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Sommario

Con l'avvento della fase ad Alta Luminosita di LHC (HL-LHC), la luminosita

istantanea del Large Hadron Collider del CERN aumentera fino a 7,5- 103 cm =251,
Pertanto, sono necessarie nuove tecniche algoritmiche per l'acquisizione e I’elaborazione
dei dati, in preparazione ad un ambiente con elevato pile-up che renderebbe obsoleti
gli attuali apparati di elettronica e trigger.
Attualmente, le tecniche di Machine Learning rappresentano un’alternativa promet-
tente al problema, in quanto rendono possibile la selezione di molteplici informazioni
- raccolte dal rivelatore - e costruire da esse diversi modelli, in grado di predire con
una certa efficienza quantita fisiche fondamentali, tra cui il momento trasverso pr.
L’analisi presentata in questa Tesi Magistrale consiste proprio nel produrre suddetti
modelli, con dati ottenuti mediante simulazioni Monte Carlo, in grado di predire
I'impulso trasverso dei muoni che attraversano la regione del Barrel delle camere
a muoni di CMS, e compararli con i valori di pr assegnati dall’attuale sistema di
trigger di Livello 1, il Barrel Muon Track Finder (BMTF).

Il Capitolo 1 fornisce una panoramica di LHC, con maggiore attenzione all’esperimento

CMS.

Il Capitolo 2 fornisce un’introduzione al Muon System di CMS, con una partico-
lare attenzione al Trigger di Livello 1 relativo alla regione del Barrel.

Il Capitolo 3 introduce alcuni concetti e termini fondamentali di Machine Learn-
ing, con uno sguardo al processo di creazione di un modello di Supervised
Learning.

Il Capitolo 4 presenta i risultati originali di questo progetto: partendo dal prob-
lema fisico studiato, ai processi necessari per la preparazione dei dati e la
creazione di una Neural Network per la stima del momento trasverso dei
muoni. Infine, vengono discussi i risultati ottenuti.
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Abstract

With the advent of the High-Luminosity phase of the LHC (HL-LHC), the
instantaneous luminosity of the Large Hadron Collider at CERN will increase up
to 7,5 - 103*em 2571, Therefore, new algorithmic techniques for data acquisition
and processing will be necessary, in preparation for a high pile-up environment that
would eventually make the current electronics and trigger devices obsolete.
Nowadays, Machine Learning techniques represent a promising alternative to this
problem, as they make possible the selection of multiple information - collected by
the detector - and build from them different models, able to predict with a certain
efficiency fundamental physical quantities, including the transverse momentum py.
The analysis presented in this Master Thesis consists in the production of such
models - with data obtained through Monte Carlo simulations - capable of predicting
the transverse momentum of muons crossing the Barrel region of the CMS muon
chambers, and compare the results with the pr assigned by the current CMS Level
1 Barrel Muon Track Finder (BMTF) trigger system.

Chapter 1 provides a global view of CMS experiment at LHC.

Chapter 2 presents an introduction of the CMS Muon System, with a particular
attention to the Level 1 Trigger system of the Barrel region.

Chapter 3 introduces Machine Learning concepts and terminology, offering an
overview of a common workflow in the creation of a Supervised Learning
algorithm.

Chapter 4 presents the original results of this project: a physical overview of the
problem, the processes required for the data preparation and the creation of
a Neural Network for the estimation of the particles momentum. In the end,
a discussion of the results is given.
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Chapter 1

High energy physics at the LHC

1.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [1, 2] is part of the CERN accelerator complex
(see Figure 1.1) [3], in Geneva, and it is the most powerful particle accelerator ever
built. The particle beam is injected and accelerated by each element of a chain
of accelerators, with a progressive increase of energy until the beam injection into
LHC, where particles are accelerated up to 14 TeV (by LHC design, its nominal
center-of-mass energy).

The LHC consists of a circular 27 km circumference ring, divided into eight inde-
pendent sectors, designed to accelerate protons and heavy ions. Particles travel
in two separated beams on opposite directions and in extreme vacuum conditions
(see Section 1.1.1). Beams are controlled by superconductive electromagnets (see
Section 1.1.2) | keeping them in their trajectory.

Some of the main LHC parameters are shown in Table 1.1.

CMS

LHC

Nu:r}th Area

— ATLAS
1 TT6
|
AD

LINAC 2

LHCb

SPS

V neutrinos
CNc:.‘\

2006 Gran Sasst

East Area

N LINAC 3
lons

Figure 1.1: The accelerators chain at CERN.



1.1. The Large Hadron Collider

Table 1.1: Main technical parameters of LHC.

Quantity value
Circumference (m) 26 659
Magnets working temperature (K) 1.9
Number of magnets 9593
Number of principal dipoles 1232
Number of principal quadrupoles 392
Number of radio-frequency cavities per beam 16
Nominal energy, protons (TeV) 6.5
Nominal energy, ions (TeV /nucleon) 2.76
Magnetic field maximum intensity (7T) 8.33
Project luminosity (cm™2s7!) 2.06 x 103
Number of proton packages per beam 2808
Number of proton per package (outgoing) 1.1 x 101
Minimum distance between packages (m) ~T7
Number of rotations per second 11245
Number of collisions per crossing (nominal) ~20
Number of collisions per second (millions) 600

1.1.1 The vacuum system

The LHC vacuum system [4] is, with more than 104 kilometers of vacuum ducts,
one of the most advanced in the world. It has two functions: the first is to avoid
collisions between beam particles and air molecules inside the ducts, creating an
extreme vacuum condition (1071%atm), as empty as interstellar space; the other
reason is to cancel heat exchange between components that need low temperatures
in order to work properly and maximize the efficiency.

The vacuum system is made of three independent parts:

e an isolated vacuum system for cryomagnets;
e an isolated vacuum system for Helium distribution line;

e a vacuum system for beams.

1.1.2 Electromagnets

Electromagnets |5] are designed to guide beams along their path, modifying single
particles trajectories as well as align them in order to increase collision probability.
There are more than fifty different kind of magnets in LHC, totalling approximately
9600 magnets. Main dipoles generate a magnetic field with a maximum intensity
of 8.3T. In order to reach such an intense field, a current of 11850 A is needed.
To minimize power dissipation, superconducting magnets are employed. A system
of liquid He distribution keeps the magnets at a temperature of about 1.9 K. At
this incredibly low temperatures, below that required to operate in conditions of
superconductivity, helium becomes also super-fluid: this means an high thermal
conductivity, thus an efficient refrigeration system for magnets.
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1.1.3 Radiofrequency cavities

Radiofrequecy cavities [1] [2] [6] are metallic chambers in which an electromagnetic
field is applied. Their primary purpose is to separate protons in packages and to
focus them at the collision point, in order to guarantee an high luminosity and thus
a large number of collisions.

Particles, passing through the cavity, feel the overall force due to electromagnetic
fields and are pushed forward along the accelerator. In this scenario, the ideally
timed proton, with exactly the right energy, will see zero accelerating voltage when
LHC is at nominal energy while protons with slightly different energies will be
accelerated or decelerated sorting particle beams into "bunches". LHC has eight
cavities per beam: each of which provides 2 MV at 400 MHz. The cavities work at
4.5 K and are grouped into four cryo-modules.

At regime conditions, each proton beam is divided into 2808 bunches, each contain-
ing about 10! protons. Away from the collision point, the bunches are a few cm
long and 1 mm wide, and are compressed down to 16 nm near the latter. At full
luminosity, packages are separated in time by 25ns, thus resulting in about 600
million collisions per second.

1.2 LHC detectors

Along the LHC circumference, the particles collide in four intersection points,
where the main LHC experiments are located. Each experiment has its own detector,
designed and built to gather the fragments of the large number of collisions and to
reconstruct all physical processes that generated them.

In particular, the four major experiments installed at LHC are:

e A Large Ion Collider Experiment (ALICE)
e A Toroidal LHC ApparatuS (ATLAS)
e Compact Muon Solenoid (CMS)
e Large Hadron Collider beauty (LHCD)
In addition, there are secondary experiments, among which:
e Large Hadron Collider forward (LHCI)
e TOTal Elastic and diffractive cross section Measurement (TOTEM)

In the following sections, the LHC detectors are briefly introduced, with a major
focus on the CMS experiment.

1.2.1 ALICE

ALICE [7, 8] is a detector specialized in heavy ions collisions. It is designed to
study the physics of strongly interacting matter at extreme energy densities, where
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1.2. LHC detectors

a phase of matter called "quark-gluon plasma" forms. At these conditions, similar
to those just after the Big Bang, quark confinement no longer applies: studying the
quark-gluon plasma, as it expands and cools down, allows to gain insight on the
origin of the Universe. Some ALICE specifications are illustrated in Table 1.2.
The collaboration counts more than 1000 scientists from over 100 physics institutes
in 30 countries (updated to October 2014)

Table 1.2: ALICE detector specifications:

Dimensions length: 26 m, height: 16 m, width: 16 m

Weight 10000 tons

Design central barrel plus single arm forward muon spectometer
Cost of materials 115 MCHF

Location St. Genis-Pouilly, France

1.2.2 ATLAS

ATLAS [9, 10] is one of the two general-purpose detectors at LHC. Although

its similarities with the CMS experiment regarding scientific goals, they have
subdetectors based on different technology choices, and the design of the magnets
is also different. Some specs are illustrated below in Table 1.3.
It is located in a cavern 100m underground near the main CERN site. About
3000 scientists from 182 institutes in 38 countries work on the ATLAS experiment.
Around 1200 doctoral students are involved in detector development, data collection
and analysis. The collaboration depends on the efforts of countless engineers,
technicians and administrative staff.

Table 1.3: ATLAS detector specifications:

Dimensions length: 46 m, height: 25 m, width: 25m
Weight 7000 tons
Design barrel plus andcaps
Cost of materials 540 MCHF
Location Meyrin, Switzerland
1.2.3 CMS

CMS |11, 12], as well as ATLAS, is a general-purpose detector at LHC. Is
built around a huge solenoid magnet with a cylindrical form able to reach a 3.8 T
magnetic field. Its main characteristics are illustrated in Table 1.4. In the next
chapter, CMS will be discussed more specifically.
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Table 1.4: CMS detector specifications:

Dimensions length: 21 m, height: 15m, width: 15m
weight 12500 tons
Design barrel plus end caps
Cost of materials 500 MCHF
Location Cessy, France
1.2.4 LHCDb

The LHCb [13, 14] experiment is specialized in investigating the slight differences
between matter and antimatter by studying the quark bottom. Instead of ATLAS
or CMS, LHCDb uses a series of subdetectors to detect mainly forward particles: the
first one is mounted near the collision point while the others are placed serially over
a length of 20 meters.

Some specifications are illustrated below in Table 1.5. About 700 scientists from 66
different institutes and universities work on LHCb experiment (updated to October
2013).

Table 1.5: LHCb detector specifications:

Dimensions length: 21 m, height: 10 m, width: 13m
Height 5600 tons

Design forward spectometer with planar detectors
Cost of materials 75 MCHF

Location Ferney-Voltaire, France

1.2.5 Other LHC experiments

Aside from ALICE, ATLAS, CMS and LHCDb, a few details on LHC smaller
experiments, LHCf and TOTEM, are given in the following. LHCf [15, 16] is a
small experiment which uses particles thrown forward by p-p collisions as a source
to simulate high energy cosmic rays. LHCf is made up of two detectors which sit
along the LHC beamline, at 140 m either side of ATLAS collision point. They only
weights 40 kg and measures (30 x 80 x 10) cm.

LHCf experiment involves about 30 scientists from 9 institutes in 5 countries
(updated to November 2012).

TOTEM [17, 18] experiment is designed to measure pp total elastic and diffrac-
tive cross section by measuring protons emerging at small angle with respect to
the beam lines. Detectors are spread across half a kilometre around the CMS
interaction point in special vacuum chambers called "roman pots" connected to
beam ducts, in order to reveal particles produced during the collision.

TOTEM has almost 3000 kg of equipment and 26 "roman pot" detectors. It involves
about 100 scientists from 16 institutes in 8 countries (updated to August 2014).
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1.3. The CMS experiment

1.3 The CMS experiment

The CMS main purpose is to explore the p-p physics at the TeV scale, including
precision measurements of the Standard Model, as well as search for new physics.
Its cylindrical concept is built on several layers and each one of them is dedicated
to the detection of a specific type of particle.

The CMS collaboration consists in over 4000 particle physicists, engineers, computer
scientists, technicians and students from around 200 institutes and universities from
more than 40 countries. Figure 1.2 shows an image of the CMS experiment.

Figure 1.2: A view of the CMS experiment, with one of the endcaps removed.

1.3.1 The CMS detector: concept and structure

As mentioned above, the CMS detector is made up of different layers, as
illustrated in Figure 1.3. Each of them is designed to trace and measure the physical
properties and paths of different kinds of subatomic particles. Furthermore, this
structure is surrounded by a huge solenoid based on superconductive technologies,
operating at 4.4 K and generating a 3.8 T magnetic field.

In CMS a right handed coordinate system, centred at the nominal collision point, is
definied: the z-azis points radially inward to the center of the accelerator ring, the
y-azxis points upward and the z-azis is parallel to the beam pipe (in direction of the
Jura mountains). The polar angle  is measured from the z-azis using a 0 < 0 <7
range, while the azimuthal angle ¢ is measured in the z-y plane from the z-azis in
a 0 < ¢ < 27 range. The polar angle is usually replaced by another quantity called

pseudorapidity n defined as:
In(t 4
= —In( tan =
1 2

The first and inner layer of the CMS detector is called Tracker [12, pp. 26-89]:
made entirely of silicon, it is able to reconstruct the paths of high-energy muons,
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(a) Section view. (b) View along the plane perpendicular to beam
direction.

Figure 1.3: Compact Muon Solenoid.

electrons and hadrons as well as reconstruct secondary vertices from the decay of
very short-lived particles with a resolution of 10 nm.

The second layer consists of two calorimeters, the Electromagnetic Calorimeter
(ECAL) [12, pp. 90-121] and the Hadron Calorimeter (HCAL) [12, pp. 122-155|
arranged serially. The first measures the energy deposited by photons and electrons,
while the second measures the energy deposited by hadrons.

Unlike the Tracker, which interferes scarcely with passing particles, the calorimeters
are designed to absorb them.

In the end, after the superconducting magnet, a series of muon detectors [12,
pp. 162-246] are able to track muon particles, escaped from calorimeters. The lack
of energy and momentum from collisions is assigned to the electrically neutral and
weakly-interacting neutrinos.

Tracker

The Tracker is a crucial component in the CMS design as it measures particles
momentum through their path: the greater is their curvature radius across the
magnetic field, the greater is their momentum. As stated above, the Tracker is able
to reconstruct muons, electrons and hadrons path as well as tracks produced by
short-lived particles decay, such as quark beauty. It has a low degree of interference
with particles and a high resistance to radiations. Located in the inner part of the
detector, it is highly irradiated.

This detector (Figure 1.4a) is entirely made of silicon: internally there are three
levels of pixel detectors, after that particles pass through 10 layer of strip detectors,
until a 130 cm radius from the beam pipe.

The pixel detector, Figure 1.4b, contains about 120 millions of pixels, with three
levels of respectively 4, 7 e 11 cm radius. The flux of particles at this radius is
maximum: at 8 cm is about 10° particles/cm? - s. Each level is divided into small
units, each one containing a silicon sensor of 150 pm x 100 pm. When a charged
particle goes through one of this units, the amount of energy releases an electron
with the consequent creation of an hole. This signal is than received by a chip
which amplifies it. It is possible, in the end, to reconstruct a 3-D image using
bi-dimensional layers for each level.
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(a) Tracker layers from a point of  (b) CMS Silicon pixel detector.
view perpendicular to beams.

Figure 1.4: Graphical depiction of the CMS Tracker subdetector.

The power absorption must remain at minimum, because each pixel absorbs about
50 pyW with an amount of power not irrelevant; for this reason pixels are installed
in low temperature pipes.

Strip detectors, instead, consist of ten layers. This section of the Tracker contains
10 million detector strips divided into 15200 modules, scanned by 80000 chips.
Each module is made up of three elements: a set of sensors, a support structure
and the electronics necessary to acquire data. Sensors have an high response and
a good spatial resolution, allowing to receive many particles in a restricted space;
they detect electrical currents generated by interacting particles and send collected
data. Also this section of the detector is maintained at low temperature (—20°C),
in order to "freeze" silicon structure damages from radiations and prevent it from
perpetuating.

Calorimeters

In the CMS experiment there are two types of calorimeters that measure the
energy of electrons, photons and hadrons.
Electrons and photons are detected and stopped by the electromagnetic calorimeter
(ECAL). This measurement happens inside a strong magnetic field, with an high
level of radiation and in 25 ns from one collision to another. Lead tungstate crystal
(PbWOy,) is made primarily of metal and is heavier than stainless steel, but with a
touch of oxygen in this crystalline form it is highly transparent and scintillates when
electrons and photons pass through it. This means it produces light in proportion
to the particle’s energy. These high-density crystals produce light in fast, short,
well-defined photon bursts that allow for a precise, fast and fairly compact detector.
Photodetectors that have been especially designed to work within the high magnetic
field, are also glued onto the back of each of the crystals to detect the scintillation
light and convert it to an electrical signal that is amplified and sent for analysis.
The ECAL is divided into a cylindrical body called "barrel" and the two ends called
"endcaps" (see Figure 1.5a) creating a layer between the Tracker and the other
calorimeter.
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Crystals in a Preshower
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Figure 1.5: The Electromagnetic CALorimeter and the muons detectors.

Hadrons are instead detected by the hadron calorimeter (HCAL) specifically built
for measuring strong-interacting particles. The hadron calorimeter is made up with
a series of highly absorbent layers and each time a particle produced from various
decays crosses a layer, a blue-violet light is emitted. This light is than absorbed by
optic cables of about 1 mm diameter, shifting wavelength into the green region of the
electromagnetic spectrum and finally converted to digital data by photodetectors.
The optic sum of light produced along the path of the particle it’s a measure of its
own energy, and is performed by specifically designed photo-diodes.

The HCAL also provides tools for an indirect measurement of non-interacting
particles like neutrinos. During hadrons’ decay, new particles can be produced
which may leave no sign to any detector at CMS. To avoid that, HCAL is hermetic
i.e. it captures each particle coming from the collision point, allowing detection of
"invisible" particles, through the violation of momentum and energy conservation.
Unlike ECAL, HCAL has two more sections called "forward sections", located at
the ends of CMS, designed to detect particles moving with a low scattering angle.
These sections are built with different materials, with the aim of making them more
resistant to radiations since they receive much of the beam energy.

Muon detectors

Muon detectors are placed outside the solenoid because muons are highly
penetrant and are not stopped from the previous calorimeters. Their momentum is
measured by recreating trajectories along four muons stations interspersed with the
iron of the ferromagnets return yoke, shown in red in Figure 1.5b, and synchronizing
data with those obtained from the Tracker. There are 1400 muons chambers: 250
"drift tubes" (DTs) and 540 "cathode strip chambers" (CSCs) tracing particles
positions and acting at the same time as a trigger, while 610 "resistive plate
chambers" (RPCs) form a further trigger system. The next chapter will provide
more information about these detectors.
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1.3.2 Trigger and Data Acquisition

When CMS is at regime, there are about a billion p-p interactions each second
inside the detector. The time lapse from one collision to the next one is just 25 ns so
data are stored in pipelines able to withhold and process information coming from
simultaneous interactions. To avoid confusion, the detector is designed with an
excellent temporal resolution and a signal synchronization from different channels
(about 1 million) is achieved.

The trigger system [12, pp. 247-282] is organized in two levels. The first one, called
Level-1 Trigger, is hardware-based, synchronous with the LHC bunch crossing time
and takes a decision in less than 4 ps. It selects physical interesting data, e.g. an
high value of energy or an unusual combination of interacting particles. The next
layer, the High Level Trigger (HLT), is software-based, acting asynchronously than
the signal reception phase and reduces acquired data up to a few hundreds of events
per second.

A more detailed view of the Trigger system involving the muon detectors is provided
in the Chapter 2.

1.4 The High-Luminosity LHC project

Since 2010, the LHC has been producing proton-proton collisions with a 7 and
then 8 TeV centre-of-mass energy. After a two year long shutdown in spring 2015,
the machine has been restarted delivering collisions between protons at a new record
of 13 TeV centre-of-mass energy. In order to increase its discovery potential by
mid-2020, the LHC would need an upgrade to increase the total number of collisions
by a factor of 10. A more powerful LHC will allow even rarer events to be detected
and will increase our understanding of the energy frontier.

How this should be done is at the heart of the High-Luminosity LHC project (HL-
LHC)[19], which design study came to a close on October 2015 with the publication
of a technical design report and a budget of 950 million CHF over a period of
10 years. The HL-LHC relies on a number of new technologies, including 11-12
Tesla superconducting magnets, compact superconducting crab cavities with a
precise phase control for beam rotation, new beam collimators etc... raising the
instantaneous luminosity from ~ 2.01 - 1034 em 2571 up to 7.5 - 1034 cm=2s7 1,
Figure 1.6 shows the timeline for HL-LHC, currently scheduled to start its data
taking in 2026 and to operate through 2030s.
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Figure 1.6: Timeline of operations at the LHC for the next years. After a Long Shutdown
time period (LS3), the HL-LHC is supposed to start its life cycle.
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Chapter 2

The CMS Muon System

The muon () is an elementary particles classified as a lepton, with an electric
charge of -1 (+1 for antimuons) and a spin of % with an higher mass than the
electron, about 105 MeV. During p-p collisions, high energy muons are produced
and, crossing both electromagnetic and hadronic calorimeters, they are specifically
detected in the far external group of subdetectors of the CMS experiment, the

Muon System (Figure 2.1).

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0° 84.3° 786° 73.1° 67.7° 62.5° 57.5° 52.8° 48.4° 44.3° 40.4° 36.8° n e
8 (. P A 7T T ] I T [T T [T ] 1.2 33.5°

R (m)

Wheel 0

Figure 2.1: A schematic view of the CMS muon system.

2.1 The experimental apparatus

The experimental muon setup [20] consists in three different types of gaseous
detectors with a different design, coping with the radiation environment and
magnetic field at different values of 7:
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Figure 2.2: Muon transverse momentum resolution as a function of py for the inner
tracker only (blue dashed line), the muon system only (black dashed line) and
the two systems combined (red line). On the left the results for the barrel
are shown and on the right for the endcap.

e 250 Drift Tube Chambers (DT), used in the barrel region (with |n| < 1.2)
where a low residual magnetic field is present and track occupancy is low;

e The endcaps (0.8 < |n| < 2.4) are equipped with 540 Cathode Strip Chambers
(CSC) with a faster and radiation resistant capability in order to cope with
an higher particle flux and a non uniform magnetic field;

e To ensure redundancy and improve trigger performances, 610 Resistive Plate
Chambers (RPC) complement the DT and CSC in both regions up to |n| < 2.1,
due to their fast response and excellent time resolution but low spatial
resolution, improving the precision in the muon trigger on the determination
of the bunch crossing (BX) in which the muon has been created.

Figure 2.2 shows the total py resolution as a function of 1, together with the curve
obtained using only information coming from the tracker or the muon system only.
For muons with pr < 200 GeV, the tracker precision is the most relevant because of
the multiple scattering occurring when crossing the calorimeters and the iron yoke
of the muon part, while at higher p; the combination of the two systems improves
the overall resolution.

2.1.1 The Drift Tube Chambers

The barrel region of the muon system is characterized by a low residual magnetic
field, low occupancy and a large area to be covered. For this reason, Drift Tube
chambers have been employed [21].

The detector management follows the yoke segmentation that consists of 5 iron
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13 MB4 4
I

Figure 2.3: Transversal view of the CMS DT system. Station and sector numbers are
shown in figure.

wheels composed of 12 azimuthal sectors, covering an angular region of & 30° each
and labelled with numbers 1 to 12, starting from the z-azis (Figure 2.3). For each
wheel, 4 concentric rings (called stations) of DT chambers are installed, named
MB1+MB4 (where MB stands for Muon Barrel) respectively from the inner to the
outer part. Each station is therefore formed by 12 DT chambers with the exception
of MB4 which consists of 14 of them.

The basic component of the DT system is the drift cell, shown in Figure 2.4. The
cell has a transverse size of 4.2 em x 1.3 em and a length that varies from 2 to 4
m. Fach cell is equipped with a 50 ym diameter gold-plated stainless steel wire at
the center and makes use of 5 electrodes to shape the drift field: the anode wire,
2 cathode strips on the side walls of the tube and 2 strips above and below the
wire on the ground planes between the layers, operating at 43600 V, -1200 V and
+1800V, respectively, and generating an almost uniform electric field among the
cell. The gas used is a mixture of 85%/15% Ar/CO, that allows electrons to drift
with a saturated velocity of 55 um/ns, corresponding to a maximum drift time
around 385 ns.

Four staggered layers of parallel cells form a superlayer (SL). A DT chamber consists
of 2 SL that measure the ¢ coordinate plus one measuring the z coordinate. The
only exception to this rule applies to the MB4 stations where only the two ¢
superlayer are present.

DT cells have an efficiency of 99.8% and a spatial resolution around 200um, leading
to a resolution of almost 100um for a high quality (i.e. 8 hits) ¢ reconstructed
segment.
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Figure 2.4: DT chamber schematic in the Muon System and a drift tube cell.

2.1.2 The Cathode Strip Chambers

The high magnetic field and particle rate expected in the muon system endcaps
does not allow to use drift tubes detectors to perform measurements at large n
values. Therefore a solution based on Cathode Strip Chambers (CSC) has been
adopted [22]. The CSC are gaseous trapezoidal Multiwire Proportional Chambers
(MWPC), characterized by a short drift length which leads to fast signal collection.
Information about the position of the incoming particle is collected both in the
anode wire and on a group of finely segmented cathode strips. The CSC layout is
shown in Figure 2.5. Those chambers are arranged to form four disks of concentric
rings placed in between the endcap iron yokes.

Each chamber is composed by 6 layers of 9.5 mm thick arrays of anode wire enclosed
between two planes of finely segmented cathode strips for the collection of the
ionization signal produced in the 30%/50%/20% Ar/CO,/CF, gas mixture. The
wires give information about r coordinate and the strips are used to determine the
polar angle. In the first disk, that operates in a region of high magnetic field, the
anode wire are tilted by 20° to compensate for the Lorentz drift effect.

The position resolution measured with the strips varies from ~ 70 pm for the
innermost stations to & 150 um for the outermost ones, while r can be determined
with a precision of ~ 0.5 c¢m.
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Figure 2.5: The Cathode Strip Chambers of the CMS endcap muon system.
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Figure 2.6: Schematic view of a CMS double gap RPC.

2.1.3 The Resistive Plates Chambers

Resistive Plates Chambers are used both in barrel and endcaps, complementing
DT and CSC systems, in order to ensure robustness and redundancy to the muon
spectrometer [23]. RPC are gaseous detectors characterized by a coarse spatial
resolution, but may perform precise time measurements, comparable with the ones
provided by scintillators. This ensures precise BX identification to the muon trigger
system.

CMS uses double-gap RPC chambers composed by 4 bachelite planes forming two 2
mm gaps, as shown in Figure 2.6, where the crossing particles ionize the 90%/10%
mixture of freon (CyHyF)) and isobutane (CyHyp), and the electrons are multiplied
in avalanche mode. The electrodes, set at a potential of 9.5 £V, are constituted by
a graphite coating and the central part of the chamber is equipped with insulated
aluminum strips, used to collect the signal generated by the electronic avalanche
caused by the crossing particles. The design choice of using double gap chambers
is adopted to increase the signal induced on them. In the barrel the strips are
rectangularly segmented (12.1 to 41 em wide and 80 to 120 ¢m long) and run along
the beam axis, whereas the endcaps are equipped with trapezoidal shaped strips
covering approximatively the range A¢ = 5 — 6°, An = 0.1. No measurement is
possible in the 1 coordinate, apart from the constraint imposed by the strip length.
In order to sustain higher rates, the detector operates in avalanche instead of
using the most common streamer mode but due to the reduced gas multiplication,
improved electronic multiplication is required.

In the barrel region the system, layout follows the DT segmentation and two RPC
stations are attached to each side of the two innermost DT chambers of a sector,
whereas one single RPC is attached to the inner side of the third and fourth DT
chambers. This solution ensures to extend the low pr range of the trigger system
in the barrel, detecting even low pr muons before they stop in the iron yoke.

2.2 Trigger and Data Acquisition

The LHC collisions have a rate of 40 MHz, which means that two proton bunches
intersect in the collision points where the experiments are placed every 25 ns = 1
BX. Considering that in the two general purpose experiments ATLAS and CMS
each event has a size of about 1 MB, an effective trigger strategy used to select
interesting events among all physical interactions, had to be adopted. In order to
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Figure 2.7: Plot showing the different cross sections for the main processes produced at
the LHC.

achieve a rate of events up to &~ 1 kHz, imposed by the final storage system, a
total reduction rate of 10" has to be reached. Despite the high rejection factor,
trigger algorithms have to be also quite sensitive to different physical processes and
their probability: for instance, processes as Z — [l and W — [v have cross sections
which are orders of magnitude lower than QCD processes, that would saturate
selections based on simple high pr lepton identification (Figure 2.7).
Furthermore, the BX frequency of 40 MHz requires the development of a system
able to take a selection /rejection decision every 25 ns. Since this time is too short
to collect all the information coming from all the subdetectors and process it in a
single step, a pipelined trigger architecture based on different levels of increasing
complexity, has been adopted. In CMS there are two steps, nominally the Level 1
Trigger (L1T) and the High Level Trigger (HLT):

e The L1T system [24], built using dedicated hardware electronics, operates a
first selection reducing the rate by a factor of 10*, elaborating signals from
the muon detectors and the calorimeters;

e The remaining selection is performed by HLT algorithms [25], on the basis of
the full information available from all the detectors using a software system
running on a filter farm of a thousand commercial processors, reducing by
another factor up to 10% and satisfying the storage system requirements.
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Figure 2.8: Schematic diagram of the CMS Level-1 trigger system.

2.2.1 The Level-1 Trigger System

The Level-1 trigger [24] is designed to accept or reject events at a 40 MHz rate

(every BX) in a pipeline mode using custom developed programmable hardware.
Field Programmable Gate Arrays (FPGA) are used where possible but also Applica-
tion Specific Integrated Circuits (ASICs) and Programmable Lookup Tables (LUTSs)
are taken into account to complete each processing step in less than 25 ns. Due to
the maximum length for the pipeline buffers fixed at 128 BX (3.2 us), taking into
account the signal propagation time and the subdetectors latencies, the effective
decision operation time for the L1T is less than 2 pus.
The Level-1 Trigger at CMS detector can be further subdivided into three major
subsystems: the Muon Trigger, the Calorimeter Trigger and the Global Trigger.
The first two systems process informations coming, respectively, from the muon
spectrometer and calorimeters and do not have to perform the task of rejecting/ac-
cepting events by themselves. On the other hand, they identify and perform sorting
on various types of trigger objects (electron/photon, jets and muons) and then
forward the four best "candidates" of each kind of trigger object to the Global
Trigger where the final decision is made, as shown in Figure 2.8.

Level-1 Muon Trigger

The Level-1 Muon trigger is designed to reconstruct muon position and pr and
assign particle origin in terms of BX. In 2013-2014, before Run-II data taking, the
Level-1 trigger was upgraded in order to cope with an increase of the total event
rate of roughly a factor 6 [24]. Functional relations between the components are
shown in Figure 2.9.

Each different region of the detector present its own trigger and each part of the
apparatus described in Section 2.1 take part to the trigger process in a redundant
and safe mechanism.

The first processing phase of the DT and CSC triggers is elaborated by on-board
electronics, operating reconstruction processes on the detector signals. They are
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2.2. Trigger and Data Acquisition

charged of BX assignment, position and direction estimation as well as track quality
tagging.

In the original system (Figure 2.9, left), information were then passed to the DT
and CSC Track Finders (DTTF - CSCTF),whose job was to build full muon tracks
on the basis of local reconstructed primitives, assign the charge sign and estimate
their transverse momentum value. They also delivered quality bits related to the
number of stations used for reconstruction. In the 7 region, where muons cross
both DT and CSC chambers (the overlap region), an exchange between DTTF and
CSCTF was performed improving the reconstruction of the final track. The four
highest pr muons coming from both DT and RPC in the barrel, and both RPC
and CSC in the end-caps, were then forwarded to the Global Muon Trigger (GMT)
for further processing. At last, the resulting trigger were forwarded to the Global
Trigger along with the other sub-detectors.

In the upgraded L1 trigger (Figure 2.9, right), the architecture of the electronics
devoted to muon tracking follows a geographical partitioning. Separate systems
process local information produced in the barrel, endcap and overlap regions, corre-
sponding to |n| < 0.8, 0.8 < |n| < 1.2 and 1.2 < |n| < 2.4, respectively, to identify
muons and measure their coordinates and momentum (see Section 2.1). Following
this rationale, the Endcap Muon Track Finder (EMTF) [26] reconstructs muon
trigger candidates using CSC segments and RPC hits. The Owerlap Muon Track
Finder (OMTF) |27] combines DT and CSC segments and RPC hits from the
detector elements belonging to its acceptance region. In the barrel region, a slightly
different approach is implemented. DT segments and RPC hits are collected and
synchronized by the TwinMux system, which is in charge of the merging of the two,
thus delivering improved trigger segments (also called "Superprimitives") to the
Barrel Muon Track Finder (BMTF) [28]. Superprimitives combine the very good
spatial resolution of DT trigger segments with the superior timing properties of
RPC hits, improving the efficiency and the quality of the information used in the
BMTTF for track identification and momentum measurement.

More details about the TwinMux and the BMTF processors, related to this work,
will be given in Section 2.3.4 and 2.4.

2.2.2 The High Level Trigger and DAQ

The CMS High Level Trigger [25] has the task to further reduce the event rate
from the L1 Trigger to &~ 1 kHz required from the storage system. In order to
achieve this requirement, the HLT performs an analysis similar to off-line event
reconstruction that relies on a farm of commercial processors.

As shown in Figure 2.10, data coming from the Level-1 Trigger are initially stored
in a pipelined 40 MHz buffer by the Front End System (FES). Afterwards, data
are moved by the Front End Drivers (FEDs) to the Front End Readout Links
(FRLs) which are able to get information from two different FEDs. Event fragments
coming from different FRLs are then sent to the Event Builder system in charge
to build up the full event which has two different purposes: transport data from
the underground to the CMS surface buildings and than begin the reconstruction
phase. After the assembly phase is completed, the event is sent to the Event Filter
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Figure 2.9: CMS Level-1 Muon Trigger data flow. On the left, the old Level-1 Trigger,
while on the right, the upgraded Level-1 is shown.

where HLT algorithms, together with some Data Quality Monitoring operations,
are performed. Filtered data are then separated into several on-line streams, whose
content depend on trigger configuration, and are sent to a local storage system
before being migrated to the CERN mass storage infrastructure.

The analysis performed in this thesis is focused entirely on the Barrel Muon
Track Finder (BMTF), with segments coming from both DT and RPC.

2.3 The DT Local Muon Trigger

The DT Local Trigger System [29] (or DT Trigger Primitive Generator DT-
TPG) goal is the detection of charged particles crossing the muon barrel chambers.
It has to measure position and direction of the crossing particles as well as their
BX origin. It also tags the reconstructed segments with a quality word based on
the number of layers involved in the measurement and, finally, sends the trigger
primitives to their matching Track Finder for further analysis.

As shown in Figure 2.11, the signal coming from individual wires are initially

Level 1 Detector Frontend
Trigger [P e —rw—] —Tm— 40 MHz
]Readout
Systems 10° Hz
ME}’,‘;S; — < Builder Networks —  Controls | 1Tb/s
Filter
HLT Systems 102..108 Hz
[ Computing Services

Figure 2.10: Schematic diagram of the CMS High Level Trigger System.
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\
vt

Figure 2.11: Schematic diagram of the CMS DT Local Trigger.

processed by the Bunch and Track identifiers (BTIs) that operate a rough track
fitting within a single Super-Layer and perform BX assignment. Then, the Track
Correlator (TRACO) is devoted to match the information coming from the two
Super-Layers, improving the parameter measurements. The next step is performed
by the Trigger Server (TS), whose job is the selection of candidates coming from
different TRACO. Finally, the information is passed to the TwinMux card together
with the RPC hits, that has to further refine the sorting, perform synchronization
on data coming with different latencies and transfer them to the Trigger processors
designed for both Barrel and Overlap track finding.

2.3.1 Bunch and Track Identifier

The Bunch and Track Identifier [24] is the implementation of a trigger device
based on the mean-timer technique, aiming to the identification of the tracks giving
signals in at least three out of the four measurement planes.

This method relies on the fact that the particle path is a straight line and the wire
positions along the path are equidistant. Considering the drift times of any three
adjacent planes of staggered tubes, Figure 2.12, the relation

Ty+ 2T+ Tc
2

Thax =

where Thy4x is maximum drift time to the wire, holds independently of the track
impact point (d) and angle of incidence (¥). Extending this method to four layers,
the identification is possible even if the drift time of a tube is missing (due to
inefficiency) or is wrong (due to noise generated by the emission of a ¢ ray). It
also insensitive to uncorrelated single hits and it is therefore well-suited to a high
radiation environment.

After the particle’s crossing, a signal is induced on the detecting i, wire at a
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Figure 2.12: BTI geometric layout showing the channels allocations and the important
parameters.

time Ty(i) that depends on the drift velocity vy as well as the distance between
the particle trajectory and the wire. On every BTI clock count, the apparent
Ta(i) = Tyax — Ts(i) is computed (since the BTT digitizes the time Ty), and a
straight line is reconstruction is performed from different pairs of layers. Parameters
like the position and the angular parameter k = h tan ¥ (where h = 13 mm
correspond to the distance between the wire planes) are then evaluated for each
pair of layers.

Hence at every clock cycle, a whole set of k-equations are computed and a BTT trigger
is generated if at least three of the six possible combinations are in coincidence.
This coincidence is possible only at a fixed latency Th;ax after the particle passage,
allowing BX identification. In the case of a four hit alignment, an High Quality
Trigger (HTRG) is raised, while in any other case, with a minimum of three hits
a Low Quality Trigger (LTRG) is found. However there might be a possibility
that the alignment of four hits at some clock step produces a LTRG just before or
after the correct HTRG: a so called ghost trigger candidate. The noise reduction of
ghosts is obtained issuing the LTRG signal only if at the neighbouring steps there is
not a HTRG generated: this mechanisms is called Low Trigger Suppression (LTS).

2.3.2 The Track Correlator

The BTTI is followed in the electronics chain by a Track Correlator (TRACO)
[30]. It is required to associate portions of tracks in the same chamber relating
groups of BTIs among them. The TRACO links together the two SLs of the ¢ view,
receiving information from the BTT connected to it and trying to find the couple of
BTT track segments that fits the best track (linking the inner layer candidates to
the outer layer ones). The introduction of this device is necessary mainly for two
reasons:

e The BTTI is a relatively noisy device and requires a local pre-selection and a
quality certification;

e The number of BTIs per channel is around few hundreds and it is not possible
to connect together all the channels to perform any pre-selection at chamber
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Table 2.1: TRACO quality code conversion table.

TRACO code Quality label meaning
6 HH Correlated H+H trigger (outer and inner SL)
5 HL Correlated H+L or L+H trigger
5 LL Correlated L+L trigger
4 Ho Uncorrelated High trigger (outer SL)
3 H; Uncorrelated High trigger (inner SL)
2 Lo Uncorrelated Low trigger (outer SL)
1 L; Uncorrelated Low trigger (inner SL)
7 / Null Track
level.

The current design connects four BTIs of the inner SL to twelve BTIs on the outer
SL as shown in Figure 2.13. The total number of TRACOs per chamber depends on
the size of the station (usually from 12 to 24 TRACOs are needed). In the 0 view,
since there is only one detecting SL per station, no TRACO operation is performed
forwarding data directly to the Trigger Server (TS).

The algorithm of the Track Correlator starts by selecting, among all candidates
in the inner and outer SL independently, the best track segment according to the
trigger quality (High or Low) and to the track proximity to the radial direction
compared to the vertex (i.e. its pr). Then, it computes the k-parameter and the
position of a correlated track candidate, using the relations:

Tinner+Touter

kcor = % tanw = Zinner — Louter
TCOR = 2

Due to the long arm between the two SLs, the angular resolution of a correlated
track is 10 mrad which is significantly improved compared to the BTI resolution.
The resolution on the position remains unchanged.

Using programmable LUTs, the computed parameters are then converted to the
chamber reference system: position is transformed to radial angle ¢ and k-parameter
to bending angle ¢, = 1 — ¢ (as shown in Figure 2.14). The chosen track is
forwarded to the Trigger Server, for further selection. If the correlation fails, the
Track Correlator forwards an uncorrelated track following a preference list that
includes both the parent SL (IN/OUT) and the quality bit (H/L) of the two tracks
selected for correlation. When no correlation is found, since there is no candidate
in one SL, the uncorrelated track is anyway forwarded.

2.3.3 The Trigger Server

The Trigger Server (TS) [24] is the last on-board component of the DT Local
Trigger logic and has to select the best trigger candidates among the track selected
by all TRACOs in a muon station and sends them to the Sector Collector, where
they will be forwarded to the Regional Muon Trigger.
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Figure 2.13: Track Correlator (TRACO) geometrical layout.

Figure 2.14: Definition of the angles transformed by the TRACO.
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Each muon station is equipped with only one TS and, for this reason, needs to be
extremely robust and redundant. The TS has to fulfil the following requirements:

e High efficiency and purity of the selected segments: a lot of interesting
physics has two close muons that can hit the same muon station therefore
the selection should be based on both the bending angle and the quality of
the track segment;

e Ghost rejection generated by TRACO using a configurable fake rejection
algorithm;

e Processing time independent on the number of TRACOs in the station;
e Capability to treat several pile-up events;

e Requires a built-in redundancy since there is only one TS on each station,
resulting in a bottleneck of the on-chamber trigger.

In order to fulfil these requirements (keeping at the same time the number of
logic cells as low as possible) the TS is composed by two subsystems: one for the
transverse view (TS¢) and the other for the longitudinal view (T'S@). In particular,
the TS¢ is implemented in a two level structure, as shown in Figure 2.15: the Track
Sorter Slave (TSS) and the Track Sorter Master (TSM). Each TSS processes up
to 4 data word per BX coming from multiple TRACOs then they are sent to the
TSM for final processing. The #-view of the TS, instead, is equipped with two
identical units (TST): their task is to group together data coming from up to 8
BTIs, performing a logical OR on the information received in order to prepare the
f-view trigger for regional processing.

2.3.4 TwinMux

In the new muon trigger chain, the adaptive layer for the track finder in the barrel
region is called TwinMuz. Each TwinMux processor receives DT and RPC links
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from one sector of the barrel muon detector. It is responsible for bringing forward
the merging of the DT, RPC and HO (HCAL Outer barrel) trigger primitives,
unburdening the trigger processors. At first, input data are deserialised and
synchronized, then a clustering algorithm is applied to RPC hits i.e. neighbouring
hits are merged into one cluster position.

An important feature is the search of an RPC cluster in a time window of £1BX
around the DT Trigger segment [31]. This combined solution improves the number
of Superprimitives in BX=0, as shown in Figure 2.16, with an average increase of
the efficiency of about 1.4%.

It is then in charge of sending such combined primitives to the BMTF and, in
addition, also the RPC and DT data are sent to the OMTF. Another task of the
TwinMux is the duplication of the trigger primitives in order to reduce connections
between trigger processors, increasing the reliability of the system.

In Figure 2.17 the trigger chain of the combined DT and RPC trigger data is shown.
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MBI to MB4

Figure 2.18: The BMTF algorithm.

2.4 The Barrel Muon Track Finder

The muon barrel architecture groups the barrel muon detectors in 12 wedges.

Each wedge has five sectors and each sector four DT stations and three RPC planes.
The front-end electronics generate the muon primitives and send the data to the
TwinMux. The TwinMux combines DT and RPC data to create better quality
candidates (Superprimitives) than the primitives of the DT. Then it fan-outs the
Superprimitives to the Barrel Muon Track Finder (BMTF) [28] and Overlap Muon
Track Finder (OMTF).
The BMTF trigger receives the muon Superprimitives from the Barrel area of CMS
(In] < 0.85) and uses this information to reconstruct muon tracks and calculate the
physical parameters: transverse momentum (pr), the ¢ and 7 angles, the quality of
the candidate and the track addresses. The algorithm has three stages:

e The first stage is performed by the Extrapolator Unit, which combines the
track stubs, bending angle and quality bits from different DT stations of one
sector. Each combination extrapolates the muon candidate to the next station
and checks whether it is within an acceptable window. The same algorithm
is repeated between neighbour sectors;

e The second stage is performed by the Track Assembler Unit that links the
segment pairs to the full track and assign it with a quality word related to
the number and type of stations involved in the reconstruction;

e Finally, the Assignment Unit uses LUTs in order to assign the py physical
parameter to the algorithm output.

In Chapter 4, the pr produced by the Machine Model learning models, will be
compared with the pr assigned after the output produced by the Barrel Muon
Track Finder (in the Assignment Unit).

In Figure 2.18 the entire process of track finding is shown. The algorithm run in
parallel for all the sectors of one wedge in the same card. Each one of the twelve
processing cards delivers the three best muon candidates to the puGMT.

The puGMT then processes the muons for the Barrel, Overlap and Endcap Muon
Track Finder.
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Chapter 3

An mtroduction to Machine
Learning

The name machine learning was coined in 1959 by Arthur Samuel [32]| and,

over the past two decades, Machine Learning (ML) has become one of the pillars of
information technology and quite adopted into daily technologies: users all around
the globe, each day, use a learning algorithm without even knowing. Every time
a user performs a Google search or watches a video on YouTube or Netflix, a
complex structure of learning algorithms records all our choices and preferences in
order to build a customised environment. Email providers also adopt spam filters
that are the result of hidden ML algorithms and an increasing improvement of
pattern recognition techniques allows social networks (Facebook, Instagram etc...)
to identify different people in photos but also to create 3D images of human tissues
and organs for medical diagnosis.
Currently, the rise in learning algorithms in many sectors is mainly related to an
increasing quantity of data available combined with a technological progress in
storage and computational power, together with lower maintenance and material
costs.

3.1 Types of Machine Learning

There are several types of learning algorithms. The main two types are called
supervised learning, unsupervised learning and reinforcement learning.

3.1.1 Supervised Learning

In this specific type of learning algorithm, as the word supervised suggests, the
machine is learning a function that maps an input to an output based on provided
input-output pairs. In other words, we provide along with the input features also a
target variable which contains the information that the machine has to learn during
its training.

In order to understand this concept, a brief example is shown [33]. Let’s consider
a dataset containing the US housing prices with a summary plot shown in Figure
3.1. In this example we have the price of the house on the vertical axis and the size
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Figure 3.1: US housing prices example. The information is represented by the red crosses
while the prediction curves are plotted with coloured lines.

of the house in the horizontal axis. In order to make a prediction for a 750 feet?
house, a plausible learning algorithm might put a straight line through the data
(pink line in Figure 3.1). In this case, the corresponding price would be 150k$.
However, this is not the only algorithm we could use: instead of a straight line
(linear regression), a n-order polynomial curve may be used (blue curve in Figure
3.1). Each possible curve with a different prediction on the housing price.

This example is supervised because the algorithm is provided with a dataset
containing the "right" answers, i.e. the actual pricing for different sizes. This
problem is also called "regression" because we are trying to predict a continuous
output value (the housing prices in this particular example). On the other hand,
if the prediction is discrete (between 0 and 1, or signal /background in a physical
way), this becomes a so called "classification" problem, like an email spam filter
which has to decide if a message is or is not fraudulent (Figure 3.2.

Visual recognition is an application domain that highly relies on supervised ML
algorithms. For instance, a system might need to learn to identify pedestrians on a
street in a automotive application for self-driving cars: to do so, it is trained with
millions of short videos about street scenes, with some of the videos containing
no pedestrians at all while others having up to dozens. The presence or not of
pedestrian is known a-priori, hence the learning is supervised: a variety of learning
algorithms are trained on such data, with each having access to the correct answer.
Sorting algorithms at large are also an example of a supervised ML application
domain. Suppose that a robot needs to learn how to sort objects based on its
material (metal, glass, wood) using visual identification on a conveyor belt. With
each item labelled, the training allows the system to learn how to perform the
selection a-priori and not via real time rewards (differently from a reinforcement
learning system, discussed later on this Section): the more training data are
available, the better the sorting algorithm will perform.

Many other decision support mechanisms that have at disposal large quantity of
data on which to train a ML system, could be the base of a supervised ML approach:
e.g. historical data on medical exams’ output may drive a supervised ML system
to learn and prompt the probability of suffering from a disease, etc.
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Figure 3.2: Examples of real-life problems in the context of supervised and unsupervised
learning tasks: Spam filtering as a classification task and House price estima-
tion as a regression task are part of supervised learning; Clustering is part
of unsupervised learning in which customers are grouped into three different
categories based on their purchasing behaviour (image from [34]).

3.1.2 Unsupervised Learning

With respect to the supervised case, in an unsupervised learning algorithm we
provide the computer with an input dataset but no corresponding output values
with the goal of underline the possible structure of data and therefore learn the
possible outcomes. Given this dataset, an unsupervised learning algorithm may
decide to perform a clustering selection, as shown in Figure 3.2.

Clustering algorithms like this one are used in many web-based application such
as newspaper websites. Using thousands of stories as input data, the learning
algorithm automatically cluster the information together based on topic or user
preferences, organizing information in a coherent and customizable way.
Unsupervised learning is used also for a bunch of other applications. It is used to
organize large computer cluster, deciding which machines tend to work together in
order to put those machines together and increase the overall efficiency. Another
application is on social network analysis identifying between hundreds of friends
the closest one, based on private communications or recent social activities.

3.1.3 Reinforcement Learning

Reinforcement learning is an important type of Machine Learning, in which an

agent learns how to behave in a environment by performing actions and deciding
about the next actions based on the outcome of the previous ones. In recent
years, a lot of improvements were observed in this area of research. Most popular
examples include DeepMind and the Deep Q learning architecture (dated 2014),
which culminated in the media when the champion of the game of Go was beaten
by AlphaGo in 2016.
Reinforcement learning can be understood using the concepts of Agents, Actions,
Environments, States, and Rewards (note that this description is intended to be
short and provided just for completeness in describing possible ML types, and no
deep discussion of its characteristics and implementation will be given, as it would
go beyond the research scope of this thesis).

e An "Agent" is the component that takes actions, e.g. a video game character
navigating in its virtual environment, as well as a drone making a delivery.
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e An "Action" is one amongst the set of all possible moves/choices the agent
can make. In a reinforcement learning environment, agents can choose only
among a predefined list of possible actions. E.g. in video games, the list
might include moving right or left, jumping or not, jumping high or low,
or crouching, or standing still; in the stock markets, the list might include
buying, selling or holding any title among a list of financial product.

e The "Environment" is the world through which the Agent moves. The
environment takes as input the Agent’s current State and its selected Action
as input, and returns as output the Agent’s Reward and next State. E.g. in
a model in which the Agent would be myself, the Environment could well
be the entirety of the physics laws, plus the rules of the society I live in and
within which filter all my Actions would be processes and the consequences
of them determined.

e The "State" is a concrete situation in which the Agent happens to put itself.
E.g. it could be a specific moment in time and/or place in space, a local and
instantaneous configuration that puts the Agent in contact and relation with
its Environment (e.g. tools, obstacles, prices).

e The "Reward" is the feedback based on which you measure the success or
failure of the Agent’s choices. E.g. in a video game, a reward could indeed
be the gain of a price when a special object is captured, and similar. Every
time an Agent does something in the Environment that foresees a possible
Reward, the Agents sends output in form of Actions to the Environment
and the Environment returns the Agent’s new state as well as the obtained
Rewards (or lack of them).

In a nutshell, reinforcement learning judges actions by the results they produce.
It is fully goal oriented, as its aim is just to learn sequences of actions that will
eventually lead an Agent to achieve a predefined goal, in terms of maximizing
its objective function. In the video game example, the final goal is to finish the
game with the maximum score, so each additional point obtained throughout the
game will affect the Agent’s subsequent behaviour (i.e. an Agent might learn that
making some combination of Actions will lead to a point to it will try to redo
the same actions effectively in case a similar situation will be offered next in the
Environment). In a robotics example, a robot might have as a goal to travel from A
to B: every millimetre the robot gains that makes it closer to the spatial objective
B would be counted as additional Reward, so the robot will learn the direction to
go and eventually reach the final destination.

The implementation of reinforcement learning models requires a lot of data. For
this reason, it has historically been associated with domains in which plenty of
simulated data is available (e.g. video games and robotics, as in the examples
above). One other aspect to mention is that - with respect to other ML types - it is
far from easy to take results from academic research papers and implement them in
real-world applications. Also, the results reproducibility is challenging, and this is
a key issue: as ML gets deployed in mission-critical situations, the reproducibility
and the ability to estimate errors become essential, and this aspect is particularly
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important for reinforcement learning.

Nowadays, applications of RL can be seen e.g. in high-dimensional control problems,
like robotics: they have been the subject of research (in academia and industry) for
many years, and now start-ups are beginning to use this ML type to build products
for industrial robotics applications.

3.2 Supervised Learning in more detail

The Machine Learning algorithms used in this thesis belong to the category of
supervised learning, therefore a more detailed description is required [35]. Using
this particular approach, a model is trained on a predefined set of training examples,
which allows future predictions using new and unseen data.

Suppose we have a set of known inputs (also called features) x; each with a certain
weight w;. In order to infer a quantity y, we define a predictor y' = h(x;) defined
as:

Yy =b+w; -

with b as a given bias. Training a model simply means learning (determining) good
values for all the weights and the bias from labelled examples. In a supervised
learning, the algorithm builds a model by examining many examples and attempting
to find a model that minimizes loss.

Loss is the penalty for an incorrect prediction: is a number indicating how bad the
model’s prediction was an example in the training set. Hypothetically speaking, if
the model’s prediction is perfect, the corresponding loss would be zero. In Figure
3.3, two different models are shown: Figure 3.3a shows a model with high loss and
Figure 3.3b one with low loss. The red arrows in the left plot are much longer than
their counterparts in the right plot. In fact, the blue line in the right plot is a much
better predictive model than the blue line in the left plot.

The next question now becomes the possibility to create a mathematical function -
a loss function - that would aggregate the individual losses in a ordered way.

fldp per

> —
X X

(a) Model example with high loss. (b) Model example with low loss.

Figure 3.3: Different models for a supervised Machine Learning algorithm. In the left
model, an high loss is obtained while in the right model, a lower loss is
achieved. Red arrows represent loss while the blue line represents predictions.
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Squared loss

The linear regression models, use a loss function called squared loss. It is
defined as follows:

(observation — prediction(x))? = (y — v/')?

An example is the mean square error (MSE): the averaged squared loss per example
over the whole dataset. To calculate the MSE, sum up all the squared losses for
individual examples and then divide by the number of examples:

1 L 5
MSE = N Z (y — prediction(z))

(z,y)eD
where:
e (z,y) is an example in which:

— x is the set of features that the model uses to make predictions.

— y is the example’s label (the quantity to predict).

e prediction(x) is a function of the weights and bias in combination with the
set of features .

e D is a dataset containing many labelled examples, which are (z,y) pairs.

Mean squared error is not the only metric used in Machine Learning, but it is
commonly-used especially in regression problems. For instance, the mean absolute
error (MAE) is another loss function defined as follows:

1 .
MAFE = N Z |y — prediction(z)|

(z,y)eD

In section 4.3.4, the MSE metric will be used as a scorer for the created models.

3.2.1 Training the model

The model takes one or more features as input and return one prediction (y’) as
output. Initially, all the weights are randomly set and, at each iteration, the value
of the loss function generates new values for w;. This learning procedure continues
until the algorithm discovers the model parameters with the lower loss possible.
When the loss stops changing (or changes really slow), the model has converged.
Once the model has converged, the loss function reaches a minimum for a given
weight value w;. Therefore, this kind of regression problems will have a convex plot
of loss vs. weights. However, calculating the loss function for every value of w;
is an inefficient way of finding the convergence point. Another technique - quite
common in machine learning - is called gradient descent. After choosing a starting
value for the weights, typically random, the gradient descent algorithm calculates
the gradient of the loss curve at the starting point. Mathematically speaking, a
vector of partial derivatives with respect to the weights, is computed and in case
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Figure 3.4: Schematic representation of the gradient descent mechanism (image from

[351).

of a negative gradient, the algorithm performs the next step (shown in Figure 3.4,
edging closer to the minimum.

Gradient descent algorithms multiply the gradient by a scalar value known as
learning rate (or step size, one of the model’s hyperparameters) to determine the
next point. Tuning the learning rate is a tricky problem: if a learning rate too
small is selected, the learning procedure will take too long; conversely, if it is too
large, the next point will exceed the minimum weight value and the correct value
will never be reached.

In case of loss function minimisation with gradient descent, when large volumes
of data come into play, other parameters in the gradient descent strategy become
very relevant for a fast convergence of the minimisation algorithm towards finding
the global minimum, e.g. the gradient descent batch size: it corresponds to the
total number of examples you use to calculate the gradient in a single iteration.
By default, the batch matches the entire dataset. However, datasets may often
contain millions and millions of examples as well as a huge number of features.
In these cases, a batch can be enormous and also the corresponding computing
time. Smaller batch sizes are therefore suggested: in the stochastic gradient descent
(SGD), for instance, the batch size is brought to one single example per iteration.
Given enough iterations, SGD works but is very noisy.

An intermediate approach among batch GD and SGD is the so called mini-batch
GD: the original training set is subdivided into smaller batches (usually of the
order of 10, but can be much more depending on the size of the dataset) - these are
chosen at random and allow parallelization of the entire process, which might be
extremely useful in case of heterogeneity of hardware devices available for training -
and will ultimately provide GD algorithm convergence in shorter time.

Overfitting

A common problem with Machine Learning is overfitting. This particular issue
occurs when a trained model - e.g. based on high-order polynomial hypotheses -
matches the training dataset in a very precise way, thus achieving a high accuracy
on that dataset but a poor generalisation capability over new, previously unseen
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3.2. Supervised Learning in more detail

Figure 3.5: Example model that overfits data . In black a model for the data classification
is shown. In green an overfitted model is shown.

data. In Figure 3.5, an example is shown. In this example, the red and blue data,
from the positive and negative classes of a binary classification problem, are trained
with two different models: the black line and the green line. The first model,
is quite simple (with some misclassification, of course) and works quite well for
new-untrained data. However, the lowest loss possible might be computed using a
complex cut, as shown in the green line. In that case, the loss is the lowest possible
but the ability of such model to predict data with an entire new dataset decreases
and predictions are no longer reliable.

Therefore, the less complex a Machine Learning algorithm is, the more likely an
empirical result is not caused by peculiarities of the sample.

3.2.2 Training and Test set

A Machine Learning model aims to make good predictions on new, previously
unseen data. However, when the model is built starting from a specific dataset,
there are no remaining examples with new unseen data. There are 4 different
techniques in order to fix this common problem for a Machine Learning study:

1. Split into a Training and Test Set;
2. k-fold Cross-Validation;
3. Leave One Out Cross-Validation;

4. Repeated Random Test-Train Splits.

Training and Test split

This algorithm evaluation technique is very fast. It has the following pros and
cons:

e Pros: It is ideal for large datasets (hundreds of thousands of records). Splitting
a large dataset into large sub-datasets allows that, first, each split of the
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Training Data Test Data

Figure 3.6: Example showing the splitting between training and test datasets. On the
left side the training dataset while, on the right side, the test dataset used
for verifying the trained model (image from [35]).

data is not too tiny, and second, both are representative of the underlying
problem. Because of the high speed, it is useful to use this approach when
the algorithm you are investigating is slow to train.

e Cons: A downside of this technique is that it can have a high variance. This
means that differences in the training and test dataset can result in meaningful
differences in the estimate of accuracy. Furthermore, in order for this split to
work, the test set has to be representative of the dataset as a whole, i.e. the
test set should not have different characteristics than the training test.

In Figure 3.6, the model learned from the training data is quite simple. This model
is not perfect, since a few predictions are wrong. However, this model does about as
well on the test data as it does on the training data. In a way, using this particular
model, overfitting does not occur.

k-fold Cross-Validation

K-fold cross-validation is another approach that can be used to estimate the
performance of a ML algorithm with less variance than a single train-test set split.
The data set here is divided into k subsets (called "folds"): for each fold, one of
the k subsets is used as the test set and the other £ — 1 subsets are put together to
form the training set (see Figure 3.7). Then, the average error across all k trials is
computed, together with the standard deviation.

This has the following pros and cons:

e Pros: This method is less sensitive to how the data division happens to be
made: every data point gets to be in a test set exactly once, and gets to be
in a training set k-1 times. Therefore, the variance of the resulting estimate
is reduced as k is increased.

e Cons: The disadvantage of this method is that the training algorithm has
to be rerun from scratch k times, which means it takes k times as much
computation to make an evaluation, thus resulting evidently slower.
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Figure 3.7: Pictorial representation of 10-Fold Cross Validation [36].

Leave One Out Cross-Validation

The Leave One Out Cross-Validation is a simplified version of the k-fold where
the size of the fold is 1 (i.e. k=n). The result is a large number of performance
measures that can be summarized in an effort to give a more reasonable estimate of
the accuracy of your model on unseen data. An evident downside of this procedure
is the computational power which is much more expensive than k-fold CV.

Repeated Random Test-Train Splits

Another variation on k-fold cross-validation is to create a random split of the
data like the train/test split described above, but repeating multiple times the
process of splitting and evaluation of the algorithm , like a cross-validation. This
has pros and cons:

e Pros: it has the speed of using a train/test split and the reduction in variance
in the estimated performance of k-fold cross-validation. It is also possible to
repeat the process many more times as needed to improve the accuracy.

e Cons: repetitions may include much of the same data in the train or the test
split from run to run, introducing redundancy into the evaluation.

In the scope of this thesis, a training a validation split sets was used due to the
large dataset available for analysis (see Section 4.3.2).

3.2.3 Validate the model

In the previous topic, the concepts of training and validation datasets are
introduced in order to perform a check on the trained model. This workflow is
repeated many times: each time a parameter is changed i.e. the learning rate or
the addition of an extra feature. At the end, the best model is used for the test set.
Another way to do this, reducing the chances of overfitting, is the partition of the
dataset into three subsets: the training set, the validation set and the test set. With
this data splitting, the validation set is used to evaluate results coming from the
training set. Then, the test set performs a double-check on the evaluation after
the model has passed the validation set. In Figure 3.8, an example of workflow is
shown: the training set is firstly checked by the validation set, which provides the
model’s optimal parameters for another cycle of training; then, the best model is
tested again using the testing subset to obtain a reliable model.
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Figure 3.8: Workflow using a validation and test subset.
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Figure 3.9: Neural Network basic working principle.

3.3 Artificial Neural Network

An artificial neural network (ANN) is a computing system vaguely inspired
by the biological neural connections that constitute a human brain, specificately
designed to non-linear learning problems. Currently, ANNs are one of the main
tools used in Machine Learning [37]. The schematic working principle is described
in Figure 3.9.

Each input feature is represented as a neuron, creating an input layer: the output(s)
are then computed by a weighted sum of the inputs, similarly to other learning
algorithms. The main difference between Neural Networks and other algorithms
relies in the addition of other layers of neurons between them, called hidden layers.

Hidden Layers

In the model shown in Figure 3.9, the hidden layer is located between the
input and the output layers. Each neuron of the hidden layer is a weighted sum of
the input values and the output is a weighted sum of the hidden neurons as well.
Despite this complex network, the model is still a linear combination of its inputs,
independently on the number of hidden layers added to the model.
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Activation Function

In order to achieve a non-linearity to the model, a non-linear function of the
layer is required. This function is also called activation function and differs from
model to model. Examples of common activation functions are:

1. Sigmoid: Function that converts the weighted sum to a value between 0 and

1:
1

- 1+e®

F(x)

2. Rectified linear unit or (ReLU): usually works better than a smooth
function like the sigmoid, and also easier to compute:

F(z) = max(0,x)

In fact, any mathematical function can serve as an activation function.

3.4 Machine Learning Frameworks

In these recent years, Machine and Deep Learning have become an important
part of users’ web experience but also a difficult task for developers creating new
models. In order to simplify this process, several Machine Learning Frameworks
have been created allowing developers to build ML models without getting into the
complex underlying algorithms.

In this section, a few of these frameworks will be listed with an increasing attention
to those involved in this thesis.

3.4.1 TensorFlow

TensorFlow is an open-source software library for dataflow programming across
a range of tasks. It is a symbolic math library for numerical computation that
uses data flow graphs and is also used for machine learning applications, such as
neural networks. It was developed by the Google Brain team [38| for internal use
and released under the Apache 2.0 open-source licence on November 2015 [39].
Currently it is one of the most utilised frameworks, due to its completeness and
reliable libraries.

‘® Tensor

Figure 3.10: TensorFlow logo.

The architecture is flexible so to allow users to deploy computation to one or more
CPUs (or GPUs) in a desktop, server, or even mobile device with a single API. In
a not exhaustive list of features, one could mention [40]:

e TF runs on Windows, Linux, and macOS, and also on mobile devices, including
both iOS and Android;
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TF provides a very simple Python API, which is called TF.Learn (tensor-
flow.contrib.learn), compatible with Scikit-Learn;

TF provides another simple API called TF-slim (tensorflow.contrib.slim) to
simplify building, training, and evaluating NNs;

TF’s main Python API offers much more flexibility (at the cost of higher
complexity) to create all sorts of computations, including any NN architecture
you can think of;

TF includes highly efficient C++ implementations of many ML operations,
particularly those needed to build NNs. There is also a C++ API to define
your own high-performance operations;

TF provides several advanced optimization nodes to search for the parameters
that minimize a cost function: TF automatically takes care of computing the
gradients of the functions one defines, i.e. implements automatic differentiating
(or autodiff);

TF also comes with a great visualization tool called TensorBoard that allows
you to browse through the computation graph, view learning curves, and
more;

Once a model is done with TF, computations can be deployed to one or more
CPUs or GPUs, as needed.

An example code usage for the creation of a TensorFlow Gradient Descent model
(see Section 3.2.1) is listed above:

10

15

20

Listing 3.1: TensorFlow example code.

import tensorflow as tf
import numpy as np

n_epochs = 10000

learning rate = 0.01

X = tf.constant(<MY FEATURES>, dtype=tf.float32 , name="X")
y = tf.constant(<MY TARGET>, dtype=tf.float32 , name="y")

theta = tf.Variable(tf.random uniform ([n+1,1],
—1.0,1.0, seed=42), name="theta")

y_pred = tf.matmul(X, theta, name="predictions")
error =y pred — y

mse = tf.reduce_mean(tf.square(error), name="mse")
gradients = 2/m x tf.matmul(tf.transpose(X), error)
training op = tf.assign(

theta, theta — learning rate % gradients)

init = tf.global wvariables initializer ()

with tf.Session() as sess:
sess.run(init)
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25 for epoch in range(n_epochs):
if epoch % 100 — 0:
print ("Epoch" | epoch, "MSE =", mse.eval())

sess.run(training op)

30 best theta = theta.eval()

3.4.2 Scikit-learn

Scikit-learn was initially developed by David Cournapeau as a Google summer
of code project in 2007. It provides a range of supervised and unsupervised
algorithms via a consistent interface in Python and is distributed under many Linux
distributions, for academic and commercial use [41].

.eewm

machine learning in Python

Figure 3.11: Scikit-learn logo.

With few lines of code, scikit-learn provides lots of algorithms for classification
and regression problem e.g. SVM, Linear Regressor, BDT, Neural Networks, etc...
The following example shows how to load a dummy dataset containing Iris flowers
characteristics:

Listing 3.2: Scikit-learn example code.

# Sample Decision Tree Classifier

from sklearn import datasets

from sklearn import metrics

from sklearn.tree import DecisionTreeClassifier

5 |# load the iris datasets

dataset = datasets.load iris()

# fit a CART model to the data

model = DecisionTreeClassifier ()

model. fit (dataset.data, dataset.target)

10 | print (model)

# make predictions

expected = dataset.target

predicted = model. predict (dataset.data)

# summarize the fit of the model

15 | print (metrics. classification report (expected, predicted))
print (metrics.confusion matrix (expected , predicted))

In the example shown above, the model is created in Line 8 and trained in the next
line. At last, predictions are made in Line 13 and the scorers of such predictions in
the last two lines.

3.4.3 Keras

Keras is a high-level neural networks API, written in Python and capable of
running on top of TensorFlow, CNTK, or Theano [42]. It was developed with a
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focus on enabling fast experimentation. It is a framework with a simple interface,
written in python, minimizing the number of user actions required for common use
cases and providing clear and actionable feedback upon user error. Keras is one

Keras

Figure 3.12: Keras logo.

of the most favourite frameworks among developers, as shown in the number of
mentions in scientific papers uploaded to arXiv.org (Figure 3.13). The core data
structure of Keras is a model, a way to organize layers. The simplest type of model
is the Sequential model, a linear stack of layers.

Here is an example of sequential model:

Listing 3.3: Create a sequential model.

from keras.models import Sequential

3 |model = Sequential ()

Stacking NN layers is easily achieved by:

Listing 3.4: Stack layers in Neural Network.

from keras.layers import Dense

3 |model.add(Dense(units=64, activation="relu", input_dim=100))
model.add (Dense (units=10, activation="softmax"))

In Line 3 a hidden layer is created: wunits corresponds to the number of nodes (or
neuron) for that specific layers, activation is the activation function (explained in
Section 3.3) required. The first hidden layer requires also the dimension of input
layer which is given in the input dim parameter.

Once the model looks good, the configuration of its learning process is done by:

Listing 3.5: Configure learning.

model. compile (loss="mean squared error’, optimizer='sgd’)

arXiv mentions, October 2017

150

100

50

0
tensorflow keras caffe theano torch pytorch chainer mxnet cntk caffe2

Figure 3.13: Keras popularity in arXiv mentions.
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This method takes as input the loss function (mean squared for this example but
many more can be used) and the configuration of the optimizer (in this case the
Stochastic Gradient Descent, introduced in Section 3.2).

Training the model in batches is than performed:

Listing 3.6: Training iteration in batches.

model. fit (x train, y train, epochs=5, batch size=32)

At last, the predictions on new data with a simple line:

Listing 3.7: Predictions on new data.
model. predict (x_test, batch size=128)

classes

This basic example shows the simplicity in the construction of a primitive Neural
Network. Using a more complex structure, the analysis presented in this thesis is
mainly done in Keras (using TensorFlow engine as backend).
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Chapter 4

Muon momentum assignment with
Machine Learning

In Chapter 3, an overview on Machine Learning techniques was presented and
various aspects of the application of learning algorithms have been discussed. In
particular, it has been underlined that many algorithms are adequate in very
different domains, scientific or not.

The main purpose of this thesis concerns the application of Machine Learning
algorithm using data coming from local trigger segments (trigger primitives) from
the Drift Tubes chambers (explained in more detail in Chapter 2) at the CMS
experiment for the muon pr assignment predictions.

After a brief description of the physical problem analysed, this chapter will be
articulated into three main sections:

e The first section will provide an overview of the data analysed and the pre-
processing required in order to make such data ready for a Machine Learning
model;

e The second section will show the creation of the models, training and test, as
well as the predictions for new unseen data;

e The third section will compare the predictions coming from such models with
the actual Level-1 trigger algorithm running in CMS.

All the code written for this thesis, the output data and plots are available in this
GitHub repository [43].

4.1 The muon pr assignment

Detection of muons is very important in the CMS experiment. Muons are
expected to be produced in a large set of physics signatures studied as part of the
CMS physics programme; for instance, a golden decay channel for the study of the
Higgs Boson (Figure 4.1a), is the one into four muons [44], as shown in Figure 4.1b.
Since muons can penetrate several metres of iron with little energy loss, unlike most
particles they are not stopped by any layer of CMS calorimetry systems. CMS
muon detectors (described in more detail on Chapter 2) are therefore the outermost
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4.2. Data Preparation

ones, far from the interaction point and shielded from most prompt background
sources.

A muon is tracked through the four muon stations of the barrel system in two steps.
First, individual hits with single chambers are combined by local trigger electronics
(see Section 2.3), resulting in track segments (trigger primitives) encoding local
position and direction. Then, a Track Finder system combines segments from
different stations into muon track candidates. The present Barrel Muon Track
Finder (see Section 2.4) estimates the muon transverse momentum in a relatively
simple way, using Look Up Tables addressed by the difference in the azimuthal
position of the trigger primitives from the innermost stations participating in the
track.

Improving the transverse momentum measurement performed by the trigger, namely
the momentum resolution, is very important to achieve a reduction of trigger rates.
In fact, due to the exponential shape of the inclusive prompt muon p7 spectrum, even
a relatively small reduction of the resolution can provide a significant decrease of
the trigger rate at a given pr threshold, by reducing the number of low momentum
muon candidates misidentified as high momentum. This becomes particularly
pressing in the context of future upgrades of CMS, in view of High-Luminosity
LHC (see Section 1.4), to avoid using higher momentum thresholds as luminosity
increases, with the consequence of loosing physics acceptance.

Besides, the current algorithm for Level-1 muon pr assignment is based on the use
of a fraction of all the available information from the trigger primitives: as a matter
of fact, firstly it assumes that the muon comes from the vertex, and secondly it
uses just the ¢p of the most internal station (as long as it is not MB3) and the
difference of the ¢ angles among the two most internal stations. A ML approach,
especially in the implementation of an artificial neural network, allows to ingest
all the angle differences, all ¢, the position and direction within a chamber of all
trigger primitives (up to 4 of them), the station/sectior/wheel coordinates of the
chambers generating the primitives (more information compared to the Level-1
trigger), and tries to explore though the use of more hidden layers in the network
architecture many possibile non-linear relations among the input data to perform a
supervised regression problem, thus spanning a much wider parameter space.

In this work, we use ML predictions to provide a momentum measurement based
on the trigger primitives (at chamber level) associated to muon track candidates
built by the present Track Finder system, which will also provide the reference
performance in terms of momentum assignment capability.

4.2 Data Preparation

The first important step prior to model creation is the data preparation. In a
standard Machine Learning problem, this is a delicate phase that deals with aspects
such as data cleansing, data scaling (normalization and binning),feature inspection
and eventually feature engineering.

In this particular case, the input data format is also an issue. Every input data
is given in a ROOT [45] TTree data format. This particular format is so widely
used by the HEP community to be considered as a "standard" in relation to
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LHC HIGGS XS WG 2011

Higgs BR + Total Uncert
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(a) Higgs branching ratios and their uncertainties (b) Higgs decay into 4 lep-
for the full mass range. tons (I =e,u, 7).

Figure 4.1: The image on the left shows the branching ratios (defined as the ratio between
a certain decay channel over the sum of all channels). The image on the right
shows the ZZ — llll(u*pw~ put ™) golden channel.
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Figure 4.2: Path of a muon in the CMS detector (blue curve). Notice how the other
particles (muons, photons, hadrons...) are stopped way before the mag-
net. Crossing the muon chambers, they produce a signal that allow the
reconstruction of the particle path.
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Figure 4.3: The structure of the ROOT Tuple used for analysis.

physics data analysis. ROOT files are also known for their ability to store almost
everything: from data Tuples (TTrees) to histograms and N-dimensional plots.
However, it has to be highlighted that this format may not be suitable for a direct
ML learning application, if the choice is to be able to use and compare world-class
algorithms in standard ML frameworks (see Section A) and by the overall Data
Science community, not only the packages available inside the ROOT framework.
For this reason a transition from the ROOT input file to any other format, more
suited for any existing ML framework (see Section A for more information), is
required.

The first option evaluated for this task was a toolkit named uproot |46], a reader
of the ROOT file format using only Python and Numpy (a package for scientific
computing in Python) [47] for a performant and scalable solution, able to deal with
a large set of ROOT file structures. This solution, however, was soon excluded
for a specific reason: the TTrees used for this study are produced by the CMS
Muon POG (Physics Object Group) using a class-customized structure, as shown
in Figure 4.3. The uproot package, instead, has the capability to deal only with
ROOT TTree with with a flat structure.

In order to deal with such a structure, the best option available was to create a
series of custom-made python macros able to correctly extract such information
from the Muon POG TTree structure and store it in a plain CSV (Comma Separated
Values) file i.e. a format in which tabular data (numbers and text) are stored as a
sequence of records each of which consisting of one or more fields, separated by a
comma.

4.2.1 From ROOT files to flat CSV

The python macro written for this specific scenario, however, was not part of
any pre-made existing package (like uproot) and was developed specifically for this
study.
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This macro was written using a python extension module called pyROOT': it allows
interactions with any ROOT class (familiar to the HEP community, written mostly
in C++) directly from the Python interpreter. Furthermore, using a parsing 1/0O
interface, a single configuration line is required for the entire conversion process.
In the code listed above, an example of its usage its shown:

Listing 4.1: Conversion macro usage.

./root_to_csv.py —help
2 | Usage: PROG [—h]| [-—fin INPUTFILE| [—-—branch TTREE]
[-—branches BRANCHES] [-—fout FOUT| [-—branch—list] [——cut CUT]

In this line, some arguments need to be set for an optimal usage:

e -h, —help: shows the help message (with the same instructions written in this
bullet list);

e —fin INPUTFILE: the input ROOT file path name that requires conversion;

e —branch BRANCH: the ROOT specific TTree to be read (in Figure 4.3, the
branch that has to be converted is ’event’);

e —branches BRANCHES: list of comma-separated variables, stored in the in
the ROOT tree selected with the above parameter, that will be extracted and
converted. If nothing is inserted, all variables will be included;

e —fout FOUT: the output CSV file containing the variables listed above;

e —branch-list: this optional boolean argument may be useful in case there is no
familiarity with the ROOT file. If enabled, a list of the ROOT file structure
will be provided;

e —cut CUT: list of possible cuts that may be requested for the ROOT file e.g.
a given threshold in a listed variable.

Muon primitives into CSV file

Concerning the actual data used for analysis, the input ROOT TTree is generated
out of a simulated sample of muons with different energy and direction crossing
the CMS detector. Each generated muon, passing through the barrel muon DT
chambers, results into several track segments, called trigger primitives. The number
of segments associated to each muon depends on the number of chambers crossed
by its trajectory. Therefore, inside the T'Tree structure (see Figure 4.3) all the
necessary information are stored, starting from the physical attributes of each
simulated muon and the respective primitive hits in the detector, up to the Level-1
trigger information.

An example of the specific I/O settings used for this analysis is listed below:

Listing 4.2: Muon ROOT file conversion parameters.

./root _to_csv.py
2 |[—fin ... /muonPOGNtuple SingleMuMinus Flat pt3—200.root
—branch MuonPogTree /MUONPOGIREE

49



4.2. Data Preparation

4 |—branches "dtPrimitive.id r,dtPrimitive.id eta,
dtPrimitive.id phi,dtPrimitive.phiGlb(),dtPrimitive.phiB,

6 |dtPrimitive.quality ,11Muon.eta ,11Muon. phi,11Muon.charge ,
genParticle.status ,l11Muon. quality ,11Muon.pt, genParticle.pdgld,
s |genParticle.eta,genParticle.phi, genParticle.pt"

—fout output muons.csv

10 |—cut "dtPrimitive .bx==0"

where the input filename and the list of branches are shown.
The variables extracted from the ROOT file and their physical meanings are the
follows:

1. dtPrimitives contains the variables of muon local segments from the DT
chambers (Section 2.1.1):

e dtPrimitive.id r — an integer with the identifier of the trigger primitive
station (ranging from 1 to 4);

e dtPrimitive.id phi — an integer with the identifier of the trigger primi-
tive sector (ranging from 1 to 12);

e dtPrimitive.id eta — an integer with the identifier of the trigger primi-
tive barrel wheel (ranging from -2 to 2);

e dtPrimitive.phiGlb() — the ¢ angle of the particle expressed in global
coordinates (depending on the active station);

e dtPrimitive.phiB — the corresponding bending angle (see Figure 2.14
for reference);

e dtPrimitive.quality — an integer with a value representing the quality
of the hit (a map of such values for the quality of the primitive is shown
in Table 2.1).

2. l1Muons contains the variables of muons exiting the Level-1 Trigger (specifi-
cally the BMTF, explained in Section 2.4):

e 11Muon.eta and 11Muon.phi — the value of the n and ¢ angles of the
muon track estimated by the Level-1 trigger;

e 11Muon.charge — an integer representing the charge of the muon (-1 or
+1);

e 11Muon.quality — an integer with a value of quality given by the Level-1
trigger depending on the type of Track Finder involved (in this case
Barrel TF). Ranges from 0 to 15, an higher value implies, in general,
the use of more trigger primitives and/or the use of primitives from the
innermost stations.

e I1Muon.pt — the estimation of the transverse momentum pr made by
the Level-1 Trigger system. This variable is quite important as it is used
to compare the performance of the py assignment by the model;

3. genParticles contains the variables of the generated muons. These are the
"true" physical values since the original interacting muon is generated and
not coming from real data:
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Event,dtPrimitive.id_r,dtPrimitive.id_eta,dtPrimitive.id_phi,dtPrimitive.phiGlb(),dtPrimitive.phiB,dtPrimitive.quality,11Muon.eta,11Muon.phi,11Muon.charge,
genParticle.status,11Muon.quality,l1Muon.pt,genParticle.pdgld,genParticle.eta,genParticle.phi,genParticle.pt
1,1,1,7,3.3085849285125732,-9.0,2,0.8047500252723694, -2.9780611991882324,-1,1,12,111.0,13,0.779859185218811, - 3.016859292984009, 55.022857666015625
»3.3127353191375732,9. .8047500252723694,-2.9780611991882324,
.3149325847625732,2. .8047500252723694,-2.9780611991882324,-1,1,12,111.0,
.3156650066375732,4. .8047500252723694,-2.9780611991882324,-1,1,12,111.0,
2. .
2. .

s6,

0.779859185218811, -3.016859292984009, 55.022857666015625
0.779859185218811, -3.016859292984009, 55.022857666015625
5.557437896728516, 38062500953674316,-0.731013298034668,-1,1,12,139.5,13,0.3656277060508728, -0.7421414852142334,163.72418212890625
5.558170318603516, 38062500953674316, -0.731013298034668,-1,1,12,139.5,13,0.3656277060508728, -0.7421414852142334,163.72418212890625
,0.38062500953674316, -0.731013298034668,-1,1,12,139.5,13,0.3656277060508728, -0.7421414852142334,163.72418212890625
.6851249933242798,0.42541199922561646,-1,1,12,139.5,13,0.6750427484512329,0.41554176807403564,186 . 16143798828125
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Figure 4.4: Output produced by the conversion macro. Each field is separated by a
comma and each record by a breakline.

e genParticle.status — an integer flag assuming different values depending
on the generation process. Particles with status flag 1 are the ones
propagated from the generator to the GEANT [48] simulation and are
the ones used later in this study;

e genParticle.pdgld — Pdg code of the generated particle (-13 for muons
and +13 for anti-muons);

e genParticle.eta and genParticle.phi — ’real’ value of the 1 and ¢ angles
of the muon;

e genParticle.pt — transverse momentum of the generated muon. This
variable will be used as the target from the Machine Learning algorithm
i.e. the quantity that the model has to learn.

Figure 4.4 shows the output produced after the execution of the conversion macro,
stored in a plain CSV file.

4.2.2 Data validation

This particular process of data extraction and conversion, however, may be
dangerous if done wrong. For instance, there might be a lot of missing attribute
values for some data entries or an error during conversion (bug in the code or in the
original file). In order to prevent this kind of issues, a data cross-check validation
is strongly suggested before entering the phase of model building and training.
The purpose of this step is not the control over the correctness of the physics
information, which we assume to be correct a priori, as from the CMS Barrel data
quality checks, but the consistence of the new file with respect to the original ROOT
format.

This step was performed with a python-based pipeline designed on a Jupyter
Notebook [49] for an efficient and interactive plot making and content checking.
The number of branches and the number of items inside each have been compared
to the original information from ROOT. Each column from the CSV file was then
plotted on the Jupyter notebook (using Matplotlib module [50]) and checked with
the original plot traditionally done in a ROOT TCanvas.

Some examples are shown in Figure 4.5: Figure 4.5a shows the dtPrimitive.id_r
variable, that contains integers, to be compared with Figure 4.5b from the original
ROOQT file; Figure 4.5¢ shows the distribution of the ¢ angle, a floating point
variable, compared with Figure 4.5d.
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event.dtPrimitives.id_r

dtPrimitive.id_r
count 7165.000000
mean 2.482624
std 1.095081
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(a) Variable dtPrimitive.id_r plotted from (b) Variable dtPrimitive.id_r plotted from the
CSV file with Matplotlib. original ROOT file.
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(c) Variable dtPrimitive.phi plotted from CSV  (d) Variable di¢Primitive.phi plotted from the
file with Matplotlib. original ROOT file.

Figure 4.5: Data validation step. The left plots show the histograms of two variables
after the conversion from the new CSV file; the right plots, instead, show the
original variables plotted using ROOT TBrowser.

4.2.3 Data pre-processing

This step concludes the data preparation phase and has the purpose of making
the CSV file, just created, ready for a Machine Learning model building and training.
The entire pre-processing was handled and controlled by another macro, written in
Python using a Jupyter Notebook that made possible a step-by-step execution.
In Figure 4.6 an extract from the CSV input file is shown. Each record of this file
contains the physical information of one primitive: a single muon, however, does
not produce only one primitive but a finite range (not exceeding four primitives
i.e. the number of stations in the muon chambers). The column Event, instead, is
an integer number associated with the actual interacting muon. For instance, in
Figure 4.6, the heading four records of the CSV file are labelled as Fvent=1: this
means that the corresponding muon has produced four primitives. The next event
is then displayed and so on, until the last muon of the simulation is reached.

This particular configuration of data, is quite straightforward but is not optimal in
view of a Machine Learning training process: in fact, looking at the genParticle.pt
column (containing the transverse momentum of the generated muon), it is pos-
sible to notice that, for each event, the record is repeated. This is not surprising
considering that is the same interacting muon. Since the measure of the muon
momentum is actually performed combining information from all the primitives
produced along the particle’s trajectory, data must be re-arranged so that the link
between a muon and the full set of primitives, generated in the different chambers,
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Event dtPrimitive.id_r dtPrimitive.id_eta dtPrimitive.id_phi dtPrimitive.phiGlb() dtPrimitive.phiB dtPrimitive.quality I1Muon.eta I1Muon.phi ... genParticle.pt

o 1 1 1 7 3.308585 -9.0 2 0.804750 -2.978061 ---  55.022858

1 1 2 2 7 3.312735 9.0 6 0.804750  -2.978061 55.022858

2 1 3 2 7 3.314933 2.0 6 0.804750  -2.978061 55.022858

3 1 4 2 7 3.315665 4.0 6 0.804750  -2.978061 55.022858

4 2 2 1 12 5.557438 2.0 6 0.380625 -0.731013 ... 163.724182

5 2 3 1 12 5.558170 2.0 5 0.380625 -0.731013 163.724182

6 2 4 1 12 5.558659 -24.0 2 0.380625 -0.731013 163.724182

7 3 1 1 2 0.427652 4.0 6 0.685125 0.425412 186.161438

8 3 2 1 2 0.428384 -28.0 2 0.685125 0.425412 ... 186.161438

9 3 3 2 2 0.429361 0.0 6 0.685125 0.425412 186.161438

10 3 4 2 2 0.429361 0.0 5 0.685125 0.425412 186.161438
1 4 4 -2 8 3.973297 16.0 2 -0.761250 -2.312673 176.452087
12 4 2 2 9 3.972482 6.0 5 -0.761250 -2.312673 ... 176.452087
13 4 1 -1 8 3.971100 -7.0 2 -0.761250 -2.312673 176.452087

Figure 4.6: Input CSV file example before the pre-process (extracted from the actual
data).

is made explicit in the format in input to ML. The pre-processing procedure fix
this issue, changing the main configuration of the input file. Instead of having a
primitive for each row, the new file has an event (i.e. a muon) for each row and the
primitives were all shifted as individual columns. The same extract with the new
configuration is shown in Figure 4.7. It is possible to notice that each row has now
its specific and unique transverse momentum, with the addition of a n_ Primitive
column with an integer value corresponding to the number of primitives contained
in that record. Then, each column of the first data file has been multiplied n-times,
proportionally to the maximum number of primitives possible. When an event has
a number of primitives lower than the maximum, a place-holder is inserted (0).

Other important additions to the dataset structure are then the delta phi columns.
These columns are filled with the difference, in module, of the ¢ angles: more
specifically the dtPrimitive.phiGlb() columns containing the ¢ angle expressed in
global detector coordinates. Physically, the pr of a particle, crossing the detector,
is inversely proportional to the bending angle caused by the effects of the strong
magnetic filed produced by the solenoidal magnet. Therefore, as a feature engineer-
ing problem, for each combination of station pairs (MB2-MB1, MB3-MB1, etc...),
a new variable is created. In the eventuality of no primitive in a certain section, no
difference can be computed and a place-holder (0) is inserted.

After this changes, the final dataset is store into another CSV file which is ready
for the creation of the Machine Learning models.

4.3 Creation of the model

In the previous section, it was discussed the preparation of data for Machine
Learning i.e. converting a ROOT file into a flat CSV (see Section 4.2.1) and how to
validate the data (see Section 4.2.2), concluding with the pre-processing phase with
feature optimizations (see Section 4.2.3). After these steps, a Machine Learning
model for our specific task can start to be built.
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Event n_Primiti imitive.id_r imitive.id_r imitive.id_r imitive.id_r 1dtPrimitive.id_eta imitive.id_eta 3dtPrimitive.id_eta imitive.id_eta ...
o 1.0 4.0 1.0 2.0 3.0 4.0 1.0 2.0 2.0 2.0
1 2.0 3.0 2.0 3.0 4.0 0.0 1.0 1.0 1.0 0.0 ...
2 3.0 4.0 1.0 2.0 3.0 4.0 1.0 1.0 2.0 2.0
3 6.0 4.0 1.0 2.0 3.0 4.0 0.0 0.0 0.0 0.0 ...
4 7.0 3.0 1.0 2.0 3.0 0.0 0.0 0.0 0.0 0.0
5 12.0 3.0 1.0 3.0 4.0 0.0 0.0 1.0 1.0 00 ...
6 17.0 2.0 2.0 3.0 0.0 0.0 -1.0 -1.0 0.0 0.0

genParticle.pdgld genParticle.eta genParticle.phi delta_phi12 delta_phi13 delta_phi1i4 delta_phi23 delta_phi24 delta_phi34 genParticle.pt

13.0 0.779859 -3.016859 0.004150 0.006348 0.007080 0.002197 0.002930 0.000732 55.022858
13.0 0.365628 -0.742141 0.000732 0.001221 0.000000 0.000488 0.000000 0.000000 163.724182
13.0 0.675043 0.415542 0.000732 0.001709 0.001709 0.000977 0.000977 0.000000 186.161438
13.0 0.108610 -2.497962 0.001709 0.003174 0.003906 0.001465 0.002197 0.000732 117.951797
13.0 -0.079830 -1.993825 0.004395 0.007813 0.000000 0.003418 0.000000 0.000000 45.763668
13.0 0.243388 1.946428 0.003662 0.004150 0.000000 0.000488 0.000000 0.000000 112.617790
13.0 -0.584353 -1.273355 0.002197 0.000000 0.000000 0.000000 0.000000 0.000000 49.043083

Figure 4.7: Input CSV file example after the pre-process (extracted from the actual data).

4.3.1 Algorithm selection

The selection of a Machine Learning algorithm that fits this particular problem
is the first step. It is not possible to know a priori the best algorithm: therefore, the
only way is to try a number of different algorithms and focus with those resulting
to be the most promising. In this step, spot-checking is a way of discovering which
algorithms perform well on a specific ML problem.

This step is quite basic and requires an easy framework with an high number of
pre-loaded algorithms to compare. Scikit-learn framework (explored in more detail
in Section A or [41]) provides an easy solution for this problem, comparing several
algorithms at the time with a low CPU usage and an user-friendly programming
interface.

In the following, several algorithms will be listed by category. Starting from the
linear algorithms:

e Linear Regression: linear regression is a basic but powerful Machine Learn-
ing algorithm. Widely used in regression problems, the function used to fit
the problem is:

Y =08+ /X

where X is the vector of features and [y, 81 are the coefficients we wish to
learn.

¢ Ridge Regression: is an extension for linear regression. It is a regularized
model, which is a common mechanism for avoiding overfit by adding another
element to the loss function that should be minimized as well. This term sums
over squared [ values and multiplies it by another parameter A\, punishing the
loss function for high values of the  coefficients. Therefore, during training,
such coefficients are enforced to be lower as possible.

e Lasso: another extension built on regularized linear regression, but with a
small difference. The regularization term is in absolute value. This overcomes
the disadvantage of Ridge regression by not only punishing high values of the
B coefficients but actually setting them to zero if they are not relevant. Using
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Algorithm Comparison
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Figure 4.8: Comparison of several algorithms using Scikit-learn framework. The x-axis

shows the different algorithms taken into account while the y-axis shows the
RMSE scorer (negative). An higher number means a better model.

this algorithm, it is possible to end up with fewer features included in the
model than the initial one.

e Elastic Net: it linearly combines the two methods above in a two-stage
procedure: first it finds the ridge regression coefficients and then does a Lasso
type shrinkage.

In addition to the algorithms above, also few non-linear ML algorithms have been
considered:

e k-Nearest Neighbors (kNN): It uses a distance metric to find the k most
similar instances in the training data for a new instance and takes the mean
outcome of the neighbors as the prediction.

e Decision Tree Regressor: along with the Classification Tree, together
named CART, or just decision trees, they construct a binary tree from the
training data. Split points are chosen greedily by evaluating each attribute
and each value of each attribute in the training data in order to minimize a
cost function.

The algorithms mentioned above have been tested as potential good models for the
physical problem under exam, using default values for all their internal parameters.
They have been tried on the training sample, and the results have been compared
one with the other in order to estimate their "scores". The scorer adopted for the
evaluation of such model is the RMSE, describe in more detail in Section 3.2. The
results obtained with the two best algorithms after the spot-checking step, as shown
in Figure 4.8, show that KNR and DTR offer the best results in terms of RMSE
without specific optimizations. Before proceeding further, e.g. via hyper-parameter
tuning on these algorithms, in the meantime an alternative approach based on
ANN was attempted, giving comparable results if not better prior to optimization.
Given the larger flexibility of Neural Network learning algorithm, it was decided to
continue pursuing this latter path, as explained in the following sections.
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4.3. Creation of the model

4.3.2 Artificial Neural Network with Keras and TensorFlow

Scikit-learn was the first attempt to find an optimal algorithm for the creation of
models. However, results started to become interesting with the usage of Artificial
Neural Network algorithms (described in detail in Section 3.3).

The neural networks, compared to other ML models, are much more flexible:
instead of following a set of predefined instruction to solve a problem, they process
information by a large number of interconnected processing elements working in
parallel; the resulting model may also be easily loaded in other machines and tested
with new datasets.

The following sections will provide a detailed description of the process needed to
create such networks, using a python macro with the Keras framework environment
(described in detail in Section A).

Input Dataset and feature selection

For this specific analysis, the entire dataset used contains about 300000 gener-
ated muons with a range in pr from 3 to 200 GeV/c, in an uniform distribution. In
Section 4.2.1, a description of the CSV file used for analysis was provided along
with a list of the variables extracted from the ROOT file. Feature selection is the
first step in the creation of the neural network model: from the above list, only
some of the variable were effectively used as input feature. The other variables left
will be used in the last part of this thesis, which is the comparison of the predictions
with the Level-1 information.

The list of the features used is the following: n_ Primitive, dtPrimitive.id_r, dtPrim-
itwe.id. _eta, dtPrimitive.id_ phi, dtPrimitive.phiB, dtPrimitive.quality, delta_ phi
(one for each combination of stations). dtPrimitive.id_r, dtPrimitive.id. eta, dt-
Primitive.id_phit were adopted for the location of the primitive in the detector;
delta_phi and dtPrimitive.phiB for their correlation to the muon pr; dtPrimi-
tive.quality for the correlation between the number of hits used for the construction
of the primitive, which has an impact on the resolution of ¢ 5 (see Section 2.3).
As already stated in the section above, each dtPrimitive variable refers to one
primitive only; each muon, however, has more than one primitive (n_ Primitive
indicates the exact number of primitives for a certain muon record). For this reason,
every variable has an additional integer number at the beginning of their name
indicating the primitive number. For instance, dtPrimitive.id_r actually means:
1dtPrimitive.id_ r, 2dtPrimitive.id_ r, 3dtPrimitive.id_r and so on, for the other
variables as well.

Target variable

The target variable is genParticle.pt, which contains the transverse momentum
of the simulated muon, distributed from 3 to 200 GeV/c and normalized between 0
and 1 since, in a Neural Network environment (but it is extended to all Machine
Learning algorithms), the target variable is supposed to be normalized in order to
be easily learned.
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4.3.3 Neural Network structure

The architecture of the Neural Network was implemented using Keras as follows:

Listing 4.3: Neural Network architecture.

model = Sequential ()
model.add (Dense (1000, input_ dim=27,

kernel initializer="random normal’, activation='sigmoid ’))
model.add(Dropout(rate:().l))
model.add(Dense (50, activation='sigmoid "))
model.add(Dropout(rate*() 1))
model.add(Dense(1l, activation=’'sigmoid ’))

The first hidden layer is described in Line 2: it has 1000 neurons and receives
the information directly from the input layer of 27 features; the sigmoid function
selected as activation function (see Section 3.3) and a gaussian random number as
kernel initializer (for the initial randomized weight assignment). Then a dropout is
inserted: it consists in a random selection of a fraction of input units to 0 at each
update during training time, preventing overfitting.

The second layer, in Line 5, is identical to the first one but contains only 50 neurons.
In the end, the output layer (with only one node) closes the Network.

4.3.4 Training the model

6

The training of the Neural Network was implemented with Keras as follows:

Listing 4.4: Train the Neural Network.

model.compile (loss="mean squared error’, optimizer=optimizer)
model. fit (x_train, y train,
batch size=size ,
epochs=epochs,
verbose=1,
validation data=(X _validation, y validation))

The loss function used is the Root Mean Squared Error (described in Section 3.2).
For the optimizer, several options were analysed [51]:

e AdaGrad: AdaGrad (Adaptive Gradient Algorithm) is an extension of the

Stochastic Gradient Descent (Section 3.2.1) that, instead of maintaining a
single learning rate for all weight updates during training, it adapts the learning
rate to the parameters, performing smaller update. Frequently occurring
features will have small parameters updates while infrequent features will
have larger updates;

e RMSProp: RMSProp (Root Mean Square Propagation), another SGD

extension similar to AdaGrad, have been originally developed in order to
resolve Adagrad’s diminishing learning rate issue. This optimizer, in fact,
divides the learning rate by an exponentially decaying average of squared
gradients;

e Adam: Adam (Adaptive Moment Estimation) is another method which

realizes the benefit of both AdaGrad and RMSProp. Instead of adapting
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4.3. Creation of the model

# | Optimizer | Training RMSE | Validation RMSE
1 | AdaGrad 0.170369 0.169735
2 | RMSProp 0.109598 0.110485
3 Adam 0.105400 0.107358
4 | AdaMax 0.108883 0.110199

Table 4.1: Scores for the Neural Network training and validation phases.

the parameter learning rates based on the average first moment (the mean),
Adam also makes use of the average of the second moments of the gradients
(the uncentered variance);

e AdaMax: Similar to Adam, AdaMax is based on the infinity norm for stable
parameters adjustments [52].

In order to validate the model, a train/test split of 80/20% was performed. Using
a batch size of 300 records and 260 epochs (total number of iterations) for each
configuration, Table 4.1 shows the results for both the training and validation
phases. Figures from 4.9a to 4.9d show the loss value trend over the iterations
(epochs) during training and validation for each optimizer adopted (using the
RMSE function): for each iteration, the minimization of loss is noticeable from the
constantly decreasing curve.

4.3.5 Testing the model

The final step for the model creation is the test of such models in a separate
dataset. The Keras models trained in Section 4.3.4 were initially saved into a HDF5
file [53], containing:

e The architecture of the model, in order to be recreated with other datasets;
e The weights of the model,;
e The training configuration (loss, optimizer);

e The state of the optimizer, allowing to resume training exactly where it was

left.

Then, using another CSV file with other simulated muons (about 15k muons),
created and processed in the same way as the training sample (see Section 4.2), it
was possible to load the models and predict the muon py by adding the following
code:

Listing 4.5: Test the NN models.

model = load model(’<model name>.h5")
2 | predictions = model. predict (X _test)
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Training and Validation loss per epoch

Training and Validation loss per epoch
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(a) Adagrad optimizer loss values. (b) RMSProp optimizer loss values.
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(c) Adam optimizer loss values. (d) AdaMax optimizer loss values.

Figure 4.9: These plots show the trend of the loss function for each iteration (epoch).
The blue line indicates the training phase while the orange line the validation
phase. Notice that, for each epoch, the loss function is always minimized.
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4.4. Results: comparison with Level-1 Trigger

Optimizer | Test RMSE
AdaGrad 0.170537
RMSProp | 0.111046
Adam 0.107109
AdaMax 0.110991

N N e =

Table 4.2: Scores for the Neural Network test phase.

In Figure 4.10, scatter plots of the predicted value of pr versus the "real" values
of the pr (coming from the generated muon variables) are shown. FEach plot
corresponds to a different loaded model used for the predictions. Table 4.2 shows
the loss value for each test model, using the RMSE function. From this plots, it is
important to notice the progressive decrease in quality for high values of momentum.
This effect is probably physical: at high pr, the bending angle of particles becomes
very small, becoming comparable to the angular resolution of the trigger primitives.

4.4 Results: comparison with Level-1 Trigger

Once the models have been trained and tested, the best one was chosen for the
comparison between the pr predicted by Machine Learning and the pr estimated
by the pr assignment unit of the Barrel Muon Track Finder (Section 2.4). Tables
4.1 and 4.2 indicate that the best score was provided by the Adam optimizer model
(see Section 4.3.4).

The analysis code performs this steps:

e Load the model, in this case Adam optimizer, which performed the best
scores;

e For each generated muon, a dR = \/d¢? + dn? matching with the Level-1
Trigger tracks performed: in this way only muons with corresponding Level-1
track are considered, factoring the Level-1 reconstruction efficiency out of the
study;

e If dR is below a certain threshold, the track is selected and histograms start
to be filled.

The input dataset for the analysis contained about 14000 muon entries. There are
two different types of plots produced as output:

1. pr resolution histograms;

2. Efficiency curves computed as function of the generated muon py ("Turn-on
curves').
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Figure 4.10: Scatter plot of the model pr predictions versus "real" py from the simulation.
The dashed line corresponds to an ideal correspondence of the predicted
values. At high pr values, predictions are less accurate than low pr ones.
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4.4. Results: comparison with Level-1 Trigger

4.4.1 pr resolution histograms

The pr resolution histograms, for each generated muon, are filled using the
following relation:
ApT — pTest - pTgen

pr Pryen

where pr,, is the estimation of the transverse momentum, given by the model
prediction or the Level-1 trigger pr assignment unit. Figure 4.11 shows the pr
resolution for the entire range analysed (from 3 to 200 GeV/c). The red line
indicates the resolution of the Level-1 trigger system while the blue line indicates
the resolution of the predictions made by the Neural Network model. In particular,
it is possible to notice a less broad distribution for the Machine Learning resolution,
resulting in a overall improvement (yet small) with respect to the Level-1 trigger
system. Another noticeable detail, from the Level-1 trigger curve, is the small peak
over the value of -1: this happens when the pr assigned by the Level-1 Trigger is
significantly underestimated with respect to the generated muon pr. The Machine
Learning momentum assignment is less prone to large pr under estimation. As will
be discussed in the next section, this difference has implications in the efficiency to
trigger on muons when a minimal py cut is applied on the Level-1 trigger track.
Figures from 4.12 to 4.16 show the same pr resolution histograms but in specific
momentum ranges. Even though the overall resolution shows an improvement,
Figure 4.12 highlights a significantly broader resolution plot in the 3 — 20 GeV /c
range of the Learning model which is instead rather in agreement in the other
regions of pr. In general, an additional feature is visible in all the pr resolution
plots is the scale: the peak of the ML-based distributions close to zero if compared
with the Level-1 trigger one. This is due to a different calibration of the pr scale in
the two cases. The Level-1 Trigger pr assignment is in fact defined as the point for
which the efficiency turn on curve reaches the 90% value. The ML instead attempts
to estimate the generated muon pr and is therefore characterized by a smaller scale
bias.

4.4.2 Efficiency turn-ons

The efficiency turn-ons, as the word states, represent an efficiency € defined as
follows:

number of muons that passes a defined threshold inpy

‘= total number of muons

After the definition of a minimal pr threshold cut, the efficiency numerator is filled
if the pr value from the ML or the Level-1 pr assignment is above threshold. Then
the ratio with the denominator, filled with muons resulting in a Level-1 trigger
track, is performed. Results are plotted as function of the generated pr.

In Figure 4.17 a turn-on efficiency curve is shown. A threshold of 22 GeV /c was
selected, as it is the threshold of lowest pr-cut unprescaled single muon triggers.
Such a momentum cut, in fact, has nearly full acceptance for signatures of events
at the electroweak scale (Z — pp, W — pv) and above.

Figures 4.18, 4.19 show the same curves with different cuts, respectively 27 and
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P resolution comparison
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Figure 4.11: Transverse momentum resolution histograms computed for the ML-based

(blue) and L1-trigger based momentum assignment, computed for muons
generated in the 3 — 200 GeV pr range.
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Figure 4.12: Transverse momentum resolution histograms computed for the ML-based

(blue) and L1-trigger based momentum assignment, computed for muons
generated in the 3 — 20 GeV pr range.

63



4.4. Results: comparison with Level-1 Trigger
P resolution comparison - Range 20-40 GeV
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Figure 4.13: Transverse momentum resolution histograms computed for the ML-based

# entries

(blue) and L1-trigger based momentum assignment, computed for muons
generated in the 20 — 40 GeV pr range.
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Figure 4.14: Transverse momentum resolution histograms computed for the ML-based

(blue) and L1-trigger based momentum assignment, computed for muons
generated in the 40 — 60 GeV pr range.
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P resolution comparison - Range 60-80 GeV
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Figure 4.15: Transverse momentum resolution histograms computed for the ML-based

(blue) and L1-trigger based momentum assignment, computed for muons
generated in the 60 — 80 GeV pr range.
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Figure 4.16: Transverse momentum resolution histograms computed for the ML-based

(blue) and L1-trigger based momentum assignment, computed for muons
generated in the 80 — 100 GeV pr range.
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Predicted and Level-1 Efficiency curves
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Figure 4.17: Efficiency turn-on given a pr threshold cut of 22 GeV . The blue dots show
the efficiency for the Machine Learning based momentum assignment, while
the red dots show the efficiency for the Level-1 trigger pr assignment.

32 GeV/c. As for the pr resolution plots, turn-ons have a different calibration for
Machine Learning and Level-1 trigger: however, this difference has been accounted
for and the resulting plots are calibrated. From these plots, a very high efficiency
in the plateau region of the Machine Learning turn-on plot can be observed: the
lower efficiency of the Level-1 curve in the high-pt region is mainly caused by the
underestimation of the muon Pt in some events, which is visible as the small peak at
-1 in the pt resolution plots. The Machine Learning model, instead, is not affected
by this issue and the efficiency at high values of p7 is nearly 100%. On the other
hand, Figures 4.17 and 4.18 show a small increase of efficiency in the 10 — 20 GeV /c
region which is comparable with the worse resolution in the low pr range (Figure
4.12). This is not optimal since it is located below the threshold thus resulting in
a higher fraction of muons with low momentum misidentified as high momentum,
and consequently in a potential increase of overall rate.

4.5 Next steps

Some aspects of this work may be analysed in more detail with a further study.
Machine Learning models can be tuned and perfected over time: other algorithms
may be explored and tested with further attention. Optimization of such models,
including ensemble methods, has not been yet performed, but it is a future goal to
undertake.

The pr assignment produced by the Machine Learning model was comparable with
the Level-1 Trigger pr assignment unit with some future improvements: in Section
4.4.2, an increased efficiency below the threshold very likely causes an higher rate
than the current Level-1 Trigger system. In the High-Luminosity LHC phase of
operations, this rate should be as low as possible since the instantaneous luminosity
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Figure 4.18: Efficiency turn-on given a pp threshold cut of 27 GeV . The blue dots show
the efficiency for the Machine Learning based momentum assignment, while
the red dots show the efficiency for the Level-1 trigger pr assignment.
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Figure 4.19: Efficiency turn-on given a pr threshold cut of 32 GeV . The blue dots show
the efficiency for the Machine Learning based momentum assignment, while
the red dots show the efficiency for the Level-1 trigger pr assignment.
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4.5. Next steps

will increase compared to the present run. For this reason, future studies in trigger
rates should be performed. Moreover, it would be interesting to test the model
model in other regions of phase space, for example studying the efficiency to select
muons with transverse momentum of the order of several hundreds of GeV /c.
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Conclusions

This thesis aims at creating a Machine Learning model for the assignment
of transverse momentum of Level-1 Trigger muons crossing the Barrel region of
the CMS experiment. A precise evaluation of such variable is crucial: a better
pr assignment, in fact, allows the trigger rate to be reduced, a very important
improvement in view of High-Luminosity LHC.

After evaluating various linear and non-linear learning algorithms, a model based
on an Artificial Neural Network approach was selected as the one offering the
highest scores even without major investments in hyper-parameters tuning, thus
still having additional margins of improvement. After preliminary investigations
with the Scikit-learn python library, the main Machine Learning framework used to
build and train the models was Keras, using TensorFlow as backend.

The training dataset for this specific analysis contained about 300000 generated
muons with a range in py from 3 to 200 GeV /c, following a uniform distribution.
The NN architecture built for this analysis consisted of 3 layers: an input layer
with 27 features and 1000 neural units, an hidden layer of 50 neural units and
the output unit, all with sigmoid as activation function. Among all the different
choices in the model optimization, the best score was reached by the Adam op-
timizer with a RMSE of 0.105 on the training set, yielding 0.107 on the validation set.

Exploiting this model, we can implement regression on the target pr observable
which is presented in this thesis as pr resolution histograms and "turn-on" curves
i.e. efficiency curves computed as function of the generated muon pr, discussed
separately in the following.

Machine Learning py prediction shows a comparable overall resolution with respect
to the Level-1 trigger system, slightly better at higher pr values, while a worse
assignment is observed in the 3 — 20 GeV /c range. The steepness of the turn-on
curves indicates, in general, a good agreement between the traditional Level-1
trigger system and the ML-based new solution. In the plateau region of the ML
turn-on curve an efficiency very close to 100% is observed, significantly better than
in the present Level-1. Thus, investigating the behaviour of the ML p; assignment
for very high momentum muons (order of TeV and above), crucial to several new
physics searches, could be an interesting continuation of this work. On the other
hand, an increase of efficiency in the low pr (10 — 20 GeV/c) region is observed:
this can probably cause a higher rate of low momentum muons misidentified as
high momentum, although this was not directly investigated in this thesis, and
should be addressed in further developments.
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On possible further improvement on the model creation and optimization side,
ensemble methods should be evaluated as potentially promising alternatives towards
higher scores, as well as more advanced hyper-parameters tuning e.g. via grid search
approaches. Concerning the performance in the training phase, which might result
decisive to allow a faster turn around in implementing and evaluating different
configurations of the model, a natural next step would be to explore Keras, using
TensorFlow GPU as backend and setup the code base used in this thesis on a
GPU-equipped computing resource.

This work was presented at the Sixth Annual International Conference on Large
Hadron Collider Physics (LHCP) in Bologna, June 2018.
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Appendix A

Machine Learning Glossary

In the previous Sections, a brief explanation of some Machine Learning concepts
and techniques was made. In this Appendix, a short list of commonly-used terms is
offered [54], in order to facilitate the reading of this thesis:

Activation Function: Is a mathematical function e.g. ReLU or sigmoid,
that takes in the weighted sum of all the inputs and generates an output value
(non-linear) to the next layer;

Classification: A type of supervised machine learning model for distinguish-
ing among two or more discrete classes. For example between "Yes’ or 'No’,
"Male’ or "Female’;

Clustering: Grouping related examples, particularly used on Unsupervised
Learning. Once all the examples are grouped, a human can optionally supply
meaning to each cluster. An example, the k-means algorithm clusters examples
based on their proximity to a centroid;

Examples: An example is an instance of data e.g. a single row in a dataset.
It is labelled if contains both features and the label, while it is unlabelled
if contains the features but not the label. In a Machine Learning typical
workflow, the labelled set of examples is used for training and the unlabelled
subset for the validation/test subset;

Feature: A feature is an input variable, x in a simple regression problem. A
simple Machine Learning model has one feature, while more sophisticated
algorithms could use dozens or hundreds of features:

{Ilax27 T In}

Gradient Descent: A technique to minimize loss by computing the gradients
of loss with respect to the model’s parameters, conditioned on training data.
Informally, gradient descent iteratively adjusts parameters, gradually finding
the best combination of weights and bias to minimize loss;

Hidden Layer: In a neural network, a hidden layer is a collection of neurons
located between the input layer (features) and the output layer (predictions);
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Label: the label is the thing we are predicting - the y variable in a simple
regression problem. It can be a housing prize value or, in this specific work, a
physical quantity of a fundamental particle;

Learning Rate: A scalar used to train a model via gradient descent. During
each iteration, the gradient descent algorithm multiplies the learning rate by
the gradient. The resulting product is called the gradient step;

Loss: A measure of how far a model’s predictions are from its label. To
determine this value, a model must define a loss function. For example, linear
regression models typically use mean squared error for a loss function, while
logistic regression models use Log Loss;

Model: A model defines the relationships between features and label. There
are two main phases that a model has to perform: training the model (see
Training) and inference i.e. use the trained model to unlabelled examples;

Neural Network: A model that, inspired by the structure of the human
brain, is composed of layers (at least one of which is hidden) consisting of
simple connected units or neurons;

Neuron: Also called node, is the fundamental unit of a neural network. It
calculates the output value by applying an activation function (non-linear) to
a weighted sum of input values;

Overfitting: Creating a model that matches the training data so closely that
the model fails to make correct predictions on new data;

Regression: A type of model that outputs continuous (typically, floating-
point) values. To compare with Classification models;

Supervised Learning: Training a model from input data and its correspond-
ing labels e.g. a student that learns a subject by studying a set of questions
and their answers, then answer to new and unseen questions. Compare with
Unsupervised learning;

Test set: The subset of the data set that you use to test your model after
the model has gone through initial vetting by the validation set. Also see
Training set and Validation Set;

Training set: The subset of the data set used to train a model;

Unsupervised Learning: Training a model to find patterns in a data set,
typically an unlabelled data set. Usually, unsupervised learning is performed
by clustering data into groups of similar examples. Compare with Supervised
learning;

Validation set: A subset of a dataset, disjunct from the training set, used
for adjusting the parameters of the model. Also see Training set and Test
set.
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