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Abstract
Automatic Face Recognition has become increasingly important in the past few years
due to its several applications in daily life, such as in social media platforms and security
services. Numerical linear algebra tools such as the SVD (Singular Value Decomposi-
tion) have been extensively used to allow machines to automatically process images in
the recognition and classification contexts. On the other hand, several factors such as
expression, view angle and illumination can significantly affect the image, making the
processing more complex. To cope with these additional features, multilinear algebra
tools, such as high-order tensors are being explored.
In this thesis we first analyze tensor calculus and tensor approximation via several dif-
ferent decompositions that have been recently proposed, which include HOSVD (Higher-
Order Singular Value Decomposition) and Tensor-Train formats. A new algorithm is
proposed to perform data recognition for the latter format.





Sommario
Lo sviluppo di procedure automatiche per il riconoscimento facciale è diventato sempre
più importante negli ultimi anni, anche grazie alle sue numerose ricadute nella vita quo-
tidiana, come ad esempio nei social network o nei sistemi di sicurezza. Alcune tecniche
di algebra lineare, come la Decomposizione in Valori Singolari (SVD), sono state utiliz-
zate per implementare algoritmi di riconoscimento facciale. Tuttavia alcuni fattori come
l’espressione, l’angolo di visuale e l’illuminazione del viso possono condizionare negati-
vamente il risultato dell’algoritmo. Per far fronte a tale problema, è possible utilizzare
alcune tecniche di algebra multilineare. In questo lavoro di tesi sono state esaminate
due tecniche di decomposizione tensoriale: HOSVD e Tensor-Train. Per quest’ultima
decomposizione è stato infine proposto un nuovo algoritmo di riconoscimento facciale.
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Introduction

Natural images are composed by several factors such as illumination and view angle.
Human perception remains robust despite these variations. To develop automatic proce-
dures for Face Recognition is a challenging research problem, which has become increas-
ingly attractive in the past few years due to its several applications in daily life, such
as social media platforms and security services. The aim of Face Recognition method-
ologies is to make this process automatic by means of a fast and reliable computational
algorithm. Suppose that a huge set of images, collecting faces of different people with a
variety of their expressions is available. Given a new image, the Face Recognition prob-
lem consists of detecting the closest person in the given set. In statistical terms, this
procedure is called allocation, however in the image context the term recognition admit-
tedly better fits the actual procedure. Multilinear algebra and the algebra of higher-order
tensors offer a powerful mathematical framework for analyzing the multifactor structure
of image ensembles and for addressing the huge problem of disentangling the constituent
features.

In this thesis we first analyze matrix and tensor calculus and their approximations
via different strategies such as SVD, HOSVD and Tensor-Train.

In the first chapter we deal with the Singular Value Decomposition describing its
properties and its truncated version.

In the second chapter we analyze some basic tensor concepts such as the idea of
transforming a tensor into a matrix (unfolding) and the concept of tensor matrix multi-
plication.

In the third chapter we describe two remarkable tensor decompositions: the Higher-
Order Singular Value Decomposition and the Tensor-Train Decomposition.

In the last chapter we exploit the decomposition seen in the previous chapters to
solve the classification problem. We analyze three different algorithms and we test them
on three different datasets.
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Chapter 1

Singular Value Decomposition

The Singular Value Decomposition (SVD) is a numerical technique that enables us to
extend the idea of matrix diagonalization (A = XΛX−1) to any complex or real matrix.
The SVD decomposes a matrix A in a product of three matrices A = UΣV T , where U and
V are orthogonal. The most significant differences between a proper diagonalization and
the SVD are the following. First of all, usually U 6= V . Then, U and V are orthogonal,
while in general X is not.

The SVD has many useful applications in data mining, signal processing and statis-
tics because of its endless advantages. For example, it allows to order the informa-
tion contained in the matrix so that, loosely speaking, the “dominating part” becomes
visible. This is due to the properties of orthogonal matrices. As a matter of fact
‖A‖2F = ‖Σ‖2F = ‖ diag(σ1, · · · , σn)‖2F = σ2

1 + · · ·+ σ2
n.

1.1 The Decomposition
Theorem 1.1.1. [11, Theorem 6.1] Any matrix A ∈ Rm×n, withm ≥ n, can be factorized
as

A = U

(
Σ
0

)
V T (1.1)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, and Σ ∈ Rm×n is diagonal,

Σ = diag(σ1, σ2, · · · , σn) =


σ1 0

0 σ2
. . .

. . . . . . 0
0 σn


σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.
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1. Singular Value Decomposition

The columns of U and V are called left singular vectors and right singular vectors, re-
spectively, and the diagonal elements σi are called singular values. The SVD is illustrated
symbolically in Figure 1.1.

Figure 1.1: SVD [11, p. 59].

Proof. The assumption m ≥ n is no restriction, because if m < n Theorem 1.1.1 can be
applied to AT . Consider now the following maximization problem

max
‖x‖2=1

‖Ax‖2 (1.2)

Let x̂ ∈ Rn be the solution of (1.2), then define y such that Ax̂ = σ1y, where ‖y‖2 = 1,
y ∈ Rm and ‖A‖2 = σ1 (by definition).
Using a linear algebra result [12, Theorem 2.5.1] we can construct the orthogonal matrices

U = (y U2) ∈ Rm×m V = (x̂ V2) ∈ Rn×n .

Since yTAx̂ = σ1 and UT
2 Ax̂ = σ1U

T
2 y = 0, then explicit computation shows that UTAV

has the following structure:

UTAV =

(
σ1 yTAV2
0 UT

2 AV2

)
.

Now set
A1 = UTAV =

(
σ1 ωT

0 B

)
.

Then, since

1

σ2
1 + ωTω

∥∥∥∥A1

(
σ1
ω

)∥∥∥∥2
2

=
1

σ2
1 + ωTω

∥∥∥∥( σ2
1 + ωTω
Bω

)∥∥∥∥2
2

≥ σ2
1 + ωTω
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1. Singular Value Decomposition

we have that ‖A1‖2 ≥ σ2
1 + ωTω. But σ2

1 = ‖A‖22 = ‖A1‖22 and so we must have ω = 0.
Thus we have taken one step towards the diagonalization of A. The proof is completed
by induction.

If A = UΣV T is the SVD of an m by n matrix, where m ≥ n, then

A = U1Σ1V
T (1.3)

where
U1 = U(:, 1 : n) = [u1, u2, · · · , un] ∈ Rm×n

and
Σ1 = Σ(1 : n, 1 : n) = diag(σ1, σ2, · · · , σn) ∈ Rn×n .

This is usually called the thin SVD, illustrated symbolically in Figure 1.2.

Figure 1.2: Thin SVD [11, p. 59].

The SVD of a matrix A ∈ Rm×n can be thought of as a weighted, ordered sum of the
matrices uivTi , where ui = U(:, i) and vi = V (:, i) are the i-th orthonormal columns of U
and V . In particular, the matrix A can be decomposed in the following way:

A =
n∑
i=1

σiuiv
T
i .

This is usually called the outer product form and it is derived from the thin SVD of A

A = U1Σ1V
T = (u1, u2, · · · , un)


σ1v

T
1

σ2v
T
2

...
σnv

T
n

 =
n∑
i=1

σiuiv
T
i .

The outer product form of the SVD is illustrated symbolically in Figure 1.3.
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1. Singular Value Decomposition

Figure 1.3: Outer product form of the SVD [11, p. 60].

1.2 Properties of SVD
The SVD of a matrix A ∈ Rm×n (m ≥ n) A = UΣV T has the following properties:

• the singular values are unique and for distinct positive singular values σi > 0, the
i− th columns of U and V are also unique up to a sign change of both columns.

• ‖A‖2F :=
∑
i,j

a2ij = σ2
1 + σ2

2 + · · ·+ σ2
p p = min{m,n};

• ‖A‖22 := max
06=x∈Rn

‖Ax‖22
‖x‖22

= max
‖x‖=1

‖Ax‖22 = σ2
1;

• min
x 6=0

‖Ax‖2
‖x‖2

= σp, where p = min{m,n}.

• Suppose that σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = 0 = · · · = 0 = σp, then

1. rank(A) = r;

2. range(A) := {y| y = Ax for arbitrary x} = span{u1, · · · , ur};
3. null(A) := {x| Ax = 0} = span{vr+1, · · · , vn}.

• The singular values of the matrix A are equal to the square root of the eigenvalues
λ1, · · · , λm of the matrix ATA.

• If A ∈ Rn×n is invertible, then A−1 = V Σ−1UT so that

A−1 =
n∑
i=1

1

σi
viu

T
i

16



1. Singular Value Decomposition

Using the SVD, it is possible to define the condition number of a matrix A ∈ Rm×n. Let
p = min{m,n} and r = rank(A), if p = r, the condition number κ(A) is

κ(A) =
σr
σ1

;

whereas, if p < r

κ(A) =
σp
σ1

.

1.3 The truncated SVD
One of the most interesting aspects of the SVD is that enables us to deal with the
concept of matrix rank. In several applications (e.g. compression of data) one may need
to determine a low-rank approximation of a matrix A. It turns out that the truncated
SVD is the solution of approximation problems where one wants to approximate a given
matrix by one of lower rank.

Theorem 1.3.1. [12, Theorem 2.5.3] Let the SVD of a matrix A ∈ Rm×n be given by
Theorem 1.1.1. If k < r = rank(A) and

Ak =
k∑
i=1

σiuiv
T
i , (1.4)

then
min

rank(B)=k
‖A−B‖2 = ‖A− Ak‖2 = σk+1 . (1.5)

Proof. Since UTAkV = diag(σ1, · · · , σk, 0, · · · , 0), rank(A) = k and UT (A − Ak)V =
diag(0, · · · , 0, σk+1, · · · , σp), where p = min{m,n}. So, since orthogonal matrices pre-
serve the norm, ‖A− Ak‖2 = ‖UT (A− Ak)V ‖2 = σk+1.
Now suppose rank(B) = k for some B ∈ Rm×n. It follows that we can find orthonormal
vectors x1, · · · , xn−k such that null(B) = span{x1, · · · , xn−k}. Now take v1, · · · , vk+1 the
first k + 1 columns of V . Since {x1, · · · , xn−k, v1, · · · , vk+1} are n + 1 vectors in Rn,
span{x1, · · · , xn−k} ∩ span{v1, · · · , vk+1} 6= {0}.

Let z be a unit 2-norm vector in this intersection. Since Bz = 0 and Az =
k+1∑
i=1

σi(v
T
i zi)ui,

we have

‖A−B‖22 = ‖A−B‖22‖z‖22 ≥ ‖(A−B)z‖22 = ‖Az‖22 =
k+1∑
i=1

σ2
i (v

T
i zi)

2 ≥ σ2
k+1
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1. Singular Value Decomposition

It is possible to give a similar approximation result with the Frobenius norm.

Theorem 1.3.2. [11, Theorem 6.7] Let the SVD of a matrix A ∈ Rm×n be given by the
Theorem 1.1.1. If k < r = rank(A) and

Ak =
k∑
i=1

σiuiv
T
i

then

min
rank(B)=k

‖A−B‖F = ‖A− Ak‖F =

(
r∑

i=k+1

σ2
i

) 1
2

Proof. Consider the vector space Rm×n with the inner product

〈A,B〉 = tr(ATB) =
m∑
i=1

n∑
j=1

aijbij,

and the norm ‖A‖F =
√
〈A,A〉.

Now consider the SVD of A = UΣV T , where Σ = (σi,j). For i 6= j σi,j = 0, while for
i = j σii = σi. Then the matrices

uiv
T
j ∀ i = 1, · · · ,m, ∀ j = 1, · · · , n (1.6)

are an orthonormal basis in Rm×n; so that any B ∈ Rm×n of rank k can be written in
terms of (1.6) as

B =
∑
i,j

ξijuiv
T
j , (1.7)

where the coefficients ξij are to be chosen. Due to the orthogonality of the basis, we
have:

‖A−B‖2F =
∑
i,j

(σij − ξij)2 =
∑
i

(σii − ξii)2 +
∑
i 6=j

ξ2ij.

Since rank(B) = k we can choose ξij = 0 for i 6= j in (1.7). We then have:

B =
∑
i=k

ξiiuiv
T
i .

To minimize the objective function, we then choose ξii = σii, which gives:

‖A−B‖2F =
r∑
i=1

(σii − ξii)2 =
k∑
i=1

(σii − ξii)2 +
r∑

i=k+1

σ2
ii

=
∑
i,i

(σii − σii)2 +
r∑

i=k+1

σ2
ii =

r∑
i=k+1

σ2
ii.
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1. Singular Value Decomposition

Figure 1.4: Truncated SVD [11, p. 65].

The low-rank approximation of a matrix is illustrated symbolically in Figure 1.4.
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Chapter 2

Basic Tensor Concepts

In many applications data are organized in more than two categories. The corresponding
mathematical objects are usually referred to as tensors. A tensor is a multidimensional
array. More formally, an Nth-order tensor is an element of the tensor product of N
vector spaces, each of which has its own coordinate system. For example, a first-order
tensor is a vector and a second-order vector is a matrix.
In this chapter we present some basic tensor concepts.

First we define the order of a tensor, which is the number of dimensions, also known
as ways or modes. For example, a tensor A ∈ R4×2×3 is a third-order tensor.
Next we define the fibers, which are the higher-order analogue of matrix rows and

columns. A fiber is defined by fixing every index but one. A third-order tensor has
column, row and tube fibers (see Figure 2.1). When extracted from the tensor, fibers
are assumed to be oriented as column vectors.
Finally we define the slices, which are two-dimensional sections of a tensor. A slice is
defined by fixing all but two indices. Figure 2.2 shows the slices of a third-order tensor,
which are usually denoted by Ai,:,:, A:,j,:, A:,:,k.

(a) Mode-1 (column) fibers. (b) Mode-2 (row) fibers. (c) Mode-3 (tube) fibers.

Figure 2.1: Fibers of a third-order tensor [18, Figure 2.1].
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2. Basic Tensor Concepts

(a) Horizontal slices(Ai,:,:). (b) Lateral slices (A:,j,:). (c) Frontal slices (A:,:,k).

Figure 2.2: Slices of a third-order tensor [18, Figure 2.2].

Definition 2.0.1. [18, p. 458] The inner product of two same-sized tensors A, B ∈
RI1×I2×···×IN is the sum of the products of their entries, i.e.

〈A,B〉 =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
in=1

ai1,i2,··· ,inbi1,i2,··· ,in (2.1)

The corresponding norm is ‖A‖2 = 〈A,A〉.

2.1 Unfolding: transforming a tensor into a matrix
It is sometimes convenient to unfold a tensor into a matrix. The unfolding, also known
as matricization or flattening, is the process of reordering the elements of an N -way
array into a matrix. In this work we consider two different types of unfolding of a tensor
A ∈ RI1×I2×···×IN : the mode-n unfolding and the reshape.

2.1.1 The mode-n unfolding

The mode-n unfolding of a tensor A ∈ RI1×I2×···×IN is denoted by A(n) and arranges the
mode-n fibers to be the columns of the resulting matrix. Tensor element (i1, i2, · · · , in)
maps to matrix element (in, j), where:

j = 1 +
N∑
k=1,
k 6=n

(ik − 1)Jk Jk =
k−1∏
m=1,
m 6=n

Im

An example follows.
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2. Basic Tensor Concepts

Example 2.1.1. Let A ∈ R4×2×3 be a tensor with the following frontal slices

A1 =


1 2
3 4
5 6
7 8

 , A2 =


11 12
13 14
15 16
17 18

 , A3 =


21 22
23 24
25 26
27 28

 .

Then the three mode-n unfoldings are

A(1) =


1 2 11 12 21 22
3 4 13 14 23 24
5 6 15 16 25 26
7 8 17 18 27 28

 ,

A(2) =

(
1 3 5 7 11 13 15 17 21 23 25 27
2 4 6 8 12 14 16 18 22 24 26 28

)
,

A(3) =

 1 3 5 7 2 4 6 8
11 13 15 17 12 14 16 18
21 23 25 27 22 24 26 28

 .

It is possible to use different orderings of the columns for the mode-n unfolding. In
general, the specific permutation of columns is not important as long as it is consistent
across related calculations.

2.1.2 The reshape

The reshape of a tensor A ∈ RI1×I2×···×IN is denoted by Ak and is an (I1I2 · · · Ik) by
(Ik+1Ik+2 · · · IN) matrix, whose elements are taken columnwise from A, that is

Ak(i1 · · · ik, ik+1 · · · iN) = A(i1, · · · , ik, ik+1, · · · iN). (2.2)

Example 2.1.2. Let A be the tensor defined in Example 2.1.1, then A1 and A2 are
defined as follows

A1 =


1 2 11 12 21 22
3 4 13 14 23 24
5 6 15 16 25 26
7 8 17 18 27 28

 , A2 =



1 11 21
3 13 23
5 15 25
7 17 27
2 12 22
4 14 24
6 16 26
8 18 28


.

It is worth observing that, given a Nth-order tensor A, it is possible to have N
unfoldings and N − 1 reshape.
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2. Basic Tensor Concepts

2.2 The n-mode product
In this section we introduce an important tensor by matrix operation: the n-mode prod-
uct.

Definition 2.2.1. [18, p. 460] The n-mode matrix product of a tensor A ∈ RI1×I2×···×IN ,
with a matrix U ∈ RJ×In is denoted by A×n U ∈ RI1×···×In−1×J×···×IN and its entries are
given by

(A×n U)i1,··· ,in−1,j,in+1,··· ,IN =
In∑
in=1

ai1,i2,··· ,in,··· ,iNuj,in

If A ∈ RI1×I2 is a matrix and U ∈ RJ×I1

A×1 U = UA (UA)(i, j) =

I1∑
i1=1

uj,i1ai1,i.

Similarly the 2-mode multiplication of A ∈ RI1×I2 with V ∈ RJ×I2 is equivalent to
matrix multiplication with V T from the right:

A×2 V = AV T (AV T )(i, j) =

I2∑
i2=1

ai,i2vj,i2 .

An important property of the n-mode multiplication is the following:

A×n U ×m V = A×m V ×n U ∀m 6= n,

where A ∈ RI1×···×In×···×Im×···×IN , U ∈ RJ×In and V ∈ RJ×Im . This means that for
distinct modes in a series multiplication, the order of the multiplication is irrelevant. If
the modes are the same, i.e. m = n,

A×n U ×n V = A×n (V U).

This tensor matrix multiplication will be of paramount importance in the Higher-Order
Singular Value Decomposition (HOSVD). As a matter of fact, the HOSVD of a tensor
A ∈ RI1×I2×···×IN will be defined by looking for orthogonal coordinate transformations of
RI1 , RI2 , · · · , RIN . To do this, the n−mode product will be used.

2.3 Rank properties
The definition of tensor rank was first introduced by Hitchcock in 1927 and it is analogue
to the definition of matrix rank, even if the properties of tensor and matrix ranks are
quite different.
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2. Basic Tensor Concepts

Definition 2.3.1. [18, p. 458] An N-th order tensor A has rank 1 when it can be written
as the outer product of N vectors x(1), x(2), . . . , x(N), i.e.

A = x(1) ◦ x(2) ◦ · · · ◦ x(N).

The symbol “◦” represents the vector outer product. This means that each element of the
tensor is the product of the corresponding vector elements:

A(i1, i2, · · · , iN) = x
(1)
i1
x
(2)
i2
· · ·x(N)

iN
, ∀ 1 ≤ in ≤ In.

Definition 2.3.2. [10, Definition 2] The n-rank of A denoted by Rn = rankn(A) is the
dimension of the vector space spanned by the n-mode vectors.

An important property of the n-rank is the following:

rankn(A) = rank(A(n)). (2.3)

Definition 2.3.3. [10, Definition 4] The rank of an arbitrary N-th order tensor A,
denoted by R = rank(A) is the minimal number of rank-one tensors that yield A as a
linear combination.

One of the main differences between tensor rank and matrix rank is that the rank of
a real-valued tensor may be different over R and C [18, Section 3.1]. A second difference
is that, except in special cases, there is no straightforward algorithm to determine the
rank of a specific given tensor; in fact the problem is NP-hard.
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Chapter 3

Tensor Decompositions

In this chapter we present two different Tensor Decomposition techniques: HOSVD
(High-Order Singular Value Decomposition), which is a generalization of the matrix
SVD to N -mode tensors and Tensor-Train Decomposition, which decomposes an N di-
mensional tensor in a product of 3-dimensional tensors.

3.1 The Higher-Order Singular Value Decomposition
The HOSVD, also known as Tucker decomposition, was first introduced by Tucker in
1963. It decomposes a tensor into a core tensor multiplied by an orthogonal matrix along
each mode.

Theorem 3.1.1. [10, Theorem 2] Every (I1 × I2 × · · · × IN)-tensor A can be factorized
as

A = S ×1 U
(1) ×2 U

(2) ×3 · · · ×N U (N) (3.1)

where:

• U (n) = (U
(n)
1 U

(n)
2 · · · U (n)

In
) are orthogonal matrices In × In and the vector U (n)

i is
the i-th n-mode singular vector;

• S, called core tensor, is a complex (I1 × I2 × · · · × IN)-tensor, whose subtensors
Sin=α, obtained by fixing the nth index equal to α, have the properties of

1. all-orthogonality: two subtensors Sin=α and Sin=β are orthogonal for all pos-
sible values of n in the sense of the scalar product (2.1)

〈Sin=α,Sin=β〉 = 0 ∀α 6= β; (3.2)

2. ordering:

‖Sin=1‖ ≥ ‖Sin=2‖ ≥ · · · ≥ ‖Sin=In‖ ≥ 0 ∀ n = 1, · · · , N. (3.3)

27



3. Tensor Decompositions

Figure 3.1: Visualization of the HOSVD [11, Figure 8.2].

This means that, if the n-mode singular values are defined as

σ
(n)
i = ‖Sin=i‖,

then
σ
(n)
1 ≥ σ

(n)
2 ≥ · · · ≥ σ

(n)
In
≥ 0 ∀ n = 1, · · · , N.

Proof. The proof shows the strong connection between the HOSVD of A and the SVD of
its matrix unfoldings. The derivation is given in terms of real-valued tensors. Consider
the 1-mode unfolding of A, A(1) and its SVD

A(1) = U (1)Σ(1)
(
V (1)

)T
,

in which Σ(1) = diag(σ
(1)
1 , σ

(1)
2 , · · ·σ(1)

I1
), where σ(1)

1 ≥ σ
(1)
2 ≥ · · · ≥ σ

(1)
I1
≥ 0. This can be

done for every n = 1, · · · , N . So we have found the orthogonal matrices U (1), U (2), · · · , U (N).
It can be shown that, if we take S such that

S = A×1

(
U (1)

)T ×2

(
U (2)

)T ×3 · · · ×N
(
U (N)

)T
,

then (3.2) and (3.3) are satisfied.

The HOSVD is visualized for a third order tensor in Figure 3.1. The proof of Theorem
3.1.1 enables us to write Algorithm 1.

We now illustrate the HOSVD of a third-order tensor in Example 3.1.1.
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Algorithm 1 HOSVD.
Require: Tensor A ∈ RI1×···×IN

1: for n = 1, · · · , N do
2: Consider the unfolding A(n) of A
3: compute the SVD of A(n), A(n) = USV T ;
4: Set the n-th orthogonal matrix of the HOSVD U (n) = U .
5: end for

Example 3.1.1. Let A ∈ R4×2×3 be a tensor with the following frontal slices

A1 =


1 2
3 4
5 6
7 8

 A2 =


11 12
13 14
15 16
17 18

 A3 =


21 22
23 24
25 26
27 28

 .

Applied to A, Theorem 3.1.1 says that it is possible to find S ∈ R4×2×3, U (1) ∈ R4×4,
U (2) ∈ R2×2 and U (3) ∈ R3×3 such that

A = S ×1 U
(1) ×2 U

(2) ×3 U
(3),

where

U (1) =


−0.4183 −0.7246 0.5461 0.0423
−0.4705 −0.2804 −0.7596 0.3507
−0.5227 0.1637 −0.1190 −0.8281
−0.5749 0.6079 0.3326 0.4352

 ,

U (2) =

(
−0.6887 −0.7251
−0.7251 0.6887

)
,

U (3) =

 −0.1633 0.8981 0.4082
−0.5053 0.2792 −0.8165
−0.8473 −0.3397 0.4082

 ,

and S has the following frontal slices

S1 =


−82.1099 0.0179

0.0041 0.2503
0.0000 0.0000
−0.0000 0.0000

S2 =


−0.0014 −1.1770
−5.3330 −0.2755
−0.0000 0.0000
0.0000 −0.0000
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S3 = 10−14


0.1563 0.1290
−0.0267 −0.0736
−0.0230 −0.1032
0.0007 −0.0256

 .

Equation (3.1) can also be written elementwise as

A(j1, j2, · · · , jN) =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

S(i1, i2, · · · , iN)U
(1)
j1,i1

U
(2)
j2,i2
· · ·U (N)

jN ,iN
,

which has the following interpretation: the element S(i1, i2, · · · , iN) reflects the variation
by the combination of the singular vectors U (1)

i1
, U (2)

i2
, · · · , U (N)

iN
.

It is also possible to express the HOSVD as an expansion of mutually orthogonal rank-one
tensors

A =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

S(i1, i2, · · · , iN)U
(1)
i1
U

(2)
i2
· · ·U (N)

iN
. (3.4)

Figure 3.2 shows the decomposition (3.4) for a third-order tensor.

Figure 3.2: Visualization of a triadic decomposition [10, Figure 5].

In several applications it may happen that the dimension of one mode is larger than
the product of the dimensions of the other modes. For example, consider a tensor
A ∈ RI1×I2×···×IN with I1 > I2I3 · · · IN . It can be shown that the core tensor satisfies the
following equation

Si1=α = 0 α > I2I3 · · · IN ,
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and we can omit the zero part of the core tensor and rewrite (3.1) as a thin HOSVD,

A = S̃ ×1 Ũ
(1) ×2 U

(2) ×3 · · · ×N U (N) (3.5)

where S̃ ∈ RI2I3···IN×I2×···×IN and Ũ (1) ∈ RI1×I2I3···IN .

3.1.1 Properties of HOSVD

Many properties of the SVD have a higher-order counterpart. ConsiderA ∈ RI1×I2×···×IN ,
its HOSVD has the following properties:

1. the n-mode singular values are unique, and for distinct positive singular values the
n-mode singular vectors are also unique up to a sign change.

2. Suppose that σ(n)
1 ≥ σ

(n)
2 ≥ · · · ≥ σ

(n)
Rn

> σ
(n)
Rn+1

= 0 = · · · = 0 = σ
(n)
In

for all
n = 1, · · · , N . Then, by observing that ‖A‖ = ‖A(n)‖ which equals ‖S‖2 =
R1∑
i1=1

‖Si1=1‖2, we have that

‖A‖2 =

R1∑
i1=1

(
σ
(1)
i1

)2
=

R2∑
i2=1

(
σ
(2)
i2

)2
= · · · =

RN∑
iN=1

(
σ
(N)
iN

)2
= ‖S‖2.

3. Suppose that σ(n)
1 ≥ σ

(n)
2 · · · ≥ σ

(n)
Rn

> σ
(n)
Rn+1

= 0 = · · · = 0 = σ
(n)
In

for all n =
1, · · · , N . Then

(a) the n-mode vector space range(A(n)) satisfies

range(A(n)) = span(U
(n)
1 , U

(n)
2 , · · · , U (n)

Rn
),

where U (n)
j for j = 1, · · · , Rn are column vectors of U (n).

(b) The left n-mode null space null(AT(n)) satisfies

null(AT(n)) = span(U
(n)
Rn+1

, U
(n)
Rn+2

, · · · , U (n)
In

).

4. Let rn be equal to the highest index for which ‖Sin=rn‖ > 0 in (3.3). Then we have

Rn = rankn(A) = rn.

It is also possible to notice that the HOSVD is a true generalization of the matrix SVD,
in the sense that, when Theorem 3.1.1 is applied to matrices, it leads to the classical
matrix SVD.
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3.1.2 The truncated HOSVD

The truncated SVD of a matrix is the best approximation, in a least square sense, of
the matrix itself by one of lower rank. Unfortunately, this property has not a high-
order equivalent. Consider a tensor A ∈ RI1×I2×···×IN , by discarding the smallest n-mode
singular values, we obtain a tensor Â with a column rank equal to I ′1, row rank equal to
I ′2, etc. However, this tensor in general is not the best approximation under the given
n-mode rank constraints. Nevertheless, due to the ordering assumptions for the n-mode
singular values, Â is still a good approximation of A.
Theorem 3.1.2. [10, Property 10] Consider A ∈ RI1×I2×···×IN and its HOSVD (as in
Theorem 3.1.1) and let the n-mode rank of A be equal to Rn (1 ≤ n ≤ N). Define a
tensor Â by discarding the n smallest n-mode singular values σ(n)

I′n+1, σ
(n)
I′n+2, · · · , σ

(n)
Rn

for
given values of I ′n, i.e., set the corresponding parts of S equal to zero. Then we have

‖A − Â‖2 ≤
R1∑

i1=I′1+1

(
σ
(1)
i1

)2
+

R2∑
i2=I′2+1

(
σ
(2)
i2

)2
+ · · ·+

RN∑
iN=I′N+1

(
σ
(N)
iN

)2
.

Proof. It holds

‖A − Â‖2 = ‖S − Ŝ‖2

=

R1∑
i1=1

R2∑
i2=1

· · ·
RN∑
iN=1

s2i1,i2,··· ,iN −
I′1∑
i1=1

I′2∑
i2=1

· · ·
I′N∑
iN=1

s2i1,i2,··· ,iN

=

R1∑
i1=I′1+1

R2∑
i2=I′2+1

· · ·
RN∑

iN=I′N+1

s2i1,i2,··· ,iN

≤
R1∑

i1=I′1+1

R2∑
i2=1

· · ·
RN∑
iN=1

s2i1,i2,··· ,iN +

R1∑
i1=1

R2∑
i2=I′2+1

· · ·
RN∑
iN=1

s2i1,i2,··· ,iN + · · ·

+

R1∑
i1=1

R2∑
i2=1

· · ·
RN∑

iN=I′N+1

s2i1,i2,··· ,iN

=

R1∑
i1=I′1+1

(
σ
(1)
i1

)2
+

R2∑
i2=I′2+1

(
σ
(2)
i2

)2
+ · · ·+

RN∑
iN=I′N+1

(
σ
(N)
iN

)2
.

Example 3.1.2. [10, Example 4] Consider the tensor A, whose unfolding along the first
mode is given by

A1 =

(
0.9073 0.7158 −0.3698 1.7842 1.6970 0.0151 2.136 −0.0740 1.4429
0.8924 −0.4898 2.4288 1.7753 −1.5077 4.0337 −0.6631 1.9103 −1.7495
2.1488 0.3054 2.3753 4.2495 0.3207 4.7146 1.8260 2.1335 −0.2716

)
.
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Its HOSVD is given by
A = S ×1 U

(1) ×2 U
(2) ×3 U

(3),

where

U (1) =

 −0.1121 0.7739 −0.6233
−0.5771 −0.5613 −0.5932
−0.8090 0.2932 0.5095

 ,

U (2) =

 −0.6208 −0.4986 −0.6050
0.0575 −0.7986 0.5992
−0.7818 0.3372 0.5244

 ,

U (3) =

 −0.4624 0.0102 0.8866
−0.8866 −0.0135 −0.4623
0.0072 −0.9999 0.0152


and S, whose unfolding along the first mode is

S1 =

(
−8.7088 0.0489 0.2797 0.1066 −3.2737 0.3223 −0.0033 0.1797 −0.2223
0.0256 3.2546 0.2854 3.1965 0.2130 0.7829 0.2948 0.0378 −0.3704
−0.0000 −0.0000 −0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

)
.

Now, discarding σ(2)
3 and σ(3)

3 , i.e. replacing S with Ŝ having the following unfolding

Ŝ1 =

(
−8.7088 0.0489 0.0000 0.1066 −3.2737 0.0000 0.0000 0.0000 0.0000
0.0256 3.2546 0.0000 3.1965 0.2130 0.0000 0.0000 0.0000 0.0000
−0.0000 −0.0000 −0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

)
,

we obtain an approximation Â, for which

1.1838 = ‖A − Â‖2 ≤
(
σ
(2)
3

)2
+
(
σ
(3)
3

)2
= 1.3704.

3.2 Tensor-Train Decomposition
Consider the tensor A ∈ RI1×···×IN and its HOSVD. The need for storing the core tensor
S renders the HOSVD increasingly unattractive as N gets larger. This has motivated the
search for decompositions that do not suffer the curse of dimensionality, while preserving
the good properties of the HOSVD: closeness and SVD-based compression. One good
candidate for such a decomposition is the Tensor-Train Decomposition, which decom-
poses an N - dimensional tensor in a product of 3-dimensional tensors.
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Figure 3.3: Visualization of the Tensor-Train Decomposition [20, Figure 1.1].

3.2.1 The decomposition

Let A ∈ RI1×···×IN be an N -dimensional tensor. Its Tensor-Train Decomposition has the
following form

A(i1, · · · , iN) = G1(:, i1, :)G2(:, i2, :) · · ·GN(:, iN , :) = G1(i1)G2(i2) · · ·GN(iN) (3.6)

where

• Gk ∈ RRk−1×Ik×Rk , for k = 1, · · · , N are called TT-cores,

• Rk = rank(Ak), for k = 1, · · · , N are called TT-ranks,

• R = max1≤k≤N Rk is called maximal TT-rank.

It is important to notice that, since A(i1, · · · , iN) is a scalar, we have the boundary
conditions R0 = RN = 1, so G1 and GN−1 can be considered both as tensors and as
matrices.
In index form, the expression in (3.6) can be equivalently written as

A(i1, · · · , iN) =
∑

α0,α1,··· ,αN

G1(α0, i1, α1) · · ·GN(αN−1, iN , αN)

Definition 3.2.1. [20, p. 2297] A tensor A ∈ RI1×···×IN is said to be in the TT-format
if its elements are given by (3.6).

The Tensor-Train Decomposition is illustrated symbolically in Figure 3.3. This graph-
ical representation means the following. There are two types of nodes: rectanglular nodes,
which contain the indices ik of the original tensor and at least one auxiliary index, and
circular nodes which contain only one auxiliary index. Two rectangular nodes are con-
nected if and only if they have a common auxiliary index αk. To evaluate the entry of
a tensor, we have to multiply the elements of the tensors corresponding to the rectan-
glular nodes and then perform the summation over all auxiliary indices. The picture in
Figure 3.3 looks like a train with carriages and this is why the decomposition is called
Tensor-Train Decomposition.

Now it is worth introducing one of the main theorems for the Tensor-Train Decom-
position, which also gives a constructive way to compute it.
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Theorem 3.2.1. [20, theorem 2.1] If for each unfolding matrix Ak of form (2.2) of a
tensor A ∈ RI1×···×IN

rank(Ak) = Rk, (3.7)

then there exists a decomposition (3.6) with TT-ranks not higher than rk.

Proof. Consider the first unfolding of A and its dyadic decomposition A1 = UV T , which
can be written also in the index form

A1(i1, i2i3 · · · iN) =

R1∑
α1=1

U(i1, α1)V (α1, i2 · · · iN),

and put U(i1, α1) = G1(i1, α1). The matrix V can be expressed as

V = AT1U(UTU)−1 = AT1W,

or in the index form

V (α1, i2 · · · iN) =

n1∑
i1=1

A(i1, · · · , iN)W (i1, α1).

It is possible to notice that V can be treated as an (N − 1)-dimensional tensor

V(α1i2, i3, · · · , iN) = V (α1, i2 · · · iN)

so that V can be identified with the unfolding V1 of V . Now, considering the unfoldings
Vk, it can be shown that rank(Vk) ≤ Rk. Indeed, since (3.7) holds,

Ak(i1 · · · ik, ik+1 · · · iN) =

Rk∑
β=1

F (i1 · · · ik, β)G(β, ik+1 · · · iN).

Using this last expression we obtain

Vk(α1i1 · · · ik+1, ik+2 · · · iN) =

I1∑
i1=1

Ak(i1 · · · ik, ik+1 · · · iN)W (i1, α1)

=

I1∑
i1=1

Rk∑
β=1

F (i1 · · · ik, β)G(β, ik+1 · · · iN)W (i1, α1)

=

Rk∑
β=1

H(α1i2 · · · ik, β)G(β, ik+1 · · · iN),

(3.8)
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Algorithm 2 TT-SVD [23, p.31-32].

Require: Tensor A ∈ RI1×···×IN

1: Compute the size of the first unfolding of A, A1:

Nl = I1, Nr =
N∏
k=2

Ik;

2: create a copy of the original tensorM = A;
3: unfoldM into the computed dimensions: M = reshape(M, [Nl, Nr]);
4: compute the SVD of M , M = UΣV T ;
5: set the first core tensor G1 := U ;
6: recompute M = ΣV T = UTM and let [∼, R1] = size(U);
7: for k = 2, · · · , N − 1 do
8: calculate the dimensions

Nl = Ik, Nr =
Nr

Ik
;

9: unfold M into the computed dimensions: M = reshape(M, [Rk−1 ∗Nl,Nr]);
10: compute the SVD of M , M = UΣV T ;
11: recompute M = UTM and let [∼, Rk] = size(U);
12: Set the k-th core tensor Gk = reshape(U, [Rk−1, Ik, Rk]).
13: end for
14: Gd := M

where

H(α1i2 · · · ik, β) =

I1∑
i1=1

F (i1 · · · ik, β)W (i1, α1).

From (3.8) we have that rank(Vk) ≤ Rk, ∀ k = 1, · · · , N . Now if we consider the unfolding
V1, we have

V1(α1i2, i3 · · · iN) =

R2∑
α2=1

G2(α1i2, α2)V
′(α2, i3 · · · iN).

If we iterate this process, we can find the other tensors Gk, for k = 3, · · · , N .
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The proof of Theorem 3.2.1 enables us to write Algorithm 2. First of all, the first
unfolding of A, A1 should be computed. According to (2.2),

A1(i1, i2 · · · iN) = A(i1, · · · , iN),

so

A1 = reshape(A, [I1,
N∏
k=2

Ik]).

Then, in order to compute the dyadic decomposition of A1 the SVD of A1 (A1 = UΣV T )
can be considered. Now, according to the proof of Theorem 3.2.1, we put G1 := U . To
compute the second term of the Tensor-Train Decomposition G2, we have to consider the
dyadic decomposition of ΣV T , i.e. the matrix V1 of the proof. Thus, in Algorithm 2 the
SVD of ΣV T is computed. We iterate this process n− 2 times. Then we put Gd := ΣV .

Now we illustrate the Tensor-Train Decomposition of a third-order tensor for the data
in the Example 3.2.1.

Example 3.2.1. Consider the tensor A given in Example 3.1.1. Using the Algorithm 2
we can find

G1 =


−0.4183 −0.7246 0.4743 −0.2739
−0.4705 −0.2804 −0.4283 0.7187
−0.5227 0.1637 −0.5664 −0.6158
−0.5749 0.6079 0.5204 0.1710

 ,

G2 =


−0.6885 −0.7252 0.1562 0.1481 −0.4823 0.4558
0.0022 −0.0021 0.7082 0.6724 −0.2516 0.4774
0.0000 0.0000 0.0000 0.0000 −0.2339 0.2209
0.0000 0.0000 −0.0000 0.0000 −0.2599 0.3119

 ,

G3 =

 13.4119 4.9112 −0.0000
41.4930 1.5269 0.0000
69.5741 −1.8574 0.0000

 ,

where G2 is displayed in an unfolded manner.
It is important to notice that matrix G2(:, :, 3) and the last two columns of G1 are not
uniquely determined since the corresponding singular values are equal to 0.

3.2.2 The truncated TT-SVD

As for the decompositions described earlier, also the TT-SVD can be truncated. To do
this, Algorithm 2 can be modified in the following way. Instead of the exact SVD, the
best rank Rk approximation via SVD is computed. Then the introduced error can be
estimated.
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Theorem 3.2.2. [20, theorem 2.2] Suppose that the unfoldings Ak of the tensor A ∈
RI1×···×IN can be approximated by matrices of low rank Âk

Ak = Âk + Ek, rank(Âk) = Rk, ‖Ek‖ = εk, k = 1, · · · , N − 1. (3.9)

Then TT-SVD computes a tensor B in the TT-format with TT-ranks Rk and

‖A − B‖ ≤

√√√√N−1∑
k=1

ε2k.

Proof. The proof is by induction on the order N of the tensor.
If N = 2, A and B are matrices and B is the truncated SVD of A. Thus, for the property
of the SVD (see Theorem 1.3.2) we have

‖A − B‖ = min
rank(C)=k

‖A − C‖ ≤ ‖A1 − Â1‖ = ε.

Now consider N > 2. The unfolding of A, A1 can be decomposed, using the truncated
SVD, as

A1 = U1ΣV
T
1 + E1 = U1B1 + E1, ‖E1‖ = ε1.

According to Algorithm 2, we set U1 = G1. Thus, we have found the first term of
the TT-Decomposition of A. Since UT

1 E1 = 0, in order to find the second term of the
TT-Decomposition, we should consider the truncated SVD of B1, that is

B1 = U2B2 + E2 ‖E2‖ = ε2 G2 = reshape(U2, [Rk−1, Ik, Rk]).

By iterating this process we can find G3, · · · , GN . Let

B(i1, · · · , iN) = G1(i1)G2(i2) · · ·GN(iN)︸ ︷︷ ︸
=B̂

= G1(i1)B̂(i2, · · · , iN),

Then it follows that
‖A − B‖2 = ‖A1 −G1B̂1‖2 = ‖A1 − U1B̂1‖2

= ‖A1 − U1(B̂1 +B1 −B1)‖2

= ‖A1 − U1B1‖2 + ‖U1(B1 − B̂1)‖2.
and since U1 has orthonormal columns,

‖A − B‖2 ≤ ε21 + ‖B1 − B̂1‖2.

It can be shown that the distance of the k-th unfolding (k = 2, · · · , N−1) of the (N−1)-
dimensional tensor B̂ to the Rk-th rank matrix cannot be larger than εk. Proceeding by
induction we have

‖B1 − B̂1‖2 ≤
N−1∑
k=2

ε2k.

This completes the proof.
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Corollary 3.2.1. Consider a tensor A ∈ RI1×···×IN and its TT approximation B, com-
puted via the TT-SVD algorithm by keeping the first m singular values of the unfolding
matrices Ak. Then

‖A − B‖ ≤

√√√√N−1∑
k=1

Rk∑
s=m+1

(σks )2,

where σks , k = 1, · · · , Rk are the singular values of Ak.

Proof. Since B is computed via the TT-SVD algorithm, (3.9) holds and, from Theorem
1.3.2,

εk =

√√√√ Rk∑
s=m+1

(σks )2.

Corollary 3.2.2. [20, corollary 2.4] Given a tensor A and rank bounds Rk, the best
approximation to A in the Frobenius norm with TT-ranks bounded by Rk always exists
(denote it by Abest), and the TT-approximation computed by the TT-SVD algorithm is
quasi optimal, that is

‖A − B‖ ≤
√

(d− 1)‖A −A(best)‖.

Proof. Consider ε = infC ‖A−C‖, where the infimum is taken over all tensor trains with
TT-ranks bounded by Rk. By the definition of infimum, it is possible to find a sequence
of tensor trains B(s) such that

lim
s→+∞

‖A − B(s)‖ = ε.

Since the sequence B(s) is bounded, there exists a subsequence B(st) that converges ele-
mentwise to B(min) and unfolding matrices Bst

k also converge to B(min)
k , for all 1 ≤ k ≤

N − 1. Since the set of matrices of rank not higher than Rk is closed,

rank(B
(min)
k ) ≤ Rk,

and ‖A − B(min)‖ = ε, B(min) is the minimizer. If we notice that εk ≤ ε ,because each
unfolding can be approximated with at least accuracy ε, then we have

‖A − B‖ ≤

√√√√N−1∑
k=1

ε2k ≤

√√√√N−1∑
k=1

ε2 =
√

(d− 1)ε =
√

(d− 1)‖A − B(min)‖ =

=
√

(d− 1)‖A −A(best)‖.
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Example 3.2.2. Let A be the tensor given in Example 3.1.2. If we consider its Tensor-
Train Decomposition computed via the TT-SVD algorithm by keeping the first 2 singular
values of the unfolding matrices Ak, k = 1, 2, we have the following TT-cores:

G1 =

 −0.1121 0.7739
−0.5771 −0.5613
−0.8090 0.2932

 ,

G2 =

(
−0.5602 0.0400 −0.7492 −0.2943 −0.6039 0.2185
0.1946 0.2608 −0.1318 0.5504 −0.1037 0.4329

)
,

G3 =

(
4.3031 8.2509 −0.0674
−0.0473 0.0627 4.6585

)
.

If we denote by Â the tensor whose TT-decomposition is given by

Â(i1, i2, i3) =
∑
α1,α2

G1(i1, α1)G2(α1, i2, α2)G3(α2, i3),

Then the error is given by ‖A−Â‖2 = 0.3073 and it is bounded by (σ1
3)

2
+(σ2

3)
2

= 1.0632.

3.2.3 Properties of the TT-format

Many linear algebra operations with TT-tensors yield results also in the TT-format
but with increased ranks. To reduce ranks while mantaining accuracy one can use the
truncated version of the TT-SVD algorithm. It is important to notice that, if the tensor
is already in the TT-format, the complexity of the algorithm is significantly reduced.
Consider a tensor A ∈ RI1×···×IN in the TT-format with suboptimal ranks Rk, k =
1, · · · , N

A(i1, · · · , iN) = G1(i1)G2(i2) · · ·GN(iN).

We want to estimate the true values of ranks R′k ≤ Rk, while mantaining the prescribed
accuracy ε. Consider the unfolding A1 of A. Using the TT-decomposition of A, A1 can
be written as

A1 = UV T , (3.10)

where U(i1, α1) = G1(i1, α1) and V (i2i3 · · · iN , α1) = G2(α1, i2)G3(i3) · · ·GN−1(iN−1)GN(iN).
In order to compute the SVD of A1, one can compute the QR-decompositions of U and
V , that is

U = QURU , V = QVRV ,

and consider the r × r matrix P = RUR
T
V . Then the truncated SVD 1 of P can be

computed
P = XDY T .

1The truncated SVD is computed with the prescribed accuracy ε.
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3. Tensor Decompositions

Finally,
Û = QUX, and V̂ = QV Y

are matrices of dominant singular vectors of the full matrix A1. Since the matrix U is
small one can compute its QR-decomposition directly, while, for matrix V it is better to
use the following result.

Lemma 3.2.1. [20, Lemma 3.1] Assume that tensor Z is expressed as

Z(i2, · · · , iN) = Q2(i2) · · ·QN(iN),

where Qk(ik) is an Rk−1 × Rk matrix, k = 2, · · · , N (for fixed ik the product reduces to
a vector of length R1 which is indexed by α1), and that the matrices Qk(ik) satisfy the
following orthogonality conditions∑

ik

Qk(ik)Q
T
k (ik) = IdRk−1

. (3.11)

Then Z, considered as an R1 ×
∏d

k=2 Ik matrix, has orthonormal rows, i.e.

ZZT = IdR1 .

Proof.

ZZT =
∑

i1,··· ,iN

(Q1(i1) · · ·QN(iN)) (Q1(i1) · · ·QN(iN))T

=
∑

i1,··· ,iN−1

(Q1(i1) · · ·QN−1(iN−1))

(∑
iN

QN(iN)QN(iN)T

)
(
QT
N−1(iN−1)Q

T
N−2(iN−2) · · ·QT

1 (i1)
)

=
∑

i1,··· ,iN−1

(Q1(i1)Q2(i2) · · ·QN(iN))
(
QT
N−1(iN−1)Q

T
N−2(iN−2) · · ·QT

1 (i1)
)

=
∑
i1

Q1(i1)Q
T
1 (i1) = IdR1 .

Lemma 3.2.1 enables us to compute the QR-Decomposition of V in a structured way.
The matrix V has the following expression

V (i2 · · · iN) = G2(i2) · · ·GN(iN).
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3. Tensor Decompositions

Now, if we consider the QR-Decomposition of GN(iN) = RNQN(iN) (where QN(iN) has
orthonormal rows), V can be written as

V (i2 · · · iN) = G2(i2)G3(i3) · · ·GN−1(iN−1)RN︸ ︷︷ ︸
=G′N−1

QN(iN).

By iterating this process we have

V (i2 · · · iN) = G2(i2) · · ·G′k(ik)Qk+1(ik+1) · · ·QN(iN),

where matrices Qs(is) satisfy (3.11) for s = k + 1, · · · , N . Thus

V (i2 · · · iN) = R2Q2(i2) · · ·QN(iN),

where Z = Q2(i2) · · ·QN(iN) is a matrix with orthonormal rows (see Lemma 3.2.1).

42



Chapter 4

Face Recognition

Automatic Face Recognition has become increasingly important in the past few years due
to its several applications in daily life such as social media platforms and security services.
In this chapter we first describe a Face Recognition algorithm based on the SVD which
does not work well with huge databases. To cope with this problem we introduce two
algorithms based on the tensor decompositions seen in the previous chapters: HOSVD
and Tensor-Train.

4.1 Description of the Databases
Each database contains images of np persons in ne different expressions. In this chapter
we refer to different illuminations, view angle, etc. as expressions. Images can be both
considered as n1 × n2 matrices and, by reshaping the columns, as vectors in Rni where
ni = n1n2 is the number of pixels. In Table 4.1 pixel sizes of the images contained in the
various databases are summarized.

Now we introduce three different databases that have been used to test the algorithms
described in the following sections.

The Yale Database ([9]) contains 165 grayscale images in GIF format of 15 persons.
Each subject is photographed in 11 different expressions: center-light, glasses, happy,
left-light, no glasses, normal, right-light, sad, sleepy, surprised, and wink. In Figure 4.1
all subjects in the expression surprised are illustrated.

The Orl Database ([19]) contains 400 grayscale images in PGM format of 40 persons.

Yale Orl Extended Yale Extended Yale shrunk
Pixel size 320× 243 92× 112 640× 480 20× 15

Pixel size (vector format) 77760 10304 307200 300

Table 4.1: Pixels size of the databases used for Face Recognition.
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4. Face Recognition

Figure 4.1: Faces of the Yale Database.

Figure 4.2: Subjects of the Orl Database in expression 1.

Figure 4.3: Subject 1 of the Orl Database in 10 different expressions.
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4. Face Recognition

Figure 4.4: Subject 17 of the Extended Yale B Database.

Each subject is photographed in 10 different expressions, that are shown in Figure 4.3.
In Figure 4.2 all subjects in the expression 1 are illustrated.

The Extended Yale Database contains 16380 grayscale images in PGM format of 28
persons. Each person is photographed in 9 poses and 65 illumination conditions. In
Figure 4.4 some of the expressions of subject 17 are illustrated.

For the following tests a shrunk version of the Extended Yale Database has been
used.

Consider now the following classification problem: given an image of an unknown
person, represented by a vector in Rni , determine which of the np persons the new image
is closest to. For this classification problem several decomposition techniques, such as
SVD, HOSVD and Tensor-Train Decomposition, can be used.

4.2 Face Recognition using SVD
Since images can be considered as vectors in Rni , a database of images of np persons
in ne different expressions can be represented by np different matrices Ap ∈ Rni×ne

(p = 1, · · · , np).
To perform Face Recognition we have to split the database in a training set and a

test set. For example, if we refer to the Yale Database, we can choose the images of
15 persons in the first 9 expressions as the training set and the remaining images (15
persons in the last 2 expressions) as the test set.

We start by describing a simple algorithm which is based on the Singular Value
Decomposition. The idea is to “model” the variation of faces of each person in the
training set using an orthogonal basis of the subspace of Rni spanned by the columns of
Ap. This basis can be computed using the SVD, which enables us to write Ap as a sum
of rank-one matrices:

Ap =
ne∑
i=1

σ
(p)
i u

(p)
i

(
v
(p)
i

)T
, p = 1, · · · , np.
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4. Face Recognition

(a) First left singular vector u(1)1 of subject 1. (b) First left singular vector u(2)1 of subject 2.

Figure 4.5: First left singular vectors from the Yale Database.

Each column j of Ap can be written as

(Ap)j =
ne∑
i=1

σ
(p)
i u

(p)
i v

(p)
ij ,

where v(p)ij is a scalar and can be thought of as a weight for the expression j of person
p. Thus each column in Ap represents an image of the person p in a certain expression
and therefore the left singular vectors u(p)i are an orthogonal basis in the “image space
of person p”. From Theorems 1.3.1 and 1.3.2, we know that the first left singular vector
represents the dominating direction of the data. Thus, we expect the first left singular
vector to look like person p in a sort of “mean expression” (see Figure 4.5). According to
this interpretation of the first left singular vector, the elements of the first right singular
vector are almost the same, so different expressions of person p have the same weight.

On the other hand, the subsequent left singular vectors should represent the dominat-
ing variations of the training set around the first left singular vector. Thus, the second
right singular vector should have the largest entries in correspondence with expressions
farthest from the “mean expression”. For example, if we refer to the first and the sec-
ond subjects of the Yale Database, the largest entries are in correspondence with the
expressions leftlight and rightlight (see Figure 4.6).

In the classification of an unknown face (i.e. a face in the test set) we need to compute
its distance to known faces (i.e. the faces in the training set). To do this, by means of
the SVD, we should compute how well an unknown face can be represented in the np
different bases. This can be done by determining the minimum distance from all “face
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4. Face Recognition

(a) Second left singular vector u(1)2 of subject 1. (b) Second left singular vector u(2)2 of subject 2.

Figure 4.6: Second left singular vectors from the Yale Database.

subspaces”, that is

min
αi

‖z −
ne∑
i=1

αiu
(p)
i ‖ ∀ p = 1, · · · , np, (4.1)

where z is the image of the unknown face. From the previous discussion, we could argue
that U (p) contains the principal latent expressions of person p.

The minimization problem (4.1) can also be written in the following form

min
α
‖z − U (p)α‖, U (p) =

(
u
(p)
1 , · · · , u(p)ne

)
.

Since the columns of U (p) are orthonormal, the solution of the problem is given by
α =

(
U (p)

)T
z, thus

min
α
‖z − U (p)α‖ =

∥∥∥(I − U (p) (Up)T
)
z
∥∥∥ .

Now it is possible to give a Face Recognition algorithm based on the SVD ( see
Algorithm 3). A typical computation of the resulting distances is given in Figure 4.7.

By testing this algorithm on three different datasets, we obtained the results in Table
4.2. For these tests, the expressions used for the test set were chosen randomly, by taking
s

100
ne expressions for each person. The remaining images were used as the training set.

Looking at Table 4.2, it is possible to notice that the SVD based Face Recognition
algorithm works well only when ni > ne, i.e. with all the choices of s for the Yale and
the Orl Database and only with s = 50 for the Extended Yale Database. This happens
because when ne > ni the distance d(e, p) computed in Algorithm 3 is equal to zero.
However, in many applications, it happens that ni < ne because of the huge database
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4. Face Recognition

Algorithm 3 Face Recognition with SVD [11].

Require: z ∈ Rni input image and U (p), ∀p = 1, · · · , np.
1: for p = 1, · · · , np do
2: d(p) = ‖

(
I − U (p) (Up)T

)
z‖

3: end for
4: [dmin, phat] = min d.
5: Classify z as person phat

s Yale Orl Extended Yale shrunk
50 86.44% 94.84% 99.87%
60 86.19% 96.88% 57.98%
70 87.07% 97.07% 59.03%
80 88.89% 97.80% 59.59%

Table 4.2: Face Recognition performance of Algorithm 3 with three different databases and four
different splits (s).

dimension. This suggests that alternative strategies should be considered when whenever
the number of expressions ne is significantly larger than the number of pixels ni. Tensor
methods provide viable strategies.

Face Recognition with truncated SVD

Before moving further, we deal with a variant of Algorithm 3, where the truncated SVD
instead of the exact SVD is considered. In particular, we truncated according with a
parameter p related to the singular values, whose characteristic pattern is given in Figure
4.8.

We considered the vector w, whose entries are given by

w(l) =

∑l
i=1 σi∑ne

i=1 σi
.

Then, we considered only the first k singular values, where k is such that

w(l) ≤ p ∀ 1 ≤ l ≤ k and w(l) > p ∀ k > l.

As we can see from Table 4.3, the recognition performance is quite similar to that in
Table 4.2. As a matter of fact, according to Theorem 1.3.2, the error due to the truncation
is low if the decay of the singular values is fast enough. Thus, it is worth considering
a truncated version of the algorithm, since it gives good recognition performance with
higher efficiency in terms of speed and memory requirements. Hence, for p = 0.9 and
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0 5 10 15 20 25 30 35 40

Person

1000

2000

3000

4000

5000

6000

7000

8000

9000

D
is

ta
n
c
e

Figure 4.7: Example of distances from the Orl Database.

s p Yale Orl Extended Yale shrunk

80

0.70 58.31% 79.40% 95.51%
0.75 76.71% 93.70% 95.67%
0.80 79.29% 96.50% 95.85%
0.85 81.60% 97.95% 96.52%
0.90 88.36% 98.15% 96.79%
0.95 88.71% 98.00% 96.95%

70

0.70 39.20% 59.60% 95.51%
0.75 68.00% 90.00% 95.67%
0.80 80.07% 94.77% 95.85%
0.85 86.27% 96.73% 96.52%
0.90 87.93% 97.23% 96.79%
0.95 87.33% 97.40% 96.95%

Table 4.3: Face Recognition performance, using the truncated SVD with different values of
parameter p, tested on three different databases and using two different splits: s = 70 and
s = 80.

s = 0.8 in the Extended Yale Database we are considering only the 22% of singular
values.
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(c) Singular values A1 from Extended Yale.

Figure 4.8: Singular values of A1 from three different databases.
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4.3 Face Recognition using Tensor Decompositions
In the previous sections a database of np persons photographed in ne different expressions
was represented by p matrices Ap ∈ Rni×ne , where ni is the number of pixels of each
image. Using multilinear algebra and the algebra of higher-order tensors, the same
database can be represented as a tensor A ∈ Rni×ne×np (see Figure 4.9).

Figure 4.9: Tensor Representation of a database.

4.3.1 Face Recognition using HOSVD

Consider A ∈ Rni×ne×np . It is possible to decompose A using the HOSVD as in (3.1)

A = S ×i F ×e G×p H, (4.2)

where ×i, ×e, ×p are the 1-mode, 2-mode, 3-mode multiplication, respectively 1. To
give an interpretation of the HOSVD of A, it is better to write the decomposition in the
following form

A = D ×e G×p H,

where D = S ×i F . By fixing a particular expression e0 and a particular person p0 we
obtain the vector

A(:, e0, p0) = D ×e ge0 ×p hp0
where ge0 = G(e0, :) and hp0 = H(p0, :). In other words, a particular expression e0 is
characterized by the vector ge0 and a particular person p0 is characterized by the vector
hp0 , via the bilinear form

D ×e g ×p h.
1×i is the image-mode multiplication, ×e is the expression-mode multiplication, ×p is the person-

mode multiplication.
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The Face Recognition algorithm

To perform Face Recognition, (4.2) can be written in the following form

A = C ×p H, (4.3)

where
C := S ×i F ×e G. (4.4)

If we fix the expression e and we identify the tensors A(:, e, :) and C(:, e, :) with matrices
Ae and Ce, (4.3) becomes

Ae = CeH
T e = 1, 2, . . . , ne. (4.5)

Hence, column p of Ae can be written as

a(e)p = Ceh
T
p (4.6)

Equations (4.5) and (4.6) can be interpreted as follows. Each column of Ae contains
the image of the person p in the expression e. This image, using (4.6), can be written
as a matrix-vector product, where the columns of the matrix Ce are basis vectors for
expression e, and row p of H (hp) holds the image coordinates of person p in this basis.
Notice that the same hp holds the coordinates of all the images of person p in the different
expression bases.

As in the SVD based Face Recognition algorithm, the columns of F are an orthogonal
basis in the “image space”, since F comes from the SVD of the first unfolding of A, A(1)

(A(1) = FS1V1). Thus, we expect the 1-mode singular vector to look like a “mean person”
in a sort of “mean expression” (see Figure 4.10). On the other hand, the subsequent 1-
mode singular vector should represent the most significant variations around the first
1-mode singular vector (see Figure 4.11).

Now let z ∈ Rni be the image of an unknown person in an unknown expression that
we want to classify. The coordinates of z in the expression basis can be found by solving
a least squares problem

min
αe

‖Ceαe − z‖2, e = 1, · · · , ne. (4.7)

Obviously if z is an image of a person p in expression e, then the coordinates in the
expression basis are equal to hp.

A preliminary version of the classification algorithm is given in Algorithm 4. Since
the solution of ne least squares problems is required, the amount of work in Algorithm 4
is high. To cope with this problem, we consider another version of the algorithm, which
is based on the following trick. Consider F ∈ Rni×nenp and assume that ni � nenp. For
the analysis only, we can enlarge F , so that it becomes square and orthogonal.

F̂ = (F F⊥) (4.8)
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Figure 4.10: First 1-mode singular vector from the Orl Database.
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Figure 4.11: Second 1-mode singular vector from the Orl Database.
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Algorithm 4 Face Recognition (preliminary version)[11, p.173].
Require: z test image.
1: for e = 1, 2, . . . , ne do
2: solve minαe ‖Ceαe − z‖2.
3: for p = 1, 2, . . . , np do
4: d(e, p) = ‖αe − hTp ‖2.
5: end for
6: end for
7: d1 = min(d);
8: [d2, phat] = min(d1).

Algorithm 5 Face Recognition [11, p.174].
Require: z test image.
1: Compute ẑ = F T z:
2: for e = 1, · · · , ne do
3: Compute the thin QR-Decomposition of Be

4: Solve Reαe = QT
e ẑ for αe

5: for p = 1, · · · , np do
6: d(e,p)=‖αe − hp‖2.
7: end for
8: end for
9: d1 = min(d);

10: [d2, phat] = min(d1).

If we recall equation (4.4) and put Be = S ×i F ×e G, we have

‖Ceαe − z‖22 = ‖F̂ (FBeαe − z)‖22

=

∥∥∥∥( Beαe − F T z
−(F⊥)T z

)∥∥∥∥2
2

= ‖Beαe − F T z‖22 + ‖(F⊥)T z‖22.

It follows that we can solve ne least squares problems, by first computing ẑ = F T z

min
αe

‖Beαe − ẑ‖2 e = 1, · · · , ne. (4.9)

The matrix Be is smaller than Ce so it is cheaper to solve (4.9) instead of (4.7). To
further reduce work, the QR-Decomposition of Be can be computed.

Thus we have Algorithm 5. If ni < nenp, like in the Extended Yale Database,
F ∈ Rni×ni is a square orthogonal matrix, so in equation (4.8) we consider F̂ = F and
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s Yale Orl Extended Yale shrunk
50 87.08% 91.00% 98.60%
60 87.84% 93.07% 98.94%
70 84.87% 93.86% 98.97%
80 89.65% 95.30% 99.13%

Table 4.4: Face Recognition performance of Algorithm 5 with three different databases and four
different splits (s).

both Algorithm 4 and Algorithm 5 can be used. By testing Algorithm 5 on three different
datasets, we obtain the results in Table 4.4. The test set was generated randomly, by
taking s

100
ne expressions for each person. As in section 4.2, we used a shrunk version of

the Extended Yale Database.
Looking at Table 4.4, it is possible to notice that the HOSVD based algorithm works

well also when ni < ne, in the case of the Extended Yale Database for s = 60, 70, 80.
Thus, in realistic applications, this algorithm performs better than the one based on
SVD; compare with Table 4.2.

Face Recognition with HOSVD Compression

Theorem 3.1.2 enables us to deal with a variation of Algorithm 5, where the truncated
HOSVD instead of the exact HOSVD is considered. In particular, we truncated according
with a parameter p related to the singular values, whose characteristic pattern is given
in Figure 4.12. In the following discussion only the truncation along the first mode is
considered. Define Fk = F (:, 1 : k) for some k smaller than ni. Then, for the analysis
only, we enlarge the matrix so that it becomes square and orthogonal, that is we define

F̂ =
(
Fk F̃⊥

)
∈ Rni×ni , F̂ T F̂ = I.

Then we truncate the core tensor in the following way

Ĉ = (S ×e G) (1 : k, :, :)×i Fk. (4.10)

From Theorem 3.1.2, it follows that

‖Ĉ − C‖2 ≤
ni∑

j=k+1

(
σ
(i)
j

)2
.

Thus, if the decay of the singular values is fast enough, a good recognition accuracy
can be obtained, despite the compression. From (4.10), Ĉe = FkB̂e, where B̂e ∈ Rk×np .
Multiplying

(
Ĉeαe − z

)
by F̂ we obtain

‖Ĉe − z‖22 = ‖B̂eαe − F T
k z‖22 + ‖F̃ T

⊥ z‖22.
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Figure 4.12: Singular values from the Orl Database.
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s p Yale Orl Extended Yale shrunk

80

0.30 6.67% 25.10% 14.32%
0.40 7.38% 57.55% 48.99%
0.50 37.69% 67.10% 79.15%
0.60 72.18% 93.40% 83.91%
0.70 84.80% 95.40% 89.74%
0.80 92.53% 95.80% 90.42%
0.90 91.11% 95.45% 91.76%

70

0.30 6.67% 20.60% 15.44%
0.40 7.27% 53.50% 52.34%
0.50 37.47% 68.57% 86.66%
0.60 70.00% 91.20% 93.54%
0.70 83.40% 93.77% 97.92%
0.80 87.27% 93.77% 98.60%
0.90 90.27% 93.67% 98.95%

Table 4.5: Face Recognition performance, using the truncated HOSVD with different values
of parameter p, tested on three different databases and using two different splits: s = 70 and
s = 80.

By testing the truncated version of Algorithm 5, we obtained the results in Table 4.5.
As we can see from Table 4.5, the recognition performance is quite similar to that in

Table 4.4. Thus, a truncated version of the algorithm can be considered. This enables us
to have higher efficiency in terms of speed and memory requirements, while mantaining
good recognition performance. Hence, for p = 0.9 and s = 0.8 in the Extended Yale
Database we are considering only the 45% of singular values.

4.3.2 Face Recognition using Tensor Train Decomposition

In this section we explore the use of the Tensor Train decomposition for our problem. We
propose a new algorithm for performing a recognition procedure. Given the new image
z we thus determine the closest person within the testset, by using a representation of
the unknown person in the tensor train basis.

Consider A ∈ Rni×ne×np . It is possible to decompose A using the TT-Decomposition
as in (3.6)

A(i1, i2, i3) = G1(i1)G2(i2)G3(i3) (4.11)

In order to give a Face Recognition algorithm, (4.11) can be written, using the n-mode
product, in the following way

A = G2 ×i G1 ×p GT
3 , (4.12)
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Algorithm 6 Face Recognition (preliminary version).
Require: z test image.
1: for e = 1, 2, . . . , ne do
2: solve minαe ‖Ceαe − z‖2.
3: for p = 1, 2, . . . , np do
4: d(e,p)=‖αe − gp‖2.
5: end for
6: end for
7: d1 = min(d);
8: [d2, phat] = min(d1).

since

A =
∑
α1,α2

G1(i1, α1)G2(α1, i2, α2)G3(α2, i3)

=
∑
α2

(G2 ×i G1)(i1, i2, α2)G3(α2, i3)

= (G1 ×i G2 ×p GT
3 )(i1, i2, i3).

If we call C = G2 ×i G1, (4.12) can be written as

A = C ×p GT
3 .

So, if we identify A(:, e, :) and C(:, e, :) with matrices Ae and Ce, we obtain that

Ae = CeG3

and, by fixing the column p of Ae,

a(p)e = Cegp,

where gp = G3(:, p).
Now assume that z ∈ Rni is the image of an unknown person in an unknown ex-

presison that we want to classify. As in subsection 4.3.1, the coordinates of z in the
expression basis can be found by solving ne least squares problems

min
αe

‖Ceαe − z‖2. (4.13)

A first version of the Face Recognition algorithm can thus be given (see Algorithm 6).
As for the HOSVD based Face Recognition algorithm, the final version of the new

algorithm can be determined by replacing (4.13) with

min
αe

‖Ge
2αe − ẑ‖2,
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Algorithm 7 Face Recognition.
Require: z test image.
1: Compute ẑ = GT

1 z:
2: for e = 1, · · · , ne do
3: Compute the thin QR-Decomposition of Ge

2

4: Solve Reαe = QT
e ẑ for αe

5: for p = 1, · · · , np do
6: d(e,p)=‖αe − gp‖2.
7: end for
8: end for
9: d1 = min(d);

10: [d2, phat] = min(d1).

s Yale Orl Extended Yale shrunk
50 79.16% 92.96% 98.74%
60 82.83% 94.27% 98.98%
70 84.40% 99.30% 99.09%
80 84.00% 96.35% 99.25%

Table 4.6: Face Recognition performance of TT-Decomposition based algorithm with three
different databases and four different splits (s).

where Ge
2 = G2(:, e, :) and ẑ = GT

1 z. Furthermore, the QR-Decomposition of Ge
2 can be

considered. The complete procedure is described in Algorithm 7.
By testing this algorithm on three different datasets, we obtained the results shown

in Table 4.6. The test set was generated randomly, by taking s
100
ne expressions for each

person. As in section 4.2, we used a shrunk version of the Extended Yale Database.
Looking at Table 4.6, it is possible to notice that the TT-Decomposition based Face

Recognition algorithm works well also when ni < ne, i.e. with the Extended Yale
Database choosing s = 60, 70, 80. Thus, in realistic applications, this algorithm, to-
gether with the HOSVD based algorithm, performs better than the one based on SVD.

Face Recogniton with TT-Decomposition Compression

Corollary 3.2.1 enables us to consider a variation of Algorithm 6, where the truncated
TT-SVD, instead of the exact decomposition, is considered.

As in the previous discussion, the truncation is made according with a parameter p
related to the singular values, whose characteristic pattern is given in Figure 4.13. Since
C = G2 ×i G1, we can consider a truncation along the first mode by truncating C in the
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(a) Singular values of the first SVD, which gives G1.
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(b) Singular values of the second SVD, which gives
G2.

Figure 4.13: Singular values from the Orl Database.

following way

Ĉ = (G2 ×i G1)(1 : k, :, :) = G2(1 : k, :, :)×i G1(1 : k, :).

From Corollary 3.2.1, it follows that

‖C − Ĉ‖2 ≤
ni∑

j=k+1

(
σ
(i)
j

)2
By testing the truncated version of Algorithm 6, we obtained the results shown in

Table 4.7. As we can see from Table 4.7, the recognition performance is quite similar
to that in Table 4.6. The higher efficiency in terms of speed and memory requirements
together with the good recognition performance suggests that the truncated version of
the algorithm, instead of the complete one, should be used. The memory requirements
for these two versions of Algorithm 6 are significantly different. For p = 0.9 and s = 0.8
in the Extended Yale Database we are considering only the 45% of singular values.

A comparison between Table 4.5 with 4.7 shows that the Tensor-Train format enables
us to achieve a higher recognition performance than with the HOSVD. For example,
focusing on the Extended Yale Database and fixing p = s = 0.8, we can notice that the
TT-SVD algorithm performs significantly better than the HOSVD algorithm.

Furthermore, it is worth observing that the TT-SVD algorithm requires less memory
than the one based on HOSVD. This is due to the fact that in the TT-Decomposition of
a tensor A ∈ Rni×ne×np we only have three terms (G1, G2 and G3) while in the HOSVD
we have four terms (S, F , G, H).
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s p Yale Orl Extended Yale shrunk

80

0.30 6.67% 3.06% 63.84%
0.40 7.22% 55.12% 78.68%
0.50 56.00% 82.38% 89.30%
0.60 76.22% 97.44% 97.15%
0.70 76.00% 96.63% 98.89%
0.80 83.78% 96.56% 99.05%
0.90 86.11% 95.69% 99.23%

70

0.30 6.67% 3.08% 62.23%
0.40 6.25% 40.83% 80.29%
0.50 45.08% 75.62% 88.94%
0.60 70.08% 95.42% 96.83%
0.70 78.75% 95.63% 98.75%
0.80 84.92% 96.00% 99.04%
0.90 86.83% 95.00% 99.15%

Table 4.7: Face Recognition performance, using the truncated TT-SVD with different values
of parameter p, tested on three different databases and using two different splits: s = 70 and
s = 80.

Suppose now that we want to consider the truncated version of both algorithms,
by taking only the first k singular values in the pixel-mode. To do this, with the TT-
Decomposition we have to consider Ĝ1 = G1(:, 1 : k), Ĝ2 = G2(1 : k, :, :) and Ĝ3 = G3.
Thus, the memory requirement mT for this algorithm is equal to mT = nik+knenp+n2

p.
On the other hand, for the HOSVD we should consider Ŝ = S(1 : k, :, :), F̂ = F (:, 1 : k),
Ĝ = G and Ĥ = H. Thus the memory requirement mH for this algorithm is equal to
mH = knenp + nik + n2

e + n2
p > mT .
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Conclusions and perspectives

In this work we studied tensor calculus by describing some basic tensor concepts, such as
the unfolding and the n-mode product. Then, we anlyzed tensor approximation via two
different strategies: Higher-Order Singular Value Decomposition and Tensor-Train De-
composition. Then, we adapted these methodologies to develop several Face Recognition
algorithms both in normal and truncated fashion. We tested these algorithms on several
databases available online and compared their performance. Our experiments seem to
indicate that tensor based methods are able to exploit the better organized information.
In particular, the new algorithm we proposed for performing the recognition in the tensor
train format showed very good performance: the procedure was able to achieve higher
percentages of correct recognitions for comparable memory requirements, with respect
to HOSVD.

Further improvements are already foreseen for the near future: firstly, we plan to im-
plement Neural networks using Tensor-Train Decomposition for Face Recognition pur-
poses. Secondly, it is worth considering the Non-negative tensor factorization. This
technique enables us to preserve at the tensor level an important property of images,
which is the non-negativity of their entries.
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