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ABSTRACT 

Adequate training is essential in safety critical occupations. Task proficiency is typically 

assessed through relevant performance measures. While such measures provide information 

about how effectively an individual can perform the task, they give no insight about their 

comfort level. Ideally, individuals would be capable of executing tasks not just at a certain 

level of performance, but also with confidence and a high degree of cognitive efficiency.  

Neural signals may provide information regarding a trainee’s task proficiency that 

performance measures alone cannot. The purpose of this study was to investigate patterns in 

neural activity that are indicative of task proficiency. Ten novice participants completed ten 

trials of a manoeuvering task in a high-fidelity lifeboat simulator while their neural activity 

was recorded via 64-channel EEG. Power spectral features were used along with linear 

discriminant analysis to classify the data from pairs of consecutive trials. Repeated measures 

mixed model linear regression showed that on average, the classification accuracy of 

consecutive trials decreased significantly over the course of training (from 82% to 73%). Since 

the classification accuracies reflect how different the neural activation patterns in the brain 

are between the trials classified, this result indicates that with practice, the associated neural 

activity becomes more similar from trial to trial. We hypothesize that in the early stages of the 

practice session, the neural activity is quite distinct from trial to trial as the individual works 

to develop and refine a strategy for task execution, then as they settle on an effective strategy, 

their neural activity becomes more stable across trials, explaining the lower classification 

accuracy observed in consecutive trials later in the session. These results could be used to 

develop a neural indicator of task proficiency. 
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1 Chapter 1 : Introduction 

1.1 Problem statement 

A brain-computer interface (BCI) is a system that measures central nervous system (CNS) 

activity and converts it into artificial output that replaces, restores, enhances, supplements, 

or improves natural CNS output, and thereby changes the ongoing interactions between 

the CNS and its external or internal environment [1]. BCIs are most often based on neuro-

electric signals acquired via electroencephalography (EEG). Traditionally, BCI has been 

focused on “active” applications. An active BCI is a system that measures intentionally-

modulated brain activity, determines which of a pre-defined set of mental states the user 

has generated (usually by performing some specific mental tasks), and translates this into 

commands for controlling an external device. The objective of active BCI research has 

been primarily to provide a movement-free means of communication and/or 

environmental control for individuals with profound motor disabilities. More recently, 

however, BCI for applications intended for able-bodied individuals in a variety of contexts 

has emerged. A passive BCI (pBCI) is a system that measures ongoing, non-intentionally 

modulated activity from the central (and sometimes peripheral) nervous system, extracts 

information about the user’s cognitive and/or emotional state, and uses it to adapt human-

computer interaction [2].  
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Passive BCIs have various potential applications for augmenting or improving existing 

systems. One example application is to enhance online or virtual environment-based 

training programs to provide users with an individualized/adaptive learning experience. 

Currently, training is typically assessed through behavioural performance metrics, but this 

gives no indication of neural efficiency of task performance. Being able to perform a task 

very well (i.e., with high effectiveness) but with a lot of effort is very different from being 

able to maintain the same level of performance with low effort (i.e., with high cognitive 

efficiency), particularly in hazardous, safety-critical work environments. Ideally, a good 

training program would ensure that the participants get up to a point where they can 

perform required tasks with both high effectiveness and high efficiency, so that they are 

more likely to be ready to execute the task in the real world where conditions may be 

stressful or unpredictable. Neural signals may be able to provide the information regarding 

cognitive efficiency, which could then be used to adapt the training program for individual 

users via a passive BCI. First, we need to identify neural indicator(s) of task proficiency.  

Simulation based-training in virtual environments is often used in situations where “real-

life” training is impractical, or even impossible, due to ethical, logistical, or financial 

constraints. Such training protocols could benefit from a passive BCI of this type. Previous 

literature has explored this for flight simulators and air traffic management [3][4][5]. 

However, this previous research has focused on longer term training, over weeks or 

months. Sometimes training, particularly some emergency response training, is done over 

shorter periods, even a single session, with recommended follow-up, or “refresher”, 

sessions spaced by months or years. Also, the tasks studied thus far in the literature have 
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been limited, so there is a need to explore different types of tasks. It may be that a task 

specific neural proficiency measure may be required rather than a universal measure. 

We will address these gaps in the literature by looking at a previously unstudied task 

(specifically, operating a lifeboat) and looking for neural indicators of skill acquisition 

over a relatively short, one session period. 

1.2 Research Objectives  

The long-term objective of this research is to develop a passive BCI for incorporation into 

VE-based training simulators to provide an objective, cognitive-based measure of task 

proficiency/learning. The short-term objective of this thesis was to identify EEG-based 

neural indicator(s) of task proficiency/learning over a short period of practice of a 

cognitive motor task performed in a VE-based training simulator. 

1.3 Thesis Organization 

The remainder of this thesis is organized in five chapters: literature review, methodology, 

results, discussion, and conclusions. 

Chapter 2 presents the literature review which gives an overview of passive BCI, human 

learning, cognitive efficiency and their relevance to this work. It describes different 

methods to acquire neurophysiological data (e.g., fMRI and EEG), and their strengths and 

weaknesses. This section also reviews the previous applications of EEG for training or 

learning evaluation purposes in the literature. 
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Chapter 3 presents a detailed description of how the experiment was done and how the 

data were collected from all participants. This chapter also describes how the data were 

analyzed.  

Chapter 4 shows the results of the data analysis, while Chapter 5 discusses these findings 

in more detail and identifies some limitations of the work. 

Chapter 6 summarizes the main findings of this thesis and discusses some potential 

directions for future work. 
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2 Chapter 2 : Literature review 

 

2.1 Brain computer interface (BCI) 

According to Brunner et al. (2015), a brain-computer interface (BCI) is defined as “a 

system that measures CNS activity and converts it into artificial output that replaces, 

restores, enhances, supplements, or improves natural CNS output and thereby changes the 

ongoing interactions between the CNS and its external or internal environment” [1]. They 

further describe these five application scenarios as follows:  

(1) BCIs can replace natural CNS output that has been lost as a result of injury or malady. 

Examples embody communication (through a spelling system and voice synthesis) and 

motorized wheelchair control. 

(2) BCIs can restore lost natural CNS output. Examples include useful electrical 

stimulation of muscles in a paralyzed person and stimulation of peripheral nerves to revive 

bladder function.  

(3) BCIs can enhance natural CNS output. Examples include observance of brain activity 

throughout prolonged demanding tasks such as driving a car and detecting lapses of 

attention, that alerts the person and restores attention. 

(4) BCIs can supplement natural CNS output. Examples include providing a robotic arm 

to someone and providing a selection function for people using a joystick. 
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(5) BCIs can improve natural CNS output. Examples include employing a BCI in stroke 

rehabilitation that detects and enhances signals from a damaged cortical area to stimulate 

arm muscles or an orthosis to boost arm movements. 

For many years, BCI research was focused on the first application listed above; that is, 

providing a movement-free means of communication and environmental control for 

individuals with severe motor disabilities. Recently, however, the field has expanded to 

include other medical or rehabilitation-related applications, as well as applications 

intended primarily for use by healthy/able-bodied users. In most cases, the research is in 

its very early stages and work is focused on demonstrating feasibility of application cases, 

establishing techniques for detecting brain states etc. 

The main components of a typical BCI systems are depicted in Figure 2.1. First, the brain 

signals are acquired from the user via some functional imaging technique. Next the brain 

activity is interpreted and translated by the BCI system into an appropriate output to the 

application. The user observes the resulting change in the application, and this feedback 

modifies the experience of the user, which in turn affects their brain activity, and this 

continues in a positive feedback loop. 
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Figure 2. 1 - Principle of a brain-computer interface including possible application 
scenarios (adapted from [6]). 

2.1.1 Active and Passive BCIs 

There are a number of ways BCIs can be categorized. One way is according to the type of 

brain activity the BCI detects, or the way the BCI output is controlled. By these criteria, 

there are two main types of BCI: active and passive [1]. These can be described as follows: 

a) Active BCI: An active BCI derives its outputs from brain activity which is directly 

and consciously controlled by the user, independently from external events, for the 

purpose of controlling an application. The user usually generates the desired brain 

activity by performing a particular mental task such as motor imagery, or mental 

arithmetic [7].  

b) Passive BCI: A passive BCI derives its outputs from arbitrary brain activity arising 

without intentional or voluntary control by the user, for the purpose of enriching a 
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human-computer interaction with implicit information on the user’s mental state 

(e.g., cognitive or emotional) [8].  

A schematic overview of active and passive BCI is depicted in Figure 2.2. 

 

Figure 2. 2 - Schematic overview of an active and a passive BCI (Adapted from [2]) 

 

The most extensively studied application of active BCI systems is to provide a method for 

individuals with severe motor impairment to control external devices (e.g., computer, 

wheelchair) without movement of any kind. For individuals who are nonverbal and have 

no reliable and reproducible motor ability (e.g., late stage amyotrophic lateral sclerosis, 

or ALS) active BCIs could have a profound positive impact on quality of life as they may 

be the only hope for maintaining a means of communication with loved ones and 

healthcare providers. Active BCIs may also facilitate hands-free control of machines. For 
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example, BCI assistive robots could offer support for disabled users in daily and 

professional life, increasing their cooperation in building their community [5]. 

Furthermore, entertainment and gaming applications (e.g., [9]) have opened the market 

for non-medical active BCIs targeted at the general population.  

Passive BCIs essentially perform user state monitoring and use the information to adapt 

some human-computer interface system (e.g., video game, autopilot system, graphical 

user interface) according to the estimated emotional or cognitive state of the user [10]. For 

example, a passive BCI integrated into a video game could monitor the “mental workload” 

of the player, and automatically make the game harder if the mental workload is too low 

and easier if it is too high. Much passive BCI research to date has been focused on 

improving safety in high-risk and safety-critical occupations like air traffic controllers, 

pilots, and industrial operators by monitoring states like mental workload, stress, and 

fatigue [11, 12]. Passive BCIs could also find application in the development of smart 

environments, in emotion-controlling applications, and in neuromarketing [13].  

2.1.2 Invasive and non-invasive BCIs  

BCIs can also be categorized according to the way the brain signals are acquired, that is, 

the type of functional imaging technology that is used. We can divide them into non-

invasive and invasive, which are described as follows: 

a) Non-invasive BCI: The sensors are placed on the scalp to measure the electrical 

potentials (electroencephalography, EEG), magnetic field 

(magnetoencephalography, MEG), or hemodynamic response (functional 
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magnetic resonance imaging, fMRI; functional near-infrared spectroscopy, 

(fNIRS) produced in the brain. 

b) Invasive BCI: The sensors are placed into the cortical tissue, measuring the activity 

of a single neuron (intra-cortical electrodes) or populations of neurons 

(electrocorticography, ECoG). 

While invasive BCIs work much better due to the significantly higher quality of the brain 

signals acquired, there are very few applications/situations in which a user would be 

willing to undergo implantation of sensors onto/into their brain. Therefore, for a majority 

of BCI applications, the focus is on non-invasive functional imaging technologies.  

Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) are the 

leading non-invasive BCI modalities in terms of cost and portability [14]. Recently 

researchers have studied combining these two modalities for improved BCI performance 

in what has been termed a “hybrid BCI” [15, 16].  

Figure 2.3 shows a list of Invasive and non-invasive methods. 
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Figure 2. 3 - Signal acquisition methods 

2.2 Advantages and disadvantages of EEG for BCI applications 

EEG records the electric fields generated by neural activity. It has many advantages 

compared to alternative imaging techniques or pure behavioral observations. The most 

central benefit of EEG is its excellent time resolution, that is, it can take hundreds to 

thousands of snapshots of electrical activity across multiple sensors within a single 

second. This renders EEG an ideal technology to study the precise time course of cognitive 

and emotional processing underlying behavior. On top of that, EEG systems are relatively 

inexpensive, user-friendly, small, and portable, making them very practical for use in BCI 

applications. However, EEG does have its disadvantages as well. The use of gel and paste 

can be really time consuming and interference from myogenic and electric sources of 

noise can really disrupt the signal. For this reason, research is ongoing to eliminate these 

disadvantages (e.g., development of dry/wireless electrode system) in the future.   
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Magnetoencephalography (MEG) records the magnetic fields generated by neural 

activity. Like EEG, MEG has very good time resolution and is usually considered to 

capture deeper neural activity much better than EEG. However, MEG scanners are large, 

stationary, and expensive, and they limit subject movement. They also require heavy 

technical maintenance and training resources. As such, MEG is impractical for BCI 

applications. 

Functional magnetic resonance imaging (fMRI) measures changes in blood flow 

associated with neural activity. Increased neural firing requires oxygen, which is delivered 

by blood, and the magnetic properties of oxygenated blood are different from those of 

non-oxygenated blood. This property is measured by fMRI as a distortion of the magnetic 

field generated by protons. fMRI has excellent spatial resolution, and for many 

applications is the “gold standard” of functional imaging. However, it lacks the time 

resolution of EEG and is large, expensive, and stationary, so for BCI applications it is not 

at all feasible. 

Positron emission tomography (PET) is an invasive nuclear imaging technique based on 

gamma radiation of a decay that is inserted into the body of the respondent. With PET, 

researchers can monitor metabolic activity (for example, glucose metabolism) of neurons 

during cognitive activity. While PET scans are much more robust towards motion 

artifacts, they lack the high time resolution of EEG recordings. 
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2.3 Fundamentals of EEG 

2.3.1 Origin of EEG 

The EEG records electrical activity originating in the cerebral cortex via electrodes placed 

on the surface of the scalp. The electrical signals originate from neurons, cells in the brain 

that communicate with each other through electrical impulses [17]. There are a number of 

possible sources of the EEG signals, including action potentials, post-synaptic potentials 

(PSPs), and chronic neuronal depolarization. Action potentials induce a brief (10 ms or 

less) local current in the axon (the long threadlike part of a nerve cell along which impulses 

are conducted from the cell body to other cells) with a very limited potential field. This 

makes them unlikely candidates. PSPs are considerably longer (50–200 ms), have a much 

greater field, and thus are more likely to be the primary generators of the EEG [18]. 

2.3.2 Electrode placement 

To aid in the interpretation of EEG signals across laboratories, studies, etc., electrode 

placement has been standardized according to what is known as the 10-20 International 

System of Electrode Placement (Figure 2.4a). Invented by Dr. Herbert Jasper at the 

Montreal Neurological Institute in 1958 [19], the name comes from the fact that the 

distances between adjacent electrodes are either 10% or 20% of the total front–to-back or 

right–to-left distance of the skull. This system was developed to ensure standardized 

reproducibility, so that data can be compared within an individual over time as well as 

between individuals. The names of the electrode locations in the 10-20 system are shown 

in Figure 2.4a and make reference to the underlying brain region. For example, electrode 

Fz lies over the centre of the frontal cortex, while electrode P3 lies over the left parietal 
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cortex.  To allow the placement of a greater number of electrodes, the 10-10 system (see 

Figure 2.4b) can be used [18]. 

 

Figure 2.4 a - 10-20 system   Figure 2.4 b - 10-10 system 

2.3.3 EEG frequency bands 

The electrical impulses in an EEG recording are measured in microvolts (µV) and look 

like wavy lines with peaks and valleys. These EEG brainwaves change according to what 

we are doing and feeling. Researchers have classified these brain waves according to 

specific frequency bands described below. EEG signal components at particular 

frequencies are related to the synchronized oscillation of populations of neurons.  

Delta band (varies from 1-4 Hz):  Delta brainwaves are slow and deeply penetrating. They 

are generated in deepest meditation and dreamless sleep. Delta waves suspend external 

awareness and are the source of empathy. Healing and regeneration are stimulated in this 

state [20, 21].  
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Theta band (varies from 4-8Hz) : Theta brainwaves occur most often in sleep but are also 

dominant in deep meditation. Theta is our entryway to learning, memory, and intuition. In 

theta, our senses are withdrawn from the external world and focused on signals originating 

from within [22].  

Alpha band (varies from 8-12 Hz) : Alpha brainwaves are dominant throughout quietly 

flowing thoughts, and in some pondering states. Alpha is the resting state for the brain. 

Alpha waves aid overall mental coordination, calmness, alertness, mind/body integration 

and learning [20]. 

Beta band (varies from 13-30 Hz) : Beta brainwaves dominate our traditional waking state 

of consciousness when attention is directed towards cognitive tasks and the outside world. 

Beta is a ‘fast’ activity, present when we are alert, attentive, engaged in problem solving, 

judgment, decision making, or focused mental activity [20].  

Gamma band (frequency above 30 Hz) : Gamma brainwaves are the fastest of brain waves 

and relate to simultaneous processing of information from different brain areas. Gamma 

brainwaves pass information rapidly. A prominent gamma rhythm provides a signature of 

engaged networks. Gamma has been observed in a number of cortical areas, as well as 

subcortical structures, in numerous species. In sensory cortex, gamma power increases 

with sensory drive and with a broad range of cognitive phenomena, including perceptual 

grouping and attention [7].  
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2.4 Potential passive BCI application: Training assessment 

Another potential passive BCI application is to enhance online or simulation-based 

training by providing a cognitive measure for assessment of skill acquisition. 

Inappropriate training assessment might have either high social costs or economic 

impacts, especially for pilots, air-traffic controllers, surgeons, and other high-risk 

occupations or work environments. One of the current limitations of standard training 

assessment procedures is the lack of information about the amount of cognitive resources 

required by the individual for the correct execution of the proposed task. In fact, even if 

the task is accomplished achieving the maximum performance, by the standard training 

assessment methods, it would not be possible to gather and evaluate information about 

cognitive resources available for dealing with unexpected events or emergency conditions. 

Therefore, a metric based on the brain activity (neurometric) able to provide this kind of 

information should be very important. 

The difference between the available cognitive resources and the amount of those involved 

for the task execution is called Cognitive Spare Capacity [24]. The higher the cognitive 

spare capacity during a normal working activity (i.e., the operator is involving a low 

amount of cognitive resources), the greater the operator cognitive processing efficiency is 

to perform secondary tasks or to react to unexpected emergency events. 

2.4.1 Cognitive Processing efficiency  

Before we get to know about processing efficiency theory, we need to know cognitive 

interference theory. Cognitive interference refers to the unwanted and often disturbing 

thoughts that intrude on a person's life [24]. The central assumptions of cognitive 
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interference theory are that the experience of anxiety involves having various task-

irrelevant thoughts (e.g., self-preoccupation; worry), and that these task-irrelevant 

thoughts affect performance by reducing the amount of attention available to be allocated 

to a central ongoing task. In this context, anxiety does not refer to the generally understood 

state of emotional stress associated with the term, but rather refers to the state of worry 

experienced by individuals when unsure how to complete a task and are aware of the 

associated impact on their performance. 

The first problem with that theory was addressed by drawing a distinction between 

performance effectiveness and processing efficiency. Performance effectiveness is easily 

defined, because it refers to the quality of performance (e.g., as assessed by outcome 

measures such as accuracy and speed of task performance). Processing efficiency is based 

on the relationship between performance effectiveness and the amount of effort or 

resources used to attain that level of performance. Task-irrelevant thoughts such as worry 

and self-preoccupation are assumed to impair processing efficiency [25]. But as people 

become more comfortable with a task and develop an effective strategy for its execution, 

information that is relevant to a task tends to be selectively retrieved and task-irrelevant 

thoughts subside, resulting in increased processing efficiency [26]. 

2.5 Neuroimaging studies of training/learning 

Research with both animal models and humans has shown that changes in neural 

representations can be induced not solely in response to lesions of input or output 

pathways, but that the organization of the adult cerebral cortex can change substantially 

as a result of practice and experience. Discoveries of these kinds challenge us to 
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investigate how it is that the brain changes in response to expertise. Modern neuroimaging 

methods such as positron emission tomography (PET) and functional magnetic resonance 

imaging (fMRI) are excellent tools in this endeavour, enabling the examination of how 

the brain changes in response to practice or repeated exposure to a particular task. 

A growing number of human functional neuroimaging studies are investigating the 

changes in brain activation that occur as a result of practice on a variety of motor, 

visuomotor, perceptual and cognitive tasks. Across studies, three main patterns of 

practice-related activation change can be distinguished. Practice may result in an increase 

or a decrease in activation in the brain areas involved in task performance, or it may 

produce a functional reorganization of brain activity, which is a combined pattern of 

activation increases and decreases across a number of brain areas [27]. 

Shadmehr and Holcomb (2007) used PET to examine brain activations during a task 

requiring individuals to control a robotic arm and perform rapid reaching movements. 

Practice resulted in task performance becoming highly skilled. A redistribution of 

activations from the frontal cortex to the posterior areas (parietal cortex, and cerebellum) 

was only observed during a recall session that took place 5.5 hr after the last practice 

session. Interestingly, these changes occurred in the absence of any further performance 

changes. The authors propose that this is consistent with the notion that acquisition of 

skilled movement is mediated through prefrontal cortex structures, and with time and 

practice, and as automation occurs, motor structures such as the cerebellum assume a 

greater role and possibly become the site of motor memory [28]. 
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Petersson et al. (1999) also observed a reorganization of functional activations. Using 

PET, they compared practised to novel free recall of abstract designs. While they observed 

decreases in activation associated with decreased reliance on attentional and working 

memory processes (in areas like the prefrontal cortex, anterior cingulate cortex, and 

posterior parietal cortex), and increases in areas related to task-irrelevant processing (e.g., 

auditory cortex, insula), they also saw reorganization of activations relating to the 

transition from reliance on non-consolidated representations (inferior temporal cortex) to 

the recall of more developed representations of the abstract designs (occipito-temporal 

region). In other words, a reorganization of activations was observed as the task processes 

shifted from effortful, working memory-based recall to those involving more automatic 

recall of consolidated representations of the abstract designs [29]. 

Kassubek et al. (2001) scanned subjects using fMRI as they read either mirror inverted 

words or plain text before and after a training session. Reading of mirror-inverted items 

activated the dorsal visual pathway and premotor cortex, and a significant practice-related 

reduction in activation in these areas was observed [30]. 

Learning may also change the degree to which subjects are aware of the task or stimulus 

structure, which may result in a change in neural activity [27]. The changes these variables 

can produce can be mistakenly identified as reflecting practice-related processes rather 

than consequences of those processes [31]. 
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2.5.1 EEG studies of training/learning 

Gutierrez and Ramírez-Moreno (2015) used EEG to quantify changes in brain activity 

associated with the progression of the learning experience through the functional analysis-

of-variances (FANOVA) estimators (main effect function, treatment function and zero 

mean gaussian errors) of the EEG power spectral density (PSD). Such functional 

estimators provide a sense of the effect of training in the EEG dynamics. For that purpose, 

they implemented an experiment to monitor the process of learning to type using the 

Colemak keyboard layout during a twelve-lessons training with a repetition of five times 

for each lesson. Their aim was to identify statistically significant changes in PSD of 

various EEG rhythms at different stages and difficulty levels of the learning process. A 

series of statistical tests were performed in order to determine the personalized frequencies 

and sensors at which changes in PSD occur, then the FANOVA estimates were computed 

and analyzed for each subject, at each difficulty level, and for the selected frequency 

bands. Their experimental results showed a significant decrease (p<0.05) in the power of 

beta and gamma rhythms for ten volunteers during the learning process, and such decrease 

happened regardless of the difficulty of the lesson. The speed of such decay in power was 

approximated by the slope of the linear regression of the data. They also performed one-

way ANOVA and multiple-comparison tests in order to assess the effect of repeating the 

lesson [32]. 

The aim of a study that was done by Borghini et al. (2013) was to analyze the variation of 

the EEG power spectra in the theta band when a novice starts to learn a new task, in 

particular a flight simulation task. The goal was to find out the differences from the 
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beginning of the training to the session in which the performance level is good enough for 

considering him/her able to complete the task without any problems. A total of five 30-

minute training sessions were completed over five consecutive days, at the same time each 

day. While the novices were engaged in the flight simulation tasks they recorded the brain 

activity by using high resolution EEG techniques as well as neurophysiologic variables 

such as heart rate and eye blinks rate. They found that EEG power in the theta band at the 

frontal site showed an inverted U-shaped relation during the training sessions for flight 

simulation tasks. One possible explanation for the phenomena is that the brain first worked 

hard to learn how to use specific task-relevant areas, followed by improvement of 

efficiency derived from disuse of irrelevant brain areas for good task performance [4]. 

Taya et al (2015) employed the functional connectome approach to study the changes in 

global and local information transfer efficiency of the functional connectivity induced by 

training of a piloting task. In this study, they investigated training-induced topological 

changes of the brain functional network using the graph theoretical approach. Four levels 

of difficulty were defined to induce a variety of mental workload levels in the participants; 

hyper-easy, easy, medium, and hard. Each subject underwent five consecutive days of 

training, and each session consisted of two sets of the four difficulty conditions. Their 

results have demonstrated that global information transfer efficiency of the network, 

revealed by normalized characteristic path length in beta band, once decreased and then 

increased during the training sessions [33]. 

Borghini et al. (2014) analyzed the possibility of applying a neuro-electrical cognitive 

metrics for the evaluation of the training level of subjects during the learning of a task 
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employed by Air Traffic Controllers. In particular, EEG as well as ECG 

(electrocardiogram) and EOG (electrooculogram) signals were recorded from a group of 

students during the execution of an Air Traffic Management task, proposed at three 

different levels of difficulty [3]. From this research, they discovered that, by focusing the 

analysis on the direct and inverse correlation of the frontal theta (4 –7 Hz) power and heart 

rate, and of the parietal alpha (10-12 Hz) power and eye blink rate, respectively, with the 

degree of mental and emotive engagement, it is possible to obtain useful information about 

the training improvement across the training sessions. The subjects completed one-hour 

training sessions daily for five days. 

Olga et al. (2016) proposed an EEG-based mental state monitoring system that can reflect 

the true “inner” feelings, stress level, and workload of maritime cadets during a simulator-

aided assessment. They analyzed the recognized brain states and the corresponding 

performance and behavior recorded by the simulator to study how human factors affect 

the subjects’ performance. For example, they managed to check if there is any correlation 

of the cadet’s stress level and performance results. Finally, they proposed an EEG-based 

system that allowed them to assess whether a cadet is ready to perform tasks on the bridge 

or needs more training in the simulator even if he/she navigated with few errors during 

the assessment. The 14 channel Emotiv device [34] was used to capture the users’ EEG 

signals. For this experiment, participants underwent four exercises on a single day where 

the length of each exercise was thirty minutes [35]. 

Liu et al. (2016) figured that EEG signals can be used to directly assess the “inner” mental 

state of the trainee. In this paper, they proposed an EEG-based system which can monitor 
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emotion, workload, emotional stress, and environmental stress for human factors 

evaluation in the simulator-added assessment. During their study, human factors 

measurements including mental workload, stress, and emotion of cadets while performing 

the navigation tasks were obtained in real time using the EEG device. They hope to use 

the proposed system to monitor and understand the brain states of the subjects during the 

assessment. The analysis of data and developing the system which can assess whether a 

cadet is well trained to perform the tasks on the bridge or needs more training is the next 

step of their work. For this experiment participants underwent four exercises on the same 

day where the exercises were of variable duration (between 12 to 23 minutes)  [36]. 

Perry et al. (2015) used a dental haptic simulator to figure out the cognitive difference 

between a group of novice and expert surgeons and figured that experts have a lower T3-

Fz coherence than novices. Seven ‘experts’ (qualified dentists) and eight ‘novices’ (first 

year dental students) volunteered for the study. Each subject was given a set time to 

complete a clinical and a non-clinical task on a dental haptic simulator. EEG was recorded 

in the T3, T4 and Fz regions for coherence assessment. Although there was no significant 

difference in the performances of experts and novices, a trend was evident toward lower 

T3-Fz and possibly T4-Fz coherence in experts when compared to novices [37]. 

Borghini et al. (2015) worked to figure out if it was possible to obtain quantitative 

information about the degree of the learning process throughout a training period by 

analyzing the variations in EEG, ECG, and EOG. A group of ten subjects trained daily 

with the NASA multi-attribute-task-battery (MATB). During such training period, 

physiological, behavioral, and subjective data were collected and analyzed. Their results 
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suggested that the EEG signals changed consistently across the training sessions and that 

they have correlations with the overt behavior of the subjects. They observed a clear 

increase of the frontal theta power from the first day of the training to the third day, and a 

decrease from the third to the fifth day. The same trend, but with opposite sign, was 

observed for parietal alpha power [38]. 

Borghini et al. (2017) collected EEG data and the performance of ten participants along a 

training period of three weeks, while learning to execute a NASA-MATB task. Specific 

indexes were estimated from the behavioral data and EEG signal to objectively assess the 

users’ training progress. They proposed a neurometric based on a machine learning 

algorithm to quantify the user’s training level within each session by considering the level 

of task execution, and both the behavioral and cognitive stabilities between consecutive 

sessions. The proposed neurometric takes into account the mean performance level 

achieved by the user (capability in executing the task correctly), the stability of the 

performance across different sessions (capability in maintaining high performance over 

time), and the stability of the brain activations across consecutive training sessions 

(capability in dealing with the task requiring the same amount of cognitive resources once 

it became automatic). By considering such aspects, they proposed a measure of the 

training level and to assess if the single user could be considered “trained” or not [39]. 

All of these studies looked at some certain trend over time, and their experiments consisted 

of training of various tasks over multiple sessions over multiple days. In this thesis, the 

objective was to explore whether observable trends exist in the EEG signals over a much 

shorter training period, specifically a single session. Moreover, in the aforementioned 
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studies, analysis was done on single brain region/frequency band combinations 

individually. In this work, an approach was taken that would allow the consideration of 

multiple frequency bands and regions simultaneously. Finally, this work involves a 

previously unstudied task. 

2.6 Virtual environment for training 

Virtual training environments are used when real-life training is challenging because of 

the high costs, danger, time, or effort involved. Training is a promising application area 

of three-dimensional virtual environments. These environments allow the trainees to 

navigate through and interact with a virtual representation of a real environment in which 

they have to learn to carry out a certain task [40].  

Training in virtual environments can be very effective. Rose et al. (2000) conducted a 

study to measure and evaluate skill transfer of a simple sensorimotor task trained in a VE 

to real world performance. They found that virtual and real training resulted in equivalent 

levels of post-training performance, both of which significantly exceeded task 

performance without training. They also found that real task performance after training in 

a VE was less affected by concurrently performed interference tasks than was real task 

performance after training on the real task [41]. 
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3 Chapter 3: Methods 

 

3.1 Experimental overview: 

A total of 14 volunteers participated in this experiment. Participants were asked to perform 

a task in a high-fidelity lifeboat simulator developed by Virtual Marine (St. John’s, 

Canada) while their EEG signals were recorded. This chapter will first describe the design 

of this experiment and then focus on the assessment of EEG-based skill acquisition 

indicators that will help us to understand the change in brain signal as a participant 

improves in a single task.  

3.2 Study participants 

A total of 14 healthy participants (all male, mean age: 29 ± 4.85 (mean ± std)) were 

recruited on a volunteer basis from the general population at Memorial University of 

Newfoundland. Only male participants were included to reduce the effect of any sex-

related differences in brain function or size [42, 43, 44].   

Participants were included in the study if they met the following criteria:   

1) Were 18-65 years of age, 

2) Had normal vision, or vision corrected-to-normal via contact lenses (eyeglasses can 

impede adequate EEG electrode contact with the scalp), 

3) Had normal or correct-to-normal hearing, 

4) Had no history of neurological disorder, disease, or injury and no cognitive 

impairment, 
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5) Had no prior experience operating a watercraft driven with a steering wheel and 

throttle, either in a real or virtual-environment. 

 As a part of the preparation for the experiment, participants were asked to refrain from 

exercising, smoking, or consuming caffeine or alcohol for at least four hours prior to the 

session. To maximize signal quality, they were also asked to wash their hair on the day of 

the experiment, and refrain from using hair products other than regular shampoo.  

Information regarding age, sex, handedness, driving experience, and gaming experience 

of the participants were collected at the beginning of the session (it was thought that 

individuals with more gaming and/or driving experience may perform better at the lifeboat 

task than others). 

All participants gave written informed consent to participate in this study. The 

experimental design was approved by the Interdisciplinary Committee on Ethics in 

Human Research at Memorial University of Newfoundland. 
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3.3 Instrumentation 

 

Figure 3. 1 - ActiChamp Amplifier with ActiCap active electrodes 

Neural data were collected via a 64-channel EEG system (ActiCHamp amplifer with 

ActiCAP active electrodes, Brain Products GmbH; see Figure 3.1) at a sampling rate of 

500 Hz. Electrodes were placed according to the international 10-20 system and secured 

via a flexible cap (see Figure 3.2).  
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Figure 3. 2 - Participant wearing the electrode cap. Electrode FCz is circled. 

Electrolyte gel was used to achieve good coupling of each electrode to the scalp, with the 

objective being to reduce the electrode impedance to ≤ 10 kΩ. Electrode FCz (circled in 

Figure 3.2) was used as the reference, and the ground electrode was placed in the centre 

of the forehead. 
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In addition to the EEG data, electrooculography (EOG) and electrocardiogram (ECG) data 

were collected via various sensors placed on the hands, face, and chest and connected to 

the auxiliary input channels of the ActiCHamp. Analysis of these data is not included in 

this study. Brain Vision Recorder software was used to record and save the EEG and other 

physiological signal data. 

3.4 Experimental design 

3.4.1 Lifeboat simulator and task 

In this study, we used a lifeboat simulator developed by Virtual Marine Technology (St. 

John’s, Canada). The simulator was developed to train lifeboat coxswains in proper 

lifeboat evacuation procedures. The simulator provides a very realistic first-person view 

as if the participant is inside the lifeboat itself. The simulator does not provide any motion 

simulation, but it is built to include original operating controls from lifeboat 

manufacturers, realistic virtual models of specific production facilities or drilling rigs, 

evacuations in emergency situations such as fire, collisions, and loss of stability, and 

weather and sea condition. Two large computer screens serve as the front “windshield”, 

showing a realistic front view, while smaller screens on either side display what would be 

seen out of the “side windows” of the lifeboat. The systems are customized, so coxswains 

learn to use lifeboats while launching from offshore facilities, based on emergency 

evacuation plans. Individuals can be trained in lifeboat launching procedures (e.g., from a 

larger vessel or oil platform), as well as in driving the lifeboat in the water. The high-

fidelity simulator is capable of simulating a wide range of weather and sea conditions, as 

well as a variety of training scenarios with varying complexity. 
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Figure 3. 3 - Schematic representation of the lifeboat task 

For the purposes of this study, we selected a simple manoeuvering task with which a 

novice participant could reach a reasonable level of competence within a single 2-3 hour 

experimental session (including equipment setup). Specifically, participants were asked 

to manoeuver the lifeboat, using a steering wheel and throttle, in a “zig-zag” motion from 

a starting point through a series of five buoys (i.e., a slalom course, see Figure 3.3). The 

buoys were spaced 36 meters apart, and wave conditions were set to a “ripple”. Weather 

conditions were sun and clouds with a light 2 km/h wind velocity. These task parameters 

were determined via pilot testing to result in a task of appropriate difficulty (i.e., pilot 

participants generally started out with very poor performance but reached a high level of 

performance based on objective behavioural measures within a 1-2 hour practice period). 

3.4.2 Experimental protocol 

Participants completed a single experimental session that lasted approximately 2-3 hours, 

including equipment setup. The actual experimental protocol generally took between 1-2 

hours, including breaks. After the experimenter described the study and obtained informed 
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consent, the participants were positioned inside the lifeboat simulator and equipped with 

the EEG and other sensors. They were given a few moments to become comfortable with 

the simulator and the controls (throttle and steering wheel). Participants were asked to 

minimize movement, particularly of the head, as much as possible during the trials in order 

to reduce signal artifacts. 

Participants completed a total of ten trials of the lifeboat manoeuvering task. Participants 

were instructed to maintain the zig-zag path as accurately as possible, keeping the lifeboat 

close to the buoys without hitting them. They were also told not to go back if they missed 

a buoy, but rather to keep going through the course. There were no time constraints, and 

participants generally took 3-5 minutes to complete each trial. Participants were given 

general feedback after each trial about how they did (e.g., you hit one buoy at high speed), 

but were not given any advice on how to improve their performance; it was left to them 

to figure out a strategy that worked best for them.  

After each trial, participants were asked to complete an abbreviated version of the NASA-

TLX questionnaire [45] to provide a measure of the perceived workload they experienced 

during the trial. This took approximately 1-2 minutes each time. The NASA-TLX is a 

common method of assessing individuals’ perception of the workload experience while 

performing a task. It incorporates multiple dimensions of workload including mental, 

physical, and temporal demand, performance, effort, and frustration. We expected that the 

participants’ perceived workload would decrease as they became more comfortable with 

the task. In addition, the participants were asked to provide a separate rating of the 
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difficulty of the task during the preceding trial, on a scale from 1 (very easy) to 100 (very 

difficult).  

Prior to each lifeboat trial, two baseline trials of one minute each were recorded, one with 

eyes open and one with eyes closed. Data from these trials were used to calculate the 

Individualized Alpha Frequency (see section 3.8.1) as well as to perform baseline 

normalization of the EEG data (see Section 3.7). A combination of one eyes closed 

baseline, one eyes open baseline, and one lifeboat trial comprised one experimental 

“block”, of which there were ten total. Participants were allowed to rest as needed between 

blocks. 

Figure 3.4 shows the timeline of the experimental session. 

 

Figure 3. 4 - Timeline of experimental session (EOB = Eye Open Baseline, ECB = Eye 
Close Baseline) 

3.5 Calculation of performance score 

A performance metric was derived to provide an objective measure of each participant’s 

performance during each trial. This measure was derived based on advice from experts at 

Virtual Marine, and incorporates the speed, accuracy, and control with which the 
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participants’ manoeuvered through the lifeboat course. Speed was indicated simply by the 

time taken to complete the trial. Accuracy and control were indicated by how tightly the 

participant could manoeuver around the buoys without hitting them. Specifically, the 

following information was used to derive the performance score: 

1) Number of buoys hit (i.e., were “bumped into” by the lifeboat) 

2) Speed of contact during a buoy hit (a “hard” hit was considered to be at ≥ 9 knots 

while a “soft” hit was at < 9 knots) 

3) Number of buoys skipped (i.e., were not fully manoeuvered around) 

4) Total distance travelled from start point to finish point 

5) Total time taken (in seconds) to complete the trial 

 The performance score was calculated as follows:   

Performance = 
�������� ������(� � ���� ���)�(� � ���� ���)

�������� � ���� �� �������
 � 1000  (Equation 3.1) 

In this equation, for each “hard” buoy hit, six points were deducted and for each “soft” 

buoy hit three points were deducted. Performance score was inversely proportional to both 

distance and time. Participants could get at most 25 points for their “accuracy score”: for 

each of the five buoys, they would get no points if they did not travel within 18 meters of 

the buoy, three points if they travelled between 9 and 18 meters from the buoy, and five 

points if they stayed within 9 meters of the buoy. The circles in the schematic diagram of 

Figure 3.3 represent these zones. 
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3.6 EEG data analysis. 

3.6.1 Data pre-processing 

One challenge of EEG data is its high signal-to-noise ratio. The EEG signal can be 

contaminated with other electrophysiological artifacts including EOG (from eye 

movements), ECG (from the heart), and EMG (electromyography, from muscle activity), 

as well as electrical noise from the environment, or simply movement of the electrodes. 

As such, the EEG data must undergo pre-processing to remove any unwanted artifacts. 

EEGLAB is a MATLAB toolbox that was used to do the initial processing on the EEG 

data. EEGLAB is distributed under the free GNU GPL license for processing data from 

EEG other electrophysiological signals. Along with all the basic processing tools, 

EEGLAB is able to implement independent component analysis (ICA), time/frequency 

analysis, artifact rejection, and several modes of data visualization. This MATLAB 

toolbox for EEG data analysis was downloaded from this website: 

https://sccn.ucsd.edu/eeglab/index.php. 

The raw EEG data was imported into EEGLAB from Brain Vision Recorder for pre-

processing. Figure 3.5 shows a sample of the raw EEG from the 64 EEG channels, as well 

as the other collected physiological signals (e.g., ECG at bottom). 
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Figure 3. 5 – Sample raw EEG data from 64 electrodes. Includes EOG and ECG also. 

3.6.2 Removal of EMG artifact 

The first step in the noise removal was to manually remove the EMG noise due to muscle 

activity (e.g., from clenching of jaw, forehead, etc.). EMG artifacts are hard to remove 

using any algorithm. So, in order to minimize such artifacts, participants were instructed 

to try to refrain from moving as much as possible during both lifeboat and baseline trials. 
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However, given the nature of the task, movement could not be completely avoided. 

Consequently, we manually removed the small segments of data that were contaminated 

with motions artifact. Figure 3.6 shows a sample of EEG data contaminated by EMG 

artifact. 

 

Figure 3. 6 - EEG signals contaminated by EMG noise 

3.6.3 Removal of low and high frequency content 

Most of the salient information within the EEG signal is contained in the frequency band 

1 – 40 Hz, therefore we applied a Chebyshev Type 2 bandpass filter to retain these 
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frequencies. A Chebyshev Type 2 filter was selected due to its relatively steep roll off in 

the transition band as well its maximally flat passband response.  

3.6.4 Removal of eye movement artifact 

Some of the most prominent artifacts present in the EEG signal are due to eye blinking 

and side-to-side and up-and-down eye movements (saccades). Independent component 

analysis (ICA) is perhaps the most popular method of eye artifact removal in EEG signal 

processing. Independent component analysis (ICA) is a computational method for 

separating a multivariate signal into additive subcomponents. ICA is a special case of 

blind source separation [46].  ICA attempts to decompose a multivariate signal into 

independent non-Gaussian signals. It is very effective for isolating subcomponents 

associated with the eye blinks and the saccades, which can be identified visually and 

removed before reconstructing the signal. Figure 3.7 shows an example of eye artifact 

removal via ICA. Figure 3.7a depicts the original signal contaminated with eye blink and 

saccades. Figure 3.7b shows the signal decomposed into independent components; 

components 8, 17 and 21 contain the eye blinks and saccades, respectively. Finally, Figure 

3.7c shows the signal reconstructed after removal of those components.  
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Figure 3. 7a - EEG data contaminated with blink and saccades artifact 
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Figure 3.7 b - Independent components from ICA. Components 8, 17 and 21 represent 
the blinks and saccades.  
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Figure 3.7 c - EEG data with blink and saccade components removed. 

3.7 Baseline normalization  

Baseline normalization was done on the EEG data from the lifeboat trials. The reason for 

doing this is that the frequency spectrum of data tends to show decreasing power at 

increasing frequencies. This is not specific to EEG data, but also characterizes the 

relationship between power and frequency of many signals, including radio, radiation 

from the Big Bang, natural images, and many more [47]. This decrease in power as a 

function of an increase in frequency follows a “1/ f” shape. This is why it is difficult to 

visualize activity from a large range of frequency bands simultaneously. The 1/f 
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phenomenon entails five important limitations to interpreting and working with time-

frequency power data: 

1) It is difficult to visualize power across a large range of frequency bands, 

2) It is difficult to make quantitative comparisons of power across frequency bands, 

3) Aggregating effects across subjects can be difficult with raw power values, 

4) Task related changes in power can be difficult to disentangle from background 

activity, 

5) Raw power values are not normally distributed because they cannot be negative 

and they are strongly positively skewed. 

In addition, the experimental sessions were generally around 2-3 hours in duration, 

including time for instructions and equipment setup, so it is possible that later baseline 

and trials data were affected by factors such as fatigue. To eliminate such factors, the 

signal from each lifeboat trial was normalized by the eyes-open baseline trial immediately 

preceding it via the z-transform as follows: 

Ztf  =  
�������������������������������

��� ∑ (����������������������������������)��
���

   (Equation 3.2) 

where n is the number of time points in the baseline period, the horizontal bar over baseline 

indicates the mean across the baseline time period, and t and f are time and frequency 

points. The denominator in this equation is the formula for the standard deviation of the 

baseline period. This normalization was done individually for each frequency band/ 

electrode combination. 



43 | P a g e  
 

3.8 Assessing stability of brain activity via statistical classification of consecutive 

trials 

The main objective of this thesis was to identify a neural indicator of learning/task 

proficiency as novice individuals practiced the lifeboat task over a relatively short period. 

One of our hypotheses was that in the early trials when the subject is still new at the task, 

the patterns of neural activity may be very different from one trial to the next as the 

individual continuously adjusts his/her strategy based on their experience from the 

previous trial. Then, as the individual becomes more comfortable and proficient with the 

task and settles on an effective strategy for task execution, the pattern of neural activity 

may become more stable across consecutive trials. Borghini et. al. (2017) used a similar 

hypothesis in their work [39], but they tested this hypothesis over sessions/days. We 

wanted to test the same hypothesis over a shorter training period. To assess this, we used 

machine learning to classify 2-second epochs of data from adjacent trials and used the 

classification accuracy as a measure of data similarity (the lower the classification 

accuracy, the less separable is the data, and thus the more similar are the two trials).  

Statistical classification was done on the data from adjacent trials for each participant 

individually, as well as with the data from all participants combined. Trial n vs. Trial n+1 

classification was done where n varied from 1 to 9 (i.e., Trial 1 vs. 2, Trial 2 vs. 3 …. Trial 

9 vs. 10). Note that in the case where all participant data was combined, data for each 

participant was first (i.e., before being combined into one dataset) normalized from 0 to 1 

as follows: 

���������� ������� ����� =  
������� ��������� (��� �������)

��� (��� �������)���� (��� �������)
        (Equation 3.3) 
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where “all samples” includes epochs from both trial n and trial (n+1). Again, this 

normalization was done for each frequency band/electrode combination. 

This process of classifying adjacent baseline trials will be described in greater detail in the 

following sections.  

3.8.1 Individual alpha frequency (IAF) 

Though fixed frequency ranges are often used to define the different EEG signal bands 

(e.g., delta, alpha, theta, beta, and gamma), there is actually considerable variability in 

EEG among individuals, and it is often preferred to calculate individualized frequency 

ranges for these bands of interest. The individual alpha frequency (IAF) is one of the most 

common techniques. The IAF is associated with the maximum power of resting eyes-

closed EEG rhythms [48]. In this experiment, we first determined the frequency of 

maximum power for each of the three eyes-closed baseline trials for a given individual 

using FFT-based power spectrum analysis (Welch technique). That individual’s IAF was 

then calculated to be the mean of these three frequency values. With reference to the IAF, 

the bands of interest were then determined as follows: delta (IAF - 8 Hz to IAF - 6 Hz), 

theta (IAF - 6 Hz to IAF - 4 Hz) and alpha (IAF – 4 Hz to IAF + 2 Hz); fixed bands were 

defined for beta (13–30 Hz) and gamma (30–40 Hz) [48]. The mean IAF peak across 

participants was 9.7 Hz (±0.2 standard error of mean, SEM). 

3.8.2 EEG power calculation 

To calculate the average power, the time series EEG data was divided into 2 second 

epochs. The sampling frequency was 500Hz. So, there were 1000 samples in each epoch. 



45 | P a g e  
 

Then the average power of each frequency band was calculated for those 1000 samples 

using equation 3.4. The average power of a signal x(t) as a function of t is defined as: 

P = lim
�→�

�

�
∫ |�(�)|���

�

�

�
�

�

   (Equation 3.4) 

 Based on the literature, the delta, theta, and alpha were the frequency bands that seemed 

the most promising for identifying patterns related to training/learning, so only these three 

bands were considered in this analysis. 

3.8.3 Electrode selection and total number of features 

The EEG signal power in the three different frequency bands of interest (delta, theta, 

alpha) were calculated for individual electrodes. EEG signals were collected from a total 

of 64 electrodes, however all were not used in the analysis. Electrode FCz served as the 

reference electrode, and electrodes Tp9 and Tp10 were used to record EOG activity 

(which was note used in this analysis). Among the remaining 61 electrodes, nine 

(specifically Cz, C1, C2, C3, C4, C5, C6, T7 and T8) are associated with the motor cortex 

region (shown in Figure 3.8). Because the motor cortex is responsible for voluntary 

movement and is not directly related to learning, we eliminated those electrodes from the 

analysis. 

Electrodes FT9, FT10, TP9, and TP10 were also excluded because for some participants 

we could not obtain good conductivity with the scalp, resulting in poor signal quality. A 

total of 50 electrodes were included in the analysis of which 24 were over the frontal 

region, and 26 were over the parietal and occipital regions. The name and position of all 

50 selected electrodes are shown in the image below:  
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Figure 3. 8 - Electrodes used in the data analysis (shaded) 

So, there were 50 electrodes included in the classification analysis, and for each one power 

was calculated in three different frequency bands. Thus, the total number of features was 

3 x 50 = 150.  

3.8.4 Fisher criterion for automatic feature selection  

The characteristics of the best feature is that this feature should be quite distinguishable 

between the two classes, in this case between Trial n and Trial n+1. To evaluate how 

FCz = Reference 

electrode 

Motor cortex 

electrodes 
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discriminatory each feature was, the Fisher criterion was used. By selecting the features 

with the highest Fisher criterion value, you are left with features that maximize the 

distance between the means of the two classes while minimizing the variance within each 

class. The Fisher criterion, J, for a particular feature, w, is given by equation 3.5 below, 

2
1 2
2 2
1 2

| |
( )

m m
J w

s s





     (Equation 3.5) 

Where mx represents the mean of the samples (in this case EEG epochs) from class x, and 

sx
2 represents the variance of the samples from class x 

Thus, we calculated J between adjacent trials for each of the features and selected the three 

features with the highest J values.  

3.8.5 Linear Discriminant Analysis (LDA)  

The classification was done using a linear discriminant analysis based on Bayes’ 

discriminant rule. A linear classifier in general tries to establish a hyperplane separating 

the signal space into individual subspaces for all classes. In the binary case, the decision 

rule for a given vector x to belong to class C1 and not C2 reads:  

�� �(��|�) >  �(��|�) �ℎ�� � ∈ �� ��� � ∈ ����ℎ������  

These probabilities can be computed using Bayes’ formula: 

�(��|�) = �(��)�(�|��)�(�)      (Equation 3.6) 

Where p(Ck) is the prior probability for a class k and p(x|ck) is the class distribution.  

Assuming that all classes are a priori equally probable, the priors can be neglected here. 

Therefore, the decision rule reduces to  

�(��|�) >  �(��|�) �ℎ�� � ∈ �� ��� � ∈ ����ℎ������ 
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In the case of LDA, a multivariate Gaussian distribution is assumed for each of the classes’ 

Ck, given by 

�(�|��) =  
�

�(��)����(�)

 exp (−
�

�
(� − µ�)����(� − µ�))  (Equation 3.7) 

Where x is the vector to be classified, f is the dimension of this vector, c is the common 

covariance matrix for all classes, and µk is the mean value of class k.  

3.8.6 Five-fold cross validation 

Cross-validation is a model validation technique for assessing how the results of 

a statistical analysis will generalize to an independent data set [49]. The goal of cross 

validation is to define a dataset to "test" the model in the training phase and give an insight 

on how the model will generalize to an independent dataset.  

One of the main reasons for using cross-validation instead of using the conventional 

validation (e.g., partitioning the data set into two sets of 70% for training and 30% for 

test) is that there is not enough data available to partition it into separate training and test 

sets without losing significant modelling or testing capability. In these cases, a fair way to 

properly estimate model prediction performance is to use cross-validation as a powerful 

general technique. 

In k-fold cross-validation, the original dataset is randomly partitioned into k equal sized 

subsets. Of the k subsets, a single subset is retained as the test data for testing the model, 

and the remaining k − 1 subsets are used as training data. Feature selection and 

classification are performed using these training and test sets. This process is then 

repeated k times, with each of the k subsets being used exactly once as the test set. 



49 | P a g e  
 

Classification accuracy is calculated as the percentage of samples from the test set that 

were correctly classified by the model. The k classification accuracy results from the k 

folds can then be averaged to produce a single estimation. The advantage of this method 

over repeated random sub-sampling is that all observations are used for both training and 

validation, and each observation is used for validation exactly once. 10-fold cross-

validation is commonly used [50], but in general k remains an unfixed parameter. 

In this analysis k was taken to be five. To minimize the effect of random selection of data, 

the cross-validation procedure was repeated for 1000 iterations (i.e., the data was 

randomly divided into five datasets 1000 times) and then the average classification 

accuracy was calculated across all 1000 runs. Note that in each “fold” of all 1000 runs, 

only the training data was used for feature selection and classifier training, and only the 

testing data was used for classifier testing. 

Figure 3.9 shows a sample procedure of one “fold” of five-fold cross validation for our 

dataset.  
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Figure 3. 9 – Example of data division for one “fold” of 5-fold cross validation  

3.8.7 Sensitivity and specificity 

In this experiment, lifeboat trial lengths were not of fixed time length. For that reason, the 

number of samples (i.e., epochs of EEG data) were not equal from trial to trial. In terms 

of the classification analysis, this resulted in the classes being “unbalanced”. When classes 

are significantly unbalanced, the one class which is infrequently present is most likely to 

be predicted as rare occurrences, undiscovered or ignored, or assumed as noise or outliers 

which results in more misclassifications of the minority class compared to the prevalent 

class [51,52]. To account for the potential bias in the classification accuracy (i.e., 

percentage of correctly classified samples), we instead calculated the “adjusted accuracy” 

as follows [53]: 

������� �������� =  
�����������������������

�
    (Equation 3.8) 
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where 

����������� =  
������ �� ���� ���������

������ �� ���� ���������������� �� ����� ���������
  (Equation 3.9) 

����������� =  
������ �� ���� ���������

������ �� ���� ��������������� �� ����� ���������
  (Equation 3.10) 

and 

true positive = Trial n sample classified correctly as Trial n 

true negative = Trial n+1 sample classified correctly as Trial n+1 

false positive = Trial n+1 sample classified incorrectly as Trial n 

false negative = Trial n sample classified incorrectly as Trial n+1 

Note that this terminology (“true/false positives/negatives”) makes more sense intuitively 

when discussing such things as the diagnosis of diseases but can be applied to any binary 

classification problem by assigning (often arbitrarily) one of the classes as “positive” and 

one as “negative” (in the above description we have assigned “Trial n” to be positive while 

“Trial n+1” is negative). 

3.9 Statistical analysis of trends in the data 

The major statistical test that was performed here on the data is the statistical classification 

between adjacent trials for both individual subjects and mixed data of all subjects. 

Multiple linear regression method and paired t-test was used to test the significance of the 

trend in classification accuracy over trials. Correlation between several combinations of 

scores (NASA-TLX vs performance score, NASA-TLX vs classification accuracy and 

Performance score vs classification accuracy) were showed as well using the graphical 
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correlation method. At last the frequency of each feature getting selected for the 

classification was calculated and showed in a bar plot.   
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4 Chapter 4: Results 

 

Of the 14 datasets collected, only 10 were included in the analysis. One participant 

performed so poorly that he was unable to finish the task and thus his data were excluded. 

For three other participants, the EEG data had to be excluded due to excessive motion 

artifact.  

4.1 Task performance  

As described in the previous chapter, Equation 3.1 was used to calculate each participant’s 

performance score for each trial. The scores for each participant are given in Table 4.1, 

and the mean score across participants and trials is shown in Figure 4.1. In general, an 

upward trend can be observed in both the individual and mean scores. A paired t-test 

reveals a significant increase in performance score in Trial 10 as compared to Trial 1 

(h=1,p = 0.012).  

Table 4. 1 : Performance score for all participants 

Trial # 1 2 3 4 5 6 7 8 9 10 

Participant 1 0.20 0.26 0.42 0.50 0.39 0.34 0.45 0.47 0.53 0.39 

Participant 2 0.19 0.30 0.31 0.29 0.30 0.28 0.31 0.31 0.33 0.33 

Participant 3 0.39 0.41 0.38 0.45 0.49 0.46 0.46 0.51 0.46 0.54 

Participant 4 0.44 0.25 0.44 0.47 0.49 0.59 0.46 0.46 0.42 0.64 

Participant 5 0.23 0.36 0.51 0.50 0.55 0.58 0.59 0.58 0.51 0.54 

Participant 6 0.26 0.22 0.23 0.18 0.34 0.35 0.32 0.30 0.33 0.31 

Participant 7 0.37 0.37 0.42 0.42 0.45 0.42 0.46 0.43 0.51 0.43 

Participant 8 0.46 0.46 0.42 0.44 0.37 0.35 0.39 0.37 0.37 0.38 
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Participant 9 0.40 0.40 0.37 0.36 0.34 0.34 0.35 0.34 0.34 0.37 

Participant 10 0.38 0.30 0.25 0.32 0.39 0.48 0.46 0.45 0.27 0.56 

Mean 0.33 0.33 0.37 0.39 0.41 0.42 0.43 0.42 0.41 0.45 

 

For all participants, individual performance measures used in the calculation of the 

performance score are given below (Table 4.2). From this table it is clear that as the 

experimental session progresses, distance travelled per trial decreases, accuracy score 

increases and eventually plateaus at 25, and time taken also decrease. And all of these 

contributes to the increase in performance score. 

Table 4. 2 : All performance measures for all participants 

 

 Trial 1 
Trial 

2 
Trial 

3 
Trial 

4 
Trial 

5 
Trial 

6 
Trial 

7 
Trial 

8 
Trial 

9 
Trial 10 

 Participant 1 

Distance 
(m) 

274.3 287.1 254.6 252.1 265 264.9 253.5 253.4 257.5 255.3 

Accuracy 
score 

13 18 25 20 23 23 25 25 25 25 

Time (s) 163 218 217 160 223 233 217 211 182 211 

Hits 

(hard/soft) 
1/0 0/1 0/1 0/0 0/0 0/1 0/0 0/0 0/0 0/1 

 Participant 2 

Distance 
(m) 

285.9 268.7 264.3 270.3 262.7 265.8 264.7 261.4 264.5 263.9 

Accuracy 
score 

18 25 25 25 25 23 25 25 25 25 

Time (s) 334 313 306 315 304 312 305 305 286 290 

Hits 

(hard/soft) 
0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
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Trial 

1 
Trial 

2 
Trial 

3 
Trial 

4 
Trial 

5 
Trial 6 

Trial 
7 

Trial 
8 

Trial 
9 

Trial 
10 

 Participant 3 

Distance 
(m) 

263.4 257.0 265.8 260.5 262.3 263.4 264.5 259.0 259.04 256.1 

Accuracy 
score 

21 25 20 25 25 25 25 25 25 25 

Time (s) 207 235 197 214 196 206 205 191 209 180 

Hits 

(hard/soft) 
0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

 Participant 4 

Distance 
(m) 

259.6 343.8 279.7 253.8 256.6 265.6 259.5 255.2 298.5 253.4 

Accuracy 
score 

25 20 25 25 25 25 25 25 25 25 

Time (s) 182 188 163 209 199 160 208 178 200 215 

Hits 

(hard/soft) 
1/0 1/0 0/0 0/0 0/0 0/0 0/0 1/0 0/0 0/0 

 Participant 5 

Distance 
(m) 

274.3 267.1 262.1 257.7 260.3 262.1 260.7 259.9 261.9 258.1 

Accuracy 
score 

13 23 25 23 25 25 25 25 23 25 

Time (s) 179 196 158 179 162 164 162 167 172 180 

Hits 

(hard/soft) 
0/1 1/0 1/0 0/0 0/1 0/0 0/0 0/0 0/0 0/0 

 Participant 6 

Distance 
(m) 

264.5 257.5 263.1 278.9 255.3 265.5 255.3 264.6 253.7 261.2 

Accuracy 
score 

19 19 19 23 23 25 25 25 25 25 

Time (s) 281 300 314 379 262 266 302 316 297 308 

Hits 

(hard/soft) 
0/0 0/1 0/0 1/0 0/0 0/0 0/0 0/0 0/0 0/0 
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Trial 

1 
Trial 

2 
Trial 

3 
Trial 

4 
Trial 

5 
Trial 

6 
Trial 

7 
Trial 

8 
Trial 

9 
Trial 

10 

 Participant 7 

Distance (m) 258.1 256.8 253.9 253.7 251.9 256.3 266.6 262.7 256.9 254.2 

Accuracy 
score 

25 25 25 25 25 25 25 25 25 25 

Time (s) 261 262 233 237 205 213 206 216 190 209 

Hits 

(hard/soft) 
0/0 0/0 0/0 0/0 0/1 0/1 0/0 0/0 0/0 0/1 

 Participant 8 

Distance (m) 253.9 266.8 257.3 265.6 253.7 256.7 256.3 254.3 255.1 263.5 

Accuracy 
score 

25 25 25 23 25 25 25 25 25 25 

Time (s) 216 204 230 196 267 279 251 242 274 247 

Hits 

(hard/soft) 
0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/1 0/0 0/0 

 Participant 9 

Distance (m) 256.1 253.1 255.6 253.5 255.3 251.4 252.9 250.5 252.1 251.8 

Accuracy 
score 

25 25 25 25 25 25 25 25 25 25 

Time (s) 227 248 266 276 289 292 285 290 290 270 

Hits 

(hard/soft) 
0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

 Participant 10 

Distance (m) 266.7 265.5 292.4 273.3 267.1 263.1 265.6 253.5 278.5 259.8 

Accuracy 
score 

25 21 23 23 25 25 25 25 23 25 

Time (s) 246 260 283 262 240 200 206 211 301 173 

Hits 

(hard/soft) 
0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
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Figure 4. 1 - Mean performance score across all participants with error bars representing 
standard deviation 

4.2 NASA-TLX score 

The mental workload scores were calculated for each participant and each trial based on 

their responses to the NASA-TLX questionnaire (see Figure 4.2). The subjective workload 

scores for all participants over the ten trials are shown in Table 4.3, and the mean score 

across participants can be seen in Figure 4.2. In general, a downward trend can be 

observed in both the individual and mean scores. A paired t-test reveals a significant 

decrease in perceived workload rating in Trial 10 as compared to Trial 1 (h=1, p = 0.016). 

M
e
a
n
 s

co
re



58 | P a g e  
 

 

Figure 4. 2 : NASA-TLX questionnaire 

Table 4. 3 : NASA-TLX score for all participants 

Trial #  1 2 3 4 5 6 7 8 9 10 

Participant 1 63.33 57.50 51.67 48.33 48.33 41.67 53.34 46.67 44.17 47.50 

Participant 2 45.00 43.33 40.83 39.16 39.16 47.50 41.66 45.00 45.00 45.83 

Participant 3 51.66 55.00 70.00 40.83 16.66 26.66 22.50 10.00 11.66 18.33 

Participant 4 69.16 93.33 88.33 60.83 55.83 53.33 42.50 40.00 36.66 15.83 

Participant 5 57.50 44.16 34.16 34.16 33.33 33.33 30.00 30.83 28.33 36.66 

Participant 6 45.00 69.16 76.67 64.16 45.00 55.00 42.50 54.16 34.16 50.00 

Participant 7 56.66 56.66 49.16 50.00 48.33 54.16 52.50 53.33 49.16 54.16 

Participant 8 50.00 40.00 33.33 38.33 24.16 20.83 24.16 22.50 22.50 16.66 

Participant 9 66.66 60.00 61.67 62.50 59.16 58.33 55.00 55.00 54.16 55.83 

Participant 10 53.33 53.33 58.33 56.67 50.83 48.33 48.33 42.50 58.33 46.66 

Mean 55.83 57.25 56.41 49.50 42.08 43.91 41.25 40.00 38.41 38.75 
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Figure 4. 3 – Mean NASA-TLX score with standard deviation 

4.3 EEG data  

For EMG and other types of noise (e.g., swaying and swinging) approximately 17% of 

our total data points have been discarded. For any given participant, this rate is highest for 

3rd participant where 30% of his total data was discarded for EMG and other types of 

noise.  

Across all the participants, the mean duration for a single trial was 198.4 ± 60.81 seconds 

(mean ± std). The duration for the shortest trial was 1 minutes and 02 seconds (Participant 

#3, Trial #1) and the longest trial was 5 minutes and 22 seconds long (Participant #6, Trial 

#4). 
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4.3.1 Adjacent trial classification accuracy 

The classification accuracies of adjacent trials for each participant, along with the mean 

accuracies across participants, are given in Table 4.4, and the mean is plotted in Figure 

4.4. 

  

Figure 4. 4 – Mean adjusted classification accuracy for adjacent trials with error bars 
representing standard deviation 

While there is significant variation in the trend for individual subjects, the average trend 

is clearly downward, with the average accuracy decreasing from around 80% to 73%. 

Multiple linear regression confirms a statistically significant downward trend in adjacent 

trial classification accuracies over the course of the session (p < 0.001, DF=79, F value = 

13.57). Furthermore, a paired t-test indicates that the average classification accuracy for 
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Trial 1 vs. Trial 2 is significantly different (higher) than that for Trial 9 vs. Trial 10 (h=1, 

p=0.019). 

Table 4. 4 : Classification accuracy between adjacent trials for all participants1 

Trials classified 1 vs 2 2 vs 3 3 vs 4 4 vs 5 5 vs 6 6 vs 7 7 vs 8 8 vs 9 9 vs 10 

Participant 1 87.7 82.8 82.8 66.4 67.7 68.2 77.2 77.3 74.8 

Participant 2 94.7 97.7 73.0 70.0 85.9 81.1 87.9 90.6 78.3 

Participant 3 76.3 74.1 82.2 69.9 78.5 78.9 68.4 64.9 84.2 

Participant 4 89.4 87.6 84.3 99.2 94.4 76.9 81.5 91.2 81.4 

Participant 5 89.7 92.5 80.3 88.2 90.7 86.9 78.6 73.6 74.8 

Participant 6 67.5 68.8 74.3 77.5 62.1 59.7 68.3 69.5 68.7 

Participant 7 76.3 72.6 78.7 83.6 73.7 76.1 77.2 81.3 67.6 

Participant 8 72.1 73.8 65.2 65.1 64.1 66.8 68.3 69.6 70.4 

Participant 9 74.8 70.1 80.9 76.1 72.9 77.3 67.0 64.6 61.2 

Participant 10 74.8 67.2 71.9 68.6 74.3 68.4 65.3 70.8 69.7 

Mean 80.4 78.8 77.4 76.5 76.5 74.1 74.0 75.4 73.1 

 

1 If we consider the number of epochs for all participants and all trials, the lowest was 31 
(most were much higher, 98 ± 29 (average ± std); see Appendix B). The threshold limit 
for statistical significance for a 2-class problem at this worst-case scenario of 30 samples 
per class at α=5% is 62.5% accuracy [35]. As can be seen from this table, most of the 
accuracies from all participants are greater than this value. Participant 6 and 9 have some 
values that are less than this one. But according to their individual lowest number of 
epochs these accuracies are significant as well (>57.5% accuracy). Therefore, we can say 
that all accuracies are greater than random chance (i.e, 50%). 
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A similar downward trend is observed for adjacent trial classification accuracies 

determined using all the participant data combined (see Figure 4.5). Here the classification 

accuracies are generally much lower, starting from around 60% for Trial 1 vs. Trial 2 and 

plateauing at around 50% by Trial 5.  

    

Figure 4. 5 - Adjacent trial classification accuracies for all participants’ data combined 

4.4 Most relevant features  

The frequency with which individual features were selected by the automatic feature 

selection algorithm was investigated in order to determine which electrodes and frequency 

bands contributed most significantly to the task-related brain activity. Three features were 

selected for each fold of each run of the cross-validation analysis. This is a total of 5 x 

1000 = 5000 selections. Figure 4.6 shows feature selection frequency for the combined 

data of all participants. 
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Figure 4. 6 : Features being selected for adjacent trials 

  

It can be observed from these plots that the features most often selected by the feature 

selection algorithm in the early trials of the session are more likely to be from the alpha 
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frequency band, whereas for the later trials the frequency of the features being selected 

are more evenly distributed and include the theta and delta bands as well.   

4.4.1 Frontal theta, parietal alpha and overall beta decrease 

For each participant, alpha power was calculated over the parietal region (mean of 

electrodes Pz, P1, P2, P3, P4, P5, P6), the theta power was calculated over the frontal 

region (mean of electrodes Fz, F1, F2, F3, F4, F5, F6), and beta power was calculated 

over all regions (mean of all electrodes) for each trial. Figure 4.7 shows the group mean 

trends across all ten trials. There is a slight downward trend in all three frequency 

bands/regions, and this trend is significant for parietal alpha and overall beta according to 

multiple linear regression (parietal alpha, p<0.001, DF = 89, F value = 12.75; frontal theta, 

p = 0.281, DF=89, F value=4.99; overall beta = 0.005, DF=89, F value=8.44). However, 

no significance was found via paired t-test between Trial 1 and Trial 10 (parietal alpha, 

p=0.827 ; frontal theta, p = 0.668 ; overall beta, p = 0.339). 

  

Figure 4. 7 a - Mean frontal theta power    Figure 4.7 b - Mean parietal alpha power 
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            Figure 4.7 c - Mean beta power 

 

4.5 Correlation between NASA-TLX score and performance score  

The correlation between the perceived workload rating and performance score was 

investigated using the graphical correlation method (see Figure 4.8).  

 

Figure 4. 8 - Correlation between NASA-TLX score and performance score 
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Here, this figure shows the scatter plot between mean-performance and NASA-TLX 

workload score. The R2 value is 0.8406 which means that the regression model is a very 

good fit for the data. The regression analysis reported significant (p<0.001) and high 

correlation (|R|=0.9168) between the measures. As we would expect, as the task 

performance score increases, the perceived mental workload score decreases.  

4.6 Correlation between NASA-TLX and classification accuracy 

When novice participants perform a task for the first time, they use all their cognitive 

resources to perform the task resulting in a wide variety of activity throughout the whole 

brain. But later as they get used to the task, their use of cognitive resources becomes more 

limited, and they do not have to think so much about performing the task [54]. A trained 

person efficiently attends to information that is relevant to task performance, while leaving 

the irrelevant and potentially distracting information unattended.   

Again, from Figure 4.9, we can say that NASA-TLX score and classification accuracy are 

positively correlated, which means as the NASA-TLX score decreases, classification 

accuracy follows. And NASA-TLX score is likely to decrease as an individual becomes 

more confident in performing a task.   
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Figure 4. 9 - NASA-TLX vs classification accuracy 

 

4.7 Correlation between performance score and classification accuracy 

On the other hand, task performance score and classification accuracy show negative 

correlation to each other (Figure 4.10). As the task performance score increases, the 

classification accuracy between consecutive trials decreases.   
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Figure 4. 10 - Performance score vs classification accuracy 
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5 Chapter 5 : Discussion 

 

Passive brain–computer interfaces provide information regarding a user’s mental state to 

a computerized application for the purpose of enhancing the interaction with the 

application. The main objective of this experiment was to work toward the development 

of a passive BCI for assessing skill acquisition of participants undergoing virtual 

environment (VE)-based training. One of the current limitations of standard training 

assessment procedures, which are based primarily on performance measures, is indeed the 

lack of objective information about the amount of cognitive resources required by the 

trainees during the operative activity. So, in this research, trends in neural activity was 

explored as participants practiced a task over a relatively short, single session training 

period that could potentially form the basis of an objective, cognitive measure of skill 

acquisition that could be used in the development of a passive BCI for enhancing VE-

based training programs. 

5.1 Task-related neural activity becomes more stable with practice 

It was hypothesized that in the early stages of training, when an individual is unskilled in 

the task, the patterns of neural activity may be very different from one trial to the next as 

the individual continuously adjusts his/her strategy based on their experience from the 

previous trial. Then, as the individual becomes more comfortable and proficient with the 

task and settles into an effective strategy for task execution, the pattern of neural activity 

may become more stable across consecutive trials. For this analysis, the normalized EEG 

data was taken and performed classification on them on a trial vs. trial basis, for pairs of 
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adjacent trials (i.e, Trial #1 vs. #2, Trial #2 vs. Trial #3, etc.). Classification accuracy was 

assumed to be a measure of the “similarity” between the trials classified in terms of neural 

activity patterns (low accuracy would indicate higher similarity). On average across 

participants, a decreasing trend in the classification accuracies of adjacent trials was found 

over the course of the training. This indicates that as the participants got more practice 

with the task (i.e., completed more trials), the neural activity eventually started to get more 

stable, or similar, from trial to trial. This finding supports the above stated hypothesis. It 

can be observed from Table 4.4 that even though the decreasing trend in the mean 

classification accuracy over participants is quite significant according to multiple linear 

regression, the downward trend is not so obvious for individual participants. The 

classification accuracy between initial trials (Trial #1 vs. Trial #2, Trial #2 vs. Trial #3) 

are significantly higher than of later trials (Trial #8 vs. Trial #9, Trial #9 vs Trial #10) for 

most of the participants, but it followed a fairly random trend in the middle trials for many 

participants. 

The variation in the middle trials might be due to the fact that people initially try to 

determine the effects of different ways they approach driving the lifeboat. During the first 

several trials they may try to adjust their strategies as they figure out what worked and 

what didn’t, and this process would be different for everyone. However, according to 

performance measures and rating of perceived workload via the NASA-TLX 

questionnaire, all participants seemed to reach some level of competence with the task, 

and the brain activity did seem to at least begin to stabilize by the end, as indicated by the 
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lower classification accuracy of adjacent trials near the end of the session (i.e., Trial #9 

vs. Trial #10) for most participants. 

5.2 Improvement of performance score over the trials 

Equation 3.1 was used to calculate the performance score for all the participants for all 

trials. There was no highest limit or lowest limit for this score. The equation was derived 

in such a way that the greater the distance covered, and time taken to complete the trial, 

the lower the score will be. The accuracy portion of the performance score was based on 

whether or not the participant hit any of the five buoys, and if so, the speed at which they 

hit them. Six and three points were deducted for a “hard” and “soft” hit, respectively. The 

overall performance scores for the consecutive trials followed an increasing linear trend, 

indicating that participants did improve over the course of the session. If we plot only the 

mean accuracy score for all the participants, we can clearly see that the score increases 

linearly from around 20 to 24.5 and then plateaus around 25 after 5th trial.  

 

Figure 5. 1 - Mean accuracy score across participants 
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5.3 Verifying result with balanced classes  

Generally, the length of time taken to complete the trials decreased as the participants 

became more skilled in the task. Therefore, later trials tended to be somewhat shorter than 

earlier trials, meaning that the amount of data used in the classification of adjacent trials 

earlier in the session was generally larger than for later in the session. According to 

literature, the larger the training set is, the more information it contains, and the more 

accurate the learned classifier can be (although there are other factors involved) [55]. It 

could happen that the decreasing trend observed in the classification accuracies was not 

due to relevant training-induced chances in neural activity, but rather was simply a result 

of there being less data for performing the classification analysis in the later trials.  

To investigate if the reduced trial durations may have contributed to the observed decrease 

in classification accuracy, classification analysis was performed as described in Section 

3.8, but with the classes balanced. To do this, for each participant I selected the shortest 

trial (i.e., with of the fewest epochs/samples), and randomly extracted the same number 

of samples from all remaining trials to use for classification. The resulting trend in 

classification accuracy was very similar in this case compared to when all the data was 

used, and there was still a statistically significant decreasing trend (p < 0.001, DF=79). 

This indicates that the observed trend was indeed due to changes in the neural activity and 

was not an effect of the difference in the trial lengths across the session. 

Furthermore, if we consider the length of datasets, for first five trials the average number 

of samples (epochs) across participants are 184, 162, 148, 143 and 152 and for the later 

five trails they are 166, 136, 137, 141 and 207. The average number of samples goes up 
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and down but doesn’t necessarily follow a decreasing trend over the trials. According to 

repeated measure one-way ANOVA, there is not a significant trend (p value: 0.989, DF = 

89). So, we can say with confidence that the decreasing trend in the classification accuracy 

is not due to a decreasing number of samples across trials. Note that these are the average 

number of epochs after the EMG-related artifact removal process. 

5.4 Decreasing power in several frequency bands  

A deceasing trend in EEG power over multiple frequency bands and in both the frontal 

and parietal brain region was observed. Frontal theta and parietal alpha showed a 

decreasing trend of power as the trial increases (Figure 4.7a and 4.7b). The overall beta 

power also decreased. The downward trend parietal alpha and all over beta are significant 

according to multiple linear regression even though all three of these came out as not 

significant according to paired t-test. 

A number of studies in the literature found that as an individual becomes familiar with a 

task, their frontal theta decreases and overall beta decreases [32, 4].  However, in this 

work, both frontal theta and parietal alpha followed roughly a U-shaped trend, which 

means they decreased in the middle trials and then increased again. A possible explanation 

for this is that in the beginning, participants usually have no idea how to perform the task, 

but by trial 5 or 6 most had improved quite significantly which may result in a decreasing 

power for both frontal theta and parietal alpha. At this point, participants may have started 

trying new ways (e.g. varying speed while turning, trying to complete the trial faster or 

slower) to perform the task in an attempt to further improve their performance. This type 

of strategy change was reported informally by several participants. This phenomenon may 
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be is responsible for the increasing trend in the later trials for both frontal theta and parietal 

alpha among which only parietal alpha was significant.  Over beta power, however, started 

decreasing significantly starting from Trial 3, which is consistent with the trend reported 

in the literature. 

5.5 Decreasing trend in NASA-TLX score 

Table 4.3 shows that the mean NASA-TLX score varied for the participants starting from 

55 to the lowest limit of 38. For all the participants, the score tended to decrease as the 

number of trials increased, indicating a reduction in perceived mental workload with task 

practice. This can possibly be the indication that as the participants became better at the 

lifeboat task, they need to think less about the execution of the task itself, and thus their 

workload decreases. While it’s a subjective measurement and the scale is clearly different 

from person to person, the general trend is clearly decreasing across the session. 

5.6 Limitations of this study  

There are were some limitations of this study that are worth noting and addressing in 

future work.  

First of all, data from only 10 participants were included in the analysis. Future work 

should involve verifying the results of this study with a larger dataset.  

Also, only the power spectral features of the EEG signals (i.e., delta, theta and alpha 

frequency bands) were considered in the analysis. Though the literature supports the use 

of these measures, there are other features, for example relating to functional connectivity 

and network efficiency, that could be useful for identifying training-related trends in 
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neural activity. Future work should involve an investigation of a wider variety of EEG 

signal features.  

Moreover, the performance score equation (Equation 3.1) was derived without any valid 

derivation metric. It was derived in such a way that if the accuracy score increases, the 

performance score increases. On the other hand, if the time taken and distance increases, 

performance score decreases. Weights for hard and soft hit was defined arbitrary as well 

even though hard hit was given double weight than soft hit. Though we are confident the 

correct constituent measures were included (e.g., hits, time, distance, etc.), how they were 

put together into a single metric may not have been ideal. This may have affected our 

ability to get an accurate trend in performance score.  

Also, physiological factors such as boredom, engagement, attention, fatigue, habituation 

etc. could potentially have influenced the neural activity and contribute to the changes in 

classification accuracy. To mitigate the effects of this cofounding factors, we took baseline 

signals prior to each trial and normalized the trial data with the baseline data. Participants 

were also given necessary breaks (also water and food if needed) between the trials. We 

are therefore confident that the trend we observed was in fact due to training and not these 

other factors. 
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6 Chapter 6 : Conclusion 

 

This thesis presented an analysis of changes of human neural activity patterns overtime as 

naive participants practiced a motor cognitive task in a virtual environment-based training 

simulator. Even though our long-term research objective was to develop a passive BCI to 

provide an objective, cognitive-based measure of task proficiency/learning, the short-term 

objective of this thesis was to identify EEG-based neural indicator(s) of task 

proficiency/learning over a short period of practice of a cognitive motor task performed 

in a VE-based training simulator. 

The most significant result of this work was the identification of a training-related trend 

based on the classification accuracy between adjacent practice trials. On average, the 

classification accuracy significantly decreased as the participants became more skilled in 

the motor cognitive task, indicating that the neural activity begins to stabilize.  

6.1 Future work  

Though all participants clearly got significantly better at the lifeboat task over the course 

of the ten trials, data indicates that for most participants neither their performance nor their 

neural activity patterns reached a plateau in this period. Future work should involve 

training over a longer period of time (or in a simpler task that participants can reach 

competence in more quickly), so that the trend in neural activity can be observed beyond 

the point that performance plateaus to see if it provides any additional information about 
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task proficiency (i.e., do the neural signals continue to change after performance 

plateaus?).  
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Appendices 

Appendix A : Classification accuracy table for adjacent trials with balanced classes 

   1 vs 2 2 vs 3 3 vs 4 4 vs 5 5 vs 6 6 vs 7 7 vs 8 8 vs 9 9 vs 10 

 Part 1 
87.7 82.8 82.9 66.6 67.5 68.1 77.1 77.4 74.3 

 Part 2 
94.7 97.7 73.0 70.1 85.9 81.1 87.9 90.5 78.3 

 Part 3 
76.2 74.0 82.3 69.6 78.6 78.9 68.3 64.7 84.3 

 Part 4 
89.3 87.6 84.3  99.1 94.4 76.9 81.7 91.2 81.4 

 Part 5 
89.8 92.4 80.5 88.2 90.8 87.0 78.4 73.7 74.9 

 Part 6 
67.6 68.8 74.2 77.6 62.1 59.8 68.4 69.4 68.6 

 Part 7 
76.3 72.8 78.7 83.8 73.9 76.2 77.1 81.5 67.8 

 Part 8 
72.3 73.9 65.1 64.8 64.2 66.9 68.2 69.7 70.5 

 Part 9 
74.9 70.1 80.9 76.2 72.8 77.1 67.2 64.6 61.1 

 Part 10 
74.8 67.2 71.9 68.7 74.4 68.4 65.5 71.1 69.7 

 Mean 
80.4 78.7 77.4 76.5 76.5 74.0 74.0 75.4 73.1 
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Appendix B : Number of epochs used in the classification per participant per trial 

 

 

Participant 1 

Trial 
Time taken to 

complete the trial in 
seconds 

Number of data 
points after 

noise removal 

Number of 
epochs used in 
classification 

Participant 1 

Trial 1  163 51889 51 

Trial 2 218 64569 64 

Trial 3 217 84075 84 

Trial 4 160 72342 72 

Trial 5 223 108234 108 

Trial 6 233 104270 104 

Trial 7 217 104290 104 

Trial 8 211 98444 98 

Trial 9 182 89548 89 

Trial 10 211 97933 97 

Participant 2 

Trial 1  334 160009 160 

Trial 2 313 140590 140 

Trial 3 306 134517 134 

Trial 4 315 124808 124 

Trial 5 304 109344 109 

Trial 6 312 113398 113 

Trial 7 305 81974 81 

Trial 8 305 106112 106 

Trial 9 286 88957 88 

Trial 10 290 102761 102 

Participant 3 

Trial 1  207 31379 31 

Trial 2 235 98632 98 

Trial 3 197 83551 83 

Trial 4 214 61014 61 

Trial 5 196 81946 81 

Trial 6 206 65826 65 

Trial 7 205 77997 77 
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Trial 8 191 73760 73 

Trial 9 209 74420 74 

Trial 10 180 60792 60 

Participant 4 

Trial 1  182 85219 85 

Trial 2 188 80908 80 

Trial 3 163 68779 68 

Trial 4 209 91443 91 

Trial 5 199 72468 72 

Trial 6 160 70598 70 

Trial 7 208 82770 82 

Trial 8 178 58542 58 

Trial 9 200 53263 53 

Trial 10 215 56986 56 

Participant 5 

Trial 1  174 41170 41 

Trial 2 196 66324 66 

Trial 3 158 57542 57 

Trial 4 174 50479 50 

Trial 5 162 48306 48 

Trial 6 164 61960 61 

Trial 7 162 45063 45 

Trial 8 167 59988 59 

Trial 9 172 49800 49 

Trial 10 180 46355 46 

Participant 6 

Trial 1  281 128384 128 

Trial 2 300 142366 142 

Trial 3 314 131112 131 

Trial 4 379 161303 161 

Trial 5 262 126640 126 

Trial 6 266 120273 120 

Trial 7 302 142318 142 

Trial 8 316 141895 141 

Trial 9 297 140657 140 

Trial 10 308 131955 131 

Participant 7 

Trial 1  261 115347 115 

Trial 2 262 116954 116 

Trial 3 233 100123 100 
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Trial 4 237 97904 97 

Trial 5 205 90030 90 

Trial 6 213 97431 97 

Trial 7 206 87110 87 

Trial 8 216 99844 99 

Trial 9 190 87173 87 

Trial 10 209 96593 96 

Participant 8 

Trial 1  216 85855 85 

Trial 2 204 86622 86 

Trial 3 230 111570 111 

Trial 4 196 88507 88 

Trial 5 267 131601 131 

Trial 6 279 136883 136 

Trial 7 251 120703 120 

Trial 8 242 119060 119 

Trial 9 274 120723 120 

Trial 10 247 121517 121 

Participant 9 

Trial 1  227 104091 104 

Trial 2 248 113710 113 

Trial 3 266 128456 128 

Trial 4 276 133480 133 

Trial 5 289 141018 141 

Trial 6 292 117235 117 

Trial 7 285 113919 113 

Trial 8 290 99911 99 

Trial 9 290 136475 136 

Trial 10 270 126870 126 

Participant 10 

Trial 1  246 114225 114 

Trial 2 260 120604 120 

Trial 3 283 117011 117 

Trial 4 262 122907 122 

Trial 5 240 111680 111 

Trial 6 200 97083 97 

Trial 7 206 99533 99 

Trial 8 211 100856 100 

Trial 9 301 148052 148 

Trial 10 173 83015 83 
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