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Abstract

Direct alcohol fuel cells are promising power sources. Ethanol has recently attracted

much attention since it is renewable, relatively safe and has a high energy density. In

order to make best use of ethanol in fuel cells, many Pt-based catalysts have been

studied. However, the low electrochemical activity of ethanol at the low potentials

required for fuel cells has limited the development of direct ethanol fuel cells. This

thesis describes the use of carbon black modified with Ru-Sn mixed oxides as supports

for Pt nanoparticles. Since the Pt nanoparticles are on the surface of the Ru-Sn oxide,

the promoting effect of Ru-Sn oxide is achieved, while the blockage of Pt active sites

is minimized. Therefore, the high carbon dioxide selectivity of Pt can be retained and

the performance at low potentials can be improved. The effects of reaction conditions,

including Ru:Sn:C ratios, Pt loading, and heat treatment, have been investigated.

Cyclic voltammetry allows rapid determination of the electrochemical performance

of catalysts for preliminary screening. Product distribution results from an ethanol

electrolysis cell provide the faradaic efficiency and mechanistic information. The best

Pt-RuSnO2/C catalyst showed better catalytic activity towards ethanol oxidation at

low potentials than that of commercial Pt/C catalyst and retained relatively high

faradaic efficiency.
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Chapter 1

Introduction

1.1 Fuel cells

The fuel cell was invented by William Grove in 1839 [1]. It can directly convert chem-

ical energy into electric energy with a high efficiency. Depending on the electrolyte,

fuel cells can be divided into alkaline fuel cells (AFCs), polymer electrolyte mem-

brane fuel cells (PEMFCs), phosphoric acid fuel cells (PAFCs), solid oxide fuel cells

(SOFCs) and molten carbonate fuel cells (MCFCs).

AFCs, using aqueous alkali as the electrolyte, are one of the oldest types of fuel

cell technologies. They have been applied to Apollo series missions and space shuttles

by the National Aeronautic and Space Administration (NASA) since the 1960s [2].

However, because CO2 will react with the liquid electrolyte to lower the performance

of AFCs, a high purity of fuel gases is required, which limits the applications of

AFCs [1,2].

The first generation PEMFCs, manufactured by General Electric (GE), were ap-

plied to the Gemini space missions. Polystyrene sulfonic acid membranes were ini-

tially used in these PEMFCs [2]. However, these PEMFCs, mainly restricted by the

1
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membrane’s poor conductivity and stability, showed poor performance and limited

lifetimes. In the mid-1960s, a perfluorinated sulfonic acid (PFSA) membrane, known

as Nafion, manufactured by DuPont showed great potential for PEMFCs because of

its excellent physical properties and oxidation stability [3].

PAFCs, using liquid phosphoric acid as the electrolyte, are normally operated

at ca. 200 °C [1]. While PAFCs can tolerate up to 2% CO and be operated with

less purified fuel gas than AFCs, applications are limited by their relatively high cost

because they need Pt-based catalysts to speed up the reactions and also require highly

corrosion resistant materials against phosphoric acid [1, 2].

Molten carbonates serve as the electrolyte in MCFCs and solid oxides or cemaric

materials work as the electrolyte in SOFCs. Both MCFCs and SOFCs can be operated

without the presence of precious metal catalysts (such as Pt) at high temperatures.

They have higher cell efficiencies than PAFCs [2] and the use of waste heat to generate

more electricity (cogeneration) can further increase overall efficiencies.

Fuel cells can also be classified according to their fuel types. Hydrogen fuel cells

are the most developed ones. However, hydrogen is explosive and highly flammable,

and its storage normally requires a very high pressure. For small-size and mid-size

applications, such as portable devices and vehicles, simplicity of the fuel cell is nec-

essary. Hence, the use of PEMFCs is normally the first option. If using hydrogen

as the fuel, humidification of hydrogen is required to keep the solid electrolyte mem-

brane hydrated, which makes the design of fuel cells complicated. As a result of these

concerns (safety, storage, and simplicity), liquid fuels, such as methanol, ethanol and

formic acid, have aroused wide interest. Direct methanol fuel cells (DMFCs) were

developed before direct ethanol fuel cells (DEFCs), which are still not close to com-

mercialization. The use of ethanol is preferable to the use of methanol because of its

lower toxicity, better sustainability, and higher energy density [4, 5].
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DEFCs can be operated under both acidic and basic conditions. Although the

oxygen reduction reaction (ORR) in the presence of a base has faster kinetics than that

of an acid, the development of alkaline DEFCs has been restricted by problems such as

the formation of carbonate, and low conductivities of anion exchange membranes [4].

As for acidic DEFCs, one of the main issues is the slow kinetics of the ethanol oxidation

reaction (EOR), which requires better anode catalysts to increase their electrochemical

activity. Therefore, the development of anode catalysts for acidic DEFCs is very

important. All experiments in this work are related to DEFCs with acidic membranes.

1.2 Scientific study of ethanol oxidation

To develop novel efficient electrocatalysts for DEFCs, it is necessary to understand the

mechanism of EOR. Cyclic voltammetry (CV) is a routine method for investigating

EOR because it is simple, quick, and can provide valuable kinetic and thermody-

namic information. CO stripping voltammetry can not only be applied for the study

of morphology and structure, but also provide an accurate estimation of electrochem-

ically active surface area (ECSA) [6]. However, voltammetry can not provide product

information which is crucial for mechanistic investigations.

It is commonly accepted that acetaldehyde (AAL), acetic acid (AA) and CO2 are

the main products in EOR [7–9]. A simplified mechanism is shown in Figure 1.1 where

some steps such as adsorption of OH from water and generation of protons have not

been included. The corresponding number of electrons (per ethanol molecule) for

different pathways are indicated.

To obtain information on intermediates and products, many different analyti-

cal techniques have been applied, such as Fourier transform infrared spectroscopy

(FTIR) [7, 9–11], differential electrochemical mass spectrometry (DEMS) [6, 9, 11],
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Figure 1.1: A simplified mechanism for ethanol electro-oxidation [7, 8].

high performance liquid chromatography (HPLC) [12] and nuclear magnetic reso-

nance (NMR) spectroscopy [13].

FTIR can be used to obtain an infrared (IR) spectrum of a solid, liquid, or gas.

When an organic molecule is irradiated with infrared light, the vibrational modes of

chemical bonds or functional groups in the molecule can absorb IR radiation. Different

chemical bonds or functional groups have different absorption frequencies, which will

occur at different positions in the IR spectrum. Therefore, it is a useful technique for

the study of EOR. For example, Vigier et al. [10] used FTIR to identify the adsorbed

intermediates and reaction products on some catalyst’s surface. This allowed them to

propose a mechanism for EOR on Pt and PtSn catalysts.

DEMS is another analytical technique which can be used to investigate the mech-

anism of EOR. It combines an electrochemical half-cell with a mass spectrometer

and measures gaseous and volatile products in real time. Compared to the IR tech-

nique, DEMS has a lower detection limit and can provide more reliable quantitative

information.

HPLC and NMR are also useful techniques for the investigation of ethanol ox-

idation since both of them can be used to identify and quantify the products of

EOR. Combined with various detectors, such as UV detectors and mass spectrome-
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ters, HPLC can provide quantitative and qualitative information. Rousseau et al. [12]

used 2,4-dinitrophenylhydrazine (2,4-DNPH) to trap AAL, and sodium hydroxide

solution to trap CO2 (as shown in Figure 1.2). Two different columns were used ac-

cording to the analytes. A UV detector and a refractometer detector were used in

their experiments.

Figure 1.2: Schematic diagram of a product collection system for HPLC analysis.
Reprinted from ref. [12]. Copyright 2006, with permission from Elsevier.

Altarawneh et al. [13] combined NMR with a non-dispersive infrared (NDIR) CO2

detector to get product distributions (shown in Figure 1.3). With the help of an

internal standard, the concentration of AA, AAL and ethanol were determined from

NMR. The CO2 concentration was measured by a CO2 detector.

1.3 Catalysts for ethanol oxidation

Ethanol can be oxidized in both acidic and alkaline media. In both media, it requires

highly electro-active catalysts to improve the sluggish oxidation kinetics. In acidic

media, the only stable and active catalyst for EOR is Pt, which is able to adsorb

ethanol and break the C-H bonds [14]. But Pt is easily poisoned by the strongly

adsorbed CO intermediate formed during EOR, which decreases the number of active
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Figure 1.3: Schematic diagram of a product collection system for NMR analysis.
Reprinted from ref. [13].
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sites. To remove the strongly adsorbed CO, a high over-potential is required. However,

for practical DEFCs, the potential of the anode should be low enough to allow the

cell to operate with a reasonable efficiency. Moreover, it is necessary to have a low

Pt loading without performance compromise since Pt is precious and very expensive.

Generally, there are two strategies to design catalysts for DEFCs. One is alloying

Pt with other non-precious metals, such as Ru, Sn, W, and Mo, to decrease CO

poisoning at low potentials. Another one is a support strategy. A suitable high surface

area support can help Pt distribute evenly with a narrow nanoscale size, which can

maximize the utilization of Pt and reduce the Pt loading. In Section 1.3, Pt alloyed

with various non-precious metals for acidic DEFCs is mainly discussed and catalysts

for alkaline DEFCs will be briefly reviewed. Different types of catalyst supports are

introduced in Section 1.4.

1.3.1 Binary catalysts

Since the proton exchange membrane creates a low pH condition in a DEFC, the

second metal added to modify Pt should not only be able to reduce CO poisoning at

low potentials, but also have good stability in acidic media. Therefore, there are not

too many choices of the second metal species [14].

PtRu/C (PtRu alloy supported by carbon) catalysts provide high activity and sta-

bility for the methanol oxidation reaction (MOR) and are also widely used in DEFC

development. It is well known that the catalytic activities of PtRu/C catalysts are

strongly dependent on the preparation method [15]. Liu et al. [16] reviewed three

important methods (the impreganation method, the colloidal method and the mi-

croemulsion method) for preparing carbon supported PtRu catalysts. Great progress

has been made to improve these methods [17].

Sn is known to activate water at low potentials, which can provide OH species to
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remove adsorbed CO from Pt surface [14, 18]. PtSn/C is the best binary catalyst for

ethanol electro-oxidation in acidic media [4, 18]. While preparing PtSn/C catalysts,

it is difficult to maintain Sn in a metallic state [14]. The enhanced catalytic activity

seems to be due to both non-alloyed Sn and alloyed Sn [18]. Friedl and Stimming

[19] concluded that both of alloyed Sn and Sn oxide are important for the reaction

mechanism. Beyhan et al. [20] compared a PtSn/C catalyst with some other binary

catalysts (Ni, Co, Rh, and Pd). As shown in Figure 1.4(a), at 500 mV vs. RHE,

PtSn/C gave the highest catalytic activity while other binary catalysts showed quite

similar catalytic activities.

1.3.2 Ternary catalysts

While PtSn/C catalysts exhibit higher catalytic activity towards ethanol oxidation,

they produce more AA and AAL, but less CO2 compared to Pt/C catalysts. As shown

in Figure 1.1, producing CO2 will give three times more electrons than producing AA.

Hence, it is necessary to design a novel catalyst which is highly active at low potentials

and produces high yields of CO2. Adding a third metal has been considered, although

the preparation of ternary catalysts is more difficult.

As shown in Figure 1.4(b), both PtSnNi/C and PtSnCo/C showed superior cat-

alytic activity in low potential regions. These ternary catalysts were also examined in

a DEFC. The maximum power density (at 80 °C) of PtSnCo/C was about 34 mW cm−2

and it is almost 6 times higher than that of Pt/C and 3 times higher than that of

PtSn/C. However, the PtSnCo/C catalyst showed poor durability when it was tested

by a chronoamperometric method. It is also worthy to note that Beyhan et al. [20]

did not report product distributions. So the influence of adding a third metal towards

the CO2 yield is unknown.
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Figure 1.4: Linear sweep voltammograms (1 mV/s) for electro-oxidation of 1 M
ethanol in 0.1 M HClO4(aq) on (a) Pt/C and PtX/C (X = Sn, Ni, Co, Rh, Pd)
catalysts, (b) PtSn/C and PtSnM/C (M = Ni, Co, Rh, Pd) catalysts. Reprinted
from ref. [20]. Copyright 2013, with permission from Elsevier.
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1.3.3 Catalysts used in alkaline media

Among pure metals, Pd is the most active catalyst for EOR in alkaline media [21].

Similar to Pt, Pd also has a CO poisoning problem which limits its performance

in alkaline DEFCs. Hence, different metals and metal oxides have been considered

to improve the catalytic activity of Pd. Unlike in acidic media, a wide variety of

metals can be combined with Pd in alkaline media to improve its poison tolerance

and promote EOR. For example, Ni is a very popular choice for pairing with Pd and

it is much cheaper than Ru. Metal oxides such as CeO2, Co3O4, Mn3O4 and NiO

have also been considered as co-catalysts for Pd [18]. In addition to these Pd-basd

catalysts, some other catalysts such Au, tungsten carbide (WC), and Ir, have been

reported [4].

1.4 Catalyst supports

An ideal catalyst support for fuel cells should have properties such as (i) high surface

area and good catalyst-support interaction for high catalyst dispersion, (ii) suitable

porosity for good mass transport (reactants, products, and by-products), (iii) good

electrical conductivity for rapid electron transfer, and (iv) high chemical stability

[21,22].

1.4.1 Carbon materials

Carbon materials are widely used as fuel cell catalyst supports. Compared with ce-

ramic oxides, such as alumina and MgO, carbon materials can provide higher surface

area, have higher conductivity, and have better stability under both highly acidic and

basic conditions [21, 23]. Carbon blacks (CBs) are one of the most studied carbon

materials. Non-conventional carbon materials, such as mesoporous carbons, carbon
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nanotubes (CNTs), carbon nanofibers (CNFs), and graphene, have drawn more at-

tention recently because of their excellent electrical and mechanical properties.

CBs are prepared by the incomplete combustion or thermal decomposition of hy-

drocarbons and consist of primary near-spherical particles (< 50 nm) which are aggre-

gated by crystalline domains (< 2 nm). The further aggregation and agglomeration

of these primary particles results in a porous high surface area system [22, 23]. De-

pending on the preparation conditions and source materials, CBs can be commonly

subdivided into thermal black, acetylene black, channel black, furnace black and lamp

black, and their surface properties are quite variable. For example, Black Pearls 2000

(a furnace black from Cabot Corp.) has a surface area of 1500 m2/g, while the surface

area of Denka black (an acetylene black from Denka) is only 65 m2/g [24].

Although CBs are important catalyst supports for fuel cells, they have drawbacks

such as low thermal and electrical stability, and high micro-porosity [1,22]. To better

control carbon composition, (e.g. pore size, pore distribution, surface area, surface

functionality, and graphilization degree), the synthesis of mesoporous carbons with

tailored properties has been reported [1,25]. The preparation methods of these types

of carbons can be mainly divided to the sol-gel method, the hard template method,

and the soft template method, depending on the precursors and procedures used [1].

CNTs were first reported by Iijima in 1991 [23]. They have a tubular shape com-

posed of a single or multiple wrapped graphene layers of hexagonally arranged carbon

atoms and can be simply categorized as single-walled carbon nanotubes (SWCNTs)

and multi-walled carbon nanotubes (MWCNTs). The diameter of CNTs is only a few

nanometers (2-50 nm) while the length can be up to several millimeters [1]. Due to

the entire sp2 hybridization of carbon atoms, CNTs often exhibit high tensile modulus

and high strength [1, 22].

CNFs are a type of carbon fibers whose diameters are less than 500 nm. Unlike
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CNTs whose graphene layers are continuously wrapped and parallel to the fibril axis,

the graphene layers of CNFs can be vertical, inclined, or even coiled with respect

to the fibril axis. These different forms of CNFs can be produced by using various

methods, conditions, catalysts, and carbon sources [26]. Chemical vapor deposition

(CVD) and spinning of the carbon precursor are two main methods to synthesize

CNFs. CNFs have shown great potential as catalyst supports in fuel cells due to their

high electrical and thermal conductivity, superior chemical stability and unique one

dimensional structure [27]. Both primary CNTs and CNFs are chemically inert and

so modification is required to provide anchoring sites for catalyst nanoparticles and

enhance the interaction between the carbon surface and catalyst nanoparticles [22,28].

Graphene is a two-dimensional material and consists of a monolayer of carbon

atoms with hexagonal lattices. Due to its unique structure, large surface area (theo-

retically, 2630 m2/g) and high conductivity [22,29], graphene is a promising material

as a catalyst support. Graphene sheets can be obtained by various methods such

as epitaxial growth of graphene on metal surfaces using chemical vapor deposition,

epitaxial growth of graphene on silicon carbide (SiC) through ultra-high vacuum an-

nealing of SiC surface, and reduction of graphene oxide which can be separated by a

chemical or thermal exfoliation of graphite oxide sheets. Reduction of graphene oxide

is one of the most used methods due to its relatively low cost, high availability and

easy modification [30].

1.4.2 Non-carbon materials

Although carbon supports have been widely used for commercial Pt catalysts, the

durability of carbon supported catalysts remains a problem. Metal oxides, such as

titanium oxide, tin oxide and tungsten oxide, have been extensively investigated as

fuel cell catalyst supports due to their high corrosion resistance and co-catalytic effects
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[31].

In addition to carbons and metal oxides, the use of conducting polymers as sup-

ports has also been widely reported [32]. However, as fuel cell supports, they (car-

bons, metal oxides and polymers) all have some limitations. For example, carbons are

normally not durable in the cathode, metal oxides have relatively low surface area,

and polymers have relatively low electrical conductivity. Therefore, combining them

together to make hybrid supports has also attracted much interests.

1.5 Pt–metal oxide composite catalysts

As discussed in Section 1.3, the preparation of bi-metallic Pt-M (M=Ru, Sn, Ni,

and so on) alloys can be difficult and tri-metallic alloys are even more difficult to

prepare. Since the late 1990s, the use of metal oxides as supports and/or as co-

catalysts has drawn much attention. Many studies have proved that metal oxides can

enhance the catalytic activity of Pt nanoparticles in acidic media. Figure 1.5 shows

two possible mechanisms for enhancement of EOR on metal oxide supported Pt. One

is the bifunctional mechanism in which the OH groups on the oxide surface assist the

removal of CO from the surface of catalytic metals (e.g., Pt). The other one is an

electronic mechanism in which the metal-oxide interactions may change the electronic

structure of the catalytic metal and promote the charge transfer [33].

The common requirements for metal oxide materials are (i) high chemical stability,

(ii) high corrosion resistance under the fuel cell operating conditions, (iii) good elec-

tronic conductivity, (iv) some proton conductivity and (v) strong interactions with

catalytic metal nanoparticles [34,35]. In this Section, several important metal oxides

are discussed.
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Figure 1.5: Schematic illustration of two possible mechanisms for ethanol oxidation
at a metal on a transition metal oxide. Reprinted from ref. [33]. Copyright 2017, with
permission from Elsevier.

1.5.1 Titanium oxide

Titanium typically forms stoichiometric titanium dioxide (TiO2), which is a semicon-

ductor. In addition, titanium oxides can exist in other sub-stoichiometric forms (e.g.,

Ti4O7). Because of their high chemical and electrochemical stability, easy availabil-

ity, non-toxicity, and relatively low cost, titanium oxides have been widely studied

as supports and co-catalysts in fuel cells. It is well known that TiO2 can help metal

nanoparticles disperse well and avoid agglomeration, due to strong metal-oxide inter-

actions. But the electrical conductivity of TiO2 at 298 K is only 10−13 Ω−1 cm−1 [31].

Hence, many methods, such as partially reduction of TiO2, introduction of dopants

and mixing with carbons [22, 34, 35], have been employed to increase the electrical

conductivity.

Song et al. [36] reported that the addition of TiO2 nanotubes to a Pt/C catalyst
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greatly enhanced its catalytic activity and stability for CO oxidation. Two types of

TiO2 showed different enhancement abilities with TiO2 nanatubes shifting the CO

oxidation potential to a lower potential than TiO2 prepared by a sol-gel method. He

and Hu [37] directly prepared TiO2 nanorod arrays on a Ti foil by a facile hydrother-

mal method and then deposited Pt nanoparticles onto TiO2 nanorod arrays. This

Pt/TiO2/Ti catalyst showed better catalytic activity and higher catalytic stability

for EOR compared with Pt/C and Pt/Ti catalysts. It is worth noting that titanium

oxide has been less studied for EOR than MOR and ORR.

1.5.2 Tungsten oxide

Tungsten has many oxidation states ranging from -1 to +6 [22]. WO3, as the stoi-

chiometric form of tungsten(VI) oxide, is an n-type semiconductor. Although WO3

has low electrical conductivity, as shown in Equations 1.1 and 1.2, it can react with

the active hydrogen adsorbed on Pt to form a conductive hydrogen tungsten bronze

(HxWO3) [34]. Tungsten oxides tends to form tungsten trioxide hydrates which can

facilitate proton transfer [22,31]. It is well known that the addition of tungsten oxide

can enhance CO tolerance, and improve the stability and activity of catalysts.

WO3 + xPt−H −−→ HxWO3 + xPt (1.1)

HxWO3 −−→WO3 + xe− + xH+ (1.2)

Zhang et al. prepared Pt-WO3/C catalysts by loading Pt on WO3 modified carbon.

Their results indicated that the catalytic activity of Pt-WO3/C catalysts for EOR

increased with increasing WO3 content [27].
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Figure 1.6: A. Cyclic voltammograms (10 mV/s) of (a) PtRh/C, (b) MoO3-modified
PtRh/C and (c)WO3-modified PtRh/C catalysts in 0.5 M H2SO4 (aq) containing
0.5 M ethanol. B. Linear sweep voltammograms (10 mV/s) of (a) PtRh/C, (b)
MoO3-modified PtRh/C and (c)WO3-modified PtRh/C catalysts in 0.5 M H2SO4
(aq) containing 0.5 M ethanol. Reprinted from ref. [38].



17

1.5.3 Molybdenum oxide

Molybdenum can form five Magneli phase oxides with compositions between MoO2

and MoO3. Molybdenum oxides have been considered for use in fuel cells because they

are acid-resistant. MoO2 has a rutile crystal structure and excellent electronic con-

ductivity, while MoO3 has an orthorhombic crystal structure and is non-conductive.

However, similar to WO3, MoO3 is also capable of forming a non-stoichiometric and

electro-conductive hydrogen molybdenum bronze (HxMoO3). It has been reported

that the presence of molybdenum oxide can enhance the catalytic activity and stability

of Pt due to strong electronic interactions between Pt and molybdenum oxide [34,35].

Miecznikowski reported that the addition of MoO3 or WO3 to PtPh/C favors the

electro-oxidation of ethanol at a low potential (as shown in Figure 1.6). Both MoO3

modified and WO3 modified PtRh/C catalysts exhibited better CO tolerance and

higher catalytic activity compared with PtRh/C. In terms of the CV results, MoO3

modified PtRh/C was the best catalyst compared to WO3 modified PtRh/C and

unmodified PtRh/C [38].

1.5.4 Tin oxide

Tin(IV) oxide (SnO2) is an n-type semiconductor. Compared with TiO2, SnO2 has

higher electrical conductivity and a lower price [35]. Although SnO2 shows good co-

catalytic activity for EOR, it is not very stable under fuel cell conditions. Hence, it

is often doped with other metals to improve its stability and enhance its electrical

conductivity [22, 34]. Jiang et al. prepared a PtSnO2/C catalyst and found that its

performance in a DEFC was superior to a commercial Pt/C catalyst [39]. As shown

in Figure 1.7, the incorporation of SnO2 greatly enhanced the catalytic activities of

Pt/C and PtRh/C for EOR at low potentials [40].
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Figure 1.7: Potentiodynamic polarization curves of ethanol electro-oxidation in 0.5 M
H2SO4 (aq) containing 1 M ethanol on different catalysts. Scan rate 50 mV/s, temper-
ature 20 ℃. Reprinted from ref. [40]. Copyright 2009, with permission from Elsevier.
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1.5.5 Ruthenium oxide

Ruthenium(IV) oxide (RuO2) is the most common oxide of ruthenium and is highly

electrically conductive. Hydrous ruthenium oxide is an excellent mixed proton-electron

conductor with a high specific capacitance [41,42]. Peng et al. reported that the pres-

ence of ruthenium oxide in Pt/CNTs improved the CO tolerance and promoted a

uniform distribution of Pt nanoparticles on CNTs [43]. Calegaro et al. found that the

onset potential of EOR shifted to a less positive value when the RuO2 was incorpo-

rated into Pt/C. A Pt-RuO2-IrO2/C catalyst, prepared by co-deposition of RuO2 and

IrO2 into Pt/C, showed the best catalytic activity compared with Pt/C, Pt-Ru/C

and Pt-RuO2/C [44]. Moghaddam and Pickup investigated the support effects of

different oxides on EOR at Pt nanoparticles. They found that tin oxide, ruthenium

oxide, and ruthenium-tin mixed oxide supports enhanced the performance of EOR. It

is worth noting that Pt on tin oxide showed very high initial activities, while Pt on

ruthenium-tin mixed oxide exhibited a more stable performance [45].

1.6 Objectives of this thesis

The ultimate objective of this work is to develop a novel DEFC anode catalyst with

low cost, high activity and long durability. Our work is aimed at increasing the power

density and voltage efficiency, without loss of faradaic efficiency. In this thesis, the

main focus is to investigate the support effect of Ru-Sn oxide modified C (RuSnO2/C)

on Pt nanoparticles for EOR. The effects of reaction conditions, Ru:Sn:C ratios, Pt

loading, and heat treatment have been investigated. To better understand the support

effect, an ethanol electrolysis cell (EEC) was used to evaluate the catalysts. Product

distributions and faradaic efficiencies were obtained through these EEC experiments.
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Experimental

2.1 Preparation of Catalysts

A series of catalyst supports were prepared by modifying carbon black (Vulcan XC-72)

with Ru-Sn mixed oxides. Supported Pt nanoparticle (Pt-RuSnO2/C) catalysts were

prepared to investigate the effect of reaction conditions, Ru:Sn:C ratios, Pt loading,

and heat treatment.

2.1.1 Chemicals

The following materials were used for preparing catalysts: carbon black (Vulcan XC-

72, Cabot), potassium hydroxide (KOH, ACP Chemical Inc.), potassium perruthen-

ate(VII) (KRuO4, Alfa Aesar), tin(IV) chloride hydrate (SnCl4 · xH2O, Alfa Aesar),

dihydrogen hexachloroplatinate(IV) hexahydrate (H2PtCl6 · 6H2O, Pressure Chem-

ical Co.), sodium citrate (Sigma-Aldrich) and sodium borohydride (NaBH4, BDH

chemicals).

20
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2.1.2 Modifying Carbon Black

Carbon black was modified by deposition of a thin layer of Ru-Sn mixed oxides.

KRuO4 can react with carbon and form ruthenium oxide [46]. SnCl4 was slowly

hydrolyzed in the suspension and the formed hydrous tin oxide which co-deposited

onto carbon. RuSnO2/C (110)* is prepared by using the same method reported in

ref. [46], referred to in this thesis as the original method. Various reaction conditions

and Ru:Sn:C ratios (Table 2.1) were used in order to optimize the composition and

structure of the modified carbon.

In the naming system, * is used to indicate that the reaction time was 30 min.

Without the label *, the reaction time was 24 h. As for the numbers in the bracket,

the first number, the second number and the third number are related to the KOH

concentration used for Ru precursor solution, Sn precursor solution and C suspension,

respectively (1 means 0.1 M, 2 means 0.2 M and 0 means 0 M). The same KOH

concentration (0.057 M) was used for the support labelled with 0.057. Clow means

that lower amount of carbon was used for preparing the support(RuSnO2/Clow).

Table 2.1: RuSnO2/C preparation conditions.
KRuO4 SnCl4 · xH2O C

RuSnO2/C 0.1580 g in 0.2650 g in 0.6986 g in
(110)* [46] 30.0 mL 0.10M KOH 30.0 mL 0.10M KOH 45.0 mL H2O
RuSnO2/C 0.1561 g in 0.2678 g in 0.6500 g in

(110) 30.0 mL 0.10M KOH 30.0 mL 0.10M KOH 45.0 mL H2O
RuSnO2/Clow 0.1181 g in 0.2045 g in 0.0870 g in

(110) 24.0 mL 0.10M KOH 24.0 mL 0.10M KOH 10.0 mL H2O
RuSnO2/C 0.1524 g in 0.2653 g in 0.5986 g in
(0.057) 30.0 mL 57mM KOH 30.0 mL 57mM KOH 45.0 mL 57mM KOH

RuSnO2/C 0.0780 g in 0.1328 g in 0.3014 g in
(222) 15.0 mL 0.20M KOH 15.0 mL 0.20M KOH 22.5 mL 0.20M KOH

*The reaction time was 30 min.
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2.1.3 Pt Deposition

Pt nanoparticles were deposited on to the modified C by using a NaBH4 reduction

reaction. Depending on the target Pt loading, different amounts of Pt solution were

used. For example, RuSnO2/C powder (0.2023 g) was dispersed in 30.0 mL of H2O

and was sonicated for 10 min. The Pt solution (0.1820 g of H2PtCl6 · 6H2O in 10.0 mL

of H2O) was then added drop-wise into the RuSnO2/C suspension. After 0.5 h mixing,

sodium citrate (0.1792 g in 12.0 mL H2O) solution was added into the mixture and

stirred for another 1 h. Finally, the NaBH4 (0.0898 g in 20 mL H2O) solution was

slowly added to the mixture and allowed to react for 3 h with vigorous stirring.

Pt−RuSnO2/C powder (0.2456 g) was collected by suction filtration, rinsed with

distilled water and air-dried overnight.

2.1.4 Heat Treatment

There were two different types of heat treatment. One was the heating RuSnO2/C

supports at 200 ℃ in air for 12 h (supports heat treatment). The other one was

heating Pt−RuSnO2/C catalysts at 130 ℃ or 200 ℃ in air for 1 h (catalysts heat

treatment).

2.2 Preparation of Electrodes and MEAs

For the preparation of electrodes and membrane electrode assemblies (MEAs), the

following chemicals and materials were used: carbon fiber paper (CFP, TorayTM),

glassy carbon (GC) electrode (Ø=3.0 mm), 1-propanol, 2-propanol, Nafionr solution

(5%, DuPont), alumina polishing suspension (Micro Metallurgical Ltd.), Rayfinal

polishing cloth (Micro Metallurgical Ltd.).

For the preparation of catalyst-coated electrodes, 2.0 mg of catalyst was dispersed
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in a mixed solution containing 120 µL of H2O, 30 µL of 1-propanol and 50 µL of

Nafionr solution and the resulting ink was sonicated for 1 h. Then, 3.0 µL of ink

was applied to a glassy carbon electrode previously polished with 0.3 µm alumina and

dried at room temperature [47].

For the nine-anode cell experiments, MEAs were prepared by pressing a cathode

(4 mg cm−2 Pt black) and nine anodes onto a NafionTM 115 membrane in the cell.

In the anode preparation, the target loading of Pt was 4 mg cm−2, the target loading

of Nafion was 20 wt% and an appropriate amount of 1-propanol was used to disperse

the catalyst. The mixture (catalyst, Nafion solution and 1-propanol) was sonicated

for 3 h and then painted onto carbon fiber paper. This work was done by Tobias

Brueckner.

For the 5 cm2 cell experiments, the anode (30%Pt-RuSnO2/Clow) was prepared as

follows: 10.2 mg of carbon black was dispersed in 100 µL of 1-propanol and 50 µL

of 5 wt% Nafion solution and sonicated for 3 h. Carbon fiber paper was coated with

this carbon slurry. 41.3 mg of catalyst was dispersed in 80 µL of 1-propanol and

200 µL of 5 wt% Nafion solution and sonicated for 3 h. When the carbon slurry was

completely dried, the catalyst slurry was painted onto the top of the carbon layer and

dried overnight. MEAs were prepared in the same way as for the multi-anode cell

experiments.

2.3 Electrochemical Measurements

ARDE4 analog bipotentiostat (Pine Instrument Company) was used for cyclic voltam-

metry and chronoamperometry measurements in a three electrode cell which contained

a Pt wire counter electrode, a GC working electrode, and a saturated calomel refer-

ence electrode (SCE). Some measurements were made using CFP as the working
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electrode. A SP-50 Potentiostat (Bio-Logic Science Instuments) was also used for

cyclic voltammetry and chronoamperometry measurements.

Polarization curves for the nine-anode cell were measured with an Arbin Instru-

ments multi-channel potentiostat. As shown in Figure 2.1, the cell was operated in

crossover mode with 0.1 M ethanol solution pumped into the cathode while N2 was

purged into the anode at a flow rate of 30 mL min−1 [48]. Polarization curves of the

5 cm2 cell were measured with a Potentiostat/Galvanostat HA 301 (Hokuto Denko)

and this cell was operated in anode polarization mode (shown in Figure 1.3) where

ethanol was pumped into the anode and N2 was purged into the cathode [13].

Figure 2.1: Schematic diagram of the nine-anode PEM cell (top) and crossover mode
of operation (bottom). R = CH3. Reprinted from ref. [48].
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2.4 Product Distribution Measurements

2.4.1 Non-Dispersive Infrared (NDIR) Carbon Dioxide De-

tector

A NDIR CO2 detector is a device for monitoring the concentration of CO2 by detecting

the the intensity of transmitted IR light. The principle can be explained by Beer’s

law (Equations 2.1 and 2.2).

It = I0 ∗ 10−A (2.1)

where It is the intensity of transmitted light, I0 is the intensity of incident light, and

A is absorbance.

A = ε ∗ c ∗ l (2.2)

where ε is molar extinction coefficient, c is the molar concentration of CO2 and l is

the thickness of the absorbing medium.

CO2 measurements were made with a commercial Telaire 7001 CO2 detector and

recorded by Logger Pro software.

2.4.2 Nuclear Magnetic Resonance (NMR) Spectroscopy

NMR is a qualitative and quantitative technique in which the magnetic properties of

specific nuclei are investigated. By using NMR in our experiments, ethanol (EtOH),

acetic acid and acetaldehyde can be identified and their concentration can be mea-

sured. Combined with the CO2 detector, a full product distribution can be obtained.

NMR experiments were conducted on a Bruker AVANCE III 300 spectrometer.

400 µL of sample (products and residual ethanol in H2O) was mixed with 100 µL of

D2O containing 32 mM fumaric acid before NMR analysis. The peak area in NMR

is proportional to the concentration of each analyte. The unknown concentration of
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analytes (AA, AAL, and EtOH) can be calculated by comparing their peak areas with

fumaric acid’s (6.4 mM) peak area.

2.5 Catalyst Characterization

2.5.1 Thermogravimetric Analysis (TGA)

TGA is an analytical technique in which the temperature is increased over time and

the mass is measured as a function of temperature. The total metal loading of our

catalysts can be easily obtained by TGA since the boiling point of Pt, Ru oxide and

tin oxide are above the maximum temperature and they are thermally stable over the

operation temperature range.

TGA experiments were conducted on a TA instruments Q500 thermogravimetric

analyzer. Thermal Advantage software was used for processing raw data. The scan

rate was 20 °C min−1 and the temperature range was from ambient temperature to

800 °C. Most experiments were conducted under an air atmosphere and some of them

were conducted under N2. The TGA platinum sample pan was stored in 3 M HCl

solution. Before each experiment, the pan was rinsed with copious amount of de-

ionized water and then torched with a propane burner. The sample size was about

5 mg.

2.5.2 X-Ray Diffraction (XRD)

XRD is a powerful and non-destructive technique which can yield information regard-

ing the crystal structure, composition, and particle size of our catalysts.

The catalyst powder was characterized with a Rigaku Ultima IV X-ray diffractome-

ter using Cu-Kα radiation (1.5418 Å) at a power of 40 kV and 44 mA. Continuous
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scanning was used from 20◦ to 90◦ in 2 with a 0.02◦ step size. This work was done by

Dr. Wanda Aylward in the Earth Science department at Memorial University.

2.5.3 Inductively Coupled Plasma Optical Emission Spec-

troscopy (ICP-OES)

ICP-OES is a qualitative and quantitative multi-element analysis method. The sample

solution was aspirated with argon gas into a plasma to produce excited atoms and

ions which emit characteristic spectra. The intensity of emission is proportional to

the concentration of each element.

ICP-OES measurements were carried out using a Perkin Elmer 5300 DV induc-

tively coupled plasma–optical emission spectrometer by Adam Beaton. To dissolve

the metals from the catalyst samples, 8 mL of aqua regia was added to about 6 mg

of the sample in a 15 mL perfluoroalkoxy alkane (PFA) vial with a 33 mm PFA clo-

sure. The mixture was heated at 65 °C for 20 h and then residual carbon black was

removed with a syringe filter. Extra water was used to collect the solution left in the

vial, syringe, and filter. The filtrate was finally diluted to 15.0 mL by water before

ICP-OES analysis. Calibration curves were prepared by using commercial standard

Pt, Ru, and Sn solutions.

2.5.4 Scanning Electron Microscopy (SEM) with Energy Dis-

persive X-Ray Analysis (EDX)

SEM is one type of electron microscopy which is capable of surface analysis. By

applying focused scanning electron beams to the sample surface, the secondary, or

backscattered electron signals are produced which can provide high resolution images.

The characteristic X-ray radiation backscattered from the sample can be measured
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by EDX analyzer which gives qualitative and semi-quantitative information about the

elemental composition.

SEM-EDX analysis was carried out using Quanta 400 SEM with Roentec SDD

EDX X-ray detectors by Dr. David Grant. About 5 mg of catalyst powder was

dispersed in 300 µL of 2-propanol and sonicated for 3 h. Then, the ink was applied

to an adhesive carbon tab on the specimen stub.

2.5.5 Transmission Eletron Microscopy (TEM)

TEM is another electron microscopy which can provide extremely high resolution

images. Different to SEM, the electron beam is transmitted through the thin layer

specimen. In addition to the particle size, element distribution and semi-quantitative

information can be obtained when TEM is coupled with an Energy Dispersive X-ray

system.

TEM analysis was conducted on a JEOL 2011 scanning transmission electron

microscope at University of New Brunswick by Steven Cogswell. The sample was

dispersed in anhydrous ethanol and sonicated. A drop of ink was applied onto the

carbon suspension film coated TEM grid. Elemental analysis was carried out with

EDAX (Genesis) Energy Dispersive X-ray system.
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Characterization of the Supports

and Catalysts

3.1 TGA

To investigate the best conditions for preparing Ru-Sn oxide modified C supports,

TGA analysis was first carried out. The residue was assumed to be RuO2 and SnO2

because both of them are thermally stable and have boiling points higher than 1000 ℃.

As shown in Figure 3.1, the weight loss before 200 ℃ (where carbon will not easily

be oxidized under N2) suggests that the Ru and Sn oxide in this RuSnO2/C (110)

support were hydrous. Based on the estimation of mass loss, metal oxide is assumed

to be present as MO2 ·H2O. Following heat treatment at 200 ℃, the RuSnO2/C (110)

support had less mass loss at low temperature and a much higher residual mass than

the as-prepared RuSnO2/C (110) support, which suggests that the hydrous oxide was

dehydrated and some carbon was oxidized at 200 ℃. Residual masses for the other

supports are presented in Table 3.1.

The target values for RuO2 and SnO2 were based on the initial preparation condi-
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Figure 3.1: TGA analysis of (a) as-prepared RuSnO2/C (110), N2 gas was switched
to air at 600 ℃, and (b) RuSnO2/C (110) heated at 200 ℃ for 20 h, air was used all
the time.
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tions. Based on the assumption that the hydrolysis of SnCl4 and the redox reaction

between C and KRuO4 were complete, the target loading of oxide can be calculated

(shown in Table 3.1). By comparing the target RuSnO2 (RuO2+SnO2) value with the

TGA residue, the extent of reaction can be estimated.

Table 3.1: TGA results: the effect of reaction time, conditions and carbon content.

Support Target Found
RuO2% SnO2% RuSnO2% Residue%

Original method [46]
RuSnO2/C (110)* 11.00 12.17 23.17 14.53
Different compositions
RuO2/C (110) 14.09 0 14.09 17.08
SnO2/C (110) 0 15.76 15.76 1.19
RuSnO2/C (110) 11.46 12.97 24.43 19.04
Different KOH concentration
RuSnO2/C (222) 12.12 13.61 25.72 18.30
RuSnO2/C (0.057) 11.93 13.70 25.64 20.19
RuSnO2/C (100) 12.05 13.69 25.74 27.27
RuSnO2/C (000) 12.00 13.63 25.63 25.00
Different carbon content
RuSnO2/Clow (110) 28.76 32.85 61.61 45.23
*The reaction time was 30 min in the original method and 24 h for others.
The metal oxide was assumed to be present as MO2 ·H2O.

The TGA residue of RuO2 for the RuO2/C (110) sample was higher than the

target value which may be because of the loss of C during filtration (The weighed

C was washed with 0.1 M H2SO4 before use), impurities from the C and KRuO4, or

the assumption of MO2 ·H2O (if each MO2 contained less H2O, the calculated target

value will be higher). The TGA residue of SnO2 for the SnO2/C (110) sample was

much lower than the target value, which indicates that 0.057 M KOH in this reaction

mixture was not suitable for the deposition of SnO2. When comparing RuSnO2/C

supports prepared under different KOH concentrations, it can be seen that the sup-

ports prepared under less basic conditions have higher residue values. The difference of

residue values is likely due to the varying degrees of SnO2 deposition (It was confirmed
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by the ICP-OES results later (shown in Table 3.2). In the preparation of RuSnO2/C

(000), when the KRuO4 and SnCl4 were dissolved in water without any base, a black

precipitate was formed which can be attributed to reduction of KRuO4 by water.

Although this support had a higher amount of SnO2 (it was confirmed by ICP-OES

that its Pt-based catalyst had a higher amount of SnO2 than others), its Pt-based

catalyst did not perform well in cyclic voltammograms as shown in Chapter 4. In

general, the TGA results indicate that oxide deposition was almost quantitative when

the KOH concentration was less than 0.057 M, while SnO2 deposition was incomplete

at 0.057 M and higher concentrations. Better understanding of the composition of

the catalysts requires elemental analysis such as XRF, SEM-EDX, and ICP-OES.

3.2 XRD

It is expected that the main crystalline components of RuSnO2/C are RuO2 and SnO2.

XRD was used to investigate the phases of RuO2 and SnO2. However, as shown in

Figure 3.2, it is hard to find peaks of RuO2 and SnO2 in the as-prepared RuSnO2/C

(110), which may be because RuO2 and SnO2 in the support were mainly amorphous

and the amorphous phases will not be observed by XRD. Hence, the as-prepared

RuSnO2/C (110) was heated at 200 ℃ to increase the degree of crystallization. By

comparing the XRD patterns of the as-prepared sample and sample after heating, the

structure of RuO2 and SnO2 can be well understood.

In Figure 3.2, the peak positions for the RuO2 and SnO2 crystal planes are shown

by the dashed lines. The tetragonal RuO2 has main peaks at 27.9◦, 34.9◦, and 54.0◦

which are associated with the (110), (101), and (211) planes, respectively (ICSD PDF:

03-065-2824). As for tetragonal SnO2, its main peaks are at 26.6◦, 33.8◦, 37.9◦, 51.7◦

and 64.7◦ which are associated with the (110), (101), (200), (211), and (112) planes,
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Figure 3.2: XRD patterns of (a) as-prepared RuSnO2/C (110), and (b) RuSnO2/C
(110) heated at 200 ℃ for 20 h.
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respectively [49].

The as-prepared RuSnO2/C (110) has a broad and small peak at ca. 35.5◦ which

suggests the presence of crystalline RuO2. After heat treatment, this peak became

sharper and more intense, and peaks at ca. 28.0◦, 54.6◦ and 65.0◦ appeared because

more amorphous RuO2 became more crystalline. The peak of C(002) is dominant in

both of these XRD patterns, which makes it difficult to observe the SnO2(110) and

RuO2(110) peaks. In addition, the peaks at ca. 41.0◦ are from the carbon supports

(Vulcan XC-72) [50].

As discussed in Chapter 2, the catalyst supports were prepared under different pH

conditions while the deposition method for Pt onto the supports was the same. By

using XRD, the structure of the Pt nanoparticles and the presence of crystalline SnO2

and RuO2 can be investigated. Figure 3.3 shows XRD patterns for 25%Pt-RuSnO2/C

(0.057), 25%Pt-RuSnO2/C (0.057), and 25%Pt-RuSnO2/C (222).

In Figure 3.3, the peaks at ca. 39.8◦, 46.3◦, 67.8◦, 81.4◦, and 86.1◦ are due to the

Pt(110), Pt(200), Pt(220), Pt(311) and Pt(222) planes, respectively. There are no

obvious shifts of these Pt peaks which indicates that Pt deposition was not influenced

by the supports and no alloys (such as PtRu and PtSn) were formed. The first peak

of (c) 25%Pt-RuSnO2/C (222) at ca. 25.0◦ is due to the C(002) plane. However,

the first peaks of (b) 25%Pt-RuSnO2/C (0.057) and (a) 25%Pt-RuSnO2/C (000) are

slightly shifted to the right which may be due to overlapping of SnO2(110) peaks.

In addition, the peaks of (a) 25%Pt-RuSnO2/C (000) at ca. 33.8◦ and 51.7◦ are due

to the SnO2(101) plane and SnO2(211) plane, respectively [49]. The broadness and

low intensity of these SnO2 peaks suggests that the crystalline SnO2 has a very small

particle size and is well dispersed or SnO2 is poorly crystalline. No crystalline RuO2

peaks are found in any of these three catalysts.

Figure 3.4 shows the XRD patterns of (a) 25%Pt-RuSnO2/C (110), (b) 25%Pt-
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Figure 3.3: XRD patterns of (a) 25%Pt-RuSnO2/C (000), (b) 25%Pt-RuSnO2/C
(057), and (c) 25%Pt-RuSnO2/C (222).
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RuSnO2/C (110)*, and (c) 70%Pt-RuSnO2/C (110). These catalysts not only have

almost the same Pt peak positions as each other, but also have the same Pt peak

positions compared to those in Figure 3.3, which further confirmed that the structure

of the Pt crystals was not influenced by the preparation of RuSnO2/C supports under

different conditions (* means that the reaction time between carbon black and Ru-

Sn mixed solution was 30 min and the reaction time for other supports was 24 h).

There are no obvious peaks associated with crystalline RuO2 and SnO2 which suggests

that the oxides were either absent or amorphous or the Pt was considerably more

crystalline or bigger particles. In 70%Pt-RuSnO2/C (110), the carbon (002) peak was

absent which maybe due to the high coverage of Pt nanoparticles.
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Figure 3.4: XRD patterns for (a) 70%Pt-RuSnO2/C (110), (b) 25%Pt-RuSnO2/C
(110)*, and (c) 25%Pt-RuSnO2/C (110).
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3.3 ICP-OES

As shown in Table 3.2, 25%Pt-RuSnO2/C (000) has the highest amount of Sn which

indicates that the deposition of SnO2 requires less basic conditions. 25%Pt-RuSnO2/C

(110) has a higher amount of Ru than 25%Pt-RuSnO2/C (110)* which indicates that

the reaction between C and KRuO4 takes longer than 30 min. The Ru content of

the other 25%Pt catalysts, with same reaction time but different pH conditions, was

similar which means that the deposition of RuO2 is mainly determined by the reaction

time rather than by pH.

All the 25%Pt catalysts should have ca. 25% Pt based on the amount of

H2PtCl6 · 6H2O used. However, there were some assumptions for the calculation.

First, H2PtCl6 · xH2O was assumed to be present as H2PtCl6 · 6H2O and to be to-

tally reduced to Pt in the reaction. Second, it is assumed that the water content

of the original support (RuSnO2/C) would be retained which means the ratio of

(RuO2+SnO2+C) to H2O in RuSnO2/C is the same as that in Pt−RuSnO2/C. Hence,

if the RuSnO2/C used for preparing Pt−RuSnO2/C was not dried enough and the

as-prepared Pt−RuSnO2/C was dried properly, then the measured Pt% would be

higher than we expect. This may explain the high Pt contents measured for 25%Pt-

RuSnO2/C (110) and 25%Pt-RuSnO2/C (000).

It is worth noting that the digestion of the catalysts requires some specific con-

ditions. Pt can be easily dissolved in aqua regia with or without heating based on

our experiments. However, digesting the hydrous RuO2 in Pt-RuSnO2 requires the

proper temperature. Digestion of the catalysts at room temperature gave a Ru%

value that was about half of the value obtained with heating at ca. 65 ℃. Although

the metallic elements were largely dissolved with proper heating, the SEM-EDX re-

sults (Appendix A.1) showed that some Ru and Sn (mainly Ru) still remained in the

carbon residue. Combined with the TGA result, it can be roughly estimated that ca.
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Table 3.2: Catalyst composition.

Catalyst TGA ICP-OES
Pt% RuSnO2% Pt% Ru% Sn% RuSnO2%

25%Pt-RuSnO2/C (110) 24.84 14.31 28.3 7.35 1.13 11.12
25%Pt-RuSnO2/C (110)* 24.48 10.97 24.9 5.59 1.13 8.80
25%Pt-RuSnO2/C (000) 26.69 18.33 30.5 5.28 7.43 16.67
25%Pt-RuSnO2/C (0.057) 23.56 15.43 24.9 6.49 0.98 9.78
25%Pt-RuSnO2/C (222) 24.60 13.80 23.6 6.46 0.10 8.63
30%Pt-RuSnO2/Clow (110) 32.63 26.98 30.2 17.0 1.20 23.87
70%Pt-RuSnO2/C (110) 68.18 6.06 67.4 2.57 0.57 4.10
RuSnO2% in ICP-OES was calculated by using Ru% and Sn%.
TGA results were calculated by using the residue (wt%) of supports and catalysts.
It was assumed that the composition of the support did not change.

10 wt% of Ru from the original sample was not dissolved.

3.4 SEM-EDX

In SEM, the distribution of elements can be identified by differences in brightness since

different elements have different electron densities and will give different brightness.

Normally, the heavier elements will give brighter images. In Pt-RuSnO2/C, Pt is the

heaviest and Sn is heavier than Ru. Therefore, three kinds of brightness can be seen

in the image if these three metals are distributed individually. However, as shown in

Figure 3.5 (a), only two kinds of brightness (white and grey) were observed in addition

to the black background. EDX analysis was applied to obtain qualitative and semi-

quantitative information on the catalyst composition. For 25%Pt-RuSnO2/C (110),

it can been seen that Pt, Ru and Sn were found in both the white areas and grey

areas as shown in Figure 3.5 (c) and (d). The white area had more Pt% than the

grey area, which suggests that the white dots were due to the agglomeration of Pt

nanoparticles. For 70%Pt-RuSnO2/C (110), Figure 3.5 (b), the image was almost

white, which suggests that the agglomeration of Pt was much more severe which was
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confirmed by its EDX analysis (Figure 3.5 (e)). Detailed EDX analysis results are

presented in Table 3.3.

Compared to Figure 3.5 (a), Figure 3.6 (a) for 30%Pt-RuSnO2/Clow (110) shows

a relatively consistent color except the black background, which suggests that the

thin oxide layer fully covered the carbon surface. In addition, although 30%Pt-

RuSnO2/Clow (110) (30.2% Pt according to ICP-OES) has more Pt% than 25%Pt-

RuSnO2/C (110) (28.3% Pt according to ICP-OES), there were no obvious white dots

in its SEM image, which suggests that Pt dispersed better in this 30%-RuSnO2/Clow

(110) than in 25%-RuSnO2/C (110). It is worth noting that the catalyst existed as

chunks in Figure 3.6, which restricted the observation of inner structure and element

distribution and may cause a misconception of this catalyst.

To better understand the Pt dispersion, the ratio of Pt to RuSnO2 is reported in

Table 3.3. It is assumed that a high ratio of Pt to RuSnO2 (relative to the value from

TGA or ICP-OES, which provide averages over many particles, indicates that the Pt

was not well dispersed) indicates worse Pt dispersion. The ratio from ICP-OES may

be slightly higher than the actual ratio because of the underestimation of Ru (see

Section 3.3). The ratio from TGA may be lower than the actual ratio because of

the assumptions (see in Section 3.1). Therefore, the actual ratio was assumed to be

between the values from TGA and ICP-OES. For 25%Pt-RuSnO2/C (110), the grey

dots and grey areas gave Pt to RuSnO2 ratio that were quite close to actual ratio,

which indicates that most of the Pt was well dispersed and only a small portion of

the Pt was agglomerated. As for 70%Pt-RuSnO2/C (110), the ratio from EDX was

much higher than the actual ratio which may be due to high Pt agglomeration where

the RuSnO2 modified C surface was blocked. The Pt layer can absorbed the electron

beam before it reaches the RuSnO2 layer and therefore cause the Ru and Sn X-ray

intensities to be much lower. As for 30%Pt-RuSnO2/Clow (110), the ratio from EDX
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Figure 3.5: SEM images and EDX spectra of 25%Pt-RuSnO2/C (110) (a, c and d)
and 70%Pt-RuSnO2/C (110) (b and e).
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Figure 3.6: SEM image of 30%Pt-RuSnO2/Clow (110).
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was really close to the actual ratio, which suggests that Pt was dispersed well in this

catalyst.

Table 3.3: SEM-EDX analysis results.
Pt% Ru% Sn% RuSnO2% Pt:RuSnO2

25%Pt-RuSnO2/C (110)

SEM-EDX

White dot 1 65.9 3.9 1.4 7.7 8.5
White dot 2 61.4 4.4 1.8 9.0 6.8
White area 49.7 6.2 1.7 11.5 4.3
Grey dot 1 39.4 11.1 3.0 20.7 1.9
Grey dot 2 33.6 10.3 2.8 19.2 2.0
Grey area 30.1 8.4 2.4 15.8 1.9

TGA 24.8 N/A N/A 14.3 1.7
ICP-OES 28.3 7.4 1.1 11.1 2.5
70%Pt-RuSnO2/C (110)

SEM-EDX

Dot 1 71.6 0.1 0 0.1 614.1
Dot 2 66.0 0.7 0.2 1.3 52.5
Area 1 72.9 0.2 0.2 0.6 124.5
Area 2 68.4 0.6 0.2 1.2 57.5

TGA 68.2 N/A N/A 6.1 11.3
ICP-OES 67.4 2.6 0.6 4.1 16.4
30%Pt-RuSnO2/Clow (110)

SEM-EDX Dot 44.2 27.5 2.2 43.6 1.0
Area 43.0 25.2 2.2 40.3 1.1

TGA 32.6 N/A N/A 27.0 1.2
ICP-OES 30.2 17.0 1.2 23.9 1.3
SEM-EDX analysis results were semi-quantitative.
RuSnO2% was calculated by using Ru% and Sn%.

In general, the preparation of RuSnO2/C requires a lower amount of C or higher

amount of Ru and Sn compounds to archive a more complete coverage of the oxide

layer. The higher coverage of Ru-Sn oxide helps Pt dispersed better. However, use of

a high Pt loading caused a severe Pt agglomeration.
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3.5 TEM

Restricted by the resolution, no individual nanoparticles were observed by SEM.

Hence, TEM was carried out. As shown in Figure 3.7, there were a lot of indi-

vidual particles. The average diameter of the Pt nanoparticles was 4.2±0.8 nm (over

50 particles were used for this calculation as shown in Figure C.5). Coupled with a

HAADF STEM unit, EDX analysis was carried out to investigate the composition and

the circled areas were analyzed. In the EDX spectra which are shown in Appendix

C, Pt, Ru and Sn were all found while their ratio varied. Figure C.3 (the circled area

in Figure 3.7 (c)) shows high Pt intensity and some Ru and Sn signals. However,

in Figure C.4 (the circled area in Figure 3.7 (d)), Ru peaks were dominant and Pt

peaks were hardly seen. The EDX spectrum (shown in Figure C.2) related to the

circled area in Figure 3.7 (b) shows an intermediate Pt:oxide ratio. Therefore, it can

be concluded that the particles were Pt and the fuzzy area was mainly amorphous Ru

oxide with a small amount of Sn oxide.

Although the HAADF image (Figure 3.8 (b)) should show atomic contrast by

the brightness, the thickness and crystallinity of the sample also influence brightness.

Hence, a line scan was used here to investigate the distribution of elements. As shown

in Figure 3.8 (d), the signal tendencies were similar for O, Ru and Sn, which once

again indicates that Ru and Sn were present as oxide forms in the catalysts and that

the co-deposition of Ru oxide and Sn oxide worked well. The Ru and Sn signals also

followed the C signal to some extent, although deviations show that the C surface may

not have been evenly coated with Ru oxide and Sn oxide. Probably, this phenomenon

is an artifact caused by the varying thickness of the sample.
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Figure 3.7: TEM of 30%Pt-RuSnO2/Clow (110).
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Figure 3.8: TEM image (a), HAADF image (b), line scan analysis (c and d) of 30%Pt-
RuSnO2/Clow (110). Note: The EDX spectra in (d) are normalized results and the
maximum intensities of all elements are same.
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3.6 Conclusions

The preparation of RuSnO2/C was highly dependant on the pH. KRuO4 will react

with H2O immediately if the pH is too low and formation of hydrous SnO2 will not

be favored if the pH is too high. Hence, the preparation condition needs further

improvements to achieve a slow and quantitative co-deposition of Ru oxide and Sn

oxide onto carbon.

A higher amount of RuSnO2 helped Pt disperse better while a higher amount of

Pt deposition caused severe agglomeration. In 30%Pt-RuSnO2/Clow (110), Pt was

present as nanoparticle while Ru oxide and Sn oxide were amorphous.



Chapter 4

Cyclic Voltammetric Analysis

4.1 Estimation of Electrochemically Active Sur-

face Area

Because fuel cell (FC) tests are time-consuming and require relatively large amounts

of catalyst, it was necessary to screen the catalysts to prioritize them. Cyclic voltam-

metry is a convenient and informative screening method. To better compare the CV

results, it is necessary to calculate the electrochemically active surface area (ECSA) of

the Pt and normalize the CV results. The determination of ECSA is shown in Equa-

tion 4.1 where 210 µC cm−2 is the charge of full coverage for clean polycrystalline

Pt [51].

ECSA(cm2) = QH−adsorption(C)
210 (µC cm−2) (4.1)

As shown in Figure 4.1 (a), the hydrogen adsorption area and hydrogen desorption

area from -0.2 V to ca. 0.1 V (vs. SCE) can be easily observed. The charge for hydrogen

adsorption (QH−adsorption) was used to estimate the ECSA of Pt.

47
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Figure 4.1: Cyclic voltammograms (100 mV/s) of (a) 70%Pt/C (Hispec) and (b)
30%Pt-RuSnO2/Clow (110) and RuSnO2/Clow (110) in 1 M H2SO4 (aq). Note: The
voltammogram of the RuSnO2/Clow (110) has been scaled to approximately match
the Ru-Sn oxide peaks (at ca. 0.5 V) for the 30%Pt-RuSnO2/Clow (110).
, Hispec is a trademark, which refers to highly dispersed catalyst.
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For Figure 4.1 (b), although the hydrogen adsorption peaks and hydrogen des-

orption peaks of 30%Pt-RuSnO2/Clow (110) can still be observed, estimation of the

charge for hydrogen adsorption was not as easy as for 70%Pt/C because the support

contained a large amount of Ru oxide which influenced the charging current. Hence,

a scaled CV of its original support (RuSnO2/Clow (110)), shown as the dash line, was

used to help estimate the charge for hydrogen adsorption on this catalyst.

For the catalysts whose supports contained higher amounts of Ru oxide and lower

amounts of carbon, the estimation of ECSA was done by the procedure shown in

Figure 4.1 (b). For other catalysts whose supports contained more C and less Ru

oxide, the method shown in Figure 4.1 (a) was used to estimate the ECSA although

it will underestimate the ECSA slightly.

4.2 CV of Ethanol at 30%Pt-RuSnO2/Clow (110)

For cyclic voltammetry in 1 M H2SO4 (aq) containing 0.1 M ethanol, the scan rate was

10 mV/s instead of 100 mV/s. For application in a FC, the anode catalyst needs to

perform well at low potentials, which provides the highest FC potentials. Hence, we

mainly focus on the potential range from 0.2 V to 0.4 V (vs. SCE). As can be seen in

Figure 4.2, the current started to increase at a very low potential (ca. 0.05 V vs. SCE)

when the 30%Pt-RuSnO2/Clow (110) catalyst was used. The current in the forward

scan is mainly due to the oxidation of ethanol. After 0.6 V, the current started

to decrease. This is due to the formation of an oxide layer that inhibits ethanol

adsorption. In the backward scan, the current for ethanol oxidation increased to a

peak at ca. 0.5 V when the oxide layer was reduced.

The second forward scan showed lower current than the first one. This suggests

that the catalyst may adsorb more ethanol before the experiment than during scan-
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Figure 4.2: Cyclic voltammogram (10 mV/s) of 30%Pt-RuSnO2/Clow (110) in 1 M
H2SO4 (aq) containing 0.1 M ethanol.
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ning. The second backward scan showed almost the same current as the first backward

scan which suggests the poisoning in the two forward scans was quite similar. The

same behavior was observed for other catalysts, with the second forward current being

lower than the first one and the backward currents being almost same.

4.3 Effect of Various Preparation Conditions

To find out the support effect of Ru oxide and Sn oxide, various preparation condi-

tions were used. As discussed in Chapter 3, the reaction time (0.5 h) for preparing

RuSnO2/C (110)* was not enough which led to a lower Ru oxide loading compared

to RuSnO2/C (110). With the same reaction time (24 h), the deposition of Ru oxide

went well under various pH conditions. As for the deposition of Sn oxide, the lower

the pH used, the more deposition was achieved. Based on the CV results, the effects

of Ru oxide and Sn oxide on ethanol oxidation at Pt nanoparticles are discussed here.

As shown in Figure 4.3 (a), 25%Pt-RuSnO2/C (222) had the same performance

as 25%Pt-RuO2/C (110). Since 25%Pt-RuSnO2/C (222) had only a small amount of

Sn oxide, it behaved like 25%Pt-RuO2/C (110).

As for the 25%Pt-RuSnO2/C (000), 25%Pt-RuSnO2/C (057) and 25%Pt-

RuSnO2/C (110)*, their performances at low potentials were quite similar, although

25%Pt-RuSnO2/C (000) had the highest percentage of Sn oxide. In addition, despite

the fact that 25%Pt-RuSnO2/C (110) contained a little more Ru oxide than 25%Pt-

RuSnO2/C (110)* and 25%Pt-RuSnO2/C (057), its performance at low potentials

was much better. In Figure 4.3 (b), which shows the second forward scans, 25%Pt-

RuSnO2/C (110) was still the best catalyst, while the others all had much more similar

performances. Combined with the XRD and ICP-OES results in Chapter 3, it can be

concluded that the addition of Sn oxide caused the catalysts to perform better, but
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Figure 4.3: Cyclic voltammograms (10 mV/s) of 25%Pt-RuSnO2/C catalyst in 1 M
H2SO4 (aq) containing 0.1 M ethanol. (a) First forward scan and (b) second forward
scan.
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Sn oxide needs to be incorporated into Ru oxide layer to be effective.

4.4 Effect of Heat Treatment and Pt Loading

Here, the effect of heat treatment and Pt loading is discussed. As shown in Figure 4.4,

with the Pt content increased, the performance decreased which indicates that low Pt

loadings should be used with the RuSnO2/C (110) support.

As shown in Chapter 2, two kinds of heat treatment were investigated here. One is

the heat treatment of the support. For 30%Pt-RuSnO2/C (110 – 200 ℃), its support

was heated at 200 °C in air for 12 h and then Pt was deposited onto this support

(RuSnO2/C (110 – 200 ℃)). And the other one is the heat treatment of the catalyst.

For example, 40%Pt-RuSnO2/C (110) – 210 ℃ was heated at 210 ℃ in air for 12 h

but its support was RuSnO2/C (110) without heat treatment.

Although 30%Pt-RuSnO2/C (110 – 200 ℃) had the highest low-potential current

before 0.2 V and highest peak current at ca. 0.6 V (Figure 4.4), its turning point of

increasing current was at much higher potential (ca. 0.3 V vs. 0.05 V) than for 30%Pt-

RuSnO2/C (110). As shown in Appendix B.1 and B.2, it is very hard to see the Pt-H

desorption peaks at the 30%Pt-RuSnO2/C (110 – 200 ℃) electrode compared with the

30%Pt-RuSnO2/C (110) electrode and the Pt-H adsorption area at 30%Pt-RuSnO2/C

(110 – 200 ℃) electrode was much smaller. Therefore, the ECSA of 30%Pt-RuSnO2/C

(110 – 200 ℃) may be underestimated due to the severe influence of the Ru-Sn oxide

charging current, which can lead to a higher apparent current density. As for 40%Pt-

RuSnO2/C (110) – 130 ℃ and 40%Pt-RuSnO2/C (110) – 210 ℃, their performances

in the first forward scan between ca. 0.35 V to ca. 0.55 V were better than that

of 40%Pt-RuSnO2/C (110) and their performances in the second forward scan were

almost the same.
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Figure 4.4: Cyclic voltammograms (10 mV/s) of different catalysts in 1 M H2SO4 (aq)
containing 0.1 M ethanol. (a) First forward scan and (b) second forward scan.
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Figure 4.5: Pt utilization: Cyclic voltammograms (10 mV/s) of different catalysts in
1 M H2SO4 (aq) containing 0.1 M ethanol. (a) First forward scan and (b) second
forward scan.
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Based on the catalyst mass used in the ink preparation and nominal Pt percentage,

the amount of Pt applied to GC electrodes can be roughly calculated. This current

(mA/mg Pt) can give some information about the utilization of Pt. As shown in

Figure 4.5, the current for 70%Pt-RuSnO2/C (110) was really low on this basis, which

indicates that the utilization of Pt in this catalyst was small. This phenomenon can be

explained by looking at Figure 3.5 (b) which shows a severe agglomeration of the Pt.

In Figure 4.5, the current for 30%Pt-RuSnO2/C (110–200 ℃) was much lower than

that for 30%Pt-RuSnO2/C (110), which suggests that the higher current of 30%Pt-

RuSnO2/C (110–200 ℃) in Figure 4.4 was very possibly due to the underestimation

of ECSA.

Therefore, it can be concluded that the as-prepared RuSnO2/C (110) support is

not suitable for a higher amount of Pt, that heat treatment of the support should be

avoided and that heat treatment of the catalysts may have some positive effects.

4.5 Conclusions

The presence of hydrous Ru oxide makes the estimation of ECSA complicated. Except

for Pt-RuSnO2/Clow (110), ECSA for other catalysts may have been underestimated

which would cause overestimation of the current density (mA cm−2). Considering

that the main objective here was to observe the shape of the CVs and how well the

catalysts performed at lower potentials, this minor inaccuracy is acceptable.

Combined with the XRD and ICP-OES results, it can be concluded that the pres-

ence of Sn oxide in the support is necessary to improve performance at low potentials

but Sn oxide needs to be incorporated into Ru oxide layer to be effective. Heating of

supports and heat treatment of catalysts may be not necessary. RuSnO2/C may not

be suitable for high Pt loadings.



Chapter 5

Ethanol Electrolysis Cell Results

5.1 Introduction

A good anode catalyst for direct ethanol fuel cells, not only needs to be highly active

at low potentials, but also should produce as much CO2 as possible. This is can be

explained by the following equations [52]:

εcell = εt × εE × εF (5.1)

Where εt is the theoretical energy-conversion efficiency (96% at 80 ℃), εE is the

voltage efficiency (see Equation 5.2) and εF is the faradic efficiency (see Equation

5.3).

εE = Ecell
Erev

(5.2)

Ecell is the actual operating cell voltage (Ecell = Ecathode-Eanode-i*R), i is the current

of the cell and R is the ohmic resistance of the cell. Erev is the reversible cell voltage

(ca. 1.14 V).

εF = nav
nt

(5.3)

57



58

nav is the the average number of electrons transferred per molecule of ethanol, which

depends on the product distribution. The more complete the ethanol oxidation is,

the higher the average number will be. nt is the number of electrons for the complete

oxidation to CO2, which is 12.

So if the anode catalyst is highly active even at low potentials, the operating cell

voltage will be high and the voltage efficiency will be high. If most of the ethanol is

oxidized to CO2, a high faradic efficiency will be achieved.

The cyclic voltammetry experiments reported in Chapter 4 were used to examine

the catalytic activity towards ethanol oxidation. The catalyst was tested in a three-

electrode cell where the electrolyte was stationary. During the CV measurements, the

coverage of poisoning intermediates on the catalyst surface was changing. However,

in a FC, the catalyst works at a certain potential in a flowing electrolyte where the

fuel (ethanol) will be replenished and the products will be discharged constantly,

which means the poisoning will be at a steady-state. So it is crucial to examine the

catalyst under steady-state conditions. Here, a 9-anode proton exchange membrane

electrolysis cell (as shown in Figure 2.1) was used and each potential was held for

3 min for the current measurements.

It is worth noting that the 9-anode cell is good to examine the activity (current)

of catalyst towards ethanol oxidation, but not suitable for product analysis since

each anode is very small (0.236 cm2) where only a small amount of ethanol was

consumed and also the ethanol oxidation on the catalyst had very limited reaction

time. Therefore, a large single-anode (5 cm2) cell was used for product analysis. Since

the experiment in the 5 cm2 single-anode cell is time-consuming and requires a large

amount of catalyst, only the best catalyst (30%Pt-RuSnO2/Clow (110)) was tested.
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5.2 Screening of Catalysts in a 9-Anode Cell

To have a stable and controllable ethanol supply, crossover mode (fuel is supplied

from the cathode and crosses over through the membrane to the anode) was used, as

described by Brueckner et al. [48]. As shown in Figure 5.1, among the 25%Pt series of

catalysts, the current at low potentials for 25%Pt-RuSnO2/C (110) was higher than

for the other two catalysts which agrees with the CV results. 30%Pt-RuSnO2/Clow

(110) gave the highest current at low potentials (below 0.4 V), hence, it was selected

for further testing in the 5 cm2 single-anode cell (Section 5.3).
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Figure 5.1: Comparison of polarization curves for different anode catalysts
(4.0 mg Pt cm−2), at 80 ℃ (except the one labelled 50 ℃), in a 9-anode ethanol
electrolysis cell operated in a crossover mode (1 M ethanol was was passed through
the cathode flow field). Representative error bars (standard deviations for 3 elec-
trodes) were shown for two data sets.

When the temperature of the cell was decreased from 80 ℃ to 50 ℃ for the 25%Pt-
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RuSnO2/C (110) electrode, the current decreased to about half. This indicates that

the temperature is a key parameter for the cell performance. In addition, since the

area of each anode was only 0.236 cm2, it is difficult to control the loading of the

catalyst accurately. To a certain extent, this is reflected by the error bars. Two

representative error bars are shown in Figure 5.1. For 70%Pt/C (Hispec), they have

random heights, which suggests that the anodes had similar catalyst loadings. As for

30%Pt-RuSnO2/Clow (110), the relative error is almost constant, which suggests that

the anodes may have had different loadings of catalyst.

5.3 5 cm2 Single-Anode Cell

As one of the best catalysts, 30%Pt-RuSnO2/Clow (110) was tested in the 5 cm2

single-anode cell. The steady-state current was measured over a range of potentials

and compared with data for the 70%Pt/C (Hispec) catalyst (see Figure 5.2). At low

potentials, the performance of 30%Pt-RuSnO2/Clow (110) was much better than that

of 70%Pt/C (Hispec). For example, at 0.3 V, the current at the 30%Pt-RuSnO2/Clow

(110) anode was three times than at 70%Pt/C (Hispec), although its Pt loading

(2.6 mg cm−2) was lower than for 70%Pt/C (Hispec) (3.2 mg cm−2).

As discussed before, CO2, acetic acid and acetaldehyde are the main products of

ethanol oxidation and a good catalyst should give a high CO2 yield since CO2 is the

product after complete oxidation. Hence, the faradaic yield of CO2 , fCO2
, is reported

in Table 5.1 and it is defined as

fCO2
=
ICO2

Itotal
× 100% (5.4)

where Itotal is the measured current and ICO2
is the theoretical current required to
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Figure 5.2: Polarization curves for 30%Pt-RuSnO2/Clow (110) (2.6 mg Pt cm−2) and
70%Pt/C (Hispec) (3.2 mg Pt cm−2) anode catalysts in a 5 cm2 single-anode cell, at
80 ℃, with 0.1 M ethanol (anode) at 0.5 mL min−1 and N2 (cathode) at 34 mL min−1.
The cathode catalyst was Pt black (4 mg cm−2).
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form the CO2. ICO2
can be calculated by using Equation 5.5.

ICO2
= c× 10−6 × Vs

Vm
× 6× F (5.5)

c is the concentration of CO2 and measured by an NDIR detector which gives a value

in parts per million volume. Vs is the volume flow rate (L s−1) of the carrying gas

(N2), Vm is the molar volume (24.2 L mol−1 at 80 ℃), 6 is a conversion factor (6

units of electrons are transferred when 1 unit of CO2 is produced) and F refers to the

Faraday constant (96485 C mol−1).

By comparing the results shown in Table 5.1, it can be seen that the faradaic

yield of CO2 for 70%Pt/C (Hispec) was much higher than for 30%Pt-RuSnO2/Clow

(110). However, the current for 70%Pt/C (Hispec) was much lower than for 30%Pt-

RuSnO2/Clow (110) at low potentials (under 0.40 V), which indicates that more

ethanol was consumed in the EEC with 30%Pt-RuSnO2/Clow (110) under those con-

ditions although less ethanol was oxidized to CO2. Therefore, it can be concluded

that 30%Pt-RuSnO2/Clow (110) is much more active towards ethanol oxidation at

low potentials than 70%Pt/C (Hispec), but the complete oxidation of ethanol is more

favored in the 70%Pt/C (Hispec) anode.

Table 5.1: Current and faradic yields of CO2 for ethanol oxidation (0.100 M at
0.2 mL min−1) at different anodes in a 5 cm2 cell at 80 ℃.
Potential vs. DHE (V) 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.60 0.70
70%Pt/C (Hispec)
Itotal (mA) 4.5 - 15.5 - 55.5 - 128.6 135.3 -
[CO2] (ppm) 347 - 825 - 2943 - 7899 7728 -
fCO2

(%) 97.4 - 67.0 - 66.6 - 77.1 71.4 -
30%Pt-RuSnO2/Clow (110)
Itotal (mA) 24.0 33.6 49.6 69.3 90.7 98.9 - 108.8 97.4
[CO2] (ppm) 252 404 629 862 1515 2342 - 3460 2239
fCO2

(%) 14.2 16.3 17.2 16.9 22.7 32.1 - 43.1 31.2
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Although faradaic yield of CO2 can provide some mechanistic information, a com-

plete analysis of products is required to calculate the faradaic efficiency of the cell

and investigate the mechanism. Here, the product analysis was done by using a sim-

ilar method to Altarawneh et al. [13]. The exhaust from both sides of the cell was

collected in a trap cooled with an ice-dry ice mixed bath for quantitative product

collection (acetaldehyde is very volatile).

Figure 5.3 shows an NMR spectrum, in which the peaks of ethanol, acetic acid and

acetaldehyde can be observed. The detailed results are shown in Table 5.2. With the

help of a known concentration of fumaric acid (internal standard), the concentrations

of products and the residual ethanol can be easily obtained. Considering the influence

of background correction, the H1 peak instead of the H5 peak was used to determine

the concentration of ethanol and the H4 peak instead of the H7 peak was used to

determine the concentration of acetaldehyde. Because a dimer of acetaldehyde is

formed under these conditions [53], the actual concentration of acetaldehyde consists

of the concentration of acetaldehyde and the concentration of its dimer.
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Figure 5.3: 1H-NMR (300 MHz) spectrum of a mixture of fumaric acid solution (D2O) and the exhaust solution from EEC
operated with 0.1 M ethanol at 0.45 V and 80 ℃. Anode catalyst: 30%Pt-RuSnO2/Clow (110).
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Table 5.2: Peak assignment for Figure 5.3 with corresponding components and con-
centrations.

Peak Name Component Group δ(ppm) Integral Concentration (mM)
H1 Ethanol CH3 1.10 777 38.9
H2 Dimer(AAL) CH3 1.24 15.3 0.77
H3 AA CH3 2.01 999 50.0
H4 AAL CH3 2.16 16.2 0.81
H5 Ethanol CH2 3.57 547 41.1
H6 Fumaric Acid COOH 6.73 100 6.00
H7 AAL CHO 9.59 5.80 0.87

AAL is acetaldehyde and AA is acetic acid.

The product distribution results of the 30%Pt-RuSnO2/Clow (110) anode are

shown in Table 5.3, together with the data for a 70%Pt/C (Hispec) anode from an-

other experiment and for a 75%PtRu/C anode from ref. [13]. At 0.45 V, the current,

the yield of CO2 and faradaic efficiency at the 30%Pt/SLC anode were all intermediate

between the values at the 70%Pt/C anode and at the 75%PtRu/C anode. Thus, it

can be concluded that the increased electrochemical performance of 30%Pt/SLC over

70%Pt/C comes at a lower trade-off in faradaic efficiency than for 70%PtRu/C. It

is also worthy to note that the 30%Pt/SLC anode produced much less acetaldehyde

than the 70%Pt/C anode and so would decrease harmful emissions from DEFCs [54].

Table 5.3: Currents, chemical yields of products, stoichiometries, and faradaic effi-
ciencies for ethanol oxidation (0.1 M at 0.2 mL min−1) at 70%Pt/C, 30%Pt/SLC , and
75%PtRu/C anodes in a 5 cm2 PEM electrolysis cell at 80 ℃. (70%Pt/C refers to
70%Pt/C (Hispec), 30%Pt/SLC refers to 30%Pt-RuSnO2/Clow (110), the results of
75%PtRu/C is from Ref. [13]).

Potential Anode Current CO2 AA AAL nav
εf

vs. DHE (V) catalyst (mA) (%) (%) (%) (%)
0.45 70%Pt/C 78 37.6 48.2 14.1 6.7 56
0.45 30%Pt/SLC 95 13.5 82.5 2.9 5.3 44
0.45 75%PtRu/C 107 7.0 84.1 8.9 4.5 38
0.50 70%Pt/C 116 50.2 46.4 3.5 7.9 66
0.50 30%Pt/SLC 110 15.6 84.7 1.7 5.0 42
0.50 75%PtRu/C 117 6.9 92.4 0.8 4.5 38
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5.4 Conclusions

The 9-anode cell is useful for screening catalysts for more detailed evaluation in the

5 cm2 cell. Polarization curves at low potentials agreed well with the CV results.

As for the 5 cm2 cell, it is very useful to evaluate the catalyst. By analyzing the

polarization curves, faradiac CO2 yield results and chemical yield results, it can be

concluded that the reason for the enhanced performance of 30%Pt-RuSnO2/Clow (110)

at low potentials is that 30%Pt-RuSnO2/Clow (110) can consume more ethanol than

70%Pt/C (Hispec) and produce more acetic acid and less acetaldehyde, although

70%Pt/C (Hispec) can produce a high amount of CO2.



Chapter 6

Summary and Future Work

6.1 Summary

New anode catalysts for direct ethanol fuel cells were developed, which improved cat-

alytic activity towards ethanol oxidation at low potentials and retained relatively high

faradaic efficiency. The new anode catalysts consisted of Pt, Ru oxide, Sn oxide and

carbon, where carbon black modified with Ru-Sn mixed oxides was used as supports

for Pt nanoparticles. The Ru-Sn mixed oxides were mainly amorphous and Pt was

present as nanoparticle confirmed by XRD and TEM. TGA was used to estimate the

loadings of Ru-Sn oxides and Pt in the supports and catalysts. The deposition of Pt

went very well, while the co-deposition of Ru-Sn oxides onto C was highly dependent

on the concentration of KOH added. Elemental analysis results from ICP-OES showed

that more Sn was deposited when less basic conditions were used. The morphology of

the catalyst and element distributions on the surface were investigated by SEM-EDX.

Severe agglomeration was observed when a high Pt loading was used. Individual Pt

nanoparticles were observed by TEM.

The catalytic activity was first examined by CV analysis at room temperature,
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which was very quick and convenient. The prepared catalysts (Pt-RuSnO2/C) showed

higher ethanol oxidation activity at low potentials over the commercial Pt/C catalyst.

Then, a nine-anode PEM electrolysis cell was used to further screen the catalysts. The

experiments were operated in a crossover mode at 80 ℃ and had good agreement with

the CV results. The best Pt-RuSnO2/C catalyst (30%Pt-RuSnO2/Clow (110)) was

selected for further analysis in a 5 cm2 single-anode PEM electrolysis cell. Compared

with the commercial Pt/C catalyst, the best Pt-RuSnO2/C catalyst showed much

better low-potential activity. The CO2 yield and faradaic efficiency for the best Pt-

RuSnO2/C catalyst were both intermediate between the values for Pt/C and PtRu/C.

Therefore, the increased low-potential activity of the best Pt-RuSnO2/C catalyst over

Pt/C comes at a lower compromise in faradaic efficiency than for PtRu/C. In addition,

the best Pt-RuSnO2/C catalyst showed a much lower acetaldehyde yield than the

commercial Pt/C catalyst, which means the use of the catalyst could decrease the

harmful emissions in DEFC. Overall, it can be concluded that Pt-RuSnO2/C catalysts

are better than both Pt/C and PtRu/C for use in DEFCs and EECs.

6.2 Future Work

Nowadays, commercial direct methanol fuel cells are already available. As for DFFCs,

although ethanol has lower toxicity and higher energy density than methonal, they are

not commercial available yet because of low effiencies. The good thing about DEFCs

is that the system of DEFCs can be very similar to commercial DMFCs. Hence, it is

crucial to develop high performance catalysts for DEFCs.

To be useful in DEFCs and EECs, the faradaic efficiency of the Pt-RuSnO2/C

catalyst needs to be further improved. First, the composition and synthetic method

of the RuSnO2/C support should be optimized. Second, various Pt deposition meth-
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ods can be tried to avoid high agglomeration and obtain more active nanoparticles.

Last but not the least, instead of Pt nanoparticles, Pt alloys, which have high CO2

selectivity towards ethanol oxidation, should be considered. In particular, alloying Pt

with Rh [55] and/or Ni [56] is expected to increase the CO2 yield.



Appendix A

SEM-EDX
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Figure A.1: SEM image (a) and EDX spectra (b and c) for the ICP-OES digestion
residue of 30%Pt-RuSnO2/Clow (110)



Appendix B

Cyclic voltammograms
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Figure B.1: Cyclic voltammograms (100 mV/s) of 30%Pt-RuSnO2/C (110–200℃) in
1 M H2SO4 (aq).
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Figure B.2: Cyclic voltammograms (100 mV/s) of 30%Pt-RuSnO2/C (110) in 1 M
H2SO4 (aq).



Appendix C

EDX spectra from TEM

experiments and TEM image

Figure C.1: EDX spectrum of circled area in Figure 3.7(a).
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Figure C.2: EDX spectrum of circled area in Figure 3.7(b).
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Figure C.3: EDX spectrum of circled area in Figure 3.7(c).
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Figure C.4: EDX spectrum of circled area in Figure 3.7(d).
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Figure C.5: TEM of 30%Pt-RuSnO2/Clow (110) used for particle size calculation.
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