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Abstract

The present thesis deals with the numerical modeling of an hot wire

anemometer inside a turbulent channel flow at Reτ = 180 with heat transfer.

There are two main approaches when studying turbulence: one could follow

an experimental path or a numerical approach could be pursued. Experi-

ments showed some issues when measuring turbulence with hot wire anemom-

etry, spatial and temporal filtering are two examples of such problems. In the

present work, numerical simulations were performed in order to validate a

code that model a hot-wire probe inside a turbulent channel flow. Direct Nu-

merical Simulation (DNS) solved through a spectral code were used to build

such model, due to their high level of precision and resolution. A validation

process was performed starting from Kim & Moin[9] experience and Kasagi

studies[7] related to DNS of channel flow with passive scalar. Following this

path we implement inside our code a line source of heat mimicking the hot-

wire behaviour. While simulations were running we collected statistics in

order to know the values regarding turbulence fluctuations throughout the

entire channel. We obtained a new data-set coming from DNS and spectral

element method with not only just a passive scalar but a precise implemen-

tation of an hot-wire probe.

Key words: Wall turbulence, CFD, Direct Numerical Simulation, Spec-

tral Method, Statistics, Hot-wire, Constant Current Anemometer.
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Chapter 1

Introduction

Many phenomena commonly observed everyday are turbulent flows: the

smoke rising from a fire or the wake of a boat. Turbulence appears as a

chaotic process characterized by eddies of different size and intensity that

evolve and interact with each other. Nature gives us examples of the so-

called free turbulent flows, like wakes or jets, but many are the everyday

situations where turbulent flows interacts with surfaces, like pipelines, air

flowing over a car or a wing. The desire to gain knowledge of such complex

phenomenon is not only motivated by the desire of a deeper physical under-

standing of the problem; turbulence is present in many industrial field such

as ground transportation, energy production and climate prediction. Gain

a better understand on the phenomenon can lead to great improvements in

the efficiency of this industrial and environmental applications as well as the

development of better models to simulate and predict turbulent flows.

In order to shed light on one of the last unresolved problems of classical

physics, two main approaches are widely used to access turbulence informa-

tions: experiments or numerical simulations. Osborne Reynolds[14] was the

first to carry out a systematic study on turbulence, while Kim, Moin and

Moser in 1987 were the first in developing a direct numerical simulation of a

turbulent channel flow. Both experimental study and numerical simulations

have their advantage and disadvantage that need to be known in order to

choose the best option for the considered case. Numerical simulations have

1



2 1. INTRODUCTION

become an affordable method only in the last decades due to the increasing

in computer performances. Thanks to this, Direct Numerical Simulations

(DNS) can access Reynolds number of practical interest; in this approach

Navier-Stokes equations are fully resolved up to the smallest scales of space

and time, allowing the characterization of scales so far too small to be cap-

tured by experimental sensors.

The need for numerical simulations results as Moin suggested [10] can

be also related to some problems in experimental studies. In turbulence, as

the Reynolds number increase, the size of the smallest scales become smaller

and smaller thus when performing an experimental study we are not able to

capture this small features. Hot wire anemometry is one of the most used

sensor to access information of near wall structures. However it has a fixed

size and it is not able to fully capture them, this phenomenon is called spatial

averaging. Örlü [11] and Hutchins [5] pointed out these issues respectively in

spatial and temporal filtering during hot wire measurements. This problem

represents one of the open question in experimental studies, as well as the

interaction of the heat with the wall.

The aim of the present thesis is therefore the development of a new numer-

ical code to understand and study problems related to hot wire measurement.

Spectral method represents a high order numerical scheme that efficiently al-

low us to solve direct numerical simulations up to the smallest turbulence

scales. The use of such high level numerical codes brings limitation in terms

of computational cost, domain complexity and boundary condition limita-

tions. One of the most challenging process is represented by the introduction

of non linear and finite term, as an hot wire could be, in a code structured

for simple geometry, mainly duct, and periodic boundary conditions.

The present thesis is structured as follows: the second chapter defines

mathematical tools and theoretical concept needed to better understand wall

bounded flows in general and channel flow in particular since this is the case

we will deal with in the context of this thesis. Chapter 3 explains how

hot-wire anemometer works and which problems are faced in experiments.

Throughout the fourth chapter all the numerical schemes are exploited, giv-

ing an overview to the spectral element method and why it is useful in the
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context of the current work, moreover the set up of the simulation will be de-

fined. Chapter 5 regards the methodology and the validation process carried

out to confirm the goodness of the considered test case. Chapter 6 shows

the results obtained simulating the complete case. Finally in chapter 7 the

conclusion coupled with future possibilities are summarized.





Chapter 2

Theoretical background

In this chapter some basic concepts related to turbulence and fluid dy-

namics that will help the reader throughout the thesis will be given.

2.1 Turbulence

There are many phenomena commonly observed in everyday life that are

turbulent: one could be the smoke exiting from a chimney, the wake of a

boat or the motion of clouds on a windy day. We can clearly see, observing

for example a waterfall, that a turbulent flow is unsteady, irregular, and of

course, the movement of every eddy or droplet is unpredictable. An essential

feature of turbulent flows is that the velocity field varies significantly in both

space and time.

Considering some engineering applications, turbulent flows are quite com-

mon: flows around vehicles such as airplanes, submarines or automobiles are

generally turbulent. An important characteristic of turbulence is its ability

to transport and mix fluids more efficient than its laminar counterpart; this

”mixing” ability, if we consider the momentum of the flow will cause the rise

of shear stresses (i.e. the drag) much more when compared to a laminar flow.

All the features mentioned above are the main motivation for studying a

turbulent flow; remebering also that heat transfer in flows is of great practical

importance. [13]

5



6 2. THEORETICAL BACKGROUND

2.2 Governing equation

The set of equations that govern the fluid motions are the Navier-Stokes

equations. Before introducing them, the Continuum Hypothesis, should be

mentioned, where at sufficent small scales, a finite number of molecules could

be interpreted in a continuum view.

2.2.1 Continuity equation

The Mass-Conservation or Continuity equation is:

∂ρ

∂t
+ ρ∇ · U = 0. (2.1)

where t represents the time, ρ the density of the considered fluid and U is the

velocity vector; If we are dealing with incompressible flows, thus ρ = const.,

equation (2.1) reduces to
∂ui
∂xi

= 0. (2.2)

2.2.2 Momentum equation

The momentum equation, based on Newton’s second law, relates the fluid

particles acceleration with body and external forces experieced by the fluid:

F = m
dU

dt
. (2.3)

Where m represents the mass, and dU/dt is the acceleration. The right-hand

side of equation (2.3) can be manipulated considering a material volume V (t),

the Reynolds transport theorem and the Continuity equation:

D

Dt

∫
V (t)

ρUdV =

∫
V

D(ρU)

Dt
+ ρU∇ · (U)dV = [..] =

∫
V

ρ
DU

Dt
dV, (2.4)
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passing now on the left-hand side of relation (2.2), F can be divided in body

forces f and tangential forces t as follows:

F =

∫
V

ρfdV +

∫
S

tdS. (2.5)

After some mathematical manipulation we will end with momentum conser-

vation:

F =

∫
V

(ρf−∇p+ µ∇2U)dV. (2.6)

where p represents the pressure and µ is the dynamic viscosity. Plugging

equation (2.5) inside (2.2) we will obtain:

DU

Dt
= f− ∇p

ρ
+ ν∇2U. (2.7)

Equation (2.7) represents the momentum conservation, ν is the kinematic

viscosity. Moreover, for a better comprehension of the successive topics we

will introduce the non-dimensionalized incompressible Navier-Stokes equa-

tions in a rotating reference frame:

∂ui
∂t

=
∂p

∂xi
+ εijkuj(ωk + 2Ωk)−

∂

∂xi

(
1

2
uiuj

)
+

1

Re
∇2ui + Fi. (2.8)

Fi Represents a Forcing term; Moreover, For a numerical purpose, we can

rewrite momentum and continuity equation as a system of two second order

equations:
∂ψ

∂t
= hv +

1

Re
∇2ψ,

∇2v = ψ.
(2.9)

Also, taking the curl of the momentum equation (2.2), we will obtain a

formulation for the normal vorticity, which, showing the second component

reads:
∂ω

∂t
= hω +

1

Re
∇2ω, (2.10)

where hv and hw are the non-linear terms; ψ, v and w are the unknown of

the equations (2.9) and (2.10); since they have a similar form, they could be
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solved using the same numerical routine.

2.2.3 Energy equation

As for the momentum equation, the same manipulation can be performed

to obtain the energy equation; the variation of energy of any material volume

is equal to the work done by external forces and the heat injected into the

material volume; starting from:∫
V (t)

ρ
d

dt
(e+

U2

2
)dV =

∫
V (t)

ρf ·UdV +

∫
S(t)

(t ·U)dS −
∫
S(t)

q · ndS, (2.11)

where q represents the heat, e the internal energy and n is the unity vector

normal to the external surface S; considering again the same mathematical

manipulation used for the momentum consideration we will end up with:

ρ
d

dt
(e+

U2

2
) = ρf · U +∇ · (T ·V)−∇ · q. (2.12)

Eq. (2.12) represent the energy equation.

2.2.4 Scalar equation

In addition to the velocity U(x, t), we can consider a conserved passive

scalar which can be denoted as φ(x, t). If we consider a constant property

flow, the conservation equation for φ is:

Dφ

Dt
= Γ∇2φ, (2.13)

where Γ is the diffusivity. The scalar φ is conserved, because in equation (2.9)

there is no source or sink term; and it is also passive because by assumption

its value has no effect on material properties such as ρ, ν and the velocity

field. The scalar φ could represent different physical properties: it can be

a small excess of temperature; in this case Γ will be the thermal diffusivity

and ν/Γ would be the Prandtl number, Pr.
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2.3 Statistical tools

In order to understand and study such a chaotic process as turubulence,

a statistical approach is taken. In this section a brief description of the main

statistical tools used throughout the thesis will be provided.

2.3.1 The probability density function

Considering a turbulent flow, the velocity field U(x, t) is assumed to be

random; The Probability Density Function (PDF) of such a variable U is a

function that describe the relative likelihood for a random variable to assume

a certain value. If we know the PDF of a random variable, then all statis-

tical moments of any order are known. To better understand the meaning

of a PDF we need to introduce another concept which is the Cumulative

Distribution Function (CDF) which is defined by the following relation:

Fu(h) ≡ P (U(x, t) ≤ h). (2.14)

In other words,”Fu(h) is the probability that our random variable U(x, t)

assumes a value which is smaller ore equal to h. Every CDF posses the

following three properties: Fu(−∞) = 0 , Fu(+∞) = 1 and is a mono-

tone non-decreasing function. The probability density function f(U) is now

definded as:

f(U) ≡ dF (U)

dU
, (2.15)

and posses the following properties

f(U) ≥ 0, (2.16)

∫ +∞

−∞
f(U)dU = 1. (2.17)
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2.3.2 Statistical moments

The mean of U is the first order statistical moment and is defined as:

〈U〉 ≡
∫ +∞

−∞
Uf(U)dU. (2.18)

From the mean, the fluctuation is defined as follow:

u ≡ U − 〈U〉, (2.19)

due to the fact that the mean of a fluctuation is always null, higher moments

needs to be introduced. The second order moment is known as Variance:

〈u2〉 =

∫ +∞

−∞
u2f(u)dU, (2.20)

the square root of the variance is the Standard Deviation or root mean square

(rms); typically gives a measure to the fluctuations’ magnitude and is denoted

as:

σu =
√
〈u2〉. (2.21)

Likewise, other statistical moments can be introduced, i.e. in general the

n− th moment

〈un〉 =

∫ +∞

−∞
unf(u)dU, (2.22)

Of particular interest in turbulence studies, are the third and fourth order

moments, the Skewness and Flatness ; usually they are normalized with the

rms of the reference order, giving the skewness and flatness factors:

Su =
〈u3〉
σ3
u

, (2.23)

Fu =
〈u4〉
σ4
u

. (2.24)

Skewness and flatness factors are used to describe some properties of the

PDF: the skewness is a measure of the symmetry of the PDF, so is equal to
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zero when a PDF is symmetrical, the flatness on the other hand indicates

the relative peakedness of the distribution function. Considering a Gaussian

Distribution, Su = 0 and Fu = 3 .

2.3.3 Averages

In turbulence studies, velocity or other quantities are usually divided

into their mean value and fluctuating part, thorough the so-called Reynolds

Decomposition

Ui = 〈Ui〉+ ui, (2.25)

where Ui represents the ith component of the instantaneous velocity vector

U(x, t) , 〈Ui〉 is its mean part and ui its fluctuations. The rigorous way to

obtain the averaged value would be the ensemble average. Considering than

a Statistically stable flow, in other words, their statistical properties are not

time dependent, we will obtain:

〈Ui〉(x) = Ui(x) =

∫ T

0

Ui(x, t)dt. (2.26)

Where x represents the measuring point at time t. If we now consider simu-

lations of homogeneous turbulence, spatial average can be performed. taking

a cubic domain of side L, spatial average of U(x, t) is defined by:

〈Ui(t)〉L ≡
1

L3

∫ L
0

∫ L
0

∫ L
0

U(x, t)dx1dx2dx3. (2.27)

2.3.4 Correlation

Considering a random variable, U which is completely characterized by

its PDF, f(U); if we now take the same velocity, but as a function of time,

U(t), we will have a random process. Even if the PDF is known in a certain

place inside our flow field, this does not help us in understanding if there will

be some relation within two different points. For this purpose multi-time and

multi-space statistical tools are needed. The auto-covariance at the point x
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will be:

R(x, τ) ≡ 〈u(x, t)u(x, t+ τ), (2.28)

where τ is defined as lag time, if the considered process is statistically sta-

tionary, then the auto-covariance does not depend on t but only on τ . In

this way we could have an idea of the time needed for a flow to ”forget” its

past history at some precise point. Proceeding, we can define the correlation

function as follows:

ρ(x, τ) ≡ 〈u(x, t)u(x, t+ τ)〉
〈u(x, t)2〉

, (2.29)

and it has the following properties:

ρ(0) = 1, (2.30)

|ρ(τ)| ≤ 1. (2.31)

Usually, for processes arising in turbulent flows, we expect that the correla-

tion will diminish as the lag time τ increases. A time scale called integral

time scale can be defined:

Λt =

∫ ∞
0

ρ(τ)dτ. (2.32)

As we did for time, the same considerations can be performed for space,

where covariance becomes a multi-space and single time statistical property:

Ru = (x, r) ≡ 〈u(x, t)u(x + r, t). (2.33)

Than, the spatial correlation function will be:

ρu(x, r) ≡
〈u(x, t)u(x + r, t)〉
〈u(x, t)2〉

. (2.34)

In our case, r represents the distance vector between x and the other point

where we will collect fluctuations. Just as the temporal case, an integral
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length scale can be defined:

Λl ≡
∫ ∞
0

ρu(r)dr. (2.35)

2.3.5 Power Spectral Density

As we said, the complete description of a random process can be deduced

solely from its PDF. Moreover, correlations give us information about space

and time evolution of such processes, the spectra will give us information on

how the energy is distributed across different frequencies. In order to compute

the spectra, the Fourier Transform F can be used. The Fourier transform,

converts a mathematical function of time, f(t) into a new function F(ω),

where ω represents its argument and is the angular frequency; often, F(ω) is

known as frequency domain, whereas f(t) represent the time domain of the

same event:

F(ω) ≡ 1

2π

∫ +∞

−∞
e−iωtf(t)dt. (2.36)

In this way, for continuous signals, makes sense the introduction of the Power

Spectral Density (PSD), which describe how the power of a signal is dis-

tributed over different frequencies:

P = lim
T→∞

1

T

∫ +∞

0

〈u(t)2〉dt. (2.37)

However, for many signals this Fourier transform does not exist. In such

way, could be extremely useful the introduction of the Truncated Fourier

Transform FT (ω), where the considered signal is integrated over a finite

interval:

FT (ω) =
1√
T

∫ T

0

u(t)e−iωtdt. (2.38)

The power spectral density will then be:

Suu(ω) = lim
T→∞
〈FT (ω)2〉. (2.39)
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Of great importance, if we are considering a statistically steady process,

our PSD will consitutes a Fourier transform paired with the auto-covariance

function R(τ):

Suu =
1

2π

∫ +∞

−∞
e−iωτR(τ)dτ. (2.40)

where the inverse transform is represented by:

R(τ) =

∫ +∞

−∞
eiωτSuu(ω)dω, (2.41)

considering that τ = 0 we will end up with:

u2 =

∫ +∞

−∞
Suu(ω)dω. (2.42)

Suu(ω) can be interpreted as the turbulence intensity present in the band dω

centered around ω.

2.4 Channel flow and Turbulence scaling

Most common turbulent flows are bounded by one or more solid surfaces;

we can split bounded flows mainly into two diffent groups :

• Internal Flows

- Pipe flow

- Channel flow

• External Flows

- Flow around ships’ hulls and aircraft

- Atmospheric boundary layer

- flow of rivers

During the present work we have concentrated our efforts on studying differnt

aspects of a channel flow. While in free shear flows turbulence is mainly
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caused by differences in flow field, in our case, wall bounded one, turbulence

arises due to the presence of a wall, which due to the viscosity of the fluid

and to the no-slip condition causes this phenomena.

2.4.1 Description of the flow

Figure 2.1: Sketch of channel flow

As we can see in Fig. 2.1, we consider a flow through a duct of heigh

h = 2δ, length L/δ � 1 and aspect ratio b/δ � 1. The mean flow is

predominantly in the streamwise direction (x), with a variation of the velocity

mainly in wall-normal direction (y); the bottom and the top of the channel

are at y = −δ and y = δ, respectively, with the mean plane located at y = 0.

Moreover the extent of the channel in spanwise direction is large compared

to δ thus the flow is statistically independent of z. In order to characterize

the flow, we introduce two principal Reynolds numbers:

Reb =
2δU

ν
, (2.43)

Recl =
δUcl
ν
, (2.44)

where Reb and Recl are,respectively, the Reynolds number obtained from

bulk velocity and centreline velocity. Following the classical analysis, wall

bounded turbulent flows can be divided into two regions: an inner region
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close to the wall, and an outer region far away from it. Furthermore, inside

the inner region, flow viscosity plays a major role, while in the outer region

it does not. Inside the inner region, the variables that affect most the mean

velocity U are: the wall friction τw, the wall-normal distance y and the fluid

kinematic viscosity ν. Since skin friction for channel flow is defined as follows:

τ = µ
dU

dy
− ρuv, (2.45)

and the wall friction is:

τw ≡ τ(−δ), (2.46)

Moreover one could demonstrate that τ has a linear relation with respect to

τw as follows:

τ = τw

(
1− y

δ

)
, (2.47)

which represent a linear relationship, decreasing from wall where τ = τw

to the centerline where τ = 0. Therefore we can introduce an appropriate

velocity and length scale inside the near-wall region, starting from the friction

velocity

uτ =

√
τw
ρ
, (2.48)

and a viscous lengthscale

δν =
ν

uτ
. (2.49)

A characteristics Reynolds number based on viscous scales, known as friction

Reynolds number is defined by:

Reτ =
uτδ

ν
=

δ

δν
. (2.50)

Also, we can normalize the distance from the wall in viscous lengths or wall

units denoted as:

y+ =
y

δν
=
yuτ
ν
. (2.51)

There are different regions or layers, in the near-wall region, defined on the

basis of relations (2.44); The viscous wall region, y+ < 50 is where we have

a direct effect of molecular viscosity on the shear stress; the outer region,
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y+ > 50 the direct effect of viscosity is negligible, moreover, within the

wall region, inside the viscous sublayer y+ < 5, Reynolds shear stresses are

negligible if compared to viscosity. Furthermore, it is important to mention

that if we increase the Reynolds number, the dimension of the layer will

decrease. As we obtained y+ normalizing the distance from the wall, we can

perform the same manipulation for the velocity:

u+ =
〈U〉
uτ

, (2.52)

which, after some manipulation will look like:

u+ = f(y+). (2.53)

Which is known as Prandtl’s law of the wall (1926); for a more in-depth

background the reader is directed to Pope [13] .

Temperature is treated in a slightly different way, the reference temper-

ature is set to 1, thus in order to compute viscous temperature we need

to divide not dimensional temperature T ∗ with friction temperature Tτ as

follows:

T+ =
T ∗

Tτ
. (2.54)

Where:

Tτ =
q̇|w
uτ

=
1

ReτPr

dT

dy

∣∣∣∣
w

(2.55)

2.4.2 Energy cascade

As mentioned above, one of the main characteristics of a turbulent flow is

the presence of a wide range of different scales/eddies. One can observe the

macroscopic features associated to geometry of the flow, which in our case will

be represented by the half-height, δ, of the channel. The idea of an energy

cascade was first introduced by Richardson, stating that turbulent kinetic

energy is first introduced at large scales through a production mechanism,

then transferred via inviscid way to smaller scales until it dissipates into

heat at small scales through viscous forces. According to Richardson, eddies
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can be characterized by length l, velocity u(l) and time scale τ(l); at big

scales, eddies have dimensions l0 , comparable with channel dimensions; a

characteristics velocity u0 which is within the order of magnitude of the rms

of the turbulent intensity. After some years, Kolmogorov (1941) theorized

the smaller dissipative scales, known so far by his name; he formulated a

theory that could be summarized in three hypothesis:

1. At sufficiently high Reynolds number, small scales turbulence is statis-

tically isotropic.

2. At sufficiently high Reynolds number, statistics at small scales, l � l0

have universal form determined by ν and ε which is the mean dissipation

rate of energy.

This is mainly caused by the fact that at small scales dissipation of energy

transferred from bigger scales happens through viscous process; we can define

length, velocity and time scales of the dissipation range:

η ≡
(
ν3

ε

)1/4

, (2.56)

uη ≡ (εν)1/4, (2.57)

τη ≡
(ν
ε

)1/2
, (2.58)

where η is the Kolmogorov length scale. Also he derived the ratio between

large and dissipative eddies sizes:

l0
η
≈ Re3/4, (2.59)

stating that if we increase the Reynolds number, the range of scales between

l0 and η will increase as well. In other words, it expresses the concept of

scale separation in high Reynolds number flows. As the Reynolds number

increases the difference between η and l0 increases nearly linearly.
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3. At sufficiently high Reynolds number, statistics for scales l, with η �
l � l0 have a universal form determined solely by ε and independent

of ν.

Figure 2.2: Energy cascade scheme

The new range introduced in the third theory is the so-called inertial sub-

range it is only marginally affected by viscosity, depends almost exclusively

on energy transfer rate. In Fig. 2.2 we show a scheme of the energy cascade

process.





Chapter 3

Hot Wire Anemometry

Hot-wire anemometry (HWA) remains, by far, one of the most used tech-

niques for velocity measurements in the field of turbulent research. Its first

introduction by King (1914) gives outstanding performances in terms of spa-

tial and temporal resolutions at a fraction of the cost of optical measurements

techniques. In Fig. 3.1 a sketch of a single wire sensor is depicted. The main

disadvantage is represented by the intrusive nature of the measurements and

the fact that a simple single wire sensor is limited to a point measurement

of one velocity component. Hot wire measurements are based on a simple

Figure 3.1: Single wire sensor

principle: the heated wire will experience some cooling effect by the flow.

Mainly, this effect is caused by forced convection heat losses, which have

strong velocity dependency. In case this heat is measurable, e.g. through

a temperature dependent resistance of the sensor, than, using calibration

techniques, we can retrieve velocity from cooling rate of the wire. Nowadays

21
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hot-wire anemometry works in constant temperature mode (CTA), meaning

that the temperature of the wire is kept constant by continuously changing

the current intensity at the tip of the wire. For more in-sight we suggest the

reader to check Örlü [12] and Compte-Bellot [3].

3.1 Basic principles

As already mentioned, the principle of thermal anemometer is that the

amount of cooling experienced by a heated wire, whose electrical resistance

depends on temperature, can be related to the local flow velocity. Hence,

HWA is based on a thermoelectric measurements principle. Let us assume

that the hot wire is electrically heated through a current I, than, the heating

power from Joule heating will be:

P = IE = I2Rw =
E2

Rw

, (3.1)

where E denotes the voltage drop across the hot-wire sensor and Rw is the

resistance of the heated wire; since the cooling is mainly caused by forced

convection W :

W = hAw(Tw − T0) = hπDL(Tw − T0), (3.2)

where h is the convective heat transfer coefficient, D is the wire diameter, L

is own length, Tw and T0 indicates respectively the temperature of the wire

and its surrounding medium; usually for our applications this ∆T = Tw−T0
is around 200 ◦K. For a metal, Rw can be expressed as a function of Tw,

using a linear approximation around a certain reference temperature T0:

Rw = R0[1 + α0(Tw − T0)], (3.3)

where R0 and α0 are respectively the wire resistance at T0 and the resistivity

coefficient of the wire material. If we consider metals, this value is positive,

meaning that for an increase in resistance we will face a temperature increase.
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Considering the fluid at ambient temperature, it is possible to derive the

following expression:

Tw − Ta =
Rw −Ra

αaRa

. (3.4)

a refers to ambient condition; if we consider a cylinder-shaped body, the

forced convection coefficient h can be expressed as follows:

h =
Nukf
D

, (3.5)

where kf represents the thermal conductivity of the fluid, Nu is the Nusselt

number, that, neglecting free convection and for a low subsonic flow will be

function of:

Nu = f(Re, Pr). (3.6)

Introducing now aT which represents the over-heat ratio, one of the main

contribution during the operative life of an hot wire:

aT =
Tw − T0
T0

. (3.7)

Furthermore we can express the Nusselt number with a correlation function

in the following form:

Nu = A1 +B1Re
n, (3.8)

Nu = A2 +B2U
n, (3.9)

where A, B and n are characteristics constant parameter of the considered

correlation function. Combining the correlation function with W we will first

obtain:
I2wRw

Rw −Ra

= A+BUn. (3.10)

Considering the voltage drop E across the hot-wire, eq. (3.10) becomes:

E2
w

Rw

= (A+BUn)(Tw − Ta). (3.11)
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Term α0 was included in the constant A and B; if we consider the CTA

operation mode, (Tw − Ta) and Rw are constants and can be incorporated in

A and B:

E2 = A+BUn. (3.12)

which is the so-called King’s law, where A, B and n can be obtained from

calibration tecniques.

3.2 Spatial resolution

As mentioned above, despite the very good spatial resolution of hot wire

sensors, at high Reynolds number, turbulent structures have dimensions of

Kolmogorov scales η, however, HWA have finite length that is larger than

η and responds to an averaged value of the turbulent fluctuations u(t); the

measured velocity fluctuations will read:

um(t) =

(
1

L

∫ L/2

−L/2
u(s, t)ds

)1/n

. (3.13)

The subscript m refers to the measured quantity, L is the wire length and

n denotes the non-linear relation between heat exchange and velocity. The

main effect on the measured quantities results in an attenuation of the mea-

sured velocity variance. This effect is well known since the first era of the

hot-wire. Dryden [4] in 1937 studied the effects of a not complete homo-

geneity of velocity fluctuations across the wire on measurements of velocity

correlation, connected to scale of turbulence. However, for wall turbulence,

the isotropy hypothesis is not guaranteed near the wall, where high velocity

gradient are expected, thus, higher effect of spatial averaging are achieved

in the near wall region. The spatial resolution effect starts then to be in-

vestigated intensively since the eighties, using wire of different length, like

Johansson and Alfredsson did in 1983 [6]. After many years of research, a

rule of thumb has been introduced, L+ < 20 so that HWA will not be sig-

nificantly affected by spatial resolution problems, while length to diameter

ratio should be L/D > 200 to avoid end conduction effect. Several correction
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schemes are developed in order to compensate spatial averaging error, one

could check Segalini et al. [15].

Figure 3.2: Inner scaled streamwise variance for Reτ ≈ 3.2 · 104, Plot taken
from Fiorini PhD Thesis [1]

Figure 3.3: Pre-multiplied inner-normalized power spectral density at the
location y+ = y+ISP (inner spectral peak) for Reτ = 1.4 · 104 and different
sensor lengths, Plot taken from Fiorini PhD Thesis [1]

As Fig. 3.2 and 3.3 shows, we can see the effect of spatial averaging

caused by the characteristics dimension of the sensing element. Increasing

the dimension of the anemometer will result in a decrease of the fluctuations

captured by the HWA due to their characteristic dimension, which are smaller

than the sensor itself.
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3.3 Temperature correction

Wind tunnel experiments are performed at different ambient temperature,

also, the fan inside a facility could heat the flow increasing the temperature.

In order to obtain comparable results among experiments, velocity should be

corrected for different temperature values. Let us start from eq (3.11):

E2
w

Rw

= (A+BUn)(Tw − Ta) = f(U)(Tw − Ta), (3.14)

would become:

E2
w(Tref ) = f(U)(Tw − Tref ). (3.15)

Where the subscript ref stands for the laboratory reference temperature,

used during calibration procedure. Ew(Tref ) represents the voltage drop that

hot-wire measures when is surrounded by a fluid at Tref . We consider tem-

perature as a passive scalar, thus it not influences flow dynamics, velocity

dependence for both eq. (3.14) and (3.15) is supposed to be equal:

E2
w(Ta)

E2
w(Tref )

=
Tw − Ta
Tw − Tref

, (3.16)

E2
w(Tref ) = E2

w(Ta)

(
Tw − Ta
Tw − Tref

)−1
. (3.17)

Plugging the over heat ration aT from eq. (3.7) will allow us to re-shape eq.

(3.17) as follows:

E2
w(Tref ) = E2

w(Ta)

(
1− Ta − Tref

αT/αel

)−1
. (3.18)

Only two experimental parameter as αT and αel are presents, among them,

only the electrical resistivity is unknown, since the over heat ratio is fixed by

the user.
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3.4 CCA and CTA

Hot wire sensors mainly are divided in two operational modes: constant

current mode or constant temperature mode

Figure 3.4: Constant Current Anemometry scheme

Figure 3.5: Constant Temperature Anemometer scheme

In both cases, the wire is placed inside a Wheatstone bridge. As one

can see from the Figures above, hot wire is represented by one of the four



28 3. HOT WIRE ANEMOMETRY

resistance. If we consider CCA, as Fig 3.4, current across the wire is kept con-

stant, thus flow fluctuations cause temperature variation on the wire, hence

its resistance. These fluctuations causes variations on the voltage measured

at the tip of the bridge:

E = IR(T ). (3.19)

This bridge voltage is then related to one of the wire and to the velocity field.

Their introduction was mainly caused by a lack technology when stabilizing

the temperature on CTA. As one can see in Fig.3.5 constant temperature

anemometer are based on a control feedback, where temperature of the wire

is supposed to be kept constant. This system is inherently unstable, thus

feedback loop is needed to keep the temperature constant. Nowadays they

are widely used. In order to keep constant the resistance, heat produced by

the wire should change accordingly to flow fluctuations.



Chapter 4

Spectral Method

Inside this chapter we will give a brief description on the numerical scheme

and codes used to perform our simulations; The entire mathematical formu-

lation would result heavy, for simplicity we focused our attention to spatial

and temporal discretization.

4.1 Simson

A pseudo-Spectral Solver for IncoMpreSsible BOuNdary Layer Flows,

also known as SIMSON, is a code entirely developed at Kunglinga Tekniska

Högskolan (KTH), by Mattias Chevalier, Philipp Schlatter, Anders Lund-

hbladh and Dan S. Henningson. It implements spectral integration technique

to solve Navier-Stokes for incompressible channel or Boundary layer flows.

Originally written in Fortran 77/90, can be used as a solver for Direct Nu-

merical Simulation (DNS) or Large Eddy Simulation (LES). Different passive

scalars can be computed. The code can be run in serial and throughout par-

allelization, thanks to Message Passing Interface (MPI). In order to solve

the problem, wall parallel directions are discretized using Fourier expansion,

wall-normal directions using Chebyshev series and Time is discretized using

a third order Runge-Kutta scheme and Cranck-Nicolson method.[2]

29
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4.2 Temporal discretization

The time advancement is carried out by two different scheme, let us con-

sider the equation:
∂ψ

∂t
= G+ Lψ. (4.1)

where ψ could represent our vorticity terms or the passive scalar; G contains

the non-linear terms and L represents the linear diffusion. Operator L is

discretized using a second order accurate Crank-Nicolson and G is discretized

explicitly by a third order, three or four stage Runge-Kutta (RK3 or 4)

scheme. In such way, eq. (2.36) may be written as follows

ψn+1 = ψn + anG
n + bnG

n−1 + (an + bn)

(
Lψn+1 + Lψn

2

)
. (4.2)

where an and bn are chosen according to the explicit scheme used, G and L

are assumed to have an explicit time dependency. Since the scheme has three

or four stages, a full phisical time step is only achieved every three or four

iterations. We can apply the time advancement scheme to equation (2.9) and

(2.10) obtaining:(
1− an + bm

2Re
∇2

)
ψn+1 =

(
1 +

an + bn
2Re

∇2

)
ψn + anhv + bnh

n−1
v ,

∇2vn+1 = ψn+1.

(4.3)

and(
1− an + bn

2Re
∇2

)
ωn+1 =

(
1 +

an + bn
2Re

∇2

)
ωn + anhω + bnh

n−1
ω . (4.4)

4.3 Horizontal discretization -

Fourier expansion

The discretization in the horizontal directions, in our case represented by

x and z, uses a Fourier series expansion which assumes a periodic solution.

Streamwise and spanwise dependence of each variable could be written as
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follows:

u(x, z) =

Nx
2
−1∑

l=−(Nx
2
−1)

Nz
2
−1∑

m=−(Nz
2
−1)

û(αl, βm)ei(αlx+βmz). (4.5)

where αl = 2πl/xL, βm = 2πm/zL; Nx and Nz represents the number of

Fourier modes included in the respective directions; α and β represents the

wavenumber. We can now expand eq. (2.42) and (2.43) in Fourier series

obtaining three equations as follows:

(D2 − λ2)ψ̂n+1 =f̂v
n
,

(D2 − k2)v̂n+1 =ψ̂n+1,

(D2 − λ2)ω̂n+1 =f̂ω
n
.

(4.6)

where

λ2 = k2 +
2Re

an + bn
,

f̂v
n

= p̂v
n +

2Re

an + bn
ĥv

n
,

f̂ω
n

= p̂ω
n +

2Rean
an + bn

ĥω
n
.

(4.7)

p̂v
n, p̂ω

n are terms that collect the respective partial right hand side of the

euqations. Once found v̂ and ω̂ we can proceed and solve equation (1.2) and

the equation of normal vorticity, both transformed to Fourier space. we will

then find u and w.
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4.4 Normal discretization -

Chebyshev expansion

So far, we have derived second order constant coefficient ordinary differ-

ential equation of the form:

(D2 − κ)χ̂ = f̂ ,

χ̂(0) = γ−1,

χ̂(yL) = γ1.

(4.8)

once mapped the interval [0, yl] to [−1, 1], we can solve accurately the equa-

tion expanding in Chebyshev series: χ, it’s second derivative, f and the

boundary conditions:

χ̂(y) =

Ny∑
j=0

χ̃jTj(y), (4.9a)

D2χ̂(y) =

Ny∑
j=0

χ̃
(2)
j Tj(y), (4.9b)

f̂(y) =

Ny∑
j=0

f̃jTj(y), (4.9c)

χ̂(1) =

Ny∑
j=0

χ̃j = γ1, (4.9d)

χ̂(−1) =

Ny∑
j=0

(−1)jχ̃j = γ−1, (4.9e)

Dχ̂(1) =

Ny∑
j=0

j2χ̃j = δ1, (4.9f)

Dχ̂(−1) =

Ny∑
j=0

j2(−1)j+1χ̃j = δ−1. (4.9g)

Tj represents the Chebyshev polynomial of order j and Ny is the highest

order of polynomial included in the expansion. Combining expansions with
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eq.4.8 we will find the following relation between the coefficients:

χ̃
(2)
j − κχ̃j = f̃j, j = 0, ..., Ny. (4.10)

Finally we can find the relations of χ̂ with respect ro its derivative, which we

can use for integration or differentiation:

χ̃
(p)
j =

Ny∑
m=j+1

mχ̃(p−1)
m , j = 1, ..., Ny, (4.11a)

χ̃
(p−1)
j =

1

2j
(cj−1χ̃

(p)
j−1 − χ̃

(p)
j+1) j = 1, ..., Ny. (4.11b)

p indicates the order of the derivative and cj = 2 for j = 0 and cj = 0 for

j > 0. Looking at the first differentiation relation one can observe that an

error in the highest order coefficient of χ̃(p−1) influences all coefficients of its

derivatives χ̃p. This problem could be overcome by the usage of the Chebi-

shev integration method (CIM) even thogh a truncation error is introduced.

4.5 Domain, Initial and Boundary condition

In order to perform simulations on Simson we will need to set up different

informations regarding the computational domain as well as boundary and

initial conditions.

4.5.1 Computational domain

Since Simson is a pseudo spectral method, our domain will be defined by

number of spectral modes assigned to a physical domain defined in different

scripts. The parameters file par.f contains all information regarding a sim-

ulation and need to be adjusted before every compilation of the code. The

parameter nx, ny-1 and nz represents the spectral modes in each directions

of the domain. They must be even and factorable by at least 2. Also, inside

the aforementioned script one need to specify the number of cores needed for

the parallelization of the code. Remembering that cores and spectral modes
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need to be one multiple with each other, not to cause a segmentation error

when compiling. The physical domain, is then defined inside bls.i script, here

we need to specify the dimensions of our domain normalized with respect to

half channel height h.

4.5.2 Initial conditions

The information regarding initial conditions are handled by two script:

bls.i and fsc.i; in the first we define the type of flow we intend to run, any dis-

turbances as well as the Reynolds number, usually normalized with respect

the center line velocity. The second script contains information regarding

similarity solutions for boundary layers flows; here we will specify, conver-

gence criterion, wall normal resolution and scalar that need to be solved.

Of particular interest is the fact that here we will need to specify the Pr,

Prandtl number and general boundary condition, i.e. we need to define if

one will use an isothermal or an iso-flux boundary condition.

4.5.3 Boundary conditions

Once specified Domain and initial condition; boundary condition need to

be fixed both for the flow and scalar quantity we intend to solve. bla.i and

fsc.i will be helpful scripts in this phases of the set up. Inside the first script,

all basic informations related to the simulations are specified, starting from

times, file needed to be compiled and fields that will be saved throughout the

run. bla.i is sequential and will contains a voice named ibc that will contain

a number specifying the boundary condition for the flow. proceeding inside

the same script we will find tbc, there, one need to specify the boundary

condition set for the scalar which will be solved.



Chapter 5

Methodology and Validation

procedure

Inside this chapter we will show the reader the entire validation process

carried out during the thesis, starting from a channel flow, as reported in

Fig. 5.1 . After considering the Forcing terms as stand alone cases, we will

end with the implementation of the Constant current anemometer.

Figure 5.1: Sketch of the geometry of the channel flow domain; where x,y
and z are respectively the streamwise, wall-normal and spanwise direction
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5.1 Simulation characteristics

The Validation process started considering a turbulent channel flow of

the following specifications:

Axis Dimensions Modes grid spacing
x 4π 128 17.67 ∆x+

y 2 129 0.055 ∆y+

z 2π 128 8.84 ∆z+

Following the test case inside Simson, the Reynolds number, based on

half width of the channel and the centre line velocity is equal to 4200 which

corresponds to a Reτ approximately equal to 180. Also we could parallelize

our simulations up to 64 cores, half of the modes over z. Since the com-

putational burden of such simulation would result quite heavy, as a debug

test, we decrease the number of modes by a factor 2; in this way we are able

to obtain results qualitatively right, without waiting too much time. As we

mentioned in the spectral element method chapter, y direction is discretized

with Chebishev polynomial, thus corresponding to a spacing smaller near the

wall.
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5.2 Channel Flow Statistics

As every simulations ended, we export the statistics using a fortran script

inside simson, in order to plot every information using the preferred software,

in our case we take advantage of the reliability of Matlab.
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Figure 5.2: Velocity profile,u, scaled with global quantity
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Fig. 5.2 and 5.3 shows the stream wise component of the velocity, i.e.

u scaled with the local free stream and the displacement thickness for the

outer scale and wall units for the inner scale plot.
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Figure 5.4: Velocity rms, outer scaled, blu line represents the streamwise
component, orange line represents the span wise component and red line
represent the wall-normal component of the velocity

Fig. 5.4 and 5.5 depicts the rms profiles respectively outer scaled and

in wall units; the inner scaled plot is also compared with results obtained

by Kim & Moin in 1987 [9]. It’s clear from plot that results shows a good

behaviour even though the mesh is coarser with respect to the one used on

the paper. The peak of turbulence intensity, regarding the u component is

located at y+ = 15, thus confirming the goodness of the obtained results.
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Figure 5.6: Skewness, S(u)

We also reports in Fig. 5.6 and 5.7 respectively the skewness and flatness

for the streamwise component of the velocity, scaled with global quantity.
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Figure 5.7: Flatness, F (u)

5.3 Volume Forcing

The introduction of the forcing term was performed following the paper

proposed by Kasagi et al. on 1992 [7] which presented a DNS of passive

scalar field in a turbulent channel flow. While the Boundary conditions

for the velocity are defined simply by the no-slip condition and hence their

implementation is performed setting the velocity equal to zero at the wall as

a Dirichlet condition; regarding thermal boundary condition the modelling

becomes more complex. There are different possibilities when one has to deal

with heat balance and in this field, boundary conditions could become really

complex and hard to implement. Usually there are two main conditions:

Isothermal case, where a value of the temperature is fixed; and Iso-flux case,

where derivative of the temperature are fixed.

5.3.1 Implementation and Boundary condition

First it has to be decided if one wants to have constant temperature,

meaning Dirichlet, or constant heat flux, Neumann condition at the wall

boundary. In the latter case, constant heat flux through the wall is fixed,

meaning that one can add or subtract heat per unit wall accordingly to

the heat injected in the channel. In our case, as did by Kasagi in 1997,
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we implemented isothermal boundary conditions: as we can see in Fig. 5.8

Figure 5.8: Isotherm boundary condtion sketch

Temperature is fixed at both wall boundary, thus is constant over time and

channel length. The governing equation for the thermal field is given as

follows:
∂θ

∂t
= −ui

∂θ

∂xi
+

1

RePr
∇2θ + uθ (5.1)

where Pr is the Prandtl number and the last term of the right hand side rep-

resent the forcing term. As the fluctuations of the temperature are assumed

to be zero, the boundary condition, for isothermal condition are given:

θ(x, 0, z, t) = θ(x, 2, z, t) = 0 (5.2)

furthermore the initial thermal field will be:

θ(x, y, z, 0) = Pr · u(x, y, z, 0) (5.3)

5.3.2 Statistics

To be sure that the flow was fully developed, 5000 time steps were waited

before collecting statistics and than, 10000 more time steps were performed.

The results obtained are then compared with the one obtained by Kasagi et

al.(1992)[7] and the one by Kim and Moin (1989 and 1987)[9] [8].
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Figure 5.9: Temperature Profile, outer scaled

in Fig. 5.9 we show the temperature profile outer scaled, while on Fig.

5.10 we compared the temperature and velocity profile with ones obtained by

Kasagi and Kim & Moin. Both profiles, clearly match the results obtained

in both papers.

Figure 5.10: red solid line represent the temperature profile, blu solid line
represent the velocity profile, + are results from Kim & Moin, circle are
results from Kasagi inner scaled

In Fig. 5.11 and 5.12 we have plotted temperature root mean square,

outer scaled alone and inner scaled coupled with urms and the results obtained

by Kasagi. Also in rms plot the matching is clear, as expected.
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Figure 5.11: Temperature rms, outer scaled

Figure 5.12: Blue solid line represent the rms of the streamwise component
of the velocity, red solid line represents the temperature rms and blue circles
are results obtained by Kasagi

Now we will show to the reader plot regarding uθ and vθ both alone and

compared with Kasagi results.
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Figure 5.13: uθ, outer scaled

Figure 5.14: red solid line represents the u+θ+, inner scaled, dots are data
from Kasagi.
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Figure 5.15: −vθ, outer scaled

Figure 5.16: −vθ, inner scaled, dots are results from Kasagi

Finally, Skewness and Flatness for the temperature are reported here:
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Figure 5.17: S(θ), skewness for the temperature

Figure 5.18: F (θ), flatness for the temperature

As one can see from the plot showed in the previous pages, all quantities,

like scalar profile, rms, skewness and flatness presents a trend that follow

quite precisely the considered papers by Kasagi and by Kim & Moin. We

decide to implement the volume heating at a temperature near the ambient

one, as could be in experimental condition, where T tends to be imposed

as constant as possible and not too far from the ambient of the considered

facility.
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5.4 Line Source

Plugging the forcing term represented by the volume heating was the sec-

ond step on the validation process performed during the thesis The natural

proceeding, since an hot-wire is represented by a small line of heat immersed

on a flow field, would be the implementation of a line source of heat. On Sim-

son, we do not have the possibility to implement complex geometry as could

be a real hot-wire. This is due to the nature of the code. We implemented

a line source in the channel as a forcing term, represented by two Gaussian

distribution, one across the streamwise (x) and the other along wall-normal

(y):

f(x) = e(
x−xo
xs

)
2

, (5.4)

f(y) = e(
y−yo
ys

)
2

. (5.5)

where the subscript o and s are respectively the position in the channel and

the scale.
∂θ

∂t
= −ui

∂θ

∂xi
+

1

RePr
∇2θ + Lx−y (5.6)

Where Lx−y represents the combination of the Gaussian:

Lx−y = A · f(x) · f(y) = A · e(
x−xo
xs

)
2

· e(
y−yo
ys

)
2

(5.7)

A represents the overall amplitude of the two Gaussian distributions. In this

way we can play with the overall amplitude of the Gaussian, changing A

magnitude and with x and y scales, changing the magnitude of xs and ys:

In Fig. 5.19 is shown how the line is placed inside the channel; the two

combined Gaussian distribution allow us to place in a precise position over

x and y our source of heat, while it cross the channel over the span-wise

direction.
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Figure 5.19: Line Source implementation in a Contour plot, xz plane on left,
xy plane on right; contour level from 0 (blue) to 1 (yellow)

5.4.1 Statistics

In order to verify the presence of the line we run different simulations

at various heat amplitude; Checking each time temperature and velocity

field. Here we will show temperature profile at line source position and rms

distribution.

Figure 5.20: Temperature Profile at line source position
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Figure 5.21: Temperature root mean square at line source position

as one can see both on Fig. 5.20 and 5.21 the presence of the line cause

a non-symmetric behaviour if compared to the previous cases.

Figure 5.22: Iso-contours of the passive scalar values in the xy plane, Contour
levels from 0(blue) to 2.5 (yellow)

In Fig. 5.22 we plotted a plane x, y of the channel to let the reader

clearly see the presence of the line. Adding the line source inside the code

as a combined exponential over x and y allow us to effectively validate the

presence of a heat source, as one can see in Fig. 5.20 the profile present a non

symmetric behaviour since the line is the unique source of heat inside our

channel. Moreover, the rms profile, plotted in Fig.5.21 confirm this fact. At
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the end, to confirm that the channel was effectively heating up, even though

the scalar intensity was not that high we performed a contour plot of x− y
”slice” of our test case. Clearly we can see the position of the line at x = 2π

and y = −0.9.

5.5 Constant Current Anemometer

The last step of the validation process was the combination of the two

forcing term: the volume heating and the line source. In this way we are

able to mimic the behaviour of a Constant Current anemometer.

5.5.1 Definition of the problem

Constant Current anemometer, as depicted in Fig. 3.4 are designed so

that the current across the wire kept constant. A change in temperature and

resistance occur, the resultance change in voltage is the calibrated against

the velocity. Following this idea, we implement both Volume heating and

line source of heat at the same time.

∂θ

∂t
= −ui

∂θ

∂xi
+

1

RePr
∇2θ + uθ + Lx−y (5.8)

Where ui Since the turbulence intensity, as expected found is maximum value

at y+ = 15 we are interested in placing there our line source in order to see

how it will affect the flow field.

Forcing Details

Line source
Amplitude 1
Position x = 2π , y = −0.9
x,y scales x = 1 , y = 1

Volume heating Amplitude 1

as we can see, simulation details about the forcing terms are reported in

the table above, we started from 64 spectral modes to access qualitatively

the goodness of the results before moving to higher spectral modes, which

will negatively affect to the computational burden.
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Figure 5.23: sketch of the channel with line source and volume heating im-
plemented

We checked the full developed flow condition after 2500 ν/u2τ , as we can

see from Fig.5.24 we plotted statistics collected until the 2600 ν/u2τ compared

to few time-steps statistics collected after the considered simulation time. As

one can see from the figure, we used rms quantity of the velocity to validate

the fully developed condition.

Figure 5.24: Velocity rms, outer scaled, blu line represents the streamwise
component, orange line represents the span wise component and red line
represent the wall-normal component of the velocity, dots are full developed
condition check

Once checked that our flow was statistically stable we continue the sim-

ulation for about 15000 time-steps before ending the simulation.
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5.5.2 Preliminary results

Here we will show the results obtained following the presented character-

istics, starting from temperature profile, rms and other quantities.

Figure 5.25: Temperature Profile scaled with global quantity, blue solid line
represent θ profile at x = 1,red solid line represent θ profile at x = 6, line
source position and yellow solid line represent θ profile at x = 12

As we can see from Fig. 5.25 the presence of the line source influences all

the channel, thus our case is not representing what usually happens when an

hot-wire is placed inside a duct to measure velocity fluctuations. Moreover,

rms profiles confirm that our assumption were wrong.
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Figure 5.26: Temperature rms scaled with global quantity, blue solid line
represent θrms profile at x = 1,red solid line represent θrms profile at x = 6,
line source position and yellow solid line represent θrms profile at x = 12

It is clear that the influence of the heat source, placed at half of the

channel, is too high, then we also checked the velocity field saved throughout

the simulation using visualization software, as one can see in Fig. 5.27:
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Figure 5.27: snapshots of the temperature behaviour inside the channel,
going from t = 500 on top, to t = 10000 on bottom

Analysing these 4 picture has pointed out that our line source was too

large, also the channel dimension are not enough. As one can see from the

picture, we are kind of simulating many hot wire on their own wake, this

phenomenon is caused by the periodic boundary condition. The flow do not

have time to normalize its behaviour after the line source, thus, it re-enter

the channel and pass by the line again.
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5.5.3 Influence of the channel length

The results obtained from the previous simulation pointed out that chan-

nel dimension and line source influences were too large. Following this way

of thinking we enlarge our domain and re-shaped the forcing term related

to the line source. We decide to enlarge the channel in streamwise direction

by a factor of 4, thus reaching x = 16π keeping spanwise and wall normal

dimension as the previous case. Furthermore we changed slightly the values

regarding the line source forcing term:

Forcing Details

Line source
Amplitude 100
Position x = 8π , y = −0.9
x,y scales x = 0.1 , y = 0.1

In this way we are able to simulate the channel flow with volume heating

and line source as forcing term. Also, enlarging the streamwise direction

allow the temperature to normalize again after the line source, so that, when

passing from the outlet to the inlet do not cause the effect of having many

hot-wire one in the wake of the other.





Chapter 6

Results

Inside this chapter we will report the results obtained from the simulations

carried out during the thesis work. Starting from statistics related to velocity

we will pass to temperature behaviour and influences caused by the line

source presence.

6.1 Simulation details

Once overcome validations procedures we set up the simulation combining

all forcing terms considered. The entire validation procedure showed all

problems faced during the development of the numerical model. Here we

will report information regarding the last simulation performed and used to

extract statistics. As we saw that the channel length was not enough to

see the ”natural behaviour” of an hot-wire sensor, thus we moved to 16π.

Moreover, we decided to increase the amplitude of the forcing terms related

to x and y dimension of the line; in this way we are able to ”reduce” the

wire dimensions, getting closer to a real hot-wire. Reducing the dimensions

of the line, caused at a first glance a temporary disappearing of the line, so

we decided to compensate these effects increasing the overall amplitude of

the forcing term related to the line.
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Axis Dimensions Modes
x 16π 128
y 2 129
z 2π 128

Here we reported the details about channel dimensions and modes used

for each of them. Below we show details about the forcing terms used and

their relative amplitude.

Forcing Details

Line source
Amplitude 100
Position x = 8π, y = −0.9
x,y scales x = 0.1, y = 0.1

Volume heating Amplitude 0.1

We launched the simulation on our cluster, named ”Kebnekaise”, impos-

ing a total simulation time equal to 15000; while we waited 5000 simulation

times before collecting the statistics, time that we consider needed to the

flow to become fully developed.

6.2 Turbulent statistics

We will report here statistics related to turbulent velocity field, starting

from velocity profile scaled both with global and wall units:

Figure 6.1: Velocity profile, scaled with global quantity
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Figure 6.2: Velocity profile, inner scaled

Thus confirming the goodness of the profile if we consider the validation

cases. It is clear from the rms plot the peak of the turbulence intensity

located at y+ = 15.

Figure 6.3: Velocity rms, outer scaled, blu line represents the streamwise
component, orange line represents the span wise component and red line
represent the wall-normal component of the velocity
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Figure 6.4: Velocity rms, inner scaled, blu line represents the streamwise
component, orange line represents the span wise component and red line
represent the wall-normal component of the velocity

As done in the previous chapter, we reported here the root mean square

behaviour both scaled with global quantity, so half channel height and centre

line velocity or scaling wall distance in wall units. Moreover to fully confirm

the results obtained so far we compared the skewness and flatness behaviour

with the one obtained by Kim & Moin [9]:
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Figure 6.5: Skewness, outer scaled, in blue the stream wise component u, in
red wall normal v, in orange the spanwise w, in purple the pressure p and
black circles are results obtained by Kim & Moin.

in order to not confuse too much the reader we decide to show only

thesSkewness for stream wise component of the velocity, the same has been

performed for the flatness plot Results from skewness confirm the behaviour

of simulation performed by Kim & Moin [9] even though the w component

of the velocity shows some variations, their are confined to small values if

compared to stream wise and wall normal component. Also, the pressure

shows the correct profile.
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Figure 6.6: Skewness for the stream wise component of the velocity u, inner
scaled

Figure 6.7: Skewness for wall normal component of the velocity v inner scaled

Figure 6.8: Skewness for the span wise component of the velocity w inner
scaled
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We will show now the flatness, also here, first of all scaled with global

quantity, than in wall units. to better understand the plot, also here we

divided the inners scaled plot, showing one component at a time to let the

reader clearly see the behaviour of the plotted quantity.

Figure 6.9: Flatness, outer scaled, in blue the stream wise component u, in
red wall normal v, in orange the spanwise w , in purple the pressure p and
black circles are results obtained by Kim & Moin.

As we did for the skewness, Kim & Moin [9] results confirm the trend of

the flatness, both for inner and outer scaled quantity.

Figure 6.10: Skewness for the stream wise component of the velocity u, inner
scaled
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Figure 6.11: Skewness for wall normal component of the velocity v inner
scaled

Figure 6.12: Skewness for the span wise component of the velocity w inner
scaled
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6.3 Temperature statistics

Throughout this section we will show the results regarding temperature

statistics; since the isotropy nature of the flow is lost due to the presence

of the line source of heat, it is not possible to average the quantity over the

stream wise component. The position of the channel will exploit different

behaviour accordingly to the presence or not of the line. Moreover, showing

quantities before or after the line will also depict different situations.

6.3.1 Statistics at line source position

Figure 6.13: θ profile at line source position (x = 8π), dashed line represents
the line source location over y

From fig. 6.13 we can clearly see the presence of the line source, placed

at y+ ≈ 15. The resultant profile looks non symmetric, presenting a peak at

the line position. Of interest could be behaviour of the profile throughout

the entire wall normal distance.
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Figure 6.14: θ rms at line source position (x = 8π) and dashed line represents
the line source location over y

Also here, in fig. 6.14 the rms at line source position results in a lower

value, in coherence with the physical behaviour. Since the line inject heat in

the system continuously, there the fluctuations of the temperature will result

lower if compared to the opposite side of the channel.

Figure 6.15: uθ at line source position (x = 8π)

As one can see from the plot reported below, the symmetry is lost in

almost every case, only uθ seems to keep its symmetric behaviour due to the

influence of the velocity field. while other quantity are mainly influenced by

the presence of the line.
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Figure 6.16: vθ at line source position (x = 8π)

Figure 6.17: S(θ) at line source position (x = 8π)

Figure 6.18: F (θ) at line source position (x = 8π)
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6.3.2 Statistics at different channel position

Here we will show statistics at different channel position, pointing our

attention to the inlet and the outlet of the channel. As done in the previous

section, we will report the plot outer scaled.

Figure 6.19: θ profile at x = 6π, x = 8π (line source position), x = 16π and
dashed line represents the line source location over y

Plotting different channel position allow us to understand that the line

source influence before, ad after its presence becomes negligible, as should

happen in real life, considering that the dimension of the hot wire sensor are

negligible if compared to the duct, or the pipe where we will perform our

experiments.
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Figure 6.20: θrms profile at x = 6π, x = 8π (line source position), x = 16π
and dashed line represents the y location of the line source

Figure 6.21: S(θ) profile at x = 6π, x = 8π (line source position), x = 16π
and dashed line represents the y location of the line source

Also skewness and flatness confirm that the influences of the line source

disappear at the outlet of the channel.
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Figure 6.22: F (θ) profile at x = 6π, x = 8π (line source position), x = 16π
and dashed line represents the y location of the line source

6.3.3 Statistics after the line source position

Here we will show to the reader the statistics obtained after the line source

position, we choose to consider only two positions: x = 9.5π and x = 11π

showing the wake of the heat released by the wire inside the channel.

Figure 6.23: θ profile at x = 8π (line source position), x = 9.5π, x = 11π
and dashed line represents the y location of the line source
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Figure 6.24: θrms profile at x = 8π (line source position), x = 9.5π , x = 11π
and dashed line represents the y location of the line source

The plot depicted above shows the temperature falling back to its original

position, however from the results we can clearly see that temperature need

one third of the overall channel dimension to recover its original shape.

Figure 6.25: S(θ) profile at x = 8π (line source position), x = 9.5π, x = 11π
and dashed line represents the y location of the line source

Quantities relates to the passive scalar solved in our simulations shows

its behaviour along the entire channel. while its clear that the line did not

influence the quantity before the line position, temperature evolution after

the line exploit interesting behaviour like lower value of the rms. Of interest
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Figure 6.26: F (θ) profile at x = 8π (line source position), x = 9.5π, x = 11π
and dashed line represents the y location of the line source

could be the fact that all quantities plotted shows no disturbances on the

opposite side of the channel, thus falling back to the case in which the wire

is not present.



Chapter 7

Conclusion

The aim of the thesis was the development of a new numerical code to

study and understand problems related to hot wire anemometer measure-

ments. The obstacles faced by experimentalists are related to the probe

interaction with the wall and the spatial resolution affecting measurements

as the Reynolds number increases to the regimes of practical interest. To do

so, Direct Numerical Simulation were solved using a spectral element code.

The advantage of such numerical scheme is the highly accurate solutions

obtained in term of precision and resolution.

Starting from results obtained by Kasagi, [7], and the one by Kim &

Moin [9], we start our validation process from a Channel flow at Reτ = 180

introducing passive scalar with a volume forcing term. Our addition was

implementing a line source of heat represented by two exponential, mimicking

the presence of a heat source in a spectral domain. Finally, combining both

forcing terms we effectively introduced the ”hot-wire” inside our domain

keeping the Reτ fixed throughout the entire validation process.

The most challenging part of the work was the combination of the two

forcing terms, where the discontinuity represented by the line source and the

volume heating hardly coexists. The line source of heat represents a strong

discontinuity inside our domain while to the volume heating tends to fix the

heat inside the channel at a constant value.

Performing such simulation, even if the computational burden was quite
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high, allowed us to obtain a new data-set of information that could help us

understanding and hopefully solve some open questions related to hot-wire

anemometer interaction with the wall or filtering issues.

7.1 Future works

The present thesis opens a new path where direct numerical simulation

with passive scalar could help us in understanding the interaction between

turbulent flows and hot wire anemometer. The natural next step of this

work would be the spectral analysis as well as the filtering both in space and

time. Thanks to this new data-set one could compare data obtained from

simulations with experimental studies carried out in other facilities.

Moreover the model could be improved by implementing not only the

constant current anemometer as we did but also the constant temperature

anemometer, one of the most used sensor in the last decades, allowing the

comparison with a much broader set of experimental studies.

Finally, thanks to higher computing power achieved during these last

years, it is possible to achieve higher and higher Reynolds number, obtaining

resolution level that experimental studies can hardly obtain.
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List of Symbols

u Fluctuation of the velocity

α0 Resistivity coefficient of the reference material

δ Channel heigth

δν Viscous legth scale

ε Mean dissipation rate of energy

η Kolmogorov scale

Γ Diffusivity

Λl Integral legth scale

Λt Integral time scale

〈U〉 Mean of the velocity

µ Kinematic viscosity

ν Dynamic viscosity

ω Span wise component of the velocty

Ωk Angular velocity

φ Passive scalar

π Pi
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ρ Air density

σu Standard deviation

τη Kolmogorov time scale

τw Wall friction

f External forces

t Body forces

θ Passive scalar

Aω Convective heat transfer coefficient

aT Over heat ratio

b Channel depth

D Wire diameter

E Voltage drop

e Internal energy

Fi i-th component of the flatness

h Forced convection coefficient

hω Angular velocity term

hv Body forces term

I Current intensity

L Channel length

L+ Filtering legth scale

Lω Wire length

m Mass
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Ni i-th component of the spectral modes

Nu Nusselt number

P Power

p Pressure

Pe Peclet number

Pr Prandtl number

q Heat

R0 Resistance of the reference material

Rω Resistance of the hot wire

Re Reynolds number

Reτ Friction Reynolds number

Reb Reynolds number normalized with bulk velocity

Recl Reynolds number normalized with center line velocity

rms Root Mean Square

S Material Surface

Si i-th component of the skewness

T Temperature

t Time

T ∗ Non dimensional temperature

T+ Viscous temperature

T0 Ambient temperature

Tω Temperature of the wire
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Tτ Friction temperature

U Velocity vector

u+ Velocity in wall units

uη Kolmogorov length scale

uτ Friction velocity

ui i-th component of the velocity

V Material Volume

v Wall normal component of the velocity

y+ Channel distance in wall units

A King’s law coefficient

B King’s law coefficient

CDF Cumulative Distribution Function

n King’s law coefficient

PDF Probability Density Function
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