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Finally, I must express my very profound gratitude to my parents and

all my family for providing me with unfailing support and continuous

encouragement throughout my years of study. This accomplishment

would not have been possible without them. Thank you.

Author

Nicola Ferroni



Abstract

Combinatorial optimization problems are typically tackled by the

branch-and-bound paradigm. We propose to learn a variable selection

policy for branch-and-bound in mixed-integer linear programming, by

imitation learning on a diversified variant of the strong branching ex-

pert rule. We encode states as bipartite graphs and parameterize the

policy as a graph convolutional neural network. Experiments on a

series of synthetic problems demonstrate that our approach produces

policies that can improve upon expert-designed branching rules on

large problems, and generalize to instances significantly larger than

seen during training.



Abstract

I problemi di ottimizzazione combinatoria sono tipicamente affrontati

tramite il paradigma branch-and-bound. L’obiettivo é imparare una

policy di variable selection per il branch-and-bound nei problemi di

mixed-integer linear programming, usando imitation learning su una

variante della regola strong branching. Lo stato del solver viene codifi-

cato come grafo bipartito e la policy come graph convolutional neural

network. Esperimenti dimostrano che l’approccio produce policy che

possono velocizzare l’esecuzione dell’algoritmo rispetto all’uso di eu-

ristiche esperte su problemi di grandi dimensioni, generalizzando su

problemi significativamente piú grandi rispetto a quelli visti durante

la fase di training.
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Chapter 1

Introduction

1.1 Context of the Study

Optimization is a discipline that studies different kind of problems where the

result is a decision that maximizes (or minimizes) a quantity (such as a profit)

by applying advanced mathematical techniques. The decision takes the name

of optimal solution (or near optimal in case of approximated methods). It is

used to improve decision-making, optimization and efficiency, and it is based on

problem formulation, i.e. mathematical model, that should give the most precise

representation of the problem. The nature of the problems could be very different,

so the formulation can involve many different techniques between all the possible

ones to find a solution considering the constraints, the computing power, and the

amount of time.

Some of the most common scenario that the operation research improved

are computing and information technologies, financial engineering, transports,

simulations, stochastic models, game theory, facility location and scheduling.

The focus of this thesis is on combinatorial optimization problems. In these

kind of problems it is almost impossible to perform an exhaustive search: the
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1.1 Context of the Study

space of possible solutions is typically too large to use brute force methods, and

no algorithm is guaranteed to find the optimal solution nor to run in polynomial

time in the worst case.

Combinatorial optimization problems can be solved using different methods,

usually integer programming techniques. An integer programming problem is a

formulation of a combinatorial optimization problem in which all the variables

must be integers, and it is defined through a function that needs to be maximized

(or minimized) and a list of constraints. We will focus on mixed-integer linear

programming method (MILP) where there could be also non discrete variables.

The linearity means that every mathematical expression that describes the model

has a linear form. If we want to find an exact solution, these kind of problems

are typically tackled with the branch-and-bound algorithm which is based on the

decomposition of the main problem in many smaller and simpler problems [1].

It consists of a systematic enumeration of candidate solutions in a tree structure

until the optimal one is found and proven to be optimal. A key step in the

algorithm is the selection of a fractional variable to branch on because it can have

a very significant impact on the size of the resulting search tree [2]. Branching

rules are one of the most important choices of modern Mixed-Integer Linear

Programming solvers [3; 4; 5; 6].

It has been shown [7] that to get significant improvements in number of ex-

plored nodes, we can perform an intensive dynamic use of strong branching rule

[8]; but its main issue is that it takes a lot of computational power, and as a

result, the total computing time is prohibitively high in practice. Many research

efforts over the last decade have been spent on finding an alternative ways to

make it lighter.

The most common technique, implemented by most modern solvers, is an

hybrid method that involves strong branching to build the first nodes, and then

2



1.2 Motivations

the pseudo-cost rule, which is very light and fast, but since it is based on past

decisions, it can not be used at the beginning. The goal of the thesis it to use

imitation learning to emulate the behavior of the strong branching rule, in order

to find a better trade off between computational time and number of expanded

nodes. It involves the usage of machine learning techniques, the generation of

a dataset, the shift of computation on a GPU (Graphic Processing Unit, used

by home personal computers as well, which are capable of high performances

in algebra operations) and the definition of what is a state and how can it be

encoded as a single instance of a dataset.

1.2 Motivations

There are two main reason why this research topic is interesting. The first one is

that it may be possible to use machine learning and deep learning to provide a

better trade-off for the variable selection process in terms of speed and precision.

The second one is related to the branch-and-bound nature, which is inherently

sequential.

It makes the usage of a multi-core CPU (Central Processing Unit, the basic

computing core of computer machines) not well optimized since one of the main

advantage of these CPU is the efficient management of parallel threads. Using

machine learning on the GPU is a kind of optimization of the computational

source and, given a money budget, it is easy to find out that a GPU is much

cheaper and more powerful than a CPU’s core.

1.3 Overview of the Thesis

In the first chapter there are details about combinatorial optimization and integer

programming framework and which are the main techniques with their pros and

3



1.3 Overview of the Thesis

cons. There are details about the state of the art and an alternative formulation

of the main algorithm as well.

In the second chapter there is an explanation about Machine Learning, which

are the main techniques and tools and which are the biggest challenges of this

project.

The third chapter contains all the details about the methodology, such as the

production of the dataset, the architectural choices, the implementations, the

hyper-parameter tunings and an ablation study to validate the global architec-

ture. There is also a section about the used tools, such as the solver, and details

about the choices.

In the fourth chapter there is an analysis about the related works: there

has been many different attempts to improve the performances of the variable

selection’s state of the art, such as regression models, support vector machines,

clustering based classifier and others.

In the fifth chapter there are all the collected results, such as benchmark on

different kind of problems, the experimental comparisons and evaluations against

the competitors and details about the experimental setup.

Finally, the last chapter contains the conclusions, where there is an over all

evaluation of the results and how it can impact the future research and develop-

ments.

4



Chapter 2

Operations Research Overview

Summary

Operations research was born due to military needs, during the Second World

War, to solve problems about strategy and tactics for defense. Most of the time,

the field of research has been directly practical, so the solutions had to be found

in a reasonable time and it became an application of the scientific method soon.

In the real field we often look for solutions that do not allow the presence of

decimal values (such as variables that represent counters or enumerations). This

gave rise to a new class of problems, now known as integer programming.

The theory of complexity, which studies the minimum necessary requirements

(in terms of computational time and memory), considers these kind of problems

hard to solve in the worst case. This theory divides the different problems in

many classes of complexity based on the best known algorithm that can solve

them. The most important separation is between easy problems and hard ones,

the last ones are important because there are no efficient algorithms, it means

that the needed time to compute the solution in the worst case is not polynomial,

but at least exponential [9]. The importance of this separation is that if the worst

5



2.1 Combinatorial Optimization

case computational time is exponential (or worse) it becomes impossible to solve

big-size problems. An example could help to understand this concept better: the

TSP (travelling salesman problem) is described by a set of city and the distances

between all of them, the goal is to find out the shortest path that connects all

the cities. If we set the number of cities to 10, the possible number of tours is

106 (which is solvable by a commercial computer), with 33 cities, we have 1037

tours (the number of cells in a human body is about 1014), with 100 cities, we

have 10158 tours (the number of particles in the visible universe is about 1089).

A common field which needs the existence of these hard problems is modern

cryptography, because it needs the secret to be “safe enough”, i.e. there should

not be algorithms that can break the system running in polynomial time.

2.1 Combinatorial Optimization

In the operations research, combinatorial optimization is a class of problems that

consists of finding the optimal solution instance in a set of many possible in-

stances. As we said in the introduction, in a combinatorial optimization problem

an exhaustive search is not tractable, there are infinitely many solution instances

(finite sets of points in the plane), so it is impossible to list an optimum permu-

tation for each of them. What we can do is to design an algorithm that, for each

instance, computes an optimum solution. The formal definition of a combinatorial

optimization problem is given by a quadruple (I, f,m, g), where:

• I is the set of instances;

• given an instance i ∈ I, S = f(i) is the set of feasible solutions;

• given an instance i and a feasible solution y of i, m(i, y) denotes the measure

of y which is usually a positive real;

6



2.1 Combinatorial Optimization

• g is the goal function, either min or max.

The goal is then to find for some instance i an optimal solution, that is, a feasible

solution y with m(i, y) = g{m(i, y′) | y′ ∈ S}. In the next section it will be shown

how this class of problems can be easily converted into another representation as

integer programming.

This kind of problems can be solved in exponential time, for instance: given

a set of n points, we can enumerate all possible n! orders, and for each compute

the L∞−norm [10] (Chebyshev distance, it is defined in a vector space where

the distance between two vectors is the greatest of their differences along any

coordinate dimension) of the corresponding path.

2.1.1 Backtracking

There are many different algorithms in this context, and they could differ in the

level of detail and the used formal language. A technique that allows us the

enumeration [11] is backtracking, which consists in increasing the last component

of a “ones” vector until we get n, then switch to the second-last, and so on. The

order in which the vectors {1, ..., n}n are enumerated is known as lexicographical

order. Once we enumerated all vectors of {1, ..., n}n we can simply check vector

by vector which is shortest between that and the best so far. But in this case

we enumerated nn vectors, not n! (which is much smaller), so we can do better:

there is a path enumeration algorithm that can do it in about n2×n! steps[11]. It

is possible considering the cost of each path and avoid apriori permutations that

are for sure worse. The number of steps is close to what we refer as running time,

since every step needs about the same amount of work, and the highest priority

is to find an algorithm the guarantees us the best running time.

With advanced techniques and better analysis we can do even better and

have a running time about n × n!, but the main issue is that even with “little”

7



2.2 Mixed-Integer Linear Programming

problems, the time grows too fast, exponentially with the number of points, and

it is easy to reach the “fastest computer limit” with only moderate sizes.

The main focus of the combinatorial optimization is to find better algorithms

in this kind of problems, to find the best element between a finite set of feasible

solutions; the set is not explicitly listed, indeed it depends on the problem’s

structure.

Combinatorial optimization problems are often solved by using integer pro-

gramming techniques and one of the most used is the branch-and-bound paradigm,

that will be presented in its dedicated section 2.2.2.

2.2 Mixed-Integer Linear Programming

As presented so far, the topic of the thesis is not the general linear programming

(LP), but the goal is to improve an algorithm that makes sense only in a scenario

where there are variables forced to be integers and the mathematical expressions

that describe the model are linear, so we must dive deeper in what mixed-integer

linear programming (MILP) is.

The standard form of a MILP is the following:

arg min
x

c>x

subject to Ax ≥ b,

l ≤ x ≤ u,

x ∈ Zp × Rn−p,

(2.1)

where c ∈ Rn is called the objective coefficient vector, A ∈ Rm×n the con-

straint coefficient matrix, b ∈ Rm the constraint right-hand-side vector, l, u ∈ Rn

respectively the lower and upper variable bound vectors, and p ≤ n the number

of integer variables. Under this representation, the size of a MILP is typically

8



2.2 Mixed-Integer Linear Programming

measured by the number of rows (m) and columns (n) of the constraint matrix.

Mixed-integer linear programming is a direct and easy extension [12] of a

integer linear program, so these two classes share most of the solving techniques.

Even if it could appear easier than the standard linear programming, integer linear

programming is much harder and there are not algorithms that can guarantee to

solve them in polynomial time.

Virtually all combinatorial optimization problems can be formulated as in-

teger linear programming [13], the set of feasible solution can be written as

x : Ax ≤ b, x ∈ Zn for some matrix A and some vector b. The set P := {x ∈

Rn : Ax ≤ b} is a polyhedron, so we define PI = {x : Ax ≤ b}I the convex hull of

the integral vectors in P, we call PI the integer hull of P , where PI ⊆ P .

In the following sections there are descriptions about the mainly used tech-

niques to tackle integer linear programming problems, including hybrid and ap-

proximated techniques [14].

2.2.1 Cutting planes

The disequations that describe the model can be seen as a multi-dimensional

space of solutions and the constraints limit this space in a polyhedron P that

represents the set of all the feasible solutions. Trying to cut off parts of P is

one of the most common techniques, and it takes the name of cutting planes; the

idea is to cut off a certain part of P such that the resulting set is a polyhedron

P ′ and P i ⊂ P ′ ⊂ P , with P i the integer program, if we are lucky the optimal

solution is integer, otherwise we can repeat the cutting off procedure for P ′ until

we get it. This idea was introduced for the TSP problem by Danzig, Fulkerson

and Johnson [15] and Gomory proposed the first cutting planes algorithm [16].

9



2.2 Mixed-Integer Linear Programming

2.2.2 Branch-and-Bound

Another important technique is the branch-and-bound algorithm, which is based

on divide-and-conquer paradigm. The main polyhedron is separated by selecting

one of the not integer variables in the solution of the linear problem relaxation

and forcing it to be greater-or-equal than the rounded up solution value, or less-

or-equal than the rounded down one, we will see details in its dedicated section

2.3.

2.2.3 Branch-and-Cut

An evolution of the branch-and-bound algorithm is the combination with the

cutting planes and it takes the name of branch-and-cut. The main reason behind

this algorithm is that branch-and-bound always split the solution space and we

have to solve usually other two problems, while the cutting planes are able to

completely remove part of the space of the solutions, allowing us a faster conver-

gence.

2.2.4 Approximated Methods

Other techniques are the approximated methods, we don’t always need the best

(optimal) solution if it would take too much time (for example in a war context,

but also in modern companies), but a fast computed and feasible approximation

can often be found quickly. An important parameter is the approximation error ε

between the optimal solution and its fast approximation, indeed a well designed

approximated algorithm guarantees a percentage value of the biggest error from

the optimal solution.

10



2.3 Branch and Bound

2.3 Branch and Bound

The branch-and-bound method is the most used tool for exact algorithm in com-

binatorial optimization field [17]. It reflects the definition of enumeration that

we used to describe a generic combinatorial optimization problem, and it aims to

find the best solution between a finite number due to some defined criteria (the

case of an infinite number of feasible solutions is over the concept of combinato-

rial optimization, so we will not consider it). This algorithm aims at enumerating

the solutions in a smart way: although the running time remains exponential in

the worst case, many problems can often be solved in an acceptable time, even

in case of big sizes.

Given S the set of the feasible solutions and z : S −→ R1 the objective function

(that we want to maximize or minimize) that matches any element y ∈ S to a

value z(y) [18]. The couple (z, S) defines an optimization problem, that aims to

find the element y∗ ∈ S such that:

z(y∗) ≥ z(y),∀y ∈ S

(in case of a maximization problem).

We can call P 0 a problem defined by the couple (z, S(P 0)) and Z(P 0) the

value of its optimal solution, such that:

Z(P 0) = max {z(y) : y ∈ S(P 0)},

the branch-and-bound algorithm is based on the separation of P 0 into a num-

ber of sub-problems P 1, P 2, ...P n0 . It is obtained by separating S(P 0) in subset
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2.3 Branch and Bound

S(P 1), S(P 2), ..., S(P n0) such that:

n0⋃
k=1

S(P k) = S(P 0)

and defining

Z(P k) = max{z(y) : y ∈ S(P k)},∀k ∈ {1, ..., n0}.

Since any feasible solution of P 0 is also a feasible solution of (at least) one between

P 1, P 1, ..., P n0 , it will be evident that

Z(P 0) = max{Z(P 1), Z(P 2), ..., Z(P n0)}.

Instead of solving P 0 it will solve the sub-problems and, at each step, it will find

an optimal solution for P k, or prove that the solution for P k is not feasible, or

prove that the optimal solution for P k can’t be better than the best for other

sub-problems. The advantage is that at each step we obtain smaller (and easier)

problems (with less feasible solutions), but to make it effective we need also that

S(P i) ∩ S(P j) = ∅∀P i, P j : i 6= j.

Usually it is impossible to easily solve one or more of the sub-problems, so the

separation will be repeated until it finds a solution generating a decision tree

structure, then the next branches can be pruned if they provide a termination

condition (for instance, the lp relaxation has a worse optimal solution value than

the best integer one we found so far) or if it has not feasible solutions, or it can

be explored until a better solution or a termination condition [19]. A graphical

representation will be easier to understand:

12
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0

1 2

3

5 ...

4

yi ≤ xj yi ≥ xj + 1

yi ≤ xj

yi ≤ xj yi ≥ xj + 1

yi ≥ xj + 1

Z(P 0) = [y0, y1, ..., yn]

P 0 is the original problem and in the tree representation it’s the root, the

nodes are the sub-problems. What happens at each node? This is the most

important moment of the B&B for the thesis.

Considering a LP solution, suppose it is not acceptable for an integer program

because it contains at least one continue variable, so how do we split the problem?

The algorithm generates two new constraints (one for each sub-problem) that

force one of the not-integer variables to be integer. Now we have to solve two

decision problems, the node selection and the variable selection.

2.3.1 Node Selection

In this section there are the explanations about the main methods to speed-up

the process by selecting the most promising node in order to produce small trees.

2.3.1.1 Simple Heuristics

We can compute for each node an upper and lower bound, but they can differ a

lot from the best solution that the node can provide.
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The first simple heuristic is the Depth-first, it starts producing the first child

of the root (P 1) and computing the bounds, then it produces the first child of

P 1 and so on, providing a sequence of forward steps in which it is always chosen

the last generated node until we get an easy problem to solve or the upper-

bound is not greater than Z, in which case a backtracking process is needed; the

backtracking brings the algorithm back in the last node with an upper-bound

greater than Z. The execution will terminate when the backtracking would try

to find the root father. This algorithm is easy to explain and to implement, there

are no complex structures to keep in memory and the number of active nodes

is relatively low. The main advantage is that it can quickly produce feasible

solutions, in this case a termination condition could be a timer.

Another simple heuristic is the Highest-first, that aims to expand the node

with the highest upper-bound; it is done by keeping in memory a list of open

nodes, with the associated upper-bound, and each time we select one of them, we

have to remove and replace it with its children and the relative upper-bounds.

The main advantage about this strategy is the choice of the most promising node

at each step, it usually produces smaller trees in comparison with the depth-first

one, but it also increases the complexity and the memory usage; the result is that

a generic node expansion is more expensive than in the depth-first.

Another possible strategy is the hybrid one, that have the pros of a smart

choice and a simple structure to keep in memory.

2.3.1.2 Relaxations

All the heuristics that we can take into consideration for choosing the node in

a smart way are based on the bounds, which are computed on the continuous

relaxation of the sub-problem, this particular case is obtained by removing the

integrity constraint. Other relaxations could be obtained by deleting some con-
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straints, or combining some of them in only one that allows more slack (surrogate

relaxation). There is also the possibility of combining more relaxations, for ex-

ample we can separate the set of constraints in two subsets so that the relaxation

for both of them will be easy to solve, and we can consider our upper bound by

selecting the worst between them. This concept is used by the decomposition

relaxation, which aims to find a single (but better) bound by a weighted sum of

the modified objective functions.

One of the most important is the Lagrangian relaxation, which is based on

removing some of the constraints and tuning the objective function so that the

removed constraints won’t probably be violated. We need to put the constraints

inside the objective function, if it is a max problem they will be probably ≥ 0. If

the solution of the relaxation satisfies the constraints, then the optimal solution

of the relaxed problem is equal to the original one, otherwise we have not that

guaranteed. Generally there are dominance relations between this relaxations

and they can be used to determine which one provides the best bound.

2.3.1.3 Is the Node Selection a Bottle-Neck?

How do these techniques perform in a real solver? Actually the node selection

is not a crucial or computationally heavy process, it performs well and it is not

a priority that needs research investments on. In the next section we face up to

the bottle-neck of the branch and bound algorithm.

2.3.2 Variable Selection

The most important step of the branch and bound algorithm for this thesis is

the variable selection: after choosing a node we need to decide which is the most

convenient variable to branch on between all the non-integer variables of the LP

solution of the node sub-problem. We could virtually generate and test all the
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variables, but it would be too much expensive and useless for a practical use.

The best strategies are based on heuristics that provide an estimation of the

most promising variable; however, the selection of an optimal subset is no longer

guaranteed.

2.3.2.1 The Most Infeasible Branching

The first easy heuristic that was used is now called most infeasible branching,

it selects the most fractional variable (in a 0−1 problem the closest to 0.5). Even

if it is really fast to compute, it has been computationally shown [7] to be worse

than a complete random choice (that’s the reason of the modern name).

2.3.2.2 Hybrid Branching

To go over the random choice we need to consider a lot of data and to do much

more work. An example of a more accurate branching rule is the hybrid branch-

ing [20], where we compute five different measures for each candidate variable.

These measure are then normalized to compute a single score by means of a

weighted sum.

2.3.2.3 Strong Branching

The most reliable rule is usually the strong branching (SB) technique [8; 21].

There are few versions of the rule that differ for the level of precision (and, as a

consequence, the computational weight); in its full version (full strong branching,

FSB), at any node it branches on each candidate fractional variable and select

the one in which the increase in the bound on the left branch times the one on

the right branch is maximum. This way is of course too much heavy to compute,

but it can be limited. For example we can take into consideration a smaller

candidate set of variables, we can also limit to a fixed threshold the number of
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simplex pivots to be performed in the variable evaluation. The consequences are a

faster execution, paying the price of a lower accuracy. The main advantage of the

strong branching is that it averagely produces smaller trees compared with any

other known tool. Anyway, any accurate enough shape of the strong branching

rule is too heavy and it will take a huge amount of time at every step of the tree.

2.3.2.4 Pseudocost Branching

Another common method used to tackle the variable selection is the pseudocost

branching (PC) [22] which is based on the already performed branchings on

each variable, it provides us a sort of quality score of the variable itself. The

computation is fast and the results could be accurate, but the main problem is

known as cold start, i.e. it doesn’t know how to take decisions in the first nodes

because there are not enough decisions to rely on.

2.3.2.5 The State of the Art

In practice, the most used technique for the variable selection task is the com-

bination between the last two techniques: at the firsts nodes we can compute

the strong branching (it will take a long time, but we will collect many very

good predictions to rely on) and then we switch to pseudocost, this technique

is known as reliability-pseudocost. The main parameter to fix is a threshold for

where we are going to perform the switch, this threshold could be associated with

the number of previous branching decisions that involved the variable or with the

gap between the best bound and the best integer solution or other heuristics.
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2.3.3 The Branch-and-Bound formulation as a Markov

Decision Process

The sequential decisions made during branch-and-bound can be seen as a Markov

decision process [23; 24].

A Markov decision process is a framework that models a decision process where

some results could be considered as a random choices (by the environment), and

sometime as supervised ones (by the agent). It is a very commonly used concept

in fields like economy, robotics, automation and industrial production as well as

optimization and reinforcement learning.

At each discrete time step, the process is in the state st, and an agent can

perform an action a between any allowed action in the state st. The process

responds at the next time step by “randomly” moving into a new state st+1, and

giving the decision maker a corresponding reward Ra(st, st+1), but the probability

of moving to s′ is conditioned by choosing the action a in the next step. This

probability is given by the state transition function Pa(st+1|st, a).

In the branch and bound context, we can consider the environment to be the

solver, and the brancher the agent. At the tth decision the solver is in a state st,

which comprises the B&B tree with all past branching decisions, the best integer

solution found so far, the LP solution of each node, the currently focused leaf

node, as well as any solver statistics (such as, e.g., the number of times every

primal heuristic has been called). The brancher then selects a variable at among

all fractional variables A(st) ⊆ {1, ..., p} at the currently focused node, according

to a policy π(at|st). The solver in turn extends the B&B tree, solves the two

child LP relaxations, runs any internal heuristic, prunes the tree if warranted,

and finally selects the next leaf node to split. We are then in a new state st+1,

and the brancher is called again to take the next branching decision. This process

continues until the instance is solved, i.e. when there are no leaf node left for
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branching. As a Markov decision process, B&B is episodic (it has a defined end

state), where each episode amounts to solving a MILP instance. Initial states

correspond to an instance being selected randomly among a group of interest,

while final states mark the end of the optimization procedure. With this setup,

the probability of a trajectory (specific sequence of states) τ = (s0, ..., sT ) ∈ τ

depends on both the branching policy π and the remaining components of the

solver, namely

pπ(τ) = p(s0)
T−1∏
t=0

∑
a∈A(st)

π(a|st)p(st+1|st, a).

In practice, one might look for policies which minimize running time, but other

measures that are less hardware-dependent could also be of interest, such as the

negative upper bound integral for finding integer solutions quickly, the negative

lower bound integral for tightening the MILP relaxation quickly, or the negative

duality gap integral, which is frequently used in the combinatorial optimization

community to measure the quality of a solver. Many of these measures can

be formulated as expected long-term returns (feedback) for a suitable reward

function, in which case solving the Markov decision is equivalent to the control

problem

arg max
π

Eτ∼pπ [r(τ)],

where r : τ → R is the reward function to be maximized. A natural approach

to solve this problem is reinforcement learning. However, this raises several key

issues, which we circumvent by imitation learning as discussed in the next chapter.
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2.3 Branch and Bound

Figure 2.1: Branch-and-bound variable selection as a Markov decision process.
On the left, a state st comprised of the branch-and-bound tree, with a leaf chosen
by the solver to be the next node from which to branch. On the right, a new
state st+1 resulting from branching on the variable at = x4.
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Chapter 3

Machine Learning

Summary

The desire of building a machine that thinks dates back at least to the time of

ancient Greece [25]. The mythical figures Pygmalion, Daedalus, and Hephaestus

may all be interpreted as legendary inventors, and Galatea, Talos, and Pandora

may all be regarded as articial life [26; 27; 28].

When programmable computers were first conceived, people wondered whether

such machines might become intelligent, over a hundred years before one was built

[29]. Today the Artificial Intelligence is used in many different practical applica-

tions and is an active research topic. It can be used in automated works, in voice

recognition, image analysis and also for support in medical diagnosis.

At the beginning, there was a lot of excitement for the first results, indeed

there are some problems that are hard for the human intelligence, but relatively

straightforward for computers. This is the case of problems that can be described

by a list of formal mathematical rules. However the real challenge turned out to

be the design of machines able to solve problems that are easy to understand for

people, but hard to describe formally. Examples include the recognition of a face
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in an image, a voice in a call, and many other processes that we do automatically,

especially those that involve our perceptive senses.

3.1 What is Machine Learning?

Machine learning is a branch of the artificial intelligence that provides systems

the ability to automatically learn and improve from experience without being

explicitly programmed [30]. Machine learning aims to develop computer programs

that, accessing data, can learn patterns by themselves.

There are two main approaches [31]:

• unsupervised learning builds a mathematical model to learn patterns

over datasets without labels. Some applications that involve unsupervised

learning methods are clustering, which is a grouping technique of a set of

points in the space or the anomaly (or outlier) detection, which aims to

find rare patterns that could threaten the integrity of a complex system;

• supervised learning, on the other hand, builds the model by knowing the

labels of datasets instances. It is theoretically more problem specific and

more efficient, but it also needs the presence of an expert and the availability

of a dataset.

• There is also a hybrid category, the semi-supervised learning, which is com-

puted when there are missing labels in the dataset.

The supervised learning tasks could be split in two main types: classification

and regression.

• In regression tasks the goal is the estimation of a continuous value for a

variable (for instance in forecast and marketing fields). It usually helps to
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understand how the typical value of a dependent variable changes if the

value of an independent variable is changed, keeping the others fixed.

• Classification models are those that, through the experience from already

classified instances (by the supervisor), should be able to output the label

(the class) of new unlabeled instances. The output of the model should

be a discrete value, where each possible value represents the class of the

instance. In this thesis the focus will be about classification tasks.

3.2 Classification

A classification architecture could give as output either the predicted class, or

a probabilistic distribution that covers each possible class, in the first case the

algorithm is named crisp (for instance support vector machines), otherwise it is

named probabilistic (an example are artificial neural networks).

A common workflow is the following:

1. Design and implement the architecture of the parameterized model;

2. Split the dataset in two parts, that represent the training set and the test

set; the split ratio usually varies from 2 : 1 to 5 : 1, it depends on the

context and on the available dataset instances.

3. Perform the training phase of the model using only the instances of the

training set, in this phase the parameters change iteratively improving

(hopefully) the accuracy performances.

4. Test the quality of the model using only the instances of the test set,

comparing the inferred class with the known one.

5. Use the trained and tested model to predict the classes of the new instances.
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It is really important to use the training set and the test set on their own

phase, because we need to perform the test on instances that the model has

never seen before, i.e. we don’t want the classification model to be specialized on

the training instances, as a matter of fact we want the training phase to be as

general as possible. It requires the dataset to be representative of all the possible

instances, it should have enough instances and it should be well balanced.

Intuitively, the classifier has to retreive a pattern such that, if some attributes

(features) of the instances have some specific values, then the predicted class

should be inferred correctly. Among the most commonly used classifier we find

decision trees, support vector machines and artificial neural networks.

3.2.1 Performance Measures

To evaluate the abilities of a machine learning model there are several measures.

For classification, accuracy is one of the easiest and most natural to compute

after the test phase, it is just the ratio between the correct predictions and the

total ones. A mathematically equivalent measure is the error rate, which is

the ratio between the incorrect predictions and the total ones. For a binary

classifier there are also other measures, such as precision, recall, specificity or

f-measure; there is not a best one between these measures, as it depends on the

balance and distribution of the dataset.

In case of probabilistic classifiers, these kind of measures have some issues:

they take into consideration only the result of the model and not the probability

distribution over all the classes.

For instance, if the output between three classes is the distribution [0.3, 0.3, 0.4]

or [0.2, 0.1, 0.8] then both yield correct classifications, but the second one is clearly

better because of the higher probability assigned to the right class.

An error measure that takes care about the probability distribution is the
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sum of squared errors (or the mean of squared errors, which is based on the same

concept), defined as follows:

SSE =
N∑
i=0

(yi − ŷi)2,

where yi is the i− th component of the output probability distribution and ŷi is

always zero but when i corresponds to the class. The main issue about this error

function is that it gives too much emphasis on the incorrect outputs, so it is used

for regression tasks instead of classification. We will see some more details in the

section about information theory.

3.3 Information Theory

Information theory is a branch of applied mathematics that aims to quantify how

much information there is in a signal [32]. It was born to analyze events about

measurement and transmission of information through a physical communication

channel. The key measure for this theory is the entropy.

3.3.1 Entropy

Entropy is a measure that quantifies the amount of uncertainty involved in the

value of a random variable or the result of a random process [32]. The mathe-

matical formulation is the following:

H(X) = −
∑
x∈X

p(x) log(p(x));

where X is a feature that can take different values and p(x) is the probability that

the feature X is equal to x. In this context it represents the probability to confuse
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the possible values: a high entropy value means that the probabilities about the

possible values are similar, or that there are many different possible values; a low

Entropy value means that some values are more probable than others.

3.3.2 Conditional Entropy

Information theory provides us also the definition of conditional entropy H(Y |X)

which means the entropy of Y where we know that X is equal to a certain value,

i.e. the probability of confusing the value of Y knowing the value of X. Intuitively

it should be a weighted sum of specific entropy values for each possible value of

X:

H(Y |X) =
∑

x∈X,y∈Y

P (x, y)log
p(x, y)

p(x)
.

This measure is useful in order to compute the information gain, which

gives us the amount of information the value of X provides about y. It is defined

as follows:

IG(Y |X) = H(X)−H(Y |X).

It represents the number of bits that we can save if both the ends of the transmis-

sion channel know the value of X, and in a machine learning context, it evaluates

a sort of correlation between two features. This measure is widely used with

decision trees methods.

3.3.3 Cross Entropy

Another important measure from the information theory about machine learning

is the cross entropy between two probability distributions p and q defined over

the same domain. It measures the average number of necessary bit in order to

identify a specific instance drawn from a distribution p, if a coding scheme is
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used that is optimized for an “artificial” probability distribution q, rather than

the “true” distribution p. It is given by:

H(p, q) = −
∑
x

p(x) log q(x);

where p(x) is the wanted probability and q(x) is the encoding one.

Why is the cross entropy measure important? In the section about the per-

formance measures we described why the accuracy and the error rate don’t fit

our needs as we would a performance measure that takes care about the proba-

bility distribution. The cross entropy represents exactly what we need and it is

commonly used as performance measure.

3.4 Overfitting

As we said before, the challenge of a machine learning model is to perform well

on new instances, i.e. instances that it never saw during the training phase. This

ability is known as generalization.

Usually, when we are performing the training phase, we can compute some

error measure on the training set which we want to minimize. A way to measure

the generalization of a model is to compute, every step of the training phase, the

test error (i.e. the error on the test set, also known as generalization error)

which we want to minimize as well.

It is possible (and frequent) that, after a long training phase, minimizing the

training error induces a raise of the generalization error. It means that the model

is specializing on the training instances and it can’t generalize and perform well

on new ones. The best choice to make when this event is detected is to stop the

training phase or, depending on the machine learning model, there could be some

available regularization techniques to reduce it.
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Figure 3.1: Overfitting detected after the 30th training iteration on the dataset,
where the error after start to increase.

3.5 Decision trees

Decision trees (DT) are efficient and nonparametric methods [33], mainly used for

classification tasks (but they can also be used in regression tasks with a slightly

different formulation). A DT is represented as a tree structure graph G = (V,E),

where V is a set of nodes and E is a set of edges, and the leaves correspond to

the possible classes.

The prediction about an instance is performed by navigating through the tree

structure. At each node a test is computed on a specific attribute (feature) and

depending on its result the task continues on the corresponding edge until a leaf

is reached. There are different ways to build the tree and usually the simpler

the structure, the more efficient is the classification task. It is proven [34] that

building the minimal decision tree consistent with a training set is an NP-hard

problem.
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3.6 Support Vector Machines

Support vector machines (SVM) are hyper plane classifiers [35]: every instance of

the dataset is represented as a point in an input space and the algorithm searches

a hyper plane (in case of binary classification) which optimizes the separation

between the points of the two classes. After the training phase, the hyper plane

is fixed and the new instances are classified according to the portion of the semi

space where they belong.

Choosing the hyper plane that optimizes the separation between points be-

longing to different classes is an optimization problem. Ideally, we should consider

the closest points to the hyper plane and try to maximize their distance to it.

If we achieve this we obtain the maximum margin hyper plane, and its closest

points are called support vectors. This definition makes support vector machines

crisp classifiers. If we take a look at the mathematical expression used to classify

the new instances we can extract some more information.

The hyper plane equation is:

n∑
i=0

(ωi · xi) + I = 0,

where n is the number of feature, i.e. the dimension of the hyper space, the ωi

are the weights associated to each feature, the xi are the inputs of the SVM, and

I is the intercept.

For each new point after the training phase, computing the left side of the

described expression, we will have a positive value in case of one class, or a

negative one in case of the other class. If it is exactly zero, then there are

no reasons to chose between the available classes. The value provides a useful

information. Intuitively, if it is far from zero, then the prediction should be more

accurate than a value close to zero.
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The main problem of this kind of support vector machines is the hypothesis

that the problem is linearly separable, the figure 3.2 shows the differences in the

case of a 2-dimensional space.

(a) A linearly separable dataset.
The points touching the margins
are the support vectors.

(b) A non linearly separable
dataset. A more powerful model
is needed.

Figure 3.2: Comparison between a linearly separable dataset and a non linearly
separable one.

There is a solution to deal with non-linearly separable dataset, which is called

kernel trick [36]. The main idea to apply this trick to SVMs [37] is to replace

the dot product with a nonlinear kernel function, which measures the similarity

between two points. This allows the algorithm to fit the maximum-margin hyper

plane in a transformed feature space, which is usually higher-dimensional than

the original space. The figure 3.3 shows how a kernel function can transform the

space.

On one hand, SVMs are simple models and are very fast both for training and

predicting new instances. On the other hand, there are many dataset on which

SVMs don’t perform well; they are too sensitive to noise and to class imbalance;

and in presence of outliers the performances can dramatically decrease.
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φ

Figure 3.3: A kernel trick transorm the original space in a new feature space
where the dataset becomes linearly separable, i.e. with a hyperplane

3.7 Artificial Neural Networks and Deep Learn-

ing

Artificial neural networks are one of the most powerful classification methods,

they are inspired by biological neural networks and are basically a set of nodes

(neurons) linked in a hierarchical structure.

The definition of a single neuron is based on a famous proposal from 1943

[38], which represents the neuron as a thresholded linear combinator, with several

inputs and one output.

Until 1986, this model didn’t find a real application because it was not able to

solve useful problems. But in that year the idea of the backpropagation error

[39] was introduced, which let the network learn through examples modifying

some internal values related to the links between the neurons. This method is

based on gradient descent, which is an optimization method that aims to find

the local minimum of a function in an n-dimensional space.

To complete the structure of an artificial network, we have to define what is
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Figure 3.4: A simple representation of a fully connected feed forward network
with one hidden layer.

a link, how to threshold the outputs and how to design the hierarchical structure

(figure 3.4 shows a classical representation of an artificial neural network):

• A link is a relation between two nodes and it has a real value, which repre-

sents the weight of the link.

• The basic hierarchical model is a fully connected feed-forward network,

where each neuron is linked with all the next layer’s neurons and only with

them. The number of layers is often fixed to three (input, hidden and output

layer). However there are other architectures, for example a fully-connected

layer doesn’t perform well under some circumstances, like object recognition

in images. Other possible architectures include convolutional, recurrent,

graph convolutional or even other layers. If we put more hidden layers,

the model is usually referred as a deep neural network. The result is

powerful but also heavier than the standard three-layers architecture. These

became useful models only in the last decade, thanks to hardware advances

such as programmable GPUs.
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• The threshold is defined as a mathematical function that takes in input the

output of a neuron (a real value) and output another number. The first

used threshold function was the sigmoid, defined as:

Φ(x) =
1

1 + e−x
.

This function is differentiable and non linear; this last feature is useful to

face up to the noise. However it is not widely used now. Other common

threshold (or activation) functions are the tanh (hyperbolic tangent, which

is similar to the sigmoid) and the ReLU (Rectified Linear Unit). The latter

is currently the most frequently used activation function and it is defined

as follows:

R(x) = max(0, x).
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tanh(x) = e2x−1
e2x+1

R(x) = max(0, x)

Figure 3.5: A comparation between the three most used activation functions,
Sigmoid, Tanh and ReLU.

Other design parameters include the number of epochs, one epoch is a whole

training phase iteration over the dataset; how many nodes for each hidden layer,

indeed the first and the last layers have a fixed size since the first must have the
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3.7 Artificial Neural Networks and Deep Learning

size of the input, and the last one must encode the output, so the number of the

available classes; the learning rate, which is a hyper parameter that controls

how much the network adjusts the weights with respect to optimizer, it should be

big enough to avoid local minima loops and to make the network fast, but small

enough to guarantee more precision, it could be changed over the epochs, usually

decreased; a stop criterion, such as a time-out, a threshold on the performance

measure or a detected overfitting situation.

There are two kinds of learning: in stochastic learning the backpropagation

is computed after each forward step (i.e. the computation from the input to the

output, through the hidden layers), it is slower and more noise sensitive than the

batch learning, which computes several forward step before the backpropaga-

tion. It is faster and more robust to the noise.
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Chapter 4

Methodology

Summary

This chapter describes our machine learning architecture, including implementa-

tion details, motivations about the tools used and an overview of the alternatives.

4.1 Implementation Tools

4.1.1 Backend Solver

A combinatorial optimization solver is a software that takes as input a formal

description of an operation research problem, computes the solution using any

available tool it knows about the class of the provided problem, and outputs

the result. There are simple solvers embedded in Microsoft Excel and in Mat-

lab, these solvers are basic and are not useful in case of big problems, both for

the efficiency and some internal limit, such as the number of decision variables.

Usually these kinds of software are very complex and the licenses for commercial

solvers are really expensive, they should be able to solve many kind of optimiza-

tion problem and they have to guarantee good computational performances also
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4.1 Implementation Tools

with big instances.

CPLEX is one of the most powerful available solvers, it is developed by IBM

and it is averagely the fastest available one. It can be seen as a black-box solver

due to the impossibility to see any details about the used algorithms and settings.

Other famous and modern solvers are Gurobi, MOSEK, SCIP, XPRESS, GLPK

and others. Between the multitude of available solvers, we discarded the not

famous and less used ones just for a competitive purpose, then we discarded also

IBM Cplex, since it is not open-source and it would have been impossible to

retreive all the informations about the state of the solver.

The final choice has been SCIP because it is one of the fastest non-commercial

solvers for mixed integer programming (linear and not), it allows for total control

of the solution process and the access of detailed information down to the guts

of the solver [40], which is exactly what we need in order to implement a custom

branching rule.

4.1.2 The Deep Learning Library

Another important architectural choice for the implementation is the software

library that implements the basic tools for deep learning. Between the most

famous machine learning libraries there are Tensorflow, Theano, Keras, Caffe,

Pytorch and others.

The main separation between these library is the graph definition, which can

be static or dynamic.

• In a static graph defined environment, the definition of the model must

be done before running it, defining all the tensors that are involved in the

computation and all the details must be given in advance. Then the running

code can be executed and the tensors will be replaced with external data.
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4.1 Implementation Tools

• In a dynamic execution the flow is more imperative, changes are allowed

on the go as most of the imperative programming language, it is very flex-

ible and more intuitive to use. This flexibility comes with a price, the

performances are usually worse than a compiled graph environment.

PyTorch is one of the most important dynamic libraries, it is easy to use, the

commands are very well integrated with the programming language, it is easy to

debug and the performances are close to the static graph libraries.

Tensorflow is its main competitor, it was born as a static library and it is

one of the most supported by the scientific community, it is very efficient and it

allows the deployment of computation across a variety of platform (CPU, GPU,

TPU) and from desktops to clusters of servers to mobile and edge devices.

In the last years the team worked on a variety of it, Tensorflow Eager,

which implements the dynamic graph declaration, increasing the expressiveness

but paying the performance price. It is not as complete as the standard version,

some methods are not implemented yet and some objects are not compatible.

The main advantage is that it is easy to convert a dynamic model into a static

one, so the suggestion from the developing team is to use the eager mode for

experiments and the modeling phase, then switch to the static one to maximize

the performances.

Since the main issue of the strong branching is the efficiency, the choice about

the library has been Tensorflow, using it in eager mode during the experimental

phase and switching to the compiled graph execution for the deployment.

4.1.3 Programming Language

There are many languages supported by the main machine learning libraries

(Java, Javascript, Python, R and also C/C++), but the most used and sup-

ported is Python. It is directly supported by Tensorflow and it is well considered
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4.2 Imitation Learning

by the scientific communities, the speed is not its killer feature, however it can

also interface with other languages, indeed many libraries where performances are

important (such as Numpy, the most used standard for Python’s collections) are

written in C/C++ (a language known for its efficiency). A very good feature of

Python is that it is very easy to read and write, the syntax is light, but it allows

designing complex software architectures. It is object oriented (organized about

the concept of objects instead of actions, and data instead of logic), functional

(functions can be assigned to variables) and interpreted (the code runs line by

line without a compiling phase that could take time and make the debug hard to

understand, it comes at the price of the performances as said before).

4.2 Imitation Learning

Since there is no “perfect” branching rule, in this project the choice is to learn di-

rectly from an expert branching rule, an approach usually referred to as imitation

learning [41]. More precisely, we train by behavioral cloning [42].

We first run the expert on a collection of training instances, recording its

decision with the state at the time the decision was made, resulting in a dataset

of expert state-action pairs D = (si, a
∗
i )
N
i=1. To learn our policy, we minimize the

cross-entropy loss

L(θ) = − 1

N

∑
(s,a∗)∈D

log πθ(a
∗ | s). (4.1)

On one hand the imitation learning performs well because it is a supervised

method and there are many techniques to tackle it, on the other hand, imitation

learning will never perform better than the expert rule. So it is known in advance

that the performances of our approach are bounded, but if the model is fast

enough to output good enough branching decisions in a lower time it would be a

success.
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4.2 Imitation Learning

4.2.1 Imitation Target and Dataset Generation

Training by imitation requires defining a target policy to learn from. The choice

has been Strong Branching, introduced before. Its main downside, the high

computational cost, is less important here since we can in principle take as much

time as needed to produce a dataset of decisions on the training set of instances.

However, during evaluation the learning brancher will inevitably make mis-

takes, after which it will have to take decisions in states unlike those visited by

the expert brancher. This is a well-recognized problem with behavioral cloning

[43; 44]. Solutions that address this issue include inverse reinforcement learning

methods [41; 45], which are usually very computational demanding.

On the other hand, in our context we are free to design the expert in a way

that could improve learning. A simple and adopted solution is to flip a biased

coin at every branching decision from the initial state. If the coin flips heads,

say with 95% probability, we follow the decision of a mediocre brancher, such as

pseudocost branching [22]. If we hit tails, we use strong branching and record its

decision with the current state.

The resulting dataset of expert decisions thus records strong branching in a

wider range of states, which helps our policy recover from mistakes during eval-

uation. Note that we never record and learn from the mediocre brancher, only

strong branching decisions. As an additional advantage, this procedure makes

state-action pairs closer to having been sampled independently, as assumption

upon which supervised learning relies for good performance. We call the overall

procedure explore-then-strong-branch and demonstrate that it improves general-

ization.
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4.3 State Encoding

4.3 State Encoding

We saw in Section 2.3.3 that branch-and-bound variable selection can be inter-

preted as a Markov decision process. However, as described, solver states are

so large and complex that it seems very challenging to learn a policy directly

from the complete states. Therefore, we approximate the states through manual

feature engineering. This technically turns the process into a partially-observable

Markov decision process [46], which is a generalization of the MDP where the

agent can not observe the underlying state, with the state approximation as ob-

servation vector. We claim that, for the problem at hand, it is reasonable to use

such an approximation with a well-chosen set of features, and support our choice

by noting that an excellent variable selection policy such as strong branching

seems to do well despite relying only on a subset of the solver state.

v1

v2

v3

c1

c2

e1,1

e1,3

e1,2

e2,3

Figure 4.1: A bipartite state representation st = (G,C,E,V) with n = 3 variables
and m = 2 constraints. Here C ∈ Rm×c represents the feature matrix of the
constraint nodes on the left, V ∈ Rn×d the feature matrix of the variable nodes
on the right, and E ∈ Rm×n×e the (sparse) feature tensor of the edges between
constraints and variables.

We encode the state st of the B&B process at time t as a bipartite graph

with node and edge features (G,C,E,V), described in Figure 4.1. On one side

of the graph are the constraint nodes, one per row in the current node’s LP

relaxation. On the other side are the variable nodes, one per LP column, and an

edge (i, j) ∈ E connects a constraint node i and a variable node j if the latter is

involved in the former, that is if Aij 6= 0 (A is the adjacency matrix). Note that

under proper restrictions in the branch-and-bound solver (namely, by disabling
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node cuts), the graph structure is the same for all LPs in the B&B tree as it is in

the original MILP. For each edge (i, j), we attach the constraint coefficient Aij

as the only feature.

4.4 Policy Parametrization

In this section the focus is on the architectural design of the network model that

parametrizes the policy. Since our state encoding is a graph structure and its size

could vary between the instances, the most promising architecture that can deal

with this kind of data is the Graph Convolutional Neural Network (GCNN)

[47].

4.4.1 Graph Convolutional Neural Network

There are many problems of the real world that involve data with a specific graph

based structure, for example social networks, molecolar and proteins structures,

hypertext in the web, document classification in citation networks and others.

These structures can’t be represented by the standard neural network layers and

in the last five years it has been an important research topic.

One graph can be seen as an extension of a grid where there are no limits

on the number of neighbours, indeed in a 2-dimensional grid there are four or

eight neighbours, in a 3-dimensional grid there are six, eighteen or twenty-six

neighbours, it depends on the definition of distance; but once the distance is

chosen, the number is fixed and equal for all the nodes.

A GCNN should be able to take in input a graph structure usually summarized

by G = (V,E), we can encode it as follows:

• for each node there are D features that describe the node, the total number

of node is N . We can represent this data in an N ×D matrix;
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• the structure of the graph is defined by the edges, which can be represented

by the adjacency matrix A, this is a sparse matrix with a value in corre-

spondence of a match between two nodes, and zero anywhere else. The

value is usually one, but there may be different values.

So the output of a layer will be a N × F matrix, where F is the number of the

output features per node (specific of the layer), then there is a possibility to add

some pooling operation like in the common convolutional layer [48].

Each GCNN layer can be written as non linear function that represents the

input-output relation:

H(l+1) = f(H(l), A),

withH(0) the input data of the network, L the number of layers, H(L) the output of

the network. So we can try to define the function f to realize a graph convolution

propagation rule.

Every neural network layer has an activation function σ and a weight matrix

W , usually the activation is applied on the output and the weight matrix multi-

plies the output of the previous layer, so an intuitive propagation rule could be

the following:

f(H(l), A) = σ(AH(l)W (l)).

This formulation has two main issues:

• the multiplication A means that we will sum all the features of the neigh-

bours of each node excluding the node itself unless there is a loop on it;

• A is usually not normalized so the multiplication with it could potentially

modify the scale of the features vectors.

The first issue is easy to fix by adding the matrix I to A, by forcing a sort of

cyclic loop on each node of the graph. For the second one we need to normalize
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it and we can consider a matrix D as a diagonal node degree matrix, then we

can compute the reverse of D and multiply it with A. The result of the multipli-

cation D−1A represents the average of the neighbours’ features, but in practice

a symmetric normalization produces better results, so it could be replaced by

D−
1
2AD−

1
2 . If we combine these two tricks we can obtain the propagation rule

presented by Kipf and Welling:

f(H(l), A) = σ(D̂−
1
2 ÂD̂−

1
2H(l)W (l)),

where Â = A+ I and D̂ is its diagonal node degree matrix.

These GCNNs exhibit many properties which make them a natural choice for

graph-structured data in general, and MILP problems in particular:

1. they are well-defined no matter the input graph size;

2. their computational complexity is directly related to the density of the

graph, which makes it an ideal choice for processing typically sparse MILP

problems;

3. they are permutation-invariant, that is they will always produce the same

output no matter the order in which the nodes are presented.

Our model takes as input our bipartite state representation st = (G,C,V,E)

and performs a single graph convolution, in the form of two interleaved half-

convolutions. In detail, because of the bipartite structure of the input graph,

our graph convolution can be broken down into two successive passes, one from

variable to constraints and one from constraints to variables. These passes take
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the form:

ci ← fC

ci,

(i,j)∈E∑
j

gC (ci,vj, ei,j)

 , ∀i ∈ C,

vj ← fV

vj,

(i,j)∈E∑
i

gV (ci,vj, ei,j)

 , ∀j ∈ V,

with fC, gC, fV, gV multilayer perceptions with prenorm layers (described in Sec-

tion 4.4.4). From a mathematical point of view this property is given by the

fact that the adjacency matrix of a bipartite graph can be split in two different

adjacency sub-matrix, indeed there are no edges between variables or between

constraints, but only from variables to constraints or viceversa.

Following this graph convolution layer, we obtain a bipartite graph with the

same topology as the input, but with potentially different node features. We

obtain our policy by discarding the constraint nodes, applying a fully connected

layer to the variable nodes and using a masked softmax activation to produce

a probability distribution over the admissible variables for branching (i.e., the

fractional variables). Figure 4.2 provides an overview of our architecture.

4.4.2 Implementation

Another important advantage about using Tensorflow is the support for sparse

tensors, the adjacency matrix could be really big and without this support every

attempt could be vain. Thanks to it there are many structures and methods that

we can use to have more control about the graph convolutions and reduce the

computational time.

Another important used tool is Keras, it is a high level API written in python

that runs on the top of Tensorflow. It allows a higher expressiveness, so a faster

prototyping, it implements many neural network architectures and layers as well
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Figure 4.2: Our bipartite graph convolutional neural network architecture for
parametrizing our policy π.

as any other useful functions (such as activations, losses, optimizers, etc).

The model architecture is coded as an implementation of the Keras Model

interface, inside it there is the definition of some fixed values, such as the embed-

ding size, the number of variables, constraint and edge features, the activation

function, the weights initializer and all the layers; it takes a bipartite graph as

input. The firsts layers are embedding layers, so they are fully-connected layers

that expand the feature vectors to the fixed embedding size. Then they feed

the input of the first graph convolutional layer and after the convolutions, finally

there are other two fully connected output layers. The Figure 4.4 shows the

architecture of the model.

Also the bipartite graph convolutional layer implements the interface Keras

Model, indeed there are definitions of other layers inside, mixed to build the

graph convolution described before in a more efficient way. First there are three

parallel embedding layers, this time also the edges are expanded to the same

embedding size as constraint and variable features. Constraints and variables

are then indexed (using the efficient tensorflow.gather function), according to the
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edge indices, to reach the same size as the embedded edges, they are summed

in the so called V CE matrix that feeds a feature layer. This layer normalizes

the input, applies the activation function and then feeds a fully connected layer.

The core of the convolution is obtained by the sum over the neighbours using the

tensorflow.scatter nd method. In the end there is another normalization layer and

an output layer; the Figure 4.5 shows the non linear architecture of the graph

convolution.

Every sequential part of the model is usually wrapped in a Keras.Sequential

model, to guarantee a clean, readable and optimized code.

4.4.3 Hyper-parameters tuning

As said in section 3.7 there are many parameters that define a deep learning

model. In this section it is described how all the hyper-parameter of the model

are set.

• The maximum number of epochs is fixed to 1000, but one epoch is consid-

ered the iteration over 312 batch. This is done to pick up random samples to

compose the batch without discarding those samples until the next epoch.

This practice is useful to randomize the choice.

• The batch size is limited to 32, the main issue is the physical available

memory on the GPU, with 32 it requires more than 11gb, and the used

GPU has 12gb, making it impossible to go over 32.

• The Learning Rate is initially set to 0.001 and it is then decreased according

to reduce on plateau technique, which is an adaptive method that reduces

the value by a factor, in this case 5, after a certain number of epoch without

improvement; this parameter is called patience and it is set to 10.
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• The termination condition is the early stopping, it means that after a num-

ber of epochs without improvement, 20 in this case, it stops the training

phase.

• For the optimizer one of the most common choices is the AdamOptimizer

[49], which is provided by Tensorflow and guarantees a fast and accurate

convergence.

Other more specific hyper-parameters are related to architecture modifications

that can improve performance or speed, such as normalization layer, implemen-

tation of an affinity layer or the graph convolution through the mean instead of

the sum.

To implement the mean over the neighbours instead of the sum, we should

count, for each node, the number of neighbours and divide the already computed

sum by its count.

The Affinity Layer is a method [50] that aims to compute a kind of affinity

between a node and its each neighbours: the idea is that some edges could be

more important than other. This layer act before the convolution and in parallel

with the feature layer, so there are other embedding fully-connected layers and

indexing operations that feed the affinity fully-connected layer. Then the feature

and affinity layers are multiplied by an element-wise multiplication.

The choice of the normalization layer has initially been the layer normal-

ization [51], a modern variant of the batch normalization [52], which is computed

for each batch. It is very accurate and it let the model avoid the exploding gra-

dient situations, but it is also heavy to compute. So we decided to implement

a new kind of normalization layer that is based on the standard formula of the

normalization, we call it prenorm layer. This layer introduce a pre-train phase

to compute the normalization parameters for each prenorm layer, but once they

are computed, their values are fixed and nothing else is computed, so it is faster
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and also let us keep the dataset with the raw un-normalized data. There are

details about the implementation in the section 4.4.4

Figure 4.3: This figure shows the test error (cross-entropy) through the epochs
during the training phase. We can observe that there is no overfitting and the
curve is almost smooth and stable.

4.4.4 Pre-norm Layer

In the literature of GCNN, it is common to normalize each convolution operation

by the number of neighbours [47]. We argue that this might result in a loss of

expressiveness for our model, as it then becomes unable to perform a simple count-

ing operation (e.g., in how many constraints does a variable appears). Therefore

we opt for un-normalized convolutions, which improves our generalization perfor-

mance on larger problems as shown in the table 6.2. However, this introduces a
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ConstraintsVariables Edge Features Edge Indices

Embedding Vars Embedding Cst Embedding Edges

BipartiteGraphConvolutionalLayer 1

BipartiteGraphConvolutionalLayer 2

OutputLayer

Variable Selection

Figure 4.4: The architecture of the model is not the standard sequential one, but
it begins with three parallels layers, that feed the first graph convolutional layer
and then is a sequential model until the output.

weight initialization issue. Indeed, weight initialization in standard CNNs relies

on the number of input units to normalize the initial weights [53], which in a

GCNN is unknown beforehand and depends on the dataset. To overcome this is-
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sue and stabilize the learning procedure, we adopt a simple affine transformation

x← x−β
σ

, which we call a prenorm layer, applied right after the summation in the

convolution operation. The β and σ parameters are pre-computed with respec-

tively the empirical mean and standard deviation of x on the training dataset,

and fixed once and for all before the actual training. Namely, we run through

each neural network layer one at a time, starting from the inputs, and when we

encounter a prenorm layer we fix its parameters. After this pretraining proce-

dure, we proceed with the neural network training. The implementation of this

class is based on the interface Keras.Layer, that allows us set for each variable of

the layer the flag trainable to False.

4.5 Evaluation Procedure

After implementing the model, it has not been easy to validate which was the best

one, we tried many different settings of the model and the best loss function score

has been obtained by the model with three convolutional layers, the convolution

with the sum (not with the mean), the layer normalization instead of the prenorm,

and the usage of the affinity layer.

But we observed that this configuration was much slower than a configuration

with two graph convolutional layers, and the loss score was only slightly worse. A

similar situation has been detected about the layer normalization and the affinity

layer, which improve the performances, but beeing slower.

After observing these results it was almost impossible to decide which model

works better on new instances considering both loss score and speed, so we need

to embed the trained models in SCIP and evaluate them.

50



4.5 Evaluation Procedure

Set Cover Training Results

model Cross-Entropy acc@1 acc@5 acc@10 time

gcnn 1.887± 0.004 39.3± 0.1 83.8± 0.1 95.5± 0.0 5.26± 0.21
gcnn+a 1.879± 0.003 39.5± 0.1 84.1± 0.1 95.7± 0.0 6.88± 0.24
gcnn+m 1.891± 0.004 39.3± 0.1 83.6± 0.2 95.4± 0.1 5.61± 0.23
gcnn+l 1.883± 0.002 39.3± 0.1 83.9± 0.1 95.5± 0.0 5.69± 0.28
gcnn+n 1.895± 0.010 39.2± 0.2 83.6± 0.2 95.4± 0.1 5.19± 0.24
gcnn+3 1.834± 0.012 39.8± 0.3 84.5± 0.3 96.2± 0.2 8.76± 0.27

Table 4.1: Training results on maximum set cover instances. M is for the mean
normalized convolution, L is for the usage of layernorm instead of our prenorm, A
is for the usage of te affinity layer, N is for no normalization after the convolutions,
3 is for three convolutional layers. The measured time is the amount needed for
a mini-batch forward step.

4.5.1 Embedding the model in SCIP

This task is done by implementing the SCIP interface Branchrule, which basically

allows the embedding of new custom rules and load a trained GCNN model as

a policy. The loading is done using also the tensorflow.defun() method that

compiles the computational graph for a faster evaluation, indeed it was written

using Tensorflow eager.

Then we need to overwrite the method branchexeclp(), which is the code that

will be executed at each new node for the variable selection, so we need to extract

the state from the solver, convert it to a tensor and give it as input to the policy.

The output of the policy is a distribution with the highest value in correspon-

dence to the variable to select, but before picking up the variable with the highest

value we have to apply a mask that deletes the non selectable variables. When

the best variable after applying the mask is selected, it is given as input to the

model.branchVar() method of Scip to continue the algorithm with the selected

variable.
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4.5.2 Ablation Study

After evaluating different instances we noticed that the best model in term of the

adopted performance measure was not the best in term of solving time. The most

evident result is model with three graph layers, that showed a great behaviour in

the little instances both in term of time and explored nodes, but on medium and

big instances the time was not competitive with other architectures, and also the

number of explored nodes was higher.

Set Cover Test Results

Easy Medium Hard
model Nodes TimeWins Nodes TimeWins Nodes TimeWins

gcnn 190 3 s. 5/10 3296 56 s. 6/10 116704 2549 s. 6/6
gcnn+m 190 3 s. 0/10 3391 60 s. 0/10 146111 3097 s. 0/6
gcnn+a 183 3 s. 1/10 3301 59 s. 1/10 141254 2862 s. 0/6
gccn+l 190 3 s. 1/10 3298 58 s. 2/10 145211 2979 s. 0/6
gcnn+n 188 3 s. 1/10 3304 58 s. 1/10 123605 2734 s. 0/6
gcnn+3 176 3 s. 2/10 3861 105 s. 0/10 455005 9675 s. 0/6

Table 4.2: Test results on maximum set cover instances.

This event is explained by a high level of specialization, indeed the training

phase has been done on little instances. Using a mean normalization after the

sum convolution does not improve the result and make the computation slower,

it was noticed also at training time and probably it is caused by the loss of

informations about the number of neighbours. Also the usage of the affinity layer

did not improve the solving time, indeed it involves heavy computations, and it

is not worth it. On the other hand the prenorm layer has outperformed the layer

normalization and the un-normalized convolution, confirming that a simple and

fast approach could be better than a complex and heavy one.

So with this knowledge we performed an ablation study on the baseline model
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by modifying each hyper-parameter to validate the architectural choices. At the

end of it every change on it provided worse performances, even if the gap was

sometime very tight. Empirical results of this ablation study can be seen in the

table 4.2.
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Left Features Right Features Edges Features Edges Indices

Left Feature Layer Right Feature Layer Edge Feature Layer

Left Indexing Right Indexing

ElementWise Sum

Feature Layer

ElementWise Multiplication*Affinity Layer

Sum Convolution

PreNorm Layer

OutputLayer

Result

Figure 4.5: The rectangles with rounded angles are matrices, the rectangles are
fully connected layers, the dashed rounded rectangle are mathematical operation,
and the sum convolution is represented by the parallelepiped. The Affinity layer
is a parallel task with the feature layer, it is not represented because it is exactly
the same and it would have made the graph unreadable.
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Chapter 5

Related Works

Summary

In this chapter there is a study that goes beyond the state of the art of the

branch and bound variable selection; these alternative procedures have also been

implemented in order to perform a comparison over different kind of problems

with our model and default Scip brancher.

5.1 Regression Model

In [54], the authors perform imitation learning of strong branching across in-

stances by fitting a regression model to predict strong branching scores from

feature vectors that describe a variable within the current B&B state. They train

on synthetic bin packing and multiple knapsack, and evaluate on MIPLIB [55; 56],

a standard benchmark of heterogeneous instances.
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5.2 Learn to Rank Model

5.2 Learn to Rank Model

In [57], the authors also perform imitation learning of strong branching across

instances, but by fitting a learning-to-rank model. A learn to rank model is a

machine learning model that aims to order a list of items, by giving a numerical

or ordinal score for each of them. In this context it is used to predict strong

branching orderings of variables from feature vectors, training and evaluating on

time-dependent traveling salesman problems. Since these approaches solve the

same problem as ours, we compare against them in Section 6.3, and demonstrate

that our contributions offer substantial improvement over these baselines. Imple-

mentation details can be found in Section 6.3.

5.3 Imitation learning and SVM

A different use case is explored in [58]. They also learn a branching policy by

imitation learning from strong branching – however, within the instances them-

selves. Namely, when solving an instance, they first run strong branching for a

few hundred nodes, recording states and strong branching scores. Then, a support

vector machine is trained to rank variable pairs [59] to imitate strong branching

preferences. Finally, for the rest of the B&B process, branching occurs on the

variable ranked highest by the machine learning model. This yields a branching

strategy that adapts to combinatorial problems it might have never seen before.

A downside is that the machine learning model must be kept simple, as the train-

ing data is limited and too much training time would erase potential gains from

better decisions. Thus, whereas our approach is adapted to the recurrent solv-

ing of instances from the same distribution, their approach is designed for the

on-the-fly solving of heterogeneous instances.
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5.4 Portfolio-based Methods

5.4 Portfolio-based Methods

Less end-to-end approaches include portfolio-based methods [60], which are strate-

gies to run several algorithms in parallel, sometime different each other, assigning

them different amount of CPU if needed.

In [61] the model learns a clustering-based classifier to pick a variable selection

rule at every branching decision up to a certain depth. In contrast, [62] use the

fact that many variable selection rules in B&B explicitly score the candidates,

selecting the one with the highest score. They propose to learn a weighting of

different score-based variable selection rules to combine their strengths. Other

works learn variable selection policies, but for less general algorithms than B&B.

In [63] learn a variable selection policy for SAT (boolean satisfiability problems)

solvers using a bandit approach; it is a method where there are competing choices

among a limited set of resources, these choices have to maximize a gain, but their

properties are only partially known. [64] extend their work by taking a full-fledged

reinforcement learning approach with graph convolutional neural networks. Un-

like our approach, these works are restricted to conflict-driven clause learning

methods in SAT solvers, and cannot be readily extended to B&B methods for

arbitrary combinatorial optimization problems. In the same vein, [65] learn by

imitation learning a variable selection procedure for SMT (Satisfiablity Modulo

Theories) solvers that exploits specific aspects of this type of solver.

5.5 Other Methods

Some work in the literature has focused on learning other aspects of B&B algo-

rithms than variable selection. [24] learned a node selection heuristic by imitation

learning of the oracle procedure (i.e. a function that always chooses the right deci-

sion) that expands the node whose feasible set contains the optimal solution, while
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5.5 Other Methods

[66] learned primal heuristics for B&B algorithms. More generally, many authors

have proposed machine learning approaches to fine-tune exact optimization algo-

rithms, not necessarily for MILPs in general: a recent survey is provided by [67].

Beyond those already cited, recent works include [68; 69; 70; 71; 72; 73]. Finally,

this work fits within the wider literature that uses machine learning methods

for combinatorial optimization, which have focused mostly on building heuris-

tics. Recent works on this topic using deep supervised learning methods include

the work of [74; 75; 76; 77; 78; 79; 80; 81; 82; 83; 84], while deep reinforcement

learning approaches include [85; 86; 87; 88; 89; 90; 91; 92; 93; 94; 95].
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Chapter 6

Experimental results

We now present a comparative experiment against three baseline competitors to

validate the value of our approach and choices.

6.1 Benchmarks

We evaluate on three problem benchmarks. All are NP-hard and challenging

for state-of-the-art solvers. In all cases the training sets consist of 100,000 sam-

ples from 10,000 randomly generated instances, and 20,000 samples from 2,000

instances for our validation set.

Our first benchmark is composed of set cover instances, generated by the soft-

ware of [96] following [97], with 1000 variables. We train and validate on prob-

lems with 500 constraints and evaluate generalization on 10 test problems with

500 (easy), 1,000 (medium) and 6 test problems with 2,000 (hard) constraints.

The second benchmark is composed of maximum independent set instances, gen-

erated from Erdös-Rényi random graphs with edge probability p = 0.9 following

the procedure of [98]. We train and validate on problems with graphs of 200

nodes, but we test on 10 problems with 200 (easy), 300 (medium) and 400
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6.2 Experimental setup

(hard) nodes. Finally, the third benchmark is composed of multiple knapsack

instances. We follow the ”weakly correlated” generation approach of [99], which

basically is generation of instances with a bounded correlation value, with two

knapsacks. We train and validate on problems with 18 items, while we test on

20 problems with 18 (easy), 26 (medium) and 34 (hard) items.

6.2 Experimental setup

The training procedure for our GCNN model remains the same throughout all

experiments. We disable presolving, separation, and conflict analysis in the SCIP

solver in order to keep the number of rows and columns constant throughout the

solving process. All other parameters are kept at the default. All experiments are

performed on a machine with Intel Xeon E5-2650 2.20GHz CPUs and an Nvidia

Tesla P100 GPU.

6.3 Baseline competitors

We compare our model against three baselines. First, we compare against SCIP’s

default branching procedure, reliability pseudocost branching, an implementation

of hybrid branching [20]. This rule incorporates many sophisticated heuristics

and is usually very competitive.

The second baseline follows the approach of [54]. Strong branching makes its

decisions by assigning to every candidate variable i a score σi, then branching

on the variable with the highest score. The authors imitate strong branching by

recording, when in a state st, a feature vector φi(st) as well as the strong branching

score σi,t for every candidate variable i. This creates a dataset of states-scores

pairs {(φi(st), σi,t)}. They then train by supervised learning an ExtraTrees [100]

regression model σ̂ to predict scores for a given variable from its feature vector
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6.3 Baseline competitors

by minimizing mean-squared error. In evaluation, at every branching decision

the variable-wise features φi(st) are computed, and they branch on the variable

with the highest predicted score i∗ = arg maxi σ̂(φi(st)). Since our model uses a

slightly different target and different features, we adapted this approach to allow

comparisons.

First, we record strong branching scores from our explore-then-strong-branch

procedure, rather than strong branching proper. Second, we compute the variable-

wise features from the bipartite state as follows. For every variable node, we take

all edge and constraint features of its neighbors: the variable-wise feature vec-

tor is the concatenation of the node feature with the component-wise minimum,

mean and maximum of this set.

Finally, the third baseline follows the approach of [57], which is similar to

the one of [54] except in that they predict strong branching ranks by fitting a

LambdaMART [101] learning-to-rank model.

Again, we vary from the original authors by recording candidate ranks from

our explore-then-strong-branch procedure, rather than strong branching proper.

Moreover, in the original article incorporated features that were specific to time-

dependent traveling salesman problems – we generalize their approach by reusing

the variable-wise features described earlier. In detail, the training set is then

composed of rankings over tuples of variable-wise features

{(φ1(st), . . . , φ|V|(st)), (ρ1, . . . , ρ|V|)},

and we train a LambdaMART model to maximize normalized discounted cumu-

lative gain over this training set. At test time, we branch on the variable to which

the model ρ̂ gives the highest rank, i∗ = arg maxi ρ̂(φ1(st), φ2(st) . . . , φ|V|(st))i.

For both the ExtraTrees and the LambdaMART models, as [54] mentions,

inference time increases with the training set size, and thus it is valuable to limit
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6.4 Results

the training set. To address this, we sampled 4,000 branching decisions as training

set and 1,000 branching decisions as validation set. This yielded an average of

121,199 training observations over five seeds,1 a figure roughly in line with the

100,000 training set size used in [54].

6.4 Results

Table 6.1 reports the validation cross-entropy achieved by each model (Cross-

Entropy), as well as the percentage of the time that the decision made by

strong branching was the highest ranked decision of the model (acc@1), within

the five highest (acc@5) and the ten highest (acc@10). Results are the mean

± standard deviation over five seeds.

Tables 6.2–6.4 summarize our test results. Since the ultimate objective is to

solve optimization problems as fast as possible, we report the mean time needed

to solve the instances (time). As this is hardware-specific, it is common in the

literature to report the number of nodes obtained by the final B&B tree (e.g. as

in [54; 57]). Consequently, we report the mean number of nodes as well (nodes).

Finally, we report the number of instances for which each model was the fastest

(win). Results were averaged over five seeds.

The models included are our graph convolutional neural network (gcnn),

as well as variants described later in the target evaluation and ablation study

sections. We also report results of SCIP’s reliability pseudocost branching (rpb),

the ExtraTrees regression model (trees) and the LambdaMART ranking model

(lmart).

The results in Tables 6.2–6.4 show that gcnn clearly outperforms the other

machine learning approaches and is very competitive with the default branching

1All major MILP solvers have a parameter, seed, that randomizes some tie-breaking rules,
so as to be able to run the same instance multiple times and avoid overfitting.
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6.4 Results

Set Cover Training Results

model Cross-Entropy acc@1 acc@5 acc@10

gcnn 1.887± 0.004 39.3± 0.1 83.8± 0.1 95.5± 0.0
gcnn+a 1.879± 0.003 39.5± 0.1 84.1± 0.1 95.7± 0.0
gcnn+m 1.891± 0.004 39.3± 0.1 83.6± 0.2 95.4± 0.1
gcnn+l 1.883± 0.002 39.3± 0.1 83.9± 0.1 95.5± 0.0
gcnn+n 1.895± 0.010 39.2± 0.2 83.6± 0.2 95.4± 0.1
gcnn+3 1.834± 0.012 39.8± 0.3 84.5± 0.3 96.2± 0.2

gcnn+e 2.163± 0.035 32.7± 0.8 76.9± 0.9 92.2± 0.5

trees - 10.3± 0.0 35.2± 0.0 52.5± 0.0
lmart - 4.6± 0.0 13.7± 0.0 19.8± 0.0

Table 6.1: Training results on maximum set cover instances. M is for the mean
normalized convolution, L is for the usage of layernorm instead of our prenorm, A
is for the usage of te affinity layer, N is for no normalization after the convolutions,
3 is for three convolutional layers, E is for a model trained with decisions from
strong branching only.

strategy of a state-of-the-art MILP solver. Recall that the two metrics used in the

tables, i.e., the mean number of branch-and-bound nodes and computing times

are the standard ones for evaluating MILP search performances.

For this reason, the results are particularly impressive: for the first time in the

literature a machine-learning-based approach is compared with a MILP solver at

its best and not in a controlled mode for the only purpose of assessing viability.

What the results of Tables 6.2–6.4 are telling is that gcnn is a very serious

candidate to be implemented within a MILP solver to provide an additional tool

to speed up search for mixed-integer linear programming problems, which, in

turn, means that more could be gained by a tight integration within a complex
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6.4 Results

software like any MILP solver is.

More in details, the results in Table 6.2 for set covering show that gcnn

improves over rpb both in terms of number of explored nodes and in terms of

computing time. Those results are also consistent in terms of the number of wins

on which gcnn dominates rpb. Further, the model generalizes very well larger

instance sizes as shown by the increasing relative improvement with respect to

rpb.

The results in Table 6.3 for maximum independent set are also very positive

and interesting. On the one hand, gcnn continues to dominate the other machine

learning approaches and to be significantly faster than rpb (also considering the

number of wins). On the other hand, the number of nodes explored by rpb

is on average significantly smaller than for gcnn. This can be explained by

the fact that the behavior of SCIP on this class of instances between rpb and

Set Cover Test Results

Easy Medium Hard
model Nodes TimeWins Nodes TimeWins Nodes TimeWins

gcnn 190 3 s. 4/10 3296 56 s. 6/10 116704 2549 s. 5/6
gcnn+m 190 3 s. 0/10 3391 60 s. 0/10 146111 3097 s. 0/6
gcnn+a 183 3 s. 1/10 3301 59 s. 1/10 141254 2862 s. 0/6
gccn+l 190 3 s. 1/10 3298 s. 2/10 145211 2979 s. 0/6
gcnn+n 188 3 s. 1/10 3304 58 s. 1/10 123605 2734 s. 0/6
gcnn+3 176 3 s. 2/10 3861 105 s. 0/10 455005 9675 s. 0/6

gcnn+e 187 3 s. 1/10 3265 57 s. 0/10 126581 2829 s. 1/6

rpb 106 6 s. 0/10 4662 80 s. 0/10 145351 2639 s. 0/6
trees 247 7 s. 0/10 5170 158 s. 0/10 >1M >1 h. 0/6
lmart 2708 43 s. 0/10 >1M >1 h. 0/10 >1M >1 h. 0/6

Table 6.2: Test results on maximum set cover instances.
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6.4 Results

Maximum Independent Set Test Results

Easy Medium Hard
model Nodes Time Win Nodes Time Win Nodes Time Win

gcnn 1253 11 s. 7/10 3864 61 s. 10/10 8478 214 s. 7/10
rpb 236 18 s. 0/10 422 83 s. 0/10 801 221 s. 3/10

trees 1151 12 s. 1/10 4534 92 s. 0/10 9990 349 s. 0/10
lmart 1423 12 s. 2/10 4808 89 s. 0/10 10167 335 s. 0/10

Table 6.3: Test results maximum independent set instances.

pure (i.e., aggressive) strong branching is very similar. In other words, for these

problems SCIP automatically decides (according to some internal analysis) to be

aggressive at each node for variable selection, and obtains a good performance in

terms of explored nodes by paying the price of a larger computing time because

of expensive variable selection.

This SCIP behavior is somehow reversed for multiple knapsack instances,

Table 6.4. There, although gcnn significantly improves with respect to rpb in

terms of number of nodes, it turns out to be slower. Looking at the behavior

of single instances, it is clear that gcnn is faster when it reduces the number of

nodes by at least one order of magnitude and slower otherwise.

We believe that the observations for independent set and multiple knapsack

instances are very interesting because they highlight, on the one hand, the fact

that the time spent on variable selection for SCIP is tuned and problem dependent

(with respect to our approach for which it is constant), and, on the other hand,

provides plenty of room for hydrid approaches combining traditional methods and

machine learning.
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6.5 Target evaluation

Multiple Knapsack Test Results

Easy Medium Hard
model Nodes Time Win Nodes Time Win Nodes Time Win

gcnn 540 0.8 s. 1/20 3789 4.5 s. 0/20 14981 16.2 s. 2/20
rpb 770 0.2 s. 19/20 6840 1.2 s. 20/20 34772 5.8 s. 18/20

trees 569 1.3 s. 0/20 11453 25.9 s. 0/20 249200 597 s. 0/20
lmart 588 0.5 s. 0/20 8105 6.8 s. 0/20 133174 126 s. 0/20

Table 6.4: Test results on multiple knapsack instances.

6.5 Target evaluation

We also evaluated the impact of our explore-then-strong-branch procedure de-

tailed in Section 4.2.1. Namely, we compared our results on the same set cover

instances as in Section 6.3 with a graph convolutional neural network trained with

decisions from strong branching only (gcnn+e). As can be seen in Table 6.2,

our imitation target allows for substantially better generalization of the resulting

policy.
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Chapter 7

Conclusions and Future
Developments

In this thesis it has been shown that a machine learning approach could be a

significative tool to take in consideration for solving combinatorial optimization

problems. Our formulation of branch-and-bound as a Markov decision process

involves the usage of graph convolutional neural networks, trained by imitation

learning on a dataset produced by the new approach explore-then-strong-branch,

and results in a competitive variable selection rule for exact methods. The repre-

sentation of the solver states as bipartite graphs matches perfectly with the graph

convolutional neural networks architecture, and learns well the behaviour of an

expert rule such as strong branching, a gold standard brancher. The ablation

study helped to select the best performing architecture after embedding a new

custom brancher inside the solver, emphasizing that the absolutely best model

could be worse than a trade-off one for several reasons. After validating our ar-

chitectural choices, the experiments on new problem instances showed promising

results, outperforming the older machine learning approaches and often the re-

liability pseudocost branching, the highly competitive default brancher of SCIP,

a state-of-the-art open-source solver. The results were not surprising on small

instances since the reliability pseudocost uses mainly strong branching at the
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beginning, which is known for not having a competitive running time trade-off.

However, on large instances reliability pseudocost uses mostly a hybrid strategy

which is known for being very competitive, and outperforming that brancher in

this case has been surprising, especially considering that the training phase has

been done on small instances to test the generalization capabilities of our learned

policy.

The main future development is to improve the policy performances embed-

ding the GCNN model in a reinforcement learning actor critic approach, where

the GCNN is the actor and the critic could be a machine learning model, for ex-

ample predicting the number of missing nodes or time for the branch-and-bound

algorithm. Another possible future development could be the improvement of the

policy running time trade-off with simple heuristics, for example the probability

distribution provided by the policy could be used for more than one node by

selecting the next best variables, thereby saving some GPU computations and

reducing the overall running time. The key feature of this heuristic must be the

speed, indeed the resulting policy will probably be less accurate than using the

GCNN model, resulting in a higher number of explored nodes, but hopefully also

a reduced computing time.
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[8] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, “Finding cuts in the

tsp,” tech. rep., DIMACS, 1995. 2, 16

69



REFERENCES

[9] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algo-

rithms and Complexity. Prentice Hall, Engelwood Cliffs, 1982. 5

[10] C. D. Cantrell, Modern Mathematical Methods for Physicists and Engineer.

Cambridge University Press, 12 2000. 7

[11] T. Ibaraki, “Enumerative approaches to combinatorial optimization,” An-

nals of Operations Research, pp. 10, 11, 1987. 7

[12] A. Schrijver, Theory of Linear and Integer Programming. Wiley, Chichester,

1986. 9

[13] B. Korte and J. Vygen, Combinatorial Optimization, Theory and Algo-

rithms. Springer, 2012. 9

[14] L. A. Wolsey, Integer Programming. Wiley, 1998. 9

[15] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale

traveling-salesman problem,” Journal of the Operations Research Society

of America, pp. 393–410, 11 1954. 9

[16] R. E. Gomory, “Outline of an algorithm for integer solutions to linear pro-

grams,” Bulletin of the American Mathematical Society, pp. 275–278, 5

1958. 9

[17] S. Martello, “Algoritmi branch-and-bound: Strategie di esplorazione e ri-

lassamenti,” pp. 1,2, 02 2006. 11

[18] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimiza-

tion. Wiley, Chichester, 1988. 11

[19] J. Shapiro, Mathematical Programming: Structures and Algorithms. Wiley,

Chichester, 1979. 12

70



REFERENCES

[20] T. Achterberg and T. Berthold, “Hybrid branching,” in Integration of AI

and OR Techniques in Constraint Programming for Combinatorial Opti-

mization Problems, 2009. 16, 60

[21] J. T. Linderoth and M. W. P. Savelsbergh, “A computational study of

search strategies for mixed integer programming,” INFORMS Journal on

Computing, vol. 11, pp. 173–187, 1999. 16

[22] M. Bénichou, J.-M. Gauthier, P. Girodet, G. Hentges, G. Ribière, and

O. Vincent, “Experiments in mixed-integer linear programming,” Mathe-

matical Programming, vol. 1, pp. 76–94, 1971. 17, 39

[23] R. A. Howard, Dynamic Programming and Markov Processes. Cambridge,

MA: MIT Press, 1960. 18

[24] H. He, H. I. Daum, and J. Eisner, “Learning to search in branch and bound

algorithms,” in Advances in Neural Information Processing Systems 27,

pp. 3293–3301, 2014. 18, 57

[25] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org. 21

[26] Ovid and Martin, Metamorphoses. W. W. Norton Company, 2004. 21

[27] Sparkes, The Red and the Black: Studies in Greek Pottery. Routledge, 1996.

21

[28] Tandy, Works and Days: A Translation and Commentary for the So-

cialSciences. University of California Press, 1997. 21

[29] A. Lovelace, Notes upon L. F. Menabreas Sketch of the Analytical Enginein-

vented by Charles Babbage. 1842. 21

71

http://www.deeplearningbook.org


REFERENCES

[30] E. S. Team, “What is machine learning? a definition,” 2017. 22

[31] A. L. Samuel, “Some studies in machine learning using the game of check-

ers,” IBM Journal of research and development, 1959. 22

[32] Wikipedia, “Information theory.” 25

[33] R. C. Barros, A. C. de Carvalho, and A. A. Freitas, Automatic Design of

Decision-Tree Induction Algorithms. Springer, 2015. 28

[34] T. H. et al., “Lower bounds on learning decision lists and trees,” Informa-

tion and Computation, 1996. 28

[35] B. Scholkpof and A. J. Smola, Support Vector Machines, Regularization,

Optimization, and Beyond. The MIT Press Cambridge, Massachusetts,

London, England, 2002. 29

[36] M. A. Aizerman, E. A. Braverman, and L. Rozonoer, “Theoretical foun-

dations of the potential function method in pattern recognition learning.,”

in Automation and Remote Control,, no. 25 in Automation and Remote

Control,, pp. 821–837, 1964. 30

[37] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for

optimal margin classifiers,” Proceedings of the fifth annual workshop on

Computational learning theory, p. 144, 1992. 30

[38] W. McCulloch and W. Bulletin, “A logical calculus of the ideas immanent

in nervous activity,” Bulletin of Mathematical Biophysics, 1943. 31

[39] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-

tions by back-propagating errors,” Nature, pp. 533–536, 1986. 31

[40] Scip, “Solving constraint integer programs.” 36

72



REFERENCES

[41] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning: A

survey of learning methods,” ACM Computing Surveys, vol. 50, p. 21, 2017.

38, 39

[42] D. A. Pomerleau, “Efficient training of artificial neural networks for au-

tonomous navigation,” Neural Computation, vol. 3, pp. 88–97, 1991. 38

[43] S. Ross and D. Bagnell, “Efficient reductions for imitation learning,” in

Proceedings of the Thirteenth International Conference on Artificial Intel-

ligence and Statistics, pp. 661–668, 2010. 39

[44] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and

structured prediction to no-regret online learning,” in Proceedings of the

Fourteenth International Conference on Artificial Intelligence and Statis-

tics, pp. 627–635, 2011. 39

[45] S. Russell, “Learning agents for uncertain environments,” in Proceedings

of the Eleventh Annual Conference on Computational Learning Theory,

pp. 101–103, 1998. 39
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[112] M. Kruber, M. E. Lübbecke, and A. Parmentier, “Learning when to use

a decomposition,” in Integration of AI and OR Techniques in Constraint

81



REFERENCES

Programming (D. Salvagnin and M. Lombardi, eds.), pp. 202–210, Springer

International Publishing, 2017.

[113] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances

in Neural Information Processing Systems 30 (I. Guyon, U. V. Luxburg,

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.),

pp. 5998–6008, Curran Associates, Inc., 2017.

[114] W. Kool, H. van Hoof, and M. Welling, “Attention solves your tsp, approx-

imately.,” 2018. arXiv:1803.08475.

[115] L. A. Wolsey, Integer Programming. Wiley-Blackwell, 1988.

[116] A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath, R. L.

Gottwald, G. Hendel, C. Hojny, T. Koch, M. E. Lübbecke, S. J. Ma-
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