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Abstract

S-boxes are the non-linear part of DES cryptosystem. Along the years it has

became clear that any kind of edit to the structure of DES S-boxes increases

the probability of success of breaking the algorithm, which was very carefully

designed. The reason why the S-boxes were built in this way was clarified by

Coppersmith, years after the publication of the encryption algorithm.

The aim of this thesis is to investigate on Coppersmith’s DES S-boxes

design criteria and to evaluate them by way of SAT Solving, in order to ana-

lyze the performance of SAT-Solvers for different versions of DES algorithm,

in which S-boxes respect only a sample of Coppersmith’s design criteria. This

aim is achieved thanks to the implementation of a Python tool: DESBoxGen.

The main challenge in the design of DESBoxGen is the one of finding a

way to efficiently generating S-boxes satisfying certain criteria.

i





Introduction

Cryptography is an art, a science and a mathematical discipline, that studies

techniques for making digital systems and information sharing secure. Its

applications can be found everywhere.

One of the most widely known encryption schemes is the Data Encryption

Standard, DES, which has been used worldwide for more than 20 years and

for the same amount of time it has been studied by the whole world of

cryptographers. Several attacks were attempted to break DES and most of

them turned out not to be practicable due DES very careful design.

The motivations why attacks, like the differential cryptanalysis, are in-

feasible were clarified by Don Coppersmith [1], who explained the main design

criteria respected in the implementation of DES S-boxes and P-box, years

after the publication of the algorithm. Nowadays DES is not used anymore

due its short key length but the well-designed structure of the algorithm,

especially of the S-boxes, is undeniable.

In this thesis Coppersmith’s criteria have been evaluated by way of SAT

Solving through the implementation of an attack known as logical cryptana-

lysis. All these steps have been realized through the implementation of a

Python tool: DESBoxGen.

The main challenge in the design of DESBoxGen is the efficient generation

of S-boxes that respect only some of Coppersmith’s criteria. Difficulties have

been detected more in the generation phase than in the verification one, since

naive algorithms almost never produce S-boxes in compliance with some

criteria. To solve this problem, more complex implementations, like the

iii



iv Introduction

graph-based stochastic one, have been realized.

This thesis explains the path followed for generating S-boxes and DESBoxGen,

mainly the encoding of DES variants into formulas and the evalutation of

Coppersmith’s design criteria. This work has the following structure:

• in the first chapter, SAT Solving is introduced, in order to explain

its role in logical crypanalysis, the operations that have to be applied

to formulas and the link between the search for a solution to a SAT

problem and breaking an algorithm;

• in the second chapter, a brief overview on DES is given. More spe-

cifically, its architecture, the main attacks attempted on it and Cop-

persmith’s explanation of the design choices behind implementation of

the algorithm are described;

• in the third chapter, the generation of S-boxes is discussed with all the

problems and the solutions detected;

• in the fourth chapter, all the implementation choices related to DESBoxGen’s

structure are presented and the conversion of a cryptanalytic attack on

DES into a SAT problem is explained;

• in the fifth chapter, the results of the tests previously generated through

DESBoxGen are displayed in order to evaluate Coppersmith’s criteria us-

ing three different SAT-Solvers: Picosat, CryptoMiniSat and Lingeling.
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Chapter 1

SAT Solving in Cryptanalysis

The problem of deciding if a propositional logic formula is satisfiable, i.e.

if there is an assignment of truth values to boolean variables such that the

formula is true, is the prototypical NP-complete problem1. On the following,

it will be referred to as SAT.

Despite the hardness of the problem, some of SAT instances can be solved

in a reasonable amount of time[3] through SAT-Solvers, that given a proposi-

tional formula look for a variable assignment such that the formula evaluates

to true. Many computational problems can be encoded as a SAT one, so

finding a solution for the logical problem corresponds to solving the initial

one.

In this thesis Logical Cryptanalysis [4] against DES and its variants has

been implemented by implementing cryptanalysis as a SAT problem so that

finding a model for this formula is equivalent to finding the encryption key

in a cryptanalitic attack.

1NP-completeness of SAT, the satisfiability problem, was discovered by Stephen Cook

and Leonid Levin in ’70s; they (independently) noticed the relation between complexity of

certain problems and that of the entire class. The demonstration of Cook-Levin theorem

is reported in [2].

1



2 1. SAT Solving in Cryptanalysis

1.1 SAT-Solvers Input: DIMACS CNF

The majority of SAT-Solvers takes as input a propositional logic formula in

a format called DIMACS CNF, where CNF stands, as usual, for conjunctive

normal form.

1.1.1 Conjunctive and Disjunctive Normal Form

A CNF formula [5] is a conjunction of clauses,

F =

len(F )∧
i=1

Ci

where each clause must be a disjunction of literals,

Ci =

len(Ci)∨
j=1

Lj

and a literal is either a boolean variable, or its negation,

Lj = A | ¬A

Please notice that the presence of other connectives different from ∧,∨,¬
is not allowed. A similar form is the DNF, where DNF means disjunctive

normal form, i.e. the formula is a disjunction of clauses, where each clause

is a conjunction of literals. CNF formulas are the most common input to

SAT-Solvers because they are easy to evaluate: only a literal for each clause

has to be true so that the complete formula can be satisfied.

1.1.2 DIMACS CNF format details

The DIMACS CNF format is characterized by:

• some (optional) comments lines beginning with the character c

• a line indicating the format (CNF), followed by the number of variables

appearing in the file, followed by the number of clauses contained in

the file.
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p cnf NUMBER_OF_VARS NUMBER_OF_CLAUSES

• the lines representing the clauses, in which each variable is represented

by a number bigger than 0, if the variable is negated, it’s preceded by

the minus sign. 0 ends the clause.

For example, let

(¬A ∧D) ∨ (A ∧ ¬B ∧ ¬C ∧ ¬D) ∨ (B ∧ C ∧ ¬D)

be a propositional logic formula, its representation in DIMACS CNF format

could be:

c Example of the previous formula in DIMACS CNF format

p cnf 4 3

−1 4 0

1 −2 −3 −4 0

2 3 −4 0

1.2 CNF Naive Conversion

To get the DIMACS file it’s necessary to have a formula in conjunctive normal

form. Each logic formula F can be transformed in CNF (or DNF) format,

FC , by applying standard logic rules [6]:

• Deletion of all operators other than ∨,∧,¬ through the application of

the following equivalences:

– (A =⇒ B) ≡ ¬A ∨B

– (A ⇐⇒ B) ≡ (A =⇒ B)∨ (B =⇒ A) ≡ (¬A∨B)∧ (¬B ∨A)

– (A⊕B) ≡ A ⇐⇒ ¬B ≡ (¬A ∧B) ∨ (¬B ∧ A)

• Pushing negation in front of single variables, so that only literals can

be negated, applying the following equivalences:



4 1. SAT Solving in Cryptanalysis

– Double negation law: ¬¬A ≡ A

– De Morgan’s laws:

¬ (A ∧B) ≡ ¬A ∨ ¬B
¬ (A ∨B) ≡ ¬A ∧ ¬B

• Application of distributive laws such as Or distributive law in order to

get conjunction of disjunctions:

– Or distributive law: A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C)

In some cases (the worst one involving standard transformation is the

conversion of a DNF formula to a CNF one), the application of standard

rules can produce as side effect an exponential blowup in the size of the

formula, that increases the hardness of the problem. The so-called Tseitin’s

encoding prevents this.

1.3 Tseitin’s Encoding

Tseitin’s transformation [7] takes as input a propositional logic formula and

converts it into the CNF format, so it can be passed as input to a SAT-Solver.

This transformation introduces several auxiliary variables, in order to have

formula whose size has grown linearly relative to the input of the circuit,

and not exponentially like applying the naive CNF conversion illustrated in

Section 1.2. Even if Tseitin encoding introduces new variables, so the two

formulas F and F T are different, the conversion preserves their satisfiability,

i.e. F is satisfiable if and only if F T is satisfiable, thanks to the addition of

a series of constraints on these auxiliary variables.

1.3.1 The Tseitin’s Encoding, in Theory

Consider the following formula:

F = (A ∧B) ∨ (¬C ∧D)

F has four sub-formulas:
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1. ¬C

2. (¬C ∧D)

3. (A ∧B)

4. (A ∧B) ∨ (¬C ∧D)

Tseitin encoding introduces a new variable for each sub-formula:

1. aux1 ⇐⇒ ¬C

2. aux2 ⇐⇒ (aux1 ∧D)

3. aux3 ⇐⇒ (A ∧B)

4. aux4 ⇐⇒ aux3 ∨ aux2

To preserve the satisfiability of the formula, the conjunct of all the constraints

is taken as the result formula:

F T = aux4 ∧ (aux4 ⇐⇒ aux3 ∨ aux2) ∧ (aux3 ⇐⇒ (A ∧B))∧

∧(aux2 ⇐⇒ (aux1 ∧D)) ∧ (aux1 ⇐⇒ ¬C)

At this point it’s sufficient to convert each constraint / substitution to CNF,

applying the standard conversion algorithm (explained in 1.2), especially the

Iff equivalence

A ⇐⇒ B ≡ (¬A ∨B) ∧ (¬B ∨ A)

In this way, the F T of the example becomes:

F T = aux4 ∧ (¬aux4 ∨ aux3 ∨ aux2) ∧ (aux4 ∨ ¬(aux3 ∨ aux2))∧

∧(¬aux3 ∨ (A ∧B)) ∧ (aux3 ∨ ¬(A ∧B)) ∧ (¬aux2 ∨ (aux1 ∧D))∧

∧(aux2 ∨ ¬(aux1 ∧D)) ∧ (¬aux1 ∨ ¬C) ∧ (aux1 ∨ C)
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1.3.2 Tseitin’s Encoding in PyEDA and DESBoxGen

DESBoxGen makes use of PyEDA [8], a Python library for electronic design

automation, that implements the representation of logic expressions, Tseitin’s

encoding, and the conversion of a CNF formula into DIMACS CNF format.

PyEDA tseitin() method can be applied to expressions by specifying as

optional parameter only the name that the auxiliary variables should have.

However this implementations doesn’t allow (at the moment) an explicit

substitution of an expression with a new variable, so it’s possible to use this

new variable in further computations to avoid that the formula has an expo-

nentially large size when a big formula is converted to a CNF one. To work

around this limitation, DESBoxGen implements a subroutine that realizes

the replacement explicitly, applying PyEDA’s tseitin() method and the

appropriate logical equivalences so that the formula given as input is satis-

fiable if and only if the new variable is satisfiable.

The application of DESBoxGen replace() returns the new variable, that

will replace the complex formula and will be used in all the further com-

putations, and the binding, a CNF expression obtained through PyEDA

tseitin() method, that will be used in the end to ensure the logic equival-

ence between the variable and the complex formula. The details of the use of

the replace() function will be explained in the following chapters (see 4.4

for more details).

1.4 Truth table to CNF and DNF

In the implementation of DESBoxGen, it is necessary to recover the propos-

itional logic formula associated to a circuit, the motivation of this will be

explained in the forthcoming chapters. It’s possible to derive the formula in

CNF or DNF format directly from the truth table of the circuit.
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def replace ( formula , b_name , b_index , aux_name='aux' ) :

”””

Implementation o f ” shar ing ” :

d e f i n e a ” b inder ” v a r i a b l e as the a l i a s o f a more

complex formula , in order to use i t

in f u r t h e r opera t i ons .

: param formula : the formula t ha t must be rep l a ced

: param b name : the name o f the ” b inder ” v a r i a b l e

: param b index : the index o f the ” b inder ” v a r i a b l e

: param aux name : the name o f aux va r i a b l e s , to be used

in the r ep r e s en t a t i on o f the b ind ing

between formula and the ” b inder ” v a r i a b l e

: re turn : the ” b inder ” v a r i a b l e and a formula t ha t

r ep r e s en t s the ” b ind ing ”

”””

b = exprvar ( b_name , b_index )

binding = And (Or ( Not (b ) , formula ) , Or (b , Not ( formula ) ) )

binding = binding . tseitin ( auxvarname=aux_name )

return b , binding
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Consider, for example, the following truth table associated to a circuit:

A B C F

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

Each row can be represented as the conjunction of the literals in the same

row, in this case it is
numOfV ars∧

i=0

Lj

The DNF representation of the formula will be obtained by the disjunction of

the rows that satisfy F , because suffices an assignment of truth that satisfies

the formula:
2numOfV ars∨

j=0

rowj.(Fj = 1)

That in the example becomes:

F ≡ row0 ∨ row3 ∨ row7

F ≡ (¬A ∧ ¬B ∧ ¬C) ∨ (¬A ∧B ∧ C) ∨ (A ∧B ∧ C)

Similarly it’s possible to get a logically equivalent CNF representation of the

formula by the conjunction of the negation of the rows that don’t satisfy the

formula:
2numOfV ars∧

j=0

¬rowj.(Fj = 0)

In order to satisfy the formula, no one of the rows (corresponding to an

assignment to the variables) that gives 0 as output can be chosen.
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Going on with the example:

F ≡ ¬row1 ∧ ¬row2 ∧ ¬row4 ∧ ¬row5 ∧ ¬row6

F ≡ ¬(¬A ∧ ¬B ∧ C) ∧ ¬(¬A ∧B ∧ ¬C) ∧ ¬(A ∧ ¬B ∧ ¬C)∧

∧¬(A ∧ ¬B ∧ C) ∧ ¬(A ∧B ∧ ¬C)

F ≡ (A∨B∨¬C)∧(A∨¬B∨C)∧(¬A∨B∨C)∧(¬A∨B∨¬C)∧(¬A∨¬B∨C)

To get the formula of a logic circuit, the Circuit class of DESBoxGen im-

plements truth table2formula(), a function that takes as input the list of

variables for the required encoded formula.

1.5 The Importance of Finding a Model

SAT Solving is used in DESBoxGen because it allows to find a model for

a formula, where a model corresponds to a satisfying interpretation for the

formula. In Logical Cryptanalysis, finding a model for a formula encoding a

circuit like DES is equivalent to finding a key with a known-plaintext attack.

These operations are simulated in DESBoxGen using SAT Solving to evaluate

the strength of DES variants against SAT-Solvers and after it, it is possible

to analyze the results in order to find differences in SAT-Solvers behaviour

through the analysis of ciphers with different levels of complexity.
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def truth_table2formula (self , f_vars ) :

”””

This method computes formulas r ep r e s en t i n g each

output b i t on the b a s i s o f the input ones .

: param f v a r s : exprvars v a r i a b l e s , one f o r each

input b i t

: re turn : a l i s t o f formulas d e s c r i b i n g the t r u t h

va lue o f each output b i t

”””

formula = [ expr (0 ) ] ∗ self . m

unconsidered_bit = [ True ] ∗ 4

for row in self . truth_table :

for out_pos in range ( self . m ) :

if row [ self . n + out_pos ] == '1' :

# compute the expre s s i on corresponding

to the row

for in_pos in range ( self . n ) :

bit = f_vars [ in_pos ] if row [ in_pos ]

== '1' else Not ( f_vars [ in_pos ] )

if in_pos == 0 :

ex = bit

else :

ex = And (ex , bit )

if unconsidered_bit [ out_pos ] :

formula [ out_pos ] = ex

unconsidered_bit [ out_pos ] = False

else :

formula [ out_pos ] = Or ( formula [

out_pos ] , ex )

return formula



Chapter 2

The Data Encryption Standard

The Data Encryption Standard, better known as DES, is a well-designed

block cipher of great historical importance, which has been used worldwide

for more than 20 years, even if now it is considered insecure because of its

short key length. Before seeing DESBoxGen variants and their implementa-

tion for Logical Cryptanalysis, in this chapter there will be a brief overview

on DES, its historical importance and its main components.

2.1 History

The DES symmetric-key algorithm was developed in the ’70s by an IBM

team working on cryptography (which involved also Horst Feistel) under the

original name of Lucifer, and it was proposed to NBS (the National Bureau of

Standards, now the National Institute of Standards and Technology (NIST))

that was looking for a standard cryptographic algorithm that should have

been included in a program to protect computer and communication data

[11]. This algorithm should have been cheaper and readily available and

the compliance with all these features brought DES to success: despite the

hardness of the algorithm, it used only simple logical operations that could

be easily implemented in hardware.

NSA (National Security Agency) helped NBS in the evaluation of Lucifer’s

11



12 2. The Data Encryption Standard

security and suitability as standard and requested some substantial modific-

ations to the original version of the algorithm, particularly a reduction of the

key length from 128 bits to 56 bits. The reasons why NSA modified some

components in the original algorithm became clear only in ’90s but, despite

the doubts, DES became a standard and the publication of its details al-

lowed a software implementation, that led all the cryptographers to study

the “secure” encryption algorithm.

Several details about DES history can be found in Federal Processing

Standards Publications, for example in [13] there are all the reasons why

DES should have been used and its suitability for Federal standards.

An encryption algorithm must satisfy the following requirements in order to

be acceptable as a Federal standard:

1. It must provide a high level of security.

2. It must be completely specified and easy to understand.

3. The security provided by the algorithm must not be based upon the

secrecy of the algorithm.

4. It must be available to all users and suppliers.

5. It must be adaptable for use in diverse applications.

6. It must be economical to implement in electronic devices and be effi-

cient to use.

7. It must be amenable to validation.

8. It must be exportable.

The algorithm described in FIPS PUB 46 satisfies all these requirements.

In 1987, NSA noticed that the algorithm would have been soon broken but

the diffused disappointment at NSA’s announcement of not recertification

of the standard and the absence of a valid alternative to DES encryption

algorithm led to the reaffirmation of DES as a standard until 1992.
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Between 1993 and 1994, at the dawn of the discovery of differential crypt-

analysis, some motivations behind DES implementation choices became fi-

nally clear: the method of differential cryptanalysis, published by Biham

and Shamir [9], was just discovered and it reported the first theoretical at-

tack with less complexity than brute force but it required an unrealistic 247

chosen plaintexts to succeed. Differential cryptanalysis was already known

when DES was designed and its design criteria contributed in defeating this

kind of attack. Despite its strength against differential cryptanalysis, the

technological progress and advances in hardware blew down DES: its short

key length was its main weakness and this allowed brute-force attacks to suc-

ceed on DES even in less than a day. DES was reconfirmed as standard under

the form of Triple DES, until the publication of the Advanced Encryption

Standard in 2001.

2.2 Structure

DES is a block cipher that works with 64-bit blocks, that implements a

symmetric algorithm using a 16-round Feistel Network. As declared in [13]

The DES algorithm is mathematically a one-to-one mapping of

the 2” possible input blocks onto all 264 possible output blocks.

Since there are 256 possible active keys, there are 256 possible

mappings. Selecting one key selects one of the mappings.

The plaintext is permuted through an IP, Initial Permutation, followed by

the application of the key-based Feistel Network, and in the end it’s applied

a final 32-bit swap and a FP, Final Permutation, that is the inverse of the

IP.

2.2.1 Symmetric Key Cipher

DES represents a symmetric encryption model that is characterized by
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• an encryption algorithm, E, that performs various substitutions and

transformations on the plaintext;

• a secret key given as input to E. Transformations performed by E on

the plaintext depend on the key;

• a decryption algorithm, D, that is E run in reverse.

Symmetric key based communications security depends on the key, that is

the only private element, kept by the sender and the receiver, that makes un-

intelligible encrypted messages readable. Given a message P and the private

encryption key K, the encryption algorithm computes the ciphertext

C = EK(P )

The receiver, who knows the secret key, can invert the transformation

P = DK(C)

There are two different ways of processing the input: the stream cipher and

the block cipher; DES represents the last one so it processes the input one

block at time, producing an output block for each input block.

2.2.2 Feistel Network

A Feistel Network is a common pattern adopted in the construction of block

ciphers, having the advantage that encryption and decryption are almost

identical, they require only a reversed key schedule. As explained in [12]:

A Feistel network thus gives a way to construct an invertible

function from non-invertible components.

Its structure is composed of several rounds, which can inner use non invertible

functions. In each round, a keyed round function is applied. If the block

length of the cipher is l bits, the round function takes as input a l/2-bit

string and a sub-key ki and returns a l/2 bit string. Sub-keys are generated
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f1

f2

f3

f4

L0 R0

L4 R4

Figure 2.1: Example of a 4-round Feistel Network

starting from the master key. The input of the i-th round is divided in two

halves, Li−1 and Ri−1 of length l/2, and the respective output is computed

as follows.

Li = Ri−1

Ri = Li−1 ⊕ fi(Ri−1)

A Feistel network is invertible regardless of the round functions. Given the

output (Li, Ri) the input can be computed as follows:

Li−1 = Ri ⊕ fi(Ri−1)

Ri−1 = Li

without the inversion of the round function. As Katz and Lindell say in [12]:

Let F be a keyed function defined by a Feistel network. Then re-

gardless of the round functions {f̂i} and of the number of rounds,

Fk is an efficiently invertible permutation for all k.
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2.2.3 Shannon’s Confusion-Diffusion Paradigm

A block cipher must behave like a random permutation as described by

Shannon’s confusion-diffusion paradigm [10]. The application of the multiple

rounds of the Feistel network ensures an avalanche effect, i.e. small changes

in the input must affect all the yield. It’s possible to make the behaviour of

DES similar to a random permutation thanks to the confusion/diffusion steps

corresponding to a round, so that a single input bit can potentially affect all

the bits of the output. As Shannon said above confusion and diffusion:

In the method of diffusion the statistical structure of M which

leads to its redundancy is “dissipated” into long range statist-

ics—i.e., into statistical structure involving long combinations of

letters in the cryptogram. The effect here is that the enemy must

intercept a tremendous amount of material to tie down this struc-

ture, since the structure is evident only in blocks of very small

individual probability. Furthermore, even when he has sufficient

material, the analytical work required is much greater since the

redundancy has been diffused over a large number of individual

statistics... The method of confusion is to make the relation

between the simple statistics of E and the simple description of

K a very complex and involved one.

Substitutions, permutations and other components of DES are an implement-

ation of the confusion-diffusion paradigm.

2.2.4 DES Round Function

DES round function takes as input the sub-key and 32 bits corresponding to

the right half of the input.

f(ki, Ri−1)

The input is expanded through an Expansion-box to a 48-bit value, that is

XORed with the 48-bit sub-key, and the result is the input of the S-boxes.



2.2 Structure 17

48-bits

E-box

32-bit input 48-bit sub-key

48-bits (8×6-bits)

32-bits (8×4-bits)

P-box

s1 s2 s3 s4 s5 s6 s7 s8

Figure 2.2: Structure of a round in DES

This value is divided into 8 parts, that become the input of the S-boxes,

S1, ..., S8. An S-box takes as input 6 bits and returns 4 bits. The concaten-

ation of the output of the S-boxes gives a 32 bit result. The application of

the Permutation-box to the 32-bit result gives the final output of the round

function. The Expansion-box and the Permutation-box are a linear compon-

ent of DES round function and both of them perform diffusion [11], instead

the S-boxes perform confusion.

S-boxes

The S-boxes are the only nonlinear component of DES round function. The

substitution choices should not be chosen randomly but should be carefully

designed in order to grant the avalanche effect in the application of multiple

rounds of Feistel network according to Shannon’s confusion and diffusion

paradigm. Their official description is given as a lookup table so that given
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the 6-bit input the 4-bit output is identified by selecting the row using the 2

outer bits of the input and the column using the 4 inner ones.

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Table 2.1: DES S-box 1

In ’70s the values associated to S-boxes created several suspicions about

the presence of trapdoors in DES. The motivations behind the choices be-

came clear only in ’90s after the Biham and Shamir’s discovery of differential

cryptanalysis and Coppersmith’s declaration about DES design criteria that

revealed the careful S-box design criteria (see [1]).

2.2.5 Key Transformation

The application of the round function depends from Ri, the right part of

the input text of the i-th round, and Ki, the round-sub-key. Sub-keys are

generated starting from the 64-bit master-key, reduced to 56-bit key by ig-

noring eighth bits that can be used as parity bits. The 48-bit sub-keys are

generated from the 56-bit key by splitting the input in two 28-bit halves that

are left-shifted by one or two bits, depending on the round.

Key space and weak keys

The aim of an attacker is to discover the key so that if he knows the algorithm,

all the encrypted messages can be decrypted. The probability to succeed

depends also on the key space, that, in the case of DES, is near 256. In

fact, as declared in [13], there are some weak and semiweak keys to avoid,

because they make the same subkey to be generated in more than one round.

The application of one of the 4 weak keys produces 16 identical subkeys , so
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decryption is identical to encryption

EK(EK(P )) = P

The 4 weak keys in hex are:

0x0101010101010101

0xFEFEFEFEFEFEFEFE

0xE0E0E0E0F1F1F1F1

0x1F1F1F1F0E0E0E0E

Moreover DES has also semi-weak keys, such that for each key K there exists

a key K ′ for which encryption with K is identical to decryption with K ′ and

vice versa. These keys are called dual keys [13]

0x011F011F010E010E 0x1F011F010E010E01

0x01E001E001F101F1 0xE001E001F101F101

0x01FE01FE01FE01FE 0xFE01FE01FE01FE01

0x1FE01FE00EF10EF1 0xE01FE01FF10EF10E

0x1FFE1FFE0EFE0EFE 0xFE1FFE1FFE0EFE0E

0xE0FEE0FEF1FEF1FE 0xFEE0FEE0FEF1FEF1

By applying dual keys it results that

EK(EK′(P )) = P

DK(DK′(P )) = P

There are also 48 keys, the possibly weak keys listed in [14], that produce

only four distinct subkeys (instead of 16) and should be avoided. In total the

keys that should be avoided are 64 (4 weak keys, 6 pairs of semi-weak keys

and 48 possibily weak keys) out of the 256.
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2.3 Attacks on DES

Several attacks are possible against a cipher [12], which are listed below in

order of increasing power of the attacker:

• Ciphertext-only attack: the adversary attempts to determine some

information about the plaintext and the key observing only the cipher-

text.

• Known-plaintext attack: the adversary is able to learn one or more

(plaintext, ciphertext) pairs generated using some key. The aim of the

attacker is to recover the key in order to get further informations about

the underlying plaintext of some ciphertext encrypted using the same

key.

• Chosen-plaintext attack: the adversary can obtain plaintext/cipher-

text pairs for plaintexts of its choice, in order to recover the key as in

the previous case.

• Chosen-ciphertext attack: the adversary is able to obtain also in-

formations about the decryption of ciphertexts of its choice, in order

to recover the key for the same reasons of the previous cases.

The most practical attack on DES is still a brute-force attack, even if there are

different theoretical cryptanalytic attacks, requiring an unrealistic number of

couples (plaintext, ciphertext).

2.3.1 Brute-force Attacks

A brute-force attack tries every key in key-space, and despite its naive ap-

proach, it can succeed because of the shortness of DES key length, that was

reduced from 128 bits to 56 bits, after NSA involvement in DES implement-

ation. DES vulnerability became definitely clear in 1990s. In 1997 a message

encrypted with DES was broken for the first time and the following attacks

required less and less time.
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2.3.2 Differential Cryptanalysis

Differential cryptanalysis [15] is one of the theoretical attacks that can break

DES with less complexity than a brute-force attack. This one is a chosen-

plaintext attack, so the analysis of differences in the ciphertexts allows to

formulate assumptions on the cipher key.

The rationale behind differential cryptanalysis is to observe the

behavior of pairs of text blocks evolving along each round of the

cipher, instead of observing the evolution of a single text block.

Although the reduced complexity of this attack, it is only theoretical because

it requires 247 chosen plaintexts to succeed. After the rediscovery of differ-

ential cryptanalysis in 1991 by Eli Biham and Adi Shamir [9], Coppersmith

revealed that it was known to both IBM and NSA, and DES design criteria

were defined to increase the resistance against this attack, that’s why it is

not practicable (the details of design criteria will be explained in 2.4). Per-

mutation and S-boxes modifications reflect the role of the need of strengthen

DES against differential cryptanalysis as said in [15]

Differential cryptanalysis of an eight-round LUCIFER algorithm

requires only 256 chosen plaintexts, whereas an attack on an

eight-round version of DES requires 214 chosen plaintexts.

2.3.3 Linear Cryptanalysis

Another kind of attack attempted on DES is the linear cryptanalysis, dis-

covered by Mitsuru Matsui in 1993, that uses 243 known plaintexts, as well it

is an infeasible attack on DES, even if DES should not be meant to be resist-

ant to this attack. Variants of this attack with reduction in data complexity

require from 239 up to 241 chosen-plaintexts.
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2.4 Coppersmith’s Criteria

Differential cryptanalysis was well known, however, to the IBM

team that designed DES, as early as 1974. Knowledge of this

technique and the necessity to strengthen DES against this attack

using it, played a large part in the design of the S-boxes and the

permutation P.

The previous and the following are declarations by Don Coppersmith in [1],

that’s why a differential cryptanalysis attack against DES requires enormous

amount of chosen plaintext.

The IBM team knew about differential cryptanalysis but did not

publish any reference to it.

In [1] Coppersmith, after an explanation of DES and differential cryptana-

lysis, listed the relevant criteria for the S-boxes and the permutation P, which

were satisfied by the design of DES:

S-1 Each S-box has six bits of input and four bits of output. (This

was the largest size that we could accommodate and still fit all

of DES onto a single chip in 1974 technology.)

S-2 No output bit of an S-box should be too close to a linear func-

tion of the input bits. (That is, if we select any output bit

position and any subset of the six input bit positions, the frac-

tion of inputs for which this output bit equals the XOR of these

input bits should not be close to 0 or 1, but rather should be

near to 1/2)

S-3 If we fix the leftmost and the rightmost input bits of the S-box

and vary the four middle bits, each possible 4-bit output is

attained exactly once as the middle four input bits range over

their 16 range possibilities.
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S-4 If two inputs to an S-box differ in exactly one bit, the outputs

must differ in at least two bits. (That is, if |∆Ii,j| = 1, then

|∆Oi,j| ≥ 2, where |x| is the number of 1-bits in the quantity

x.)

S-5 If two inputs to an S-box differ in the two middle bits exactly,

the outputs must differ in at least two bits. (If ∆Ii,j = 001100,

then |∆Oi,j| ≥ 2.)

S-6 If two inputs to an S-box differ in their first two bits and are

identical in their last two bits, the two outputs must not be

the same. (If ∆Ii,j = 11xy00, where x and y are arbitrary bits,

then ∆|Oi,j| 6= 0)

S-7 For any nonzero 6-bit difference between inputs, ∆Ii,j, no more

than eight of the 32 pairs of inputs exhibiting ∆Ii,j may result

in the same output difference ∆Oi,j

S-8 Similar to (S-7), but with stronger restrictions in the case of

∆Oi,j = 0, for the case of three active S-boxes on round i.

P-1 The four output bits from each S-box at round i are distributed

so that two of them affect (provide input for) “middle bits” of

S-boxes at round i + 1 (the two middle bits of input to an

S-box, not shared with adjacent S-boxes), and the other two

affect “end bits” (the two left-hand bits or the two right-hand

bits, which are shared with adjacent S-boxes.)

P-2 The four output bits from each S-box affect six different S-

boxes; no two affect the same S-box. (Remember that each

”end bit” affects two adjacent S-boxes.)

P-3 For two S-boxes j, k, if an output bit from Sj affects a middle

bit of Sk, then an output bit from Sk cannot affect a middle
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bit of Sj. This implies that in the case j = k, an output bit

from Sj must not affect a middle bit of Sj.



Chapter 3

Generating S-boxes

In order to analyze the behaviour of DES variants, it is necessary to build

different S-boxes that will respect only some of Coppersmith’s criteria. In

this chapter the implementation of the construction and the verification for

a sample of S-boxes design criteria will be discussed.

The generation has to be done in a random way in order to consider

all the possible S-boxes in compliance with some criteria. At the moment

DESBoxGen allows, for every i, the generation of S-boxes satisfying s1, ..., si

until i equal to six.

Different stochastic generation algorithms will be discussed, since naive

functions almost never satisfy some of Coppersmith’s requirements.

3.1 S-box as Subclass of Circuit

The class Sbox is a subclass of the Circuit class that allows the representa-

tion of a logic circuit, characterized by a defined fixed number of input (n in)

and output bits (m out) that are necessary for the construction of the truth

table.

class Circuit :

def __init__ (self , n_in , m_out , io={} , others='z' ) :

25
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The outputs of the circuit can be chosen either randomly or they can be

specified during the creation of an instance of this class:

• The defined cases are realized through the io dictionary, where inputs

are the keys and their outputs are the related values.

• In the undefined ones, i.e. if an input does not appear in the io dic-

tionary, the output can be chosen in three different ways according to

the value of the parameter others: it can be set to zero(’z’), one (’o’)

or random(’r’).

class Sbox ( Circuit ) :

def __init__ (self , n_in=6, m_out=4, lt=[ ] , io={} ,

others='r' , min_dc=0) :

Sbox attributes are:

n integer

the size of the input (inherited from the Circuit)

m integer

the size of the output (inherited from the Circuit)

truth table matrix (i.e. list of lists)

the description of the S-box (inherited from the Circuit)

dc dictionary

its keys are the criteria, its output are a boolean (True

if the criterion is complied with, False otherwise)

Objects of the class Sbox will be used in DES architecture in two different

modes:

• the standard one, in which all the inputs (i.e. the key and the plaintext)

are known;
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• the one useful for cryptanalysis, in which one of the input can be un-

known.

In the first case it’s necessary to get the output for a certain known input:

this feature is realized through the method input2output of the Circuit

class.

def input2output (self , i ) :

”””

This method re turns the output f o r a requ i r ed input

: param i : a l i s t r e p r e s en t i n g a b inary input o f the

c i r c u i t

: re turn : the l i s t corresponding to the b inary

output f o r the input g iven as parameter

”””

return self . truth_table [ int ( '' . join (i ) , 2) ] [ self . n

: ]

In the second case the input value of the S-box could be unknown, so the

function truth table2formula() implemented by the Circuit class is used.

def truth_table2formula (self , f_vars ) :

”””

This method computes formulas r ep r e s en t i n g each

output b i t on the b a s i s o f the input ones .

: param f v a r s : exprvars v a r i a b l e s , one f o r each

input b i t

: re turn : a l i s t o f formulas d e s c r i b i n g the t r u t h

va lue o f each output b i t

”””

formula = [ expr (0 ) ] ∗ self . m

unconsidered_bit = [ True ] ∗ 4

for row in self . truth_table :

for out_pos in range ( self . m ) :

if row [ self . n + out_pos ] == '1' :
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# compute the expre s s i on corresponding

to the row

for in_pos in range ( self . n ) :

bit = f_vars [ in_pos ] if row [ in_pos ]

== '1' else Not ( f_vars [ in_pos ] )

if in_pos == 0 :

ex = bit

else :

ex = And (ex , bit )

if unconsidered_bit [ out_pos ] :

formula [ out_pos ] = ex

unconsidered_bit [ out_pos ] = False

else :

formula [ out_pos ] = Or ( formula [

out_pos ] , ex )

return formula

In brief, each output bit is the Or of all the inputs, that make it equal to

1. Each input corresponds to the And of its bits encoded by formula: if the

value in the truth table is true, the formula is considered as it is, it’s negated

otherwise.

Sbox extends the Circuit superclass with methods for the construction

and the verification of S-boxes design criteria until (S-6). The results of the

verification routine are stored into the dictionary dc. At the creation of the

S-box the minimum design criterion (that has to be verified) can be specified.

This is implemented through the generation of an io dictionary, that will be

passed as input to the Circuit

Also DES standard S-boxes can be reused, by passing the lookup table

lt of the specification as parameter, that will be converted into an io dic-

tionary through the method sbox std dict(), so its related Circuit can

be generated.
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@staticmethod

def _sbox_std_dict (s ) :

”””

This f unc t i on d e r i v e s the output f o r each p o s s i b l e

input o f an S−box from i t s lookup t a b l e

: param s : a matrix r ep r e s en t i n g the lookup t a b l e o f

a standard S−box
: re turn : the d i c t i ona r y in which the keys are the

input and the va l u e s are the corresponding output

f o r the g iven S−box
”””

d = {}
for i in range ( int ( '1' ∗ 6 , 2) + 1) :

bin_in = format (i , '06b' )

sr = int ( bin_in [ 0 ] + bin_in [ 5 ] , 2)

sc = int ( '' . join ( bin_in [ 1 : 5 ] ) , 2)

d [ bin_in ] = format (s [ sr ] [ sc ] , '04b' )

return d
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3.2 Analysis of S-1 and its Implementation

Remember, from Section 2.4, that criterion (S-1) asks that

Each S-box has six bits of input and four bits of output.

Of course, this is a minimal requirement that can be easily verified and set.

Verification

(S-1) can be easily checked thanks to a boolean expression on the size of

input and output.

self . dc [ '1' ] = ( self . n == 6 and self . m == 4)

Generation

The construction of (S-1) is easy, because it’s sufficient to specify the input

size equal to 6 and the output one equal to 4, that are set by the class Sbox

by default, such that it results:

S : {0, 1}6 → {0, 1}4

The other criteria are checked only if the first one is satisfied.

3.3 Analysis of S-2 and its Implementation

Remember from Section 2.4, that criterion (S-2) asks that

No output bit of an S-box should be too close to a linear function

of the input bits. (That is, if we select any output bit position and

any subset of the six input bit positions, the fraction of inputs for

which this output bit equals the XOR of these input bits should

not be close to 0 or 1, but should rather be near to 1/2)

It’s hard to define a construction method for (S-2) because of the hypothesis

of non linearity, that implies a random behaviour of the S-box.
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Verification

A verification method has been implemented, that computes the powerset of

the six possible input positions, in order to get each possible subset of input

indexes position. The method check dc2() checks if an output bit in a

certain position equals to the Xor of a given subset of input bits. This check

is done for each possible row of the truth table, output position and subset

of input indexes. If the number of rows for which the output bit equals the

Xor of the subset of input ones is lower than the 20% of the number of rows

of the truth table, or it is greater than the 80%, the second criterion isn’t

respected.

Generation

DESBoxGen does not implement a construction of S-boxes that respect (S-2)

that can be summarized as a random assignment of an output to a certain

input. In order to get S-boxes that comply with (S-2), it will be necessary

to generate completely random S-boxes, and then to verify whether (S-2) is

respected, getting rid of those which do not.

The reason behind the absence of the implementation of (S-2) takes into

account the generation of S-boxes that should respect criteria with a more

complex implementation method, as the fifth one.

3.4 Analysis of S-3 and its Implementation

Remember, from Section 2.4, that criterion (S-3) asks that

If we fix the leftmost and the rightmost input bits of the S-box and

vary the four middle bits, each possible 4-bit output is attained

exactly once as the middle four input bits range over their 16

range possibilities.

Starting from criterion (S-3) the idea of permutation is introduced into S-

boxes, therefore some additional operations must be done in the generation
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algorithm.

Verification

The verification method easily follows the specification: it generates the lists

of the output nibbles1 that have the same outer input bits and if a value is

present more than once in the same list, the verification fails.

Generation

During the implementation phase it has been noticed that the random gen-

eration of an S-box that respects (S-1) and (S-2) almost never lead to the

compliance with the third criterion. To solve this problem a randomized

generation algorithm has been implemented into the Sbox class to grant the

respect of (S-3). Going ahead with the criteria an increase of the difficult in

the generation of S-boxes that respect only a sample of Coppersmith’s design

criteria shows up. Due to this issue, the implementation of ad-hoc generating

functions is necessary in order to get a dictionary (io) satisfying a certain

criterion.

The rest of this section is denoted to grant the respect of criterion (S-3).

The S-box must behave like a permutation for fixed a and b

Pa,b(x) = S(a||x||b)

so 4 different permutations correspond to an S-box: P0,0, P0,1, P1,0, P1,1.

To respect this constraint, it is sufficient to assign a possible nibble (chosen

randomly from the list of the possible output nibbles for fixed outer input

bits), to a certain input so that

∀a, b ∈ {0, 1}.∀x, y.Pa,b(x) 6= Pa,b(y)

Once an output is selected from the list, it will be deleted to ensure the

uniqueness of the output.

1a nibble is a 4-bit digit, namely an element of {0, 1}4
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3.5 Graph-Based Stochastic Generation

An S-box that respects the third criterion almost never satisfies also the

fourth or the fifth one, then some additional work with graphs is made

through NetworkX [16], a Python language software package for the cre-

ation, manipulation, and study of the structure, dynamics, and function of

complex networks. The use of graphs in this context has been inspired by

the study [17], in which S-boxes that respected all the Coppersmith’s criteria

are generated, instead the aim of DESBoxGen is to satisfy only a subset of

Coppersmith’s criteria in order to analyze how SAT-Solvers react to these

changes.

Anyway, graphs will be used in order to find permutations Pa,b that re-

spect the criterion for fixed a and b. The respect of the criterion for a defined

permutation is a necessary but not sufficient condition, because input of dif-

ferent permutations have to satisfy the criteria as well. So graphs will be

used to find many different permutations, and other subroutines will look for

permutations that will respect (S-4).

3.6 Analysis of S-4 and its Implementation

Remember, from Section 2.4, that criterion (S-4) asks that

If two inputs to an S-box differ in exactly one bit, the outputs

must differ in at least two bits. (That is, if |∆Ii,j| = 1, then

|∆Oi,j| ≥ 2, where |x| is the number of 1-bits in the quantity x.)

The verification method is simply implemented following the specifications,

instead, for the generation one, some additional work with graphs is required,

as declared in Section 3.5.
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Verification

The routine for the verification of (S-4), check dc4(), computes for each

input, the ones that differ in exactly one bit and for each possible couple with

hamming distance equal to one compares their outputs: if their hamming

distance is lower than 2, (S-4) is not verified.

Generation

Rationale

To create an S-box that respects both (S-4) and (S-3) and hardly ever (S-

5), it’s necessary to define previously the permutations P0,0, P0,1, P1,1, P1,0

corresponding to an S-box. Let G1 be the graph of the possible input of a

permutation Pa,b, in which the vertices are the possible nibbles of input and

they are connected if and only if their hamming distance exactly 1.

(u, v) ∈ E ⇐⇒ |∆Vu,v| = 1

If two input nibbles are connected by an edge in G1, their output should

differ in at least two bits. The rationale behind the search for the output

values of a permutation Pa,b is to

• find a series of possible outputs for each “row” of G1 (as illustrated in

Figure 3.1), i.e. for fixed outer bits of the permutations, through the

construction of an intermediate graph G2.

• look for the output of the permutation Pa,b, such that outputs for inputs

that differ in exactly one bit, will differ in at least two bits, through a

graph G3.

Outputs for Fixed Outer Bits

The first step in the definition of a permutation

P : {0, 1}4 → {0, 1}4
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Figure 3.1: Graph G1 for the 4th criterion

is to fix its outer bits of input, in order to focus on outputs for inputs that

differ only in the two middle bits. Let Ca,b be the output of a permutation

for fixed a and b

Ca,b : {0, 1}2 → {0, 1}4

Ca,b(x) = P (a||x||b)

such that

∀x, y ∈ {0, 1}2, |∆(x, y)| = 1, |∆(Ca,b(x), Ca,b(y))| ≥ 2

Possible values for C can be found thanks to the generation of an intermediate

graph, G2, whose vertices are all the possible nibbles from G1, but in this

case are connected by an edge if and only if their hamming distance is at least

2. Notice that cycle in G2 corresponds to a possible output for a permutation

with fixed outer bits Ca,b.
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Output for a Permutation

In order to define a possible output for a permutation it’s necessary to find

4 cycles in G2, for all the possible outer bits of the permutations: C0,0, C0,1,

C1,1, C1,0. To ensure the compliance with the (S-4), if the outer bits of G2

C0,0 C0,1

C1,1 C1,0

Figure 3.2: Cycle C

differ in exactly one bit, Ca,b Ca′,b′ have to respect the following condition for

each index i ∈ [0..4]

∀xi ∈ Ca,b,∀yi ∈ Ca′,b′ |∆(xi, yi)| ≥ 2 (3.1)

such that if two inputs differ in one bit, their outputs must differ in at least

two bits. The search for some C that respect the condition and can be

considered as valid permutations, can be seen like the problem of finding

cycles in a graph G3, defined as follow.

Let G3 be the graph in which nodes are the cycles of G2 and they are

connected if and only if the constraint 3.1 is respected. Since cycles are

represented as tuples (x1, x2, x3, x4) and for simplicity two cycles are said

to be compatible and adjacent if and only if vertices in the same position

have an hamming distance greater or equal than 2, all the cycles should be

considered in each possible order in the construction of G3 to avoid to be

biased and to not consider some permutations in the complete generation.

The cycles in G2 are 2840, so considering their order there are 11360

cycles that should become the vertices of G3 (eight different representation

for each cycle). Because of the large number of cycles of G2 that should
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become vertices of G3, only a subgraph is considered: for each cycle C in

G2 only one of its representations is selected by a random choice and will

become a vertix of G3. Two vertices in G3 are connected if and only if the

hamming distance for nibbles in the same position inside a node is at least

2.

A permutation that allows the compliance with criterion (S-4) corres-

ponds to a cycle P in G3, such that

∀i ∈ [0..15], ∃C ∈ P. i ∈ C

The search for permutations is stopped when a certain number is reached

(by default this value is set to 3000) and it is repeated whenever an Sbox has

to be generated so that all possible permutations can be considered.

Random Generation of an S-box

For the random generation of an S-box it is necessary to find 4 different

permutations, P0,0, P0,1, P1,1 and P1,0, so that the design criterion can be

satisfied. Once a new S-box has to be generated, permutations are regen-

erated to avoid to be biased and not to exclude some permutations in the

generation of an S-box. In this phase permutations (represented as tuple of

tuples) can undergo an inner and an outer permutation described below:

• The inner permutation() in this case modifies the order inside the

tuples, so that they continue to be cycles, i.e. the hamming distance

for adjacent values in the tuple is at least 2.

• The outer permutation() modifies the order of tuples, so that the

tuples that form the permutation continue to represent a cycle of G3,

i.e. the hamming distance for values in the same position in adjacent

tuples is at least 2.

First of all, a permutation represented by a tuple of tuples is randomly chosen

among those ones previously generated and its elements undergo an inner

permutation and an outer one. These permutation will correspond to P0,0
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in the S-box, and its inner tuples will correspond respectively to C0,0, C0,1,

C1,1 and C1,0. In a similar way P0,1, P1,1 and P1,0 are found, but they re-

quire additional work. If we consider a permutation as it is, two different

permutations can result incompatible even if they could be. For this reason

it’s necessary to consider all the different inner orders and the outer ones to

check the compatibility between two permutations, i.e. if they can comply

with criterion (S-4) if they are chosen as permutations for inputs that differ

in just one of the outer bits. These steps are done through the application

of the subroutine get comp() that finds permutations compatible with the

others given as input. Once P0,0 is chosen, the build function looks for

• P0,1 that has to match P0,0

• P1,0 that has to match P0,0

• P1,1 that has to match P0,1 and P1,0

All these steps lead to the creation of a dictionary that will correspond to an

S-box in compliance with the 4th of Coppersmith’s design criteria.

3.7 Analysis of S-5 and its Implementation

Remember, from Section 2.4, that criterion (S-5) asks that

If two inputs to an S-box differ in the two middle bits exactly,

the outputs must differ in at least two bits. (If ∆Ii,j = 001100,

then |∆Oi,j| ≥ 2.)

As for (S-4), the verification method easily follows the specifications, instead

the generation one is quite complex and requires some work with graphs, as

discussed in 3.5,

Verification

The routine for the verification of (S-5), check dc5(), complements the

two middle bits for each possible inputs so that for inputs that differ in the
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two middle bits exactly it can check if the hamming distance between their

outputs is at least 2. If it exists a couple of inputs that differ in their middle

bits and the hamming distance between their outputs is lower than 2, the

criterion isn’t verified.

Generation

Rationale

To create an S-box that respects both (S-5), (S-4) and (S-3), like for checking

the 4th criterion, it’s necessary to define previously the permutations P0,0,

P0,1, P1,1, P1,0 corresponding to an S-box. Let G1 be the graph of the possible

input of a permutation Pa,b in which the vertices are the possible nibbles of

input and they are connected by an edge if and only if their hamming distance

exactly 1 or if they differ in their two middle bits exactly.

(u, v) ∈ E ⇐⇒ |∆Vu,v| = 1 ∨∆Vu,v = 001100

As a result of the additional constraint for Coppersmith’s 5th design criterion,

in this case each row isn’t a cycle but a 4-clique

If two input nibbles are connected by an edge in G1, their output should

should differ in at least two bits. The rationale behind the search for the

output values of a permutation Pa,b is to

• find a series of possible output for each ”row” of G1 (as illustrated in

figure 3.3), i.e. for fixed outer bits of the permutations, through the

construction of an intermediate graph G2 almost as for the 4th criterion

• look for the output of the permutation Pa,b, so that outputs for inputs

that differ in exactly one bit or in their middle bits, will differ in at

least two bits, through a graph G3

Outputs for fixed outer bits

The first step in finding the output of a permutation

P : {0, 1}4 → {0, 1}4
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Figure 3.3: Graph G1 for the 5th criterion

is to fix its outer bits of input, in order to focus on outputs for inputs that

differ only in the two middle bits. Let Ca,b be the output of a permutation

for fixed a and b

Ca,b : {0, 1}2 → {0, 1}4

Ca,b(x) = P (a||x||b)

such that

∀x, y ∈ {0, 1}2, x 6= y, |∆(Ca,b(x), Ca,b(y))| ≥ 2

Similarly to the (S-4) case, possible values for C can be found thanks to the

generation of an intermediate graph, G2, which vertices are all the possible

nibbles like in G1 and they are connected by an edge if and only if the

hamming distance is at least 2. In contrast to the 4th criterion in this case a

possible output for a permutation with fixed outer bits Ca,b isn’t represented

by a cycle but by a clique because each row of G1 corresponds to a 4-clique

since both (S-4) and (S-5) have to be complied with.



3.7 Analysis of S-5 and its Implementation 41

Output for a permutation

In order to define a possible output for a permutation it’s necessary to find

4-cliques in G2, for all the possible outer bits of the permutations: C0,0, C0,1,

C1,1, C1,0. To ensure the compliance with the 5th criterion, if the outer bits

C0,0 C0,1

C1,1 C1,0

Figure 3.4: Cycle C

of vertices in G2 differ in exactly one bit or in their two middle bits, Ca,b

Ca′,b′ have to respect the following condition for each index i ∈ [0..4]

∀xi ∈ Ca,b,∀yi ∈ Ca′,b′ |∆(xi, yi)| ≥ 2 (3.2)

such that if two inputs differ in one bit or in their middle bits, their outputs

must differ in at least two bits. The search for some C that respect Condition

3.2 and can be considered as valid permutations, can be seen as the problem

of finding cycles in a graph G3, defined as follow.

Let G3 be the graph in which nodes are the 4-cliques of G2 and they

are connected if and only if Condition 3.2 is respected. Since cliques are

represented as tuples (x1, x2, x3, x4) and for simplicity two cliques are said

to be compatible and adjacent if and only if vertices in the same position

have an hamming distance greater or equal to 2, all the 4-cliques should be

considered in each possible order in the construction of G3 to avoid to be

biased and to not consider some permutations in the complete generation.

In constrast to the 4th criterion, the number of 4-cliques is 228, so this

allows a complete representation of G3, which vertices are 5472, because for

each 4-clique we consider all its possible permutations. Two vertices in G3
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are connected if and only if the hamming distance for nibbles in the same

position inside a node is at least 2.

A permutation that allows the compliance with (S-5) corresponds to a

cycle P in G3, so that

∀i ∈ [0..15],∃C ∈ P.i ∈ C

The search for permutations is stopped when a certain number is reached

(by default this value is set to 3000).

Random generation of an S-box

For the random generation of an S-box it is necessary to find 4 different

permutations, P0,0, P0,1, P1,1 and P1,0, so that the design criterion can be

satisfied. Once a new S-box has to be generated, permutations are regen-

erated to avoid to be biased and not to exclude some permutations in the

generation of an S-box. In this phase, permutations (represented as tuple of

tuples) can undergo an inner and an outer permutation described below:

• The inner permutation() in this case modifies the order inside the

tuples, by considering each possible permutation of the values because

all the vertices in the clique are connected by definition, so each per-

mutation is still a clique, i.e. the hamming distance for adjacent values

in the tuple is at least 2.

• The outer permutation() modifies the order of tuples, so that the

tuples that form the permutation continue to represent a cycle of G3,

i.e. the hamming distance for values in the same position in adjacent

tuples is at least 2 exactly like for (S-4).

First of all, a permutation represented by a tuple of tuples is randomly chosen

among those ones previously generated and its elements undergo an inner

permutation and an outer one. These permutations will correspond to P0,0

in the S-box, and its inner tuples will correspond respectively to C0,0, C0,1,
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C1,1 and C1,0. In a similar way P0,1, P1,1 and P1,0 are found, but they re-

quire additional work as for (S-4). All the possible order for a permutation

have to be considered in order to check compatibility through get comp()

like in the previous case with the subroutine inner permutation() and

outer permutation() just described. Once P0,0 is chosen, the build function

looks for

• P0,1 that has to match P0,0

• P1,0 that has to match P0,0

• P1,1 that has to match P0,1 and P1,0

All these steps lead to the creation of a dictionary that will correspond to an

S-box in compliance with (S-5).

3.8 Analysis of S-6 and its Implementation

Remember, from Section 2.4, that criterion (S-6) asks that

If two inputs to an S-box differ in their first two bits and are

identical in their last two bits, the two outputs must not be the

same. (If ∆Ii,j = 11xy00, where x and y are arbitrary bits, then

∆|Oi,j| 6= 0)

For criterion (S-6) only a verification method has been implemented and is

explained below.

Verification

The routine for the verification of the 6th criterion, check dc6(), computes

for each input the list of inputs that differ in their first two bits and have

the same last two ones, through the complementary of the first ones and

each possible variations of the middle ones. For each couple it checks if their

outputs are different, i.e. if their hamming distance isn’t zero. If a couple
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of inputs that doesn’t respect this constraint exists, then the criterion isn’t

verified.



Chapter 4

DESBoxGen’s Architecture

DESBoxGen is a tool meant for logical cryptanalysis on DES and its variants.

The variant of DES instance allows the specification of:

• a number of round, by default 16 as in DES standard algorithm

• the S-boxes that can replace DES standard ones and can be specified

in three different ways:

– through an identifier (an integer or a string) that identifies a series

of S-boxes previously stored

– through a list of objects that are instances of the class Sbox()

– through the method sbox generator(min dc), that takes as in-

put a minimum design criterion (min dc) that must be satisfied

through the following condition.

all (s . dc [ str (i ) ] is True for i in s . dc . keys ( ) if

int (i ) <= min_dc )

If min dc isn’t specified, the standard S-boxes are used.

class Des :

def __init__ (self , rounds=16, sboxes=None , min_dc=None )

45
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Even if DESBoxGen is meant for logical cryptanalysis it allows the standard

encryption expected from DES, so two main mode can be found in DESBox-

Gen:

• The standard one, in which all the bits of the plaintext and the key are

known.

• The one meant for cryptanalysis that allows the presence of unknown

bits both in plaintext and in the key used for the encryption.

def crypt (self , encrypt=True , key=None , plaintext=None ,

key_dict=None , plaintext_dict=None , pair='0' )

In the case of logical cryptanalysis with chosen plaintext attack, an identifier

pair can be specified in order to distinguish the variables related to different

couples (plaintext, ciphertext).

4.1 Inputs to List

First of all the casting of the inputs, i.e. the key and the plaintext, has to

be executed. If the input is completely known, the string could be in binary

or not:

• If the string isn’t a binary value, it will be converted into a list of bits

(each char corresponds to 8 bits)

• If the string represents a binary value, a casting into list will be applied

to the string

If the input isn’t completely known (for example, key=None, equally for

plaintext) a list of 64 variables is created: each variable corresponds to

a certain bit of the unknown input. If only a part of the input is known (for

example in the case of key key is None and key dict() isn’t empty) the

value of these bits is set to 0 or 1 as specified into the dictionary of known

bits received as input. All the following steps of the encryption algorithm

will work on these list of length 64.
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Figure 4.1: DES complete schema
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4.2 Keys Generation

The generation of the round keys is the same if the key is known or unknown.

First of all PC1 is applied (for the explanation of permutations see 4.3), then

the key is split into two halves, the left and the right part. For each of the two

halves a shift is applied, the number of shifts is defined by DES specification.

Once the shift is applied, the two halves are merged again and PC2 will be

applied on the resulting key.

4.3 Permutations and Similar Operations

A series of operations in DES involve only a permutation of values: bits have

to change their previous position with another one according to a lookup

table. In code it results:

def permutation ( formula , table ) :

return [ formula [ permuted_pos−1] for permuted_pos in

table ]

This edit is suitable for the following operations:

Initial Permutation IP the first permutation applied on the plaintext

Expansion-box E the expansion applied on the right half of the

message

Permutation-box P the permutation applied on the right part

after the application of the S-box

Final Permutation FP the permutation applied on the concatena-

tion of the two halves of the message after

all the rounds of the Feistel network, that

give as output the complete ciphertext
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4.4 Xor and S-box: operations with different

behaviour depending on the mode

Unlike the operations discussed before in 4.3, the Xor and the Substitution

performed by the S-box may vary depending on the execution mode, i.e. if

there are unknown input bits that should be detected through logical crypt-

analysis. The difference from 4.3 depends on the kind of operation that has

to be executed: while in the previous case the permutations rely on the bits

indexes and not on their value, in this case there is a major stress on the bit

itself compared to its position.

4.4.1 Standard Encryption Mode

If the algorithm is executed in the easiest encryption mode, both Xor and

S-box perform their standard execution.

[ str ( int (i ) ˆ int (j ) ) for i , j in zip (f1 , f2 ) ]

Listing 4.1: Xor in standard encryption

The Xor is performed element by element in the two lists f1 and f2. This

operation is applied in two moments:

• the Xor between the round key and the right part of the message after

the application of the Expansion-Box

• the Xor between the right part of the message after the application of

the Permutation-Box and the left half of the message

After the first one the S-box as to be applied. The 48-bit input of the S-box,

represented by a list with length equal to 48, is divided in 8 lists of length 6

and the substitution is applied on each sublist.

The S-box that has to be applied corresponds to an instance of the class

Sbox previously described in chapter 3, so it could be different from DES

standard one. For each sublist the output is recovered through the method

input2output of the class Sbox described in 3.1.
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[ s_out for i in range (8 ) for s_out in self . sboxes [ i ] .

input2output ( s_in [ i ] ) ]

Listing 4.2: S-Box in standard encryption

4.4.2 Logical Cryptanalysis Mode

The second case, i.e. the presence of unknown bits in an input, is treated

differently from the other one just described. In both case in the end the

output will be composed by a binder and a binding obtained through the

replace() routine (as explained in section 1.3.2).

• The binder will be the new variable that will correspond to a certain

bit of the result.

• The binding will link the previous value of the bit(represented by a

complex formula) to the new variable (i.e. the binder)

In the case of Xor, the values of the bit before the execution of the replace()

are summarized by the following code:

tmp_xor = [ And (Or (i , j ) , Or ( Not (i ) , Not (j ) ) ) for i , j in

zip (f1 , f2 ) ]

Listing 4.3: Xor in encryption for logical cryptanalysis

instead in case of S-box, they will be:

s_tmp = [ s_out for i in range (8 ) for s_out in self . sboxes [ i

] . truth_table2formula ( s_in [ i ] ) ]

Listing 4.4: S-box in encryption for logical cryptanalysis

In the end the list of complex formulas will contain just the new vari-

ables in order to simplify further operations. The functions (xor() and

substitution()) will return two values:

• the list of binders that will reflect the edit on Ri

• the list of bindings that will be restored in the end
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4.5 Encryption to Logical Cryptanalysis

The return values of the encryption (decryption) algorithm are:

bin out the list of bits representing the ciphertext, if all the input

bits were known, the list of the corresponding formulas

otherwise

str out the string corresponding to the result of the algorithm

(None if some bits in the resulting ciphertext are un-

known)

binding the list of all the bindings that have to be restored if there

were unknown bits in the inputs

These return values are meant for logical cryptanalysis on DESBoxGen. The

attack for which DESBoxGen is implemented for is logical cryptanalysis with

chosen plaintext attacks.

First of all one or more couple of (plaintext, ciphertext) have to be re-

covered. DESBoxGen easily implements the generation of these couples

through the standard execution of the algorithm with completely known

inputs (i.e. key and plaintext). Secondly, in order to emulate a known plain-

text attack, DESBoxGen encrypts the plaintext with an unknown key, so

the results of the encryption algorithm are a list representing the complete

ciphertext and a list of bindings introduced during the computation. The

value of the ciphertext isn’t considered so far. The operation just described

is iterated for each pair (plaintext, ciphertext), and the values of the formu-

las, the ciphertexts and the bindings are stored into three different lists.

Once all the pairs have been parsed, des dimacs cnf() is executed, in

order to generate the DIMACS CNF file that will be given as input to the SAT-

Solver. Each pair corresponds to a formula that has to be recovered through

the list of the 64 bits encoded in a certain formula, the final value of these

bits (given by the known ciphertext) and the bindings introduced during the

computation that link the plaintext to the bits representing the ciphertext.
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The process that will restore the link between the list of formulas (rep-

resenting the bits) and ciphertext is quite simple:

• the value of each bit is encoded in a formula but this value is known

because it represents a bit in the ciphertext

– if the value of that bit in the ciphertext that represents is 1, the

formula representing the bit is considered as it is (f)

– otherwise if the value is 0, the formula representing the bit is

negated (Not(f))

• all the formulas representing a bit are merged by And

In order to restore all the binders it’s sufficient to apply the And between the

formula just recovered and the bindings. By iterating this process for each

formula and by doing the And between all the ones representing a certain

pair, the final formula will be obtained.

At this point it’s sufficient to apply expr2dimacscnf() (implemented by

PyEDA) on the complete formula in order to get the DIMACS CNF corres-

ponding to all the pairs encrypted with the same key.
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Evaluation of Coppersmith’s

Criteria

Thanks to DESBoxGen there are all the elements for the evaluation of Cop-

persmith’s criteria by way of SAT Solving. In this phase three different SAT

Solvers have been used:

Picosat A SAT-Solver written in C [18] that has several

bindings in other languages, such as Pycosat in Py-

thon and PiGoSAT in Go.

CryptoMiniSat5 A SAT-Solver mostly written in C++ [19, 20] with

interfaces for command-line, C++ library and Py-

thon.

Lingeling A SAT-Solver written in C [21, 22] that has taken

part to several SAT Competitions.

Theoretically a bigger number of rounds, pairs or minimum design criterion

respected by S-boxes should imply an increase in both the accuracy of the

results and the time required by a SAT-Solver in recovering the key used

during the encryption phase.

Twenty sets of S-boxes have been built for each criterion to compare

the behaviour of SAT-Solvers applied on different version of DES. Therefore

53
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in total there are 120 sets, i.e. 960 S-boxes different from the standard

ones. Random keys and messages were used in order to produce several pairs

(plaintext , cipertext) for the generation of DIMACS CNF through DESBoxGen.

Below several tests are discussed with variations in number of rounds and

pairs for each of Coppersmith’s criteria until (S-6).

5.1 Results with 2 Rounds

Tests on the first round are not repeated here, because only half of the

ciphertext is affected by the key therefore it should be too easy for a SAT-

Solver to find a solution. The results of tests displayed below refer only to a

number of pairs bigger than 4 due to their statistical relevance.
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2 Rounds with 4 Pairs
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Lingeling seems to comply with Coppersmith’s rationale about criteria even

if it requires additional time compared to the others SAT-Solvers. The most

unexpected behaviour of Lingeling is the rapid increase followed immediately

by a little decrease in (S-4). After that point the behaviour of Lingeling seems

to be in accordance with Coppersmith’s revelation.
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(S-1) (S-2) (S-3) (S-4) (S-5) (S-6)

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

Coppersmith′s design criteria

ti
m
e(
s)

Picosat
CryptoMiniSat5

In Picosat instead there’s a good compliance of Coppersmith’s criteria: the

line of plot is in continue growth. The behaviour of CryptoMiniSat with

a close look appears in contrast with Coppersmith: there is a continuous

decrease until (S-4). Only after (S-4) there is the expected increase up to

(S-6).
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2 Rounds with 8 Pairs

In this case the results show a discrepancy from the previous ones and from

Coppersmith’s declaration only in the last steps. The point of disagreement

is (S-5): in the passage from (S-4) to (S-5) there is a deep decrease of the

complexity of the problem that the SAT-Solvers have to deal with.
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This phenomenon is more evident in Lingeling, but also in CryptoMiniSat
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and Picosat that have a very similar shape. Lingeling continues to take more

time than the others two in finding solutions and breaking DES variants.
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Also the time required by solving formulas involving (S-6) shows disagree-

ment with Coppersmith: the time in (S-6) is lower than many others, for

example notice in the plot that Lingeling takes less time to find a solution

for formulas involving (S-6) than (S-3) on average.
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2 Rounds with 16 Pairs

In these results there is a certain discrepancy. There are meaningful vari-

ations in the application of Lingeling that shows downfalls getting bigger

from (S-4) to (S-6), opposed to expectations. Also the time required in solv-

ing formulas involving (S-3) seems to require less time than the ones involving

(S-2).
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With a close look to Picosat an unexpected decrease at (S-5) can be noticed

but unlike Lingeling the time required at (S-6) is compliant with Copper-

smith.
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Instead in CryptoMiniSat there isn’t a similar phenomenon at (S-5) but it

can be found at (S-3). It could seem that the respect for only the property

of non linearity, (S-2), is sufficient to increase the difficulty in breaking the

algorithm in this case. In the remaining part of the plot of CryptoMiniSat

it seems that there is a compliance with Coppersmith’s rationale.
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2 Rounds with 32 Pairs

Lingeling has an irregular behaviour by varying the criteria respected by

the S-boxes. It seems that the difference in the criteria complied with isn’t

relevant for Lingeling in this case. The curve as several oscillations and

downfalls that are in complete disagreement with Coppersmith.
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Instead, in Picosat there is a major compliance with Coppersmith until (S-5)

but there is a significant downfall till (S-6).
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Also the behaviour of CryptoMiniSat doesn’t show a total compliance with

Coppersmith: it’s sufficient to see the downfall in (S-5) and (S-6).
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2 Rounds with 64 Pairs

The behaviour of Lingeling seems to respect Coppersmith’s criteria more,

as displayed by the increase of time required by CNF built in the respect

of (S-4) compared to (S-3). Anyway there are decreases in the first three

criteria and also in (S-5). The major compliance with the criteria may be

due to the number of pairs given as input that should increase the difficulty

of the problem.
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With a close look to Picosat and CryptoMiniSat several oscillations can be

observed: for these two SAT-Solvers the difficulty introduced by the criteria

doesn’t seem relevant.

5.2 Results with 3 Rounds

The addition of another round increases the avalanche effect and the com-

plexity of the problems that the SAT-Solvers have to deal with. Also in this

case tests are done with different numbers of pairs (plaintext, ciphertext) to

observe more deeply some variations between the SAT-Solvers by changing

the criteria complied with. As in the previous case only the results of tests

that refer to a number of pairs lower than 4 aren’t displayed.
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3 Rounds with 4 Pairs

By the application of Lingeling is seems that Coppersmith’s rationale isn’t

complied with. The most evident conflict with the criteria defined by Cop-

persmith can be found on DIMACS built through (S-5) and (S-6) that require

less time than (S-4) ones.
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A significant unexpected downfall can be also seen in the plot of Picosat and

CryptoMiniSat in correspondence of (S-4) that requires less time than (S-3)

and (S-6) that requires less time than (S-5).
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3 Rounds with 8 Pairs

The results of Lingeling as in the previous case are more unstable by changing

the minimum design criteria complied with. The time required by the first

criteria exceed the one required by the others.
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Picosat and CryptoMiniSat instead seem to have a bigger stability and a

certain growth according to Coppersmith’s rationale with the exception of

Picosat in (S-3). Also the stationary points in the plot of CryptoMiniSat are

unexpected and the slight decrease in correspondence of (S-5).
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3 Rounds with 16 Pairs

The stability of both CryptoMiniSat and Lingeling of the previous case seems

lost. Also in this case it appears that these results don’t take into account

Coppersmith’s idea.
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3 Rounds with 32 Pairs

In this case there are several unexpected behaviours. The most significant

ones are the spike of Lingeling on (S-2) and the one of CryptoMiniSat and

Picosat on (S-5).
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5.3 Results with 4 Rounds

The addition of the fourth round, as in the passage from 2 to 3 ones, increases

the avalanche effect, the complexity of the problems and by consequences the

time required for solving them.

4 Rounds with 1 Pair

Now the overhead required by Lingeling (that previously made its perform-

ances worts than the others) seems to improve it in a significant way: it is

the SAT-Solver that required less compared to the others.
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In this case the worst performances are that ones of Picosat, that in certain

cases required more than an hour and a quarter to find a solution for a

formula (a problem in (S-4)) differently from CryptoMiniSat and Lingeling

that took about one minute.
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Despite the differences in time, the shape of the curve is quite similar for all

the SAT-Solvers. The results until (S-4) seem to comply with Coppersmith’s

rationale. This accordance disappear in (S-5) that show a deep decrease in

the required time in contrast with the results attained.



Conclusions and Outlooks

Through this thesis and DESBoxGen it has been demonstrated the possibility

of creating S-boxes that respect only a sample of Coppersmith’s criteria. As

showed by the experimental results it has been noticed that the compliance

with the criteria doesn’t affect in a deep way the performance in time of the

three SAT-Solvers chosen for these tests.

Often it seems that the time required in solving logical problems involving

(S-5) is lower compared to the one involving some of the previous criteria.

The S-boxes in compliance with this criterion are an interesting object of

further study, as well as the ones respecting at least (S-4) that required a

non indifferent solving time on average.

In order to get results with a greater statistical relevance and to express

a better judgment about the relation between Coppersmith’s design criteria

and the difficulties in breaking DES algorithm and finding the key, other tests

should be done with more resources, that lacked during the development of

this thesis, to take the full advantage of logical cryptanalysis.
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