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Introduction

In the modern days an huge effort is being put into the study of the field of artifi-

cial intelligence, with the final long term goal of creating a general intelligence, which

is, the intelligence of a machine that could perform any intellectual task that a human

being can. The most promising tool to achieve such results are artificial neural networks

(ANNs), as they try to digitally represent a simplified version of the brain as observed

in animals. ANNs do require some form of learning before actually being able to solve

any problem, and thus a number of techniques has been gradually found to train them in

the most efficient – as in time spent – and effective – as in quality of results – way possible.

Evolutionary computation is the attempt to simulate the natural process of evolution

to generate and improve algorithms. The field is particularly interesting because it goes

way beyond the domain of computer science, indeed it makes use of knowledge from a

wide variety of fields such as genetics, biology, anatomy, zoology, botany and natural

history. All of these different domains can be exploited to gain useful insights about how

living beings reached the state in which they are today, and consequently how we can

reproduce the factors that ultimately lead to proactive, intelligent, forms of life. The

challenge is not easy tough.

As deep neural networks achieve unprecedented results, successfully training ANNs

with millions of parameters, the evolutionary way of training the networks may seem a

poor choice for such a task. Nonetheless the evolutionary algorithms, and in particu-

lar the genetic algorithms, are increasingly being coupled with backpropagation trained

neural networks, as the two techniques excel on different but complementary tasks.
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2 CONTENTS

The aim of this elaborated is to illustrate the concepts at the core of genetic algo-

rithms, explaining what are the essential steps that must be taken in order to apply them

efficiently on generic optimization problems. Once the foundations on GAs have been

laid down, the second chapter will elaborate on how they can be applied to solve the

specific problem of evolving different parts of artificial neural networks, from the bare

weights of fixed size NNs to the full architecture of unconstrained ones, finally introduc-

ing how GAs are being used to optimize the hyper-parameters and the architecture of

backpropagation trained networks.

In the last chapter it is proposed a novel kind of dynamic neural network which

is evolved by a simple yet powerful genetic algorithm, which makes use of techniques

treated previously. The testing has been conducted on the task of classifying a common

dataset, and while results do not yet achieve the state of the art performance, they open

many doors for further research.



Chapter 1

Genetic Algorithms

Genetic algorithms (GAs) were first hypothesized by Alan Turing in the 50s in its

publication “The Imitation Game” but it has been John Holland to set the first theo-

retical and practical foundations during the 1960s and the 1970s. In contrast with the

evolution strategies of the time, Holland’s original goal was not to design algorithms to

solve specific problems, but rather to formally study the phenomenon of adaptation as

it occurs in nature and to develop ways in which the mechanisms of natural adaptation

might be imported into computer systems.

Genetic algorithms are very flexible optimization techniques as they require minimal

knowledge about the problem under investigation. They try to mimic the way nature

evolves living creatures by generating a population of candidate solutions (i.e. agents,

individuals) and applying natural selection on it to produce a new generation of novel

candidate solutions. This strategy is iterated hundreds to thousands of times in order to

produce a chain of generations containing increasingly fitter solutions.

The core principles of this approach follow those of biology and the evolving world,

as discovered by Darwin and explained in The Origin of Species, and are three: heredity,

variation and selection, all of which are necessary for an evolutionary process to happen

and are thus common to all genetic algorithm implementations.

Heredity: there must be a way for which candidate solutions (the individuals) can

replicate (through reproduction) and pass their own traits to the offspring, allowing thus

3



4 1. Genetic Algorithms

the inheritance of those qualities that lead the parent to be selected.

Variation: the solutions in the population must present some differences in their traits

to allow the discrimination of the worse solutions and the reward of the better ones. Sev-

eral strategies exist to maintain a population varied, the most commons being applying

mutations on the traits of new agents, so that a child is never an exact copy of the

parent, or generating an offspring from more than one selected solutions, mimicking the

biological process of crossover which blends the DNA coming from father and mother

during the formation of a new organism.

Selection: this is the mechanism by which better individuals are given a higher chance

than their less fit counterparts to reproduce and generate offspring that will “live” in the

following generation. Many different selection techniques have been proposed that try

to find a balance between the exploration of new solutions and the exploitation of the

known ones.

1.1 The Canonical Algorithm

While many variations of GAs exist, the most common procedure implies the creation

of a population of a certain size that will be iteratively evolved thus producing completely

new generations at each cycle. It follows a formalization of the procedure:

1. create the first population, either by generating agents having random traits,

or by using pre-researched solutions;

2. evaluate the fitness of each individual in the population, which is represented as

a numeric value to be maximized or minimized;

3. apply selection to produce a parent pool;

4. use the individuals in the parent pool to create new candidate solutions through

reproduction;
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5. iterate over 2 - 3 - 4 until the best solution found satisfies the requirements (e.g.

effectively maximizes the evaluation function).

Using this scheme, the worst solutions would become rare and eventually disappear

from the population because selection would not allow them to transmit their traits into

the following generation; indeed, the better ones would replicate giving life to mutated

copies of themselves, taking those free places left by unselected agents. These new copies

may behave either better or worse than their parent(s), but again, the selection algo-

rithm would not let the bad ones survive in future generations.

It is important to notice that the algorithm may never get to produce a satisfying

solution, for example because it might get stuck in some local optima from which no

offspring could escape. While diversity is the first insurance against this scenario, litera-

ture proposes several approaches to alleviate it further (e.g. dynamically modifying the

evaluation function in a way that both preserves the objective and removes or alleviates

such problem [1]).

1.2 Terminology

Before going deeper into the explanations, some definitions are given, as the termi-

nology used for genetic algorithms often refers to domains foreign to computer science,

such as biology and genomics.

Candidate solution: also called agent, individual, or phenotype: it is the set of pa-

rameters that compose a potential answer to an optimization problem. This is what we

ultimately evaluate and assign a score to.

Fitness: the evaluated ability of an agent to adapt to a problem; it serves as a way

to differentiate and rank them in order to apply selection. It is usually represented as a

real number that must be either maximized or minimized.
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Trait: is one part of a candidate solution, that directly influences its fitness. Using

an analogy from biology, the long neck found in giraffes is a trait, because it directly

influences a giraffe capability to adapt to its environment.

Gene: is the encoded form of one or more traits. The thing about genes is that they

are atomically used in genetic operations, so, if one gene represents more than one trait,

an operation applied to it will potentially affect all the traits it encodes. A gene does

not directly affect the way an individual behaves, but does so only after it has been used

to express its traits. Most of the times there is no actual distinction between genes and

traits, for example when they represent numerical values.

DNA: also called genome, is the set of all the genes needed to create a functional

agent, which we can refer to as the encoded form of an agent. The most common form

of such is a vector containing all of the genes.

1.3 Encoding

When implementing a GA, one has to decide on a way to encode the parameters

to represent a candidate solution. The encoded form must comply with the following

constraints:

1. is manipulable by genetic operators, which are the means through which the DNA

is changed over the generations;

2. can be translated back into a candidate solution.

The simplest method to build DNA is to translate each of the traits of an individual

to just one apposite gene, thus producing a direct encoding in which a one-to-one rela-

tion between traits and genes is kept. This technique has the advantage of being straight

forward to implement, especially when no particular translation is needed, but tends to

become more and more complex to evolve as the size of the DNA increases, as it will
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require more trials before a successful mutation is found.

Indirect encoding is one way to overcome such problem. This technique is different

in that genes do not directly express traits, but represent a rule that is used to generate

one or more of them - and they may even do so with the collaboration of other genes.

The GA will thus evolve the set of rules, rather than the traits.

Selection and reproduction are the two fundamental parts in the implementation of

a genetic algorithm because not only they define the method to generate the pool of

possible parents and the whey it should be used to create a new agent, but they also

determine the agent’s traits, and consequently how they must be encoded in the DNA.

A common problem is that reward and diversity do not couple well together: on one

hand, the former will tend to forget all those individuals that perform poorly, which may

lead to populations where the agents are all too similar to each other. This results in

the exploration of a very small and dense fraction of the search space, which would be

fine for a final tuning of the solutions, but would cripple the algorithm in case of a local

optima, as no solution would be different enough to go escape the optima.

On the other hand, diversity favors the proliferation of a variety of solutions, which

are able to explore a less dense, but wider, search space, minimizing the chance of

getting trapped in a local optimum. Maximizing variation would however slow down the

whole algorithm, even crawling it to the point where it becomes a pure random search.

Therefore, a balance between these two properties is required to get the best results from

the algorithm.

1.4 Selection

Selection is the problem of picking the appropriate individuals in a population that

will be given the chance to be the parents for the offspring of the next generation, and

it also defines how many offspring each parent will create.
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No rigorous guidelines exist for choosing the most appropriate technique; this is still

an open question for GAs, as all of them are a compromise between several aspects.

1.4.1 Fitness Proportionate Selection with “Roulette Wheel”

and “Stochastic Universal” sampling

These are the oldest and easiest approaches in which agents are given a chance at

reproduction proportional to their fitness. In the roulette wheel (proposed by Holland)

each individual is assigned a slice of a circular “roulette wheel”, the size of the slice

being proportional to the individual’s fitness. The wheel is spun N times, where N is the

number of individuals in the population. On each spin, the individual under the wheel’s

marker is selected to be in the pool of parents for the next generation. However, with the

relatively small populations, the actual number of offspring allocated to an individual is

often far from its expected value (an unlikely series of spins may always select the worst

individual).

To overcome this problem, James Baker (1987) proposed a different sampling method

- “stochastic universal sampling” (SUS) - to minimize this “spread” (the range of possible

actual values, given an expected value). Rather than spin the roulette wheel N times to

select N parents, SUS spins the wheel once but with N equally spaced pointers, which

are used to selected the N parents. The method has problems when all individuals in the

population are very similar (the fitness variance is low): in such case there are no real

fitness differences for selection to exploit, and evolution grinds to a near halt. This is

known as “premature convergence”. Thus, the rate of evolution depends on the variance

of fitness in the population.

1.4.2 Sigma Scaling

This approach tries to mitigate the problem raised by low variance populations by not

using the direct fitness as expected value, but rather a function of the fitness, the popula-

tion mean, and the population standard deviation. A example of sigma scaling would be:
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ExpV al(i, t) =

1 + f(i)−f(t)
2σ(t)

σ(t) 6= 0

1 σ(t) = 0

where ExpV al(i, t) is the expected value of individual i at time t, f(i) is the fitness of

i, f(t) is the mean fitness of the population at time t, and σ(t) is the standard deviation

of the population fitnesses at time t.

We could thus give an individual with fitness one standard deviation above the mean,

1.5 expected offspring. If ExpV al(i, t) was less than 0, we could arbitrarily reset it to

0.1, so that individuals with very low fitness had some small chance of reproducing.

At the beginning of a run, when the standard deviation of fitnesses is typically high,

the fitter individuals will not be many standard deviations above the mean, and so they

will not be allocated the lion’s share of offspring. Likewise, later in the run, when the

population is typically more converged and the standard deviation is typically lower, the

fitter individuals will stand out more, allowing evolution to continue.

1.4.3 Elitism

“Elitism”, first introduced by Kenneth De Jong (1975), is an addition to many se-

lection methods that forces the GA to retain some number of the best individuals at

each generation. Such individuals can be lost if they are not selected to reproduce or if

they are destroyed by crossover or mutation. Many researchers have found that elitism

significantly improves the GA’s performance ([2]).

1.4.4 Rank Selection

This is an alternative method in which the population gets sorted by fitness score,

and an individual expected value is not determined according to its fitness, but rather

by the position (the rank) in which it classifies. Ranking avoids giving the far largest

share of offspring to a small group of highly fit individuals, and thus reduces the selection

pressure when the fitness variance is high. It also keeps up selection pressure when the

fitness variance is low: the ratio of expected values of individuals ranked i and i+ 1 will
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be the same whether their absolute fitness differences are high or low.

Rank selection has a possible disadvantage: slowing down selection pressure means that

the GA will in some cases be slower in finding highly fit individuals. However, in many

cases the increased preservation of diversity that results from ranking leads to more

successful search than the quick convergence that can result from fitness-proportionate

selection.

1.4.5 Tournament Selection

The fitness-proportionate methods described above require two passes through the

population at each generation: one pass to compute the mean fitness (and, for sigma

scaling, the standard deviation) and one pass to compute the expected value of each

individual. Rank scaling requires sorting the entire population by rank, a potentially

time-consuming procedure.

Tournament selection is similar to rank selection in terms of selection pressure, but

it is computationally more efficient as it doesn’t require any sorting, and more amenable

to parallel implementation. Two individuals are chosen at random from the population.

A random number r is then chosen between 0 and 1. If r < k (where k is a parameter,

for example 0.75), the fitter of the two individuals is selected to be a parent; otherwise

the less fit individual is selected.

An example of this selection technique can be seen in [3].

1.5 Reproduction and Genetic Operators

Reproduction is the phase in which new individuals are actually created. This pro-

cess depends very much on the encoding chosen to represent the DNA, so here I will

proceed describing just some general encoding-agnostic techniques, but a more in depth

argumentation will be found later on in the chapter describing the evolution of neural

networks.
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1.5.1 Sexual and Asexual Reproduction

Researchers have proposed two main methods for generating new agents which differ

in the number of parents from which such agents will inherit their traits. The main

distinction is between using only one parent, also known as asexual reproduction, and

using two or more parents, in this case called sexual reproduction. This distinction is due

to the fact that the two techniques require different genetic operations and strategies:

both of them will in fact require applying genetic mutations to the DNA to maintain some

variance between the agents in the population, but only the multi-parent reproduction

will require crossover to take place, and other operators have been proposed for single-

parent reproduction ([4]).

1.5.2 Mutation

The mutation operator is one that somehow modifies the DNA. It is usually imple-

mented as a random operation applied to a trait. Suppose for example that we are trying

to find a vector of rational numbers ~x that maximizes f(~x). A trait would be a single

element ~xi and a possible mutation operator could look like this:

m(~xi) = ~xi + r([−1,+1])

where r(i) is an arbitrary random number generator that yields a number in the

interval i. Now, this raises a new question: how many elements in the vector, and which,

should be mutated? Of course, there is no absolute answer. It is common to define a

mutation rate hyper-parameter R ∈ [0, 1] such that each ~xi has probability R of being

mutated.

The hyper-parameter R is often not constant during the whole simulation, but ini-

tialized to a relatively high value and slowly decreased as the simulation advances. This

method will increase variance in the initial generations, thus reducing the probability of

premature convergence, but it will also allow a more fine grained search later on, after

the agents have already found some local optima.
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An attempt at improving the choice of this hyper-parameter is to assign each trait

its own mutation rate ~ri and evolve this parameter as well, in the hope that a good

mutation rate will yield a better evolution (either faster or less susceptible to the local

optima problem).

1.5.3 Crossover

This operator is widely regarded as the most beneficial because, besides creating a

good level of diversity, it also has the potential of mixing together the good traits from

several individuals.

Single Point Crossover is one of the simplest implementations and tries to mimic

the natural process of crossing over of genes between two chromosomes. It assumes two

parents ~a and ~b. A random point j so that the children will inherit the first j traits from

~a and the rest from ~b:

~ci =

~ai i 6 j

~bi i > j

Crossover has some shortcomings, though. For one thing, it may not produce all possible

offsprings. For example, given the parents

~a = (1, 1, ∗, ∗, ∗, 1)

~b = (∗, ∗, ∗, 1, ∗, ∗)
it could never produce an instance of

~c = (1, 1, ∗, 1, ∗, 1)

To solve this problem, many variations of this form exist, which also address the

problem of using more than two parents, the simplest being selecting a random parent

for each gene to be inherited.



Chapter 2

Evolving Neural Networks

Neural networks are the biologically motivated approaches to machine learning, in-

spired by ideas from neuroscience. Many attempts have been done towards evolving

various aspects of neural networks, and the field has taken the name of Neuro-Evolution

(NE).

The perceptron is the most fundamental unit of a neural network. It consists of a set

of input connections, each with a corresponding weight represented as a floating point

number. A perceptron output value is calculated as the activated sum of each weighted

input: f(~x, ~w) = g(
∑
~xi ~wi) where g is the activation function. Once the output value is

calculated, it can be used as an input value by another perceptron in the network.

A network is thus a graph tracing the input-output relations (synapses) between its

nodes (the perceptrons, or neurons). In its simplest feed forward form (as seen in figure

2.1), a network is organized in layers, where each node in a layer uses all the nodes from

the previous layer as its input. The first layer is called the input layer, while the last one

is the output layer. The ones in between are called hidden layers.

Input layer nodes have no input connections, and their output value is manually set

by external entities: such nodes behave as sensors, they just reflect the value of some-

thing else. Output layer nodes are instead used to get the final result from the network.

13



14 2. Evolving Neural Networks

Figure 2.1: A feed forward neural network

Several techniques have been used to train neural networks, which is, finding appro-

priate weights and/or topologies, and depending on which technique is used, a different

methodology for representing the network into the genome must be used.

2.1 Direct Encoding

As stated in the previous chapter, direct encoding employs a one-to-one mapping

from genotype to phenotype, so one gene will represent one trait. An advantage of this

representation is that it is easier to understand how the network is constructed from the

genotype representation. Though, there are some negative effects as well. For example,

when dealing with a bigger network, the genotype representation gets inherently larger,

which implies a vastest search space for the GA to explore, thus augmenting the time

the GA will have to work.
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2.1.1 Evolving a weight vector

The first NE approaches used a fixed topology (number of layers and nodes per layer)

which was chosen in advance by the experimenter. It could be, for example, a single hid-

den layer of neurons, with each hidden neuron connected to every network input and

every network output. An encoding for such network can be a simple vector of floating

point numbers each representing a weight in the network. The GA searches the space

of connection weights of this fully connected topology by allowing best-performing net-

works to reproduce. The weight space is explored through the crossover and mutation

of the weight vectors.

Using a fixed topology implies that some knowledge about the size of the final net-

work is needed: when the chosen number of hidden nodes is underestimated, the optimal

solution might not exist in the search space, thus requiring the GA to be restarted from

scratch with a different topology. On the other hand, if the chosen number of nodes is

too large, the search space becomes too big to find the optimal solution.

This technique dates back to 1990-1995 [5, 6] and was the first succesful attempt at

neuroevolution. Mutation was mostly done by letting every weight have a small chance

of changing between generations. Recombination could be done by swapping parts of

the vectors. This representation had a big chance of premature convergence and there-

fore other methods were developed, for example by Moriarty and Miikkulainen [7]; these

methods will be discussed later.

One of the most notable successes using weight vector genotype has been that of

Gomez et. al [8] in which they made use of a subpopulation for every individual weight

in the network, and permuting these subpopulations to create and evaluate networks.

In this way they ensured that the population stayed as diverse as possible. They called

this technique CoSyNE.

In conclusion, weight vector representations are still applicable and have been gain-

ing popularity in recent years. The fixed topology is still quite restricting, but recent
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attempts with fixed topology have been performing better or equal to other more com-

plex topology-evolving methods. This added to the fact that weight vectors are easily

comprehensible makes them a viable class of NE algorithms.

2.1.2 Evolving neurons

In an attempt to improve diversity in populations of neural networks, Moriarty and

Miikkulainen came up with an innovative idea in 1994 [7]: instead of using populations

of networks, they used populations of neurons, each containing a vector of references to

its inputs and their relative weight. They called this method Symbiotic Adaptive Neuro

Evolution (SANE). The goal of this technique was to create specialized versions of in-

dividual nodes, each working to solve a task within the network. But a single neuron

could not be evaluated on its own, so its score was set to be the average score of the

networks in which it participated. NNs were built selecting a fixed amount of random

nodes from the population, so that after several networks were created and evaluated,

each individual neuron would have been scored at least a couple times. Ranking would

have used the average score of the neuron, and the 25% of the population was kept for the

reproduction phase, which included crossover and mutation. Crossover was performed

by using one-point crossover within the real valued vector that composed each neuron,

which creates two offspring for every two parents. In a second moment, mutation would

change individual weights with a 1% chance.

In 1996 Gomez and Miikkulainen extended the system of SANE creating sub-populations

and called the new technique Enforced Sub-Populations (ESP). In this new version, a

node is allowed to recombine (through crossover) only with neurons belonging to the

same sub-population, thus creating some sort of competition inside each group of nodes.

Evolution in ESP proceeds as follows:

1. Initialization: the number of hidden units u and the number of neurons for each

subpopulation n are specified and u subpopulations are initialized with n encoded
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neurons, each containing two vectors of reals: one for the input weights and one

for the output.

2. Evaluation: a certain number of networks (e.g. n times u) are created selecting

one random node for each of the u groups. Each one is evaluated and its score gets

added to the cumulative fitness of each of the neurons that participated into the

network.

3. Recombination: the average fitness is calculated by dividing the cumulative fitness

by the number of trials, and the individuals within subpopulations are ranked by

average fitness. Each neuron in the top quarter is recombined with a higher-ranking

neuron, creating offspring that replace the lowest-ranking half in the subpopulation.

4. The evaluation-recombination cycle is iterated until a network is found that per-

forms sufficiently well.

Hidden nodes from different sub-populations could develop links to each other after

a sufficient amount of generations. Another advantage of ESP in comparison to conven-

tional neuroevolution is that in CNE networks with a single “bad” node could still have

a high fitness, in ESP every type of node is evaluated by its own average performance,

so this event is not likely to happen. In 2000, Kaikhah and Garlick [9], made another

extension to this neuron representation technique, making it possible to build networks

with a variable amount of hidden nodes.

These neuron representations were one of the first deviations from the conventional

neuroevolution path, and are based on a quite unique representation that is worth men-

tioning. However, both implicit and other direct representations have been performing

better over the last decade.

2.1.3 Evolving Topologies

One of the first attempts at evolving the structure of a network as well as its weights

has been that of Stanley and Miikkulainen in 2002 which argued that the topology of
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a network also affects its functionality. In their opinion, an algorithm that could find

parameters such as the network size or the nodes’ connections on its own would render

it much more robust, also eliminating the need of trial and error heuristic to find those

parameters.

Neuro Evolution through Augmenting Topologies

Abbreviated NEAT, the technique was published by Stanley and Miikkulainen in

2002. It is not the first topology evolving algorithm (Dasgupta and Mcgregor in 1992

already were dipping their toes into the argument, though their approach was far less

elaborated [11]) but it has brought a big wave of innovation into the field of neuroevo-

lution, as it achieved unprecedented efficiency and adaptability through its ability to

generate complex topologies starting from minimal networks, thus keeping its structure

as small as the requirements allowed [17, 18].

NEAT solved a problem that was common in previous topology evolving strategies,

called Competing Conventions, which happens when different genotypes encode for the

same phenotype. This phenomena could have several negative repercussions in the GA,

because two fit individuals that accidentally had the same phenotype, but different geno-

type, will produce a less fit offspring when crossed-over. Two novel intuitions allowed

NEAT to overcome such problem:

1. To battle the competing conventions problem, NEAT would store ancestral infor-

mation of each individual.

2. NEAT uses speciation (subpopulations) and different fitness measures for newly

formed topologies and fully weighted networks.

In NEAT, the initial population is set to have networks with no hidden nodes, just

the input and output ones, and is not bound to be a feed-forward network, but has

the capacity to evolve in any graph. The encoding used by the algorithm specifically

developed to allow meaningful structural crossover, where each genome consists of a set

of nodes and a set of connections (see figure 2.2). A gene for a node contains its ID, its

type (either input, output or hidden) and an innovation number, while each connection
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Figure 2.2: Genotype and Phenotype Example for the NEAT Algorithm. Above is an

example of a genotype that represents the displayed phenotype. There are six nodes:

three input, two hidden and one output. There are nine links, two of which are recurrent

and one of which is disabled. The disabled gene (connecting nodes 5 and 4) is not

displayed. [12]
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specifies the input and output nodes, the connection weight, whether the connection is

enabled, and an innovation number, which is used to identify corresponding genes.

When the GA mutates a link, it randomly chooses two nodes and inserts a new link

gene with an initial weight of one. If a link already existed between the chosen nodes but

was disabled, the GA re-enables it. Finally if there is no link between the chosen nodes

and an equivalent link has already been created by another genome in this population

this link is created with the same innovation number as the previously created link as it

is not a newly emergent innovation.

A node mutation is similar to a link mutation but differs from it in that instead of

choosing two nodes and inserting a link, the GA chooses and disables an existing link and

inserts a node. The GA inserts this new node with a random activation value, as well as

two link genes to connect the node to the now-disabled link’s previous input and output

nodes. The GA then transfers the weight from the disabled link gene to the new link

gene, which is connected to the old output neuron. The weight of the link gene inserted

between the new neuron and the old input node is set to one so as not to disturb any

learning that has already occurred in this connection. Introducing a new node where a

link once existed may fragment some evolved knowledge in the phenome. Copying the

original link weight to one of the new node’s links while setting the other connecting link

weight to one minimizes the disturbance in learning.

Crossover is not always obvious to implement when optimizing dynamic genotypes,

as it is the case with topology evolving neural networks, because the structures of differ-

ent genotypes are not necessarily related. The innovation number (IID) cited above is

the piece needed to solve this problem, serving as the link’s historical marking, denoting

hereditary information about the gene. Crossover happens between two parents, and

the offspring will contain the union of genes form both parents, but if a node or link is

present in both parents (has the same IID) it is taken only once.

The technique employed by NEAT allows the GA to build increasingly complex
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genomes without imposing constraints on how parents are coupled together, but this

level of complexity goes against the GA itself, as it implies a larger search space. Also, a

genetic innovation may not directly influence positively the resulting network, but may

require subsequent innovations to express its full potential. To prevent the deletion of

such young genomic innovations, NEAT employs speciation.

In natural evolution entities that once shared a common genome sometimes diverge

so much that they can no longer mate with one another. This divergence is known as

speciation. In NEAT, as the genomes in a population grow complexity a new innovation

in their topology may result in greater performance for the population’s agents. NEAT

uses speciation to protect such innovations. When an agent’s structure diverges far

enough from that of the other agents in the population NEAT identifies it and places it

in its own species. Using innovation numbers NEAT can calculate the distance between

two genomes. The distance is defined by the following function:

δ = c1E
N

+ c2D
N

+ c3W

where E is the number of excesses (genes which are newer than any other gene in the

other parent), D is the number of disjoints (the number of genes not common to both

parents), W is the average of weight differences of the two genomes; the arbitrary coef-

ficients c1, c2, and c3 are arbitrary and modify the weights of each of the variables and

N is the number of genes in the larger of the two genomes.

In the initial generation only one species is present; the population is uniform. As

complexity raises, distance between genomes increases until one will surpass an arbitrary

threshold, at which point a new species is defined and it becomes the champion for the

new species. As genomes distances from the champion of their species, they may also

be moved to a different existing species, if their distance to a foreign champion becomes

small enough.

This method not only creates an internal competition within each species, but makes

sure that only similar genotypes get selected as parents in the crossover, thus making the

recombination more incline at preserving those traits that have been previously learned,
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and making sure they do not get deleted too early.

2.2 Indirect Encoding

Natural DNA can encode complexity at enormous scale, and this is due to the fact

that it does not contain all the information about each trait that it represents, but rather

describes it in a more abstract language made of definitions and rules. Researchers are

attempting to achieve the same representational efficiency in computers by implementing

developmental encodings, i.e. encodings that map the genotype to the phenotype through

a process of growth from a small starting point to a mature form. A major challenge in

this effort is to find the right level of abstraction of biological development to capture

its essential properties without introducing unnecessary inefficiencies. Indeed, a good

representation of the solution space can mean the difference between success and failure.

In biology, the genes in DNA represent astronomically complex structures with trillions

of interconnecting parts, such as the human brain [14, 15]; rather, somehow, less than

30 thousand genes encode the entire human body [16]. This observation has inspired

an active field of research in artificial developmental encodings. Abstractions range

from lowlevel cell chemistry simulations to high-level grammatical rewrite systems [19].

Because no abstraction so far has come close to discovering the level of complexity seen

in nature, much interest remains in identifying the properties of abstractions that give

rise to efficient encoding. Here one technique is presented as a reference.

2.2.1 Grammatical Encoding

The method of grammatical encoding can be illustrated by the work of Hiroaki Kitano

([29]) which points out that since direct-encoding methods explicitly represent each con-

nection in the network, repeated or nested structures cannot be represented efficiently,

even though these are common for some problems. The solution pursued by Kitano and

others is to encode networks as grammars; the GA evolves the grammars, but the fitness

is tested only after a “development” step in which a network develops from the grammar.

That is, the “genotype” is a grammar, and the “phenotype” is a network derived from
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that grammar.

Kitano applied this general idea to the development of neural networks using a type

of grammar called a “graph-generation grammar” from which it was possible to derive

an architecture (but not the weights).

The fitness of a grammar was calculated by constructing a network from the gram-

mar, using back-propagation with a set of training inputs to train the resulting network

to perform a simple task, and then, after training, measuring the sum of the squares of

the errors made by the network on either the training set or a separate test set.

The GA used fitness-proportionate selection, multi-point crossover (crossover was

performed at one or more points along the chromosome), and mutation. A mutation

consisted of replacing one symbol in the chromosome with a randomly chosen symbol

from the A-Z and a-p alphabets. Kitano used what he called ”adaptive mutation”: the

probability of mutation of an offspring depended on the Hamming distance (number of

mismatches) between the two parents. High distance resulted in low mutation, and vice

versa. In this way, the GA tended to respond to loss of diversity in the population by

selectively raising the mutation rate.

Kitano’s idea of evolving grammars is interesting, and his informal arguments are

plausible reasons to believe that the grammatical encoding method (or extensions of it)

would work well on the kinds of problems on which complex neural networks could be

needed. However, the particular experiments used to support the arguments were not

convincing, since the problems may have been too simple.

2.2.2 Compositional Pattern-Producing Networks

A compositional pattern-producing network (CPPN for short, proposed by Kenneth

O. Stanley [13] in 2007) is basically a way of compressing a pattern with regularities and

symmetries into a relatively small set of genes. This idea makes sense because natural

brains exhibit numerous regular patterns (i.e., repeated motifs) such as in the receptive

fields in the visual cortex. CPPNs can encode similar kinds of connectivity patterns. The

fundamental insight behind this encoding is that it is possible to directly describe the
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structural relationships that result from a process of development without simulating the

process itself. Instead, the description is encoded through a composition of functions,

each of which is based on observed gradient patterns in natural embryos.

CPPNs are structurally similar to artificial neural networks used in most neuroevo-

lution techniques, thus they can take full advantage of all the existing methods for

neuroevolution. In particular, Stanley modified his previous works in NEAT to cre-

ate CPPN-NEAT (later republished as HyperNEAT [20]), which evolves increasingly

complex CPPNs. In this way, it is possible to evolve increasingly complex phenotype

expression patterns, complete with symmetries and regularities that are elaborated and

refined over generations.

The idea is actually quite simple, but very powerful at the same time. In CPPN an

ANN is evolved with any traditional technique, but instead of using it to directly express

the phenotype, it is used by a function that takes the parameters’ spatial coordinates

and produces a value for the parameters. This feature of having spatial coordinates for

the input domain is almost never considered, but may often give vital information to

the learning algorithm, for example when images are used as input. For those problems

where the input does not have any spatial information - and for the hidden layers which

miss this information as well - CPPN is able to generate and evolve such information.

2.3 Optimizing Backpropagation Problems

Backpropagation is the currently one of the preferred base algorithm for finding the

correct weights in a neural network [21, 22, 23]. As architectures become larger, tuning

the hyper-parameters [25] is getting more and more difficult and time consuming, espe-

cially for deep neural networks where many layers of neurons are added on top of each

other making the evaluation of hyper-parameters computationally expensive and time

consuming. Hyper-parameters are the variables which determines the network structure

(e.g. number of hidden units) and the variables which determine how the network is
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trained (e.g. learning rate). They are set before training (before optimizing the weights

and bias) but some can be changed even as the training occurs to fine tune the learning

process.

Some of the most common methods for finding appropriate hyper-parameters in-

clude manual search, grid search, random search [24], bayesan optimization and genetic

algorithms.

Manual search is the most naive method for tuning hyper-parameters in which an

expert uses his knowledge and experience to tune the parameters.

Grid Search or parameter sweep, is simply an exhaustive searching through a set of

manually specified subset of the hyper-parameters of the learning algorithm. This search

uses a brute-force like approach where all possible combinations of parameters are used

to generate different training sessions and outputs the parameters that yielded the best

results in the validation process.

Random Search works in the same fashion as the grid search, but instead of using

an exhaustive search through all the subset of hyper-parameters, it only selects a few

of them randomly. This method allows the experimenter to specify the distribution of

hyper-parameters from which to sample, thus using prior knowledge to render the search

more efficient.

Bayesian Optimization starting from a defined set of hyper-parameters, it continu-

ously tests noised versions of the best performing values for each parameter, thus creating

a balance between exploration (trial of values whose outcome is uncertain) and exploita-

tion (using values close to the best performing ones) to produce results that are often

better than the previous techniques described.

Evolutionary Optimization Evolutionary optimization is a methodology for the

global optimization of noisy black-box functions. In hyper-parameter optimization, evo-

lutionary optimization uses genetic algorithms to search the space of hyper-parameters.
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As seen so far, a population of candidate solutions must be created at priori, and a fitness

evaluation function that takes the hyper-parameters as input and assigns them a score

is needed to start the evolutionary process.

2.3.1 Evolving the topology of deep neural networks

As seen for the grammar encoding used by Hiroaki Kitano in 1990, GAs have a long

history of living in symbiosis with the backpropagation algorithm, leaving to the latest

the responsibility of finding the correct weights for the synapses, and letting the GA

train all the rest (e.g. the topology of the network). This coupling has demonstrated

to be very reliable and reliable in surpassing conventional problems such as overfitting

or getting stuck in local minima, but has the drawback of being embarrassingly time-

consuming, as the fitness function will need to build, train and validate a whole neural

network from scratch before being able to assign a score to the genome that produced

it. With the increasing processing power in the latest decades, and the need for ways

to automate the hyper-parameter discovery in the increasingly complex neural networks

(as it is the case with deep neural networks), the argument has attracted new researchers

and the field has become much more active.

One of the most relevant results has been achieved recently by Esteban Real et al.

in 2017 [3] and proves that genetic algorithms can be able, given enough computational

power, to evolve the structure of very complex deep neural networks, producing results

comparable to those produced by the manual tuning experts. Specifically, the paper

shows how the evolutionary process discovered models for solving the CIFAR-10 and

CIFAR-100 datasets. To achieve such results, the researchers introduced novel genetic

operators that could introduce, erase or change whole layers at a time, thus being able to

cope with very large scale networks. While they experimented three kinds of crossover

between individuals (the networks), Esteban et al. affirm that it didn’t affect the per-

formance of the process. The results have shown great accuracy, but at a very high

computational cost. Nonetheless, this experiment is a demonstration of how effective

the coupling between the two approaches can be.
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Experimentation

A program has been built to experiment with the different techniques, which is an

attempt at evolving both the weights and the topology of a neural network.

The shape of the resulting network can be any directed graph with the only constraint

that given two nodes ni and nj, there may exist at most one connection that starts from

the first and gets to the second.

A notable thing is that, as in ESP, the entity being evolved is not the network itself,

but rather its neurons taken independently, so there exist many populations, one for

each neuron that has been discovered. The links between neurons are stored inside the

neuron from which they originate, and thus are part of their genome.

The perceptron mechanic has been redesigned in an attempt to dynamically reduce

the number of calculations required to produce a result: traditional neural networks must

compute each neuron value before getting the output nodes’ values, but this is a very

unnatural thing. Suppose an ANN must be found that labels images in which there may

be either a cat or a bird. In such case there may not always be the need to compute all

of the neurons’ output, instead it would be desirable that the network halted as soon as

it detected a beak, a tail, or any other detail from which the answer could be derived

with a sufficient degree of certainty.

27
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The proposed perceptron implementation potentially allows, under the right circum-

stances, the formation of such behavior, but while it proved to yield reliable results, no

effort has yet been spent into measuring and improving its efficiency.

3.1 Gene Pools

As Richard Dawkins described in the book The Selfish Gene, genes do not compete

against each other, as crossover does not make any selection on them. Instead, the only

fear of a gene is represented by its alleles. An allele is defined to be an alternative

form of the same gene, occupying the same spot on the genotype. Alleles come into

existence every time a mutation hits the gene. During crossover, the two parent genomes

may present different alleles for the same gene, thus generating the rivalry. This is the

philosophy followed during the creation of this algorithm: the genes are implemented

as pools of alleles, where each pool stores all the discovered mutations for one neuron,

keeping track of how beneficial each variant has been to the neural network making use

of it.

1 GenePool {

2 genes: Map(String -> Vector(Allele))

3 hyper_params: {

4 mutation_rate: Float ,

5 max_pool_size: Integer ,

6 ...

7 }

8 }

9 Allele {

10 id: String , // generated randomly , see sect. Implementation

11 cumulative_score: Float

12 evaluation_count: Integer

13 node: Node

14 }
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Fitness sharing

The evaluation technique used to assign each allele its score reflects that proposed

by ESP, where the fitness score achieved by the network is shared across all of its nodes.

This is done by looking up the corresponding allele in the gene pool for each node (or

creating one if the node is new or is a mutation unknown to the gene pool), adding the

score to the cumulative_score of the allele and incrementing the evaluation_count: these

two values will be needed to compute the average fitness score in the selection algorithm.

3.2 Neural Network Mechanics

3.2.1 The Neuron

1 Node {

2 name: String

3 allele_id: Null or String

4 type: NodeType

5 value: Float

6 reset: Float

7 threshold: Float

8 links: Vector(Link)

9 }

Where the name is decided arbitrarily for input and output nodes, and is generated

randomly for the hidden nodes. allele_id is needed to keep track of which allele generated

the node, type is can be either input, output or hidden; value is only used to represent

the neuron state in a given moment, reset is is the value assigned to value every time

the node activates, threshold is the value it must reach in order to be activated, and a

vector of outgoing links, and finally links is the set of outgoing synapses.

Input nodes are usually created with a threshold lower than the value they will represent,

thus making sure they will always get activated when an external signal stimulates them.

3.2.2 The Synapse

1 Link {

2 weight: Float



30 3. Experimentation

3 delay: Integer // (min: 1)

4 output: String

5 }

Each link is composed of three values: a weight that can be both positive and negative,

a delay which defines how many time steps are required for the signal to reach its desti-

nation - lower bounded to one, as signals are defined not to be instantaneous - and the

latest parameter contains the name of the target neuron.

3.2.3 The Signal

1 Signal {

2 value: Float

3 time: Integer

4 target: String

5 }

value specifies the value to be added to the neuron named target at time time. There

exist two ways in which signals get generated: the first happens during initialization,

where signals are manually created by factors external to the network (the actual input

of the network gets “transmitted” to it); the other way a signal can be created, is when

a neuron gets activated: right after this happens, several signals are generated, one for

each of the neuron outputs. In this case, the value of the signal is equal to the value of

the source node at the time of activation multiplied by the link weight; time is set to the

current network time plus the link delay.

3.2.4 The Network

1 Network {

2 time: Integer

3 nodes: Map(String -> Node)

4 signals: Map(Integer -> Vector(Signal))

5 }

Where time is the current network time, it starts from zero and gets incremented af-

ter each cycle, nodes is the set of nodes participating in the network mapped by their
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name, and signals is the structure used to index all the signals by time of arrival (e.g.

signals[t] will return all the signals reaching their target at time t).

A network is started by setting all nodes to their reset value, and then filling

signals[0] with one signal for each input value, setting target to the corresponding

input node and time to 0.

Once a network net is initialized, a tick() procedure is called in loop for an arbitrary

number of times. Such procedure will do three things:

- for each signal sig in net.signals[net.time], the output node is updated:

net.nodes[sig.target].value+= sig.value

- each node in the network is checked for activation: if a node is found to be active

(node.value > node.threshold) then new signals are generated for each of the node

links and inserted into the net.signals map, indexed by time of arrival;

- the network time is incremented by one: net.time+= 1

When the tick() loop ends, the output nodes’ values can be used as the result. An

example of the network usage follows:

1 fn process(net: Network , n: Integer , input: Map(String -> Float)) {

2 net.reset() // resets each node , net.time and net.signals

3 for (target , value) in input:

4 net.addSignal(value , time=0, target)

5 repeat n times:

6 net.tick()

7 }

3.3 Network Generation

SANE and ESP use the same schema, allocating one pool for each neuron, but a big

change has been made in how the network gets built. SANE is only able to connect neu-

rons to the input and output nodes, thus creating exactly one hidden layer; ESP extends
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this allowing neurons to connect to themselves, creating recurrent links. Both algorithms

will use a fixed amount of random neurons from all those available to generate a network.

To generate a network, a recursive procedure is called iteratively for each of the input

and output nodes. Such procedure accepts a gene pool, a network net and a node name

name as inputs, selects one node from the pool corresponding to the node name and inserts

it into the network nodes. It then calls itself recursively for each of the node links:

1 fn add_node(gp: GenePool , net: Network , name: String) {

2 if name in net.nodes: return // do not add the same node twice

3 node = select_from_pool(gp.genes[name])

4 net.nodes[name] = node

5 for link in node.links:

6 add_node(gp, net , link.output)

7 }

8

9 fn create_net(gp: GenePool ,

10 input: Vector(String),

11 output: Vector(String)) -> Network {

12 net = new Network ()

13 for name in input: add_node(gp , net , name)

14 for name in output: add_node(gp , net , name)

15 return net

16 }

This is enough to generate any kind of directed graph neural network - traditional NNs

as well - in a way where each node can be selected from a pool of possible alternatives,

determining on its turn how other parts of the network are generated.

3.4 Genetic Operators

Genetic operators include mutation and crossover between alleles and resemble those

introduced by NEAT. Mutation is implemented at the network level and can be one of

the following:

- mut_link_del deletes a link from a random node.
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- mut_link_new adds a link to a node, using a non-input node as the target of the

connection.

- mut_split splits an existing link, inserting a new node between the source and the

destination.

- mut_reset and mut_threshold alters the reset/threshold value of a random neuron

by adding a random value in [−1, 1]

- mut_weight alters the weight of a randomly chosen link

- mut_delay changes the delay of a random link, adding an integral value in [−4, 4]

and each mutation has probability mrate ∈ [0, 1] of happening. If the mutation

happens, then it may happen again with the same probability. This is valid until the

mutation does not happen:

1 fn mutate(net: Network , mrate: Float) {

2 while rand(0, 1) < mrate: net.mut_link_del ()

3 while rand(0, 1) < mrate: net.mut_link_new ()

4 ...

5 }

Crossover on the other hand is implemented at the gene pool level and may happen

with probability mratec ∈ [0, 1] every time there is the need to select one allele from

a pool. Crossover mixes two alleles from the same pool by creating a new node of

the same gene which inherits reset and threshold independently from either parent with

equal chance. The links vector is instead the union of all the links present in the parents.

If the resulting node has two links directed to the same target, one of them selected at

random is deleted; this is repeated until no two links have the same target.

Every time a node is mutated or created, its allele_id is set to None. The GenePool will

fill the field once the node is sent back to it with a fitness score.

3.5 Implementation

The algorithm has been implemented in the rust programming language to get max-

imum CPU performance, and can be run on multiple cores and multiple computers in
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parallel: two dependent modes of execution thus exist: master and worker.

The role of the master is to coordinate the workers by hosting a GenePool and providing

an interface - a RPC server - that generates new neural networks on demand and accepts

evaluations (along with the networks that produce them) to be recorded in the pool.

A worker is thus programmed to require NNs from the server, evaluating them and

sending them back to the server. To reduce load on the master, and to increase exploita-

tion, the worker will not test only the received network, but instead it will run a local

genetic algorithm (LGA), implemented with the same algorithm used for the master -

the GenePool - to evolve a certain amount of networks starting from the received one; the

best network found is finally sent back to the server with its score.

1 fn worker(master: Master) {

2 while True:

3 job = master.get_job ()

4 best = run_local_ga(job.network , job.params)

5 master.send_evaluation(best.score , best.network)

6 }

3.6 Testing and results

The proposed algorithm has been tested on the classification of the MNIST dataset,

which contains 70.000 28x28 gray-scale images, each representing a decimal digit.

The dataset has been split into three parts:

- the train set (50.000 images): each LGA uses a very small mini-set of 10 to 100

images selected randomly from the train set;

- the validation set (10.000) is used to recalculate the score of best network found

from the LGA before sending it to the master. To reduce the time needed for the

evaluation, the set is split into slices and a network is only evaluated on one slice.

The master dictates which slice must be used, and is able to change this parameter

automatically when it detects overfitting on the current validation set slice;
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- the test set (10.000 images) is only used offline (e.g. the results are never used by

any GA) to effectively test a network performance.

3.6.1 Evaluation

The networks in this test are created with one input neuron per pixel (784 pixels per

image) and ten output neurons - one per label. The final output is activated using the

soft-max function, thus producing a vector of ten probabilities whose sum is one. The

desired output vector for an input i is set to be:

~oj =

1 if j is the correct label for the image i

0 otherwise

A correct guess (a success) happens when the maximum value in the output vector

is in position j, being j the correct label. The fitness score of a network on a certain

dataset ~d of N images is defined by:

f(~d) = 10
s

N
− σ2

N

where s is the number of successes and σ2

N
is the average variance between the desired

output and the the actual output. The score can thus variate from −1 up to 10 in case

of perfect accuracy.

3.6.2 Results

The algorithm needs around 10.000 reports from the workers to produce a network

achieving 60% success rate, but the improvements start slowing down dramatically after

the 75% accuracy is reached. The best networks produced by the algorithm usually reach

a success rate slightly over 80%. The main cause for such high error rate is probably

due to the limited size - between 100 and 1000 - of the validation set, which allows

the network to memorize it without actually learning the general rule to distinguish the

digits, even when changing the validation set periodically, as visible in figure 3.2.
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Figure 3.1: the chart displays how reports (dots) sent to the master increasingly get

better over time. The x axis displays the report number and the y axis represents the

fitness value; the darker line shows the moving average over 1000 reports. In this trial,

the validation set slice was fixed, thus provoking overfitting. The best network scored

9.14 (over 91% accuracy on the validation set) but when evaluated on the test set it only

yielded a 74.4% success rate.
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Figure 3.2: When overfitting is detected, the master chooses a new validation set and

broadcasts it to the workers. The drops are in correspondence of such events and show

how much overfitting is actually happening. The idea behind the validation test swaps

is to constantly reward those neurons that are less susceptible to the problem, as they

should be the ones to stand out during the drops, thus being more favorable to selection.

The best network in this simulation scored 8.82 on the validation which yielded a 78.2%

success rate on the test set
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Figure 3.3: A visualization of a network achieving around 40% performance. The dark

dots represent neurons, while the synapses are represented by the lines. Input nodes are

disposed in a matrix in the lower left corner, the ten output nodes are on the right, and

the hidden nodes are disposed in circle. The coloration represents the weight of the link:

blue denotes weights close to zero, green is for positive values and red for the negative

ones. On the right, the same network is shown emphasizing the direct connections of the

label for the output 0.



Chapter 4

Conclusions

Genetic algorithms and their relations with neural networks have been clarified, and

while the experimental results obtained classifying the MNIST dataset are not compa-

rable to those of the literature, they provided a base on which to try novel approaches.

This experiment also demonstrates how the artificial neural networks can be deeply

redesigned, and while on one hand backpropagation and similar approaches wouldn’t

probably work on these new architectures, evolutionary algorithms offers a way to con-

figure them with very low effort. It would be intriguing to build a program that generated

implementations of ANNs with novel mechanics training them using genetic algorithms,

in the search for the most effective and efficient solutions.

4.1 Future developments

As overfitting seamed to be the major obstacle in learning general tasks, the fitness

evaluation function can probably be reviewed, for example it would be insightful to build

the validation set on those images on which the network fail the most. Another inter-

esting aspect would be to try the GA on a very different domain, such as building a

controller for a virtual robot, as this is one domain on which genetic algorithms show

promising results.

39
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Also, the theoretical potential efficiency of the proposed neural network will be tested

more scrupulously to understand if, once trained properly, it would be able to limit the

amount of circuits - and thus the computational power - used on a per-input basis.
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