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Abstract

Due to the huge volume of digital data and the underlying complexity of data

management, people and companies are motivated to outsource their computational

requirements to the cloud. A significant portion of these productions are used in

health applications. While popular cloud computing platforms provide flexible and

low-priced solutions, unfortunately, they do so with little support for data security

and privacy. This shortcoming clearly threatens sensitive data in cloud platforms.

This is especially true for health information, which should always be adequately

secured via encryption. Providing secure storage and access to health information

that is generated by systems or used in applications, is the main challenge in today’s

health care systems. As a result, owners of sensitive information may hesitate in

purchasing such services, given the risks associated with the unauthorized access to

their data. Considering this problem, researchers have recommended applying en-

cryption algorithms. Data owners never disclose encryption keys in order to keep

their encrypted data secure. Because cloud platforms can not search in data which is

encrypted with regular encryption algorithms, it is supposed that data owners con-

ceal their secrets with searchable encryption algorithms. Searchable encryption is a

family of cryptographic protocols that facilitate private keyword searches directly on

encrypted data. These protocols allow data owners to upload their encrypted data

to the cloud, while retaining the ability to query over uploaded data. In this project,

we focus on symmetric searchable encryption schemes, as well as apply an efficient
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searchable encryption scheme which supports multi-keyword searches to provide a

privacy preserving keyword search framework for health data. Our framework ap-

plies a recent secure searchable encryption scheme and employs an inverted indexing

structure in order to process queries in a privacy-preserving manner.
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Chapter 1

Introduction

1.1 Overview

Nowadays, the exponential growth of data challenges all data storage and infrastruc-

tures. In 2014, sources predicted that the total size of digital information globally

would almost double every two years [3, 5]. This global data is expected to hit

44 zettabytes or 44 trillion gigabytes by 2020. In this era, local storage is not the

efficient nor economic solution to save and protect our data. The daily generated

information makes all companies, businesses, end-users, and individuals to outsource

their data and apply cloud servers and applications.
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1.2 Outsourcing Data

Outsourcing data and operations in companies is a significantly critical decision

that managers need to consider. Outsourcing has many advantages which can cause

growth and save money for companies.

All outsourced data centers try to guarantee the quality of service and minimize

the downtime to avoid financial penalties. In a model in which data is outsourced,

the maintaining and upgrading of local infrastructures are carried out by the ser-

vice providers. This advantage gives technology officers and managers more time

to spend on their companies’ goals and business expansion. Moreover, the competi-

tive low price of services presented by famous companies like Amazon, Google, and

Microsoft assist businesses to boost their bottom line. Consequently, outsourcing re-

duces expenses for equipment maintenance, physical space, and upgrade overheads.

Despite several benefits of outsourcing data, there are critical issues that people

should consider. These drawbacks sometimes change the business owners’ minds.

While outsourcing is cost-effective in most cases, there are some hidden costs which

may arise. The data centers, which usually are far away from headquarters, may

cost companies. In the case of outsourcing, natural disasters are other possible

challenges. The most important disadvantage that threatens outsourced data is

exposing confidential data.

Data owners assume that the cloud storage service is secure because it keeps the

data safe and follows the rules and algorithms, but it may try to disclose the plaintext
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and the access patterns of searched keywords. Consequently, a storing server should

be considered a semi-trusted one.

1.2.1 Outsourcing the Health-care Data

Health information is an essential type of data which is mostly considered as confi-

dential data. Previously, medical institutions were responsible for providing required

information systems and preserving the confidentiality of their data. The other

crucial role of technology officers in health organizations is the setting up a secure

mechanism to share private data with all providers and consumers in the format of

a trusted network. In such networks, some consumers receive data and services from

multiple providers while participating in service offerings in different programs across

agencies.

1.2.1.1 Secure Outsourcing

The privacy of health-care data is a critical component of every health department

and agency. In order to share health-care information more comfortably, secure

frameworks and protocols for accessing health information should be provided. A

secure framework that protects outsourced sensitive data can accelerate the strategic

plan to outsource clinical information systems while ensuring privacy and effective-

ness.
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1.2.2 Big Data

The advancement of big data and cloud computing have made the privacy concerns

even more pressing. Big data significantly increases the challenges in developing

systems to protect privacy. At the same time, being able to process big data to

extract meaningful information and knowledge from raw data is another concern

that threatens the privacy.

1.3 Searchable Encryption

The most natural solution to guarantee the privacy and security of outsourced data is

encryption. A symmetric-key algorithm is a scheme that uses a single cryptographic

key for both encryption and decryption operations. It means that people can learn

nothing about the encrypted data without the right key. However, encryption key

owners want to store their encrypted data on a cloud server while being able to ask

the cloud to search on the encoded dataset and send the related encrypted results

back without decrypting the dataset and the query. In 2000, the earliest scheme for

searching over encrypted data was proposed by Song et al. [61]. That scheme is

known as searchable symmetric encryption (SSE).

Since 2000, many studies were conducted on searchable encryption (SE) schemes.

The studies tried to solve issues of searchable encryption. Early studies provided

schemes for single predefined keywords and combinations of keywords searches, while
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the later studies where about multi-client, public-key based, and substring searchable

encryption schemes. Recently, researchers have been investigating more efficient and

secure schemes.

1.4 Contributions

In this thesis, I focus on efficient multi-client schemes to provide a framework for

health-care data. For example, the laboratory in a hospital stores encrypted records

of patients’ blood tests in a cloud storage server. The data users like doctors or

insurers may be interested in searching specific parts of records. As the data owner,

the hospital can authorize data users to send their encrypted queries to the cloud

server. The framework protects the privacy of original data and queries. Our frame-

work searches over the encrypted data and does not understand anything about the

queried keywords and the original data.

The multi-client search framework for the encrypted health-care data makes the

applications of search methods more usable and improves the operational efficiency.
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Chapter 2

Preliminaries and Definitions

As a prelude to further technical discussions, we need to present some basic concepts

and definitions. In this chapter, we review big data concept as well as definitions of

cloud-computing and health informatics.

2.1 Big Data

This refers to growing tremendously large and complex data sets. The size of big

data, which have not been constant, was measured at most in petabytes (1015) up

until 2012 but now is measured in units ranging from exabytes (1018) to yottabytes

(1024) [35]. Big data has its specific challenges in simple data operations, which are

data collection, storing, and sharing, as well as more complicated operations like

data processing and analysis. Protecting privacy, querying, and extracting patterns

6



are highly important functions in big data sciences and analyses[10].

2.2 Cloud Computing

Cloud computing refers to providing ubiquitous processing resources and data over

the Internet to consumers CPU and other devices on demand. These resources, which

are networks, virtual machines, databases, applications and other services, can be

easily obtained by the clients, released with minimal management effort and always

supported [53, 49].

2.3 Cryptography

In 1996, Menezes et al. defined cryptography as the study of mathematical tech-

niques related to confidentiality, data integrity, and authentication which are aspects

of information security [50]. Cryptography is about constructing and analyzing pro-

tocols that prevent third parties or the public from reading private messages [11].

Various aspects of information security, such as data confidentiality, data integrity,

authentication, and non-repudiation are central to modern cryptography [50].
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2.4 Edit Distance Metrics

Edit distance metrics are algorithms which determine the least number of editing

operations to transform from one string (e.g. word) to another one. These operations

are insertion, deletion, and substitution [46]. Some metrics like Damerau-Levenshtein

distance [32] considered the transposition of two adjacent letters as another editing

operation.

2.5 Electronic Medical Record (EMR)

All paper charts and treatment information in hospitals, pharmacies, clinics, and

health offices should be digitalized. These digital records in the health sector referred

to as an electronic medical records or EMR. In other words, EMRs are important

information which can be used many times and are tracked for monitoring health

status and treatment process. EMRs have certain strengths over paper version of

medical records because they can easily be saved, reviewed, and shared in health

institutions.

2.6 Electronic Health Record (EHR)

The electronic health record or EHR refers to all health information of a patient’s

treatment and care which is collected by clinicians in hospitals and clinics. A patient’s

EHR can be shared with all authorized doctors, pharmacists, and specialists who

8



participate in the patient’s treatment. This term also refers to the systematized

collection of patient and population health information saved in cloud servers [40].

2.7 Personal Health Record (PHR)

Rather than just specialists in health institutions, personal health records (PHR) can

be collected by health-care home devices or by the patient at his/her home. The main

difference between EHRs and PHRs is that PHRs should be managed and organized

by the patient. The patient determines which persons can have the access to the

PHRs. Medical histories, medications, and diagnoses results can be categorized as

PHRs. Tang et al. believe that PHR refers to both paper-based and computerized

health data and information related to the care of a patient that is maintained by

the patient [63].

2.8 Pseudo-Random Function (PRF)

A random function composes a lookup table filled with random entries which are

distributed uniformly. The random function maps entries to unique numbers in a

specific range. A practical PRF is acceptable if it behaves like a random function and

no efficient method can distinguish that a output of a determined entry is produced

by a random function or a PRF. A PRF always outputs a specific value given a

determined input from its domain and a determined random seed number even if it

9



operates multiple times [30, 31].
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Chapter 3

Background and Challenges

3.1 Overview

In this chapter, we review topics related to our study. We focus on searchable

encryption and related domains which are currently important for researchers. While

reviewing these areas, we take the most important challenges and research questions

into account.

Firstly, we review the searchable encryption definition. Then, we refer to the new

primitive technique which is called Blind Storage and discuss its advantages. We then

review Oblivious RAM (ORAM), the premier technology for securing cloud-based

storages. We refer later to a new generation of ORAM which is more efficient and

useful for multi-client frameworks. In the next chapter, we further discuss crypto-

graphic preliminaries.

11



3.2 Notations

In all following discussed schemes and models, we supposed that the data owner has

a collection that contains n documents (DB).

DB = (d1, ..., dn) (3.1)

W in this study, is considered to be a list of m unique keywords which are

extracted from the owner’s collection and may be queried later.

W = (w1, ..., wm) (3.2)

Widi = {w|w ∈ di and w ∈ W and identifier of the document(di) is idi} (3.3)

∴ W = {
n⋃

i=1

Widi}, n = |DB| (3.4)

Ind is a set of documents’ identifiers.

Ind = {indw1
, ..., indwm

} (3.5)

Each DB[wi] or indwi
in Ind refers to a set of documents, each of which contains

the keyword wi.

12



indwi
= DB[wi] = (id|wi ∈ Wid) (3.6)

3.3 Searchable Encryption (SE)

An encryption algorithm that supports lookup functionality over encrypted data

without decryption with the least cloud data leakage is called Searchable Encryption

(SE). Searchable encryption schemes allow a client to query from an untrusted server

to search within encrypted data without having the encryption key and without

learning information about the original plaintext data. Searchable encryption has two

main subsets of schemes which are symmetric searchable encryption (SSE) schemes

and public key encryption with keyword search (PKES) schemes [19].

3.3.1 General Model

A searchable encryption generally operates three primary phases in order to accom-

plish keyword lookup: setup, token, and search.

The duty of the setup phase is to create encrypted data and the related encryption

key K ′ using plaintext data and a secret parameter (1K) which is a K-bit vector.

In this phase, the data owner creates inverted indexes of the keyword list Ind and

13



Figure 3.1: Searchable Encryption Setup

outsource them (Figure 3.1). -

Ind = Create IndexK′(DB = (d1, ..., dn),W = (w1, ..., wm)). (3.7)

The inverted index array is a set of indexes, each of which belongs to a word from

word list W and determines documents which contain that specific word. The size

of Ind in Equation 3.7 is the same as the size of the word list |W | = |Ind| = m.

The documents should be encrypted with the owner’s key (K ′) using an encryp-

tion algorithm (Enc). The owner uploads the encrypted collection and the inverted

index to the server.

EDB = EncK′(DB = (d1, ..., dn)). (3.8)
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The Token function takes as input the produced secret key, a query, and returns

the related token tk. The query can be a boolean function of multiple keywords.

tk = TokenK′(query) (3.9)

The last main operator is search which uses token tk and the inverted indexes

in order to retrieve the set of matching encrypted documents and sends them to the

user.

3.3.2 Symmetric Searchable Encryption (SSE)

In SSE schemes, data owners create encrypted data and related indexes using a

symmetric secret key. The indexes will be used later to search over encrypted data.

In general, a SSE consists of two main function: Setup and Search.

Setup. This function generates a secret key for the received database and outputs

the associated encrypted database. The data owner receives the secret key

while the encrypted database is stored in the cloud storage server.

Search. Having the secret key of the encrypted data enables the client to send a

secure query to the storage server. The storage operates the search function

and receives the identifiers of encrypted documents or records. The storage

server sends the encrypted items to the querier afterwards.

15



3.3.2.1 Dynamic Symmetric Searchable Encryption (DSSE)

A dynamic searchable symmetric encryption scheme (DSSE) includes all functions

of a SSE scheme. A DSSE also has an extra function which is Update. The Update

function generates a new secret key and reproduce the encrypted database. This

function will be invoked after updating documents or keyword list of the database.

Update also have to be called after revoking a user. That being dealt with, some

SSE schemes are introduced in Chapter 4 which do not require updating the database

after revoking a user.

3.3.3 Security Definitions

Song et al. [61] as the first proposers of a SE scheme proved that their scheme is

secure. Later, the scientists in this area proposed some formal security definitions

which are discussed as follows.

3.3.3.1 Indistinguishable Against Chosen Plaintext Attack (IND-CPA)

A scheme is IND-CPA if the user cannot distinguish the ciphertexts of two chosen

plaintexts. In other words, the encrypted data does not leak anything about plaintext

data. The IND-CPA is not proper notion of security for SE schemes because it does

not consider query or trapdoor as the matter of leakage.
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3.3.3.2 Semantic Security Against Adaptive Chosen Keyword Attack

(IND-CKA)

In 2003, Goh [37] defined a secure index and two security models for indexes which

was semantic security against adaptive chosen keyword attack (IND-CKA). A IND-

CKA secure scheme doesn’t let the adversary deduce the content of a document

using its index. In other words, a server, which contains an index and two encrypted

document containing same number of words, cannot distinguish the document that

the index is related to. Chang and Mitzenmacher [27] in their study as well as Goh in

his second definition [37] introduced new versions of IND-CKA which an adversary

cannot distinguish indexes of documents with containing different number of words.

Chang and Mitzenmacher tried to guarantee the privacy of users’ queries while Goh

did not guarantee trapdoors’ leaking in either of his both definitions of IND-CKA.

This means that the trapdoors may reveal the queried keywords which is not secure

enough definition for SE schemes.

3.3.3.3 Non-adaptive and Adaptive Indistinguishability Security for SSE

In 2006, and later in 2011 Curtmola et al [30, 31], considering the shortcomings

of previous security notions for SSE, presented non-adaptive and adaptive indis-

tinguishability security which avoided previous notions’ problems. In non-adaptive

definition (IND-CKA1), a scheme preserves the privacy of keywords and trapdoors

against an adversary who runs the queries in a batch. This definition is not quite
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practical in real world and is improved in second definition of Curtmola et al [30, 31].

In the adaptive indistinguishability notion of security for SSE (IND-CKA2), which is

practical and considered as a solid definition for SSE, an adversary client can choose

a query considering previous obtained trapdoors and search results.

3.4 Bloom Filter

A Bloom filter refers to a hashed data structure which securely indicates the mem-

bership of an element in a set. A Bloom filter encompasses an array with b bits and

k independent hash functions which maps each input to a position in the b bits array.

Bloom Array : [0, 0, ..., 0

b

] (3.10)

ht : {0, 1}
∗ → [1, b] for t ∈ [1, k] (3.11)

In order to apply a Bloom filter to determine the set’s membership, the Bloom

array initially is set to zero for all bits. Then, for each element ei in the set {e1, ..., en},

all ht(ei) positions in Bloom array are set to one. In order to check membership of

an element ex by a server which don’t have access the the original set, it’s sufficient

to only check that the all ht(ex) positions in Bloom array were set to one.

Figure 3.2 illustrates the elements of the set is mapped to array cells with hash
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erations while they are hidden from the server. The blind storage does not need any

specific function or tool on remote servers and can be used in conventional cloud

storage servers like Google Drive and Dropbox.

3.6 Oblivious Random Access Memory (Oblivious

RAM, ORAM)

Although encryption algorithms hide the contents of data from the remote server,

none of those algorithms can conceal the users’ access patterns of reading and writing

data. The access pattern can leak the number of operations as well as operands

and operator of each operation. The information leaked from access patterns can

seriously endanger the privacy of encrypted data [65]. The oblivious RAM primitive

principally ensures privacy-preserving for users’ data on an untrusted remote storage

server.

The main goal of oblivious RAM schemes is addressing the revealing memory

access issue of CPUs from untrusted memories while reading or storing processes.

This scheme keeps search and the memory access independent [54]. While the ba-

sic scheme is extremely secure and recommended by Goldreich and Ostrovsky [38],

many studies were carried out to improve its performance and make it scheme more

practical [21, 29, 33, 38, 39, 45, 56, 57, 62, 67].

Oblivious RAM (ORAM) [70] is a cryptographic primitive that hides the access
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pattern of a trusted CPU to an untrusted memory. From an untrusted memory

perspective, any two accesses to the memory are indistinguishable, even if the trusted

CPU is accessing the same data.

As was mentioned previously, ORAM hides the access patterns of CPU from

untrusted memory. In an outsourcing context, we can consider that the CPU is a

client who queries and that untrusted memory is a cloud server which stores our

data. Running the queries by the server does not leak any information about the

location and type of retrieved encrypted data.

3.7 Basic Cross-Tags (BXT) Protocol

In 2013, Cash et al. [26] proposed the Basic Cross-Tags or BXT protocol. The

BXT, as an extension to single-keyword SSE (SKS), is a new scheme for conjunctive

keyword search. The BXT addressed its previous schemes’ issues for conjunctive

keyword search. Some of those problems were related to time and space complexities.

Sometimes the time and space complexities, as the major criteria of SSE algorithms,

cause those schemes to become infeasible for big data. The main challenge, which

was discussed in the earlier studies, was the linear relationship of the cloud server’s

workload and the number of encoded documents for searching each keyword set.

Cash et al. [26] proposed a sub-linear conjunctive search scheme for the first time.

This protocol applies some main functions to operate a conjunctive keyword

search on encrypted data. These modules are discussed as follows:
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EDBSetup(DB). This function outputs TSet as the “secure inverted index” and

XSet as the related set data structure. These two items are considered as the

encrypted database EDB and will be sent to the cloud server. TSet contains

the encrypted indexes of keywords from W . XSet is a specific data structure

that contains a set of xtags for every keyword in W and all related indexes.

Each xtag in XSet, which is calculated using two unpredictable functions, is

the result of keywords in W and their related indexes. The client, who owns

the database and later wants to query on that, generates encryption keys for

encrypting the database.

Search. This protocol contains several functions which should be operated by the

server and clients. We can suppose that the client wants to query a conjunction

of keywords like:

w̄ =
k∧

1

wi (3.12)

The client chooses the keyword wf from that conjunction which is used least

often in the outsourced data and f is the index of that keyword in the conjunc-

tion. Later, the client generates the encryption key (Ke) related to wf , finds the

inverted index(stag) for that keyword, and calculates inverted indexes (xtrap)

for the rest of the keywords in that conjunction. The client sends Ke, stag

and all xtraps to the server. The cloud server, which holds ciphertexts and

runs queries on the encrypted data, uses the stag to retrieve the least frequent

keyword’s index set T (wf ) from TSet. After retrieving the encrypted set, the
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cloud server decrypts all indexes in T (wf ) and sends each decrypted index ind

to the server if the following formula is true for all xtraps which f is selected

from a pseudo-random function family(PRF).

∀i ∈ (1, ..., k), f(xtrapi, ind) ∈ XSet (3.13)

3.8 Oblivious Cross-Tags (OXT) Protocol

In this section, we review the Oblivious Cross-Tags (OXT) protocol which has been

proposed by Cash et al. [26] in 2013 and is theoretically based on the BXT scheme.

The main issue of the BXT is its serious leakage. Xtraps are created using PRF

and a secret key KX . As was indicated about the BXT in the previous section,

the server should have the decryption key Ke in order to retrieve the indexes of

documents which contain wi as well as xtraps of other keywords in the conjunction

to calculate xtag and to check if that belongs to XSet. In other words, the server

needs decryption key Ke and xtraps to calculate xtags and find out which indexes of

stag contain other queried keywords in that conjunction. Providing such information

discloses some sensitive facts, like statistical correlation of queries and documents, to

curious and leaky cloud servers. The presenters of the OXT protocol addressed this

problem in their scheme by using an oblivious shared computation of xtag between

server and client during the search process. They engaged a blinded Diffie-Hellman
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(DH) exponentiation over a group G of prime order p. In order to reduce overhead

of interactions between the client and remote server, Cash et al. [26] considered that

the blinding parts of the formula must be the EDBSetup phase and stored in TSet.

The OXT protocol, like the BXT protocol, has two phases of EDBSetup and

search which are discussed as follows:

EDBSetup(DB). As it is shown in Algorithm 1, EDBSetup generates more secure

TSet and XSet. In the first step of this phase, the algorithm creates strapi for

every keyword wi in keyword list W using PRF and a secret key Ks. Straps

are required to generate the encryption keys Ke for encrypting both indexes of

documents which match wi and related record-decrypting keys (rdk) of match-

ing documents. The indexes of documents and xtraps of queried keywords were

previously required in the search phase of the BXT to calculate xtags. In the

OXT, in order to compute xtags in a manner that the cloud server does not

learn anything about either xtraps or inds, a blinded DH computation should

be applied and pre-computed blinding factors should be stored in TSet as a

part of tuples. Each tuple of T [wi] is related to a keyword wi and a matching

document index indj and indj belongs to Iwi
set. A blinding factor in each

tuple is yc, which is calculated by multiplication of xindj and z−1
c . The xindj

is output of a PRF (Fp) that gets indj and zc is generated by the same Fp

that takes a counter c as its input. The applied Fp is a PRF with the range of

Z∗

p . XSet in the OXT is updated regarding its previous definition in the BXT.
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The new XSet stores a more secure formula of xtags for every keyword wi and

every matched document index indj is calculated using the following formula:

xtagi,j = xtrap(wi)
xindj (3.14)

In previous xtags, xtrap(wi)s are calculated as follows:

xtrap(wi) = gF2(KX ,wi) (3.15)

After generating xtags they will be added to XSet.
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Algorithm 1 Prepare Encrypted Data

procedure EDBSetup(Data D, Array of Encryption Keys RDK[])

XSet← empty set for xtags

T← empty associative array for allowed keywords W

for each w ∈ W do

t← empty list for encrypted indexes

strap← F1(Ks, w) ⊲ F1 is a pseudo random function

Ke ← F1(strap, 2) and Kz ← F1(strap, 1)

c← 1

for each indi of D’s documents which contains w do

rdki ← RDK(indi) ⊲ rdki is the encryption key for document i

xind← F2(KI , indi) ⊲ F2 is a pseudo random function

zc ← F2(Kz, c) and c← c+ 1

y ← xind · z−1
c

e← Enc(Ke, rdki)

t← t ∪ (e, y)

xtag ← gF2(KX ,w)·xind

XSet← XSet ∪ xtag

end for

T [w]← t

end for

TSet← empty tuple set

(TSet,KT )← TSetSetup(T )

ED = (TSet,XSet)

SendEDToServer(ED)

end procedure
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Search. The general idea in the search phase is to calculate the xtag of each xind in

tuples of T [wi] and test if it is a member of XSet or not. The search phase can

be separated into two main functions. TokenGeneration, which is illustrated in

Algorithm 2, should be operated by the client. The server operates the second

part, which is the actual search process. TokenGeneration generates stag for

the least frequent keyword (wf ) of the conjunction of keywords which has to

be queried. TokenGeneration also generates the xtoken[c] array of cth tuple of

T [wf ]. The client sends the stag and xtoken[c] to the server.

xoken[c] = {xtoken[c, i]|1 < i < |w̄| and i 6= f} (3.16)
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Algorithm 2 Client Side of the Search Protocol

1: procedure TokenGeneration

2: stag ← TSetGetTag(KT , w1)

3: SendStagToServer(stag)

4: strap← F1(KS, w1)

5: Ke ← F1(strap, 2)

6: Kz ← F1(strap, 1) ⊲ F1 is a pseudo random function

7: c← 1

8: while ReceivedStopFromServer() do

9: zc ← F1(Kz, c) ⊲ F1 is a pseudo random function

10: xtoken[c]← empty array ⊲ xtoken is a two dimensions array

11: for i = 2, ..., n do

12: xtoken[c][i]← gF1(KX ,wi)·zc

13: end for

14: SendXtokenToServer(xtoken[c])

15: c← c+ 1

16: end while

17: end procedure

Algorithm 3 shows the second main function of the search phase which should

be operated by the server. At first, the server receives the stag and achieves

the related t or T [wf ]. The server later receives the xtokens from the client.

For each xtoken[c], the server accesses the cth tuple of T [wf ] which is (ec, yc).

As previously stated, T [wf ] is an array of tuples whose length is the same as
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the number of documents which contain wf . After catching the xtoken[c] and

(ec, yc), the server calculates xtag for all indexes of xtoken[c] and sends ec to the

client if all indexes of xtoken[c] were members of XSet. Later, the client can

decrypt ec and find out which indexes contain the whole queried conjunction.

Algorithm 3 Server Side of the Search Protocol

1: procedure Search(Encrypted Date ED) ⊲ ED contains TSet and XSet

2: stag ← AskStagFromPatient()

3: t← TSetRetrive(TSet, stag)

4: for c = 1, . . . , sizeof(t) do

5: xtoken[c]← AskCthTokenArrayFromPatient()

6: (ec, yc)← cth tuple of t

7: for i = 2, . . . , n do ⊲ n is the number of keywords in the query

8: if xtoken[c][i]y is member of XSet then

9: SendEToPatient(ec)

10: end if

11: end for

12: end for

13: SendStopToPatient()

14: end procedure

As was discussed in this section, the issue of the BXT was addressed and the semi-

trusted server checked the membership of xtags without having xtraps, indexes (ind),

and decryption key of indexes (Ke).
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3.9 Multi-Client OXT Protocol (MC-OXT)

In their study, Jarecki et al. [42] extended the OXT protocol and provided the

Multi-Client OXT (MC-OXT) which supported multi-client SSE (MC-SSE) while

preserving the OXT features and functionalities. In the MC-SSE, the data owner

encrypts its data and outsources it to the cloud server which securely operates key-

word searches. The client, who differs from the data owner in this scheme, sends

the query to the data owner and receives the related tokens to perform the keyword

search in the cloud server. The server applies tokens, searches for the results, and

returns the encrypted indexes to the data owner.

In this protocol, Jarecki et al. [42] defines three phases for their multi-client

solution which are described as follows:

EDBSetup(DB, RDK). In the MC-OXT protocol, the EDBSetup phase has al-

most the same steps as the EDBSetup in the OXT. The only difference is that

the MC-OXT protcol shares an additional key between the data owner and

cloud server.

GenToken(K,w̄). GenToken is the specific phase designed for the MC-OXT. The

purpose of this phase is to authorize a client and to enable him/her to search

a specific conjunction of keywords over the encrypted data stored in the cloud

server. In this regard, the client sends the conjunction of keywords to the data

owner. The data owner calculates the stag and strap for the least frequent
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keyword (wf ). The data owner also generates bxtrap terms for the rest of

the keywords in that conjunction. The bxtrap terms are being calculated as

follows:

bxtrapi = gFp(KX ,wi).ρi , ρi ∈ Z∗

p (3.17)

The data owner sends bxtrap terms as well as the encrypted stag and ρi to the

client for the search process. ρ1, ..., ρn, which are generated for all keywords

in the conjunction except the least frequent keyword, are one-time blinding

factors which hide real xtrap from the client. The data owner encrypts the

stag and blinding factors ρi, saves them in a single message env, and provides

the env to the client. During the search process, having the env file shows that

the client is authenticated.

Search. At the first step of the search, the client computes required keys using strap

previously provided by the data owner. Instead of xtoken terms of the OXT

protocol, the client computes bxtoken terms as follows:

bxtoken[c] = {bxtoken[c, i]|1 < i < |w̄| and i 6= f} (3.18)

bxtoken[c, i] = bxtrapZc

i (3.19)

The client sends bxtoken terms and the env to the server. The server decrypts

the env and achieves stag and blinding factors. After obtaining the stag, like

the OXT protocol, the server retrieves the TSet(wf ) and looks for tuples in
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TSet(wf ) which are valid for the following statement:

∀i, 1 ≤ i ≤ |w̄| and i 6= f, bxtoken[c, i]yc/ρi ∈ XSet (3.20)

In this formula, which is a replacement for the one in the OXT protocol, the

server obtains the xtokens by raising the the bxtoken to the power of y/ρ. The

ρ values are blinding factors achieved by decrypting the env.

One of the issues of the MC-OXT protocol is leaking the size of T (wf ) to the client.

Indeed, the negotiation between the client and server for transferring bxtoken terms

and results may leak the |T (wf )|. This issue of the original scheme should be con-

sidered and resolved in complementary schemes.

3.10 Research Challenges

The keyword search and query processing on encrypted data schemes have actively

been updated and improved for more than a decade, although significant challenges

and open issues still exist.

In general, private-key solutions are faster but suffer from a key management

problem. On the other hand, public-key solutions provide more flexibility but their

running times are much higher than private-key protocols. Furthermore, parties may

sometimes be forced to share data in order to comply with regulations or agreements.

The open issues includes lots of important topics like improving Paillier scheme,

adding update function to searchable encryption schemes for large databases [25],
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designing dynamic search [44], and preserving cloud security.

While some of the challenges are introduced by new methods and developments in

cryptography, the other challenges are more established. The most important aspect

of a scheme is to be applicable in real world systems. Every system that has been

proposed represents a trade-off between functionality, security, and performance.

In this project, we propose a framework for multi-client keyword search on out-

sourced encrypted electronic health records (EHR) using searchable encryption schemes.

3.10.1 Searchable Encryption Weaknesses

In general, a searchable encryption protocol may leak information in various ways.

The main types of leakage in searchable encryption schemes are: information of

indexes, search patterns, and access patterns.

Index information. This type of leakage basically points out the information about

preserved documents and related contained keywords in those documents. The

number of documents in the database, keywords in each document, and size

of keyword list can be placed in this category. Some studies indicate that

similarities between the documents belong to this class as well.

Search pattern. All information that may be leaked during the search process is

categorized as the search pattern leakage group. The group may refer to two

different searches which have the same results. The statistical analysis that

may determine the actual searched keywords can be categorized in this class.
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Access pattern. The access pattern group mainly covers the leaked information

from query results. The comparison of results of two queries can express some

ideas about restrictiveness of queries.

3.10.2 Ideal Solution

The ideal solution for SE schemes reveals nothing about the remotely stored files

and indexes, results of queries, or the pattern of search. Most of the schemes, previ-

ously applied on health records, usually leak at least the search and access patterns.

We introduce an efficient framework and illustrate its complexity, performance, and

feasibility over EHR. That being said, the minimum information leakage in some

steps of the scheme still persist. In Chapter 4, various related SE schemes, their

performance, and their security are discussed.
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Chapter 4

Related Works

All SE models can be reviewed according to different features. In each SE model,

there are three kinds of parties. The first one is the data owner or data writer. The

second one is the server or data storer. The third one is the reader or client who

sends the queries to the server.

4.1 Symmetric vs. Asymmetric primitives

Some searchable encryption schemes, which are based on symmetric algorithms, allow

only one user to create searchable ciphertexts from plaintexts and create trapdoors

for those ciphertexts using a symmetric encryption key. In the traditional definition,

it is also the same while reading and searching keywords on those ciphertexts. In

other words, only the person who holds the symmetric key can read and search over
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ciphertexts. These schemes are called single-user or single writer/single reader (S/S).

In 2000, Song et al. [61] proposed the first single-user scheme. Afterwards, some

symmetric schemes presented which changed the definition of symmetric searchable

encryptions. Those schemes allowed more readers to query the database.

Asymmetric searchable schemes, which are based on asymmetric encryption and

use private and public keys in their structure, can be searched and queried by more

than one user. These schemes can be considered as multi-user schemes. In 2004,

Boneh et al. [16] proposed the first SE scheme using public keys. That scheme was

entitled “Public Key Encryption with Keyword Search” (PEKS).

4.2 SE’s General Model

In 2000, Song et al. [61] achieved searchable encryption by crafting a two-layered

structure. In this scheme, the owner outsourced the encrypted data and hashed

keywords to the cloud server. This server can indicate that a keyword exists in

ciphertexts by extracting the hash value of the keyword and comparing it with the

embedded hashed keywords. While Song et al. proved that their system was IND-

CPA secure, it was less trusted than an encryption algorithm without the searching

advantage. There were some disadvantages for Song’s scheme. The first one was

that before encrypting a file, its text should be split into same sized strings. This

method does not follow common file encryption standards. The other disadvantage

was about their specific two-layer algorithm. This algorithm was only applicable for
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text based files.

Brinkman et al. [23] applied Song and her colleagues’ model to XML based

files. Popa et al. [59] also illustrated Song et al.’s model can be used for encrypting

databases.

4.3 Single-user vs. Multi-user

As discussed earlier, SE schemes are built on the client/server model, where the

server stores encrypted data on behalf of one or more clients (i.e., the writers). To

request content from the server, one or more clients (i.e., readers) are able to generate

trapdoors for the server, which then searches on behalf of the client. In these models,

the reader and writer can be either the same client or different clients. In the case

that the writer and reader are different, the model is also called date sharing [19].

4.3.1 User Revocation

One of the important requirements of multi-reader schemes is the user revocation.

The data owner cancels the access permission of a user to the owner’s data by

revoking a user [48]. There are two main ways for user revocation: direct [7, 47, 55]

and indirect [6, 41, 58, 68, 71] revocation methods. In the direct method, the data

owner re-encrypts data and specifies the revocation list. In the indirect method, the

data owner, who periodically updates users’ access keys, only updates non-revoked

users’ keys. In 2006, Curtmola et al. [30] applied the broadcast encryption (BE)
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[36] in order to implement their multi-user scheme. The user revocation in the

implementation of Curtmola et al. was challenging. This scheme had only one

shared key for all readers, so the user revocation required distributing a new key

between all current authorized users.

4.4 Searchable Encryption Architectures

As discussed in Section 4.3, SE models can be explored regarding the number of

users participating in models. The SE models can be categorized into single-user

and multi-user schemes.

4.4.1 Single-user Schemes

The general idea in a single-user scheme is that the user, who owns the symmetric

encryption key, encrypts the plaintext and outsources the searchable ciphertext. The

same person also creates trapdoors and provides those to the data holder or the cloud

in order to search over the encrypted data. Asymmetric key systems are also used

for single-user schemes.

4.4.1.1 The Practical Technique of Song et al.

As previously discussed in Section 4.2, Song et al. [61] proposed the first applicable

SE scheme which was based on encrypting fixed-size words and embedding the related

hash value for those words. The generated searchable ciphertext is outsourced to a
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cloud server. For the search phase, the user sends the encrypted keyword and the key

used for generating the related hash value of the keyword to the cloud server. The

server later checks all embedded hash values with the received encrypted keyword

and the key to verify if they match or not. The server sends the related ciphertext

if they match up.

The scheme of Song et al. leaks the position of matched hash values and con-

sequently the position of matched keyword and ciphertext in each query. Also, sta-

tistical analysis gives some information about the queries to the semi-trusted cloud

server and allows for the possibility of the plaintext or keywords to be figured out.

4.4.1.2 Goh’s Secure Indexes

In 2003, Goh [37] tackled some weaknesses and constraints of Song et al.’s search-

able encryption model. Goh applied indexes for encrypted documents. They used

a Bloom filter (BF) [14] for each document as the document’s index. The Bloom

filter, which is discussed in Section 3.4, provides linear search time in the number

of encrypted documents. The structural issue of hash functions and Bloom filters is

their false-positive possibility which means two different keywords have same Bloom

array positions. Goh applied two level hash functions and unique document identi-

fiers in order to mitigate false positive risks. A proper identifier should be selected

to produce unique Bloom filters even for two documents with the same keyword sets.

39



4.4.1.3 Chang and Mitzenmacher’s Prebuilt Dictionary

Chang and Mitzenmacher [27] proposed two solutions which were similar to what

Goh presented. They used a prebuilt dictionary to generate an array of bits (index)

for each document. Each bit in the array of a document indicated the presence of

a keyword in that document. The prebuilt dictionary could be held in the client

side (first solution) or the server side (second solution). In the second solution,

the prebuilt dictionary should be encrypted for the sake of security. Both solutions

supported the document collection’s updating. Their security definition has been

broken by Curtmola et al. [30].

4.4.1.4 Curtmola et al.’s Inverted Indexes

In addition to presenting a couple of standard security definitions, Curtmola et al.

in 2006 [30] and later in 2011 [31] proposed two new constructions which satisfied

their strong security definitions for SSE. Their schemes were based on associating

indexes to distinct keywords instead of documents, which is called inverted indexes.

Curtmola et al. illustrated that their schemes are optimal and more efficient than

other previous SSE schemes. They also presented an extension of their schemes

which was a multi-user searchable symmetric encryption (MSSE).
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4.4.1.5 Liesdonk et al.’s SSE Schemes with Efficient Update

In 2010, Van Liesdonk et al. [64] proposed two new schemes which used an inverted

index for keywords. Liesdonk et al. proved that their schemes are IND-CKA2 secure

and satisfy Curtmola’s security definitions. Their schemes also had logarithmic time

complexity in the number of unique keywords for their secure search and their docu-

ments were updatable. Their first scheme was faster in searching computation while

the second one had less communication overhead. The second scheme also efficiently

provided updating stored documents as well as undoing the updates.

4.4.1.6 Effective Fuzzy Keyword Search Scheme

In 2010, Li et al. proposed a scheme to provide private fuzzy keyword search. This

scheme acts like other SE schemes if the searched keyword matches with the pre-

defined keyword list of outsourced encrypted data. However, the scheme was more

powerful than regular SE schemes because the scheme returns possible matching files

for the keywords which are similar to original searched keyword based on edit dis-

tance1 metrics The idea behind their solution was to generate trapdoors for similar

strings to the each main keyword in keyword list. They proved that their scheme

is secure in their updated definition of IND-CKA1 which allowed encrypted indexes

leak Edit distances.

1 Edit distance is defined in Section 2.4
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4.4.1.7 Chase and Kamara’s Scheme for Structured Data

Chase and Kamara [28] targeted the issues of privately querying structured data. In

order to achieve their purposes, they presented a novel searchable encryption model

which was called structured encryption as well as the related security definition for

the structured data. In general, their scheme generalizes the index generation of SSE

for structured and labeled data. They illustrated the performance of their scheme

for matrix-structured and labeled data. In summary, their scheme setup contains

the following steps: padding data items, permuting the location of data items and

matrix cells, and encrypting the permuted matrix cells. The cloud storage server

can operate the query on matrices by receiving the permuted location of cells and

encrypted contents. The server also runs search for labeled data as soon as it receives

the permuted keyword. The server then returns permuted indexes of data items.

While Chase and Kamara’s scheme is IND-CKA2 secure and hides its structure from

honest-but-curious server, the scheme leaks the search and access patterns.

4.4.1.8 Kamara et al.’s Dynamic SSE scheme

In 2012, Kamara et al. presented a new scheme in order to make SSE schemes

more practical for real-world cloud storage servers. This IND-CKA2 secure scheme

mainly provided the efficient updating of encrypted documents as well as operating

the keyword search in a sub-linear time. Kamara et al. extended Curtmola et

al.’s inverted index scheme [30] and applied homomorphic encryption to modify the

42



encrypted documents’ pointers without decrypting them.

4.4.1.9 Bösch et al.’s Selective Document Retrival (SDR) Scheme

Bösch et al. [20] proposed a new cryptographic primitive called selective document

retrieval (SDR) which is comparable with SSE. This primitive was used for outsourc-

ing searchable encrypted data. They also provided a scheme based on SDR which

guaranteed the privacy of indexes, trapdoors, and query results. Their searchable

encrypted data construction was based on Chang and Mizenmacher’s index genera-

tion [27] and homomorphic encryption. Their search algorithm also was implemented

based on Brakerski and Vaikuntanathan’s lattice-based symmetric scheme [22].

4.4.1.10 Cash et al.’s Conjunctive Keyword Search

In 2013, Cash et al. presented a new SSE scheme for conjunctive keyword search over

outsourced encrypted data. The scheme implements its idea using communication

with the cloud server. The idea of Cash et al.’s scheme, which is based on Curtmola

et al.’s inverted index [30], is that the user creates an index for the least frequent

keyword in the conjunction and sends specific index for the rest of keywords and

sends them to the outsourced server. The server retrieves the encrypted index set

for the least frequent keyword and checks if the other keywords belong to the index

set and returns the encrypted IDs of documents which contains all keywords. Cash et

al. generalized the definition of IND-CKA2 for conjunctive keyword search schemes

and proved that their scheme is IND-CKA2 secure.
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4.4.2 Multi-user Schemes

4.4.2.1 The First SE Scheme Using Public Key Encryption

In 2004, Boneh et al. [16] were the first group of researchers who proposed an

asymmetric searchable encryption in 2004. This scheme is called public encryption

keyword search (PEKS). PEKS enables a third-party to test weather a ciphertext,

which is encrypted with a public key, contains a specific keyword. The third-party is

required to receive a particular key from public key holder in order to check weather

the ciphertext contains that specific keyword. PEKS implies Boneh and Franklin’s

Identity Based Encryption (IBE)[17]. While the security of PEKS can be proved

based on the security of IBE constructions, PEKS scheme is vulnerable to the off-

line keyword-guessing attack [24, 70]. This type of attack enables the third-party to

store particular keys (trapdoor) and apply them to understand plaintext data.

Later in 2007, Boneh et al. [18] introduced a new scheme to provide private

information retrieval (PIR) over encrypted data in order to preserve users’ access

patterns hidden. Their scheme provided the non-interactive communication between

any user with the data owner. An extenssion to this scheme allowed Boneh el al.’s

scheme to tolerate malicious users [18].

4.4.2.2 Using Group Ciphers for Bloom Filters by Bellovin and Cheswick

Using Pohlig-Hellman Encryption as a group cipher for Bloom filters, Bellovin and

Cheswick [12], presented a scheme for secure and protected searches among mutu-
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ally semi-trusted parties in 2004. Their model enabled a semi-trusted server, which

holds the database, to perform queries of multiple clients in such a way that neither

database owner nor the server understands the original queries of clients. The main

issue of their scheme is allowing false-positives due to the use of Bloom filters.

4.4.2.3 Curtmola et al.’s Multi-User Setting

In 2006, Curtmola et al. [30] presented two algorithms for mutli-user SE. They up-

dated their scheme in 2011 [31]. They defined the multi-user setting for searchable

symmetric encryption. In this scheme, an arbitrary group of users are authorized

to query the encrypted data saved on a semi-trusted server. This model, using the

efficient structure, enabled the data owner to revoke query privileges from current

users and authorize new users. The presenters of the multi-user setting considered

that the cloud server was honest-but-curious. The idea behind the multi-user setting

is to combine a single-user SSE scheme with a broadcast encryption algorithm. Nev-

ertheless, they stated that their model can even be robust against malicious servers

if they applied memory checking [15] and universal arguments techniques [9].

4.4.2.4 Baek et al.’s Revisited PEKS Scheme

Baek et al. [8] proposed an updated PEKS in order to address some issues in Boneh et

al.’s original scheme [16] which were unsolved. Baek et al. indicated that their scheme

had removed secure channel. Their scheme also supported refreshing keywords and

processing multiple keywords. The main idea behind their scheme was adding key
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pair for the storage server. They also proved the security of their model.

4.4.2.5 Applying Query Rerouter

Raykova et al. [60] in their proposed definition and implementation, which was called

Secure Anonymous Database Search, applied two trusted parties the query router

(QR) and index server (IS). QR and IS are trusted and receive a limited information

which enables them to operate. IS holds secure indexes which produced by the data

owner and operates actual query without learning about queries and data. QR route

queries and results between queriers and IS without revealing the identity of queriers.

Raykova et al. introduced Re-routable Encryption which translates the encrypted

queries for IS in such a way that keeps queries untraceable. The proposed scheme

by Rayka et al. allows false-positives because of using Bloom filter.

4.4.2.6 Yang et al.’s Bilinear Map

In 2011, Yang et al. [69] presented a scheme for multi-user private queries on an

encrypted database with user revocation ability. In this scheme, allocating a distinct

key to each user prevented the re-encryption of the database and re-generation of

query keys after revoking a user. They applied bilinear maps in their scheme so all

users generate a same index for a specific key. Yang et al. presented an extended

definition of IND-CKA2 for the multi-user keyword search and proved that their

scheme fulfills the definition’s conditions.
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4.4.2.7 Jarecki et al.’s Multi-Client OXT and Symmetric Private Infor-

mation Retrieval (PIR) schemes

Jarecki et al. [42] proposed an extension of the OXT scheme for multi-user SSE

which is called mulit-client SSE (MC-SSE). They also proposed another scheme which

preserves the privacy of outsourced database third-parties or clients from the data

owner. This feature is an extra to what basic SSE schemes provide. The SSE schemes

allow the authorized clients only access to the results of what they queried while the

cloud server does not learn anything about the queries and plaintext results. In this

scheme Jarecki et al. extended the Cash et al.’s OXT scheme [26]. For the security

definition of the scheme, Jarecki et al. considered the data owner as an adversarial

entity in addition to the cloud server which was previously defined as an adversary

by SSE security definitions. The designers of this scheme proved that their scheme

is secure regarding their definition.

4.4.2.8 Orencik et al.’s Multi-Keyword Search

In 2016, Orencik et al. proposed a multi-keyword search over encrypted data while

preserving the privacy of the search operation. In this scheme, Orencik et al. ad-

dressed the leaking of access patterns as well as the correlation of queries and their

results issues. They also presented a new compression method to mitigate the com-

munication between the scheme’s parties as well as a novel raking and scoring al-

gorithm for their multi-keyword search scheme. In addition to their schemes, they
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proposed security definition which preserves privacy of queries and distinguishability.

Orencik et al. proved that their scheme meets the definition’s criteria.

4.4.2.9 Dai et al.’s SSE Schemes Against Memory Leakage

In 2016, Dai et al. proposed two schemes which addressed the memory leakage prob-

lem of SSE schemes. In their first IND-CKA2 secure scheme, which called memory

leakage-resilient searchable symmetric encryption (MLR-SSE), Dai et al. extended

Curtmola’s scheme [30] and applied physical unclonable functions (PUF)2 in order to

strengthen the privacy of private-keys. Dai et al. also presented dynamic MLR-SSE

(DMLR-SSE) which was more efficient and non-adaptive indistinguishability secure.

Dai et al. proved that the DMLR-SSE is as efficient as Cash et al.’s SSE scheme [25]

while it is more secure than Cash et al.’s scheme because Dai et al. applied PUFs in

their scheme.

2A physical unclonable function is a hardware which provides a unique identity for semi-

conductors like processors
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Chapter 5

Proposed System

In this chapter, a framework is proposed for the privacy preserving multi-user key-

word search over outsourced encrypted health data. The recently proposed SSE

scheme by Jarecki et al. [42], which is discussed in Sections 3.7, 3.8, and 3.9, is

applied. This searchable symmetric encryption (SSE) scheme provides search ability

over encrypted information for authorized users. The data owner, who outsources

his/her encrypted data to cloud storage servers, authorizes the users to access the

encrypted data.

5.1 Involved Models and Parties

This section introduces the parties and their duties in the proposed privacy-preserving

keyword search over encrypted health data system. In this section, use case dia-
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grams are applied to illustrate all parties responsibilities in our system. Parties in

our framework are introduced as follows:

Patient The patient or the data owner processes and outsources the data to the cloud

server. In a single-user architecture, the patient, who owns and keeps the

encryption key, runs the query at the cloud server and is able to decrypt the

retrieved encrypted results. However, in a multi-user architecture, the patient

delegates the search ability to the authorized users. In other words, the patient

provides search tokens to the authorized users.

Cloud Server The cloud storage server receives the encrypted information as well as encrypted

indexes or meta-data and protects them against loss or theft. However, in our

scheme the cloud server is considered as a semi-trusted or honest-but-curious

one which executes the search operation and returns the results honestly. This

means, while the server cannot learn the plaintext information or searched key-

word, it may act as an adversary and leak access patterns or other information

about outsourced encrypted data.

User The user in our environment can be physicians, pharmacists, or insurers. A

user wants to search a keyword in the outsourced data by the patient or data

owner.
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Figure 5.1: Use case diagram of the framework’s preparation subsystem
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5.2 The framework’s UML Diagrams

Various UML diagrams were applied in order to illustrate the structure of our system

along with all the constitutive classes as well as users and actors who perform actions

and roles in interaction with our system.

Figure 5.1 and Figure 5.2 display the use case diagrams of our framework and

involved actors. As shown in Figure 5.1, Patient uses the Setup use case. This use

case prepares the encrypted data and all requirements for securely running queries

over the encrypted database. Setup includes GenerateKeys, PRFFunctions, Enc,

TSetSetup, and SendEDToServer use cases which are briefly discussed as follows:

1. GenerateKeys : This use case is responsible for generating unique keys for PRF

functions as well as paired keys for encryption and decryption methods.

2. PRFFunctions : The PRFFunctions use case provides PRFs. A pseudo random

function (PRF) efficiently maps the domain and range of the function. A PRF

is considered as a good one if it is not distinguishable from a real random

function.

3. Enc: Enc encrypts the indexes to be stored in tuples of TSet.

4. TSetSetup: The duty of this use case is the creation of TSet out of the set of

encrypted indexes.

5. SendEDToServer : SendEDToServer, included by the Setup use case, is respon-

sible for sending the encrypted data to the Server. In the preparation section of

52



the framework, Server also deals with SendEDToServer use case and receives

the encrypted data from the data owner.

The other provided use case diagram, Figure 5.2, exhibits actors and use cases

participating in the search protocol. The User actor presents Physician, Insurer, or

Pharmacist actors. The main use case in Figure 5.2, Search, includes the following

use cases:

1. TokenGeneration: The Patient actor creates the token for the received query

using TokenGeneration and includes three use cases.

(a) FindLeastFrequentKeywordQuery : The data owner applies this use case

to select the least frequent keyword in the dataset among all keywords of

the query.

(b) TSetGetTag : This use case retrieves the least frequent keyword’s stag.

(c) AuthEnc: The duty of this use case is encrypting and signing stag and

blinding factors.

(d) PRFFunctions : The Patient applies PRFFunctions for generating the

least frequent keyword’s strap.

(e) UserSideSearch: User applies the UserSideSearch use case to receive the

token of his/her query as well as to send bxtokens to Server.

i. AskTokenFromPatientGivenQuery : In this use case, User receives

token for the query if he/she got authenticated.
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ii. Dec: This use case decrypts those received indexes from Server.

iii. PRFFunctions : The User actor applies this use case to generate en-

cryption keys.

2. ServerSideSearch: The Server actor authenticates User and both retrieves and

forwards encrypted indexes to User if the criteria are met.

(a) VerifyAuthDec: This use case decrypts the env and verifies stag which

consequently authenticates User.

(b) AskCthTokenArrayFormUser : This use case requests a specific bxtoken.

(c) TSetRetrieve: This use case retrieves the specific tuple from TSet.

User applies AskTokenFromPatientGivenQuery, gives query to Patient, and requests

the related encrypted token. User sends blinded tokens to Server and receives the en-

crypted indexes if those blinded traps match any indexes in XSet. ServerSideSearch,

UserSideSearch, and all other included use cases, shown in Figure 5.2, contribute to

the search protocol.

Figure 5.3, which is related to the class diagram of the proposed framework,

reveals implemented classes and their relationships. In the following section, I briefly

discuss properties and methods of each entity in Figure 5.3.

Query: This class only has a set of strings. Both Patient and User classes own an

object of this class and use that object to keep the boolean query which should

be queried on the cloud server.
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Figure 5.2: Use case diagram of the framework’s search protocol
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Token: Token includes the encrypted envelope which is prepared by Patient and

should be sent to Server by User. The User class has an object of the Token

class. Token also contains an array of bytes for strap which is token for least

frequent keyword of the query as well as a two-dimensional array of bytes for

bxtraps, which are trapdoors and their usages are discussed in detail in Section

5.3.

PlainEnv: This class has values for stag and all blinding factors(ρi). Both Patient

and Server classes have an object of PlainEnv class as their property.

Patient: The Patient class is the most important class in the framework. The

Patient class holds a set of xtags as the XSet. A tuple set, known as TSet,

is added to the Patient class. TSet preserves a list of encrypted inverted

indexes which are associated to each keyword. The TSet datastructure has

three specific algorithms (TSetSetup, TSetGetTag, and TSetRetrieve) for its

setup and access. Patient also has an object of Token to save the information of

env, straps and bxstraps which should be sent to User. bxtraps are the blinded

xtraps which are generated by the Patient for received Query. The Patient

class uses the GenerateKeys method to prepare a set of keys for encryption

methods and pseudo random functions. AuthEnc method, which takes the

encryption key (KM), stag, and random blinding factors, encrypts its inputs

and outputs env which determines whether the querier is authenticated.
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Figure 5.3: Class diagram of the framework
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User: The User class, which is designed for the querier in the framework, saves

its query in an object of the Query class. By receiving the env from Patient,

User saves it in token in addition to strap and generated bxtraps. The user

also saves encrypted indexes e, which are received from server, in eSet. The

Decryption method of the User class is invoked after all inverted indexes are

saved in eSet and Server, sends stop which means that the search process is

done.

Server: The Server class preserves TSet and XSet as searchable encrypted data.

The VerifyAuthDec method of Server decrypts env and obtains blinding fac-

tors. Obtaining valid factors proves that the user is authenticated. Server

applies TSetRetrieve to achieve the related tuple of the received stag from

TSet.

5.3 Process Flows

The major goal of this section is to demonstrate how processes and algorithms com-

bine to drive the privacy-preserving query processing system.

5.3.1 Prepare Encrypted Data

As illustrated in Algorithm 4, before outsourcing data to a cloud server, the data

owner, which is a patient in our system, needs to create the searchable encrypted
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Algorithm 4 Prepare Encrypted Data

1: procedure Setup(Data D, Array of Encryption Keys RDK[])

2: XSet← empty set for xtags

3: T← empty associative array for all allowed keywords (W )

4: KeySet← GenerateKeys() ⊲ KeySet contains KS, KX , KT , and KM

5: for each w ∈ W do

6: strap← F1(KS, w) ⊲ F1 is a pseudo random function

7: Ke ← F1(strap, 2) and Kz ← F1(strap, 1)

8: c← 1

9: for each indi of D’s documents which contains w do

10: rdki ← RDK(indi) ⊲ rdki is the encryption key for document i

11: xind← F2(KI , indi) ⊲ F2 is a pseudo random function

12: zc ← F2(Kz, c)

13: y ← xind · z−1
c

14: e← Enc(Ke, indi)

15: t← t ∪ (e, y)

16: xtag ← gF2(KX ,w)·xind

17: XSet← XSet ∪ xtag

18: c← c+ 1

19: end for

20: T [w]← t

21: end for

22: (TSet,KT )← TSetSetup(T)

23: ED = (TSet,XSet,KM) ⊲ KM is a shared key between Patient and Server

24: SendEDToServer(ED)

25: end procedure
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data. In this regard, the patient should operate the SETUP procedure. In the first

step of the SETUP procedure, the required keys for encryption and PRFFunctions

are generated. Afterwards, for each keyword in the provided keyword list of data, all

encrypted indexes are stored in TSet and generated xtags are accumulated in XSet.

The accumulated xtags help the server to indicate that an encrypted keyword exists

in an encrypted document without revealing any information about the plain keyword

or document. Finally, the patient has to outsource TSet and XSet as the encrypted

data to the server. In order to delegate the search ability to clients, the patient and

server are required to share an encryption key (KM) for encrypting the stag and

blinding factors and authenticate the clients.

5.3.2 Query Execution

In this section, I discuss the query process in our framework. The query or search

in a multi-client framework consists of three procedures which should be operated

by all three parties of our framework. These three procedures are TokenGenerator,

UserSideSearch, and ServerSideSearch which are illustrated in Algorithms 5, 6, and

7.

At the initial step, the client sends his/her query to the patient. Algorithm 5

shows that after receiving the plain query, the patient generates the s-terms and

bxtraps for the query. As discussed in Sections 3.7, 3.8, and 3.9, s-terms include

stag and strap. stag is a secure inverted index of a keyword of the query which
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Algorithm 5 Generates authorized query (token) for User

1: procedure TokenGenerator(KeySet, Query w̄)

2: w1 ← FindLeastFrequentKeywordInQuery(w̄)

3: stag ← TSetGetTag(KT , w1)

4: strap← F1(KS, w1) ⊲ F1 is a pseudo random function

5: n← |w̄| ⊲ n is the number of keywords in Query

6: for each wi ∈ w̄ where i = 2, . . . , n do

7: ρi ← random blinding factor from Z∗

p domain

8: bxtrapi ← gFp(KX ,wi)·ρi

9: end for

10: env ← AuthEnc(KM , (stag, ρ2, . . . , ρn)) ⊲ terms should be signed by Patient

11: token← {env, strap, bxtrap2, . . . , bxtrapn}

12: SendTokenToUser(token)

13: end procedure

is sent to the server and allows server to access the related encrypted records and

documents which contain this specific keyword. This keyword of the query has the

least frequency in the outsourced data in comparison to other keywords contained in

the query. Xtraps are trapdoors of the other keywords in the query which helps the

server to understand if a document has those keywords or not. However, in order to

keep the xtraps secure from the user, the patient applies blinding factors on xtraps

and produce bxtraps. Finally, the server encrypts the blinding factors and the stag

and encapsulates those as the env and sends that along produced bxtraps and strap

as the query token to the user who initially sends the plain query. Later, the user
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should send env to the server which proves that the user is authenticated by the

patient.

The next couple of procedures for the keyword search, which are depicted in

Algorithm 6 and Algorithm 7, should be operated simultaneously by the querier

(User) and the server.

In the user side, which is explained in Algorithm 6, the querier(User) sends env

and stag to the server as soon as getting token from the data owner (Patient).

Afterwards, the querier starts to generate bxtoken continuously and sends them to

the server, until it receives the stop command from the server. Each bxtoken contains

a modified bxtrapzci for each keyword in the query which helps server to check if that

keyword of the query belongs to the document indc or not. The user receives an

encrypted document if all keywords belong to that document. The user later can

decrypt that document using Ke which is generated by a PRF using strap.

As displayed in Algorithm 7, in the server side of the keyword search, the server

checks if the querier is authenticated by decrypting the received env using the shared

key. As explained earlier, the server receives a shared encryption key from the data

owner (Patient) in Setup phase. Afterwards, the server accesses the tuple list and

encrypted records which contains the least frequent keyword by applying stag in

TSetRetrieve as the input. Subsequently, the server receives bxtokens from the user

and checks if all bxtrap[i]y/ρis in each bxtoken are members of XSet. If any bxtoken

satisfies mentioned condition, the server sends the related encrypted record to the
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Algorithm 6 User Side of the Search Protocol

1: procedure UserSideSearch

2: token← AskTokenFromPatientGivenQuery(w̄)

3: SendStagToServer(stag) and

4: SendEnvToServer(env) ⊲ env is encrypted and signed by Patient

5: Ke ← F1(strap, 2) and Kz ← F1(strap, 1)

6: eSet← empty set of encrypted documents

7: docSet← empty set of decrypted documents

8: while ReceiveStopFromServer() do

9: zc ← F1(Kz, c) ⊲ F1 is a pseudo random function

10: bxtoken[c]← empty array ⊲ bxtoken is a two-dimensional array

11: for i = 2, ..., n do

12: bxtoken[c][i]← bxtrapzci

13: end for

14: SendBXtokenToServer(bxtoken[c])

15: if e← ReceiveEFromServer() then

16: eSet← eSet ∪ e

17: end if

18: c← c+ 1

19: end while

20: for each ej in eSet do

21: indj ← Dec(Ke, ej)

22: docSet← docSet ∪ indj

23: end for

24: end procedure
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Algorithm 7 Server Side of the Search Protocol

1: procedure ServerSideSearch(Encrypted Date ED) ⊲ ED contains TSet

and XSet

2: env ← AskEnvFromUser()

3: (stag, ρ2, . . . , ρn)← VerifyAuthDec(KM , env)

4: if stag is NULL then

5: retrun

6: end if

7: for c = 1, . . . , sizeof(t) do

8: bxtoken[c]← AskCthTokenArrayFromUser()

9: (ec, yc)← cth tuple of t

10: checkTerms← true

11: for i = 2, . . . , n do ⊲ n is the number of keywords in the query

12: if bxtoken[c][i]y/ρi is not member of XSet then

13: checkTerms← false

14: end if

15: end for

16: if checkTerms is true then

17: SendEToUser(ec)

18: end if

19: end for

20: SendStopToPatient()

21: end procedure
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user. In other words, this part of the algorithm checks if encrypted documents, which

contain the least frequent keyword, contain the rest of keywords in the query. The

algorithm then sends those documents which meet the requirements to the querier.

In the following chapter, the implementation and experimental results of the

proposed system.
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Chapter 6

Implementation and Experimental

Results

This chapter discusses the implementation of the framework for Privacy-Preserving

Query Processing on Health Data. In other words, the implemented framework pro-

vides searchable symmetric encryption for multiple users in the health area. This

framework is implemented in Java language using the IntelliJ IDEA framework. The

implemented framework uses Maven, a build automation tool, to build the project

and its libraries. This project engages various libraries in order to enhance the

performance and to provide more features. The most important applied libraries

are the Clusion library and the Bouncy Castle library. Clusion is a handy library

which provides searchable symmetric encryption algorithms, as well as other func-

tionalities, such as Indexing, which are essential for this project. The Bouncy Castle
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library prepares the cryptographic primitives. In the following sections, I give a brief

introduction to the applied programming language, programming framework, and

libraries.

6.1 Programming Language

6.1.1 Java

Java is known as one of the most popular languages in desktop, mobile, and client-

server web development. In 2013, Beneke and Wieldt announced that 9 million

developers use Java as their programming language around the world. Java is a

concurrent, object-oriented, class-based programming language. The creators of Java

intended that this programming language have few implementation dependencies.

The Java slogan, “write once, run anywhere”, reflects the fewer dependencies concept.

This phrase means that a Java application, which is compiled on a platform, can

run on all other platforms and operating systems without recompilation. The Java

compiler converts the Java applications’ source codes to bytecodes (Java binary code)

which can run on every platform that operates Java virtual machine (JVM). JVM is

a virtual computing machine that interprets Java bytecodes. In other words, JVM

is an interpreter between Java binary codes and operating systems. This feature

in Java language supports the project to easily run on all of the various current

platforms.
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6.2 Integrated Development Environment (IDE)

6.2.1 IntelliJ IDEA

IntelliJ IDEA is a favourite integrated development environment (IDE) for devel-

oping programs in Java language. The JetBrains company developed this IDE in

the community and proprietary editions, but both can be used for commercial de-

velopment. In the Infoworld report, IntelliJ achieved the first rank in overall score

between the most favourite Java programming IDEs: Eclipse, NetBeans, JDevel-

oper, and JetBrains IntelliJ IDEA. In this benchmark, the documentation, ease of

use, plug-in ecosystem, and Java features were assessed [13]. In 2014, Google devel-

oped its first Android IDE, Android Studio 1.0, based on the free edition of IntelliJ

IDEA. The latest version of IntelliJ IDEA supports Java 9, provides UI designer for

Android, and Play 2.0 for Scala [66].

6.3 Apache Maven

Apache Maven is mainly used as an automation build tool for Java language which

describes how the target program or application has to be built as well as the depen-

dencies. An XML file for each project determines the steps of building the applica-

tion, dependencies, modules, structures, folders and required libraries, and plug-ins.

Maven handles dependencies of the project and automatically downloads, stores, and

uses them to build the target application [1].

68



6.4 Bouncy Castle Library

The Bouncy Castle library is a well-known cryptography library which provides many

cryptographic algorithms and APIs in Java and C# languages. Bouncy Castle in-

cludes low-level and high-level components which are the light-weight API and the

Java cryptography extension (JCE) provider. The first level component, or light-

weight API, provides all base cryptographic algorithms. Some developers use the

low-level component of Bouncy Castle for applications and devices with limited

memory. The JCE provider is using the other component and provides easy-to-use

cryptographic methods with a lot of predefined configurations. Many Java projects

and applications, which require cryptographic operations, use JCE provider [2].

6.5 The Clusion Library

The Clusion library, which is implemented in Java language, provides multiple search-

able symmetric encryption (SSE) schemes as modules. This library supports recent

studies and popular operations like disjunctive, conjunctive, and boolean keyword

search. All implemented schemes in Clusion generally have a sub-linear time com-

plexity for their search phase. The Clusion library uses Bouncy Castle Library in

the back-end which is introduced in Section 6.4. The Clusion library, which is pro-

vided under the GNU General Public License v3 (GPLv3), is easily accessible on the

Internet [43, 51].
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6.5.1 Manipulate Various Record Types

Clusion supports various types of files as the data which can be outsourced. PDF

files, Microsoft Word, Microsoft Power Point, HTML, and txt files are all included.

Clusion applies Apache Lucene in order to obtain the keyword list for all data. In

order to manipulate PDF and Microsoft documents, Clusion uses Apache PDFBox

and Apache POI libraries.

6.6 Experimental Setup

I conducted some experiments on a high-end desktop with an Intel Core i7-4790 CPU

@ 3.60 GHz (8 CPUs) as processor and a 16GB RAM as memory, running Microsoft

Windows 10 64-bit (Build 15063).

My analysis demonstrates the performance of the implemented method and frame-

work regarding computation and execution time, as well as storage and communi-

cation overheads. The computation and execution time calculated for the search-

able encryption scheme includes the construction of the inverted index, building the

searchable encrypted data, determining unique keywords, and their frequencies for

all documents, generating the associated dictionary, and running the actual search.
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6.6.1 Dataset

I selected the dataset of “EHR Products Used for Meaningful Use Attestation” which

was publicly available on the Health IT dashboard website [4]. This dataset was ac-

quired over the Medicare Electronic Health Record Incentive Program (MEIP). This

program motivates EHR providers to upgrade and show that they are adopting cer-

tified EHR technology. The MEIP dataset [34] in the accessed time had 1932500

records. This data was acquired in seven years of the EHR Incentive Program. I

applied an application to create a separate file for each record to test the perfor-

mance of the developed framework for various sizes of data. Table 6.1 provides the

description for all data fields in the dataset.
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Table 6.1: Dataset documentation

Data Field Data Description

NPI National Provider Identifier

Provider Type Type of Health Care Provider

Business State Territory U.S. State or Territorial Location of

Provider

ZIP ZIP Code Where Hospital or Health

Care Professional Practice Is Located.

Specialty Clinical Specialty of Health Care

Provider

Hospital Type Type of Hospital.

Program Type CMS Incentive Program in Which

Provider Is Registered

Vendor Name Electronic Health Record (EHR) Ven-

dor Name

EHR Product Name Electronic Health Record (EHR) Prod-

uct Name

Product Classification Electronic Health Record (EHR) Prod-

uct Classification

Attestation ID Unique Identification Number for Each

Meaningful Use Attestation
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6.7 Results

The experiments of this thesis assessed the performance of the implemented frame-

work for privacy preserving query processing. These experiments assessed the per-

formance of the framework in various ways. In these experiments, the corresponding

effects of the following paradigms on the performance and execution time were in-

vestigated: a database’s scale; the conjunctive multi-term query; constant result set.

In order to assess the scalability of the framework of the query engine, I generated

several subsets of my dataset in various sizes. The original dataset of experiments

had about two million records of EHR.

The first experiment investigated the execution time of single-term searches for

constant result sets and proportional result sets. I also demonstrated the execution

time for proportional result sets by MySQL. Figure 6.1 shows that the execution time

of a privacy preserving query in the framework has a linear relation with the database

size and the execution time is independent if the size of result set is constant. Figure

6.1 also shows that the framework provides results faster than MySQL only for single-

term queries with small result sets. In Figure 6.1, the vertical and horizontal axis

are respectively related to the time and size of database and both are shown in the

logarithmic scale.

In the second experiment, single-term queries versus two-term queries were as-

sessed. Figure 6.2 shows the results of single-term and two-term queries with various

selectivities. The selectivity of a keyword wi (|DB[wi]|) is the number of all doc-
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uments which contain that keyword (wi) in the dataset. Figure 6.2 demonstrates

execution times for querying “Dermatology” in various databases where the selec-

tivity of that keyword can be 100, 1,000, 10,000, 100,000, and 1,000,000. Figure 6.2

also shows execution times for querying the conjunctive keywords “Dermatology”

and “Illinois” for the mentioned various databases and selectivities. In all queries,

the “Dermatology” term acted as the s-term. For two-term queries, all tuples for

the s-term retrieved from the TSet are checked against the XSet. While two-term

queries had to do more duties and check retrieved tuples against XSet, their execu-

tion times were not too much longer than single-term queries. In other words, the

execution time was totally affected by disk input/output and network latencies.

The last experiment of this thesis investigated the effect of the result set’s size

or constant selectivity on the execution time while querying databases with different

sizes. This experiment showed that two-term queries on various databases, which re-

ceived the same result sets, have almost the same running times. Figure 6.3 illustrates

that “Nephrology” and “Dermatology” keywords, which had constant selectivities

of 100 and 10000 in all databases, spent 0.01 second and 2.5 seconds for their query

executions in all databases respectively. In other words, the execution time is mostly

impressed by tuple retrievals and I/O latencies, which were observed in the previous

experiment as well.

In summary, the experiments showed that the implemented framework is very

effective having about two million records of EHR. The framework ran significantly
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quicker for those queries with small retrieved records. For two-term queries, the

performance of the framework depends on the selecting of the appropriate s-term.

In other words, poor selectivity ruins the framework’s efficiency. These experiments

also showed that the framework can compete with MySQL while s-term is properly

selected.
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Chapter 7

Conclusion and Future Works

7.1 Conclusion

In this thesis, I targeted the data privacy violation which happens for data owners

(e.g. patients) in the health domain. In health systems, whole data is usually

shared between trusted parties. I introduced an applicable framework for the privacy-

preserving query processing and keyword search on health data which addresses

the aforementioned issue. The main purpose of this framework is protecting the

health information of users while dealing with cloud or online health systems and

outsourcing their private health data. This system lets the data owner encrypt

his/her private data, outsource that data and authorize some data users to run

queries and extract their required data while the query is operated by a cloud server.

The system maintains privacy of the query and results against the cloud server. To
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clarify, this framework provides secure multi-client query processing and keyword

search on health data. In this research I have applied the notable SSE scheme,

Multi-Client Oblivious Cross-Tags (MC-OXT), which is proposed by Cash et al.

[26]. According to the MC-OXT scheme’s security, the limited amount of leakage

of the system while running queries is determined and it is proved that the system

is IND-CKA2 secure [19, 26, 42]. IND-CKA2 is defined in Section 3.3.3.3. The

complexity analysis and experimental results prove that the proposed framework is

applicable in a practical environment.

7.2 Future Works

The implemented framework can be extended in various domains. The implementing

of dynamic query processing, which influences data owners to add, update, or remove

data while the authorized users are able to run query could be a next step. A recent

study conducted by Kamara and Moataz [43], provided a new method for arbitrary

disjunctive and boolean queries in a sub-linear time which is efficient and can be

applied for multi-client framework query processing on health data.
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