefore �xed.

For generic κ, we can have con�gurations with

ν0 =
N

2
− κ, νM = 0,M ≥ 1

2
=⇒ R =

N

2
− κ, (2.70)

with P0 = N/2 + κ vacancies, which give rise to 2κ holes and a total
spin Sz = κ. In addition to these solutions, we can have states with smaller
magnetization and an increasing of complexes.
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We now analyze the states with κ = 0, 1.
Starting with κ = 0 and assuming that N/2 is odd for we have for the

ground state

I0,j = j, j = −− N

4
+

1

2
,−N

4
+

3

2
, ...,

N

4
− 1

2
. (2.71)

The equation (2.56) becomes

arctanλj = π
j

N
+

1

N

∑
k

arctan

(
λj − λk

2

)
. (2.72)

Taking the thermodynamic limit N →∞, the variable x = j/N becomes
continuous and limited in the range −1/4 ≤ x ≤ 1/4. Thus turning the sums
into integrals and the roots λj into functions of x the preceding equation
becomes

arctanλ(x) = πx+

∫ 1/4

−1/4

arctan

(
λ(x)− λ(y)

2

)
dy. (2.73)

Performing a change of variables x → λ(x), so that the (2.73) depends
directly on rapidities and their density ρ0(λ) = dx

dλ
and di�erentiating (2.73)

with respect to λ we obtain a linear integral equation for the density ρ0(λ):

ρ0(λ) =
1

π

1

λ2 + 1
− 1

π

∫ ∞
−∞

2

(λ− µ)2 + 4
ρ0(µ)dµ. (2.74)

This integral equation can be solved by Fourier transform:

ρ̃0(ω) =

∫ ∞
−∞

e−iωλρ0(λ)dλ. (2.75)

Using

1

π

∫ ∞
−∞

e−iωλ
n

λ2 + n2
dλ = e−n|ω|, (2.76)

which is obtained by residues theorem and the appropriate choice of the
path integration according to the sign of ω, the integral equation reduces to

ρ̃0(ω)(1 + e−2|ω|) = e−|ω| =⇒ ρ̃0(ω) =
1

2
sech(ω). (2.77)

This yields

ρ0(ω) =
1

2π

∫ ∞
−∞

eiωλρ̃0(ω)dω =
1

4 cosh(πλ
2

)
. (2.78)
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The momentum and the energy of the ground state are then

K = N

∫ ∞
−∞

p0(λ)ρ0(λ)dλ =
π

2
N, (2.79)

E = E0 +N

∫ ∞
−∞

ε0(λ)ρ0(λ) = N

(
1

4
− ln 2

)
. (2.80)

For the case κ = 1 we use again the continuous form of the Bethe equa-
tions, but we have to take into account that there are two holes. We can
suppose that the empty quantum numbers are j1 and j2:

I0,j = j + θH(j − j1) + θH(j − j2), (2.81)

where

θH(x) =

{
1 if x ≥ 0

0 if x < 0
. (2.82)

The integral equation for the density, which we call ρ1 for this case be-
comes

ρ1 +
1

π

∫ ∞
−∞

2

(λ− µ)2 + 4
ρ1(µ)dµ =

1

π

1

λ2 + 1
− 1

N
(δ(λ− λ1) + δ(λ− λ2)) ,

(2.83)
where λ1,2 are the images of x1 = j1/N x2 = j2/N under the map x →

λ(x). Using once more Fourier transform we can obtain the momentum and
the energy of the state:

K = N

∫ ∞
−∞

p0(λ)ρ1(λ)dλ =
π

2
N + k(λ1) + k(λ2), (2.84)

E = E0 +N

∫ ∞
−∞

ε0(λ)ρ1(λ) = N

(
1

4
− ln 2

)
+ ε(λ1) + ε(λ2), (2.85)

where

k(λ) ≡ arctan sinh(
πλ

2
), ε(λ) ≡ π

2 cosh(πλ
2

)
. (2.86)

Combining the expressions of ε(λ) and k(λ), we obtain the dispersion
relation of these excitations from the ground state:

ε(k) =
π

2
cos k, −π

2
≤ k ≤ π

2
. (2.87)



2.2. XXZ CHAIN 21

2.2 XXZ chain

The Hamiltonian of the XXZ model is similar to XXX Hamiltonian, but for
the introduction of a degree ∆ of anisotropy along the z-axes. We also add
a term, which takes into account the presence of an external magnetic �eld
h. We have

H = −J
N∑
n=1

[
1

2

(
S+
n S
−
n+1 + S−n S

+
n+1

)
+ ∆SznS

z
n+1

]
− 2h

N∑
n=1

Szn, (2.88)

with the analogous conventions and symbols of the XXX chain.
We proceed following the steps as for the preceding model. We de�ne

a magnetization Sz ≡
∑N

n=1 S
z
n, which is conserved since it commutes with

the Hamiltonian. The reference state |0〉 with all spins up (Sz = N/2) is an
eigenstate of H with eigenvalue

E0 = −
(
J∆

4
+ h

)
N. (2.89)

As already done we can write the generic state with R spin-�ips as

|ψ〉 =
∑

1≤n1<...<nR≤N

f(n1, ..., nR)|n1, ..., nR〉. (2.90)

with

|n1, ..., nR〉 ≡ S−n1
...S−n1

|0〉. (2.91)

The ansatz for the coe�cients f(n1, ..., nR) is again

f(n1, ..., nR) =
∑
P

ei
∑R
j=1 kPjnj+

i
2

∑
l<j Θ̃(kPl,kPj), (2.92)

where the sum is over the R! permutation P of momenta kj.
The wave function with these coe�cients is an eigenfuntion of H with

eigenvalue

E = E0 + (J∆ + 2h)R−
R∑
j=1

cos kj, (2.93)

if the phase shift Θ̃(kj, kl) satis�es

eiΘ̃(kj ,kl) = −e
i(kj+kl) + 1− 2∆eikj

ei(kj+kl) + 1−∆2eikl
. (2.94)
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We can rede�ne the phase shift for later convenience as

Θ(kj, kl) ≡ Θ̃(kj, kl)− π. (2.95)

By imposing boundary conditions we obtain the Bethe equations

kjN = 2πĨj −
R∑
l 6=j

Θ(kj, kl), j = 1, ...R, (2.96)

where Ĩj are integer or half-integer.
Now we introduce the rapidities λ̃j to parametrize the momentum kj:

eikj =
sin φ

2

(
λ̃j + i

)
sin φ

2

(
λ̃j − i

) , or cot
kj
2

= coth
φ

2
tan

(
φλ̃j
2

)
. (2.97)

The parameter φ (which is renamed γ in a particular case as we see right
now) depends on the value of ∆:

• Uni-axial ferromagnet (gapped regime) ∆ > 1: ∆ = coshφ
with 0 < φ <∞;

• Planar paramagnet (gapless regime) |∆| < 1: ∆ = − cos γ
with 0 < γ < π;

• Uni-axial anti-ferromagnet ∆ < −1: ∆ = − coshφ with 0 < φ <∞.

The cases ∆ = ±1 recover respectively the ferromagnetic and
anti-ferromagnetic regimes in XXX model.

With ∆ = coshφ the Bethe equations become

Nθ1(λj) = 2πIj +
R∑
l 6=j

θ1(λj − λl), j = 1, ..., R, (2.98)

where λ = φλ̃ and

θn(λ) ≡ 2 arctan

(
coth

nφ

2
tan

λ

2

)
. (2.99)

In terms of rapidities the energy is given by

E = E0 + 2hR +
R∑
j=1

ε(λj), (2.100)
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with

ε(λ) ≡ − J sinh2 φ

coshφ− cos(λ)
= −J sinhφ

d

dλ
p(λ) (2.101)

and

p(λ) ≡ θ1(λ) = k. (2.102)

2.2.1 Uni-axial ferromagnet

For this regime we can introduce again the string hypothesis to group complex
rapidities. So we assume that each solution of Bethe equations belongs to a
M-type complex of rapidities:

λM,j = λM + 2i(M − j)φ, j = 0, ..., 2M, (2.103)

with λM ∈ [−π, π].
Regarding each complex as an elementary excitation, its momentum and

energy are:

pM(λM) =
1

i

2M∑
j=0

ln
sin 1

2
(λM,j + iφ)

sin 1
2
(λM,j − iφ)

=
1

i
ln

sin 1
2
(λM + i(2M + 1)φ)

sin 1
2
(λM − i(2M + 1)φ)

,

(2.104)

εM(λM) = J
2M∑
j=0

sinh2 φ

coshφ− cosλM,j

= J
sinhφ sinh[(2M + 1)φ]

cosh[(2M + 1)φ]− cosλM
, (2.105)

which combined give the dispersion relation

εM(pM) = J
sinhφ

sinh[(2M + 1)φ]
(cosh[(2M + 1)φ]− cos pM) . (2.106)

In the thermodynamic limit, the centers (real part) of each type of com-
plex become dense on the interval [−π/2, π/2] (with another convention for
the interval of λM) and their distribution can be described by a set of conti-
nous densities ρm(λ), where m denotes the M-complex, together with a set
of densities for the corresponding holes ρhm(λ). It can be seen (as exposed
in the famous monograph of Takahashi [26], that these densities satisfy the
equations (known also as Thermodynamic Bethe Ansatz TBA equations)



24 CHAPTER 2. SPIN CHAINS

ρm + ρhm = am(λ)−
∞∑
n=1

(amn ? ρn)(λ), (2.107)

for m ≥ 1, where the convolution is de�ned by

(f ? g)(λ) =

∫ π/2

−π/2
dµf(λ− µ)g(µ). (2.108)

The kernels are

amn(λ) = (1− δmn)a|m−n|(λ) + 2a|m−n|+2(λ) + ...+ 2am+n−2(λ) + am+n(λ),
(2.109)

with

am(λ) =
1

2π

2 sinh(mφ)

cosh(mφ)− cos(2λ)
. (2.110)

A convenient rewriting of (2.107) is in the form

ρm(1 + ηm) = s ? (ηm−1ρm−1 + ηm+1ρm+1), (2.111)

for m ≥ 1 and where ηm ≡ ρhm/ρm. As convention we put η0 = 1 and
ρ0(λ) = δ(λ).

The kernel s(λ) is

s(λ) =
1

2π

∑
k∈Z

e−2ikλ

cosh(kφ)
. (2.112)

Taking into account the de�nition of ηm(λ) and using the Euler formula
for trigonometric functions in order to use only positive integers in the sum
of s(λ), we obtain another useful form of (2.107), i.e.

ρm(1 + ηm) = δk,1d+ d ? (ρhm−1 + ρhm+1), (2.113)

where

d(λ) = 1 + 2
∞∑
n=1

cos(2nλ)

cosh(φn)
. (2.114)
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2.2.2 Planar paramagnet

For this regime the parametrization of momenta is
k(λ) = θ1(λ) = 2 arctan

(
cot
(
nγ
2

)
tanh

(
λ
2

))
, so that real rapidities generate

real momenta constrained on the interval [−(π−γ), π−γ]. Momenta outside
of this interval are allowed, provided for rapidities of the form λ + iπ, with
λ real.

Proceeding as in XXX model, for the ground state we obtain an integral
equation

ρ0(λ) +
1

2π

∫ Λ

−Λ

K(λ− µ)ρ0(µ)dµ =
1

2π
θ
′

1(λ), (2.115)

where

K(λ) ≡ d

dλ
θ2(λ) =

sin(2γ)

coshλ− cos 2γ
, (2.116)

and Λ is a parameter which tends to in�nity if the external magnetic �eld
h is zero. Therefore we have

Sz =
N

2
−N

∫ Λ

−Λ

ρ0(λ)dλ, (2.117)

E = E0 −N
∫ Λ

−Λ

ε0(λ)ρ0(λ)dλ. (2.118)

At h = 0

ρ0(λ) =
1

8γ
sech

(
πλ

2γ

)
. (2.119)

The excitations from the ground state are created by removing κ real
rapidities from the ground state itself, generating two holes (spinons) among
the allowed vacancies. At h = 0 the contributions of spinons to total mo-
mentum and energy are

k(λ) = arctan
πλ

2γ
, ε(λ) = J

π sin(γ)

2γ

1

cosh πλ
2γ

, (2.120)

which give the dispersion relation

ε(k) = J
π sin(γ)

2γ
cos k. (2.121)

Additional excitation can be generated by placing some of the κ rapidities
removed from real axes on the iπ axis. We do not enter into details for this
case.
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String solutions are also allowed for paramagnetic phase, but their treat-
ment is a bit tricky, so we give only the principal results. The rapidities
are

λM,j = λM +
1− η

2
π + 2i(M − j)γ, j = 0, ..., 2M, (2.122)

where η = ±1 is called the parity of the string. The energy and the
momentum of an M-complexes are

pM(λM) =
1

i
ln

sinh 1
2

(
i(2M + 1)γ − λM − i1−η

2
π
)

sinh 1
2

(
i(2M + 1)γ − λM + i1−η

2
π
) , (2.123)

εM(λM) = −J sin γ sin[(2M + 1)γ]

η coshλM − cos[(2M + 1)γ]
. (2.124)

2.2.3 Uni-axial anti-ferromagnet

For h = 0 the ground state has zero magnetization and is given by N/2 real
magnons satisfying the Bethe equations. Energy excitations are 2κ spinons
generated by removing κ rapidities from ground state. Each spinon con-
tributes with energy

ε(k) = h+ J
sinhφ

π
I(k)
√

1− k2 cos2 k, (2.125)

where I(k) is the complete elliptic integral.



Chapter 3

Algebraic Bethe Ansatz

In this chapter we analyze the Algebraic Bethe Ansatz (ABA), one of the
tools of the so-called Quantum Inverse Scattering Method, which is used to
solve integrable systems. We proceed constructing the fundamental elements
of ABA, which resemble some aspects of classical inverse scattering, taking
as a constant example the XXX model. From now on we use the follow-
ing Hamiltonian for the XXX model, which di�ers from that used in the
preceding chapter, only for a factor 1/4 and for imposing J = −1:

H =
N∑
k=1

(
σxkσ

x
k+1 + σykσ

y
k+1 + σzkσ

z
k+1

)
, (3.1)

where

σαk = I⊗ ...⊗ σα ⊗ ...⊗ I (3.2)

are 2N × 2N matrices and σα are 2× 2 Pauli matrices.

3.1 Monodromy matrix and transfer matrix

Let be T (u) a 2 × 2 matrix, whose entries are operators which act on some
Hilbert space H. We call it monodromy matrix. It is usually denoted as

T (u) =

(
A(u) B(u)
C(u) D(u)

)
. (3.3)

We demand that T (u) satis�es the following relation

R12(u− v)T1(u)T2(v) = T2(v)T1(u)R12(u− v), (3.4)

where R(u− v) is the solution of the YB equation found in appendix B :

27



28 CHAPTER 3. ALGEBRAIC BETHE ANSATZ

R(u− v) =


u− v + c 0 0 0

0 u− v c 0
0 c u− v 0
0 0 0 u− v + c

 . (3.5)

The relation above takes sense in the tensor product V1 ⊗ V2 ⊗H, where
Vk ∼ C2. R12(u− v) acts non-trivially in V1 ⊗ V2, while Tk acts non-trivially
in Vk ⊗ H. In this way the (3.4) can be seen as a relation between 4 × 4
matrices:

R(u− v)(T (u)⊗ I)(I⊗ T (u)) = (I⊗ T (u))(T (u)⊗ I)R(u− v). (3.6)

Writing explicitly the components of matrices in (3.6), i.e.

R(u− v)jk,αβ = (u− v)δjkδαβ + cδjβδkα, (3.7)

(T1(u))jk,αβ = T jk(u)δαβ, (3.8)

(T2(v))jk,αβ = Tαβ(v)δjk, (3.9)

we obtain the commutation relations for the monodromy matrix's entries:

[T ij(u), T kl(v)] =
c

u− v
(T kj(v)T il(u)− T kj(u)T il(v)). (3.10)

We deduce immediately that [T ij(u), T ij(v)] = 0, i.e. that each operator
commutes with itself. This property will arise again in the frame of Algebraic
Bethe Ansatz, as we will see later on.

Turning to (3.4), multiplying it for R−1
12 (u− v) from the right, taking the

trace with respect to V1⊗V2 and using the cyclic property of trace we obtain

tr12T1(u)T2(v) = tr12T2(v)T1(u). (3.11)

Since the trace of a tensor product is the product of the traces, we have

T (u)T (v) = T (v)T (u), (3.12)

where

T (u) = trT (u) = A(u) +D(u). (3.13)

T (u) is called transfer matrix and should be intended in the sense of an
operator.
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Now the question on which is the form of T (u) is essential. Remembering
the YB equation, we note that R-matrix itself satis�es (3.4). Indeed from

R12(u− v)R13(u−w)R23(v−w) = R23(v−w)R13(u−w)R12(u− v), (3.14)

we can say that T (u) = R(u − v). In this case we consider H ∼ C2 and
as usual Vk ∼ C2. Setting w = c/2

R(u− c

2
) =


u− c

2
0 0 0

0 u− c
2

c 0
0 c u− c

2
0

0 0 0 u+ c
2

 =

(
u+ c

2
σz cσ−

cσ+ u− c
2

)
, (3.15)

where 2σ± = σx ± iσy. Thus we can set

T (u) =

(
u+ c

2
σz cσ−

cσ+ u− c
2
σz

)
. (3.16)

This observation indicates a way to construct a more general form of
monodromy matrix.

Let V1⊗V2⊗Ha and V1⊗V2⊗Hb two triple tensor product spaces, where
Vk ∼ C2, k = 1, 2. Let be Ak and Bk two matrices, acting non-trivially only
on Vk ⊗Ha and Vk ⊗Hb respectively. With these notations we demonstrate
a useful proposition.

Proposition 3.1.1. If both matrices A and B satis�es (3.4)

R12(u1 − u2)A1(u1)A2(u2) = A2(u2)A1(u1)R12(u1 − u2), (3.17)

R12(u1 − u2)B1(u1)B2(u2) = B2(u2)B1(u1)R12(u1 − u2), (3.18)

then their product AB also satis�es (3.4).

Proof. Substituting the product AB in the lhs of (3.4) and knowing that
matrices which act in di�erent spaces commute we have

R12(u1−u2)A1(u1)B1(u1)A2(u2)B2(u2) = R12(u1−u2)A1(u1)A2(u2)B1(u2)B2(u2).
(3.19)

Thanks to (3.17) we can move R12(u1 − u2) to the right, so that

R12(u1−u2)A1(u1)B1(u1)A2(u2)B2(u2) = A2(u2)A1(u1)B2(u2)B1(u2)R12(u1−u2).
(3.20)

Swapping A1(u1) and B2(u2), we obtain
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R12(u1−u2)A1(u1)B1(u1)A2(u2)B2(u2) = A2(u2)B2(u2)A1(u1)B1(u1)R12(u1−u2).
(3.21)

Consider now the space H as the tensor product V1 ⊗ ...⊗ Vn ⊗ ...⊗ VN ,
where Vn ∼ C2.

We can construct the Lax-operator (L-operator) Ln(u) as follows:

Ln(u) =

(
u+ c

2
σzn cσ−n

cσ+
n u− c

2
σzn

)
, (3.22)

where the σαn are de�ned as in (3.2). We note that each entry of L-operator
acts non-trivially only on Vn. Since Ln(u) has the same form of T (u) in (3.16),
its matrix elements certainly satisfy the commutation relation (3.10), so that
for each Ln(u) (3.6) is valid

R(u− v)(Ln(u)⊗ I)(I⊗ Ln(v)) = (I⊗ Ln(v))(Ln(u)⊗ I)R(u− v). (3.23)

We de�ne the monodromy matrix as follows:

T (u) = LN(u)...L1(u). (3.24)

Applying several times the proposition 3.1.1, we deduce that T (u) enjoys
equation (3.6).

Now we show that from (3.24) it is possible to derive the XXX model's
Hamiltonian. First of all it is convenient to write the Hamiltonian in the
following equivalent form:

H = 2
N∑
k=1

Pkk+1 −NI, (3.25)

where I = 1 ⊗ ... ⊗ 1, 1 is the 2 × 2 identity and P is the permutation
operator de�ned in Appendix B. This can be shown, noting that the operator

hkk+1 = σxkσ
x
k+1 + σykσ

y
k+1 + σzkσ

z
k+1 (3.26)

acts non-trivially only in Vk ⊗ Vk+1, so that it can be express as a 4 × 4
matrix

hkk+1 =


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

 = 2Pkk+1 − 1⊗ 1. (3.27)
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We prove that the Hamiltonian of XXX model can be obtained from the
transfer matrix of the monodromy matrix (3.24) by the following formula:

H = 2c
dT (u)

du
T −1(u)

∣∣∣∣
u= c

2

−N. (3.28)

From the de�nition it is clear that each matrix element of T (u) acts in
H = V1⊗ ...⊗VN . But the monodromy matrix is itself a 2× 2 matrix, which
acts in a space C2, which we indicate with V0 and call auxiliary space. So
T (u) acts in V0 ⊗ V1 ⊗ ...⊗ VN and the operators Ln(u) acts nontrivially in
V0 ⊗ Vn. Since Ln(u) = R0n(u− c

2
), then

T (u) = R0N

(
u− c

2

)
...R01

(
u− c

2

)
(3.29)

and so

T (u) = tr0

(
R0N

(
u− c

2

)
...R01

(
u− c

2

))
. (3.30)

Taking into account that R0k(0) = cP0k, we have

dT (u)

du

∣∣∣∣
u= c

2

=
d

du
tr0

(
R0N

(
u− c

2

)
...R01

(
u− c

2

))∣∣∣
u= c

2

= cN−1

N∑
k=1

tr0

(
P0N ...R

′

0k(0)...P01

)
= cN−1

N∑
k=1

tr0

(
R
′

0k(0)P0k−1...P0k+1

)
. (3.31)

Here we used the cyclicity of the trace and we intend P00 = P0N and P0N+1 =
P01. This means that trace operation automatically provides with periodic
boundary condition.

Multiplying from the right the product in the trace for P 2
0k+1 and using

the fundamental property of permutation operator we obtain

dT (u)

du

∣∣∣∣
u= c

2

= cN−1

N∑
k=1

tr0

(
R
′

kk+1(0)Pk+1k−1...Pk+1k+2P0k+1

)
. (3.32)

Since only P0k+1 acts in V0 and its trace on it gives one (the identity in
the space Vk+1), we �nally obtain (R

′

kk+1(0) = 14×4)
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dT (u)

du

∣∣∣∣
u= c

2

= cN−1

N∑
k=1

Pk+1k−1...Pk+1k+2. (3.33)

To calculate the transfer matrix at u = c/2 we repeat the same calculation
made above. We have

T
( c

2

)
= cNPk+1kPk+1k−1...Pk+1k+2, (3.34)

where the k, i.e the space Vk we have chosen, is unin�uential, because
Pab is always idempotent for all a and b. The idempotency and the relation
(AB)−1 = B−1A−1 allows also to write

T −1
( c

2

)
= c−NPk+1k+2...Pk+1k−1Pk+1k. (3.35)

Multiplying the derivative of the transfer matrix by the inverse of transfer
matrix and using the same index k (it is arbitrary) between each term of the
sum in (3.33) and the (3.35), we �nally obtain

H = 2c
dT (u)

du
T −1(u)

∣∣∣∣
u= c

2

= 2
N∑
k=1

Pkk+1, (3.36)

which is the Hamiltonian of XXX model up to a constant proportional to
the identity.

3.2 Implementation of Algebraic Bethe Ansatz

The �rst step to de�ne the ABA method is to determine the Hilbert space
H on which the entries of the monodromy matrix act. The fundamental and
physical requirement is that it is provided with a vacuum vector |0〉 so that:

A(u)|0〉 = a(u)|0〉, D(u)|0〉 = d(u)|0〉, C(u)|0〉 = 0, (3.37)

where the eigenvalues a(u) and d(u) are general functions of u. The action
of operator B(u) on the vacuum allows to generate all the space H.

Now a proposition is very useful.

Proposition 3.2.1. Let the monodromy matrix T (u) be given as in (3.24),
and every Lax-operator have the form

Ln(u) =

(
αn(u) βn(u)
γn(u) δn(u)

)
, n = 1, ..., N. (3.38)
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Assume that there exists a vacuum vector |0〉 such that

αn(u)|0〉 = α̃n(u)|0〉, δn(u)|0〉 = δ̃n(u)|0〉, γn(u)|0〉 = 0, n = 1, ..., N,
(3.39)

where α̃n(u) and δ̃n(u) are functions of u. Then the eigenvalues of the
monodromy matrix diagonal entries are

a(u) =
N∏
n=1

α̃n(u), d(u) =
N∏
n=1

δ̃n(u). (3.40)

Proof. In order to prove this statement, it is convenient to decompose the
Lax-operator as the sum of two terms: Ln = L+

n + L−n , where

L+
n (u) =

(
αn(u) βn(u)

0 δn(u)

)
, L−n (u) =

(
0 0

γn(u) 0

)
. (3.41)

Using the standard product between matrix, the monodromy matrix takes
the form

T = (L+
N + L−N)...(L+

1 + L−1 ) = L+
N ...L

+
1 +K = T+ +K. (3.42)

The term K collects the sum of all terms, that contains at least one
L−n . The action of any matrix elements of K on the vacuum vector is zero.
Indeed, it is easy to see that due to the form of L−n each entries of K is a
linear combination of products which contains at least one γn(u). Since the
entries of Lax-operators with di�erent index n commute with each other, it
is always possible to move a γn(u) to right, so that acting on the vacuum it
gives zero.

It follows that if

T+(u) =

(
A+(u) B+(u)
C+(u) D+(u),

)
(3.43)

then

A(u)|0〉 = A+(u)|0〉, B(u)|0〉 = B+(u)|0〉,
C(u)|0〉 = C+(u)|0〉, D(u)|0〉 = D+(u)|0〉.

(3.44)

Using induction and the fact that L+
n is an upper triangular matrix, we

obtain the matrix elements of T+(u):
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A+(u) =
N∏
n=1

αn(u), (3.45)

D+(u) =
N∏
n=1

δn(u), (3.46)

C+(u) = 0, (3.47)

B+(u) =
N∑
k=1

(
N∏

n=k+1

αn(u)

)
βk(u)

(
k−1∏
n=1

δn(u)

)
, (3.48)

where in the last expression when the index n is N + 1 or 0 it is intended
that the relative factor is absent.

So the proposition is proved.

Now our purpose is to study the eigenvectors of the transfer matrix, in
order to �nd also the eigenvectors of the Hamiltonian, since, the transfer ma-
trix generates the integral of motion of the model, included the Hamiltonian.
This can be seen in an easy way.

Expand T (u) in power series over some point u0

T (u) =
∑
k

(u− u0)kIk, (3.49)

where Ik are some operators acting on H. Then taking the kth derivative
over u and the nth-derivative over v at u, v = u0 in the equation (3.12), we
�nd that all the operators Ik commute

[Ik, In] = 0, ∀k, n. (3.50)

So we a have an in�nite set of operators which commute and �xing one of
them to be the Hamiltonian, we can construct an integrable model.

Returning to the ABA we now set some notations and conventions. First
of all we introduce the functions

f(u, v) =
u− v + c

u− v
and g(u, v) =

c

u− v
, (3.51)

and we write the R-matrix of XXX model in the form

R(u, v) = I +
c

u− v
P =


f(u, v) 0 0 0

0 1 g(u, v) 0
0 g(u, v) 1 0
0 0 0 f(u, v)

 . (3.52)
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This expression of R-matrix di�ers from that written before for a factor
u − v, but it is evident that the YB equation remains valid if we multiply
both members for the same factor. In addition in what follows we will see
that all steps do not depend on the explicit form of functions f(u, v) and
g(u, v).

We denote sets of variables by a bar: ū = (u1, ..., un). In this way we
can adopt a shorthand notation for products. If an operator or a function
depend on more variables, we write their arguments with a bar above. For
example

A(ū) =
∏
uj∈ū

A(uj), a(v̄) =
∏
vj∈v̄

A(vj). (3.53)

If we want to exclude a variable from the set we write ūk = (u1, ..., un)\uk.
So for the products we have for example

B(ūk) =
∏
uj∈ū
j 6=k

B(uj), f(vk, v̄k) =
∏
vi∈v̄
i 6=k

f(vk, vi). (3.54)

Finally a product over the empty set is intended to be equal to one.
Now we write the sixteen commutation relations between monodromy ma-

trix entries (some of them are related to each others), which derives directly
from equation (3.6) and using the expression (3.52) for R-Matrix:

[A(u), A(v)] = 0, [B(u), B(v)] = 0

[C(u), C(v)] = 0, [D(u), D(v)] = 0,
(3.55)

[A(u), D(v)] = g(u, v)(C(v)B(u)− C(u)B(v)), (3.56)

[D(u), A(v)] = g(u, v)(B(v)C(u)−B(u)C(v)), (3.57)

[C(u), B(v)] = g(u, v)(A(v)D(u)− A(u)D(v)), (3.58)

[B(u), C(v)] = g(u, v)(D(v)A(u)−D(u)A(v)), (3.59)

A(v)B(u) = f(u, v)B(u)A(v) + g(v, u)B(v)A(u), (3.60)

B(v)A(u) = f(u, v)A(u)B(v) + g(v, u)A(v)B(u), (3.61)

D(v)C(u) = f(u, v)C(u)D(v) + g(v, u)C(v)D(u), (3.62)

C(v)D(u) = f(u, v)D(u)C(v) + g(v, u)D(v)C(u), (3.63)

A(u)C(v) = f(u, v)C(v)A(u) + g(v, u)C(u)A(v), (3.64)
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C(u)A(v) = f(u, v)A(v)C(u) + g(v, u)A(u)C(v), (3.65)

B(u)D(v) = f(u, v)D(v)B(u) + g(v, u)D(u)B(v), (3.66)

D(u)B(v) = f(u, v)B(v)D(u) + g(v, u)B(u)D(v). (3.67)

Now we are ready to develop the main idea of Algebraic Bethe Ansatz,
i.e. looking for the eigenvectors of transfer matrix in the form B(ū)|0〉. Since
T (u) = A(u) + D(u) we have to analyze the action of A(u) and D(u) on
B(ū)|0〉. Let's start calculating

A(v)B(ū)|0〉. (3.68)

Using the commutation relation (3.60) we can move the operator A until
the extreme right, where it acts on the vacuum vector. If the set ū consists
of n variables, then applying n times the (3.60) we obtain 2n terms. This is
apparently a great obstacle to overcome, but if we pay more attention on the
structure of the commutation relation the problem is easier. In fact, we see
that the rhs of (3.60) consists of two terms: the �rst preserves the operators'
arguments as in the lhs, the second exchange them. In this way moving A(v)
to the right, the operator A(v) preserves its argument or exchange it with
the argument of B(uj). In the last case the operator B takes the argument
v. When A reaches the vacuum, produces a factor (it is its eigenvalue) a(uk)
or a(v), where the index k indicates that a B(uk) is disappeared and a B(v)
is appeared instead. So the most general expression for A(v)B(ū)|0〉 is

A(v)B(ū)|0〉 = a(v)Λ(v, ū)B(ū)|0〉+
n∑
k=1

a(uk)Λk(v, ū)B(v)B(ūk)|0〉. (3.69)

We note that the last expression contains only n + 1 terms instead of
2N . Here Λ(v, ū) and Λk(v, ū) are coe�cients which depend on f(u, v) and
g(u, v). Let's now calculate them.

The �rst term in the rhs of equation (3.69) is obtained, if only the �rst
term of (3.60) is used. Otherwise using only one time the second term on the
rhs of (3.60) A exchanges the argument v with one B(uk) and when moving
it further to the right, it can no longer accept v and so the factor a(v) does
not emerge. So using n times only the �rst term in rhs of (3.60) we obtain
a product of f(uk, v) over uk and therefore

Λ(v, ū) = f(ū, v). (3.70)

In order to �nd the coe�cients Λk(v, ū), we take advantage of the (3.55),
which allows to put any B(uk) in the extreme left position, i.e.
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A(v)B(ū)|0〉 = A(v)B(uk)B(ūk)|0〉. (3.71)

So if we choose k = 1 we are interested in the term of (3.69) proportional
to a(u1) and to Λ1(v, ū). The operatorial part of this term does not contain
B(u1). The only possibility to "eliminate" B(u1) is to use the second term
in the rhs of (3.60):

A(v)B(u1)B(ū1) → g(v, u1)B(v)A(u1)B(ū1). (3.72)

In commuting the operator A(u1) with all the other operators B(uj) with
j = 2, 3, ..., n, we have to use only the �rst term in rhs side of (3.60), otherwise
B(u1) appears again and it is absent in the term of (3.69) with Λ1(v, ū).
Hence,

Λ1(v, ū) = g(v, u1)f(ū1, u1). (3.73)

Due to the symmetry of the state B(ū)|0〉, Λk(v, ū) is obtained simply
exchanging u1 with uk, i.e.

Λk(v, ū) = g(v, uk)f(ūk, uk). (3.74)

The action of the operator D(v) on B(ū)|0〉 can be found exactly in the
same way, but with a smaller e�ort than before, using for convenience the
explicit expressions of function f(u, v) and g(u, v). Indeed, the commutation
relation (3.67) between D and B can be obtained from the (3.60) under the
replacement of the constant c with −c, noting that

f(u, v)|c→−c = f(v, u), g(u, v)|c→−c = g(v, u). (3.75)

Thus, the action of D(v) on the vector B(ū)|0〉 is given by (3.69), where
one should replace c with −c and the function a with the function d:

D(v)B(ū)|0〉 = d(v)Λ̂(v, ū)B(ū)|0〉+
n∑
k=1

d(uk)Λ̂k(v, ū)B(v)B(ūk)|0〉, (3.76)

where

Λ̂(v, ū) = f(v, ū), Λ̂k(v, ū) = g(uk, v)f(uk, ūk). (3.77)
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Remark. The idea of writing the action of A or D operators on B(ū)|0〉 as
in (3.69) is due to Faddeev and Takhtadzhan [27] and allows us to reduce the
terms in the �nal expression from 2n to n+ 1. But one can ask how all these
2n terms collect together in order to give only n+ 1 terms. An example could
give a hint to explain this fact.

If the string of operator B(ū) consists of only two operator B(u1) and
B(u2), using twice the (3.60) we obtain

A(v)B(u1)B(u2) = f(u1, v)f(u2, v)B(u1)B(u2)A(v)

+ g(v, u1)f(u2, u1)B(v)B(u2)A(u1)

+ (g(v, u2)f(u1, v) + g(v, u1)g(u1, u2))B(v)B(u1)A(u2). (3.78)

Since B(u1) and B(u2) commute, therefore

A(v)B(u1)B(u2) = A(v)B(u2)B(u1). (3.79)

Thus the expression (3.78) does not change, if we replace u1 with u2 and
vice versa:

A(v)B(u1)B(u2) = f(u1, v)f(u2, v)B(u1)B(u2)A(v)

+ g(v, u2)f(u1, u2)B(v)B(u1)A(u2)

+ (g(v, u1)f(u2, v) + g(v, u2)g(u2, u1))B(v)B(u2)A(u1). (3.80)

Comparing (3.78) with (3.80) we see that they are equivalent if

g(v, u2)f(u1, v) + g(v, u1)g(u1, u2) = g(v, u2)f(u1, u2) (3.81)

or

g(v, u1)f(u2, v) + g(v, u2)g(u2, u1) = g(v, u1)f(u2, u1). (3.82)

Substituting the explicit expressions of f and g for the XXX model the
last two equations become identities.

This kind of relations between f and g are emerged as a compatibility re-
lation, obtained reordering the operators in a triple product. Combining other
operators we can obtain other relations, so it is convenient to use directly a
triple product between three monodromy matrices. Using the conventions as
in (3.4), we want to reorder the product T1(u1)T2(u2)T3(u3) in order to obtain
T3(u3)T2(u2)T1(u1). This can be done in two di�erent ways (we indicate with
a number the respective monodromy matrix):
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123→ 213→ 231→ 321, (3.83)

123→ 132→ 312→ 321. (3.84)

Each permutation of two monodromy matrices can be done using (3.4):

Rjk(uj, uk)Tj(uj)Tk(uk)R
−1
jk (uj, uk) = Tk(uk)Tj(uj), j, k = 1, 2, 3.

(3.85)
The �rst way of reordering the matrices Tj leads us to

T1(u1)T2(u2)T3(u3) =

R−1
12 (u1, u2)R−1

13 (u1, u3)R−1
23 (u2, u3)T3(u3)T2(u2)T1(u1)R23(u2, u3)R13(u1, u3)R12(u1, u2).

(3.86)

The second way gives

T1(u1)T2(u2)T3(u3) =

R−1
23 (u2, u3)R−1

13 (u1, u3)R−1
12 (u1, u2)T3(u3)T2(u2)T1(u1)R12(u1, u2)R13(u1, u3)R23(u2, u3).

(3.87)

The last two equations are equivalent if

R23(u2, u3)R13(u1, u3)R12(u1, u2) = R12(u1, u2)R13(u1, u3)R23(u2, u3),
(3.88)

which is nothing else that the YB equation. As a consequence of this, we
can claim that a lot of relations emerge between f(u, v) and g(u, v), which
in principle allow to collect the 2n terms together in order to give the n + 1
terms. The result that we obtained con�rms the importance of YB equation
in the �eld of integrable models.

Now we are ready to obtain the action of the transfer matrix on B(ū)|0〉:

T (v)B(ū)|0〉 =
(
a(v)Λ(v, ū) + d(v)Λ̂(v, ū)

)
B(ū)|0〉

+
n∑
k=1

(
a(uk)Λk(v, ū) + d(uk)Λ̂k(v, ū)

)
B(v)B(ūk)|0〉. (3.89)
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The vector B(ū)|0〉 is an eigenvector of the transfer matrix if in the rhs
of the last equation the coe�cients of the terms in the sum vanish, i.e.

a(uk)Λk(v, ū) + d(uk)Λ̂k(v, ū) = 0, k = 1, ..., n. (3.90)

The eigenvalues relative to B(ū)|0〉 is

a(v)Λ(v, ū) + d(v)Λ̂(v, ū) = a(v)f(ū, u) + d(v)f(v, ū) (3.91)

and (3.90) is usually written as

a(uk)

d(uk)
=
f(uk, ūk)

f(ūk, uk)
, k = 1, ..., n. (3.92)

The last system of equations is called the system of Bethe equations. For
the speci�c case of XXX model the Bethe equations are(

uk + c
2

uk − c
2

)N
=

n∏
j=1
j 6=k

uk − uj + c

uk − uj − c
, k = 1, ..., n, (3.93)

where we have used the proposition 3.2.1 and the Lax-operator (3.22), know-
ing that σzn|0〉 = |0〉.

Now we proceed with the XXZ-model.
The R-matrix of XXZ-model is

R(u, v) =


f(u, v) 0 0 0

0 1 g(u, v) 0
0 g(u, v) 1 0
0 0 0 f(u, v)

 , (3.94)

where

f(u, v) =
sinh(u− v + η)

sinh(u− v)
and g(u, v) =

sinh η

sinh(u− v)
(3.95)

and ∆ = cosh η (∆ is the anisotropy constant).
The Lax-operator is

Ln(u) =

(
sinh

(
u+ η

2
σzn
)

σ−n sinh η
σ+
n sinh η sinh

(
u− η

2
σzn
)) , (3.96)

which generates through the monodromy matrix and then the transfer
matrix the XXZ-Hamiltonian:
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H = 2 sinh η
dT (u)

du
T −1(u)

∣∣∣∣
u= η

2

−N∆

=
N∑
k=1

(
σxkσ

x
k+1 + σykσ

y
k+1 + ∆σzkσ

z
k+1

)
. (3.97)

The Bethe equations for the XXZ-model are(
sinh

(
uj + η

2

)
sinh

(
uj − η

2

))N

=
n∏
j=1
j 6=k

sinh (uj − uk + η)

sinh (uj − uk − η)
. (3.98)

3.3 Inhomogeneous XXZ model

In this section we introduce the Inhomogeneous-twisted XXZ spin chain [3]
and the related Algebraic Bethe Ansatz formalism, which will be useful in
the following chapters. The construction of this model is very similar to that
of the XXZ model with ∆ = cos γ. As usual we associated to each site of the
chain with N sites a triplet of Pauli matrices with the standard commutation
rules [

σαm, σ
β
n

]
= 2iδmnε

αβγσγn, (3.99)

with the greek letters being x, y or z and n = 1, 2, ..., N . The two-
dimensional auxiliary space is denoted with n = 0. For any complex spectral
parameter λ and an arbitrary set of inhomogeneities θ1, θ2, ..., θN , the Lax-
operators Ln are written as

Ln = R0n(λ+ θn)P0n, (3.100)

where the R-matrices are

Rkn(θ) =
a+ c

2
+
a− c

2
σzkσ

z
n +

b

2
(σxkσ

x
n + σykσ

y
n) , (3.101)

with Pkn = 1/2 (1 + ~σk · ~σn) the usual permutation operator and

a = a(θ) ≡ sin(γ − θ), b = b(θ) ≡ sin θ, c = sin γ, (3.102)

where γ is the anisotropy parameter, which belongs to [0, π].
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The inhomogeneous and twisted transfer matrix associated to the model
is

t(λ, θ1, θ2, ..., θN , ω) = eiωσ
z
0 tr0[L1L2...LN ]. (3.103)

The twist angle ω de�nes the relation between spin operators after a
translation after N sites:

σ±n+N = e±iωσ±n , σzn+N = σzn. (3.104)

The eigenstates of the transfer matrix related to the Sz = N/2 − M
sector with M = 0, 1, 2, ..., [N/2], are labelled by M distinct Bethe roots
λ1, λ2, ..., λM , which obey the Bethe Ansatz Equations

N∏
n=1

sinh(λj + iθn + iγ/2)

sinh(λj + iθn − iγ/2)
= −e2iω

M∏
l=1

sinh(λj − λl + iγ)

sinh(λj − λl − iγ)
. (3.105)

If we choose N even and θn = (−1)n−1θ/2, we obtain the twisted alter-
nating transfer matrix

t2N(λ, θ, ω) = t(λ, θ1 = θ/2, θ2 = −θ/2, ..., θ2N = −θ/2, ω). (3.106)



Chapter 4

Quantum quench

4.1 Matrix density

The most important device to study quantum many particle systems is the
density matrix (statistical distribution in a classical context), which allows
to obtain the mean value and the probability of any eigenvalue of an ob-
servable. It is known in quantum mechanics that the state of a system is
described by a superposition of wave functions which are the eigenvectors
of an Hamiltonian and which represent a complete set, i.e. a base through
which one can construct any function by means of a linear combination of
the base elements. So if we indicate with ψn the elements of the complete
set, where n stands for a collection of quantum numbers characterising the
system, the state ψ of a physical system can be written as

ψ =
∑
n

cnψn. (4.1)

The mean value of an observable f in a particular state could be obtained
by

f̄ =
∑
nm

c∗ncmfnm (4.2)

where

fnm =

∫
ψ∗nf̂ψmdq (4.3)

are the matrix elements of f (f̂ is the corresponding operator).
The latest arguments are used in standard Quantum Mechanics, but in

Statistical Mechanics it is often more convenient to make use of the density

43
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matrix, de�ned as ρmn = c∗ncm, which can be thought as the matrix elements
of an operator ρ̂:

f̂ =
∑
nm

ρmnfnm. (4.4)

The latest equation expresses formally the trace of the operator product
ρ̂f̂ and so

f̂ = Tr(ρ̂f̂). (4.5)

4.2 Time evolution

It is known that in Quantum Mechanics the time evolution of a state is
expressed through the Schrödinger picture or the Heisenberg picture. In the
�rst case the physical objects which evolve in time are the eigenstates of the
Hamiltonian H of the system or a superposition of them, i.e.:

|ψS(t)〉 = U(t, t0)|ψS(t0)〉, U = e−iH(t−t0).1 (4.6)

In the second case the objects which evolve are the observables, repre-
sented by an operator O, i.e.:

OH = U †(t, t0)OSU(t, t0), (4.7)

where OS is the operator in the Schrödinger picture. The Heisenberg picture
allows to write the Heisenberg equation of motion:

i
dAH
dt

= [AH , HH ] + i
∂AH
∂t

. (4.8)

Both pictures are equivalent, so in what follows we make use of both of
them, without adding any label to kets or to operators.

4.3 Global quantum quench

Statistical Mechanics studies systems at equilibrium. An isolated system,
i.e. a system which is characterised by the absence of any coupling to its
environment, is at equilibrium if the physical observables are equal to their
mean values with a good approximation. Some examples of system at equi-
librium are a Bose gas, governed by Bose-Einstein distribution, a fermionic

1We put ~ = 1.
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gas, governed by Fermi-Dirac distribution and a perfect gas, governed by
Maxwell-Boltzmann distribution. All these distributions have a common
feature: they are independent of time. The time dependence (through a
unitary transformation performed by the time evolution operator U(t, t0)) of
the statistical distribution or of the density matrix is the �rst step to ana-
lyze system away from equilibrium. If a system is not at equilibrium, the
system necessarily evolves towards the same or another state of equilibrium
in a time interval, called relaxation time. The phenomena of non equilibrium
need more techniques than Statistical Physics. One of these is the quantum
quench, which we are going to analyze. If we have an Hamiltonian H(h),
depending on a parameter h, such that the system is prepared initially at
t = 0 in the ground state |ψ(0)〉 of H(h0) and then we suddenly change (from
now we will use the term "quench") the parameter h0 to a new value h, then
we are "quenching" the system. After a quench the system evolves with the
usual unitary time evolution operator with the Hamiltonian H(h). As the
change of the parameter is instantaneous, the systems remains in the state
|ψ(0)〉, so that at t > 0

|ψ(t)〉 = e−iH(h)t|ψ(0)〉. (4.9)

Through the Hamiltonian eigenstates

H(h)|n〉 = En|n〉, (4.10)

it is possible to express the state of the system at time t as

|ψ(t)〉 =
∑
n

〈n|ψ(0)〉e−iEnt|n〉. (4.11)

Using the latest expression we can write the expectation value of an operator
O in the state |ψ(t)〉 as

〈ψ(t)|O|ψ(t)〉 =
∑
nm

〈ψ(0)|n〉〈m|ψ(0)〉〈n|O|m〉e−i(Em−En)t. (4.12)

An important property of a quantum quench is that the energy is con-
served during time (t > 0) and if we are working with a lattice the post-
quench energy density is larger than the ground state energy per site

e = lim
L→∞

1

L
〈ψ(t)|H(h)|ψ(t)〉 > lim

L→∞

E0

L
, (4.13)

where L is the number of sites and E0 is the energy of the ground state.
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Some de�nitions are now useful. In lattice models an operator O is said
local if in the thermodynamic limit O acts non-trivially only on a �nite
number of sites separated by a �nite distance. For example in a quantum
spin-1/2 chain with L sites the following operators are local

σαj , σαj σ
β
j+k, (4.14)

where σαj (α = x, y, z) are Pauli matrices acting on site j. We remember that
σαj is expressed as

σαj =

1
↓
I⊗ ...⊗ I⊗

j
↓
σα ⊗ I⊗ ...⊗

L
↓
I (4.15)

and acts on a Hilbert space

1
↓
V ⊗ ...⊗

j
↓
V ⊗ ...⊗

L
↓
V . (4.16)

An example of non local operator is σx1σ
x
L/2, where it is evident the de-

pendence on the "dimension" L of the lattice.
The range of a local operator O is the size of the largest interval on which

it acts non-trivially. For example we have that range(σαj σ
β
j+k) = k + 1.

Now it is necessary to analyze some concepts related to the phase of
relaxation.

Suppose that the physical system taken into exam is divided into an
arbitrary but �nite subsystem B and its complement A. Then we take the
thermodynamic limit while keeping B �xed. The system is prepared at t = 0
in a state with density matrix ρ(0), which evolves at later times according to
the law

ρ(t) = eiHtρ(0)e−iHt. (4.17)

The reduced density matrix of the subsystem B is obtained by taking the
trace on the degrees of freedom of A

ρB(t) = TrAρ(t). (4.18)

We say that our system relaxes locally if the limit

lim
t→∞

lim
L→∞

ρB(t) = ρB(∞) (4.19)

exists for any �nite subsystem B (L represents the dimensions of the
system, like the number of sites in a spin chain for example).
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If a system relaxes locally, then its stationary state is de�ned as a time-
independent density matrix ρSS for the entire system such that for any
�nite subsystem B

lim
L→∞

TrA(ρSS) = ρB(∞), (4.20)

where A is the complement of B.

Let ρ1 and ρ2 be two density matrices. The corresponding two ensembles
are said locally equivalent ρ1 =loc ρ2, if in the thermodynamic limit the
reduced density matrices for any �nite subsystem B coincide, i.e.

lim
|A|→∞

TrA(ρ1) = lim
|A|→∞

TrA(ρ2), (4.21)

where A is as usual the complement of B and |A| denotes its volume.

As we are dealing with isolated systems, energy is always conserved, so
that

E = Tr(ρ(t)H) = Tr(eiHtρ(0)e−iHtH) = Tr(ρ(0)H), (4.22)

where we have used the cyclic property of the trace and the fact that H
commutes with e−iHt.

In absence of other conserved quantities isolated system are believed to
locally relax to equilibrium. This is known as thermalization. With the
preceding de�nitions a stationary state is described by a Gibbs ensemble

ρSS =loc ρ
Gibbs =

e−βeffH

Tr(e−βeffH)
. (4.23)

The inverse e�ective temperature βeff is �xed by the initial value of the
energy density

e ≡ lim
L→∞

Tr(ρ(0)H)

L
= lim

L→∞

Tr(ρGibbsH)

L
. (4.24)

The physical idea which is behind the latest de�nition is that the in-
�nite complement A behaves like a thermal bath with an e�ective inverse
temperature βeff .

If the system has other conserved quantities (called charges similarly)
other than the Hamiltonian (we remember that a physical model is integrable
if has an in�nite set of conserved charges) the Gibbs distribution has to be
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generalized. The operators I(n) 2 corresponding to local conservation laws
commute with Hamiltonian H and with each other

[H, I(n)] = 0, [I(n), I(m)] = 0. (4.25)

Considering the (4.17) and the fact that the Hamiltonian commutes with the
conserved charges we obtain that the expectation values of I(n) are indepen-
dent of time

1

L
Tr
(
ρ(t)I(n)

)
=

1

L
Tr
(
ρ(0)I(n)

)
≡ E(n)

L
. (4.26)

As a consequence of this it is necessary to modi�ed the stationary state
density matrix in the generalized Gibbs ensemble (GGE) density given by

ρGGE =
e−

∑
n λnI

(n)

Tr
(
e−

∑
n λnI

(n)
) . (4.27)

Here λn are Lagrange multipliers that are �xed by the initial conditions
(4.26), if we require that

lim
L→∞

E(n)

L
= lim

L→∞

1

L
Tr
(
ρGGEI(n)

)
. (4.28)

The presence of symmetries in the Hamiltonian of a system is the key
to solve integrable models as well as to deduce interesting properties after
a quantum quench. If we denote the symmetry operator by U and suppose
that the initial state |ψ(0)〉 after the quench is not invariant under U we have

[H,U ] = 0, U |ψ(0)〉 6= |ψ(0)〉. (4.29)

Although this property of the initial state, it could happen that in the sta-
tionary state the symmetry is restored. In fact if

[I(n), U ] = 0, ∀n, (4.30)

we have that
[ρSS, U ] = 0, (4.31)

with

ρSS =loc ρ
GGE =

e−
∑
n λnI

(n)

Tr
(
e−

∑
n λnI

(n)
) . (4.32)

2In our cases of interest I(n) are usually expressed as a sum of densities, i.e. I(n) =∑
j I

(n)
j .
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Conversely, if there is at least one conservation law for which [I(n), U ] 6= 0,
than the symmetry will remain broken in the stationary state.

Another interesting observation could be done on the conserved quantities
I(n): one could ask if every of them is equally important to describe the
stationary state. We could select a �nite subset {Jm|m = 1, ..., y} ⊂ {I(n)}
and verify how well the partial density matrices

ρpGGE,y =
e−

∑y
n=1 λ

(y)
n Jn

Tr
(
e−

∑y
n=1 λ

(y)
n Jn

) (4.33)

approximate the original ρGGE. In this case the Lagrange multipliers λ
(y)
n

are �xed by an appropriate initial condition

lim
L→∞

=
〈ψ(0)|Jn|ψ(0)〉

L
= lim

L→∞

Tr
(
ρpGGE,yJn

)
L

, n = 1, ...y. (4.34)

As showed in [6] a method to compare ρGGE and ρpGGE,y is through a
distance D(ρl, ρ

′

l) on the space of reduced density matrices on a interval of
length l. If this distance could be made arbitrarily small

D(ρGGEl , ρpGGE,yl ) < ε, ∀l, (4.35)

ρpGGE,y is a good approximation of ρGGE. In the cited work it is found
that if a single conservation law with small degrees of locality, i.e. with a
small number of sites on which each conserved density I(n)

j acts non-trivially,
the approximation (4.33) is rough, so that an expression like (4.33) works
properly if we retain all conserved charged with the smallest degrees of lo-
cality , which assures that (4.35) is satis�ed. This operation of selection the
proper I(n) is called "truncation", and the density ρpGGE,y is now denoted as
ρtGGE,y, where y is chosen, so that (4.35) is satis�ed.

As a consequence of these results we have that

ρGGE ≡ lim
y→∞

ρtGGE,y. (4.36)

4.3.1 Quench Action Approach

There is an alternative approach that not rely on the GGE assumption and
that, besides predicting the steady state after a quantum quench, also gives
access to the time evolution. This is the so-called Quench Action approach
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and it start from the idea to overcome the double sum in (4.12), which we
rewrite in terms of Bethe states and the initial state (before quench) |Ψ0〉:

〈Ψ(t)|O|Ψ(t)〉 =
∑
λ,λ′

e−S
∗
λ−Sλ′ ei(Eλ−Eλ′ )t〈λ|O|λ′〉, (4.37)

where Sλ = − ln 〈λ|Ψ0〉 are called overlap coe�cients.
The �rst step is to replace the above double sum by a functional integral

over Bethe root densities ρ = {ρn}∞n=1:∑
α

→
∫ ∞∏

n=1

Dρn(λ)eSY Y (ρ), (4.38)

where SY Y (ρ) is the so-called Yang-Yang entropy and have the following
expression

SY Y (ρ) = N
∞∑
n=1

∫ π/2

−π/2
dλ[(ρn(λ) + ρhn(λ)− ρn(λ) ln ρn(λ)− ρhn(λ) ln ρhn(λ)].

(4.39)
The expectation value of an observable becomes

〈Ψ(t)|O|Ψ(t)〉 =

∫ ∞∏
n=1

Dρn(λ)e−2Re(lnSρ)−SY Y (ρ)〈ρ|O|ρ〉, (4.40)

where we have identi�ed the Bethe states |λ〉 with the collection of den-
sities ρ.

The Quench Action is de�ned as

SQA(ρ) = 2Re(lnSρ)− SY Y (ρ). (4.41)

It is analogous to the free energy in thermodynamic systems. Minimizing
the Quench Action, through a variational equation

δSQA(ρ)

δρn
= 0, (4.42)

we obtain the so-called saddle point string densities ρsp(λ), which obey a
set of equation, called Generalized Thermodynamic Bethe Ansatz equations.

Knowing the ρsp(λ) we have that

lim
t→∞

lim
th
〈Ψ(t)|O|Ψ(t)〉 = 〈ρsp(λ)|O|ρsp(λ)〉. (4.43)

We give an example of this procedure in the next section for a particular
case of initial state.
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4.4 An example: quenching XXZ model with

∆ > 1

We illustrate the main steps for quenching XXZ model in the two approach:
the GGE and the Quench Action. We refer to the speci�c reference for the
explicit derivation of some results.

4.4.1 Generalized Gibbs Ensemble

First of all we write the conserved charges, which are de�ned by the ubiqui-
tous transfer matrix t(λ):

Qm+1 = i
sinhm(φ)

2m
∂m

∂λm
ln t(λ)

∣∣∣∣
λ=iφ/2

, m ≥ 0. (4.44)

We note that the total momentum is −Q1 and the Hamiltonian is JQ2.
In the thermodynamic limit 3 the eigenvalues of charge Qm+1 is given by

lim
th
〈λ|Qm+1

N
|λ〉 =

∞∑
n=1

∫ π/2

−π/2
dλρn(λ)c

(n)
m+1(λ), m ≥ 0, (4.45)

where |λ〉 represents a Bethe state de�ned by the M Bethe roots, which
characterize a state with M down spins, the densities ρn are obtained by
(2.107) and the coe�cients c

(n)
m+1(λ) are given by

c
(n)
m+1(λ) = i(−1)m

sinhm(φ)

2m
∂m

∂λm
ln

sin(λ+ iφ
2

)

sin(λ− iφ
2

)
. (4.46)

In the paper of Mossel and Caux [18] the so-called generalized Thermo-
dynamic Bethe Ansatz equations are obtained:

ln ηn = −δn,1(s ? d) + s ? [ln (1 + ηn−1) + ln (1 + ηn+1)], n ≥ 1 (4.47)

where η0 = 0 and s is given by (2.112). In this case d is given by

d(λ) =
∑
k∈Z

e−2ikλ

∞∑
m=2

βm sinhm−1(φ)(ik)m−2, (4.48)

3The thermodynamic limit is indicated with subscript th.
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where the Lagrange multipliers or generalized chemical potentials βm are
obtained by imposing the initial conditions on the conserved charges Qm+1

like in (4.28):

lim
th

1

N
〈Ψ0|Qm+1|Ψ0〉 = lim

n→∞
lim
th

1

N

Tr(Qm+1ρ
GGE)

TrρGGE
, (4.49)

where |Ψ0〉 is the initial state of the system before the quench. It is impor-
tant to note that |Ψ0〉 is a generic state and after the quench the expectation
value of an obsarvable O is given by

lim
t→∞

lim
th
〈Ψ(t)|O|Ψ(t)〉 = lim

t→∞
lim
th
〈Ψ0|eiHtOe−iHt|Ψ0〉 = 〈ρΨ0|O|ρΨ0〉, (4.50)

where |ρΨ0〉 is the postquench steady state. Therefore, ρΨ0 represents a
set {ρΨ0

n }∞n=1 of densities, which have to reproduce the initial values of all
conserved charges. To proceed on we state that the claim of the GGE is
that for any local operator this set of densities reproduces the steady state
expectation values, i.e.:

〈ρΨ0|O|ρΨ0〉 = 〈ρGGE|O|ρGGE〉, (4.51)

where ρGGE = {ρGGEn }∞n=1 are obtained combining the generalized TBA
equations with (2.111).

The �rst step to implement the GGE ideas is to impose the constraints

lim
th

1

N
〈Ψ0|Qm+1|Ψ0〉 =

∞∑
n=1

∫ π/2

−π/2
dλρΨ0

n (λ)c
(n)
m+1(λ), m ≥ 0. (4.52)

Now we will see that the initial expectation values of local conserved
charges {Qm}∞m=2 depend only on the 1-string holes density. Observe that
the momentum charge is excluded (see for details [2]).

It is convenient to work with Fourier transform, with conventions

f̂(k) =

∫ π/2

−π/2
dλe2ikλf(λ), k ∈ Z, (4.53)

f(k) =
1

π

∑
k∈Z

e−2ikλf̂(k), λ ∈ [−π/2, π/2) . (4.54)

For m ≥ 1, m− 1 integrations by parts gives a simple expression for the
Fourier transform of c

(n)
m+1:
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ĉ
(n)
m+1(k) = −2π

sinhm(φ)

2m
(2ik)m−1

∫ π/2

−π/2
dλe2ikλan(λ)

= −π sinhm(φ)(ik)m−1e−|k|φn, (4.55)

where the Fourier transform of an(λ) is obtained in Appendix D.
The eigenvalue of charge Qm+1 can then be rewritten as

∞∑
n=1

∫ π/2

−π/2
dλρΨ0

n (λ)c
(n)
m+1(λ) =

1

π

∞∑
n=1

∑
k∈Z

ρ̂Ψ0
n (k)ĉ

(n)
m+1(k)

= − sinhm(φ)
∑
k∈Z

(ik)m−1

∞∑
n=1

ρ̂Ψ0
n (k)e−|k|φn. (4.56)

Rewriting the sum over all string densities in terms of ρ̂hΨ0
1 (k) (see [2]),

i.e.

∞∑
n=1

ρ̂Ψ0
n (k)e−|k|φn =

e−|k|φ − ρ̂hΨ0
1 (k)

2 cosh(kφ)
, (4.57)

we obtain that

lim
th

〈Ψ0|Qm+1|Ψ0〉
N sinhm(φ)

=
∑
k∈Z

−e−|k|φ + ρ̂hΨ0
1 (k)

2 cosh(kφ)
(ik)m−1. (4.58)

Knowing the initial state |Ψ0〉, the method used in [7] gives an explicit
expression for ρhΨ0

1 :

ρhΨ0
1 (λ) = a1(λ) +

1

2π

(
ΩΨ0

(
λ+

iφ

2

)
+ ΩΨ0

(
λ− iφ

2

))
, (4.59)

where

ΩΨ0 (λ) = lim
th

i

N
〈Ψ0|t−1

(
λ+

iφ

2

)
∂λt

(
λ− iφ

2

)
|Ψ0〉. (4.60)

The densities of the GGE can be found by solving (using numerical al-
gorithms) the generalized TBA equations for n ≥ 2, combined with (2.111)
and the fundamental constraint ρhGGE1 = ρhΨ0

1 .
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4.4.2 Quench Action for the Néel state-to-gapped XXZ
quench

We take as initial state the so-called Néel state, i.e.

|ΨN
0 〉 =

1√
2

(
| ↑↓〉⊗N/2 + | ↓↑〉⊗N/2

)
=

1√
2

(| ↑↓↑↓↑↓ ...〉+ | ↓↑↓↑↓↑ ...〉) .

(4.61)
We only consider Bethe states withM = N/2 �ipped spins since the Néel

state lies in this sector of the XXZ chain. For the sake of simplicity we choose
N divisible by four such that M is even. We consider parity-invariant Bethe
states |{±λj}M/2

j=1 〉 which have non-vanishing overlap 〈ΨN
0 |{±λj}

M/2
j=1 〉. λj are

Bethe roots, which can be collected in such a manner that they form the set
of n-strings. Obviously

∑
n nMn = M , where Mn is the number of n-strings

and the sum goes to in�nity in theory.
The overlap is given in [17] and in references therein. We have4

ln
〈ΨN

0 |{±λj}
M/2
j=1 〉√

〈{±λj}M/2
j=1 |{±λj}

M/2
j=1 〉

=

M/2∑
j=1

ln

(√
tan(λj + iφ/2) tan(λj − iφ/2)

2 sin(2λj)

)

+
1

2
ln

2 detN/4G
+
jk

detN/4G
−
jk

, (4.62)

where

G±jk = δjk

NK(λj)−
N/4∑
l=1

K(λj, λl)

+K±(λj, λk), j, k = 1, ..., N/4

(4.63)

K±(λ, µ) = K(λ− µ)±K(λ+ µ), (4.64)

K(λ) =
sinh(2φ)

sinh(λ+ iφ) sinh(λ− iφ)
. (4.65)

Knowing the overlap coe�cients, the variation of the Quench Action gives
the generalized Thermodynamic Bethe Ansatz equation for the Néel-to-XXZ
quench:

4detN/4 indicates that the determinant is taken on a N/4×N/4 matrix.
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ln ηn(λ) = dn(λ) + s(λ) ? [ln(1 + ηn−1(λ)) + ln (1 + ηn+1(λ))] , (4.66)

where

dn(λ) =
∑
k∈Z

e−2ikλ tanh(kφ)

k
[(−1)n − (−1)k]. (4.67)

This equation combined with (2.111), can be solved numerically. The
solution gives the ρsp.



Chapter 5

Quasilocal charges

We have already stated that a physical system is integrable, if it is endowed
with an in�nite set of conserved charges, which generate an in�nite set of
conservation laws. Dealing with lattice models or spin chains the conserved
charges gain a fundametal feature, called locality, which means that the
densities of these charges act non-trivially only on a �nite number of adjacent
lattice sites. Local charges cover an important role in the analysis of the
thermodynamics of such systems: we have seen that a generalization of the
canonical ensemble, called Generalized Gibbs Ensemble, which takes into
account the presence of the conserved charges in addition to the Hamiltonian,
is a useful tool to describe thermalization after a quantum quench.

But it has been recently shown that the GGE sometimes fails to describe
the correct quantum Quench Action, like in the gapped XXZ model (∆ =
cosh η > 1, η > 0. In this chapter we use η instead of φ, because the last
letter is used for other quantities). Some researchers have proposed a solution
in order to solve the problem: the family of local conserved charges has to
be extended incorporating quasilocal conserved charges, whose meaning we
are going to analyze.

5.1 De�nitions

The total Hilbert space, formed by a tensor product of d -dimensional single-
site Hilbert spaces, will be denoted by H. The Hilbert space of a lattice
subinterval between sites x and x

′
, x ≤ x

′
, will be denoted by H[x,x′ ] and the

corresponding operator subalgebra by U[x,x′ ]. An observable represented by
an operator a ∈ U is local if it acts non-trivially only on a �nite subinterval
[x, x

′
]:

56
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a = a[x,x′ ] ⊗ IZ\[x,x′ ], a[x,x′ ] ∈ U[x,x′ ], (5.1)

where Z denotes the set of integers, i.e. a one-dimensional lattice.

Denoting by Tr[x,x′ ] the trace over H[x,x′ ]one de�nes the tracial state ω0

as

ω0(a) =
Tr[x,x′ ]a[x,x′ ]

Tr[x,x′ ]I[x,x′ ]

. (5.2)

We de�ne the Hilbert-Schmidt (HS) inner product as

(a, b) = ω0(a†b)− ω0(a†)ω0(b), (5.3)

and denote the corresponding norm by ‖ a ‖HS≡
√

(a, a).

We also de�ne a lattice shift automorphism by Ŝy(a[x,x′ ]) = a[x−y,x′−y] and
associate to each element a ∈ U a translationally invariant sum

A =
∑
x

Ŝx(a), (5.4)

which represents an extensive observable of a translationally invariant in-
�nite quantum spin chain. The operator a is called a density of the observable
A. Any operator sequence satisfying extensivity, i.e.

0 < lim
N→∞

1

N
(A,A) <∞ (5.5)

and the �nite overlap criterion, i.e. limN→∞(b, A), with at least a one
local operator b , is called pseudolocal.

If the density a can be written as a sum of mutually orthogonal terms
a[1,r]

a =
N∑
r=1

a[1,r], (5.6)

for which a condition, known quasilocality

‖ a[1,r] ‖HS< Ce−ξr, ξ > 0 (5.7)

holds, A is automatically pseudolocal. In other words a quasi-local oper-
ator has support on all lattice sites, though with an exponentially decaying
norm.
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5.2 Quantum Hirota equations

In the previous chapters we de�ned and used the fundamental tool of transfer
matrix on a two-dimensional auxiliary space. For what follows it is necessary
to extend the dimension of auxiliary space in order to treat with higher-
dimensional irreducible unitary representation of auxiliary space (s > 1/2).
These transfer operators are constructed from Lax operator Ls(λ) associated
with (2s+1)-dimensional auxiliary spaces Ha = Vs ∼= C2s+1 and satisfy

[Ts(λ), Ts′ (µ)] = 0, ∀s, s′ ∈ 1

2
Z+ and λ, µ ∈ C. (5.8)

For s = 1/2 the standard set of local charges of XXZ model is generated
by an expansion of log T 1

2
(λ) around λ = 0:

H(k) = −i∂k−1
λ log T 1

2

(
λ+

iη

2

)
|λ=0, (5.9)

where H(2) is the Hamiltonian. The locality of conserved operators H(k)

lies in the fact that each H(k) admits an expansion in terms of a sum of local
densities h(k) of order k, i.e.

H(k) =
N−1∑
x=0

Ŝx(h(k)) ≡
N−1∑
x=0

h(k)
x , (5.10)

for any �nite length N .
The higher-dimensional transfer operator satis�es an equation, known as

quantum Hirota equation or T -system, which is a bilinear equation which
takes the form

Ts

(
λ+

iη

2

)
Ts

(
λ− iη

2

)
= φ

(
λ+ s

iη

2

)
φ̄

(
λ+ s

iη

2

)
+Ts− 1

2
(λ)Ts+ 1

2
(λ),

s =
1

2
Z+, (5.11)

with bar denoting complex conjugation and φ(λ) = T0

(
λ+ iη

2

)
, where

T0(λ) = (sin(λ)/ sinh(η))N .
Higher-spin transfer operators Ts represent the canonical solution to the

Hirota equation. However, because of there is a gauge freedom in choosing
the operators Ts, it is convenient to de�ne a gauge-invariant combinations
known as Y -operators, which are
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Y2s =
Ts− 1

2
Ts+ 1

2

T
[2s+1]
0 T

[−2s−1]
0

=
T+
s T

−
s

T
[2s+1]
0 T

[−2s−1]
0

− I, s =
1

2
Z+, (5.12)

where the following notation is introduced: f [±k](λ) ≡ f
(
λ± k iη

2
∓ i0+

)
for η 6= 0 (gapped and gapless regimes) and f [±k](λ) ≡ f

(
λ± k i

2
∓ i0+

)
in the isotropic case (∆ = 1). For the sake of clearness we write f±(λ) ≡
f [±1](λ).

The Y-operators obey the so-called Y-system functional relation, which
is an ubiquitous structure of integrability:

Y +
j Y

−
j = (I + Yj−1)(I + Yj+1), j = 1, 2, ..., (5.13)

where it is assumed that Y0 = 0.
Another important relation which involves the transfer operator is the

Baxter's TQ-equation:

T 1
2
Q = T+

0 Q
[−2] + T−0 Q

[+2], (5.14)

where Q stands for the Baxter's Q-operator.
The Q-operator allows to linearize the bilinear equation (5.11), i.e.

T+
s

T
[2s+1]
0

= Q[2s+2]Q[−2s]

2s∑
k=0

ζN2s,k
Q[2(k−s)]Q[2(k−s+1)]

, (5.15)

where the scalars are expressed by

ζ2s,k(λ) =
T

[2(k−s)+1]
0 (λ)

T
[2s+1].
0 (λ)

. (5.16)

The TQ-equation (5.14) admits two linearly independent solutions, Q
and Q̃, whose independence is guaranteed if the Wronskian determinant is
non-degenerate, i.e.

T0 = Q+Q̃− −Q−Q̃+. (5.17)

Combining the equation (5.14) and the condition (5.17), it is possible to
obtain an equation for the eigenvalues Q of Q:

T−0 (λj)Q[+2](λj)

T+
0 (λj)Q[−2](λj)

= −1. (5.18)

where the λj are the Bethe roots of the system, which are the zeros of
the eigenvalues Q.
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5.3 Quasilocal charges from unitary represen-

tation

Ilievski, Medenjak and Prosen [10] have proved that the gapped regime of
XXZ model has an in�nite set of conserved operators

Xs(λ) = −i∂λ log
T+
s (λ)

T
[2s+1]
0 (λ)

. λ ∈ R, s =
1

2
Z+, (5.19)

generated from the higher-spin transfer operators Ts and which are quasilo-
cal conserved charges. The proof of this statement starts from the inversion
formula

T+
s (λ)T−s (λ)

T
[−2s−1]
0 (λ)T

[2s+1]
0 (λ)

N→∞−−−→ I, (5.20)

which allows to write an alternative de�nition of the charges (5.19) in a
more convenient product form

Xs(λ) = −i ∂µ
T−s (λ)

T
[−2s−1]
0 (λ)

T+
s (µ)

T
[2s+1]
0 (µ)

∣∣∣∣∣
µ=λ

, λ ∈ R. (5.21)

The details of the proof are explained in [10], but one of the most impor-
tant achievement of the proof's steps is exactly the inversion formula, which
can be deduced in an analogous form by (5.15), taking the dominating term
at index k = 2s in the thermodynamic limit:

T+
s (λ)

T [2s+1](λ)

N→∞−−−→ Q[−2s](λ)

Q[2s](λ)
. (5.22)

As a consequence of (5.22), the general version (for arbitrary anisotropy
∆) of the unitary quasilocal charges admits a useful representation in terms
of Q-operator

Xs(λ) = −i∂λ log
Q[−2s]

Q[2s]
, λ ∈ Iη =

{
λ ∈ C; |Im(λ)| < η

2

}
. (5.23)

The charges Xs(λ) can now be diagonalized using the fact that the eigen-
values of Baxter's Q-operator are polynomials with the zeroes coinciding with
the set of Bethe roots {λj},
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Q(λ) = c

M∏
j=1

sin(λ− λj), (5.24)

where c is a constant.

5.4 Quantum quench and quasilocal charges

We have stated before that GGE fails to describe thermalization after a
quantum quench, if one does not also take into account quasilocal charges.
In what follows we explain the connection between the spectra of quasilocal
charges Xs and distributions of Bethe strings. To this aim we brie�y review
the main results of Bethe Ansatz for gapped XXZ model with some new
conventions.

The �rst important tool for an integrable model is the single-particle
S-matrix S1, which for XXZ chain takes the form

S1(λ, µ) ≡ S1(λ− µ) =
sin(λ− µ− iη

2
)

sin(λ− µ+ iη
2

)
. (5.25)

For states which consist of j excitations (j-strings) a set of fused scattering
matrices Sj are introduced

Sj(λ) =
sin(λ− j iη

2
)

sin(λ+ j iη
2

)
, j = 1, 2, .... (5.26)

Scattering among two di�erent types of strings is governed by string-to-
string scattering matrices

Sj,k(λ) = S|j−k|(λ)Sj+k(λ)

min(j,k)−1∏
i=1

S2
|j−k|+2i(λ). (5.27)

The quantization condition in a periodic system for the rapidities λj takes
the form

eip(λj)N
M∏
k=1

S1,1(λj − λk) = −1, j = 1, 2, ...,M, (5.28)

where M is the number of Bethe roots related to the magnetization state
and p(λ) is the momentum of an elementary excitation of a ferromagnetic
vacuum state
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eip(λ) =
sin(λ+ iη

2
)

sin(λ− iη
2

)
. (5.29)

The string hypothesis states that in the large-N limit the Bethe roots for
an eigenstate become equidistantly displaced in the imaginary axes in the
rapidity complex plane:

{λk,jα } ≡ {λkα + (k + 1− 2j)
iη

2
|j = 1, 2, ..., k}. (5.30)

Such string con�guration corresponds to bound states of magnons.
In the continuum limit it is more convenient to use densities ρj(λ), which

describe the distribution of the string centers and obey the following non-
linear coupled integral equations

ρj(λ) + ρ̄j(λ) = aj(λ)−
∑
k

∫ π/2

−π/2

dµ

2π
aj,k(λ− µ)ρk(µ), (5.31)

where

aj(λ) = −i∂λ logSj(λ), aj,k(λ) = −i∂λ logSj,k(λ) (5.32)

and ρ̄j(λ) parametrize distributions of Bethe holes.

To obtain the spectra of charges Xs we make use of equation (5.23):

〈{λj}|Xs(λ)|{λj}〉 = −i∂λ log
Q[−2s](λ)

Q[2s](λ)
, (5.33)

where |{λj}〉 denote a Bethe eigenstate parametrized by a set of roots λj.
Working under the string hypothesis, the spectra of quasilocal charges Xs

Xs = lim
N→∞

1

N
〈{λj}|Xs(λ)|{λj}〉 (5.34)

can be expressed in terms of densities of string centers ρj(λ). Explicitly
we have

Xs(λ) =
∑
k

∫ π/2

−π/2

dµ

2π
G2s,k(λ− µ)ρk(µ), (5.35)

where
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G2s,k(λ) =
k∑
j=1

−i∂λ logS2s

(
λ+ (k + 1− 2j)

iη

2

)
=

min(2s,k)∑
j=1

a|2s−k|−1+2j(λ).

(5.36)

To the aim of dealing with the quench operation it is also important the
following result. In section 5.2 it has been shown that higher-spin T -operators
constitute the canonical solution of Hirota equations. However, Hirota equa-
tions admit a class of non-canonical solutions, which are related to a class of
initial conditions, which relax to equilibrium steady states. Examples of these
states are the spin-singlet dimerized state |D〉 = 1/

√
2(| ↑↓〉) − | ↓↑〉)⊗N/2

and Néel state |N〉 = | ↑↓〉)⊗N/2.
Indicating with ts(λ) and q(λ) the non-canonical functions of Hirota equa-

tions, as the counterparts of the canonical operators Ts(λ) and Q(λ) and
relaxing the constraint t0 = φ− Hirota equations take the form

ts+ 1
2
q[2s] − t−s q[2s+2] = φ[2s]q̄[−2s−2] (5.37)

whose solution is

ts = t
[−2s]
0

q[2s+1]

q[−2s+1]
+ q[2s+1]q̄[−2s−1]

2s∑
k=1

φ[2(k−s)−1]

q[2(k−s)−1]q[2(k−s)+1]
. (5.38)

With these tools in [12] it has been found explicitly the expectation values
of quasilocal charges Xs for the dimerized state and the Néel state.

5.5 Explicit calculation of quasilocal charges for

the XXZ model

In what follows we refer to the paper [21]. For the conventions adopted here
and some formalism related to quantum group we refer to appendix C.

Now we want to show how to obtain a quasilocal charge from the two-
parameter conserved quantity which is odd under parity

I(z, u) =
∑
{αj}

tr(Aα1...AαN − Atα1...A
t
αN)

N∏
j=1

σ
αj
j . (5.39)
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Using the inner product de�ned in section 5.1 we want to compute (I†, I) =
2−NTr(I†I), where Tr denotes the trace over the quantum space V ⊗N . It
turns out that

(I†, I) = 2trA⊗A(T1(z, u, ū)N − T2(z, u, ū)N). (5.40)

Here T1(z, u, ū)N and T2(z, u, ū)N are transfer matrices in A⊗A

T1(z, u, ū) =
∑

{α=0,z,±}

CαA
∗
α(z, u)⊗ Aα(z, ū), (5.41)

T2(z, u, ū) =
∑

{α=0,z,±}

CαA
∗
α(z, u)⊗ Atα(z, ū), (5.42)

where

Cα =
1

2
Tr(σα(σα)†). (5.43)

We focus on the analysis of the operator

I0 ≡ I(z = i, u = 1). (5.44)

With these values of the parameters z and u the operators, which con-
struct the Lax operator become

A0(1) ≡ A0(z = i, u = 1) =
m−1∑
r=0

cos(λr)|r〉〈r|, (5.45)

Az = 0 (5.46)

A+(1) ≡ A+(z = i, u = 1) = i

m−2∑
r=0

sin(λ(r + 1))|r〉〈r + 1|, (5.47)

A−(1) ≡ A−(z = i, u = 1) = −i
m−2∑
r=0

sin(λr)|r + 1〉〈r|. (5.48)

The transfer matrices (5.41) and (5.42) become
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T1(1) ≡ T2(z = i, u = ū = 1) =
m−1∑
r,s=0

cos(λr) cos(λs)|r, s〉〈r, s|

+
1

2

m−2∑
r,s=0

sin(λ(r + 1)) sin(λ(s+ 1))|r, s〉〈r + 1, s+ 1|

1

2

m−2∑
r,s=0

sin(λr) sin(λs)|r + 1, s+ 1〉〈r, s|, (5.49)

T2(1) ≡ T2(z = i, u = ū = 1) =
m−1∑
r,s=0

cos(λr) cos(λs)|r, s〉〈r, s|

+
1

2

m−2∑
r,s=0

sin(λ(r + 1)) sin(λ(s+ 1))|r, s+ 1〉〈r + 1, s|

1

2

m−2∑
r,s=0

sin(λr) sin(λs)|r + 1, s〉〈r, s+ 1|. (5.50)

Since we are interested in the thermodynamic limit, we restrict to the sub-
space in which the transfer matrices have their largest eigenvalue. Denoting
|r,±r〉 with |r〉 we obtain

T1 =
m−1∑
r=0

cos2(λr)|r〉〈r|+ 1

2

m−2∑
r=0

sin2(λ(r + 1))|r〉〈r + 1|

+
1

2

m−2∑
r=0

sin2(λr)|r + 1〉〈r|, (5.51)

T2 =
m−1∑
r=0

cos2(λr)|r〉〈r| − 1

2

m−2∑
r=0

sin(λr) sin(λ(r + 1))×

× (|r〉〈r + 1|+ |r + 1〉〈r|). (5.52)

The matrix T2 is symmetric and since T2|r = 0〉 = |r = 0〉 = |0〉, |0〉 is an
eigenvector of T2 with eigenvalue (the largest one) 1. T1 is not symmetric in-
stead and so we have to distinguish the right eigenvector |0〉, which coincides
with that of T2, from the left eigenvector 〈0L|, which has the form
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〈0L| =
m−1∑
r=0

(1− r

m
)〈r|. (5.53)

In order to calculate the thermodynamic limit, the following relations are
useful:

lim
n→∞

T n1 = |0〉〈0L|, (5.54)

lim
n→∞

T n2 = |0〉〈0|. (5.55)

The norm (I†0, I0) is zero, because it can be shown that T1 and T2 are
related by a similarity transformation. But we can �nd a quasilocal operator
by expanding I(z = i, u) about u = 1, i.e.

I(z = i, u = 1 + ε) = εI1 +O(ε2), (5.56)

where

I1 =
∂I(z, u)

∂u

∣∣∣∣
z=i,u=1

. (5.57)

From (5.41) and (5.42) the norm of I1 is

(I†1, I1) = 2 tr

(
∂2

∂u∂ū
T1(z, u, ū)N

)∣∣∣∣
z=i,u=ū=1

− 2 tr

(
∂2

∂u∂ū
T2(z, u, ū)N

)∣∣∣∣
z=i,u=ū=1

(5.58)

Using the following notation for the derivatives of the reduced transfer
matrices

T (n,l)
x ≡ ∂n

∂un
∂l

∂ūl
Tx(z = i, u, ū)|u=ū=1 (5.59)

with x = 1, 2, the (5.58) becomes



5.5. EXPLICIT CALCULATION OF QUASILOCAL CHARGES FOR THE XXZ...67

(I†1, I1)

N
= 2tr

(
T N−1

1 T (1,1)
1 + T N−1

2 T (1,1)
2

)
+ 2

N−2∑
n=0

tr
(
T (1,0)

1 T n1 T
(0,1)

1 T N−2−n
1

)
+ 2

N−2∑
n=0

tr
(
T (1,0)

2 T n2 T
(0,1)

2 T N−2−n
2

)
. (5.60)

In order for I1 to be quasilocal, the rhs of (5.60) must approach a �nite
value in the limit N →∞.

First of all we explicit the expression of the derivatives of the reduced
transfer matrices:

T (1,0)
1 = T (0,1)

1

=
i

2

m−1∑
r=0

sin(2λr)|r〉〈r|+ i

2

m−2∑
r=0

sin(2λr)|r + 1〉〈r|, (5.61)

T (0,1)
2 = i

m−1∑
r=0

sin(λr) cos(λr)|r〉〈r|

+ i
m−2∑
r=0

sin(λr) cos(λ(r + 1))|r + 1〉〈r|, (5.62)

T (1,0)
2 = i

m−1∑
r=0

sin(λr) cos(λr)|r〉〈r|

− i
m−2∑
r=0

sin(λ(r + 1)) cos(λr)|r + 1〉〈r|, (5.63)

T (1,1)
1 =

m−1∑
r=0

sin2(λr)|r〉〈r|+ 2
m−2∑
r=0

cos2(λr)|r + 1〉〈r|, (5.64)

T (1,1)
2 =

m−1∑
r=0

sin2(λr)|r〉〈r|+ 2
m−2∑
r=0

cos(λr) cos(λ(r + 1))|r + 1〉〈r|. (5.65)
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Noticing that

T (1,0)
1 |0〉 = T (0,1)

1 |0〉 = 0, (5.66)

T (1,0)
2 |0〉 = 〈0|T (0,1)

2 = 0, (5.67)

and recalling the projection (5.54), we are left only with the �rst term in
the rhs of (5.60):

lim
N→N

(I†1, I1)

N
= 2〈0L|T (1,1)

1 |0〉+ 2〈0|T (1,1)
2 |0〉. (5.68)

Using the (5.53) we �nally obtain

lim
N→N

(I†1, I1)

N
= 4

(
1− 1

m

)
, (5.69)

proving that I1 is quasilocal for m > 1.



Chapter 6

Quasilocal charges in the gapless

XXZ model and relation to SG

model

6.1 A brief overview on Sine-Gordon (SG) model

The SG model is an integrable �eld theory with the following Lagrangian:

L =
1

2
∂µϕ∂

µϕ+ g

√
aπ

β
cos

(
β√
4π
ϕ

)
. (6.1)

The SG model is well de�ned within the interval 0 ≤ β <
√

8π. The
dynamics of the model depends on the parameter β. Therefore we have to
distinguish two cases:

1. 0 ≤ β <
√

4π: it is the so called attractive regime. The dynamics
is described by the scattering of particles (or quasi-particles), i.e. the
soliton-antisoliton scattering, the soliton-breather scattering and the
breather-breather scattering. The breathers are considered as bound
states. The mass of a breather Mj is related to the mass Msol of a
soliton: Mj = 2Msol sin(πξj/2), where

ξ =
β2

8π

1− β2

8π

. (6.2)

2.
√

4π ≤ β <
√

8π: this is the so called repulsive regime. The dynamics
is described by a scattering of a soliton and an antisoliton, a soliton
and a soliton or an antisoliton and an antisoliton.

69
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For more details on the SG model see the book of G. Mussardo Statistical
Field Theory [19] and the literature therein.

6.2 SG model and its Y-system

In the paper of Vernier and Cubero [29], using the approach of Destri and
de Vega [3], it is shown that the inhomogeneous XXZ chain (with ω = 0)
in the gapless regime (see section 3.3) becomes with an appropriate scaling
limit (θ → ∞) the repulsive SG model. This procedure is called light-cone
regularization. The connection between these two models allows to write a
relation between the respective densities, which constitutes the TBA equa-
tions. As hinted in the preceding chapter, there is a relation between the
quasilocal charges and the TBA densities. In addition since the quasilocal
charges are de�ned through the higher-spin transfer matrices, it possible to
make a link between the quasilocal charges and the Y-system (the Y-operator
is obtained by a gauge transformation on Ts).

Following [29], the parameter of the SG model and the inhomogeneous
XXZ chain are related as follows:

β2

8π
=

p

p+ 1
= 1− γ

π
−→ γ =

π

p+ 1
, (6.3)

where p is a positive integer, and it is used to number the densities.
In what follows we attempt to generalize the results of the just cited paper

to rational values of p. To this aim we take advantage of the work of R. Tateo
in [28] in order to construct the Y-system for the attractive regime. Thanks
to the so called duality property of this system, we obtain also the Y-system
for the repulsive regime and so for the inhomogeneous XXZ chain.

Tateo [28] works directly on the ξ parameter, which is expressed through
the continued fraction formalism. In the attractive regime ξ < 1. We have
that

ξ =
p

q − p
= ξ̂(n1, n2, ..., nF )

def
=

1

n1 + 1
n2+...+ 1

nF−1

, (6.4)

where p, q are integers, which satis�es the inequality q > 2p in order to
remain in the attractive regime (p has not any relation between the p used
in [29]).

The TBA equation at this point contains n1 breathers, a soliton and∑F
i=2 ni magnons (these are quasi-particles introduced to describe the colour

interchange of the soliton) for a total of nT =
∑F

i=1 ni (quasi-)particles.
De�ning the shifts
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s1 = iπ
ξ1

2
, s2 = iπ

ξ1ξ2

2
, ..., sF = iπ

ξ1ξ2...ξF
2

(6.5)

with

ξi = ξ̂(ni, ni+1, ..., nF ), (6.6)

we associate to any (quasi-)particle a node in a DnT Dynkin diagram. An
example of this kind of diagrams is shown in Fig. 6.1.

Figure 6.1: The TBA graph associated to the SG model in a rational point.
The black or white spots are called nodes. There are n1 black nodes associ-
ated to the breathers, the node n1 corresponds to the soliton, all the other
nodes are magnons. The links on the bifurcation are horizontal if F is even
or vertical if F is odd. The double-link de�nes the concatenation of an hor-
izontal(vertical) with a vertical (horizontal) sub-diagram with a change of
the shift Si. For conventions we indicate as f ≡ nT and f̄ ≡ nT − 1 the two
nodes on the bifurcation of the DnT diagram.

We de�ne for any nodes a shift

Si = sa,

a−1∑
k=1

nk < i ≤
a∑
k=1

nk, (6.7)

so that i runs on the same horizontal or vertical sub-diagram.
In addition we de�ne for any pairs of nodes (i, j) an exponent
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ci,j = cj,i = (−1)a−1,
a−1∑
k=1

nk < i, j ≤ 1 +
a∑
k=1

nk, (6.8)

with ci,j = 0 if i and j are not adjacent. We �nally put c̃j = cj,j+1. The
Y-system for the nodes in the set {n1, n1 + n2, ..., nT − nF − nF−1}, i.e. the
index k of the Y-operators is

∑a
l=1 nl and a < F − 1, is

Yk(λ+ Sk)Yk(λ− Sk) = (1 + Yk−1(λ)ck,k−1)ck,k−1(1 + Yk+na+1+1(λ)c̃k)c̃k

×
k+na+1∏
j=k+1

(1 + Yj(λ+ (k + na+1 − j)Sj + Sk+na+1+1)c̃k)c̃k

×
k+na+1∏
j=k+1

(1 + Yj(λ− (k + na+1 − j)Sj − Sk+na+1+1)c̃k)c̃k . (6.9)

For the node k = nT − nF we have

Yk(λ+Sk)Yk(λ−Sk) = (1+Yk−1(λ)ck,k−1)ck,k−1(1+Yf (λ)c̃k)c̃k(1+Yf̄ (λ)c̃k)c̃k

×
nT−2∏
j=k+1

(1 + Yj(λ+ (nT − 1− j)Sj)c̃k)c̃k

×
nT−2∏
j=k+1

(1 + Yj(λ− (nT − 1− j)Sj)c̃k)c̃k , (6.10)

and for the remaining nodes

Yk(λ+ Sk)Yk(λ− Sk) =
∏
j∈adj

(1 + Y
ci,j
j )ci,j , (6.11)

where the product runs over all adjacent nodes in the Dynkin diagram. A
crucial properties for our purposes is that the Y-systems at ξ−1 in the repul-
sive region can be obtained from those at ξ changing ci,j with −ci,j and si
with ξ−1si. This is the so-called TBA-duality in the SG model.

Now we have to link the notations of [28] and that of [29]. From the
de�nition of ξ in the (6.4) we have that β2/8π = p/q and it is obvious that
β2/8π < 1/2. De�ning ξ−1 = ξ̄ we have that

ξ̄ =
q − p
p

, (6.12)
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and so

q − p
p

=
β̄2/8π

1− β̄2/8π
−→ β̄2

8π
=
q − p
q

= 1− p

q
= 1− γ

π
. (6.13)

This implies that

γ =
πp

q
and γ <

π

2
. (6.14)

In this way we have the Y-system for the repulsive regime (thanks to the
duality property) and the corresponding Y-system for the inhomogeneous
XXZ model, which in turn is related to the gapless XXZ model by setting
the inhomogeneity θ equal to zero.

In the TBA context the Y-operators are related to the TBA densities
through the relation

Yj =
ρhj
ρj
. (6.15)

This fact establish a deep contact between the integrable structure (Y-
system) and the thermodynamics (densities ρ) of a system.

Since the Y-operators are related to the higher-spin transfer matrices Tj
(now we label the transfer matrices with j-th representation of the auxil-
iary space, while before we labeled them with the spin s) through a gauge
transformation (see (5.12)), we can take advantage of the relation found in
[12]

Xj(µ) =
1

N

1

2πi
∂µ ln

T+
j (µ)

T
[j+1]
0 (µ)

(6.16)

to connect the indices of the Y-operators, and so the indices of the densi-
ties, to the indices of the quasilocal charges (here T

[±k]
j (µ) = Tj(µ± ikγ/2)).

This is the so called string-charge duality, where the string content, referred
to the Bethe roots densities, is now governed by the continued fractions de-
composition. The eigenvalues ofXj could be calculated once Y-operators and
higher-spin transfer matrix Tj are known, for example solving numerically the
TBA equations.

We conclude with the expression that could have the GGE density matrix,
once that the quasilocal charges are added to the set of local charges:

ρGGE =
1

Z
e−

∑
j

∑
n βj,nXj,n(λ), (6.17)
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where the βj,n are the generalized chemical potentials, Z is chosen so
that the trace of the density is one and the double indices follows from the
de�nition

Xj,n = − (∂λ)
n−1Xj(λ)

∣∣
λ=0

. (6.18)

With j = 1 we have the usual local conserved charges.

6.3 Conclusions and perspectives

In this thesis we have proposed a construction of quasilocal charges for the
gapless XXZ model, using the functional relations of Y-system, which are
related to the thermodynamics of the model. This method has allowed to
connect the gapless XXZ model with SG model, which is an interacting,
integrable �eld theory.

For further developments in this line of research one can envisages to apply
this same reasonings to the restricted SG theories, i.e. the minimal models
of conformal �elds theory perturbed by φ1,3 (the least relevant operator), as
well as to many other integrable models, where TBA technique is known.



Appendix A

Bethe equation

From the de�nition of cotangent we have that

cot θ =
cos θ

sin θ
= i

eiθ + e−iθ

eiθ − e−iθ
(A.1)

and so

cot
θ

2
= i

eiθ + 1

eiθ − 1
. (A.2)

Using (2.26) we have

eiθ + 1 =
2eik1 − 2eik2

ei(k1+k2) + 1− 2eik2
(A.3)

eiθ − 1 = −2ei(k1+k2) + 2− 2eik1 − 2eik2

ei(k1+k2) + 1− 2eik2
. (A.4)

From the ratio of the two last equations we obtain

eiθ + 1

eiθ − 1
= − eik1 − eik2

ei(k1+k2) + 1− eik1 − eik2

=
eik1 + 1

2(eik1 − 1)
− eik2 + 1

2(eik2 − 1)
=⇒ 2 cot

θ

2
= cot

k1

2
− cot

k2

2
. (A.5)

75



Appendix B

Tensor product

Given two �nite-dimensional linear spaces V1 and V2 with bases {ek} and
{fk} respectively, their tensor product V1 ⊗ V2 is the space generated by the
basis elements eik = ei ⊗ fk. It is clear that if the dimensions of V1 and V2

are respectively N1 and N2, the space V1 ⊗ V2 have dimension N1N2.

The operation of the tensor product is linear:

(ax1 + bx2)⊗ y = ax1 ⊗ y + bx2 ⊗ y, x1, x2 ∈ V1, y ∈ V2, (B.1)

x⊗ (ay1 + by2) = ax⊗ y1 + bx⊗ y2, x ∈ V1, y1, y2 ∈ V2. (B.2)

Then given two vectors x ∈ V1 and y ∈ V2 and considering their expan-
sions on basis elements

x =

N1∑
i=1

λie
i, y =

N2∑
k=1

µkf
k, (B.3)

we have

x⊗ y =

N1∑
i=1

N2∑
k=1

λiµke
ik. (B.4)

If the spaces V1 and V2 are C2, the basis of the space V1 ⊗ V2 consists of
four vectors
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e11 =

(
1
0

)
⊗
(

1
0

)
=


1
0
0
0

 , e12 =

(
1
0

)
⊗
(

0
1

)
=


0
1
0
0

 ,

e21 =

(
0
1

)
⊗
(

1
0

)
=


0
0
1
0

 , e22 =

(
0
1

)
⊗
(

0
1

)
=


0
0
0
1

 . (B.5)

In general the components of the tensor product z = x⊗ y of two vectors
x, y ∈ C2 are labeled by two indices zik = xiyk:

z11

z12

z21

z22

 =


x1y1

x1y2

x2y1

x2y2

 . (B.6)

We note that the components of z are grouped in a way so that the �rst
two belong to a block labeled by 1 and the last two to a block labeled by 2.

This order of the components suggests a way to write the elements of a
4× 4 matrix acting on V1⊗ V2. If A is such a matrix, its elements are Aab,jk,
where each indices takes values 1, 2:

A11,11 A11,12A12,11 A12,12

A11,21 A11,22A12,21 A12,22

A21,11 A21,12A22,11 A22,12

A21,21 A21,22A22,21 A22,22

 . (B.7)

The matrix A can be seen as 2 × 2 block-matrix, where each block is a
2× 2 matrix. The �rst pair of superscripts a and b corresponds to the space
V1 and specify the block number, while the second pair j and k corresponds
to the space V2 and specify the element number in the block. Therefore, if
z ∈ V1 ⊗ V2 the usual row/column product gives

(Az)aj = Aab,jkzbk. (B.8)

Analogously the standard product C of two matrices A and B acting on
V1 ⊗ V2 is

Cab,jk = Aac,jlBcb,lk. (B.9)
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For our purposes the matrices acting in V1 ⊗ V2 which act non-trivially
only in one of the two spaces, while act as the identity in the other, are of
particular interest.

Denoting by subscripts 1 or 2 the space in which a matrix acts non-
trivially, if A is a 2× 2 matrix we have

A1(x⊗ y) = (Ax)⊗ y, A2(x⊗ y) = x⊗ (Ay). (B.10)

The 4× 4 matrices A1 and A2 have entries

Aab,jk1 = Aabδjk, Aab,jk2 = δabAjk, (B.11)

or explicitly

A1 =


A11 0 A12 0
0 A11 0 A12

A21 0 A22 0
0 A21 0 A22

 , A2 =


A11 A12 0 0
A21 A22 0 0
0 0 A11 A12

0 0 A21 A22

 . (B.12)

Now we de�ne the tensor product of two matrices. Given two 2 × 2
matrices A and B acting in V1 and V2 respectively, their tensor product
A⊗B is

(A⊗B)(x⊗ y) = (Ax)⊗ (By). (B.13)

Using the notations above we have

A1B2(x⊗ y) = A1(x⊗ (By)) = (Ax)⊗ (By), (B.14)

B2A1(x⊗ y) = B2((Ax)⊗ y) = (Ax)⊗ (By). (B.15)

We note that

(A⊗B) = A1B2 = B2A1, (B.16)

which is proved by direct calculation:

(A1B2)ab,jk = Aac,jl1 Bcb,lk
2 = AacδjlδcbBlk = AabBjk, (B.17)

(B2A1)ab,jk = Bac,jl
2 Acb,lk1 = δacBjlAcbδlk = AabBjk. (B.18)

The tensor product of the matrices A and B is 4×4 matrix having a block
structure, whose blocks are 2× 2 matrix B multiplied by the corresponding
element of the matrix A:



79

(A⊗B) =


A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22

 . (B.19)

The tensor product of matrices of other dimensions could be easily gen-
eralized.

An important operator acting in the space V1 ⊗ V2 is the permutation
matrix P , which has the property

P (x⊗ y) = y ⊗ x. (B.20)

The entries of P are

P ab,jk = δakδbj, (B.21)

i.e.

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (B.22)

We immediately note that P 2 = I. P acts similarly on matrices:

P (A⊗B)P = B ⊗ A. (B.23)

In addition P swaps the pair of the indices of a matrix C acting in V1 ⊗ V2:

(PCP )ab,jk = P ac,jlCcd,leP db,ek = δalδcjCcd,leδdkδbe = Cjk,ab. (B.24)

This operation can be written as

PC12P = C21, where C
ab,jk
21 = Cjk,ab

12 . (B.25)

The subscripts indicate to which space the pairs of superscript refer to.

Working with the tensor product V1 ⊗ V2, it is possible to take the trace
of a matrix only over one space: tr1A = Aaa,jk and tr2A = Aab,jj. In this
way the partial traces are 2×2 matrices, which act in V2 and V1 respectively.
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Now we generalize the discussions above to the tensor product of several
space. Let V1⊗ ...⊗VN , where every Vk is isomorphic to C2. Each vector has
2N components, which are numbered by a sequence of superscripts za1...aN .
Every index aα corresponds to space Vα and takes two values aα = 1, 2. A
matrix acting in V1 ⊗ ...⊗ VN is 2N × 2N , whose entries are numbered by N
pairs of superscripts Aa1b1,...,anbn and its products for a vector or for a matrix
B are

v = Az → va1...aN = Aa1b1,...,anbnzb1...bN , (B.26)

C = AB → Ca1b1,...,anbn = Aa1c1,...,ancnBc1b1,...,cnbn . (B.27)

A matrix 2N × 2N which acts non-trivially only in the Vk and in the Vn
spaces is indicated by Akn and its components are

Aa1b1,...,akbk,...,anbn,...,aN bNkn = Aakbk,anbn
N∏
j=1
j 6=k,n

δajbj . (B.28)

The permutation operator acts in the V1 ⊗ ...⊗ VN as:

PknV1⊗ ...⊗Vk⊗ ...⊗Vn⊗ ...⊗VN = V1⊗ ...⊗Vn⊗ ...⊗Vk⊗ ...⊗VN (B.29)

and has entries

P a1b1,...,aN bN
kn = δakbnδanbk

N∏
j=1
j 6=k,n

δajbj . (B.30)

Remembering that the subscripts indicate the space in which an operator
acts non-trivially, we have that

PknA1...k...n...NPkn = A1...n...k...N (B.31)

and

PknA1...k...n−1n+1...NPkn = A1...n...n−1n+1...N . (B.32)

For the partial trace we have

trkA = Aa1b1,...,akak,...aN bN (B.33)
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B.1 Yang-Baxter equation

As an application of the tensor product rules we want to analyze a partic-
ular solution of the famous Yang-Baxter (YB) equation, which is of great
importance in the �eld of integrable systems.

Let R(u1, u2) a 4 × 4 matrix acting on V1 ⊗ V2 and depending on two
complex variable u1 and u2. Considering a space V1⊗ V2⊗ V3 and using two
subscripts to indicate the space in which an operator acts non-trivially, the
YB equations is

R12(u1, u2)R13(u1, u3)R23(u2, u3) = R23(u2, u3)R13(u1, u3)R12(u1, u2).
(B.34)

We try to �nd a particular solution of YB equation, which depends only
on the di�erence u1 − u2 and that takes the form R(u) = f(u)I + cP , where
f(u) is a smooth function and c is a constant. Changing the variables in
u1 − u2 = u and u2 − u3 = v, the YB equation becomes

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u). (B.35)

Substituting R(u) = f(u)I + cP in the last equation and separating the
terms according to the powers of c, we do not obtain an identity only for the
c2 power, i.e.

f(u)P12P23+f(v)P12P13+f(u+v)P12P23 = f(u)P23P13+f(v)P13P12+f(u+v)P23P12.
(B.36)

Multiplying (B.36) from the left by P12, then from the right by P13 and
�nally from the right by P23, we obtain

f(u)P23 + f(v)P23 + f(u+ v)P12 = f(u)P12 + f(v)P12 + f(u+ v)P23, (B.37)

or equivalently

(f(u) + f(v)− f(u+ v))P23 = (f(u) + f(v)− f(u+ v))P12. (B.38)

Since P12 and P23 are di�erent matrices the equality is possible only if

f(u) + f(v) = f(u+ v), ∀u, v. (B.39)

This is a functional equation, i.e. an equation in which the unknown is a
function, whose only smooth solution is f(u) = au, where a is an arbitrary
constant.
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Including a in the constant c the matrix

R(u1, u2) = (u1 − u2)I + cP (B.40)

is a solution of YB equation.



Appendix C

XXZ model in quantum group

formalism

In this appendix we describe brie�y the way to construct the two parameter
conserved charge I(z, u), from which we have derived a quasilocal charge.
For this aim we need the help of some tools of quantum group formalism.
The Lax operator of XXZ model for an arbitrary auxiliary space Q can be
written as a matrix in Vj (the physical space, whose Nth tensor product
generates the total quantum physical space of the system) with entries that
act on Q :

Lj(z) =
1

2

(
zK − z−1K−1 z(q − q−1)S−

z−1(q − q−1)S+ zK−1 − z−1K

)
, (C.1)

where z ∈ C, q is related to the anisotopy parameter ∆, i.e. ∆ = (q +
q−1)/2 and K,S+, S− are operators acting on Q and obeying the so called
quantum group algebra Uq[SU(2)]:

KS+ = qS+K, (C.2)

KS− = q−1S−K, (C.3)

[S+, S−] =
K2 −K−2

q − q−1
. (C.4)

For example choosing Q = C2, we can use the spin-1/2 representation

K = q
σz

2 , S± = σ±. (C.5)

The monodromy matrix and the transfer matrix are as usual:
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TQ(z) = LN(z)LN−1(z)...L1(z), (C.6)

tQ(z) = trQ(TQ(z)), (C.7)

where trQ denotes the trace over the auxiliary space Q.
The quasilocal operators have the property that they can not be written

as a linear combination of the local conserved charges because they have
di�erent symmetry properties, like spin inversion. The �rst step is to �nd
conserved quantities which are not invariant under spin inversion. For this
aim it is convenient to introduce another transfer matrix which commutes
with tQ(z) but employs a di�erent representation of quantum group algebra.
Let us consider an auxiliary space A with dimension dA. Denoting with Lj
the Lax operator de�ned in Vj ⊗A, we have

TA(z) = LN(z)LN−1(z)...L1(z), (C.8)

tA(z) = trA(TA(z)). (C.9)

Using Yang-Baxter relation it can be shown that

[tQ(z), tA(w)] = 0. ∀z, w ∈ C. (C.10)

Since the XXZ Hamiltonian is among the operators generated by tQ(z),
we are allowed to use tA(z) as a generating function of conserved quantities.

We shall work with the so called highest weight representation of Uq[SU(2)]:

K|r〉 = uqr|r〉, (C.11)

S+|r〉 = −ar|r + 1〉, (C.12)

S−|r〉 = br|r − 1〉, (C.13)

where u ∈ C is arbitrary and ar and br are functions of q and u. The
dimension of the auxiliary space depends on the value of the anisotropy
parameter. We shall focus on the case in which q is a root of unity, i.e.
q = eiλ with λ = lπ/m and l,m ∈ Z coprimes. In this case we can restrict
the auxiliary space index r to 0 ≤ r ≤ m − 1, so that the representation
has �nite dimension dA = m. It is important to notice that for q = eiπl/m,
∆ = cos(πl/m), therefore |∆| ≤ 1, which corresponds to the gapless phase
of the XXZ model.
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In analogy with (C.1) the Lax operator Lj can be written as

Lj(z, u) = i
(
Ij ⊗ A0(z, u) + σzj ⊗ Az(z, u)

+σ+
j ⊗ A+(z, u) + σ−j ⊗ A−(z, u)

)
, (C.14)

where

A0(z, u) =
(z − z−1)

4i

(
K(u) +K−1(u)

)
, (C.15)

Az(z, u) =
(z + z−1)

4i

(
K(u)−K−1(u)

)
, (C.16)

A+(z, u) =
z

2i
(q − q−1)S−(u), (C.17)

A−(z, u) =
z−1

2i
(q − q−1)S+(u). (C.18)

It follows that the transfer matrix can be written as

tA(z, u) = iN
∑
{αj}

trA (AαN ...Aα2Aα1)
N∏
j=1

σ
αj
j , (C.19)

where αj ∈ {0, z,+,−} and σ0
j ≡ Ij.

Using parity transformation P , i.e. P−1σ
αj
j P = σ

αj
N+1−j, we can construct

the two parameter conserved quantity, which is odd under parity as

I(z, u) = (−i)N
(
P−1tA(z, u)P − tA(z, u)

)
, (C.20)

whose explicit expression is given in (5.39).



Appendix D

Fourier transform of coe�cient

an(λ)

We want to evaluate the integral

∫ π/2

−π/2
dλe2ikλan(λ) =

∫ π/2

−π/2
dλe2ikλ 1

2π

2 sinh(nφ)

cosh(nφ)− cos(2λ)
. (D.1)

After the change of variable 2λ = y the integral becomes∫ π

−π
dyeiky

1

2π

sinh(nφ)

cosh(nφ)− cos y
. (D.2)

We use the residues theorem to solve the integral. For k > 0 we choose a
rectangular counterclockwise path ABCD, so that AB is the interval [−π, π],
BC is the interval [π, π + i∞], CD is the [π + i∞,−π + i∞] and DA is the
interval [−π + i∞,−π]. So we have

∫
ABCD

dyeiky
1

2π

sinh(nφ)

cosh(nφ)− cos y
= 2πi

∑
Res

[
eiky

1

2π

sinh(nφ)

cosh(nφ)− cos y

]
.

(D.3)
We note that the sum of the integrals on BC and DA is zero and the

integral on CD annihilates thanks to exponential factor of the integrand and
the fact that k > 0.

The poles of the integrand is of order one and they are given by the zeros
of the denominator, i.e. y = ±inφ+ 2mπ with m ∈ Z. The only pole which
is contained in the inner region of the path ABCD is y = inφ. Since the
pole is a simple pole we can use the following formula:
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Res f(z)|z=z0 =
p(z0)

q′(z0)
, (D.4)

where f(z) = p(z)
q(z)

and q(z0) = 0, z0 being a simple pole.

In this case we have (we remember that k > 0)

Res

[
eiky

1

2π

sinh(nφ)

cosh(nφ)− cos y

]∣∣∣∣
y=inφ

= e−knφ
sinh(nφ)

2π sin inφ
=
−ie−knφ

2π
. (D.5)

For k < 0 we use use the same path, but re�ected on the real axes (it is
worth to note that now the path is a clockwise curve and so a minus appears
in the calculus of residues). The pole contained in the inner region of the
path is y = −inφ. The result is:

Res

[
e−i|k|y

1

2π

sinh(nφ)

cosh(nφ)− cos y

]∣∣∣∣
y=−inφ

= e−|k|nφ
sinh(nφ)

2π sin inφ
=
−ie−|k|nφ

2π
.

(D.6)
Combining the results we �nally obtain from (D.3)∫ π

−π
dyeiky

1

2π

sinh(nφ)

cosh(nφ)− cos y
= e−|k|nφ. (D.7)
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