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Abstract

Il problema dello SLAM (Simultaneous Localization And Mapping) consiste
nel mappare un ambiente sconosciuto per mezzo di un dispositivo che si
muove al suo interno, mentre si effettua la localizzazione di quest’ultimo.

All’interno di questa tesi viene analizzato il problema dello SLAM e le dif-
ferenze che lo contraddistinguono dai problemi di mapping e di localizzazione
trattati separatamente.

In seguito, si effettua una analisi dei principali algoritmi impiegati al
giorno d’oggi per la sua risoluzione, ovvero i filtri estesi di Kalman e i particle
filter.

Si analizzano poi le diverse tecnologie implementative esistenti, tra le
quali figurano sistemi SONAR, sistemi LASER, sistemi di visione e sistemi
RADAR; questi ultimi, allo stato dell’arte, impiegano onde millimetriche
(mmW) e a banda larga (UWB), ma anche tecnologie radio già affermate fra
le quali il Wi-Fi.

Infine, vengono effettuate delle simulazioni di tecnologie basate su sistema
di visione e su sistema LASER, con l’ausilio di due pacchetti open source di
MATLAB. Successivamente, il pacchetto progettato per sistemi LASER è
stato modificato al fine di simulare una tecnologia SLAM basata su segnali
Wi-Fi.

L’utilizzo di tecnologie a basso costo e ampiamente diffuse come il Wi-
Fi apre alla possibilità, in un prossimo futuro, di effettuare localizzazione
indoor a basso costo, sfruttando l’infrastruttura esistente, mediante un sem-
plice smartphone. Più in prospettiva, l’avvento della tecnologia ad onde
millimetriche (5G) consentirà di raggiungere prestazioni maggiori.
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Chapter 1

Introduction

The Simultaneous Localization And Mapping (SLAM) problem consists in
the simultaneous reconstruction of an unknown environment and the local-
ization of a device moving within it. This problem is more general and
harder than the single mapping or localization problems, that can be seen as
particular cases of SLAM.

In the mapping problem, the device is aware of his absolute location,
so it can use this information along with the data coming from the sensors
observing or interacting with the environment to infer its topological map.

In the localization problem, a map or some reference devices are made
available in order to obtain the position of the device observing or interacting
with them.

The scenarios where there is not any a-priori knowledge related to location
and map, are those in which the SLAM becomes necessary.

Many applications require the reconstruction of a consistent map; in gen-
eral, in many applications, a robot may have the goal of exploring an en-
vironment and report it to a human operator. For instance, if we consider
outdoor autonomous navigation of robots, if the robot has access to GPS, the
SLAM is not required; conversely, in indoor environments, the use of GPS
for localization scope is ruled out.

The solutions to this problem are employed in several applications includ-
ing:

� Self-driving cars and drive assistance systems

� Unmanned Aerial Vehicles (drones)

� Autonomous Underwater Vehicles

� Planetary rovers

3



� Domestic robots

� Security systems

� Autonomous navigation of robots

� Augmented reality

This thesis aims at understanding the general SLAM problem and his
main techniques of resolution, investigating the actual state of the art and
simulating through MATLAB different technologies.

It is suddivided in the following chapters:

� Mathematical tools for the study of dynamic physical systems : the
mathematical tools useful for the comprehension and the study of the
SLAM topics are here introduced and explained; specifically, the math-
ematical representation of a physical dynamic system and the methods
for the implementation of Bayesian filters are put in evidence.

� Localization and mapping in dynamic physical systems : this chapter
focuses on the general definition of localization, mapping and SLAM
problems and the differences between them.

� State of the art related to the SLAM problem: here a general view on
the state of the art is given; the anatomy of a SLAM implementation
is viewed and the main technologies exploited are treated.

� MATLAB implementation of different SLAM technologies : The exper-
imental simulations done on different technologies are here analyzed;
Two different SLAM toolbox implemented in MATLAB are exploited;
the first is based on vision and the second on the LASER.
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Chapter 2

Mathematical tools for the
study of dynamic physical
systems

In this chapter, the mathematical tools useful for the comprehension and the
study of the topics that are covered in this thesis are put on focus.

In particular, the mathematical tools that are used nowadays to solve
the SLAM problem are going to be analyzed: in the next subchapters, the
following topics are taken into consideration:

� The numerical representation of a physical dynamic system

� The Bayesian filter, used to estimate the state of a system

� A few existing techniques for the implementation of a Bayesian filter,
including the Kalman filter, the extended Kalman filter and the particle
filter

2.1 Representation of a physical dynamic sys-

tem

In the study of a physical dynamic system, the estimation of the state is
needed, starting from the noisy measurements performed on the system, in
order to let the controller act consequently through a control signal on the
actuator; this process is described in figure 2.1. The state of the system
evolves in time and is conditioned by uncertainty, just like the measurements
performed on it; generally, the estimation process of the state may generate
optimal solutions with MMSE techniques (Minimum Mean Square Error),
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Figure 2.1: Representation of the control on a dynamic physical system[1]

but at the cost of large computational expenses, so that recursive approaches
are preferred, since they are characterized by a lower complexity and the
possibility to perform the estimation in real-time.

Physical systems are modelled by differential equations and a state space;
since computers only process discrete-time data, this model is taken over by
his numerical translation based on difference equations and discrete state
space, where the involved variables are described as follows

xn = f(xn−1,un) (2.1)

yn = h(xn,un) (2.2)

where:

� xn represents the state vector at the instant n

� yn represents the measurements vector at the instant n

� un represents the action of the controller at the instant n

What has been described is valid only for deterministic systems, but if
uncertainties are characterized by random processes, it becomes necessary to
switch from the study of deterministic functions to the study of conditioned
transition probability density functions (PDF) that are described as follows

p(xn|x0:n−1,u1:n) (2.3)

p(yn|x0:n−1,y1:n−1,u1:n−1) (2.4)

where:

� x0:n−1 represents the whole set of states until the instant n− 1
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� u1:n represents the whole set of control actions until the instant n

� y1:n−1 represents the whole set of measurements until the instant n− 1

An instance of a linear model with Additive Gaussian Noise is the follow-
ing

xn = Axn−1 + Bun + wn (2.5)

The purpose is to obtain the best estimate (e.g., in the MMSE sense) of
the succession of states of the system until an instant n (namely statistical
inversion or optimal filtering):

x0:n = {x0,x1, ...,xn} (2.6)

starting from a succession of n measurements until the instant n

y0:n = {y0,y1, ...,yn} (2.7)

Solving this problem means calculating the a-posteriori joint probability
distribution of the whole sequence of states n given all the noisy measure-
ments and the control actions until the instant n:

p(x0:n|y1:n,u1:n) =
p(y1:n,u1:n|x0:n)p(x0:n)

p(y1:n,u1:n)
(2.8)

where:

� p(x0:n) is the a-priori PDF of the succession of states

� p(y1:n|u1:n,x0:n) is the likelihood function of the noisy measurements
and the control actions

� p(y1:n,u1:n) is a normalization constant

Regarding the problem treated in this thesis, starting from the noisy observa-
tions y0:n and the control actions u1:n, what is wanted is not the resolution of
the whole succession of states x0:n, which can be done only after all measure-
ments have been collected, then not in real time; it is wanted the resolution of
the single current state xn for each instant n, using the marginal a-posteriori
PDF, called belief

Bel(xn) = p(xn|y1:n,u1:n) (2.9)

This can be realized using Bayesian filters.
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2.2 Bayesian filters

The main drawback in applying the 2.9 is that it has to be recomputed
whenever a new measurement is taken, making the computational complexity
intractable as n increases. Thanks to the Bayesian filters, the complexity can
be drastically reduced exploiting the following Markov hypothesis [8]:

� The state at the step n depends only on the immediately preceding
state xn−1 and the applied control un, while it is independent of the
observations

p(xn|x0:n−1,y1:n−1,u1:n−1) = p(xn|xn−1,un) (2.10)

This PDF is called motion or mobility model [5]

� The current noisy observation yn is independent of the previous states,
input controls and observations, but depends only on the current state
xn

p(yn|x0:n−1,y1:n−1,u1:n−1) = p(yn|xn) (2.11)

This PDF is called perception, measurement or observation model [5]

These hypothesis allow to get the Markovian model of the state space,
which is characterized from the following properties:

� At first, the a-priori PDF p(x0) is used to define the initial uncertainty
of the system state

� The observation model of the system p(yn|xn), shows the dependence
of the noisy measurements at a certain instant from the state at the
same instant

� The system state dynamics is described by the mobility model p(xn|xn−1,un)

Figure 2.2: Bayesian filter
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The Bayesian filter is a recursive estimator that at every step exploits the
mobility model p(xn|xn−1,un), the control action un and the new measure-
ment yn to get the belief of the current state starting from the one of the
previous instant p(xn−1|y1:n−1) (figure 2.2)

The estimation of the state occurs according to the following iterative
procedure, also illustrated in figure 2.3:

� The a-priori PDF of the state p(x0) poses as the initial belief of the
state;

Figure 2.3: Flux diagram of a Bayesian filter [1]

� The prediction step (figure 2.4) is performed (obtained exploiting the
2.10) [8]

p(xn|y1:n−1,u1:n) =

∫
p(xn|xn−1,un)p(xn−1|y1:n−1,u1:n−1) dxn−1

(2.12)

� The update step (Figure 2.5) is realized (obtained exploiting the 2.11)
[8] [1]

p(xn|y1:n,u1:n) =
p(yn|xn)p(xn|y1:n−1,u1:n)∫
p(yn|xn)p(xn|y1:n−1,u1:n) dxn

(2.13)

� Once obtained the belief of the state n, it is possible to use it to estimate
the state using a chosen criterion:

9



Figure 2.4: Prediction step [1]

Figure 2.5: Update step [1]
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– MMSE:

x̂MMSE
n =

∫
xnp(xn|y1:n,u1:n)dxn (2.14)

– MAP
x̂MAP
n = argmaxxnp(xn|y1:n,u1:n) (2.15)

–

It is well known that when the posterior distributions are Gaussian, the
MAP and MMSE estimates coincide [8]. This method makes it unnec-
essary to recalculate equation 2.8 at each time instant; this procedure
would involve the whole sequence of states and measurements in the
computation. Instead, the Bayesian filters use at every step the current
data to recursively update the belief.

2.3 Kalman filters

The Kalman filter (KF) is a closed form solution that is used to implement
a Bayesian filter; it applies when the observation and mobility models are
linear and the noise is Gaussian according to the following equations:

xn = An−1xn−1 + Bnun + wn (2.16)

yn = Hnxn + νn (2.17)

with
wn = N (0,Qn) process noise
νn = N (0,Rn) measurement noise

Hence the following mobility model and marginal a-posteriori PDF is
obtained

p(xn|xn−1) = N (xn; An−1xn−1 + Bnun,Qn−1) (2.18)

p(yn|xn) = N (yn; Hnxn,Rn) (2.19)

It can be proven that the prediction step and the update step (2.12,2.13)
can be solved in closed form and the resulting distributions are Gaussian:

p(xn|y1:n−1,u1:n) =

∫
p(xn|xn−1,un)p(xn−1|y1:n−1,u1:n−1) dxn−1 = N (xn; m−

n ,P
−
n )

(2.20)

p(xn|y1:n,u1:n) =
p(yn|xn)p(xn|y1:n−1,u1:n)∫
p(yn|xn)p(xn|y1:n−1,u1:n) dxn

= N (xn; mn,Pn) (2.21)
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Made these premises, the Kalman filter is an algorithm that calculates in a
recursive way the parameters m−

n ,mn,P
−
n ,Pn. Practically, the calculation

of the PDF is not made in every point, but only the mean values and the
covariance matrices are calculated, from which it is possible to exhaustively
describe a Gaussian PDF.

The Kalman Filter is realized by the following update equations related
to the steps previously introduced (2.12,2.13):

� Prediction step:

m−
n = An−1mn−1 + Bnun (2.22)

P−
n = An−1Pn−1A

T
n−1 + Qn−1 (2.23)

� Update step:

vn = yn −Hnm
−
n (2.24)

Sn = HnP
−
n HT

n + Rn (2.25)

Kn = P−
n HT

nS−1
n (2.26)

mn = m−
n + Knvn (2.27)

Pn = P−
n −KnSnK

T
n (2.28)

where:

� vn is called innovation, that is the difference between the expected
measurement at the instant n, based on the belief N (m−

n ,P
−
n ) obtained

in the previous step, and the actual measurement yn.

� Kn is the Kalman gain, that is a parameter that lets the algorithm
update the state in function of the current measurement according to
the reliability of the current measurement.

The Kalman filter is the optimum filter when the model is linear with additive
Gaussian Noise; conversely, when the noise is not Gaussian, the Kalman
filter is not in general optimum, but it represents the Best Linear Unbiased
Estimator (BLUE). When the model is not linear or Gaussian it is in general
no more optimum. mn can be used as the point estimate at time step n,
while Pn gives an idea of the accuracy of the estimate

12



2.4 Extended Kalman filters

It often happens in practical applications that the dynamic and measurement
models are not linear and the Kalman filter is not appropriate. However, of-
ten the filtering distributions of this kind of model can be approximated by
Gaussian distributions. The Extended Kalman Filter (EKF) is then appli-
cable through the linearization of the non-linear models showed in 2.29 and
2.30 by using Taylor series [7]:

xn = f(xn−1,un) + qn−1 (2.29)

yn = h(xn) + rn (2.30)

where
f represents the dynamic model function
h represents the measurement model.
The stochastic translation of these models assumes Gaussian distribution

for the mobility model and the perception model, in order for the EKF to be
applicable as follows:

p(xn|xn−1) = N (xn|f(xn−1,un),Qn−1) (2.31)

p(yn|xn) = N (yn|h(xn),Rn) (2.32)

The linearization through Taylor series allows to approximate also the
PDF of the belief into a Gaussian distribution as follows:

p(xn|y1:n) ' N (xn|mn,Qn) (2.33)

The algorithm that realize this approximation is described by the follow-
ing prediction and update steps:

� Prediction step
m−

n = f(mn−1,un) (2.34)

P−
n = Fx(mn−1)Pn−1F

T
x (mn−1) + Qn−1 (2.35)

� Update step
vn = yn − h(m−

n ) (2.36)

Sn = Hx(m−
n )P−

n HT
x (m−

n ) + Rn (2.37)

Kn = P−
n HT

x (m−
n )S−1

n (2.38)

mn = m−
n + Knvn (2.39)

Pn = P−
n −KnSnK

T
n (2.40)
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where
Fx is the Jacobian matrix of f
Hx is the Jacobian matrix of h
It has to be taken into consideration that the algorithm here discussed

realizes the first order additive noise EKF and it will not work when con-
siderable non-linearities are present. The filtering model is also restricted in
the sense that only Gaussian noise processes are allowed.

The EKF also requires the measurements model and the mobility model
functions to be differentiable. Moreover, the Jacobian matrices.

On the other hand, with respect to other non-linear filtering methods,
the EKF is relatively simple compared to his performance and is able to
represent many real cases [7].

2.5 Particle filters

When a linear model of the system and a Gaussian noise model are not
suitable for the system, the utilization of an EKF becomes pointless. The
same statement can be made when the PDF are multimodal or discrete.
In this case the implementation of a Particle Filter (PF), also known as
Sequential Montecarlo Method becomes useful.

Here the belief is represented as a set of Dirac deltas (particles):

Bel(xn) =
∑
i

wiδ(xn − xin) (2.41)

where
wi

n are the importance factors: they are weigths that describe the prob-
ability to be in a certain state xn at every step n.

The set of weights wi
n is updated at every step according to the new

control un and the new measurement yn, starting from the old one wi
n−1.

The particle filter may suffer from the weights degeneration problem as
at every step all weights are multiplied by a factor less than 1, thus lead-
ing to a set of weights where all but a few particles have negligible weights.
This problem is unavoidable and is shown in 2.6: in this instance, an initial
a-priori PDF p(xn−1) sampled into weights, is conditioned by a new mea-
surement yn and leads to the resulting belief, which weights are now weaker
then the former. A procedure of resampling must be actuated whenever the
degradation is detected as shown in 2.7; the resampling must be performed
with a major density where the weights are greater [4].

14



Figure 2.6: Degradation of weights in particle filters
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Figure 2.7: Importance resampling in particle filters
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Chapter 3

Localization and mapping in
dynamic physical systems

The SLAM problem (Simultaneous Localization And Mapping) is known as
the issue of building, or updating, the map of an unknown environment, using
the observations collected by a device that explores it, while tracking itself.
Compared to the classic mapping problem in which the location of the object
is known during the mapping, here the localization task has to be performed
in the absence of reference nodes (often called ”anchor nodes”), i.e., in the
absence of a dedicated infrastructure. Generally for the resolution of this
problem successive approximation methods like the Particle Filter(PF) and
the Extended Kalman Filter(EKF) are adopted. The SLAM algorithms are
tailored in function of the available informations and resources.

Before dealing with the SLAM problem, a general view on the separated
problems regarding the mapping and the localization is here given.

3.1 The mapping problem

The mapping problem is considered as a simplified SLAM problem, in which
the mobile location is assumed known (in figure 3.1, a vehicle maps the
surrounding environment using the GPS to obtain his position)

The issue can be formalized as follows: the a-posteriori PDF P (mn|y1:n),
conditioned on the observations y1:n, has to be estimated given the series of
(known) positions of the device x1:n, in order to estimate the state vector of
the system, using a chosen criterion. mn is the state vector and it usually
contains the positions of the landmarks representing the environment in an
instant n

mn = [m(1)
xn ,m

(1)
yn ,m

(2)
xn ,m

(2)
yn , ...,m

(N)
xn ,m

(N)
yn ]

17



where N is the number of landmarks. The mapping problem can be treated
with different approaches regarding the representation of the environment,
that can be resumed in three categories:

Figure 3.1: A mobile vehicle that performs mapping using a LIDAR system
(https://hu.wikipedia.org/wiki/Fájl:LIDAR equipped mobile robot.jpg)

� Feature Based approach (FB): here the environment can be modeled as
a collection of entities called features, that code all the relevant infor-
mations concerning walls, edges, corners, objects and other obstacles.
The mapping problem is all about estimating the state of each feature,
whose main element is the position, although it may include orienta-
tion, colour or other properties [2].

18



From the computational point of view, this is a fast approach that
does not require a considerable occupation of memory, but since the
extracted features are predefined, an a-priori knowledge of the environ-
ment structure becomes necessary. Generally, this approach is preferred
when the mapping must be performed in outdoor contexts, where there
are large spaces and few landmarks [3].

� Occupancy Grid Based approach (OGB): the space here is decomposed
in a grid of cells, each one characterized by an occupation PDF; the
latter must be used to estimate whether or not an obstacle is present.
The computational burden and the necessary memory to save all the
informations is greater than the FB. Moreover, to correct the mobile
position, the detection of a certain number of obstacles becomes nec-
essary, hence in presence of large spaces with very few landmarks and
limited spatial scan available, this approach can enter into crisis. On
the other hand, the capability to represent objects and obstacles of
any shape is achieved. Generally, this approach is preferred in indoor
environment [3].

� Mixed approach: the purpose of this approach is to improve the per-
formances when the mapping of environments with a few features and
indoor contexts are both needed; at every step, based on the current
measures, the state is updated and one of the previous approaches can
be implemented. In this way, the representation of a mixed environ-
ment is possible without suffering too much from the drawbacks of each
technique. [3].

3.2 The localization problem

The localization problem consists in identifying the position of a device that
is situated inside a map that is assumed known (figure 3.2). This issue can
be formalized as follows: the a-posteriori PDF P (xn|y1:n), conditioned from
the observations y1:n, has to be estimated given the series of landmarks of the
environment m1:n assumed known and typically named anchors or reference
devices (RDs), in order to estimate the position of the device, using a chosen
criterion.

xn is the state vector, that mainly contains the positions of the device
and, possibly, its speed and orientation at the instant n

xn = [xxn, xyn, vxn, vyn, oxn, oyn]
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Figure 3.2: Representation of the localization problem

The localization problem can be treated with different approaches; the main
methods are the following:

� Triangulation: this type of method exploits the geometric relationship
between the mobile device (MD) and the reference devices (RDs). For
this purpose, different properties of signals exchanged among them can
be used [4]:

– Received Signal Strength (RSS)

– Time Of Arrival (TOA)

– Time Difference Of Arrival (TDOA)

– Phase Difference Of Arrival (PDOA)

– Angle Of Arrival (AOA)

� Fingerprinting: this method involves measuring position-dependent fin-
gerprints of the signal at known positions to construct a fingerprint
database of an environment that can be used to localize and track the
MD. Generally, it is composed of two steps: the first one is to collect
the position-dependent fingerprints into a database, while the second
deals with matching the measured fingerprints of the MD with those of
the database through a pattern-recognition algorithm, in order to lo-
cate and track the MD. It can be adopted when the line of sight (LOS)
path is blocked, which typically makes it difficult to apply geometric
relationships between MD and RDs.
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� Proximity: proximity-based techniques rely on a dense grid of RDs pre-
viously deployed at known positions in an environment. Each RD has
got its own detection radius. Once the MD enters an RD’s detection
region, the MD and this RD are connected; according to this connec-
tion, the MD is localized. This kind of technique requires a simple
receiver architecture, but also a pre-deployment of dense grids of RDs.
In advance, when multiple RDs detect the MD, more sophisticated
smoothing method are needed, even though the localization accuracy
could be poor compared to other methods.

� Self-measurements: Unlike the types of measurements mentioned above
that rely on an infrastructure, self-measurements can be collected by a
stand-alone MD with an Inertial Measurement Unit (IMU). Typically,
an IMU is composed of a 3D gyroscope and a 3D accelerometer, which
provide angular velocity and linear acceleration, respectively. Given
the initial position and the MD’s velocity and orientation information,
the standalone MD can be localized and tracked by integrating the
measured angular velocity and linear acceleration with the Bayesian
filters. However, the measurement errors of the IMU will be integrated
and propagated unbounded over time, which limits stand-alone inertial
localization and tracking with a low-cost IMU [4].

3.3 The SLAM problem

The SLAM problem merges the previous presented issues of building the map
of an unknown environment and localizing the mobile device within it. Both
the trajectory of the MD and the location of all landmarks are estimated
online without the need for any a-priori knowledge of location (figure 3.3).

The formalization of this problem follows: considering a mobile robot
moving through an environment and taking relative observations of a number
of unknown landmarks, at a time instant k, the following quantities are
defined:

� xn: the vector that describes the location and orientation of the vehicle
at time n

xn = [xxn, xyn, vxn, vyn, oxn, oyn]

� un: the control vector, applied at time n-1 to drive the vehicle to a
state xn at time n
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Figure 3.3: Representation of a SLAM problem: both location of the MD
and landmarks are estimated[5]

� mn: a vector describing the locations of the landmarks whose true
location is assumed time invariant at a time n

mn = [m(1)
xn ,m

(1)
yn ,m

(2)
xn ,m

(2)
yn , ...,m

(N)
xn ,m

(N)
yn ]

� yn the vector of the observations taken from the vehicle related to the
locations of the landmarks at time n

yn = [y(1)xn , y
(1)
yn , y

(2)
xn , y

(2)
yn , ..., y

(N)
xn , y

(N)
yn ]

� x1:n: the history of vehicle locations

x0:n = x0,x1, ...,xn

� u1:n: the history of control inputs

u1:n = u1,u2...,un

� y1:n: the history of all the observations performed on the landmarks

y1:n = y1,y2, ...,yn
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The SLAM problem requires the computation of the a-posteriori PDF

P (xn,mn|y1:n,u1:n,x0) (3.1)

that is conditioned on the observations y1:n, the control inputs u1:n and the
initial state x0 without any information regarding his location or the land-
marks of the environment. The aim is to estimate, using a chosen criterion,
the state vector of the system, which in this case is the union of the vectors
xn and mn and contains both the estimated device location and map in-
formation [5]. To this purpose, many statistical algorithms can be employed
based on Bayesian Filters, in particular Extended Kalman Filters (EKF) and
Particle Filters (PF).
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Chapter 4

State of the art related to the
SLAM problem

The autonomous navigation in unknown spaces requires the capability of a
mobile robot to be aware of his location and the locations of other places of
interest nearby. This is one of the main skills that a mobile autonomous robot
should achieve. Many devices base this capability in prior reliable mapping
or positioning information such as the Global Positioning System (GPS).

In first place, without a notion of location, a robot is limited to reactive
behaviour based solely on local stimuli and is incapable of planning actions
beyond its immediate sensing range [9]. The quality of localization is clas-
sically driven by the reliability of the provided map: in the absence of the
latter, dead-reckoning methods would quickly drift over time, while the use
of a map of the environment allows the reset of the localization error by
revisiting the known areas: this concept is known as loop closure.

The resolution of the SLAM problem enables a robot to navigate any un-
known environment without the need for prior map or location information;
this allows the approaching to a more independent behaviour of the robot,
where all high level navigation operations such as goal reaching, region cov-
erage, exploration and obstacle avoidance are carried out without external
support.

This brings to the main reason for which the SLAM is needed: the scenar-
ios in which a prior map is not available need the simultaneous reconstruction
of both environment and location[10].

25



4.1 Anatomy of a SLAM system

The architecture of a SLAM system can be divided in a front-end component
and a back-end component. The front-end role is to abstract sensor data
into estimation models like those described in Chapter 1, while the back-end
performs inference on the abstracted data produced by the front-end [10].
This architecture is shown in figure 4.1.

Figure 4.1: Front-end and back-end in a typical SLAM system. The back-
end can provide feedback to the front-end for loop closure detection and
verification [10]

4.1.1 Back-end

The back-end component of the system must provide an estimation of the
state based on the belief defined in Chapter 1 (2.9): as mentioned before,
the state typically includes the estimated pose of the robot (location and
orientation) and the position of landmarks in the environment; the belief is
generally obtained using an improved version of the EKF and PF presented
in Chapter 1.
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Figure 4.2: Representation of the SLAM with factor graphs [10]

The EKF is still largely diffused in SLAM applications because of his
linear Gaussian assumptions in the representation of both the measurement
and motion model.

When linear measurement and motion model are not available and the
noise of the system can not be assumed Gaussian, the PF, based on Monte
Carlo sampling, must be used. The main drawback is that the application
of particle filters on the high dimensional growing state-space of the SLAM
problem is unfeasible; however, through Rao-Blackwellization, a joint state
can be partitioned according to the product rule, obtaining the so called Rao-
Blackwellized Particle Filter (RBPF); as an instance, here is a joint PDF of
2 states:

p(x1,x2) = p(x2|x1)p(x1) (4.1)

In this way, if p(x2|x1) is available,only p(x1) needs to be sampled, sim-
plifying the estimation of the joint state; this technique allows the factor-
ization into a vehicle component and a conditional map component of the
joint SLAM state, that improves the speed of the algorithm as the map is
represented as a set of independent Gaussian processes [5]. The RBPF

Currently, many approaches formulate SLAM as a MAP estimation prob-
lem, often using the formalism of factor graphs [10]: the dependence of poses
and landmarks, both represented as circles, from each other are put in evi-
dence with the aid of factors related to:
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� Odometry constraints: if they link two poses

� Sensor observations: if they link a pose and a landmark

� Loop closure: if an event of loop closure is detected

This can be considered a more general approach with respect to Bayesian
filtering based on the message passing of beliefs.

In figure 4.2, is shown a simple factor graph representation that highlights
the main dependence of different variables at consecutive time steps, where:

� (x1;x2; ...) is the sequence of robot poses

� (Lmk1;Lmk2; ...) is the sequence of landmarks positions

� (u1;u2; ...) is the sequence of motion controls

� (v1; v2; ...) is the sequence of measurements

� K is the set of intrinsic calibration parameters

� (c1, c2, ...) is the set of closure loops

The main advantages brought by the factor graph representation of the
SLAM problem can be resumed in:

� Simplification of the view, that can be appreciated in figure 4.2

� Generality of the problem, enabling the modeling of complex problems
through interconnections of heterogeneous variables and factors; this
approach

4.1.2 Front-end

Generally, is hard to use all the sensor measurements for the MAP estimation
because they should all be expressed as analytic function of the state. This
justifies the presence of a front-end module that extracts only the relevant
features from the sensor data [10].

The front-end also deals with the problem of associating each measure-
ment to the correct landmark; this problem is commonly addressed as data
association.
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4.1.3 Odometry

According to the odometry principle, if a robot is aware of his position and
his future movements than he is aware of his pose. Knowing the motion
model of the robot, his initial pose and a global reference coordinate system,
localization is doable.

As an instance, wheel odometry uses sensors mounted on wheels to mea-
sure the travelled road and estimate the trajectory. The main limit of this
method is the accumulated measurement error that becomes dominant over
time causing estimated robot pose to drift from its actual location. This
effect is showed in figure 4.3. Another source of error that should not be
underestimated is wheel slippage in uneven terrain or slippery floors: if the
world is modelled as a plane, a non-flat ground surface may cause estimated
and real position to take different directions, while slippage can be responsi-
ble of mismatches of actual and estimated travelled road.

Figure 4.3: Representation of the accumulated odometry measurement error

This problems are significantly reduced through the use of an Inertial
Measurement Unit (IMU): it is a device that exploits a triaxial gyroscope
and a triaxial accelerometer to track acceleration, deceleration and position
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(through a double integration of the acceleration), of the vehicle in which
is mounted. This makes possible the detecting of changes in direction and
velocity, allowing an augmented odometry. Conversely, IMU fails in obser-
vation of low-frequency faults such as model biases, which might lead to
error accumulation. . For this reason, IMU is suited for the detection of low
term motion, between the map observations, but is not sufficient for longer
term[9]. IMUs are widely used in Inertial Navigation Systems (INS), that
are aid systems for aero-mobile navigation mainly made of an IMU, sensors
and a CPU, and in advanced automotive and motorcycle industry and in
robotics.

Visual Odometry is the current state of the art and uses the images seen
from a single or multiple camera to estimate the ego motion of the vehicle in
which is mounted. It is demonstrated that this system performs better than
wheel odometry or LASER scanners [12].

4.1.4 Sensors in SLAM

In addition to the already mentioned sensors that implement odometry, there
are different kind of sensors that are used to perform SLAM. They exploit
interactions with landmarks to estimate the state of the system, including
pose of the robot and pose of landmarks.

The type of sensor used is what mainly differentiate a SLAM system and
his applications from another one. Another way to see the matter is the
following: both SLAM sensors and odometry perform sensing activity, each
one on a different subject, then they cooperate fusing the obtained data for
the achievement of the same goal.

As previously mentioned, a SLAM technology depends on the type of
sensor implemented; the main branches of the current state of art are the
following and are deepened in the next section:

� SONAR SLAM

� RADAR SLAM

� LASER SLAM

� Visual SLAM

4.2 The main SLAM technologies

SLAM requires the simultaneous reconstruction of the environment and the
pose of a robot inside it. The context in which SLAM is needed can influence
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the choice of the technology. As an instance, in undersea environment the
main reliable technology is SONAR due to the distortion that water imprints
to light. A glance of the main technologies developed until now follows.

4.2.1 SONAR SLAM

SONAR means Sound Navigation And Ranging and is a system which ex-
ploits an acoustic sensor to perform the propagation of ultrasounds and the
following reception of their reflected version whether an obstacle is present.

Figure 4.4: SONAR systems are commonly used by ships to probe the seabed

Mobile robot navigation and mapping is far more difficult using SONAR
sensor, instead of a LASER one as an instance. A reason is the modest spatial
resolution obtained using the former in comparison to the latter; another one
is that SONAR is characterized by an inferior degree of accuracy with respect
to LASER; last but not least, is the lower speed of response with respect to
the other sensors here presented.

Despite these difficulties, SONAR SLAM is still interesting to research
for some reasons. SONAR sensors are less expensive than LASER scanners,
as an instance, actually ultrasonic sensors are the cheapest available source
of spatial sensing for mobile robots. Furthermore, they suffer of lower signal
attenuation in underwater environment, where visual and LASER sensors
are ruled out from this point of view due to their high frequency signals
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[13]. Thus, SONAR sensors become the ideal sensor with whom an AUV
(Autonomous Underwater Vehicle) can perform SLAM.

SONAR SLAM systems exploit transceivers characterized by low fre-
quency sound waves which allow deep penetration of water (10-150 m), while
high frequency signals like those of LASER are highly attenuated. Time of
flight methods are used to localize the landmarks [14].

4.2.2 RADAR SLAM

The meaning of RADAR is Radio Detection And Ranging and it represents
a system that employs radiating electromagnetic waves (EM waves) to let
a transceiver detect whether they are reflected from an obstacle. In figure
4.5 is shown the exchange of two RADAR signals for the identification of an
airplane. The working principle is the same as SONAR, except for using EM
waves instead of acoustic waves.

Figure 4.5: RADAR systems are widely used for aerospace purposes

This technology enables SLAM in situations where visibility is compro-
mised such that Vision and LASER systems are not suitable; an example is
an emergency scenario like a fire, where dust and smoke are present and can
impede to individuate not only walls and objects but also unconscious peo-
ple. Millimetre Wave RADAR SLAM (mmW RADAR SLAM) technology
and UWB RADAR SLAM technology are now the main branch in develop-
ment in RADAR area [18].

Many works certify the robustness of this technology; to mention one, in
[19] is showed an approach that exploits the specular reflections of EM waves
on flat surfaces in order to localize a mobile user using the reflections coming
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from just one reference node. The concept of virtual anchor, which is the
mirror image of a physical anchor, is then used in order to use the multipath
components to do the SLAM estimate.

Under study is also the possibility to perform SLAM using Wi-Fi signals,
considering access point as landmarks, with the purpose of localization inside
a building. The main obstacle is that Wi-Fi standard, as well as other pos-
sible suited technologies like RFID, NFC and ZigBee to mention some, were
not created with localization or mapping purpose [15] [16] and hence they
typically provide measurements scarcely related to distance or position. The
crowd-sensing concept can however come to help: this principle is due to the
consideration that nowadays most people are provided with a smartphone
equipped with a large bunch of sensors (light, temperature, pressure, sound,
acceleration and magnetism can be sensed) [8].

The idea behind crowd sensing is to mitigate the scarce accuracy of mea-
surements through the exploitation of a huge amount of measurements shared
among users.

Mentioned this, let us have a look at main RADAR technologies.

Ultra Wide Band SLAM

Ultra Wide Band (UWB) RADAR SLAM Technology has grown since 2002,
when Federal Communications Commission opened up 7,5 GHz of spectrum
(from 3,1 to 10,6 GHz) to be used by UWB devices.

This system exploits narrow time-domain pulses, of a duration in the
order of a nanosecond, to modulate a signal spreading his spectrum over
a wide frequency band larger than 500 MHz. The main advantage of this
method is the higher resolution in estimation of the time of flight, which
translates in ranging estimation with few centimetre accuracy [15].

An interesting example of UWB SLAM system is presented in [17] where
the implementation of a small antenna array of bat-type, which is made of
two receiving antennas and a transmitting one allows more advantages, like
the individuation of different landmark types.

Millimetre Waves SLAM

In the last decade, mmW RADAR SLAM has gained popularity in research
because where low frequency radio signals have a wide beam width, which
reduces the resolution in detecting the obstacles, mmWs allow narrow beam
shaping, thus augmenting the resolution in detecting obstacles with respect
to lower frequency radio signals.
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mmWs belong to the band of radio waves with frequency going from 30
to 300 GHZ. This band is commonly known as Extremely High Frequency
range and their wavelength ranges from 10 to 1 mm.

In a SLAM application, an array of antennas can be used to achieve a
determinate angular resolution through use of mmW; the same can be done
with UWB signals, but since the wavelength is lower, the compactness for
the achievement of the same result is greater.

mmWs are subject to a high atmospheric attenuation which reduces the
range and strength of the waves. Thus, they are limited in a communica-
tion range of about 1 kilometre. mmW RADAR SLAM signals are able to
penetrate many objects and can provide information regarding distributed
targets appearing in a single observation[16].

Figure 4.6: The detection of different types of landmarks is possible using
a bat-type array of antennas [17]

4.2.3 LASER SLAM

The LASER working principle is the same of SONAR and RADAR and
differently from the latter, here EM waves are in the range of UV, visible or
infrared; this allows the reflection of waves from very small objects in the
order of the wavelength used.

LASER Rangefinders also use time of flight and phase-shift techniques
to measure distances. The high speed and accuracy of LASER rangefinders
enable robots to generate precise distance measurements. This contributes to
the significant popularity of LASER rangefinders in solving SLAM problems
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since they are capable of obtaining robust results in both indoor and outdoor
environments. A LASER scanner is the best sensor for extracting planar
features (like walls) due to the dense range data provided. The LASER
sensor is referred to as LIDAR, which means LASER Imaging Detection And
Ranging. However, the cons of this technology are the previously mentioned
difficulty in using it with non-visibility conditions, the weakness to other
sources of lights, its required power consumption and its cost [11].

4.2.4 Visual SLAM

The last years have seen increasing interest in visual SLAM technologies.
This is due not only to the great amount of available visual information
related to the environment, but also to the low-cost of video sensors with
respect to LIDARs. Visual uses pixel information to detect the angles formed
by the vision direction of the camera and the line joining landmark and sensor
positions.

Visual SLAM can intrinsically provide a wide range of landmarks types,
but the data coming from images must be processed and selected by the front-
end part of the SLAM system. This translates into a higher computational
cost and to an increased complexity of algorithms that extract the main
features. Thanks to the advances in CPU and GPU technologies, the real
time implementation of the required complex algorithms are no longer quite
a problem [12].

The figures 4.7 and 4.8 show the results of the implementation of a visual
SLAM system.

4.3 Main challenges

Despite all progresses made by SLAM community research in the last decades,
some problems still need solutions providing better performances. An overview
of the main difficulties follows.

4.3.1 Computational Complexity

The SLAM problem is intrinsically a complex problem, due to the required
estimation of a joint state composed of the robot pose and landmarks loca-
tions. Computational efficiency becomes important for the scalability of the
problem: the robot performing SLAM must be able to operate over an ex-
tended period of time and to explore new spaces without letting the required
memory grow unbounded [10].
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Figure 4.7: Here is showed the simulated reconstruction of the landmarks
of a house through a vision SLAM system

Figure 4.8: The figure shows the view of the camera performing vision
SLAM
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4.3.2 Data Association

Figure 4.9: Short term data association must recognise the measurements
related to the same landmark in successive instants

As previously introduced, data association is one of the critical issues in
SLAM implementations. It consists in associating the measurements to the
correct landmarks. Outliers, which are false positive landmarks, can degrade
the estimate, which in turn degrades the ability to individuate them [10].

The problem can be subdivided in two submodules:

� Short term data association (figure 4.9): it deals with the fact that the
sampling rate of the sensor is faster than the dynamics of the robot,
thus making the last features observed very close to the current ones.

� Long term data association (figure 4.10): it is more complicate because
it aims at detecting and validating the loop closure events. A brute-
force approach that tries to compare all new features with the older
becomes numerically impracticable as the number of landmarks grows
up. At the same time, a single wrong data association can induce
divergence into the map estimate [6].

The data association problem becomes harder when the landmarks look
different from different viewpoints [6].

4.3.3 Environment representation

Formerly, SLAM environment representation was supposed to hold as simple
geometric primitives such as points, lines or circles. This hypothesis does
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Figure 4.10: Long term data association must provide loop closure for land-
marks that are being revisited
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not hold in complex and unstructured environments like subsea, outdoor
and underground.

The previously introduced (Chapter 2) characterization as feature-based
maps and occupancy grid maps appears to be the simplest geometric environ-
ment modelling in the 2D case. In the 3D case, the complexity is increased as
vehicle motion and observation model must be generalized adding a dimen-
sion. The situation is complicated by the fact that the assumption of a static
world, that is often taken, does not always hold as sometimes landmarks
are not fixed. The mapping in the long term or large spaces underlines this
problem, since a change in the environments becomes more probable [10] [6].

Furthermore, when vision SLAM is employed, the question whether us-
ing semantic or topological mapping opens up; while topological mapping is
about recognising a previously seen place, the semantic mapping deals with
classifying the place according to a pre-recorded semantic database [10]

4.3.4 New frontiers for SLAM

The development of new algorithms and the availability of more advanced
sensors have always been the main trigger for the progress in SLAM. Applica-
tions such as autonomous cars or augmented reality has taken off respectively
due to progresses in LASER and vision systems [10].

New sensors in the vision field are now under study by research commu-
nity:

� Range cameras: they are light-emitting depth cameras that works ac-
cording to different principles, such as structured light, time of flight,
interferometry, or coded aperture. While structured light cameras work
by triangulation and use different perspective illumination of an object
to deduce his shape. This kind of camera is provided with his own light
source, thus making them work in dark and untextured scenes.

� Light-field cameras: they record not only the intensity of the light
impacting the single pixel, but also the direction of the ray. Light-field
cameras have different advantages with respect to standard cameras,
such as depth estimation, noise reduction, video stabilization, isolation
of distractors, and specularity removal. However, the manufacturing
cost is responsible of their low resolution, still less than a megapixel in
the commercially available ones.

� Event-based cameras: they are basically different from standard cam-
eras, because the images are not sent entirely in fixed frame rates, but

39



only the local pixel-level change is sent when a movement in the en-
vironment occurs. This makes possible the increase of dynamic range,
update rate and the decrease of power consumption, latency. The re-
quirements of bandwidth and memory are also reduced [10].
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Chapter 5

MATLAB implementation of
different SLAM technologies

In this chapter, the results of simulated implementation of SLAM through
different technologies are showed. For this purpose, I exploited two different
MATLAB toolbox:

� Visual EKF-SLAM Toolbox: developed by Joan Solà in 2013, it imple-
ments an EKF algorithm simulating a 3D environment

� LIDAR EKF-SLAM Toolbox: developed by Tim Bailey and Juan Nieto
in 2004, it can be used to simulate the implementation of an EKF
algorithm in a 2D environment

The performance of SLAM is evaluated when different sensing technologies
are exploited, though the same 2D context has been considered through
executing the visual SLAM with landmarks and robot sensor placed in the
same plane; in this way the problem can be approximated as a 2D one, such
as LIDAR toolbox.

The chosen context is part of the corridor on the 3rd floor in Cesena
Campus of the University of Bologna, shown in figure 5.1.

During the simulation, the robot follows a closed path (round) along the
corridors. The rounds performed by the robot are 15 in each technology: the
choice of this high number is made to simulate the crowd-sensing concept. If
we imagine that every round corresponds to a different robot, then we can
think of 15 different robots performing SLAM in successive times.

The results are finally reported in order to have a comparison between
different technologies at different conditions.
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Figure 5.1: The corridor scenario simulated in Visual SLAM
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5.1 Visual SLAM toolbox

The visual SLAM toolbox is an open source package that attempts to simu-
late an EKF-SLAM algorithm in a given environment using a visual SLAM
technology implementation.

Since it simulates a visual-SLAM technology, the measurement model of
the system is characterized by the choice of the sensor, which is between the
followings:

� Omnidirectional camera omniCam with resolution 1280x800

� Pinhole camera pinHole with resolution 640x480

The motion models available in the package are the following:

� A constant speed motion model constVel

� A circular uniform motion model odometry

Regarding the landmarks that here can be implemented, the choice is
between:

� Points: through the call to the function, called thickCloister.m, which
generates a cluster of landmarks geometrically distributed through a
3D square ring volume, as shown in figure 5.2.

� Lines: through the call to the function, called house.m, which repro-
duces the shape of a house, as shown in figure 5.3.

5.1.1 Default main script slamtb

The package main file is called slamtb.m and it can be viewed in Appendix A.
It initializes the environment through the call to the function userDataPnt.m,
in which the choice of the sensor and the landmarks distribution can be made
by editing the code following the guidelines. The choice of line landmarks,
instead of point ones, can be made calling the function userDataLin.m.

In userDataPnt.m, not only the settings of the robot and sensor installed
on it can be edited, but also the simulation and estimation options, ranging
from standard error of sensor and number of landmarks initialized by the
algorithm, to the choice of the type of landmarks that the algorithm must
recognize.
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Figure 5.2: Simulation of landmarks as points in Visual SLAM toolbox

An important detail that will become important later to recreate the en-
vironment, is that even though only one type of landmarks can be initialized
for recognition by the algorithm, lines and points can both be implemented.
This allows the realization of buildings which contains the landmarks that
needs to be detected.

Once initialized the environment, the main structure of the algorithm is
initialized, including robot, sensor, landmarks and raw data structures.

To get a graphic support, also figures structures for the real-time plotting
of the SLAM estimation progress are initialized.

Once finished the initialization phase, a code is repeated periodically
through the use of a for structure. It implements:

� The motion of the robot

� The estimation of landmarks and robot pose through an EKF algorithm

� The update of the visual information on SLAM estimate
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Figure 5.3: Simulation of lines constituting a house in Visual SLAM toolbox
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5.1.2 Realization of the SLAM estimation in the con-
sidered scenario

Environment

As previously stated, the context that I want to simulate is different from
the available ones; for this reason I have made some changes in the main
functions and scripts.

The landmark type chosen is the point, so the initialization of environ-
ment is done editing the script userDataPnt.m into the script userDataCor-
ridor.m, which recreates the shape of the corridor and collocates the point
landmarks where desired; this code can be seen in Appendix A. The point
landmarks that I have chosen represent the edges, the corners and the doors.

To realize the shape of the corridor, I have edited the function house.m
to build a new function called Corridor Ing Ces.m (shown in Appendix A).
According to some constants related to the shape of the corridor like height,
length and width, this function builds the corridor as shown in 5.1.

The script also initializes the initial position and orientation of the robot
and the sensor, together with several other parameters that are not here
specified for coinciseness.

Motion

Assumed that the robot must realistically move inside the corridor, I have
exploited the motion model odo3.m to this purpose: by default it changes
continuously the direction of the robot, when recalled by the main loop, in
order to realize a circle trajectory.

What I have done was editing the main loop in order to let it call the
function odo3.m only when the robot is situated near the corners; only in
that case his direction of motion should change

For this purpose, I realized a function called locate robot.m to locate the
robot position and orientation inside the corridor; this information is returned
and exploited by a script I realized called DetDir.m. Given the detected pose
of the robot, it determines whether the direction of the robot must change
or not. Both this codes are shown in Appendix A.

Visibility of landmarks

Since the SLAM technology in exam is a visual SLAM, the algorithm sim-
ulated should not realistically be able to see the landmarks situated behind
the walls. The observations are taken by the algorithm through a struct
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Figure 5.4: The landmarks that the robot observe are the numbered ones,
the other are not in LOS, so they are not visible

Figure 5.5: The view of the camera: it can be noticed that the not in LOS
landmarks are not visible by the camera
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called Obs which has a field called vis that flags if a landmark observation is
possible or not.

To exploit this field, I have implemented a script, called DetVisLmk.m
(it can be viewed in Appendix A), inside the function CorrectKnownLmk.m,
which is called inside the main loop to correct the landmarks position ac-
cording to the new observation; the script uses the geometrical information
to set as not visible the landmarks not in LOS. In figures 5.4 and 5.5

Position estimation RMSE calculation

To have a precise idea of the behaviour of the algorithm, I have written a
script called calc RMSE : it performs the calculation of the RMSE of both
the robot pose (5.1) and landmarks (5.2) position once a lap. This code is
showed in Appendix A.

RMSE(xn) =

∑n+N
n=1 (xn − x̂n)2

N
(5.1)

RMSE(mn) =

∑L
i=1(m

i
n − m̂i

n)2

L
(5.2)

where

� N is the number of time steps for each lap

� L is the number of landmarks discovered until the instant n

Configuration file

The main parameters, which I have modified to perform different simulations,
have been initialized in a configuration script called configSLAM.m. It can
be viewed in Appendix A.

Inside this script, I grouped the main parameters, such as:

� CHOICE 2D 3D : decides whether the sensor must be placed in the
same plane of the landmarks

� N LOOPS : decides the number of loops that the robot must do around
the corridor

� NLOOPFRAME : number of time steps (also called frames) necessary
to perform a single loop

� LAST FRAME : total number of frames
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� NLMKS ROBOT : number of landmarks that must be initialized by the
SLAM algorithm

� PIX ERROR STD : standard deviation of pixel recognition of the cam-
era sensor (it sets the accuracy with whom an object is localized in the
right pixel by the camera)

� POS STD : standard deviation of the robot motion error, it is set equal
to 10 cm in x and y axes and equal to 0 in z axis

� Sim Corr : decides if the environment to simulate must be a corridor

In the initial phase, I have also simulated other environments using the
default landmarks generating functions of the toolbox, to realize scripts that
reproduce an environment according to the following parameters:

� KIND LMK : it sets if the landmarks have to be represented as points
or lines

� KIND SENSOR: it sets the kind of sensor (omnidirectional camera and
pinhole camera are available)

� N ROBOTS : it sets the number of the robots

5.1.3 The result of simulations

Given the introduced and edited codes, I have proceeded to simulate several
times the implemented scenario; each time I changed the pixel standard error
parameter of the camera to observe the different behaviour of the estimate
as a function of this parameter.

The selected values of the error standard deviation varies between the
following values, grouped in a vector:

pix err std = (0.1, 1, 5, 10, 20, 30, 50)px
I have also made the choice of keeping low the value of the standard

deviation of the robot position error (10 cm in both x and y axis, 0 cm in z
axis) and to not consider the z axis error in RMSE calculation; the reason is
that I wanted to simulate a 2D scenario, similar to the one of LIDAR SLAM
implementation, which will be explained in the next section.

The number of landmarks initialized by the algorithm has been kept as
low as possible in order to make the algorithm faster.

The results of the simulations are summarized in the following tables (
5.25.1) and figures (5.6,5.7,5.8,5.9,5.10,5.11,5.12)
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Table 5.1: Position robot RMSE in metres referred to different number of
loops and pixel standard deviation

N LOOPS\PIX STD ERR 0.1 1 5 10 20 30 50

1 0.102 0.065 0.098 0.154 0.460 0.533 0.341

2 0.118 0.079 0.090 0.136 0.395 0.778 0.598

3 0.113 0.087 0.088 0.124 0.434 0.837 0.671

4 0.109 0.089 0.088 0.121 0.467 0.843 0.709

5 0.108 0.092 0.095 0.129 0.485 0.835 0.733

6 0.106 0.094 0.103 0.137 0.491 0.801 0.725

7 0.106 0.097 0.110 0.146 0.493 0.778 0.717

8 0.104 0.097 0.113 0.147 0.502 0.763 0.725

9 0.103 0.097 0.116 0.148 0.510 0.749 0.731

10 0.104 0.097 0.119 0.151 0.515 0.737 0.738

11 0.104 0.097 0.120 0.152 0.517 0.719 0.738

12 0.104 0.097 0.122 0.155 0.515 0.702 0.735

13 0.104 0.097 0.124 0.155 0.517 0.687 0.735

14 0.104 0.097 0.125 0.154 0.518 0.673 0.737

15 0.105 0.097 0.126 0.155 0.518 0.662 0.739
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Table 5.2: Position RMSE in metres referred to different number of loops
and pixel standard deviation

N LOOPS\PIX STD ERR 0.1 1 5 10.000 20.000 30.000

1 0.127 36.457 90.959 0.220 1.145 35.097

2 0.125 0.093 85.537 0.162 0.455 72.699

3 0.103 0.082 0.076 0.110 0.581 18.031

4 0.109 0.102 0.109 0.168 0.598 1.412

5 0.101 0.099 0.116 0.188 0.574 1.240

6 0.104 0.099 0.128 0.189 0.587 1.121

7 0.105 0.105 0.145 0.194 0.553 0.997

8 0.100 0.089 0.117 0.154 0.604 0.884

9 0.107 0.090 0.135 0.171 0.595 0.862

10 0.108 0.085 0.125 0.168 0.575 0.752

11 0.109 0.089 0.120 0.157 0.564 0.716

12 0.112 0.090 0.128 0.163 0.542 0.672

13 0.115 0.096 0.153 0.190 0.521 0.612

14 0.114 0.089 0.122 0.142 0.592 0.650

15 0.117 0.087 0.122 0.151 0.573 0.626
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Figure 5.6: Result of simulation considering a error standard deviation value
equal to 0.1
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Figure 5.7: Result of simulation considering a error standard deviation value
equal to 1
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Figure 5.8: Result of simulation considering a error standard deviation value
equal to 5
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Figure 5.9: Result of simulation considering a error standard deviation value
equal to 10
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Figure 5.10: Result of simulation considering a error standard deviation value
equal to 20
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Figure 5.11: Result of simulation considering a error standard deviation value
equal to 30
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Figure 5.12: Result of simulation considering a error standard deviation value
equal to 50

Given these results, some main considerations can be done:

� The position estimation error of both landmarks and robot grows up
with the pixel standard error

� If we consider a camera sensor conditioned by a large pixel standard
deviation error (up to 50), if the number of laps is sufficiently large, the
robot localization performed by the algorithm still gives good results.

� With the increase of the number of laps travelled by the robot, the
estimation error of the landmarks tends to diminish; this means that
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the concept of crowd-sensing is useful in the localization of landmarks,
whose positions are initially completely unknown. A remarkable ex-
ample is shown in 5.2 in the column corresponding to a pixel standard
deviation equal to 30: despite an initially bad landmarks position esti-
mation, after few laps the system recovers.

� Since the pose of the robot is initially well known, crowd-sensing does
not make a significant difference in his localization performance. This
could be ascribed to the ”loop closure” phenomenon of SLAM.

5.2 LIDAR SLAM toolbox

The LIDAR SLAM toolbox is an open source package that attempts to simu-
late the EKF-SLAM algorithm in a given environment using a LASER SLAM
technology implementation.

This package is implemented in a quite different way than the previous
one. Here the main script, called execute ekf, loads a set of predefined land-
marks and waypoints. The latter are the points through which the robot is
supposed to move.

After the data load, the core function of the package is called; the func-
tion in exam is named ekfslam sim and it performs the entire simulation
of the algorithm using the input data that not only include landmarks and
waypoints, but also parameters of the corridor that has to be simulated.

5.2.1 The main function ekfslam sim

The first thing that the function does is setting the configuration parameters
of the problem through the script configfile; this script can be viewed in
Appendix B. Then the environment is plotted with a 2D representation.

After this, the main loop starts running and executing the following op-
erations at every cycle:

� the motion control is computed, together with the associated noise

� the prediction and update steps of the EKF are computed

� the plots are updated.
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5.2.2 Realization of the SLAM estimation in the con-
sidered scenario

Since this code package is less complicate and advanced than the previous
one, here I limited my contribution in adapting the data saved after the
execution of the vision SLAM algorithm, in order to let the robot follow the
same path; specifically, during the execution of visual SLAM code, I recorded
with a fixed time step the positions of the robot during the path and used
them to define the waypoints given as input to the LIDAR SLAM code.

The meaning given to landmarks is different from that given in Visual
SLAM: here they are used to emulate wireless access points (AP) supposed
deployed in the corridor. In this way, by properly setting the parameters
observation model (i.e., noise level), it is possible to simulate a Wi-Fi SLAM
technology using a software initially designed to simulate a LIDAR-based
SLAM system.

A similar reasoning can be made by setting very low error standard de-
viation parameters for angle of arrival and distance estimations, in order to
simulate a mmW/UWB-based SLAM.

The results of the next subsection are obtained by making two hypotheses:

� The interaction between APs and robot brings a distance measurement
through the analysis of the received signal strength (RSS)

� Through the installation of an array of antennas is possible to deduce
a signal angle of arrival measurement.

The scenario is the following (figure 5.13):
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Figure 5.13: Simulated scenario: the landmarks are indicated in blue, while
the waypoints are the green dots

The RMSE related to robot pose and landmarks position estimate is
calculated through a script called calc RMSE lidar.

The parameters are set in the script called configfile; it is used to set the
following parameters among the others:

� Position: it is a two-dimensional vector who defines the initial position
of the robot through x and y coordinates expressed in m

� Orientation: it defines the initial orientation of the robot in rad

� sigmaV : it defines the standard deviation of the robot speed referred
in m/s

� sigmaG : it defines the standard deviation in angle of motion referred
in rad

� MAX RANGE : it defines the maximum detection range of landmarks
expressed in metres
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� sigmaR: it defines the standard deviation of the distances observed
from robot to landmarks referred in metres

� sigmaB : it defines the standard deviation of the angle observed between
robot direction and landmark referred in radiants

5.2.3 Result of simulations

The first group of simulations has been done setting a fixed parameter for
the angle error standard deviation (equal to 5°) and varying the distance
error standard deviation through the following values referred in metres:
(0.01, 0.1, 0.5, 1, 1.5, 2)

The results are showed in the following tables ( 5.3,5.4) and figures (5.14,
5.15, 5.16, 5.17, 5.18, 5.19)

Table 5.3: Robot position RMSE in metres referred to different number of
loops and distance standard error

N LOOPS\Std err(m) 0.01 0.1 0.5 1 1.5 2
1 0.181 0.111 0.570 0.234 1.141 1.121

2 0.131 0.149 0.416 0.179 0.879 0.898

3 0.097 0.129 0.296 0.147 0.645 0.723

4 0.099 0.143 0.299 0.154 0.663 0.784

5 0.108 0.148 0.304 0.160 0.683 0.841

6 0.079 0.109 0.220 0.126 0.498 0.630

7 0.082 0.112 0.223 0.131 0.511 0.666

8 0.084 0.115 0.226 0.137 0.526 0.697

9 0.085 0.119 0.230 0.143 0.536 0.727

10 0.086 0.121 0.234 0.151 0.546 0.757

11 0.062 0.089 0.169 0.111 0.394 0.555

12 0.064 0.090 0.172 0.116 0.401 0.575

13 0.066 0.092 0.175 0.121 0.407 0.591

14 0.068 0.093 0.177 0.125 0.412 0.609

15 0.069 0.094 0.180 0.127 0.419 0.626
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Table 5.4: Landmarks position RMSE in metres referred to different number
of loops and distance standard error

N LOOPS\Std err(m) 0.01 0.1 0.5 1 1.5 2
1 0.036 0.253 0.233 0.214 0.834 0.653

2 0.024 0.172 0.096 0.137 0.486 0.624

3 0.032 0.134 0.088 0.124 0.389 0.721

4 0.033 0.093 0.126 0.098 0.319 0.641

5 0.049 0.081 0.127 0.119 0.344 0.651

6 0.043 0.079 0.139 0.133 0.364 0.649

7 0.035 0.065 0.111 0.135 0.335 0.633

8 0.037 0.066 0.106 0.124 0.343 0.613

9 0.036 0.061 0.128 0.126 0.326 0.608

10 0.036 0.062 0.121 0.137 0.312 0.634

11 0.038 0.069 0.128 0.135 0.319 0.633

12 0.042 0.067 0.137 0.138 0.301 0.625

13 0.039 0.061 0.128 0.115 0.286 0.623

14 0.039 0.063 0.128 0.111 0.297 0.612

15 0.035 0.060 0.131 0.105 0.305 0.597
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Figure 5.14: Result of simulation considering an estimation error standard
deviation value equal to 0.01 m
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Figure 5.15: Result of simulation considering an estimation error standard
deviation value equal to 0.1 m
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Figure 5.16: Result of simulation considering an estimation error standard
deviation value equal to 0.5 m
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Figure 5.17: Result of simulation considering an estimation error standard
deviation value equal to 1 m
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Figure 5.18: Result of simulation considering an estimation error standard
deviation value equal to 1.5 m
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Figure 5.19: Result of simulation considering an estimation error standard
deviation value equal to 2 m

The second group of simulations has been done in a dual way, but this
time the distance observation standard error has been kept constant (equal
to 1m) and the angle observation standard error has been varied through the
following values: (5°,10°,20°,30°,45°,60°) .

The results are showed in the following tables (5.5,5.6) and figures (5.20,5.21,5.22,

5.23,5.24,5.25)
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Table 5.5: Robot position RMSE in metres referred to different number of
loops and angle standard deviation in degrees

N LOOP\ANGLE STD ERR 5 10 20 30 45 60

1 0.453 0.146 0.451 0.346 0.224 0.358

2 0.432 0.122 0.398 0.277 0.224 1.031

3 0.340 0.100 0.355 0.213 0.202 1.119

4 0.370 0.112 0.418 0.219 0.224 1.443

5 0.403 0.124 0.482 0.238 0.271 1.672

6 0.298 0.091 0.366 0.182 0.226 1.343

7 0.312 0.094 0.398 0.190 0.258 1.474

8 0.325 0.100 0.432 0.197 0.289 1.609

9 0.337 0.105 0.471 0.203 0.314 1.742

10 0.349 0.110 0.495 0.219 0.342 1.850

11 0.254 0.081 0.367 0.158 0.263 1.383

12 0.262 0.084 0.384 0.164 0.280 1.452

13 0.268 0.089 0.403 0.172 0.291 1.517

14 0.273 0.094 0.416 0.174 0.309 1.574

15 0.280 0.098 0.431 0.176 0.326 1.632
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Table 5.6: Landmarks position RMSE in metres referred to different number
of loops and angle standard deviation in degrees

N LOOP\ANGLE STD ERR 5 10 20 30 45 60

1 0.362 0.170 0.441 0.338 0.663 2.148

2 0.377 0.102 0.426 0.215 0.569 1.950

3 0.301 0.105 0.516 0.166 0.465 1.937

4 0.327 0.080 0.479 0.176 0.450 1.973

5 0.299 0.070 0.461 0.178 0.433 1.922

6 0.278 0.066 0.504 0.169 0.449 1.930

7 0.279 0.073 0.499 0.163 0.457 1.944

8 0.284 0.074 0.471 0.162 0.444 1.916

9 0.284 0.078 0.466 0.162 0.438 1.910

10 0.271 0.077 0.471 0.155 0.436 1.910

11 0.267 0.080 0.482 0.148 0.441 1.912

12 0.266 0.075 0.478 0.146 0.445 1.886

13 0.245 0.091 0.485 0.142 0.455 1.881

14 0.259 0.085 0.471 0.131 0.462 1.885

15 0.251 0.074 0.465 0.135 0.465 1.892
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Figure 5.20: Result of simulation considering an angle error standard devia-
tion value equal to 5°
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Figure 5.21: Result of simulation considering an angle error standard devia-
tion value equal to 10°
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Figure 5.22: Result of simulation considering an angle error standard devia-
tion value equal to 20°
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Figure 5.23: Result of simulation considering an angle error standard devia-
tion value equal to 30°
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Figure 5.24: Result of simulation considering an angle error standard devia-
tion value equal to 45°
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Figure 5.25: Result of simulation considering an angle error standard devia-
tion value equal to 60°

Given the results, here are some considerations:

� As the angle error standard deviation increases, so does the pose and
landmarks RMSE

� The localization of the landmarks improves as more loops are made by
the robot

� The pose of the robot begins to suffer of accumulated error as the
number of loops increases if the angle error is high
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� Even with relatively high angle error standard deviation (up to 60°)
the localization of the landmarks and the robot still gives good results
(RMSE less to 1 meter).

� A realistic Wi-Fi SLAM system can be simulated by setting a high
angular and distance uncertainty in the observation, considering that
distance estimation based on received power (RSS) is typically very
poor; an example is the one showed in figure 5.24, where the angle
standard error is equal to 45° and the distance standard error is equal
to 1 meter. The mapping of the landmarks after some laps converge to
a good accuracy (0.5 m), while the robot pose accuracy is kept constant
in time (about 0.5 m).

� Observing the figures 5.14-5.19, it can be stated that if a radio tech-
nology capable to provide distance estimations with error standard de-
viation up to 0.5 m is available, such as UWB RADAR SLAM, then
a very good localization and mapping accuracy can be obtained (er-
ror standard deviation up to 20 cm). However, even ranging standard
deviation error up to 2 metres, lead to a position estimation error of
about 60 cm.
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Chapter 6

Conclusions

In this thesis a general overview of the SLAM problem, his methods of reso-
lution and the actual state of the art have been presented. Then, simulations
on different technologies have been performed in order to obtain a comparison
and deduce some highlights.

The EKF is a robust method for SLAM implementation, which can be
applied when linear approximations and Gaussian noise approximation in
both motion and measurement model can be made. Otherwise, when the
aforesaid hypothesis is not applicable or the system experience very strong
non linearities, the RBPF is another consolidate method.

The simulations performed through different technologies, allow to draw
some conclusions:

� In the different simulations, the initial position of robots is supposed
known, thus making the estimation tracking errors during the different
laps almost constant, when the error standard deviation of the sensor
observations is restrained. Conversely, the localization of landmarks,
whose initial position is not known, tends to become more accurate as
the number of laps increases. The crowd-sensing concept justifies this
behaviour.

� A visual-based SLAM implementation, using an accurate camera sensor
(error standard deviation up to 5 px), can provide localization of robot
and mapping of the landmarks with an estimation error of about 10 cm.
A LIDAR-based SLAM implementation can reach the same accuracy.

� A RADAR-based SLAM implementation can overcome the difficulties
caused by NLOS conditions, typical of vision/LASER-based SLAM,
and does not need mechanical moving parts; besides, it allows the im-
plementation of a SLAM system in a more compact way and with less
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power consumption.

� A Wi-Fi SLAM system has been simulated considering a high distance
uncertainty, associated to the data provided by RSS, and a high an-
gular uncertainty, assuming this information coming from an antenna
array installed on a common smartphone. The achieved result shows a
good accuracy in the device localization (estimation error up to 0.6 m),
justifying the idea that Wi-Fi SLAM could be used in the next future
to implement low-cost SLAM.

� A mmW/UWB based SLAM has been simulated assuming very low
uncertainties in signal angle of arrival and distance estimation error
standard deviation parameters; the results have confirmed that these
technologies can achieve excellent performance; the figure 5.14, which
can be associated to a mmW technology, shows that an accuracy of
about 10 cm can be reached.

A possible next step, with respect to the technologies simulated in this
thesis activity, is to edit the code in order to make completely unknown
the initial robot position, in order to assess the robustness of SLAM in the
absence of strong hypothesis on a-priori knowledge.

In this way, it could be possible to understand whether crowd-sensing
can be beneficial not only to obtain an accurate localization of the mobile
user/robot, but also an accurate mapping of the environment, even in pres-
ence of scarcely accurate sensors.

Another important step could be the experimental implementation of
SLAM using real devices.
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Appendix A

MATLAB code for visual
SLAM

script configSLAM.m

1 %%USER CONFIGURATION PARAMETERS
2

3 CHOICE 2D 3D=0;
4 if CHOICE 2D 3D==0
5 HEIGHT SENSOR=1.5; %height of the sensor with respect

to robot
6 else
7 HEIGHT SENSOR=0.5;
8 end
9 N LOOPS=10; %If userDataCorridor 2 is used, the

number of loops can be defined
10 NLOOPFRAME=1200;
11 LAST FRAME=NLOOPFRAME*N LOOPS; %number of iterations
12 NLMKS ROBOT=25; %number of lmks initialized in the robot
13 LMK SIZE=6; %dimension of lmks
14 NPTS=5; %number of points for each side
15 CREATE VIDEO=false; %flag which activates creation of

videos of the simulation
16 PIX ERROR STD=0.1; %std error of the pinhole sensor
17 N ROBOT RND=20; %If userDataPnt rnd is used, the n of

robots is defined
18 WIDTH=20; %width of cloister of landmarks
19 POS STD=[0.1;0.1]; %position standard error of robot in

userDataCorridor 2
20 Sim Corr=1;
21 Choose=−1; %flag for the control of direction

chosen by robot in the corridor
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22 N ROBOTS='1';
23 KIND LMK='lin';
24 KIND SENSOR='p';
25 a=[N ROBOTS KIND LMK ' ' KIND SENSOR];
26

27 if Sim Corr==0;
28 switch a
29 case '1pnt p'
30 userDataPnt 1p;
31 case '1pnt o'
32 userDataPnt 1o;
33 case '2pnt p'
34 userDataPnt 2p;
35 case '2pnt o'
36 userDataPnt 2o;
37 case '2pnt m'
38 userDataPnt 2m;
39 case '3pnt p'
40 userDataPnt 3p;
41 case '1lin p'
42 userDataLin 1p;
43 case '2lin p'
44 userDataLin 2p;
45 case '3lin p'
46 userDataLin 3p;
47 case 'rnd pnt p'
48 userDataPnt rnd;
49 end
50 else
51 userData corridor
52 end

script slamtb.m

1 % SLAMTB An EKF−SLAM algorithm with simulator and graphics.
2 %
3 % This script performs multi−robot, multi−sensor, multi−

landmark 6DOF
4 % EKF−SLAM with simulation and graphics capabilities.
5 %
6 % Please read slamToolbox.pdf in the root directory thoroughly

before
7 % using this toolbox.
8 %
9 % − Beginners should not modify this file, just edit USERDATA.

M and enter
10 % and/or modify the data you wish to simulate.
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11 %
12 % − More advanced users should be able to create new landmark

models, new
13 % initialization methods, and possibly extensions to multi−map

SLAM. Good
14 % luck!
15 %
16 % − Expert users may want to add code for real−data

experiments.
17 %
18 % See also USERDATA, USERDATAPNT, USERDATALIN.
19 %
20 % Also consult slamToolbox.pdf in the root directory.
21

22 % Created and maintained by
23 % Copyright 2008, 2009, 2010 Joan Sola @ LAAS−CNRS.
24 % Copyright 2011, 2012, 2013 Joan Sola.
25 % Programmers (for parts of the toolbox):
26 % Copyright David Marquez and Jean−Marie Codol @ LAAS−CNRS
27 % Copyright Teresa Vidal−Calleja @ ACFR.
28 % See COPYING.TXT for full copyright license.
29

30 %% OK we start here
31

32 % clear workspace and declare globals
33

34 global Map
35

36 %% I. Specify user−defined options − EDIT configSLAM.m
37

38 configSLAM
39 SPS=1/Time.dt;
40 SENSE=pi/4*SPS;
41 clockwise=1; %Counterclockwise initialization of

sense
42 vel ang=SENSE*clockwise;
43

44 %% II. Initialize all data structures from user−defined data in
userData.m

45 % SLAM data
46 Position=Robot{1}.position(1:2); %Saving initial

position of the first robot
47

48 Orientation=Robot{1}.orientationDegrees(3); %Saving initial
orientation of the first robot

49

50 [Rob,Sen,Raw,Lmk,Obs,Tim] = createSlamStructures(...
51 Robot,...
52 Sensor,... % all user data
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53 Time,...
54 Opt);
55

56 % Simulation data
57 [SimRob,SimSen,SimLmk,SimOpt] = createSimStructures(...
58 Robot,...
59 Sensor,... % all user data
60 World,...
61 SimOpt);
62

63 % Graphics handles
64 [MapFig,SenFig] = createGraphicsStructures(...
65 Rob, Sen, Lmk, Obs,... % SLAM data
66 SimRob, SimSen, SimLmk,... % Simulator data
67 FigOpt); % User−defined graphic options
68

69 %%initialiting the vector of waypoints of this algorithm to use
them in the

70 %%lidar EKF SLAM and initializing the state of the robots that
are used to

71 %%get the waypoints and to get the MSE related to the positions
of the robots

72 v=zeros(1,NLMKS ROBOT);
73 wp=[];
74 jj=1;
75 real state=cell(1,length(MapFig.Rob));
76 est state=cell(1,length(MapFig.Rob));
77

78 %%saving the landmarks of this algorithm to use them in the
lidar EKF SLAM

79 if isequal(KIND LMK,'pnt')
80 lm=World.points(1:2,:);
81 end
82

83 %% III. Initialize data logging
84 % TODO: Create source and/or destination files and paths for

data input and
85 % logs.
86 % TODO: do something here to collect data for post−processing or
87 % plotting. Think about collecting data in files using fopen,

fwrite,
88 % etc., instead of creating large Matlab variables for data

logging.
89

90 % Clear user data − not needed anymore
91 clear Robot Sensor World Time % clear all user data
92 S=0;
93 %% IV. Main loop
94 original=SimRob.con.u;
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95

96 for currentFrame = Tim.firstFrame : Tim.lastFrame
97 % 1. SIMULATION
98 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
99

100 % Simulate robots
101 % pause
102 for rob = [SimRob.rob]
103

104 SS=locate robot(SimRob(rob).state.x);
105 POS=SS(1:2);
106 SS(1:2)=[];
107 ORI=SS;
108 Det Dir
109

110 % % All landmarks are set visible
111 % for i=1:length(Obs)
112 % Obs(i).vis=true;
113 % end
114

115 SimRob(rob) = simMotion(SimRob(rob),Tim);
116

117 % Simulate sensor observations
118 for sen = SimRob(rob).sensors
119

120 % Observe simulated landmarks
121 Raw(sen) = simObservation(SimRob(rob), SimSen(sen),

SimLmk, SimOpt) ;
122

123 end % end process sensors
124

125 end % end process robots
126

127 % 2. ESTIMATION
128 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
129

130 % Process robots
131 for rob = [Rob.rob]
132

133 % Robot motion
134 % NOTE: in a regular, non−simulated SLAM, this line is

not here and
135 % noise just comes from the real world. Here, the

estimated robot
136 % is noised so that the simulated trajectory can be made

perfect
137 % and act as a clear reference. The noise is additive to

the
138 % control input 'u'.
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139 Rob(rob).con.u = SimRob(rob).con.u + Rob(rob).con.uStd.*
randn(size(Rob(rob).con.uStd));

140 Rob(rob) = motion(Rob(rob),Tim);
141 Map.t = Map.t + Tim.dt;
142

143 % Process sensor observations
144 for sen = Rob(rob).sensors
145 % DetVisLmk
146 % Observe known landmarks
147 [Rob(rob),Sen(sen),Lmk,Obs(sen,:),v,D,sss] =

correctKnownLmks( ...
148 Rob(rob), ...
149 Sen(sen), ...
150 Raw(sen), ...
151 Lmk, ...
152 Obs(sen,:), ...
153 Opt, SimLmk, SimRob,v) ;
154 % pause
155 % Initialize new landmarks
156 ninits = Opt.init.nbrInits(1 + (currentFrame ˜= Tim.

firstFrame));
157 % DetVisLmk
158

159 for i = 1:ninits
160 [Lmk,Obs(sen,:),v] = initNewLmk(...
161 Rob(rob), ...
162 Sen(sen), ...
163 Raw(sen), ...
164 Lmk, ...
165 Obs(sen,:), ...
166 Opt,v,SimLmk,SimRob,D,sss) ;
167 end
168

169 end % end process sensors
170

171 end % end process robots
172

173

174 % 3. VISUALIZATION
175 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
176

177 if currentFrame == Tim.firstFrame ...
178 | | currentFrame == Tim.lastFrame ...
179 | | mod(currentFrame,FigOpt.rendPeriod) == 0
180

181 % Figure of the Map:
182 MapFig = drawMapFig(MapFig, ...
183 Rob, Sen, Lmk, ...
184 SimRob, SimSen, ...
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185 FigOpt);
186

187 if FigOpt.createVideo
188 makeVideoFrame(MapFig, ...
189 sprintf('map−%05d.png',currentFrame), ...
190 FigOpt, ExpOpt);
191 end
192

193 % Figures for all sensors
194 for sen = [Sen.sen]
195 SenFig(sen) = drawSenFig(SenFig(sen), ...
196 Sen(sen), Raw(sen), Obs(sen,:), ...
197 FigOpt);
198

199

200 if FigOpt.createVideo
201 makeVideoFrame(SenFig(sen), ...
202 sprintf('sen%02d−%05d.png', sen,

currentFrame),...
203 FigOpt, ExpOpt);
204 end
205

206 end
207

208 % Do draw all objects
209 drawnow;
210 end
211

212

213 % 4. DATA LOGGING
214 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
215 % TODO: do something here to collect data for post−

processing or
216 % plotting. Think about collecting data in files using fopen

, fwrite,
217 % etc., instead of creating large Matlab variables for data

logging.
218

219 %Real and estimated positions of the robots
220 for i=1:length(MapFig.Rob)
221 real state{i}=[real state{i} SimRob(i).state.x];
222 est state{i} =[est state{i} Rob(i).state.x];
223 end
224

225 if mod(currentFrame,20)==0
226 wp=[wp real state{i}(1:2,currentFrame)];
227 end
228 if mod(currentFrame,NLOOPFRAME)==0
229 calc RMSE
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230 dataRMSE lmk(jj)=RMSE lmk;
231 dataRMSE pos(jj)=RMSE pos;
232 jj=jj+1;
233 end
234 end
235 %% V. Post−processing
236 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
237 % Enter post−processing code here
238 %savinf variables for the other algorithm
239 wp=[Position [Orientation;0] wp];
240 % save ('new data.mat','lm','wp')
241 DIST AP=5;
242 lim x=LENGTH/2;
243 AP x=−LENGTH/2+DIST AP
244 AP lm=[];
245 while AP x<lim x
246 AP lm=[ AP lm [AP x;−WIDTH/2+CORR/2] [AP x;+WIDTH/2−CORR

/2] ];
247 AP x=AP x+DIST AP;
248 end
249 %%Calculating the MSE
250 calc RMSE
251

252 %%Creating a video of the simulation related to the first 2
robots

253 if CREATE VIDEO==true
254 CreateVideoMap
255 CreateVideoSen1
256 CreateVideoSen2
257 end
258

259 save ('LMWP.mat','lm','wp','N LOOPS','NLOOPFRAME','WIDTh','
LENGTH','CORR','NDOOR SIDE','AP lm')

260 save (['new data' num2str(PIX ERROR STD) '.mat' ],'dataRMSE lmk'
,'dataRMSE pos')

261

262 % ========== End of function − Start GPL license ==========
263

264

265 % # START GPL LICENSE
266

267 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

268 %
269 % This file is part of SLAMTB, a SLAM toolbox for Matlab.
270 %
271 % SLAMTB is free software: you can redistribute it and/or

modify
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272 % it under the terms of the GNU General Public License as
published by

273 % the Free Software Foundation, either version 3 of the
License, or

274 % (at your option) any later version.
275 %
276 % SLAMTB is distributed in the hope that it will be useful,
277 % but WITHOUT ANY WARRANTY; without even the implied warranty

of
278 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See

the
279 % GNU General Public License for more details.
280 %
281 % You should have received a copy of the GNU General Public

License
282 % along with SLAMTB. If not, see <http://www.gnu.org/licenses

/>.
283 %
284 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

285

286 % SLAMTB is Copyright 2007, 2008, 2009, 2010, 2011, 2012
287 % by Joan Sola @ LAAS−CNRS.
288 % SLAMTB is Copyright 2009
289 % by Joan Sola, David Marquez and Jean Marie Codol @ LAAS−CNRS

.
290 % See on top of this file for its particular copyright.
291

292 % # END GPL LICENSE

script userData corridor.m

1 % USERDATA User data for SLAMTB.
2 % Edit this script to enter the information you need for SLAM.

Variable
3 % names and comments should make this file easy to understand.

Follow
4 % these guidelines:
5 %
6 % * Specify site and estimation details for the current run in

ExpOpt.
7 % * Specify sampling time and start and end frames in Tim.
8 % * Use as many robots and sensors as you wish with Robot{}

and Sensor{}.
9 % * Assign sensors to robots via Sensor{i}.robot.

10 % * Use field Sensor{i}.distortion for radial distortion
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parameters if
11 % desired.
12 % * Use the field Opt.map.numLmk and .lmkSize to specify the

maximum
13 % number of landmarks that the SLAM map must support.
14 % * Use Opt.init.initType to select the type of landmarks to

use. Try
15 % with one in this list:
16 % 'idpPnt', 'hmgPnt', 'ahmPnt', 'plkLin', 'ahmLin'.
17 % * Use World.points and World.segments to create artificial

worlds of
18 % points or segments. Check functions THICKCLOISTER and HOUSE.
19 %
20 % See further comments within the file for more detailed

information.
21 %
22 % NOTE: You can have multiple copies of this file with

different names to
23 % store different simulation conditions. Just modify the call

in SLAMTB
24 % to point to the particular 'USERDATA' file you want.
25 %
26 % See also SLAMTB, EULERANGLES, THICKCLOISTER, HOUSE,

USERDATAPNT,
27 % USERDATALIN.
28

29 % Copyright 2008−2009 Joan Sola @ LAAS−CNRS.
30

31 % Time variables
32 % − sampling time, first and last frames
33

34 global LENGTH
35 global WIDTh
36 global HEIGHT
37 global CORR
38 global NDOOR SIDE
39

40 LENGTH = 40;
41 WIDTh = 20;
42 HEIGHT = 4;
43 CORR = 6;
44 NDOOR SIDE = 3;
45

46

47 Time = struct(...
48 'dt', .1,... % sampling time,

seconds
49 'firstFrame', 1,... % first frame #
50 'lastFrame', LAST FRAME); % last frame #
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51

52 % Simulated world
53 % − Simulation landmark sets, playground dimensions
54

55

56 lm=[[−LENGTH/2;WIDTh/2;HEIGHT/2] [−LENGTH/2;−WIDTh/2;HEIGHT
/2]...%EXTERNAL WALLS EDGES

57 [LENGTH/2;WIDTh/2;HEIGHT/2] [LENGTH/2;−WIDTh/2;HEIGHT/2]...
58 [−LENGTH/2+CORR;WIDTh/2−CORR;HEIGHT/2] [−LENGTH/2+CORR;−

WIDTh/2+CORR;HEIGHT/2]...%INTERNAL WALLS EDGES
59 [−CORR/2;WIDTh/2−CORR;HEIGHT/2] [−CORR/2;−WIDTh/2+CORR;

HEIGHT/2]...
60 [LENGTH/2−CORR;WIDTh/2−CORR;HEIGHT/2] [LENGTH/2−CORR;−WIDTh

/2+CORR;HEIGHT/2]...
61 [+CORR/2;WIDTh/2−CORR;HEIGHT/2] [+CORR/2;−WIDTh/2+CORR;

HEIGHT/2]];
62 door lm=linspace(−LENGTH/2,LENGTH/2,NDOOR SIDE+2);
63 door lmy=linspace(−WIDTh/2,WIDTh/2,round(NDOOR SIDE/2+2));
64 door lm=door lm(2:end−1);
65 door lmy=door lmy(2:end−1);
66 door lma=door lm;
67 door lmay=door lmy;
68 door lm=[door lm;−WIDTh/2*ones(1,length(door lm));HEIGHT/2*ones

(1,length(door lm))];
69 door lma=[door lma;WIDTh/2*ones(1,length(door lma));HEIGHT/2*

ones(1,length(door lma))];
70

71 door lmy=[−LENGTH/2*ones(1,length(door lmy));door lmy;HEIGHT/2*
ones(1,length(door lmy))];

72 door lmay=[LENGTH/2*ones(1,length(door lmay));door lmay;HEIGHT
/2*ones(1,length(door lmay))];

73 lm=[lm door lm door lma door lmy door lmay];
74

75

76

77 World = struct(...
78 'points', lm,... % 3d point landmarks − see

THICKCLOISTER. GenLmk(CHOICE 2D 3D,NPTS,WIDTH)
79 'segments', Corridor Ing Ces(LENGTH,WIDTh,HEIGHT,CORR,

door lm)); % 3D segments − see HOUSE. house
(−2,−2,0)

80

81 % Robot things with their controls
82 % − each robot's type and initial configuration, and controls.
83 % − motion models (add new model strings if you need more):
84 % 'constVel' 6D Constant velocity model
85 % 'odometry' 6D Odometry model
86 % 'inertial' 6D IMU−based model
87 % − See EULERANGLES for orientations specifications.
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88

89

90 Robot{1} = struct(... % ODOMETRY EXAMPLE
91 'id', 1,... % robot identifier
92 'name', 'Dala',... % robot name
93 'type', 'atrv',... % type of robot
94 'motion', 'odometry',... % motion model
95 'position', [LENGTH/2−CORR;−(WIDTh−CORR)/2;0],...

% robot position in map
96 'orientationDegrees', [0;0;0],... % orientation, in

degrees, [roll; pitch; yaw].
97 'positionStd', [POS STD;0],... % position error,

std
98 'orientationStd', [0;0;0],... % orient. error, std, in

degrees
99 'dx', [.08;0;0],... % position increment

100 'daDegrees', [0;0;1.8],... % angle increment,
degrees

101 'dxStd', 0.005*[1;1;0],... % odo linear error
std

102 'daStd', 0.05*[1;1;1]); % odo ang error std,
degrees

103

104 % Sensor things
105 % − each sensor's type and parameters, noise, non−measurable

prior.
106 % − Sensor types (add new type strings if you need more):
107 % 'pinHole' Pin−hole camera
108 % − See EULERANGLES for orientations specifications.
109

110 Sensor{1} = struct(...
111 'id', 1,... % sensor identifier
112 'name', 'Micropix',... % sensor name
113 'type', 'pinHole',... % type of sensor
114 'robot', 1,... % robot where it is

mounted
115 'position', [0;0;HEIGHT SENSOR],... % position in

robot
116 'orientationDegrees', [−90;0;−90],... % orientation in robot,

[roll; pitch; yaw]
117 'positionStd', [0;0;0],... % position error std
118 'orientationStd', [0;0;0],... % orient. error std
119 'imageSize', [640;480],... % image size
120 'pixErrorStd', PIX ERROR STD,... % pixel error

std
121 'intrinsic', [320;240;320;320],... % intrinsic params

[u0 v0 au av]
122 'distortion', [−0.3;0.1],... % distortion

params
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123 'frameInMap', false,... % add sensor frame in
slam map?

124 'imGrid', struct(... % grid for Active
Search

125 'numCells', [8;6],... % number of H and V
grid cells

126 'skipOuter', true)); % skip outer cells for
initialization?

127

128

129 % Omnidirectional camera model −> MegaPixel Fish Eye lens as
example (FoV is ˜190 deg )

130 % k = [668 438 1 0 0]';
131 % invProjDist = [4.473e+2 −0.000e+0 −1.068e−3 1.184e−6 −1.856e

−9]';
132 % projDist = [6.447e+2 −3.410e+2 −2.901e+1 −5.770e+1 1.849e+1

5.415e+0 5.065e+1 −5.614e+1 1.591e+1 0 0]';
133 % Sensor{1} = struct(...
134 % 'id', 1,... % sensor identifier
135 % 'name', 'FrontCam',... % sensor name
136 % 'type', 'omniCam',... % type of sensor
137 % 'robot', 1,... % robot where it is

mounted
138 % 'position', [0.2;0;1.2],... % position in robot
139 % 'orientationDegrees', [−120;0;−90],...% orientation in robot

, [roll; pitch; yaw].
140 % 'positionStd', [0;0;0],... % position error std
141 % 'orientationStd', [0;0;0],... % orient. error std
142 % 'imageSize', [1280;800],... % image size
143 % 'pixErrorStd', 1.0,... % pixel error std
144 % 'intrinsic', k,... % intrinsic params: [

xc yc c d e]';
145 % 'distortion', projDist,... % distortion params −>

polynom for projection to cam sensor
146 % 'invDistortion', invProjDist,... % distortion params −>

polynom for inv proj from cam sensor
147 % 'frameInMap', false,... % add sensor frame in

slam map?
148 % 'imGrid', struct(... % grid for Active

Search
149 % 'numCells', [8;6],... % number of H and V

grid cells
150 % 'skipOuter', true)); % skip outer cells for

initialization?
151

152

153

154 % Estimation options
155 Opt = struct(...
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156 'map', struct(... % options for the map
157 'numLmks', NLMKS ROBOT,... % number of 3d

landmarks
158 'lmkSize', LMK SIZE),... % Size of landmark
159 'correct', struct(... % options for lmk correction
160 'reprojectLmks', true,... % reproject lmks after

active search?
161 'reparametrize', true,... % reparametrize lmk?
162 'nUpdates', 10,... % max simultaneus updates
163 'MD2th', 9,... % Threshold on Mahalanobis

distance squared
164 'linTestIdp', 0.1,... % threshold on IDP

linearity test
165 'lines', struct(... % options for line

corrections
166 'innType', 'ortDst',... % innovation type for

lines
167 'extPolicy', false,... % line extending policy ?
168 'extSwitch', 10)),... % extension policy switch

point in pixels
169 'init', struct(... % Options for initialization
170 'nbrInits', [1 1],... % number of inits [

firstFrame, otherFrames]
171 'initType', 'idpPnt',... % Type of lmk to use for

init
172 'idpPnt', struct(... % options for lmk

initialization
173 'nonObsMean', .01,... % mean of non obs
174 'nonObsStd', .5),... % std of non obs
175 'idpLin', struct(... % opt. for Plucker and

anchored Plucker lines init
176 'nonObsMean', [.1;0],... % mean of non obs
177 'nonObsStd', [.25;1])),... % std of non obs
178 'obs', struct(... % Observation options
179 'lines', struct(... % lines options
180 'minLength', 20))); % minimum segment length
181

182

183 % Simulation options
184 % − random
185 SimOpt = struct(...
186 'random', struct(... % random generator options
187 'newSeed', false,... % select new random seed

?
188 'fixedSeed', 208948,... % random seed for

non−random runs
189 'seed', []),... % current seed
190 'obs', Opt.obs); % Observation options
191
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192

193

194 % Figure options
195 % − view, projection, video, ellipses.
196 % − figure projections − mapProj:
197 % 'persp' Perspective
198 % 'ortho' Orthographic
199 % − 3D figure views − mapView − see MAPOBSERVER.
200 % [a,e,f] Custom azimuth/elevation/FOV vector.

Distance automatic
201 % [a,e,f,d] custom az/el/fov/distance vector.
202 % − 3D figure predefined views (edit mapObserver.m to create/

edit views):
203 % 'top' Top view
204 % 'side' Side view
205 % 'view' Generic view
206 % 'normal' Normal view
207 % − objects colors − two options for color specification:
208 % 'rgbcmykw' 1−char predifined Matlab colors
209 % [r g b] RGB color vector. [0 0 0] is black, [1 1 1]

is white.
210 FigOpt = struct(...
211 'renderer', 'zbuffer',... % renderer
212 'rendPeriod', 1,... % frames to skip for faster

processing
213 'createVideo', CREATE VIDEO,... % create video

sequences?
214 'map', struct(... % map figure options
215 'size', [1280 960],... % map figure size
216 'lims', struct(... % playground limits
217 'xMin', −LENGTH/2−5,...
218 'xMax', LENGTH/2+5,...
219 'yMin', −WIDTh/2−5,...
220 'yMax', WIDTh/2+5,...
221 'zMin', −HEIGHT/2−5,...
222 'zMax', HEIGHT/2+5),...
223 'proj', 'persp',... % projection of the 3d

figure
224 'view', 'view',... % viewpoint of the 3d figure

[30 45 40 20]
225 'orbit', [0 0],... % Azimuth and Elevation

orbit angle increments − use to animate figure
226 'showSimLmk', true,... % show simulated landmarks?
227 'showEllip', true,... % show ellipsoids?
228 'colors', struct(... % map figure colors
229 'border', [1 1 1],... % [r g b]
230 'axes', [0 0 0],... % with:
231 'bckgnd', [1 1 1],... % [0 0 0] black
232 'simLmk', .3*[1 1 1],... % [1 1 1] white
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233 'defPnt', struct(... % euclidean point colors
234 'mean', 'b',... % mean dot
235 'ellip', [.7 .7 1]),... % ellipsoid
236 'othPnt', struct(... % other point colors
237 'mean', 'r',... % mean dot
238 'ellip', [1 .7 .7]),... % ellipsoid
239 'defLin', struct(... % Plucker line colors
240 'mean', [0 .8 0],... % mean line
241 'ellip', [.6 1 .6]),... % ellipsoid
242 'othLin', struct(... % Plucker line colors
243 'mean', [.8 0 0],... % mean line
244 'ellip', [1 .6 .6]),... % ellipsoid
245 'simu', 'b',... % or 'r', 'b', etc.
246 'est', 'g',... % estimated robots and

sensors
247 'ground', [.8 .8 .8],... % simulated robots and

sensors
248 'label', [.0 .5 0])),... % landmark ID labels
249 'sensor', struct(... % sensor figures options
250 'size', [320 240],... % sensor figure size
251 'showEllip', false,... % show ellipses?
252 'colors', struct(... % Sensor figure colors:
253 'border', .8*[1 1 1],... %
254 'axes', [0 0 0],... %
255 'bckgnd', [1 1 1],... %
256 'raw', .3*[1 1 1],... %
257 'defPnt', struct(... % Default point colors
258 'updated', 'c',... % updated
259 'predicted','b'),... % predicted
260 'othPnt', struct(... % other point colors
261 'updated', 'r',... % updated
262 'predicted','m'),... % predicted
263 'defLin', struct(... % Default line colors
264 'meas', 'b',... % measurement
265 'mean', 'g',... % mean line
266 'ellip', 'y'),... % ellipsoid
267 'othLin', struct(... % other line colors
268 'meas', 'b',... % measurement
269 'mean', 'm',... % mean line
270 'ellip', 'r'),... % ellipsoid
271 'label', [.5 .5 .5]))); %
272

273

274 % Experiment options
275 % − site name, series gathered, estimation run number
276 ExpOpt = struct(...
277 'root', '˜/SLAM/',... % root directory
278 'site', 'simu',... % Name of the site
279 'dataRun', 1,... % Run # on this site
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280 'estimateRun', 1,... % slam run for data and
site

281 'lmkTypes', Opt.init.initType,... % types of landmarks
used

282 'sensingType', 'mono',... % sensing mode
283 'mappingType', 'single'); % mapping mode
284

285

286

287 % ========== End of function − Start GPL license ==========
288

289

290 % # START GPL LICENSE
291

292 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

293 %
294 % This file is part of SLAMTB, a SLAM toolbox for Matlab.
295 %
296 % SLAMTB is free software: you can redistribute it and/or

modify
297 % it under the terms of the GNU General Public License as

published by
298 % the Free Software Foundation, either version 3 of the

License, or
299 % (at your option) any later version.
300 %
301 % SLAMTB is distributed in the hope that it will be useful,
302 % but WITHOUT ANY WARRANTY; without even the implied warranty

of
303 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See

the
304 % GNU General Public License for more details.
305 %
306 % You should have received a copy of the GNU General Public

License
307 % along with SLAMTB. If not, see <http://www.gnu.org/licenses

/>.
308 %
309 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

310

311 % SLAMTB is Copyright 2007, 2008, 2009, 2010, 2011, 2012
312 % by Joan Sola @ LAAS−CNRS.
313 % SLAMTB is Copyright 2009
314 % by Joan Sola, David Marquez and Jean Marie Codol @ LAAS−CNRS

.
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315 % See on top of this file for its particular copyright.
316

317 % # END GPL LICENSE

script Corridor Ing Ces.m

1 function Corr Seg=Corridor Ing Ces(len,width,height,corr,doors)
2 hold on
3

4 %Defining Points
5 A=[−len/2;−width/2;0];
6 B=[len/2;−width/2;0];
7 C=[len/2;−width/2;height];
8 D=[−len/2;−width/2;height];
9 E=[−len/2;width/2;0];

10 F=[len/2;width/2;0];
11 G=[len/2;width/2;height];
12 H=[−len/2;width/2;height];
13 I=[−len/2+corr;−width/2+corr;height];
14 J=[−corr/2;−width/2+corr;height];
15 K=[−corr/2;width/2−corr;height];
16 L=[−len/2+corr;width/2−corr;height];
17 M=[−len/2+corr;−width/2+corr;0];
18 N=[−corr/2;−width/2+corr;0];
19 O=[−corr/2;width/2−corr;0];
20 P=[−len/2+corr;width/2−corr;0];
21 Q=[corr/2;−width/2+corr;height];
22 R=[len/2−corr;−width/2+corr;height];
23 S=[len/2−corr;width/2−corr;height];
24 T=[corr/2;width/2−corr;height];
25 U=[corr/2;−width/2+corr;0];
26 V=[len/2−corr;−width/2+corr;0];
27 Z=[len/2−corr;width/2−corr;0];
28 Y=[corr/2;width/2−corr;0];
29

30 %Defining segments; DH AE GC FB must be commented to simulate a
uninterrupted corridor

31 Corr Seg=[[A;D] [A;B] [A;E] [B;C] [B;F] [C;G] [C;D] [D;H] [E;H]
[E;F] [F;G] [G;H],...

32 [M;N] [M;P] [M;I] [I;J] [J;N] [J;K] [I;L] [N;O] [L;K]
[O;K] [O;P] [P;L],...

33 [T;S] [S;R] [R;Q] [T;Q] [Q;U] [U;V] [Z;V] [Z;Y] [T;Y]
[U;Y] [R;V] [S;Z],...

34 ];
35 end
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script locate robot.m

1 function SS = locate robot(state)
2

3 %This function is used to determine the state of the robot in
the map in

4 %terms of orientation and position; this is then used to
determine the

5 %actions to take to move the robot in the proper way along the
corridor

6

7 global LENGTH
8 global WIDTh
9 global HEIGHT

10 global CORR
11 global NDOOR SIDE
12

13 LENGTH = 40;
14 WIDTh = 20;
15 HEIGHT = 4;
16 CORR = 6;
17 NDOOR SIDE = 3;
18

19

20 %Determining orientation
21 ang=q2e(state(4:7));
22 ang=rad2deg(ang(3));
23

24

25 if ang>−5 && ang<5
26 ORI='ORI0';
27 elseif ang>40 && ang<50
28 ORI='ORI45';
29 elseif ang>85 && ang<95
30 ORI='ORI90';
31 elseif ang>130 && ang<140
32 ORI='ORI135';
33 elseif (ang>175 && ang<185) | |(ang>−185 && ang<−175)
34 ORI='ORI180';
35 elseif ang>−50 && ang<−40
36 ORI='ORI−45';
37 elseif ang>−95 && ang<−85
38 ORI='ORI−90';
39 elseif ang>−140 && ang<−130
40 ORI='ORI−135';
41 else
42 ORI='ORIOTH';
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43 end
44

45 %determining position along the axis
46 if state(2)<−WIDTh/2+CORR
47 POSY='A';
48 elseif state(2)<WIDTh/2−CORR
49 POSY='B';
50 else
51 POSY='C';
52 end
53 if state(1)<−LENGTH/2+CORR
54 POSX='A';
55 elseif state(1)<−CORR/2
56 POSX='B';
57 elseif state(1)<CORR/2
58 POSX='C';
59 elseif state(1)<LENGTH/2−CORR
60 POSX='D';
61 else
62 POSX='E';
63 end
64

65 SS=[POSX POSY ORI];
66 end

script Det Dir.m

1 % This code is used to determine the direction of the robot in
the case

2 % of 'odometry' model of motion
3

4 % Original control action is saved
5 SimRob.con.u=original;
6 switch POS %When the robot is not at the corners, it

must go forward without changing direction
7 case 'CA'
8 original=SimRob.con.u;
9 SimRob.con.u(6)=0;

10 case 'CC'
11 original=SimRob.con.u;
12 SimRob.con.u(6)=0;
13 case 'BA'
14 original=SimRob.con.u;
15 SimRob.con.u(6)=0;
16 case 'DA'
17 original=SimRob.con.u;
18 SimRob.con.u(6)=0;

100



19 case 'EB'
20 original=SimRob.con.u;
21 SimRob.con.u(6)=0;
22 case 'DC'
23 original=SimRob.con.u;
24 SimRob.con.u(6)=0;
25 case 'BC'
26 original=SimRob.con.u;
27 SimRob.con.u(6)=0;
28 case 'AB'
29 original=SimRob.con.u;
30 SimRob.con.u(6)=0;
31

32 case 'AA' %when the robot arrives at the corners
, it must change direction

33 switch ORI %until the right direction is
obtained, then the direction must be kept

34 case 'ORI0'
35 original=SimRob.con.u;
36 SimRob.con.u(6)=0;
37 end
38 case 'EA'
39 switch ORI
40 case 'ORI90'
41 original=SimRob.con.u;
42 SimRob.con.u(6)=0;
43 end
44 case 'EC'
45 switch ORI
46 case 'ORI180'
47 original=SimRob.con.u;
48 SimRob.con.u(6)=0;
49 end
50 case 'AC'
51 switch ORI
52 case 'ORI−90'
53 original=SimRob.con.u;
54 SimRob.con.u(6)=0;
55 end
56 end

script DetVisLmk.m

1 %This code disables landmarks that are not visibile in the real
environment

2 sss=[];
3 %Bottom corridor
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4 if SimRob.state.x(1)<LENGTH/2−CORR && SimRob.state.x(2)<−WIDTh
/2+CORR

5 sss=1;
6 cat2=(−WIDTh/2+CORR)−SimRob.state.x(2);
7 cat1=LENGTH/2−CORR−SimRob.state.x(1);
8 ang vis=atan(cat2/cat1);
9 D=−WIDTh/2+CORR*(1+tan(ang vis));

10 for i=1:length(Obs)
11 if ˜isempty(Obs(i).lid)
12 if SimLmk.points.coord(2,Obs(i).lid)>D
13 v(i)=1;
14 else
15 v(i)=0;
16 end
17 end
18 if v(i)==1
19 Obs(i).vis=false;
20 end
21 end
22 end
23

24 if SimRob.state.x(1)>−LENGTH/2+CORR && SimRob.state.x(2)>WIDTh
/2−CORR

25 sss=3;
26 cat2=SimRob.state.x(2)−(WIDTh/2−CORR);
27 cat1=SimRob.state.x(1)−(−LENGTH/2+CORR);
28 ang vis=atan(cat2/cat1);
29 D=WIDTh/2−CORR*(1+tan(ang vis));
30 for i=1:length(Obs)
31 if ˜isempty(Obs(i).lid)
32 if SimLmk.points.coord(2,Obs(i).lid)<D
33 v(i)=1;
34 else
35 v(i)=0;
36 end
37 end
38 if v(i)==1
39 Obs(i).vis=false;
40 end
41 end
42 end
43

44 if SimRob.state.x(2)<WIDTh/2−CORR && SimRob.state.x(1)>LENGTH/2−
CORR

45 sss=2;
46 cat2=SimRob.state.x(1)−LENGTH/2+CORR;
47 cat1=WIDTh/2−CORR−SimRob.state.x(2);
48 ang vis=atan(cat2/cat1);
49 D=LENGTH/2−CORR*(1+tan(ang vis));
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50 for i=1:length(Obs)
51 if ˜isempty(Obs(i).lid)
52 if SimLmk.points.coord(1,Obs(i).lid)<D
53 v(i)=1;
54 else
55 v(i)=0;
56 end
57 end
58 if v(i)==1
59 Obs(i).vis=false;
60 end
61 end
62 end
63

64 if SimRob.state.x(2)>−WIDTh/2+CORR && SimRob.state.x(1)<−LENGTH
/2+CORR

65 sss=4;
66 cat2=−LENGTH/2+CORR−SimRob.state.x(1);
67 cat1=SimRob.state.x(2)−(−WIDTh/2+CORR);
68 ang vis=atan(cat2/cat1);
69 D=−LENGTH/2+CORR*(1+tan(ang vis));
70 for i=1:length(Obs)
71 if ˜isempty(Obs(i).lid)
72 if SimLmk.points.coord(1,Obs(i).lid)>D
73 v(i)=1;
74 else
75 v(i)=0;
76 end
77 end
78 if v(i)==1
79 Obs(i).vis=false;
80 end
81 end
82 end
83

84 % debug
85 c=zeros(2,length(Obs));
86 for i=1:length(c)
87 if Obs(i).vis==true
88 c(1,i)=0;
89 else
90 c(1,i)=1;
91 end
92 if ˜isempty(Obs(i).lid)
93 c(2,i)=Obs(i).lid;
94 end
95 end
96 % c
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script calc RMSE.m

1 num MSE lmk=0;
2 num MSE pos=0;
3

4 for i=1:length(SimLmk.points.coord)
5 if ˜isempty(MapFig.Lmk(i).mean.XData)
6 coord meas(1,str2num(MapFig.Lmk(i).label.String))=MapFig

.Lmk(i).mean.XData;
7 coord meas(2,str2num(MapFig.Lmk(i).label.String))=MapFig

.Lmk(i).mean.YData;
8 end
9

10 end
11 err lmk=SimLmk.points.coord(1:2,:)−coord meas;
12 for i=1:length(SimLmk.points.coord)
13 num MSE lmk=num MSE lmk+err lmk(1,i)ˆ2+err lmk(2,i)ˆ2;%+

err lmk(3,i)ˆ2
14 end
15 RMSE lmk=sqrt(num MSE lmk/length(SimLmk.points.coord))
16

17 err pos=cell(1,length(MapFig.Rob));
18 for i=1:length(MapFig.Rob)
19 err pos{i}=real state{i}−est state{i};
20 end
21

22 for i=1:length(real state{i})
23 for j=1:length(MapFig.Rob)
24 num MSE pos=num MSE pos+err pos{j}(1,i)ˆ2+err pos{j}(2,i)ˆ2;

%+err pos{j}(3,i)ˆ2
25 end
26 end
27

28 RMSE pos=sqrt(num MSE pos/(length(real state{1}*length(MapFig.
Rob))))
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Appendix B

MATLAB code for LASER
SLAM

script configfile.m

1 %%% Configuration file
2 %%% Permits various adjustments to parameters of the SLAM

algorithm.
3 %%% See ekfslam sim.m for more information
4 SCALE FACTOR=1
5 ORIENTATION=Orientation*SCALE FACTOR;
6 POSITION=Position*SCALE FACTOR;
7 wp=wp.*SCALE FACTOR;
8 lm=lm.*SCALE FACTOR;
9 % control parameters

10 V= 1; % m/s
11 MAXG= 360*pi/180; % radians, maximum steering angle (−MAXG < g <

MAXG)
12 RATEG= 180*pi/180; % rad/s, maximum rate of change in steer

angle
13 WHEELBASE= 4; % metres, vehicle wheel−base
14 SCALE VEHICLE=4;%scaling vehicle animation
15 DT CONTROLS= 0.025; % seconds, time interval between control

signals
16

17 % control noises
18 sigmaV= 0.1; % m/s
19 sigmaG= (0.1*pi/180); % radians
20 Q= [sigmaVˆ2 0; 0 sigmaGˆ2];
21

22 % observation parameters
23 MAX RANGE= 5.0; % metres
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24 DT OBSERVE= 8*DT CONTROLS; % seconds, time interval between
observations

25

26 % observation noises
27 sigmaR= 1; % metres
28 sigmaB= (10*pi/180); % radians
29 R= [sigmaRˆ2 0; 0 sigmaBˆ2];
30

31 % data association innovation gates (Mahalanobis distances)
32 GATE REJECT= 4.0; % maximum distance for association
33 GATE AUGMENT= 25.0; % minimum distance for creation of new

feature
34 % For 2−D observation:
35 % − common gates are: 1−sigma (1.0), 2−sigma (4.0), 3−sigma

(9.0), 4−sigma (16.0)
36 % − percent probability mass is: 1−sigma bounds 40%, 2−sigma

86%, 3−sigma 99%, 4−sigma 99.9%.
37

38 % waypoint proximity
39 AT WAYPOINT= 0.1; % metres, distance from current waypoint at

which to switch to next waypoint
40 NUMBER LOOPS= 3; % number of loops through the waypoint list
41

42 % switches
43 SWITCH CONTROL NOISE= 1; % if 0, velocity and gamma are perfect
44 SWITCH SENSOR NOISE = 1; % if 0, measurements are perfect
45 SWITCH INFLATE NOISE= 0; % if 1, the estimated Q and R are

inflated (ie, add stabilising noise)
46 SWITCH HEADING KNOWN= 0; % if 1, the vehicle heading is observed

directly at each iteration
47 SWITCH ASSOCIATION KNOWN= 1; % if 1, associations are given, if

0, they are estimated using gates
48 SWITCH BATCH UPDATE= 1; % if 1, process scan in batch, if 0,

process sequentially
49 SWITCH SEED RANDOM= 0; % if not 0, seed the randn() with its

value at beginning of simulation (for repeatability)
50 SWITCH USE IEKF= 1; % if 1, use iterated EKF for updates, if 0,

use normal EKF
51 SWITCH PROFILE= 0; % if 1, turn on MatLab profiling to measure

time consumed by simulator functions
52 SWITCH GRAPHICS= 1; % if 0, avoids plotting most animation data

to maximise simulation speed

script ekfslam sim.m

1 function data= ekfslam sim(lm, wp,WIDTh,LENGTH,CORR)
2 %function data= ekfslam sim(lm, wp)
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3 %
4 % INPUTS:
5 % lm − set of landmarks
6 % wp − set of waypoints
7 %
8 % OUTPUTS:
9 % data − a data structure containing:

10 % data.true: the vehicle 'true'−path (ie, where the
vehicle *actually* went)

11 % data.path: the vehicle path estimate (ie, where SLAM
estimates the vehicle went)

12 % data.state(k).x: the SLAM state vector at time k
13 % data.state(k).P: the diagonals of the SLAM covariance

matrix at time k
14 %
15 % NOTES:
16 % This program is a SLAM simulator. To use, create a set of

landmarks and
17 % vehicle waypoints (ie, waypoints for the desired vehicle

path). The program
18 % 'frontend.m' may be used to create this simulated

environment − type
19 % 'help frontend' for more information.
20 % The configuration of the simulator is managed by the

script file
21 % 'configfile.m'. To alter the parameters of the vehicle,

sensors, etc
22 % adjust this file. There are also several switches that

control certain
23 % filter options.
24 %
25 % Tim Bailey and Juan Nieto 2004.
26 % Version 2.0
27

28 format compact
29

30 Orientation = wp(1,2)
31 Position = wp(:,1)
32 wp=wp(:,3:end)
33 configfile; % ** USE THIS FILE TO CONFIGURE THE EKF−SLAM **
34

35 % Setup plots
36 fig=figure;
37 hold on
38 plot([−LENGTH/2, −LENGTH/2, LENGTH/2, LENGTH/2, −LENGTH/2],...
39 [−WIDTh/2, WIDTh/2, WIDTh/2, −WIDTh/2, −WIDTh/2],'k')
40 plot([−LENGTH/2+CORR, −LENGTH/2+CORR, −CORR/2, −CORR/2, −LENGTH

/2+CORR],...
41 [−WIDTh/2+CORR, WIDTh/2−CORR, WIDTh/2−CORR, −WIDTh/2+CORR, −
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WIDTh/2+CORR],'k')
42 plot([LENGTH/2−CORR, LENGTH/2−CORR, CORR/2, CORR/2, LENGTH/2−

CORR],...
43 [WIDTh/2−CORR, −WIDTh/2+CORR, −WIDTh/2+CORR, WIDTh/2−CORR,

WIDTh/2−CORR],'k')
44

45 plot(lm(1,:),lm(2,:),'b*')
46 hold on, axis equal, axis([−30 30 −20 20])
47 plot(wp(1,:),wp(2,:), 'g', wp(1,:),wp(2,:),'g.')
48

49 xlabel('metres'), ylabel('metres')
50 set(fig, 'name', 'EKF−SLAM Simulator')
51 h= setup animations;
52 veh= [0 −WHEELBASE/SCALE VEHICLE −WHEELBASE/SCALE VEHICLE; 0 −2/

SCALE VEHICLE 2/SCALE VEHICLE]; % vehicle animation
53 plines=[]; % for laser line animation
54 pcount=0;
55

56 % Initialise states and other global variables
57 global XX PX DATA
58 % xtrue=zeros(3,1);
59 xtrue= POSITION;
60 xtrue(3,1)=ORIENTATION;
61

62 XX= xtrue;
63 PX= zeros(3);
64 DATA= initialise store(XX,PX,XX); % stored data for off−line
65

66 % Initialise other variables and constants
67 dt= DT CONTROLS; % change in time between predicts
68 dtsum= 0; % change in time since last observation
69 ftag= 1:size(lm,2); % identifier for each landmark
70 da table= zeros(1,size(lm,2)); % data association table
71 iwp= 1; % index to first waypoint
72 G= 0; % initial steer angle
73 QE= Q; RE= R; if SWITCH INFLATE NOISE, QE= 2*Q; RE= 2*R; end %

inflate estimated noises (ie, add stabilising noise)
74 if SWITCH SEED RANDOM, rand('state',SWITCH SEED RANDOM), randn('

state',SWITCH SEED RANDOM), end
75

76 if SWITCH PROFILE, profile on −detail builtin, end
77

78 % Main loop
79 while iwp ˜= 0
80

81 % Compute true data
82 [G,iwp]= compute steering(xtrue, wp, iwp, AT WAYPOINT, G,

RATEG, MAXG, dt);
83
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84 if iwp==0 & NUMBER LOOPS > 1, pack; iwp=1; NUMBER LOOPS=
NUMBER LOOPS−1; end % perform loops: if final waypoint
reached, go back to first

85 xtrue= vehicle model(xtrue, V,G, WHEELBASE/SCALE VEHICLE,dt)
;

86

87 [Vn,Gn]= add control noise(V,G,Q, SWITCH CONTROL NOISE);
88

89 % EKF predict step
90 predict (Vn,Gn,QE, WHEELBASE/SCALE VEHICLE,dt);
91

92 % If heading known, observe heading
93 observe heading(xtrue(3), SWITCH HEADING KNOWN);
94

95 % Incorporate observation, (available every DT OBSERVE
seconds)

96 dtsum= dtsum + dt;
97 if dtsum >= DT OBSERVE
98 dtsum= 0;
99

100 % Compute true data
101 [z,ftag visible]= get observations(xtrue, lm, ftag,

MAX RANGE);
102 % z contiene la distanza esatta da tutti landmark

visibili nel
103 % semicerchio orientato secondo x(3)
104 z= add observation noise(z,R, SWITCH SENSOR NOISE);
105 % aggiunge rimore gaussiano con varianza R
106

107 % EKF update step
108 if SWITCH ASSOCIATION KNOWN == 1
109 [zf,idf,zn, da table]= data associate known(XX,z,

ftag visible, da table);
110 else
111 [zf,idf, zn]= data associate(XX,PX,z,RE, GATE REJECT

, GATE AUGMENT);
112 end
113

114 if SWITCH USE IEKF == 1
115 update iekf(zf,RE,idf, 5);
116 else
117 update(zf,RE,idf, SWITCH BATCH UPDATE);
118 end
119 augment(zn,RE);
120 end
121

122 % Offline data store
123 store data(XX, PX, xtrue);
124
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125 % Plots
126 xt= transformtoglobal(veh, xtrue);
127 set(h.xt, 'xdata', xt(1,:), 'ydata', xt(2,:))
128

129 if SWITCH GRAPHICS
130 xv= transformtoglobal(veh, XX(1:3));
131 pvcov= make vehicle covariance ellipse(XX,PX);
132 set(h.xv, 'xdata', xv(1,:), 'ydata', xv(2,:))
133 set(h.vcov, 'xdata', pvcov(1,:), 'ydata', pvcov(2,:))
134

135 pcount= pcount+1;
136 if pcount == 120 % plot path infrequently
137 pcount=0;
138 set(h.pth, 'xdata', DATA.path(1,1:DATA.i), 'ydata',

DATA.path(2,1:DATA.i))
139 end
140

141 if dtsum==0 & ˜isempty(z) % plots related to
observations

142 set(h.xf, 'xdata', XX(4:2:end), 'ydata', XX(5:2:end)
)

143 plines= make laser lines (z,XX(1:3));
144 set(h.obs, 'xdata', plines(1,:), 'ydata', plines

(2,:))
145 pfcov= make feature covariance ellipses(XX,PX);
146 set(h.fcov, 'xdata', pfcov(1,:), 'ydata', pfcov(2,:)

)
147 end
148 end
149 drawnow
150

151 end % end of main loop
152

153 if SWITCH PROFILE, profile report, end
154

155 data = finalise data(DATA);
156 set(h.pth, 'xdata', data.path(1,:), 'ydata', data.path(2,:))
157

158 clear global DATA
159 clear global XX
160 clear global PX
161

162 %
163 %
164

165 function h= setup animations()
166 h.xt= patch(0,0,'b','erasemode','xor'); % vehicle true
167 h.xv= patch(0,0,'r','erasemode','xor'); % vehicle estimate
168 h.pth= plot(0,0,'k.','markersize',2,'erasemode','background'); %
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vehicle path estimate
169 h.obs= plot(0,0,'y','erasemode','xor'); % observations
170 h.xf= plot(0,0,'r+','erasemode','xor'); % estimated features
171 h.vcov= plot(0,0,'r','erasemode','xor'); % vehicle covariance

ellipses
172 h.fcov= plot(0,0,'r','erasemode','xor'); % feature covariance

ellipses
173

174 %
175 %
176

177 function p= make laser lines (rb,xv)
178 % compute set of line segments for laser range−bearing

measurements
179 if isempty(rb), p=[]; return, end
180 len= size(rb,2);
181 lnes(1,:)= zeros(1,len)+ xv(1);
182 lnes(2,:)= zeros(1,len)+ xv(2);
183 lnes(3:4,:)= transformtoglobal([rb(1,:).*cos(rb(2,:)); rb(1,:).*

sin(rb(2,:))], xv);
184 p= line plot conversion (lnes);
185

186 %
187 %
188

189 function p= make vehicle covariance ellipse(x,P)
190 % compute ellipses for plotting vehicle covariances
191 N= 10;
192 inc= 2*pi/N;
193 phi= 0:inc:2*pi;
194 circ= 2*[cos(phi); sin(phi)];
195

196 p= make ellipse(x(1:2), P(1:2,1:2), circ);
197

198 function p= make feature covariance ellipses(x,P)
199 % compute ellipses for plotting feature covariances
200 N= 10;
201 inc= 2*pi/N;
202 phi= 0:inc:2*pi;
203 circ= 2*[cos(phi); sin(phi)];
204

205 lenx= length(x);
206 lenf= (lenx−3)/2;
207 p= zeros (2, lenf*(N+2));
208

209 ctr= 1;
210 for i=1:lenf
211 ii= ctr:(ctr+N+1);
212 jj= 2+2*i; jj= jj:jj+1;
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213

214 p(:,ii)= make ellipse(x(jj), P(jj,jj), circ);
215 ctr= ctr+N+2;
216 end
217

218 %
219 %
220

221 function p= make ellipse(x,P,circ)
222 % make a single 2−D ellipse
223 r= sqrtm 2by2(P);
224 a= r*circ;
225 p(2,:)= [a(2,:)+x(2) NaN];
226 p(1,:)= [a(1,:)+x(1) NaN];
227

228 %
229 %
230

231 function data= initialise store(x,P, xtrue)
232 % offline storage initialisation
233 data.i=1;
234 data.path= x;
235 data.true= xtrue;
236 data.state(1).x= x;
237 %data.state(1).P= P;
238 data.state(1).P= diag(P);
239

240 %
241 %
242

243 function store data(x, P, xtrue)
244 % add current data to offline storage
245 global DATA
246 CHUNK= 5000;
247 len= size(DATA.path,2);
248 if DATA.i == len % grow array exponentially to amortise

reallocation
249 if len < CHUNK, len= CHUNK; end
250 DATA.path= [DATA.path zeros(3,len)];
251 DATA.true= [DATA.true zeros(3,len)];
252 pack
253 end
254 i= DATA.i + 1;
255 DATA.i= i;
256 DATA.path(:,i)= x(1:3);
257 DATA.true(:,i)= xtrue;
258 DATA.state(i).x= x;
259 %DATA.state(i).P= P;
260 DATA.state(i).P= diag(P);
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261

262 %
263 %
264

265 function data = finalise data(data)
266 % offline storage finalisation
267 data.path= data.path(:,1:data.i);
268 data.true= data.true(:,1:data.i);

script calc RMSE lidar.m

1 %%CALCULATING MSE OF LIDAR EKF ALGORITHM
2 %Transducing the state vector into a matrix (2xN landmarks)
3 state lm=DATA.state(end).x(4:end);
4 est lm=[];
5 for i=1:2:length(state lm)
6 est lm=[est lm state lm(i:i+1)];
7 end
8

9 %Calculating MSE related to the landmarks positions
10 num MSE=0;
11 for i=1:length(est lm)
12 new dist 2=zeros(1,length(est lm));
13 corr=zeros(1,length(est lm));
14 for j=1:length(est lm)
15 new dist 2(j)=(lm(1,i)−est lm(1,j))ˆ2+(lm(2,i)−est lm(2,

j))ˆ2;
16 end
17 corr(i)=find(new dist 2==min(new dist 2));
18 num MSE=num MSE+new dist 2(corr(i));
19 end
20 MSE lm=num MSE/length(est lm);
21

22 %Calculating MSE related to the robot positions
23 num MSE=0;
24 xpos true=DATA.true(1:2,:);
25 xpos est =DATA.path(1:2,:);
26 diff=xpos true−xpos est;
27 MSE pos=sum(sum(diff.ˆ2))/length(diff);
28

29 RMSE pos=sqrt(MSE pos);
30 RMSE lm=sqrt(MSE lm);
31 db RMSE pos=[db RMSE pos RMSE pos];
32 db RMSE lm=[db RMSE lm RMSE lm];
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script execute ekf.m

1 close all
2 clear all
3 clc
4 load('LMWP.mat');
5

6 s=1;
7 ss=1;
8 for i=1:length(AP lm)
9 if s<3 && ss>0

10 AP lm(2,i)=−1+AP lm(2,i);
11 s=s+1;
12 elseif ss>0
13 s=−1;
14 ss=−1;
15 end
16 if s>−3 && ss<0
17 AP lm(2,i)=1+AP lm(2,i);
18 s=s−1;
19 elseif ss<0
20 s=1;
21 ss=1;
22 end
23 end
24

25 db rmse pos=[];
26 db rmse lm=[];
27 PERM ANG DIST=1
28 if PERM ANG DIST==0
29 std err metres=[0.01,0.1,0.5,1,1.5,2];
30 std err angle=5;
31 else
32 std err metres=0.5;
33 std err angle=[5,10,20,30,45,60];
34 end
35

36 if PERM ANG DIST==0
37 for ee=1:length(std err metres)
38 [RMSE pos,RMSE lm,data]= ekfslam sim(AP lm, wp,WIDTh,

LENGTH,CORR,std err metres(ee),std err angle);
39 db rmse pos=[db rmse pos;RMSE pos]
40 db rmse lm=[db rmse lm;RMSE lm]
41 end
42 else
43 for ee=1:length(std err angle)
44 [RMSE pos,RMSE lm,data]= ekfslam sim(AP lm, wp,WIDTh,
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LENGTH,CORR,std err metres,std err angle(ee));
45 db rmse pos=[db rmse pos;RMSE pos]
46 db rmse lm=[db rmse lm;RMSE lm]
47 end
48 end
49 tabless
50 plotgraphics lidar
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