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ABSTRACT 

 

The study of petroleum recovery is significant for reservoir engineers. Mathematical models 

of the immiscible displacement process contain various assumptions and parameters, resulting 

in nonlinear governing equations which are tough to solve. The Buckley-Leverett equation is 

one such model, where controlling forces like gravity and capillary forces directly act on 

saturation profiles. These saturation profiles have important features during oil recovery.  

In this thesis, the Buckley-Leverett equation is solved through a finite volume scheme, and 

capillary forces are considered during this calculation. The detailed derivation and calculation 

are also illustrated here. First, the method of characteristics is used to calculate the shock speed 

and characteristics curve behaviour of the Buckley-Leverett equation without capillary forces. 

After that, the local Lax-Friedrichs finite-volume scheme is applied to the governing equation 

(assuming there are no capillary and gravity forces). This mathematical formulation is used for 

the next calculation, where the cell-centred finite volume scheme is applied to the Buckley-

Leverett equation including capillary forces. All calculations are performed in MATLAB. The 

fidelity is also checked when the finite-volume scheme is computed in the case where an 

analytical solution is known. Without capillary pressure, all numerical solutions are calculated 

using explicit methods and smaller time steps are used for stability. Later, the fixed-point 

iteration method is followed to enable the stability of the local Lax-Friedrichs and Cell-centred 

finite volume schemes using an implicit formulation. Here, we capture the number of iterations 

per time-steps (including maximum and average iterations per time-step) to get the solution of 

water saturation for a new time-step and obtain the saturation profile. The cumulative oil 

production is calculated for this study and illustrates capillary effects. The influence of 

viscosity ratio and permeability in capillary effects is also tested in this study. 

Finally, we run a case study with valid field data and check every calculation to highlight that 

our proposed numerical schemes can capture capillary pressure effects by generating shock 

waves and providing single-valued saturation at each position. These saturation profiles help 

find the amount of water needed in an injection well to displace oil through a production well 

and obtains good recovery using the water flooding technique. 
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CHAPTER – 1 

INTRODUCTION 

1.1 Motivation 

Petroleum industries play a vital role in the global economy. In 2016, the global petroleum and 

other liquid fuel consumption averaged 96.9 million barrels per day and the consumption is 

expected to increase by 1.5 million barrels per day in 2017 and 1.6 million barrels per day in 

2018 (EIA, 2016). Due to high demands and meeting the economic challenges, researchers and 

engineers are working to increase production with lower costs and stable techniques. In terms 

of production, recovery is one of the major challenges, minimising all the complexities of the 

reservoir and reducing the inherent assumptions (Muggeridge et al., 2014). Reservoir 

simulation models can improve reservoir performance and enhance hydrocarbon recovery 

mechanisms (Deb et al., 2017). Several mathematical methods have been developed for 

handling nonlinear problems and to solve critical reservoir simulation models. In field 

applications, most models assume linearized conditions and ignore the inherent reservoir 

complexities (Crichlow, 1977; Aziz and Settari, 1979; and, Mustafiz and Islam, 2008; Hossain 

and Islam, 2010). As a result, mathematical models based on the theory behind fluid flow 

through porous media mislead the petroleum recovery efficiency. Only numerical solutions of 

the nonlinear governing equations in reservoir engineering are available to help us to 

understand, forecast, and manage subsurface fluid migration in a reservoir, especially in 

complex geometry and highly nonlinear multiphase fluid flow systems. Therefore, an advanced 

numerical tool is needed to predict the exact solution of a multivariable problem, and yield 

solutions that are realistic rather than impractical (Deb et al., 2017). Numerical methods 

discretise the governing differential equations, making a set of algebraic equations, and solving 

these equations to get an approximate solution (Islam et al., 2016). 

Waterflooding is one of the common techniques for petroleum recovery, where water is 

injected into an injection well for producing oil through a production well. In this context, the 

Buckley-Leverett equation (Buckley and Leverett, 1942) presents a model for an 

incompressible, one-dimensional, two-phase flow system (Muggeridge et al., 2014). The 

model has some limitations, for example, the possibility of multiple-valued water saturation at 

each position. One of the early efforts to overcome this challenge is shock front theory. Since 

then, several researchers (Dykstra, 1950; Hiatt, 1958; Fayers and Sheldon 1959; Warren, 1964; 
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Gottfried, 1966) have tried to solve this issue using various numerical methods, which are 

discussed by the current authors in Chapter 2 as a literature review.   

Based on this issue, the present research considers a single-valued discontinuous solution 

instead of a multi-valued solution. Shock waves are introduced here through these single-

valued solutions. These shock waves help to measure the stability of the solutions and to handle 

nonlinear hyperbolic PDEs (such as the Buckley-Leverett equation). The differential form of 

the governing equation is no longer valid, and the integral form of the algebraic equation can 

be solvable through this phenomenon. Moreover, this wave formation exhibits the physical 

behaviour of the system and makes the solution discontinuous, rather than giving a multi-

valued solution, for any given initial and boundary conditions (De Sterck and Ullrich, 2007). 

Therefore, finding consistent and stable solutions for multiphase flow from the Buckley-

Leverett equation using advanced numerical techniques will be a new contribution from this 

research. 

1.2 Objective 

This research aims to solve the nonlinear partial differential equation using a nonlinear solver 

and find a numerical scheme which can capture all inherent assumptions and explain the 

nonlinearities. This numerical scheme should be stable and must provide an accurate and 

consistent solution. In this research, we choose the Buckley-Leverett equation as our model, 

which arises in waterflooding techniques for petroleum recovery. Here, the researcher tried to 

resolve the capillary pressure effect by solving that governing equation using a finite volume 

scheme and, finally, run an iteration method to check the stability and consistency of the 

numerical results. The overall summary of this research is shown in Figure 1.  

1.3 Structure of the thesis 

The thesis is organised into five chapters, and the first chapter represents the introduction of 

the present research. Other sections are organised as follows: Chapter 2 provides the knowledge 

gap and details the literature of the current research topic, where the authors summarise all 

nonlinear issues along with their solution techniques and present the various contributions for 

that field. Chapter 3 considers the shock wave front using the Method of Characteristics and 

later solves the one-dimensional (1-D) Buckley-Leverett equation (neglecting gravitational 

forces and capillary pressure gradients) numerically using the local Lax-Friedrichs scheme in 

explicit form. This chapter also includes the consistency check for the local Lax-Friedrichs 
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Figure 1.1: Summary of this research. 

scheme and presents some observations related to this research. Chapter 4 introduces the 

numerical solution of the 1-D Buckley-Leverett equation including capillary effects (assuming 

gravitational force is zero) through a cell-centred finite volume scheme and later validates the 

stability of the solution by a fixed-point iteration method. This iterative method is also applied 

to the local Lax-Friedrichs scheme and a simple explicit form calculation to make the solution 

procedure more stable. A real field case study is also presented in this chapter. Finally, the 
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results are summarized and highlighting the contributions along with the future 

recommendations, in Chapter 5.  
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ABSTRACT 

Reservoir simulation is used to demonstrate the dynamic physical processes of rocks and fluid 

properties with high-order nonlinear equations. Currently, different types of simulation 

models are used in the petroleum industry. These models contain several nonlinear 

complexities and, to get a good solution, researchers have applied different numerical 

schemes. In this paper, an extensive review is offered on the state-of-the-art literature with a 

focus on the nonlinearity in partial differential equations related to petroleum reservoir 

simulation. A critical analysis is done on different techniques for solving nonlinear governing 

equations in a petroleum reservoir. It also addresses the inherent assumptions, properties, and 

significance of nonlinear solvers and their technical challenges. Finally, the article discusses 

the impact of a solution of these nonlinear problems by following different numerical 

techniques.  

Keywords: Nonlinear solver, capillary pressure, nonlinear algebraic equation, numerical 

technique, partial differential equation. 

 

2.1. INTRODUCTION 

The petroleum industry is the primary key to the global economy, and technological 

advancement moves forward based on this sector. The energy demand is increasing and 

currently, the crude oil production is some 90 million barrels per day (EIA, 2016). Extracting 

more oil and gas out of existing reservoirs is therefore of paramount importance if the industry 

is to meet the future growth of energy consumption. Therefore, there is a need to improve 

reservoir performance and enhance hydrocarbon recovery mechanisms, which is mostly 

influenced by proper reservoir simulation models. Crichlow (1977) presented a general 

overview of the simulation approach for the petroleum industry. However, the physical 

dimension of a reservoir is always an uncertain issue because every reservoir has different 

geometrical structure and unique geological characteristics (Mustafiz and Islam, 2008). The 

prediction of reserves based on the theory behind fluid flow through porous media can 

mislead petroleum recovery efficiency. 

Simulation models capture complex physical phenomena related to the inherent geological 

complexity of earth models. Due to the nonlinear complexity in the governing equations, the 

dynamic simulation and solution processes in a petroleum field remain major challenges and 

an ongoing research topic. The governing equations for fluid flow in porous media are based 
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on conservation of mass, momentum, and energy equations. Reservoir simulation models can 

be categorised into two groups, based on standard black-oil models and compositional models 

(Aziz and Settari, 1979). In compositional models, the conservation equation is written for 

individual components (Young and Stephenson, 1983). Despite the increase in the use of 

compositional models, the high computational cost associated with nonlinear complexities 

remains a major drawback. On the other hand, black oil models are more attractive candidates 

for most reservoir simulation studies in the industry due to their simplifying assumptions 

regarding realistic field-scale simulations (Lee et al., 2008).  

For solving the simulation models, several analytical and numerical methods were applied to 

handle nonlinear problems. However, the solutions are not exact due to their use of linearized 

mathematical schemes and considering various assumptions. Therefore, an advanced 

numerical tool is needed to predict the exact solution for a multivariable problem, so that the 

solutions are realistic rather than impractical. 

Based on the above issues, the focus of this paper is to review the solution techniques for 

various nonlinear equations in petroleum reservoir engineering and simulation, technical 

challenges in solving those governing equations, and future facilitation for reservoir 

simulation. Here, we review the related literature, summarize the solution techniques and 

models along with assumptions and properties. Finally, we provide some guidelines for future 

research and development (R&D). 

2.1.1 Background of the Research 

In reservoir engineering, many equations express nonlinear behaviour due to effects of the 

time interval, variation in fluid and formation properties (e.g. porosity, permeability, water 

saturation, viscosity, etc.), distribution of pressure responses, simplification of the governing 

equations at formulation stage, or the feasibility of multiple solutions. Islam and Nandakumar 

(1986, and 1990) showed the nonlinear behaviour of the governing equations in petroleum 

reservoir engineering and simulation. To avoid the nonlinearity, previous researchers solved 

the governing equations using linearized methods (e.g., Taylor series expansion, Optimal 

linearization method, Global linearization method, Perturbation theory, Euler’s method, 

Runge-Kutta method, Newton’s Iteration) along with some assumptions (Jordan, 2006). These 

procedures help the researcher to understand the simulation model and control the system 

design methods quickly. However, the linearization effects can be significant, and the results 

may not be accurate due to the wrong prediction of the parameter distribution and number of  
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Figure 2.1: Importance of nonlinear solver. 

errors. The interpretation of simulation models is also affected by neglecting higher-order 

roots and other assumptions (Islam et al., 2016). The material balance equation, Navier-Stokes 

equation, Buckley-Leverett equation, etc., are typical examples of nonlinear behaviour in 

petroleum reservoir engineering (Table 2.1). 

2.1.2 Technical Challenges Towards the Research 

All current commercial simulators (e.g. Eclipse, CMG Suite, Tempest MORE, ExcSim, 

Nexus, FlowSim) in the petroleum industry solve the set of governing equations (including all 

algebraic equations, PDEs, and ODEs) by linearizing nonlinear equations and adding 

assumptions. In the majority of cases, the solutions are not ideal due to the nonlinear 

behaviour of the equations. Islam et al. (2010, 2016) showed that these solutions are varied 

with the realistic range of most of the petroleum parameters in a single-phase flow. They also 

found significant errors in the prediction time of petroleum reservoir performance using 

advanced fuzzy logic. The scenarios are worse for multiphase flow when linearization occurs 

in governing equations (Islam et al., 2016). Thus, to predict reservoir behaviour and future 

performance, we need more accurate solutions from nonlinear solvers, which develop a 

consistent solution scheme by solving nonlinear algebraic equations and helps us to optimize 

hydrocarbon recovery. 

2.1.3 Objectives of the Research 

Nonlinearity increases the complexity of reservoir operations and reduces the performance 

when applying simulation technologies. It also raises the computational cost, requiring more  
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Table 2.1: A few examples of nonlinear equations 

Sl. No. Equations Reasons for Nonlinearity  References 

1 Material Balance 

equation 

Nonlinear nature of pressure 

declines with time or distance 

Islam et al. (2016) 

2 Navier-Stokes equation Nonlinear stress-rate of strain 

relationship 

Khan and Islam (2006); Zatzman 

and Islam (2007); Islam et al. 

(2016) 

3 Buckley-Leverett 

equation 

Nonlinear behaviour due to the 

inclusion of capillary pressure 

Mustafiz et al. (2008b); Islam et 

al. (2016) 

4 Darcy’s law: Fluid flow 

through porous medium 

Nonlinear nature of pressure-

dependent properties 

Abou-Kassem et al. (2006); Islam 

et al. (2016) 

time to complete. The numerical solution of the nonlinear governing equations in reservoir 

engineering helps us to understand, forecast, and manage subsurface fluid migration, 

especially in complex geometry and highly nonlinear multiphase fluid flow systems. An 

effective numerical technique can handle nonlinear parameters and enhance productivity. As 

such, development of techniques has drawn a lot of interest by a diverse group of scientists. 

Many models of petroleum properties are not rigorously justified, and approximately 30% 

deviation occurs due to the linearization of nonlinear algebraic equations for pressure values 

for single phase flow (Hossain and Islam, 2010a; Islam et al., 2010). This type of error 

restricts the ability of petroleum reservoir models. The performance further deteriorates when 

the governing equations for multiphase flow are linearized. The resulting residual equations 

are also nonlinear, due to various natures of nonlinearity including saturation-dependent 

nonlinear terms (e.g. relative permeability, and capillary pressure functions), or pressure-

dependent nonlinear terms such as viscosities and densities (Shahvali, 2012; Nooruddin et al., 

2014). Thus, it is necessary to solve the nonlinear algebraic equations in time and space 

dimensions. A nonlinear solver reduces the time step and error level with its better algorithm 

for the equations using the engineering approach. The stability and consistency of a solution 

are also maintained by a nonlinear solver. However, limited work has been done using this 

technique to represent the importance of nonlinear solver (Figure 2.1) and resolve the 

nonlinearity difficulties. Nonlinear solver tasks are more fruitful for enhanced oil recovery 

(EOR) schemes to optimize oil recovery and improve thermal flooding operations (Hossain et 

al., 2009; Islam et al., 2010; Al-Mutairi et al., 2014). 

2.2. CRITICAL LITERATURE ANALYSIS 

The equations used in reservoir engineering and simulation are inherently nonlinear due to the 

interaction and inclusion of various parameters. These equations may be algebraic, 
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differential, integral, partial differential equations (PDE), ordinary differential equations 

(ODE), or integro-differential equations. These equations contain higher-order roots and 

indicate nonlinear behaviours. Depending on the parameters, nonlinear algebraic equations 

may yield multiple solutions instead of a single solution. We need to solve such equations to 

find approximate solutions using Newton’s method, Finite Difference Method (FDM), 

Adomian Decomposition Method (ADM), etc. However, these conventional techniques do not 

provide multiple solutions for simultaneous nonlinear equations, which has led to diverse 

groups of scientists working on this question. There are several effects (i.e., pressure-

dependent properties, capillary pressure, viscous fingering, memory, gas flow modelling, 

mixing, phase exchange, absorption and desorption) involved which increase the nonlinearity 

in the governing equations. A critical analysis of different models is shown in Table 2.2 based 

on those effects. Here, a summary of the model equations, assumptions, parameters behind 

these equations, and the limitations for the developed equations are presented in Tables 2.2 

and 2.3. These tables represent the last few decades advancement in reservoir simulation 

models and provide a scope for future research. Furthermore, the identified key features will 

help researchers improve their ideology and philosophy to develop reservoir emulators 

considering time and space. In this section, we review this work and sort out the problems 

from their solution techniques, looking for a research scope in the current area of interest. 

2.2.1. Effect of Capillary Pressure 

Capillary pressure is the pressure differential between the wetting and non-wetting phase in 

porous media due to the effects of capillary forces across the fluid interface. Modelling the 

behaviour of capillary pressure in reservoir engineering and enhanced oil recovery problems is 

a challenging task. Using capillary pressure, scientists and petroleum engineers evaluate the 

quality of reservoir rock, the depth of reservoir fluid contacts, seal capacity, pay versus 

nonpay zones, estimation of recovery efficiency, etc. from petroleum fields (Morrow 1970; 

Melrose and Brandner, 1974; Wardlaw et al., 1988). 

Many researchers tried to solve the governing equations of these areas by considering 

capillary effects and found significant effects. Based on the Buckley-Leverett equation (1942), 

Holmgren and Morse (1951) explained capillary effects for removing nonlinearities through 

the average saturation of water calculation. After that, Welge (1952) found the mean water 

saturation at a breakthrough point in an oil reservoir and shock effects, described by the 

Buckley-Leverett equation. Fayers and Sheldon (1959) solved the displacement equation with 
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Table 2.2: A Critical analysis of different model equations from different researchers. 

Researcher 

Parameters of the model equations 
Solution 

scheme 𝜙 k P T 𝑆𝑤  𝑓𝑤 𝜇 𝑃𝑐 x 𝜎 g q 𝛼 𝜏 
Reservoir 

dimension 

No. of 

phases 

Buckley-

Leverett (1942) 
√ √ - - √ √ √ √ √ - √ √ - - 1-D 2 Theoretical 

Holmgren and 

Morse (1951) 
√ √ - - √ - √ √ √ - - √ - - 1-D 2 Analytical 

Welge (1952) √ √ - - √ √ √ √ √ - - √ - - 1-D 2 Analytical 

Fayers and 

Sheldon (1959) 
√ √ - - √ - √ √ √ - √ √ - - 1-D 2 Analytical 

Hovanessian 

and Fayers 

(1961) 

√ √ - - √ √ √ √ √ - √ √ - - 1-D 2 Theoretical 

Slattery (1967) - √ √ - - - √ - - √ - - √ √ - 1 Theoretical 

Bentsen (1978) √ √ - - - √ √ √ √ - √ √ - - 1-D 2 Numerical 

Mifflin and 

Schowalter 

(1986) 

- √ √ - - - √ - - - - - √ √ 3-D 1 Analytical 

Eringen (1991) - - √ √ - - √ - √ √ - √ √ √ 1-D 1 Theoretical 

Nibbi (1994) - - √ √ - - √ - √ - - √ √ √ 1-D 1 Theoretical 

Broszeit (1997) - - √ √ - - - - - - - - √ √ 1-D 1 Numerical 

Caputo (1999) - √ √ - - - √ - √ - - √ √ - - - Theoretical 

Shin et al. 

(2003) 
- - √ √ - - √ - - - - - √ - - 1 Theoretical 

Liu et al. (2003) √ √ √ √ - - √ - - - √ - - √ 1-D 1 Numerical 

Chen et al. 

(2005) 
√ √ √ √ - - √ - √ - - - √ √ 1-D 2 Theoretical 

Hossain and 

Islam (2006) 
√ - √ √ - - - - - √ - - √ √ - - 

Theoretical 

 

Abou-Kassem 

(2007) 
√ √ √ √ - - √ - √ - - √ - - 1-D 1 Analytical 

Hossain et al. 

(2007) 
√ √ - √ - - √ - - - - - √ √ 1-D 1 Analytical 

Mustafiz et al. 

(2008b) 
√ √ - - √ √ √ √ √ - √ √ - - 1-D 2 Numerical 

Hossain et al. 

(2008) 
√ √ √ - - - √ - √ - - √ √ - 1-D 2 Numerical 

Hossain et al. 

(2009b) 
- √ √ √ - - √ - - - - √ √ √ 1-D 2 Numerical 

Younis et al. 

(2010) 
√ √ - - √ √ √ √ √ - √ √ √ - 1-D 2 Numerical 

Hossain (2012) √ - √ √ - - √ - √ - - √ √ - 1-D 2 Analytical 

Wang and 

Tchelepi (2013) 
√ √ - - √ - √ √ √ - √ - √ - 1-D 2 Numerical 

Li and Tchelepi 

(2014) 
√ √ √ √ - - √ √ √ - - √ - - 1-D 2 Numerical 

Hossain 

(2016a) 
√ √ √ √ - - √ - √ - - √ √ - 1-D 2 Analytical 

Hossain 

(2016b) 
√ √ √ √ - - √ - √ - - √ √ - 1-D 2 Numerical 

Obembe et al. 

(2016b) 
√ √ √ - - - √ - √ - - √ √ - 1-D 2 Numerical 

 



13 

Table 2.3: A comparative and critical study on assumptions and limitations of different model 

equations.  

Investigator Assumptions Limitations Applications 

Ciarletta and 
Scarpetta (1989) 

o Homogeneous, incompressible and 
viscous fluid 

o Aware of symmetric velocity 
gradient 

o Defined boundary conditions 

o Not suitable for complex 
simulation model equations 

o Depends only on fluid 
viscosity 

o In mathematics field 
for minimizing 

viscous-fluids 
related problems  

Eringen (1991) o Identified local convergence 
o Applicable only for spherical 

problems 

o Undefined global 
convergence 

o Incompetent for thermally 
active fluid flow systems 

o Developed the 
suspension 
mechanism for 
colloidal problems 

Nibbi (1994) o Homogeneous, incompressible and 
viscous fluid 

o Linear and isotropic problems 

o Imprudent for practical 
problems 

o Fluid related quasi-
static problem in 
Mathematics field 

Caputo (1999) o Linear isotropic, homogeneous, 
viscous and incompressible fluid 

o Predicts fluid pressure with time 

o Permeability decreases with 
time 

o Undefined fluid properties 
role in a porous media 

o In geothermal areas 
for studying the 
pore size of the 
minerals 

Shin et al., 
(2003) 

o Memory is dependent on the 
diffusion time scale 

o Homogeneous model 
o Used Taylor series expansion 

o Did not explain the memory 
impact fully in the media 

o More dependency on time 
scale 

o Explained particle 
deposition facts and 
Non-equilibrium 
mechanism for fully 
developed turbulent 
channel flows 

Hossain and 
Islam (2006) 

o Permeability and fluid 
compressibility unchanged with 

time 
o Fluid and media properties have 

been considered 

o No explanation about 
nonlinear trends of stress-

strain model 

o Visco-elastic fluid 
flow behavior in a 

reservoir.  

Hossain et al., 
(2007) 

o No slip conditions 
o No lower contact surface velocity 
o Consider dimensionless parameters 
o Ignored the roles of surface tension 

on the fluid viscosity, and memory 

o No explanation about 
matrix heterogeneity, 
anisotropy, and inelasticity 
of a reservoir 

o Used in reservoir 
simulation, 
rheological study, 
well test analysis, 

and EOR surfactant 
selection 

Hossain et al., 
(2008) 

o Used time-dependent fluid and 
media properties 

o Used equation of motion and 
continuity equation 

o Followed fractional order of 
differentiation 

o Generates only singular 
form of equations 

o Need to remove 
singularities using different 
numerical techniques  

o Used for crude oil 
flow in porous 
media, EOR 
process, and few 
special case (like 
decline pressure 

reservoir condition) 

Hossain et al., 
(2009b) 

o Non-Newtonian and shear thinning 
fluids 

o Ignored scale-up problems 
o Trapezoidal method used for 

numerical simulation 
o Porosity, permeability, shape 

factor and flow velocity considered  

o Captured physical 
phenomena of a model only 

o Limited works at low shear 
rates 

o Not showed the effect of 
apparent viscosity in their 

model 
o Analytical solution was 

absent 

o Used in EOR and 
polymer 
manufacturing 
applications 

Hossain (2012) o Compressible fluids 
o Single phase flow 
o 1-D horizontal reservoir with 

irregular block size  
o Rectangular coordinates 

o Analytical and numerical 
solutions were absent 

o Used for the 
development of 
petroleum reservoir 
simulator 

Wang and 
Tchelepi (2013) 

o Newton-based nonlinear solver 
o Large time steps 
o Analysed entire capillary, viscous, 

and buoyancy parameter spaces of 
porous media 

o Nonlinear immiscible, 
incompressible, two-phase flow in 

o Failed to explain time-step 
based truncation errors 

o Only for single cell problems 
 

o Developed for 
coupled multiphase 
flow and transport in 
porous media 
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porous media 

Li and Tchelepi 
(2014) 

o Interface of discretized flux 
function between two cells 

o Guided only Newton iterations for 
various saturation regions 

o Considered time-truncation errors 
o Oscillation of convergence failure 

avoided 
o Two-phase flow 

o Undefined many unknown 
variables in multiple 

dimensions 
o Unable to explain sharp kinks 

of relative permeability curves 

o Used for oil/gas 
recovery, 

groundwater 
remediation, and 
CO2 geological 
sequestration 

Hossain (2016a) o Fluid and rock properties are time-
dependent continuous functions 

o Followed engineering approach 
o 1-D Cartesian reservoir considered 

o Have no realistic estimation 
regarding fractional 

derivatives 
o Need experimental data set for 

validation of memory-based 
diffusivity equation  

o Used in well testing 
analysis, petroleum 

reservoir simulation 
and history matching 

Hossain (2016b) o Permeability is constant with respect 
to time and space 

o 1-D model of an oil reservoir 

o Only considered transient phase 
o Asymptotic value is set equal to zero 

o Does not explain about non-
local aspects of fluid 
transport 

o Singularity of the integral 
formulation with the memory 
was inherent for 
integrodifferential equations 

o Determined pressure 
response in the 
formation rock and 

fluid properties for a 
petroleum reservoir 

o Captured memory in 
reservoir fluid flow 
in porous media 

Obembe et al., 
(2016b) 

o Extended the diffusivity equation for 
multiphase flow system 

o Considered wellbore geometries 

o Defined volumetric flux with time 
o Material balance check per time step 

o R-L fractional operator failed 
to interpret the initial 
conditions of a system 

o Time-step must be known for 
stability check  

o Handled fractional 
flow problem in 
porous media 

gravity and capillary pressure using a Lagrangian approach. However, they did not obtain 

saturation values for a required time. Hovanessian and Fayers (1961) also presented capillary 

pressure effects by avoiding multiple-valued saturation profiles. Hence, Bentsen (1978) 

explained that fact with separate equations for a particular distance travelled by zero 

saturation with a numerical investigation. He also showed the incorrect formulation of Fayers 

and Sheldon (1959) for slow rates of injection at constant normalized saturation conditions. 

However, Craft and Hawkins (1991) showed the fluid distributions of a single homogeneous 

formation for different times and detected multiple water saturation values along the 

formation bed. For simplicity, the authors assumed that the forces generated by gravity and 

capillary pressures are negligible. Capillary pressure is also significant during fluid injection 

into confined aquifers. Nordbotten and Celia (2006) predicted the formation zone behavior 

with semi-analytical solutions for the case of CO2 injection into deep saline aquifers, 

considering capillary pressure effects. The authors also attempted to reduce the nonlinearity of 

PDEs in their modeled system by presenting a couple of solutions through iterative solution 

techniques and, finally, compared with numerical solutions depicted by Nordbotten et al. 

(2005). However, to avoid complexity, capillary pressure was neglected in their solution. 

Later, Schmid et al. (2011) derived semi-analytical solutions for two-phase flow, concerned 

with the effects of viscous and capillary forces in counter-current and co-current imbibition 
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processes. Due to the highly nonlinear nature of the problem, they only considered the 

capillary-free Buckley-Leverett problem. 

To minimize the effects of nonlinearity, Mustafiz et al. (2008a, and b) solved the nonlinear 

Buckley-Leverett equation (1942), considering capillary pressure effects and validated their 

solution for 1-D, two-phase flow using ADM (Adomian Decomposition Method). Recently, 

Islam et al. (2016) argued that multiple solutions might come using advanced fuzzy logic and 

numerical techniques. Therefore, consistently finding multiple solutions for multiphase flow 

from the Buckley-Leverett equation using advanced numerical techniques will be a new scope 

of research. 

From Buckley-Leverett’s theory (1942), the equation can be written as:  

 
𝜕𝑆𝑤

𝜕𝑡
+

𝑞

𝐴𝜙

𝜕𝑓𝑤

𝜕𝑆𝑤

𝜕𝑆𝑤

𝜕𝑥
= 0                                    (1) 

where,  

 𝑓𝑤 = (
1

1+
𝑘𝑟𝑜𝜇𝑤
𝑘𝑟𝑤𝜇𝑜

) (1 +
𝐴𝑘𝑘𝑟𝑜

𝑞𝜇𝑜
[

𝜕𝑃𝑐

𝜕𝑥
− (𝜌𝑤 − 𝜌𝑜)𝑔𝑠𝑖𝑛𝛼])              (2) 

Here, 𝑆𝑤 is water saturation, 𝑓𝑤  is the fractional flow rate of water, 𝑞 is the total flow rate of 

oil and water, 𝐴 is the cross-sectional area, 𝜑 is porosity, 𝑘𝑟𝑜 is relative permeability of oil, 

𝑘𝑟𝑤 is relative permeability of water, 𝜇𝑤 is water viscosity,  𝜇𝑜 is oil viscosity, 𝑘 is absolute 

permeability, 𝑃𝑐 is capillary pressure, 𝜌𝑤 is water density, 𝜌𝑜 is oil density, 𝑔 is gravity, and 𝛼 

is angle of the formation bed. 

Equation (1) is a nonlinear PDE. Making assumptions, Craft and Hawkins (1991) presented 

the following equation by calculating water saturation along the formation bed:  

𝑥(𝑡, 𝑆𝑤0) =
𝑞𝑡

𝐴𝜑

𝜕

𝜕𝑆𝑤0
(

1

1+
𝑘𝑟𝑜𝜇𝑤
𝑘𝑟𝑤𝜇𝑜

)

𝑡

      (3) 

Equation (3) neglects gravity and capillary forces in the formation, and the flow is horizontal. 

The results showed multiple saturation values at any point along the bed, which is fully 

unrealistic in reservoir simulation. Therefore, Mustafiz et al. (2008b) presented the following 

equation for the case of horizontal flow, considering the capillary pressure effects:  

𝑆𝑤0(𝑥, 𝑡) = 𝑆𝑤(0, 𝑥) − ∫ [
𝑞

𝐴𝜑

𝜕

𝜕𝑆𝑤0
(

1

1+
𝑘𝑟𝑜𝜇𝑤
𝑘𝑟𝑤𝜇𝑜

)
𝜕𝑆𝑤0

𝜕𝑥
]

𝑡

0
𝑑𝑡    (4) 
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𝑆𝑤1(𝑥, 𝑡) = − ∫ [
𝑘𝑘𝑟𝑜

𝜇0𝜑

𝜕

𝜕𝑆𝑤0
(

1

1+
𝑘𝑟𝑜𝜇𝑤
𝑘𝑟𝑤𝜇𝑜

)
𝜕𝑃𝑐

𝜕𝑆𝑤0
+

𝑘

𝜇0𝜑
(

1

1+
𝑘𝑟𝑜𝜇𝑤
𝑘𝑟𝑤𝜇𝑜

)
𝜕𝑘𝑟𝑜

𝜕𝑆𝑤0

𝜕𝑃𝑐

𝜕𝑆𝑤0
+

𝑡

0

𝑘𝑘𝑟𝑜

𝜇0𝜑
(

1

1+
𝑘𝑟𝑜𝜇𝑤
𝑘𝑟𝑤𝜇𝑜

)
𝜕2𝑃𝑐

𝜕𝑆𝑤0
2] (

𝜕𝑆𝑤0

𝜕𝑥
)

2

𝑑𝑡       (5) 

Mustafiz et al. (2008b) solved these equations using ADM (Adomian Decomposition 

Method), which is a powerful technique to solve nonlinear equations. They maintained the 

capillary pressure and water saturation behaviour and obtained one saturation value for a 

given time at a point along the formation bed. In fact, the solution converged quickly but 

failed to produce multiple solutions for the governing Buckley-Leverett’s equation. Hence, 

there is a scope for future researchers to find new schemes and check the feasibility of 

generating multiple solutions. 

On the contrary, capillary effects could be explained by bundle tube and network model 

concepts. Some researchers had focused only on bundle tube models (Yuster, 1951; 

Scheidegger, 1953; Bartley and Ruth, 1999; Dong et al., 1998), and other researchers 

discussed 2-D and 3-D network models (Chatzis and Dullien, 1977, 1982; Chadler et al., 

1982; Lapidus et al., 1985; Diaz et al., 1987; Blunt and King, 1991). However, these 

researchers failed to simulate fluid dynamics in porous media through network modelling. In 

addition, Dong et al. (2005) analyzed immiscible displacement processes using an interacting 

capillary bundle model. In this model, capillary pressure was considered, and the fluids used 

in different capillary pressures were independent of each other. The saturation profiles were 

calculated using the backward difference approximation, which is a second-order nonlinear 

equation solved through Newton’s method for each time and space step. The stability and 

convergence were also in good approximation based on experimental, numerical, and 

analytical results. However, this is a linearized and time-consuming method. Therefore, 

researchers are looking forward to advance nonlinear solution schemes which will be less time 

consuming and will provide stable and accurate solutions. 

2.2.2 Effect of Memory 

Memory is a function of fluid and media properties, and the pressure changes with respect to 

time in a reservoir, which influence other rock and fluid properties (Caputo 1998a, 1999, 

2000; Caputo and Cametti, 2009; Caputo and Fabrizio, 2015). During flow processes, rock 

and fluid properties alter continuously within the reservoir, and that alteration is directly or 

indirectly related to time (Hossain et al., 2009; Hossain and Islam, 2009). Research shows that 
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these properties are inherently nonlinear. Later, Hossain and Abu-Khamsin (2012a, 2012b) 

presented the notion of memory, which stated the continuous-time functional or history 

dependency and leads to nonlinearity and multiple solutions. 

To incorporate memory effects in petroleum reservoirs, Slattery (1967) defined memory, 

which represents the deformation rate as a function of extra stresses. He approached this 

through studying viscoelastic fluid behaviour with the Buckingham-pi theorem and found the 

nonlinear behaviour in his results. Using the memory function, Mifflin and Schowalter (1986) 

presented a relationship between the fluid viscosity and stress tensor in non-Newtonian fluids. 

That research was conducted for solving 3-D steady flows in closed or open flow systems. 

They divided memory into velocity gradients and continued the calculation until the fluid 

memory decomposed adequately while the rest of the integral could either be neglected or set 

to a small constant value. Later, Ciarletta and Scarpetta (1989) focused on the linearized 

progress of an incompressible fluid flow equation, ignoring the nonlinear convective term of 

the equation. They were concerned with the symmetric velocity gradient, which helps to 

observe the immediate stress effects based on memory.  

Apart from the above fluids, Eringen (1991) developed a nonlocal theory of micro-polar fluids 

by considering orientation and memory effects along with stress and fluid viscosity. They 

showed significant memory effects by measuring the small characteristic length compared 

with the average gyration radius of the fluid molecular elements. This type of situation arises 

in the case of thin film lubrications, which exhibit a nonlinear behaviour. However, none of 

the above researchers explained and solved the nonlinearity. Nibbi (1994); Broszeit (1997); Li 

et al. (2001); Shin et al. (2003); Chen et al. (2005); and Hossain and Islam (2006) used 

memory functions based on the characteristic and intermediate diffusion time scales for 

different fluids and parameters. These authors reviewed memory effects comprehensively, but 

were unsuccessful at the stage of experimental validation.  

After a few years, Hossain et al. (2009a) applied fluid memory to non-Newtonian fluids 

during an EOR process. Here, the rock compressibility was affected by the pressure decline 

during the production life of a reservoir. The fluid and formation properties were investigated 

using space and time derivatives of fractional order, which made it a rigorous model. A 

significant pressure response was observed due to the increasing production time of the 

reservoir, which made the fluid memory effects dominant. Recently, a model was solved by 
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Obembe et al. (2016c) for heterogeneous media which included the memory as a time 

derivative of fractional order in a diffusion model. 

Furthermore, Hossain et al. (2009b) described the characteristics of polymer flooding, 

reservoir simulation, and the characterization of complex reservoirs with the help of memory 

effects which could characterize the fluid movement. They were concerned with the 

characterization of the rheological behaviour along with memory effects for shear-thinning 

fluids. However, that model did not explain the delay of movement in a viscoelastic fluid. 

Therefore, Hossain et al. (2009c) presented a mathematical stress-strain model for a complex 

reservoir considering the effects of memory parameterized by the fractional derivative order, 

α. For different values of α, they identified the fluid memory effects, considering time and 

space over the stress-strain relationship. The memory mechanism helps in interpreting the 

reservoir phenomenology with matrix heterogeneity, anisotropy, and inelasticity. Moreover, 

the variation of distance and time defines a chaotic behaviour with non-monotone trends of 

the stress-strain relationship, which was a strong indication of the memory effect. The 

trapezoidal method was used to solve their proposed model, ignoring the complexity of the 

nonlinear second order PDEs due to the absence of a nonlinear solver. Recently, memory has 

been applied appropriately by Hossain (2016a) and Obembe et al. (2016b) to present the 

modified diffusivity equation where the rock and fluid properties are continuous time-

dependent functions. According to Hossain (2016a), the model equation was highly nonlinear 

due to the application of memory and validated by numerical experiment. Here, the solution 

of the equation was dependent on memory (𝛼), which was more realistic compared to a 

conventional Darcy’s model. The memory was predominant surrounding the wellbore and 

diminished toward the outer boundary of the reservoir. However, that model could not provide 

better predictions due to the inconsistent rate of diffusion and incomplete solution. Here, we 

show an example where memory is incorporated into a stress-strain relation, making the 

governing equation nonlinear. The relationship between stress and strain (Hossain and Islam, 

2006; Hossain et al., 2007) becomes: 

𝜏𝑇 =
𝑘2Δ𝑝𝐴𝑥𝑧Γ(1−𝛼)

𝜇0
2𝜂𝜌0𝜙𝑦𝑐𝐼

× [(
𝜕𝜎

𝜕𝑇

Δ𝑇

𝛼𝐷𝑀𝑎
) × 𝑒(

𝐸

𝑅𝑇
)]     (6) 

where, 𝐼 = ∫ (𝑡 − 𝜉)−𝛼 (
𝜕2𝑝

𝜕𝜉2) 𝑑𝜉
𝑡

0
 and the permeability of the media and fluid compressibility 

are unchanged with time. 
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Here, 𝜏𝑇 is shear stress at temperature T; 𝑀𝑎 is Marangoni number; 𝑅 is universal gas 

constant; 𝐴𝑥𝑧 is cross-sectional area of rock perpendicular to the flow of flowing fluid (𝑚2); 

𝐸 is activation energy for viscous flow (𝐾𝐽 ⁄ 𝑚𝑜𝑙); 𝑇 is Temperature (𝐾); Δ𝑇 is temperature 

difference (𝐾); 𝛼 is fractional order of differentiation, known as Memory; 𝛼𝐷 is thermal 

diffusivity (𝑚2 ⁄ 𝑠𝑒𝑐); Γ is Euler gamma function; 𝜉 is a dummy variable for time, i.e., real 

part in the plane of the integral; 𝑝 is pressure of the system (𝑁 ⁄ 𝑚2); Δ𝑝 is pressure 

difference; 𝜂 is ratio of the pseudo-permeability of the medium with memory to fluid viscosity 

(𝑚3𝑠1+𝛼 /𝑘𝑔); 𝑦 is distance from the boundary plan (𝑚); 𝜌0 is density of the fluid at 

reference temperature 𝑇0; 𝑐 is fluid compressibility; 𝜙 is porosity of fluid media; 𝑘 is 

permeability and 𝜇𝑜 is oil viscosity. 

The above equation is the simplified form of a mathematical model (Lu and Hanyga, 2005; 

Hossain et al., 2007) which consists of all fluid and media properties: 

𝜏𝑇 =
𝑘2Δ𝑝𝐴𝑥𝑧Γ(1−𝛼)

𝜇0
2𝜂𝜌0𝜙𝑦𝑐 ∫ (𝑡−𝜉)−𝛼(

𝜕𝑐

𝜕𝜉

𝜕𝑝

𝜕𝜉
−

𝑐

𝑘

𝜕𝑘

𝜕𝜉

𝜕𝑝

𝜕𝜉
+𝑐

𝜕2𝑝

𝜕𝜉2 )𝑑𝜉
𝑡

0

× [(
𝜕𝜎

𝜕𝑇

Δ𝑇

𝛼𝐷𝑀𝑎
) × 𝑒(

𝐸

𝑅𝑇
)]

𝑑𝑢𝑥

𝑑𝑦
 (7)  

In equation 7, memory is a function of all fluid and media properties over time. When we 

consider memory and other properties simultaneously, the equation behaves nonlinearly rather 

than as a linear function. A proper nonlinear solver or a new numerical scheme could handle 

that type of equation and minimize the challenges of memory-induced rock and fluid 

properties in porous media. 

2.2.3. Effect of Viscous Fingering for Miscible and Immiscible Displacement 

To enhance secondary and tertiary oil recovery, modelling viscous fingering is important in 

both miscible and immiscible displacement. Though this task is formidable, some researchers 

have attempted to establish a suitable model using few chaos theory. The biggest problem was 

generating higher-order equations with respect to time and space, and researchers faced 

complexity to solve those types of governing equations. Naami et al. (1999) conducted an 

experiment on modelling viscous fingering in a 2-D system and interpreted the model using a 

numerical method. A similar approach was taken by Saghir et al. (2000) where the governing 

equations of a viscous fingering model were solved using a finite difference scheme. Both 

research groups explained the PDEs of the model by propagation of fingers in the system. 

Some advanced numerical techniques have also been applied to modelling viscous fingering 

by other researchers (Aboudheir et al., 1999; and Bokhari and Islam, 2005). Bokhari and 
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Islam (2005) showed their advancements to the order of ∆𝑡4 in time and ∆𝑥2 in space and 

presented some reasonable agreement to the Barakat-Clark scheme and experimental work. To 

date, the solution is undefined due to a lack of nonlinear solvers that will work on such higher 

order roots and solve viscous fingering models accurately. 

A 2-D convection-diffusion equation is written as (Islam et al., 2016): 

𝜕𝐶

𝜕𝑡
= 𝐷𝑥

𝜕2𝐶

𝜕𝑥2 + 𝐷𝑦
𝜕2𝐶

𝜕𝑥2 − 𝑢
𝜕𝐶

𝜕𝑥
− 𝑣

𝜕𝐶

𝜕𝑥
      (8) 

where, 𝐷𝑥 and 𝐷𝑦 denote lateral and transfer diffusion terms, 𝑢 and 𝑣 are the velocity terms in 

the 𝑋 and 𝑌 directions, and 𝐶 denotes the concentration term. 

A modified Barakat-Clark scheme with central time difference was used (Islam et al. 2016), 

and the initial and boundary conditions were considered from Aboudheir et al. (1999). The 

discretization of equation (8) is: 

𝐶𝑎𝑖,𝑗
𝑛+1−𝐶𝑎𝑖,𝑗
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∆𝑦2 −

𝑢
𝐶𝑎𝑖+1,𝑗

𝑛 −𝐶𝑎𝑖−1,𝑗
𝑛

2∆𝑥
− 𝑣

𝐶𝑎𝑖,𝑗+1
𝑛 −𝐶𝑎𝑖,𝑗−1

𝑛

2∆𝑦
      (9) 

Here, the central time difference (CTD) scheme created artificial oscillations, and the solution 

was only accurate to first order and introduced a second order truncation error (Mathews, 

1992). The Barakat-Clark scheme gave stability for the time term and showed the accuracy of 

the order of ∆𝑡4, while the Barakat-Clark forward time difference (FTD) scheme showed 

accuracy approximately of the order of ∆𝑡2. If the memory term is added into the equations, it 

leads to higher-order nonlinearity, which is a very hard task for the linear solver to solve. One 

should take the initiative to continue research for better time and space accuracy in the 

convection-diffusion equation. Finally, an advanced nonlinear solver can tackle this situation, 

which is another research scope in the area. 

2.2.4. Effect of Fluid and Media Properties 

In petroleum reservoirs, the most basic fluid and media properties include permeability, 

density, viscosity, temperature, pressure, diffusivity, compressibility, surface tension, specific 

gravity and so on. These parameters are interconnected with each other, and small changes in 

any one lead to significant changes in reservoir estimation and performance. For any 

governing equation, the equation must show nonlinear behaviours without considering 
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assumptions and then follow linearization techniques. From that point of view, a nonlinear 

solver should be able to handle higher complexities and higher roots of nonlinear governing 

equations. 

Memory is a term in reservoir simulation which is well described by Islam et al. (2010, and 

2016), Hossain et al. (2006, 2007, 2008, 2009c, and 2010a), and a few other research groups 

(Slattery, 1967; Caputo, 1999, 2000, 2015; Mustafiz et al., 2005, 2008; and Obembe et al., 

2016 a, b, c). Earlier, the present authors tried to highlight memory effects concisely and show 

their independency. On the other hand, several parameters (i.e., permeability, density, 

viscosity, temperature, pressure, diffusivity, compressibility, surface tension, specific gravity, 

etc.) are discussed here. The basic difference is that sometimes memory will influence 

reservoir simulation independently while the rest of the time, it will act with other parameters. 

From last few decades, several researchers tried to deal with nonlinear equations along with 

those properties. Slattery (1967) explained the viscoelastic behaviour of Newtonian and 

incompressible fluids and presented a fluid behaviour model, which was unrealistic due to 

permeability effects. Based on previous research findings, Nibbi (1994) discussed the 

relationship between viscous fluids and free energies of linear viscoelastic fluids extensively 

for the quasi-static problem. Later, Brosszeit (1997) showed fluid deformation via simulation 

and attempted to describe and solve stress-related fluid problems. They applied a single 

integral constitutive law, where the fluid kinematics were known, and dealt with the numerical 

simulation of steady-state isothermal flow for Newtonian fluids. However, the exact solution 

was not clearly present in their numerical simulation approach. Liu et al. (2003) also verified 

analytical solutions of the Navier-Stokes equation for fractured reservoirs by numerical 

simulation, but failed to define the boundary conditions between the porous medium and the 

fracture. Later, Hossain et al. (2007) explained viscoelastic fluid flow behaviour in porous 

media, which is an important variable for predicting oil flow and helps to understand reservoir 

performance. They worked on existing fluid flow models considering time and other fluid 

(e.g. viscosity, density, diffusivity, compressibility) and media (e.g. surface tension, porosity, 

permeability) properties (Hossain et al., 2009c). Further, some researchers showed intangible 

problems of memory and recognized the need for considering memory and other rock/fluid 

properties (e.g. stress, viscosity, surface tension, temperature, etc.) (Hossain et al., 2009c). 

After that, Hossain and co-authors were able to describe the effects of fluid variation and 

formation properties over time and proposed a model for describing the flow of fluid in 

porous media (Hossain et al., 2008; Hossain, 2016a). Besides, Hassan and Hossain (2016) and 
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Obembe et al. (2016a) reviewed the thermal displacement processes for an oil reservoir and 

presented the rock and fluid property alteration with time. The authors (Hossain et al., 2008, 

Hossain, 2016a) modified the equations of motion by applying the memory concept in 

mathematical and computational models. The new form of the equations referred to the 

memory based diffusivity equation, is a fully nonlinear integrodifferential equation. Here, an 

implicit-explicit finite difference method was used to obtain a mathematical formulation, 

where the researchers tried to avoid the singular form of the equation. The only significant 

feature was the properties of rock and fluid as a function of time. The solutions of the model 

equations was still incomplete due to lack of nonlinear solver.  

In addition, the modified momentum balance equation was presented by Hossain (2016b) for 

a 1-D oil reservoir, which helps to establish the memory contribution in reservoir fluid flow 

through porous media. This equation was solved numerically using spline functions, and the 

trapezoidal rule was applied to crosscheck the stability and accuracy of the solution. The time-

domain and space-domain fractional-order derivatives solutions were obtained from that 

numerical solution. Yet the spline function and trapezoidal rule are not suitable for such 

equations, and researchers are looking for a nonlinear solver to solve the equation with better 

accuracy. 

For single phase, 1-D (one-dimension) linear flow, the pressure gradient is predicted from the 

Darcy’s diffusivity equation (Hossain et al., 2008; Islam et al., 2016): 

𝜕2𝑝

𝜕𝑥2 =
𝜙𝜇𝑜𝑐𝑡

𝑘

𝜕𝑝

𝜕𝑡
         (10) 

where, 𝑐𝑡 is the total compressibility, 𝜙 is the porosity, 𝑘 is the rock permeability, and  𝜇𝑜 is 

the oil viscosity. 

With the inclusion of rock and fluid memory, Hossain et al. (2008) considered the modified 

Darcy’s law in 1-D reservoir: 

𝑢𝑥 = −𝛽𝑐𝜂 {[
1

Γ(1−𝛼)
] ∫ (𝑡 − 𝜉)−𝛼𝑡

0

𝜕

𝜕𝜉
(

𝜕𝜙

𝜕𝑥
) 𝜕𝜉}    (11) 

where, 𝛽𝑐 is the transmissibility unit conversion factor (dimensionless); 𝛼 is the fractional 

order of differentiation, known as memory (dimensionless); 𝜉 is a dummy variable for time, 

i.e., real part in the plane of the integral, 𝑢𝑥 is the fluid velocity in porous media in the 

direction of x-axis (𝑚/𝑠); 𝜂 is the ratio of the pseudo-permeability of the medium with 



23 

memory to fluid viscosity (𝑚3𝑠1+𝛼/𝑘𝑔); Γ is the Euler gamma function and 𝜙 is the porosity 

of fluid media. 

They took the range of 𝛼 from 0 to 1, giving equation (11) a nonlinear form. Later, Hossain 

(2016a) applied the engineering approach for the development of a memory-based diffusivity 

equation and expressed the rock and fluid properties as a function of time as giving 
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which is the final form 
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Equation (12) is the discretized form of the diffusivity equation, where the boundary 

conditions are applied to reduce nonlinearity, and a numerical experiment was performed to 

validate the model equation. Here, the author provides only the outline of the solution of 

model equation instead of an exact solution. 

2.2.5. Effect of Time Step Size 

The effects of the time step on computational accuracy are generated by the use of different 

time steps on the simulation system. The calculation of time step effects starts from the 

formulation and continues to solution. The results of relative percentage error are one way to 

express the time-interval implications in reservoir simulation, where the relative error is 

calculated based on pressure, temperature, or water saturation values at different time steps. 

To validate the models, time steps must be considered for long-term simulation (Islam, 2008). 

In addition, Newton’s method is not always guaranteed to converge for large time steps, due 

to the nonlinearity of conservation equations (Aziz and Settari, 1979). 

Ertekin et al. (2001) found significant changes in the percentage of relative error due to the 

implementation of time steps in the simulation system. The gradual reduction of error made 

the convergence rate slower. After that observation, Mustafiz et al. (2008a) investigated the 

time effects for a compressible fluid in a single-phase flow problem. They conducted their 



24 

experiment using Darcy’s law, which was described earlier by Abou-Kassem et al. (2006). 

These researchers collected pressure responses for different time intervals using the 

interpolation of cubic spline functions and continuous functions. The time effect was more 

sensitive for the results with continuous functions rather than spline functions, and the 

pressure drop also increased with increasing time steps. In fact, for short time intervals, the 

relative error percentage accuracy was less in a single-phase flow system. 

Based on the iteration process from Ertekin et al. (2001), Younis et al. (2010) presented a 

nonlinear iteration process with a converging time step and developed ideas to address 

nonlinear solver issues in reservoir simulation. The researchers demonstrated the robustness 

and computational efficiency of their proposed iteration method and the solutions were more 

attainable than with standard Newton’s method. Also, they interpreted an algorithm for the 

examples of single-phase implicit residual system at different time steps by following 

Newton’s method. Later, Li (2014) solved the nonlinear equations which arise from the fully 

implicit discretization of fluid flow in porous media using the standard Newton’s method. 

They formulated, verified, and analyzed the computational efficiency of a new nonlinear 

solution technique for a given time step size, compared with the Sequential-Implicit Method 

and Newton-based iterative methods. That solution scheme had a lower computational cost 

without compromising the allowable time step size in each iteration. However, the proposed 

algorithm was based on rigorous analysis, and only nonlinear solvers could solve the order 

arbitrarily. 

After that, Wang and Tchelepi (2013) described the time step effects for immiscible two-

phase transport in porous media by a nonlinear trust-region solver, where viscous, buoyancy, 

and capillary forces were deemed significant. They highlighted the flux function as a 

nonlinear function of saturation, which was the primary source of complexity for nonlinear 

solvers of coupled multiphase flow and transport in porous media. The authors also described 

a modified Newton method, showing that two successive iterations cannot cross any trust 

region boundary, and demonstrating significant extensions of the inflection-point strategy for 

viscous dominated flows. They analyzed the discrete nonlinear transport equation using a 

finite-volume discretization with a phase-based upstream weighting system. Later, 

convergence was numerically shown for the trust region Newton method irrespective of the 

time step size for single-cell problems. However, they tried to overcome the limitations by 
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analyzing larger heterogeneous reservoir models with proper time step size and developed 

performance by reducing overall computational cost. 

Consequently, Li and Tchelepi (2014) developed a convergent nonlinear solution technique 

for immiscible multiphase flow and transport in heterogeneous porous media where numerical 

performance was much superior to previous nonlinear solution methods and bypassed the 

convergence failure effectively. They also highlighted convergences difficulties (i.e. erratic 

time stepping, greater number of Newton steps and time steps interval), and achieved 

solutions for arbitrary time step sizes using Newton’s method. They studied their proposed 

solution technique for oil/gas recovery, groundwater remediation, and carbon-dioxide 

sequestration related to large-scale problems in the presence of viscous, buoyancy, and 

capillary forces. In addition, Li and Tchelepi (2015) developed another convergent nonlinear 

solution technique to analyze the discrete nonlinear transport (i.e. mass conservation) 

equations for immiscible, incompressible, multiphase flow and transport in porous media, 

considered with time step size and improved the computational speed of numerical 

simulations. They analyzed the nonlinearities in heterogeneous domains across the viscous, 

buoyancy, and capillary forces in detail, which dominate the transport dynamics. The authors 

also pointed out heterogeneities in the capillary pressure–saturation relationship extensively 

using their proposed numerical solution scheme. Recently, Hamon and Tchelepi (2016) 

presented nonlinear ordering based solution techniques to reduce the number of iterations 

significantly, which lead to improvements in the entire computational cost and promoted the 

potential based ordering method in the presence of gravity. They introduced the Fully Implicit 

Method (FIM) for the temporal discretization for multiphase flow in porous media and solving 

large coupled systems of nonlinear algebraic equations instead of Newton-based iterations 

(Ortega and Rheinboldt, 1970; Deuflhard, 2004). The researchers also extended their 

nonlinear approach to interphase (i.e. between liquid and gas) mass transfer as a function of 

pressure and composition, with which the algorithm deals accurately. The detailed 

comparisons of the robustness and efficiency of the potential nonlinear and linear solvers for 

immiscible two-phase (dead oil), black oil, and compositional problems also presented. Still, 

researchers are working on efficient solution techniques where they utilize the time step size 

for each grid block in a microscopic way and save computational time in modern reservoir 

simulation systems. 
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2.2.6. Nonlinearity from the Modelling of Gas Flow in Reservoir 

In gas reservoirs, modeling of pore-size distribution and understanding the pore structure of 

the formation are necessary for fluid-flow measurement and hydrocarbon estimation. The 

recovery of most reservoirs is highly dependent on the pore structure characteristics (Clarkson 

et al., 2013; Hu et al., 2012; Josh et al.,2012; Kuila and Prasad, 2013; Wang et al., 2014; Lin 

et al., 2015). To explain this issue, many researchers have investigated the pore characteristics 

of the formation, but failed due to the lack of proper mathematical models (Clarkson et al., 

2012, 2013; Hu et al., 2012; Josh et al., 2012; Kuila and Prasad, 2013; Wang et al., 2014).  

Lin et al. (2015) proposed a numerical fitting model for estimating the pore volume of a shale 

formation under reservoir conditions and analyzed samples in qualitative and quantitative 

ways. Still, researchers are working continuously to represent a complete scenario of pore 

volume structure and its suitability in gas flow modelling. 

The residual natural gas saturation also affects multiphase flow behavior in gas reservoirs and 

is challenging during the modelling of multiphase flow characteristics (Caudle et al., 1951; 

Holmgren and Morse, 1951; Gonzalez et al., 2007; Idem and Ibrahim, 2002; Roman et al., 

2008, 2009). Sometimes, the pressure responses in fractured (e.g., symmetric, asymmetric, 

longitudinal, transverse, vertical, inclined) gas reservoirs affect the fluid flow models (i.e., 

analytical, semi-analytical or numerical) and exhibit nonlinear behavior (Crosby et al., 2002; 

Wan and Aziz, 2002; Al-Kobaisi et al., 2006; Zhu et al., 2007; Lin and Zhu, 2010; Rbeawi 

and Tiab, 2013; Huang et al., 2015). The situation would be more complicated with shale gas 

moved from tight gas reservoirs using various fracture network models (Bustin et al., 2008; 

Gong et al., 2011; Firoozabadi, 2012; Swami et al., 2013; Kudapa et al., 2017). Therefore, 

researchers and engineers need to solve highly nonlinear models. They need to obtain the fluid 

flow rate from the matrix to the wellbore before proceeding to model production. 

2.2.7. Nonlinearity in EOR Applications 

The exact flow regime in EOR applications should be determined through accurate 

mathematical or numerical models. A well-designed EOR method, such as miscible gas 

injection, also provides the exact phase behavior for multi-component fluid systems (Islam et 

al., 2016). The solution of the nonlinear governing equations for an unstable flow regime will 

carry significant value. The chances of numerical errors would be increased without any 

rigorous solution techniques. Moreover, the governing equations could become more and 

more nonlinear because of carbon-di-oxide (CO2) sequestration, the presence of non-
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Newtonian fluid flow, injecting gas and fluids for recovery, thermal-flooding, fractal 

permeability and porosity, phase changes during the measurement of rock and fluid 

properties, absorption and desorption during flooding mechanism, etc. (Mungan, 1992; 

Özkılıç, and Gumrah, 2009; Farajzadeh, 2009; Gogoi, 2011; Ju et al., 2012; Sheng, 2010, 

2015; Jang et al., 2014; Patacchini et al., 2014; Wang et al., 2015; Sun et al., 2017). 

Sometimes, researcher have found semi-analytical solutions for those governing equations, 

which may be solved by a nonlinear solver using advanced numerical simulations (Wentao et 

al., 2012; Cossio et al., 2013; Wang et al., 2015). 

2.3. Outline of Present Simulator Steps, Challenges and Solution Techniques 

2.3.1. Present Simulator Steps 

In petroleum reservoir simulation, several numerical techniques are used to find the exact and 

approximate solutions of the governing equations. Most of them end up with unique solutions. 

However, due to computational advancement, it is time to look forward to algorithms for 

multiple solutions and/or a cloud of solutions with high computational efficiency. This target 
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Figure 2.2: Major steps of present reservoir simulators (modified after Hossain 2012) 
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may be achieved through an efficient nonlinear solver or a new scheme. According to Islam et 

al. (2016), the ADM (Adomian Decomposition Method) was successfully used to solve 

nonlinear PDEs (e.g., the Buckley-Leverett equation) and generated solutions in single-phase 

flow systems. 

Based on Ertekin et al. (2001) and Hossain (2012), the outlook of current simulator steps is 

shown in Figure 2.2. In the formulation stage, the simulator describes the governing nonlinear 

PDEs along with the underlying assumptions and mathematical terms. The equations are 

discretized by following time discretization and generate a set of nonlinear algebraic equations 

for the choice of different schemes (e.g., old-time step, intermediate time step or new time 

step). Using Newton’s method, the nonlinear algebraic equations are turned into linear 

algebraic equations, and production and injection wells for a petroleum field are defined. To 

get the solutions, different numerical techniques are applied to these equations. Finally, an 

experiment needs to be run for the validation of the model equations. 

2.3.2. Challenges of the Present Simulator Steps 

Most of the governing equations are in nonlinear form and need to be solved to predict 

reservoir performance. The current commercial computer simulators (e.g. Eclipse, CMG 

Suite, Tempest MORE, ExcSim, Nexus, FlowSim) use linear solvers that produce solutions 

by linearizing the nonlinear governing equations. Using mathematical approaches, 

mathematicians have provided solutions of the nonlinear equations by linearizing the 

governing equations and simplifying them with initial and boundary conditions (Ertekin et al., 

2001). Apart from the previous approach, Abou-Kassem et al. (2006); and Abou-Kassem 

(2007) presented an outline of the engineering approach for solving the governing nonlinear 

equations. This approach showed the nonlinear equations in an integral form instead of the 

nonlinear algebraic equations using time and space discretization, which made the solution 

simpler than what mathematicians had done earlier (Figure 2.3). Besides, Mousavizadegan et 

al. (2006) proposed Adomian Decomposition Method (ADM) for solving nonlinear equations 

through computing the governing equations via the engineering approach formulation. Hence, 

several researchers claimed that multiple solutions are achievable for the nonlinear governing 

equations without linearization using the ADM (Adomian Decomposition Method) (Mustafiz 

and Islam, 2008; Mustafiz et al., 2008a; Islam et al., 2010, and 2016). In addition, Islam et al. 

(2016) raised concerns about the single point solution because cloud computing solutions for 

reservoirs can be achieved by advanced fuzzy logic theory. This theory will maximise the 
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accuracy of the unique solution using an artificial intelligence system. The comprehensive 

validation of the future simulator is also possible by following this theory. Here, the 

comprehensive term is used to consider all parameters calculation and their solution in the 

reservoir for a specific time and space. The approximate solutions are close to exact solutions 

but are not achievable due to the lack of nonlinear solvers. As further elaborated by Islam et 

al. (2016), these solutions without linearization revealed a number of key observations, such 

as (i) a broad range of operating parameters for which the nonlinear solvers predict results 

remarkably different from those predicted by linear solvers; (ii) the possibility of multiple 

solutions inherent to reservoir simulation problems; and (iii) linearization of governing 

equations likely to divert subsequent results, hence biasing the decision-making process 

irreversibly. 

2.3.3. Solution Techniques for Nonlinear Algebraic Equations 

From the beginning of the simulation, researchers have used different numerical methods for 

solving nonlinear algebraic equations in fluid flow systems. Most of those techniques consist 

of various assumptions, which influence the governing equations directly and make simple 

linear equations. Some of them are iterative, based on linearizing the governing equations, and 

the remainder are phase-based solution approaches. Only a few researchers have tried to apply 

advanced numerical techniques (e.g. ADM (Adomian Decomposition Method), Implicit 

Pressure Explicit Saturation (IMPES), Multilevel Nonlinear Method (MNM), Nested 

Iteration, etc.) without eliminating assumptions, which give reliable results rather than linear 

and nonlinear solver techniques and discretization approaches (e.g. Newton’s Method, Secant 

Method, Finite Element Method (FEM), Jacobi method, Relaxation method, Gauss-Seidel 

method, Alternating-Direction Implicit Procedure (ADIP), Iterative ADIP, Linearized-Implicit 

method) (Crichlow, 1977). Here, we briefly narrate some standard techniques to solve 

nonlinear equations in reservoir simulation.  

2.3.3.1 Techniques for Linear Equations 

From the very beginning of petroleum reservoir simulation, several numerical methods have 

been applied to get accurate solutions, which influence the operations, forecasting 

performance, and computational costs of petroleum fields. These numerical methods applied 

to the linear algebraic equations by following two ways: (i) Direct processes (e.g., Matrix 

inversion, Cramer’s rule, Gaussian Elimination, Gauss-Jordan method, Matrix 

decomposition); and (ii) Iterative Processes (e.g., the Jacobi method, Relaxation methods, and 
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Table 2.4: Summary of the linear equations solution techniques. 

Methods Features Limitations References 

Matrix 
inversion 

o Straight forward process 
o Better elimination quality 
o Real-time simulation method 

o Very cumbersome method  
o Usable for finding unique 

solution 

Crichlow (1977); Nash 
(1990); Lipschutz 

(1991) 

Cramer’s rule o Explicit type solution method 
o Systemic and rapid solution 
o Determinants of the matrices will never 

zero value 
o Only applicable when coefficient of the 

matrices is square 

o Numerically unstable 
o Not appropriate in 

Computational process  

o Concern with trivial 
parameters 

Hoffman and Frankel 
(2001); Higham 

(2002); Shores (2007); 

Habgood and Arel 
(2012) 

Gaussian 
elimination 

o Two-step calculation and unknown 
parameters are obtained from second step 
algorithm 

o Determine coefficient of the matrices 

sequentially  

o Non-efficient algorithm 
o Handle only band matrices 

problem 
o Do not find approximate 

solution 
o Numerically unstable for 

large number of equations 
and unknowns 

Gentle (1998); Marc 
and Seymour (2001); 
Higham (2002); Grcar 

(2011) 

Gauss-Jordan 
method 

o Directly obtain identity matrix 
o Reduced order elimination method 
o Results obtain from the matrix without 

back substitution 

o Increases the chance of 
round-off errors 

Crichlow (1977); 
Seymour (2001); 

Higham (2002); Grcar 
(2011) 

Matrix 
decomposition 

o Transform larger matrix problems into 
smaller matrix 

o Helpful for singularities in a problem 
o Better solution comes from linear 

algebraic equations 

o Only follows the back-
substitution rules 

o Generate erroneous 
solutions 

Choudhury and Horn 
(1987); Meyer (2000); 

Townsend and 
Trefethen (2015) 

Jacobi method o Determine the solutions from diagonal 
systems of linear equations 

o Iterations continue until it converges. 

o Requires well-conditioned 
linear system for fast 

convergence 

Bronshtein and 
Semendyayev (1997); 

Saad (2003); Yang and 
Mittal (2014) 

Relaxation 
method 

o Introduce a relaxation parameter to 
accelerate the convergence 

o Improve the quality of solution 
o Solve PDEs by splitting and iterating until 

solution is found 

o Slow convergence 
o High computational cost 

Jeffreys and Jeffreys 
(1988); Ortega and 
Rheinboldt (2000); 

Goffin (1980); Richard 
(2002) 

Gauss-Seidel 
method 

o Stable method 
o Faster convergence than Jacobi method 
o Requires current approximation for 

unknown vector 

o Finds only one solution 
o High computational cost 

Crichlow (1977); 
Jeffreys and Jeffreys 

(1988); Richard (2002) 

Multigrid 
method 

o Reducing high frequency errors 
o Down sampling the residual error to a 

coarser grid 

o Interpolating on a coarser grid into finer 
grid 

o Number of operations is proportional to 
the number of unknowns for a given 
problem 

o Can be applied in combination with any of 
the common discretization techniques 

o Requires an underlying 
PDE problem before 
constructing the sequence 

of grids 
o Not efficient for complex 

geometries problem 
o Only employed to elliptic 

or parabolic problems 

Wesseling (1992); 
Briggs and 

McCormick (2000); 

Shapira (2003) 

the Gauss-Seidel method). In direct processes, the solution of the system of equations is 

obtained after the completion of a fixed number of operations. The methods are also easily 

compatible with pressure equations in simulation, and the algorithms are reasonably efficient. 

However, they have a higher possibility of round-off error and require a significant amount of 

computational labour (Crichlow, 1977). In contrary, the iterative processes are more efficient, 

with faster convergence, and provide greater levels of accuracy. Here, the solution is 
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generated after a systematic computation of solution approximations at each iteration step. 

The important features of both processes are critically analyzed and reported in Table 4. 

However, both processes increase the complexity and number of errors, time-steps and 

computational speed for all types of reservoir simulation nowadays (Ertekin et al., 2001). Due 

to technological advancements and higher demands for petroleum products, simulation 

models are more complex higher order equations, considering with all rock and fluid 

properties (e.g., porosity, permeability, water saturation, pressure-temperature distribution, 

etc.) and the linearized solution techniques are not usable here. Therefore, researchers are 

looking for more accurate, stable and convergent numerical solution methods or new schemes 

to solve these higher-order equations. 

2.3.3.2 Techniques for Nonlinear Equations 

Researchers have studied some techniques (e.g., IMPES (Implicit Pressure Explicit 

Saturation), Sequential Implicit Method (SIM), Standard Newton's method, Newton's method 

with heuristic solution, Continuation Newton, Ordering-based methods, ADM (Adomian 

Decomposition Method), MNM (Multilevel Nonlinear Method), Deflation-Nested Iteration 

(NI) Methods) to avoid higher-order complexity and gain rapid convergence and savings of 

computational time by nonlinear solvers. These nonlinear solvers are more reliable, accurate 

and stable than previous linearized solution techniques (Nordbotten et al., 2005b; Yavneh and 

Dardyk, 2006; Kwok and Tchelepi, 2007; Mustafiz et al., 2008b; Younis et al., 2010; Younis, 

2011; Adler et al., 2016). This challenge can be addressed by numerical techniques along with 

field data interpretations and validation. The approximate solutions have been improved, 

reducing the problems of previous linearized solution techniques, considering local and global 

convergence features, solution accuracy, and stability. Here, we summarise numerical solution 

techniques concerning the basic principles, advantages, limitations, and significant features 

related to reservoir simulation. 

2.3.3.2.1 IMPES and SIM methods 

Aziz and Settari (1979) used SIM (Sequential Implicit Method) to solve the black oil model 

equations by solving for pressure using the prior time steps and computing a new total 

velocity field based on the pressure. The solution of pressure equations is conveniently 

separated in sequential solution, which permits approximation of the saturation equations 

(Peaceman and Rachford, 1955). After that, they solved the transport problem implicitly 

considering the total velocity field. Then, the fully implicit method (FIM) made both the 
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saturation and pressure variables implicit with respect to time and generated a solution of the 

resulting nonlinear algebraic equations. Later, Coats (2000) introduced the IMPES (Implicit 

Pressure Explicit Saturation) method where the saturation variables are explicit in time, and 

the pressure variables are implicit in time. IMPES (Implicit Pressure Explicit Saturation) 

requires a time-step limit inversely proportional to the largest fluid velocity in the reservoir 

due to its stability limit, and this limit is often too restrictive in practice. Later, the stability of 

IMPES (Implicit Pressure Explicit Saturation) was derived by Coats (2001) for 

multidimensional black oil and compositional models for three-phase flow. The truncation 

error was smaller in IMPES (Implicit Pressure Explicit Saturation) (Coats, 2001; Coats, 1968; 

Bansal et al., 1979). On the other side, the SIM (Sequential Implicit Method) did not suffer 

stability problems like IMPES (Implicit Pressure Explicit Saturation) due to the absence of 

capillarity. The General Purpose Reservoir Simulator (GPSIM) used SIM (Sequential Implicit 

Method) (Spillette et al., 1973) for more computational efficiency (Douglas et al., 1959).  

2.3.3.2.2 Standard Newton's method 

This is an iterative scheme where a sequence of iterations is generated to solve a nonlinear 

system of equations, obtained from the linearization of the original nonlinear system. At each 

Newton iteration, this method solves: 

𝐽𝜈𝛿𝑥𝜈 = −𝑅𝜈           

where 𝐽 denotes the Jacobian matrix, representing the derivatives of the residual with respect 

to the unknowns, and 𝛿𝑥𝜈is the vector of Newton updates. Thus, the sequence of iterations 

generated starting from the beginning can be written as: 

𝑥𝑛+1,0 = 𝑥𝑛          (14) 

𝑥𝑛+1,𝜈+1 = 𝑥𝑛+1,𝜈 − (𝐽𝑣)−1𝑅(𝑥𝑛+1,𝜈; Δ𝑡, 𝑥𝑛), 𝑣 = 0,1, … …   (15) 

where 𝑅 denotes the vector of discrete residual equations, and Δ𝑡 is the time step size. This 

method can be seen as an explicit first-order time stepping scheme with dynamical system 

defined by Deuflhard (2004) and Younis (2011) as: 

𝑥𝑛+1,𝑣 = 𝑥𝑛 ,  𝑣 =  0        (16) 

𝑑𝑥𝑛+1

𝑑𝑣
= −(𝐽𝑣)−1𝑅(𝑥𝑛+1,𝜈; Δ𝑡, 𝑥𝑛), 𝑣 > 0     (17) 
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where the Newton iteration index (𝑣) is considered to be a continuous quantity. A first-order 

explicit discretization of equation (17) results in the following discrete form representing the 

dynamical system: 

𝑥𝑛+1,𝜈+1 − 𝑥𝑛+1,𝜈 = −Δ𝜈𝐽−1𝑅(𝑥𝑛+1,𝜈; Δ𝑡, 𝑥𝑛)    (18) 

Comparison of equations (15) and (17) shows that Newton's method approximates the 

derivative of the new state in terms of the embedded time (𝜈) using a first-order finite-

difference scheme with a unit step size, Δ𝜈 = 1 (Deuflhard, 2004; Younis, 2011). Since 

explicit first-order time stepping may be unstable due to time step restriction, Newton 

iterations may not converge even though the continuous Newton flows are well-behaved 

(Shahvali, 2012). 

2.3.3.2.3. Newton's method with heuristic safeguards 

In commercial simulators (e.g. Eclipse, CMG Suite, Tempest MORE, ExcSim, Nexus, 

FlowSim), the convergence behaviour of standard Newton's method has been improved by 

using heuristic solution methods; especially when buoyancy forces are influential in the fluid 

flow (Naccache, 1997; Nordbotten et al., 2005). In porous media, the modified Appleyard 

chop algorithm (e.g. used in EclipseTM) is one of the most common heuristic approaches. It is 

a cell-based approach, and, for any grid cell, Newton iterates for saturation from old iteration 

levels are updated to new iteration levels using that algorithm (Geoquest, 2005; Younis, 

2011). The Buckley-Leverett 1-D displacement problem is one of the examples, to which the 

modified Appleyard chop algorithm has been applied. The convergence behaviour improved 

and the saturation is changed from immobile to mobile for the range between 0 and 1. Here, 

the problem is discretized implicitly and separated into 100 grid cells. The generated 

nonlinear problem is solved for one time-step size using standard Newton’s method and the 

Modified Appleyard chop algorithm. The results showed that standard Newton’s method 

converged for time-steps less than 10-2 PVI (pore volumes injected), whereas the modified 

Appleyard chop converged from the beginning of the pore volumes injection time-step sizes 

(Younis, 2011; Shahvali, 2012). 

2.3.3.2.4. Continuation Newton Method 

This method was formulated by Younis et al. (2010) and Younis (2011) to handle` the 

challenges in a reservoir simulator. At the initial iteration step, the time step was zero and the 

convergence neighbourhood was considered for increasing computational efficiency and 
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avoiding the iteration solution path (Shahvali, 2012). They developed the existing nonlinear 

methods by this approach and handled the current and upcoming challenges in physical 

nonlinearity in a reservoir simulator. The significant finding was removing convergence 

difficulties by adapting time-step sizes, which increased the computational effort and 

performed the iteration for small time-steps (Younis, 2011). For the Buckley-Leverett 

Problem, they calculated time-steps when the fractional flow was horizontal and when the 

fractional flow was affected by gravity effects. In both cases, time-steps influenced the 

governing equations and, here, the continuation Newton method converges to the solution 

with small time-step sizes. The results showed that a better approximation of the solution was 

generated for smaller time steps instead of larger time steps. In fact, the saturation changed 

sharply with distances and provided the worst approximation of the governing equation for 

large time steps (Younis et al., 2010; Younis, 2011). 

2.3.3.2.5. Ordering-based methods 

Appleyard and Cheshire (1982); and Natvig et al. (2006) proposed an ordering-based method 

to solve flow and transport equations. The approaches to the solution may be cell-based 

(Cascade method and Natvig's method) or use a phase-based ordering method. Cell-based 

approaches are considered when cells are rearranged along the direction of fluid flow and the 

transport equations are solved on a cell-by-cell basis sequentially. On the other hand, when 

ordering is performed on phase potentials due to capillarity effects, the method is known as 

the phase-based method. 

Kwok and Tchelepi (2007) and Natvig and Lie (2008) implemented this ordering-based 

method for a set of multiphase flow equations in porous media, which is in nonlinear form due 

to gravity and capillarity effects. They also considered the linear solution step and 

investigated the advantages of potential ordering methods for saturation variables on large 

heterogeneous problems. They simplified the nonlinear algebraic equations for pressure 

dependence using the fully implicit method (FIM). Here, the saturation was treated as a 

function of pressure and was solved for using small time steps. This FIM method speeds up 

the solution of the nonlinear systems of algebraic equations implicitly. They also achieved 

real convergence for larger time steps using a reduced-order Newton’s method instead of the 

standard Newton’s method. Shahvali (2012) used ordering-based methods for solving flow 

and transport equations and faced the gravitational challenges of the counter-current flow 

equations efficiently. 
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2.3.3.2.5.1. Cascade method 

Appleyard and Cheshire (1982) proposed a cell-based ordering method, known as the cascade 

method, which accelerates the standard Newton's method and solves the conservation 

equations simultaneously for pressure and saturation in a two-phase flow. Kwok (2007) and 

Shahvali (2012) also applied the cascade method for an incompressible 1-D modelling 

problem when the counter-current flow was absent.  

They applied the cascade method for evaluating the pressure values without saturation 

iterations from higher-order cells to lower-order cells. This approach performed the sweep 

activity, and, for each cell phase, this method runs sequentially within each phase. Depending 

on the phases, the nonlinear equations would be generated for pressure and saturations. This 

method converges the pressure and saturation solutions in the presence of local minima and 

countercurrent flow in multiple dimensions. Due to poor initial guesses, the cascade method 

existence might not converge in real field applications and fails to provide guarantees of the 

local minima (Kwok, 2007; Shahvali, 2012). 

2.3.3.2.5.2. Natvig's method 

Natvig et al. (2006), Natvig and Lie (2008), and Shahvali (2012) presented a solution method 

based on discontinuous Galerkin spatial discretization to solve hyperbolic transport equations 

when gravity and capillarity were absent. They solved the equations by applying an optimal 

reordering of grid cells on a cell-by-cell basis from upstream to downstream, using a standard 

Newton algorithm. 

This cell-based ordering method was used to solve the multiphase advection problem, when 

gravity and capillarity have no influences. Sometimes, this approach can be applied equally 

for the standard FVM (Finite Volume Method) approach (Shahvali, 2012). The cell problems 

consist of multiple nonlinear systems and are solved from upstream to downstream order by 

decoupling the system. Current reservoir simulators are also developed based on this 

sequential solution scheme, and computational efficiency is achieved for unified cell-based 

applications. However, the convergence of the solution is no longer linear due to the presence 

of countercurrent fluid flow, and a robust implementation would be needed at that time. In 

addition, for higher order nonlinear problems, the solution procedure is solely responsible for 

time-dependent problems and the sequential solution procedure is still undiscovered (Natvig 

et al., 2006; Natvig and Lie, 2008).  
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2.3.3.2.5.3. Phase-based potential ordering 

Kwok and Tchelepi (2007) performed a rigorous mathematical analysis of 1-D problems, 

where the algorithm was always convergent due to the absence of counter-current flow and 

derived a reduced Newton algorithm for multiphase flow in porous media based on the new 

phase-based potential ordering. Before that, they presented an order of equations and 

unknowns based on phase potentials and showed that saturation dependence in the Jacobian 

method takes a lower-triangular form, allowing solution one unknown at a time. They also 

extended this approach for counter-current flow due to gravity, using different orderings 

corresponding to different phases. On the other hand, the reduced Newton algorithm only 

converges in the presence of counter-current flow with satisfaction of backward CFL 

conditions. This algorithm may cycle or diverge when the backward CFL number is greater 

than one (Kwok, 2007; Shahvali, 2012). However, this phase-based potential ordering might 

not be necessary in simulation for computing time-steps when the fluid flow directions are 

unchanged. At that time, this approach was used only for beginning time-steps counts when 

they could validate that ordering easily (Kwok and Tchelepi, 2007). 

For the Buckley-Leverett equation, the phase-based potential ordering method only works in 

the presence of capillarity due to the downstream water saturation. From that governing 

nonlinear equation, the pressure of one phase is evaluated for another pressure phase. 

Therefore, they considered some preprocessing steps to avoid the downstream dependency of 

water saturation. Also, the gas equations are solved in the last step of the phase ordering due 

to the presence of countercurrent fluid flow and the gas components are mixed in the oil and 

gas phases (Kwok, 2007; Shahvali, 2012). 

2.3.3.2.6. Adomian Decomposition Method  

The ADM (Adomian Decomposition Method) is one of the potential methods to solve 

nonlinear equations without considering any linearization steps or inherent assumptions and 

provides a way for generating multiple solutions (Adomian, 1984, 1986, 1991; Wazwaz, 

2001; Wazwaz and El-Sayed, 2001, Gu and Li, 2007). For reservoir engineering, ADM 

(Adomian Decomposition Method) is a very robust solution method for solving various 

equations, including algebraic, integral, differential, integrodifferential, higher-order PDEs 

and ODEs. This technique determines the roots of a nonlinear parameter in the governing 

equations and solves the nonlinearity without considering linearization or unjustified 

assumptions on a problem. This method provides more analytic, verifiable and rapidly 
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convergent approximations than other numerical methods (Wazwaz, 2001; Wazwaz and El-

Sayed, 2001; El-Sayed and Abdel-Aziz, 2003). ADM (Adomian Decomposition Method) 

handles nonlinear problems with full strength, saving computational time (Biazar and 

Ebrahimi, 2005). Following this technique, Mustafiz et al. (2008b) could demonstrate the real 

scenario of the 1-D governing equations for single-phase flow reservoir problems. The ADM 

solution profile is also validated through numerous experimental studies in petroleum 

reservoir simulation (Whitaker, 1986 (a, b); Mustafiz et al., 2005; Mustafiz and Islam, 2005; 

Mustafiz et al., 2008b; Islam et al., 2010). 

In the field of physics, mathematics, and medical research, ADM (Adomian Decomposition 

Method) attracted scientists and researchers for its deterministic and stochastic problem-

solving capability, and for improved computational time (Adomian, 1986). Using ADM 

(Adomian Decomposition Method), the governing equations are replaced by a recursive 

relationship and the solution comes in a power series form. For a smaller region or grid block, 

the solutions converge rapidly and are more exact than any approximate solution. The 

accuracy of ADM (Adomian Decomposition Method) solutions also depends on the boundary 

conditions of the problem and interval lengths of the governing equation variables (Islam et 

al., 2016). However, for the Buckley-Leverett equation, ADM (Adomian Decomposition 

Method) solved the nonlinear part of this governing equation by using an Adomian 

polynomial, obtaining saturation values in terms of distance. Still, there is scope to find 

multiple solutions from the nonlinear Buckley-Leverett equation, and ADM (Adomian 

Decomposition Method) is not more feasible in that case (Mustafiz et al., 2008b; Islam et al., 

2016). 

2.3.3.2.7. Multilevel Nonlinear Method (MNM) 

The MNM (Multilevel Nonlinear Method) is another technique for solving nonlinear 

problems in engineering, mathematics, physics, or other branches of science (Yavneh and 

Dardyk, 2006). The MNM (Multilevel Nonlinear Method) technique is less dependent on the 

variables in a nonlinear problem and provides a good initial approximation when Newton’s 

methods are limited. The procedure was successfully implemented for 2-D complex phase 

problems and avoided the distinct behaviours which were found earlier from Newton’s 

method and the Full Approximation Scheme (FAS). That technique eliminates the differences 

between global and local linearization, provides consistency through scaling analysis, and 

increases computational efficiency. Sometimes coefficients are non-smooth in coarse grid 
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approximations, and only MNM (Multilevel Nonlinear Method) solves this by direct 

discretization (Hackbusch, 1985; Brandt, 1977, 1982; Yavneh and Dardyk, 2006). MNM 

(Multilevel Nonlinear Method) is able to solve nonlinear equations by taking smaller 

nonlinear parts of the governing equation and providing better convergence than Newton’s 

method and FAS (Full Approximation Scheme) (Yavneh and Dardyk, 2006). This technique 

is less effective for nonlinear problems in the presence of discontinuous coefficients and 

irregular boundary values, which indicates a significant disadvantage of this approach. By 

examining the nature of the problem, the MNM (Multilevel Nonlinear Method) is more 

capable of representing important conceptual and statistical limitations related to the problem 

(Brandt, 1982; Yavneh and Dardyk, 2006).  

2.3.3.2.8. Deflation-Nested Iteration Method 

To solve nonlinear governing equations in an efficient way, Nested Iteration (NI) is an 

excellent choice for nonlinear solvers. Solvers use this technique to improve computational 

efficiency and adopt exact solutions for specific problems by using the deflation methodology 

(Farrell et al., 2015). The Deflation method is an unsystematic approach, and the algorithm 

employed here for providing multiple solutions is obtained by modifying the nonlinear 

problems (Adler et al., 2016). Adler et al. (2016) presented the combined deflation NI (Nested 

Iteration) method for computing multiple solutions of nonlinear PDEs efficiently. They 

performed numerical simulations with the combined deflation NI (Nested Iteration) algorithm 

on liquid crystals and found multiple solutions for the nonlinear governing equations. They 

also investigated and demonstrated the algorithm’s performance and its accuracy for different 

physical phenomena (i.e., bifurcation and disclination behaviours). This powerful technique 

reduced the overall computational cost for the solution of nonlinear PDEs. In addition, this 

technique works sequentially for a nonlinear problem and obtains distinct solutions from 

previous stages of the algorithm by eliminating the previous solutions from the nonlinear 

residual using a deflection projection. Here, the nonlinear solvers integrate the deflation 

technique with an NI (Nested Iteration) approach, improving the efficiency of the solution. 

This technique has mostly been applied in the branch of physics, particularly for liquid crystal 

problems, where the NI (Nested Iteration) approach solved coarse and fine-grid problems 

even with mild complexity. Using Dirichlet boundary conditions, multiple solutions are 

revealed sequentially, including stable and unstable local extrema and increasing the scope of 

solution for global minima. By blending the deflation and NI (Nested Iteration) approach, the 

solutions are easily detectable for both coarser and fine mesh grids, and the set of initial  
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Table 2.5: Comparisons of different numerical techniques. 

Schemes Why is the scheme 

used? 

How is the 

scheme used? 

Strength of the 

scheme 

Accuracy level 

of the scheme 

Limitations 

FEM 
(Schnipke, 

1986; 
Chaskalovic, 

2008; 

Zienkiewicz et 
al., 2005) 

Extensively applicable 
for computational fluid 
dynamics, structural 
mechanics problems 

Inclusion of 
dissimilar 
material 
properties 

Extremely 
powerful 
and useful for 
more complex 
problems 

Quickly evaluate 
the PDEs 
solution at any 
point with high 
accuracy 

Hard to 
follow 
calculation 
steps 

Smooth representation 
of the solution 
 

Subdivide large 
problem into 
smaller 
problems 

Local effects 
adoption 

Accurate 
representation of 
complex 
geometry 

Longer time 
needed 

Approximate solutions 
of PDEs are achievable 

 Faster and less 
expensive scheme 

Visualisation is 
possible in detail 

Less physical 
significance 

FDM 

(Schnipke, 
1986; 

Chaskalovic, 
2008; 

Zienkiewicz et 
al., 2005) 

Used to find the values 

and the problem 
derivatives at discrete 
points 

Boundary 

conditions 
required 

Intuitive and easy 

to implement into 
PDEs 

High accuracy  Solves simple 

PDEs and 
fails to 
interpolate the 
solution 

Very easy to 
implement 

Problem 
discretizes into 
large number of 

cell /grid points 

Lower order 
approximation 
within each cell 

Observe better 
formulation 

Increases 
round-off 
errors 

Solutions are more 
accurate due to 
multiple parameters 

Solutions are 
achievable by 
Taylor series 
expansion 

Less expensive  Only for 
rectangular 
geometry 
shapes 

FVM 
(Schnipke, 

1986; Versteeg 
and 

Malalasekera, 
1995; Toro, 

1999; 
LeVeque, 

2002) 

Calculate the average 
values of the conserved 

variables across the 
volume 

Boundary 
conditions 

applied to PDEs 

Structured mesh is 
not required 

Especially 
influential on 

non-uniform 
grids 

Need more 
effort to solve 

irregular 
shapes  

Represent PDEs into 
algebraic equations 

Values 
calculated at 
discrete point on 
each small 
volume mesh 

Simply formulated 
for unstructured 
meshes 

Strongly 
applicable for 
discrete places 
on a meshed 
geometry 

Need to be 
aware of flux 
calculation 

Piece-wise linear 
variation may be 
helpful for accuracy 

Need to balance 
the fluxes across 
the boundaries 
of individual 
volumes 

Flux calculation at 
neighbouring 
domains provides 
accuracy 

  

EA 
(Islam et al., 

2010, 2016; 
Mustafiz et al., 

2008 a, b) 

New technique to solve 
PDEs with boundary 

conditions 

Avoid 
formulations 

step 

Solve nonlinear 
PDEs 

comprehensively 

Provide accurate 
multiple 

solutions 

Lack of 
nonlinear 

solver 

Provides physical 
interpretation of 
forward, central and 
backward differences 
for time derivatives 

Nonlinear 
algebraic 
equations come 
from discretized 
nonlinear PDEs 

Reduce the time 
steps and inherent 
assumptions of a 
model 

Solutions are 
convergent, 
stable, and 
consistent 

Selection of 
efficient 
numerical 
methods 

Algebraic equations are 

easily attainable 

Solve PDEs 

through 
bypassing 
linearization 

Solve higher order 

complex 
nonlinearities 
equation 

Enhance the 

production and 
recovery of oil 
and gas fields 

Field 

applications 

guesses for the deflation method are closer for each grid. This combination technique is still 

working on smaller grid problems and is challenging for higher order grid problems. 

2.3.3.2.9. Legendre Method 

This method is used to solve nonlinear first- and second-order PDE using separation of 

variables. The singularities of a problem are defined using Legendre polynomials, and the 
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solutions will be generated for each domain point through symmetric or antisymmetric ways. 

This technique is mostly used for fractional derivative calculations, multiple expansions in 

physics, and trigonometry from where we get many eigenvalues (Beylkin et al., 1991). 

Especially, the Legendre Wavelet method has presented a solution for linear and nonlinear 

fractional and partial differential equations which is more accurate, stable, reliable, and 

requires less computational effort. The convergence and boundary conditions also verified 

through this technique. This method was rapidly adopted within diverse fields of science and 

engineering and transformed boundary value problems into algebraic systems of equations 

(Razzaghi and Yousefi, 2001). They considered only calculus of variations for mathematic as 

fields and showed the validation of their proposed technique for the Brachistochrone problem. 

The results were excellent due to the smooth implementation of that technique and reduced 

the system of nonlinear algebraic equations (Razzaghi and Yousefi, 2001). Later, Ablaoui-

Lahmar et al. (2014) solved PDEs using the Legendre wavelet decomposition method by 

considering spatial and temporal variables and reduced the time-dependent solutions into a set 

of ODEs. They also highlighted the resolution of differential, linear integrodifferential and 

fractional differential equations; and optimal control problems. 

2.3.4. Fundamental Differences among Widely Used Numerical Methods 

In reservoir simulation, the governing equations come from mathematical models that are 

solvable by various numerical and analytical methods. The solutions came from numerical 

methods that are understandable, and the models are used to optimise complex reservoir fluid 

flow processes. These applications have greatly expanded due to computational capabilities 

and provide a set of solutions for large problems (Chen et al., 2006). There are several 

methods incorporated into reservoir simulation to predict multiple solutions of nonlinear 

governing equations of a complex reservoir (Peaceman, 1977B; Aziz and Settari, 1979). Here, 

we summarised the fundamental methods (such as FDM, Finite Element Method (FEM), 

Finite Volume Method (FVM), Engineering Approach (EA), etc.) which are using to solve the 

nonlinear governing equations of the petroleum reservoirs in Table 2.5. Further, the pros and 

cons of different numerical methods used for solving nonlinear algebraic equations are 

presented in tabular form in Table 2.6. Both of these tables influence the researcher to 

investigate more regarding selection of numerical techniques and the solution of nonlinear 

algebraic equations in reservoir simulation. 

 



41 

2.4. DISCUSSION AND FUTURE DIRECTIONS 

Nonlinearity is a challenging issue for science and engineering fields. Most researchers aim to 

reduce computational cost and increase the accuracy by reducing nonlinear behaviours. To 

mitigate these problems, they utilize several numerical techniques by considering different 

parameters and inherent assumptions. Based on the previous review of numerical techniques 

and problem descriptions, they have worked on this issue until now and tried to find more 

Table 2.6: Pros and cons of different numerical methods used for solving nonlinear equations. 

Techniques Opportunities Limitations 

Newton–Raphson Method 
(Kelley, 2003; Lu, 2008) 

o Used in heterogeneous reservoir 
properties simulation 

o Count small time steps 

o Explain nonlinearities in linearizing 
and iterative ways 

o Produces local convergence 
o More stable than IMPES method 

o Time-consuming 
o Less accurate solver 
o Less robust technique 

o Not applicable for large time 
step simulation 

o Fails to obtain global 
convergence 

IMPES 
(Snyder and Ramey, 1967; Chen et 

al., 2006) 

o Better stability 
o Require less computation time 
o Best fitted only for two-phase 

incompressible flow problems 
o Efficient for countercurrent 

problems 

o Inefficient for more nonlinear 
problems 

o Applicable up to two-phase fluid 

flows 

ADM 
(Adomian, 1991; Holmquist, 2007; 

Wang and Bajaj, 2006; 
Waewcharoen et al., 2008) 

o Provide rapid convergent series 
solutions 

o Solutions are more realistic, which 
come from differential, delay-
differential, integrodifferential, and 

partial differential equations. 
o A powerful method to obtain 

explicit and numerical solutions at a 
time. 

o Analytical solutions are achievable 
from deterministic and stochastic 
ODEs and PDEs. 

o Linearization is not required 

o Exhibits small region of 
convergence 

o Uncertain to apply to boundary 
value problems 

o Accuracy is dependent on the 

interval of the independent 
variable lengths (For example 
time) 

Ordering-based 
methods 

(Appleyard and 
Cheshire, 1982; 
Shahvali, 2012; 

Natvig et al., 2006; 
Natvig and Lie, 
2008; Kwok and 

Tchelepi, 2007; 
Kwok, 2007) 

Cascade 
method 

o Pressure and saturation equations 
are solving for two-phase flow 

o Used individually for each phase 

o Not applicable in the presence of 
counter-current flow 

Natvig's 
method 

o Solve equations when gravity and 
capillary pressure are absent 

o Only solve hyperbolic equations 
o Time-consuming 

Phase-

based 
potential 
ordering 

o Applicable for counter-current flow 

problems 
o Reduce order Newton’s method 

follows 

o Only solved convergent 

problems 

MNM 
(Yavneh and Dardyk, 2006) 

o Suitable for 1D and 2D PDE 
problems 

o Problem has been broken into steps 
or grids 

o Helpful for discontinuous and noisy 

problems 

o Operation cost is more expensive 
than other methods 

o Need another simplify model for 
calculation 

Deflation-NI 
(Adler et al., 2016; Gambolati et 

al., 2008) 

o Useful iterative technique 
o Exhibit more inner properties and 

behaviour 
o Applicable for Symmetric 

Eigenproblems 
o Used for regular and irregular finite 

element grids 

o Less stability 
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Implicit 
methods 

(Duffy, 2004; 
Chen et al., 

2006; Lu, 2008) 

FIM o Accurate method for linear solver 
o Stable method 
o Used for fractured reservoirs 

o Implementation is hard 
o Higher computational cost 

SIM o Used for complex reservoir 
simulation problems 

o Solving equations implicitly 
without coupling 

o Suitable for compositional and 
chemical compositional flow 
problems includes chemical 
components 

o Less stable but more 
computationally effective than 
the SS scheme, and more stable 
but less efficient than the IMPES 
scheme 

o Can’t solve the rapid change of 
capillary pressure problems 

Adaptive 
Implicit 
Scheme 

o Efficient at the mid-level of IMPES 
and SS schemes 

o The resulting equations are more 
efficient and stable 

o Used linearize and iterative 
equations 

o Time-consuming 

Simultaneous Solution Method (SS) 
(Chen et al., 2006) 

o Solves all coupled nonlinear 
equations simultaneously and 
implicitly 

o Stable technique and can handle 
enormous time steps with excellent 
stability 

o Suitable for the black oil and 
thermal models 

o Analyse only a few components 
in the black oil and thermal 
models 

o Not appropriate for the 
compositional and chemical 
compositional flow problems 

Legendre Wavelet Method 
(Beylkin et al., 1991; 

Razzaghi and Yousefi, 2001) 

o Analyse orthogonality properties of 
a reservoir 

o Exact polynomials representation 

up to certain degree 
o Represents the functions with 

different resolution levels 
o Build fast connection with 

numerical algorithms 

o Fail to provide analytical 
Solutions 

o Time sensitive with flow rate 

changes 

Comprehensive 
Model Validation

Numerical Simulation

Single Point 
Solutions

Multiple 
Solutions

Nonlinear 
Algebraic 
Equations

Reservoir 
Process

Cloud ComputingNonlinear Solver

Well 
Representation  

Figure 2.4: Future research scope in reservoir simulation. 

accurate and efficient solutions. Among all the numerical techniques, the engineering 

approach and finite volume method will be adapted to solve nonlinear algebraic equations, 

following by time and space discretization and the eventual solution. Specifically, ordering-

based methods, deflation-nested iteration, and multilevel nonlinear methods provided a clear 

solution for a set of nonlinear algebraic equations. The ADM (Adomian Decomposition 

Method) technique also tried to solve nonlinear equations, but after some steps, that method 

failed to provide multiple solutions. Thus, researchers are looking for stable, consistent, and 

accurate solutions, which raises the task for the nonlinear solver. The challenges for future 
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reservoir simulation steps are shown in Figure 2.4. From this figure, researchers pick 

nonlinear algebraic equations, which are discretized using time functions. The nonlinearity 

starts from that point and, using efficient numerical schemes, the solver will solve the 

equations and provide a set of multiple solutions. The principle focus of this research is to 

bypass the linearization of nonlinear algebraic equations and reduce assumptions on the 

governing equations. Later, the solutions will be stored in the reservoir cloud system and 

validated comprehensively by future researchers. Moreover, the solver will check the stability, 

convergence, and accuracy of the solutions, and will find single solutions for the governing 

equations. Finally, this solution will work for developing a reservoir emulator and predicting 

future reservoir performance in the petroleum industry. 

2.5. CONCLUSIONS 

This article presents critical reviews on nonlinearity problems and solution techniques in 

petroleum reservoir simulation. This study also accumulates the significance of nonlinearity 

by discussing stepwise nonlinear equation development, solution strategies and the pros and 

cons for various solution schemes. The authors also point out the scope of research in terms of 

governing equation parameters and solution scheme variables. Finally, the authors show 

future research directions by sequential analysis of current reservoir simulator steps and 

addressing their challenges. 

NOMENCLATURE 

1-D One-dimensional 

2-D Two-dimensional 

3-D Three-dimensional 

𝐴𝑥𝑧 Cross-sectional area of rock perpendicular to the flow of flowing fluid, 𝑚2 

A Area of the cross-section for a sample volume 

a Parameter in Carreau–Yasuda model, dimensionless 

𝐵𝑜 Oil formation volume factor, 𝑚3(𝑠𝑡𝑑. 𝑚)−3 

C Total compressibility of the system, 1 𝑃𝑎⁄  

𝑐𝑓 𝑐0 + 𝑐𝑤 = total fluid compressibility of the system, 1 𝑃𝑎⁄  

𝑐𝑡 𝑐𝑓 + 𝑐𝑠 = total compressibility of the system, 1 𝑃𝑎⁄  

𝑐𝑠 Formation rock compressibility of the system, 1 𝑃𝑎⁄  

𝑐𝑤 Formation water compressibility of the system, 1 𝑃𝑎⁄  
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𝑑𝑢𝑥

𝑑𝑦
 

Velocity gradient along y-direction, 1 𝑠𝑒𝑐⁄  

𝐷𝑥  Lateral diffusion terms 

𝐷𝑦 Transfer diffusion terms 

𝐷𝑡
1−𝛾

 Grunwald-Letnikov (G-L) operator 

E Activation energy for viscous flow, 𝐾𝐽 𝑚𝑜𝑙⁄  

F Wetting phase flux 

𝑓𝑤  Fractional flow rate 

g Gravitational acceleration, 𝑓𝑡 𝑠𝑒𝑐2⁄  

𝐽 Jacobian matrix 

𝑘 Initial reservoir permeability, 𝑚2 

𝑘𝑟𝑜 Relative permeability of oil 

𝑘𝑟𝑤 Relative permeability of water 

𝑀𝑎 Marangoni number 

n Power-law exponent for Carreau–Yasuda model, dimensionless 

p Pressure of the system, 𝑁 𝑚2⁄  

𝑝𝑖−1 Pressure of gridblock i-1, psia [kPa] 

𝑝𝑖 Pressure of grid block i, psia [kPa] 

𝑝𝑖+1 Pressure of grid block i+1, psia [kPa] 

𝑝𝑖
𝑛 Pressure of grid block i at time 𝑡𝑛, psi [kPa] 

𝑝𝑖
𝑛+1 Pressure of grid block i at time 𝑡𝑛+1, psi [kPa] 

𝑃𝑒  Peclet number 

𝑝𝑐 Capillary force: pressure difference between oil phase and water phase 

q Total flow rate of oil and water 

R Universal gas constant, KJ/mole – K 

𝑆𝑤 Wetting phase saturation 

T Temperature, K 

T Time, s 

t Time, sec 

𝑇𝑥
𝑖+

1
2

 Transmissibility between block i and i + 1 

𝑇𝑥
𝑖−

1
2

 Transmissibility between block i and i - 1 

𝑢𝑥  Fluid velocity in porous media in the direction of x-axis, m/s 
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𝑉𝑏𝑖
 Bulk volume of grid block i, 𝑓𝑡3 

y Distance from the boundary plan, m 

  

Greek alphabet 

𝛼 Fractional order of differentiation, known as Memory 

𝛼𝑐 Volume conversion factor = 5.614583 for customary units or 1 for SPE preferred 

SI units 

𝛼𝑑 Thermal diffusivity, 𝑚2 𝑠𝑒𝑐⁄  

𝛼𝑆𝐹  Shape factor which is medium-dependent 

𝛽𝑐 Transmissibility unit conversion factor (dimensionless) 

Γ Euler gamma function 

Δ𝑝 Pressure difference 

Δ𝑇 𝑇𝑇 − 𝑇0 = Temperature difference, K 

Δ𝑡 Time step, s 

Δ𝑥 Grid block size, m 

𝛿𝑥𝜈  Vector of Newton updates 

𝜂 Ratio of the pseudo-permeability of the medium with memory to fluid viscosity, 

𝑚3𝑠1+𝛼/𝑘𝑔  

𝜆 Time constant in Carreau–Yasuda model, s 

𝜇0 Fluid dynamic viscosity at reference temperature, 𝑇0, 𝑃𝑎 − 𝑠𝑒𝑐  

𝜇𝑤  Water viscosity 

𝜇∞ Fluid dynamic viscosity at infinite shear rate, pa-s 

𝜉 A dummy variable for time, i.e., real part in the plane of the integral, s 

Δ𝜉 Dummy time step, s 

0  Density of the fluid at reference temperature 𝑇0, 𝑘𝑔/𝑚3 

𝜌𝑤 Water density 

𝜎 Surface tension, N/m 

|
𝑑𝜎

𝑑𝑇
| 

The derivative of surface tension α with temperature; can be positive or negative, 

depending on the substance, 𝑁/𝑚 − 𝐾 

𝜏𝑇 Shear stress at temperature T, Pa 

𝜙 Porosity of fluid media, 𝑚3 𝑚3⁄  

𝑣 Newton iteration index 
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Abstract 

The Buckley-Leverett equation is an important model of displacement mechanisms for efficient 

petroleum recovery. This mechanism follows the relative permeability concept through an 

immiscible process. Many researchers have studied this equation by neglecting the complexity 

of parameters, utilising them in calculating recovery factors and improvement of efficiency in 

the form of linearised solution techniques. The present research aims to represent all salient 

features that are complex in nature and solve the governing equation using advanced numerical 

methods. Here, an analytical solution is generated through the method of characteristics, where 

the saturation curves are observed for the governing equation (assuming zero capillary pressure 

gradient and gravitational forces). Later, the Lax-Friedrichs finite volume scheme is applied to 

solve the model equation numerically. This finite volume scheme is checked by a simple 

explicit calculation, demonstrating that the local Lax-Friedrichs scheme is consistent with the 

governing equation. Based on both computational techniques, a single-valued solution is 

achievable for the Buckley-Leverett equation, and we present the propagation of saturation 

profiles during the displacement of oil by water in a petroleum reservoir. This saturation profile 

also indicates the shock position, from where the displacement of oil will decrease and, the 

results can be used to optimise water injection in order to good recovery from petroleum 

reservoir.  

Keywords: The Buckley-Leverett equation, method of characteristics, Lax-Friedrichs scheme, 

reservoir simulation. 

3.1. INTRODUCTION 

The Buckley-Leverett equation is one of the more popular models for fluid flow displacement 

in porous media. This model equation can simulate waterflooding injection processes under 

various reservoir conditions. Many numerical schemes can handle waterflooding modelled in 

this way when the nonlinear capillary pressure term is negligible (Yortsos and Fokas, 1983). 

This nonlinear term leads to numerical instabilities in many mathematical models. Further, the 

saturation calculated using the Buckley-Leverett equation may be a multiple-valued function 
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for each position in the fluid flow direction with the progression of time. The interpretation of 

multiple-valued saturation indicates that the saturation-distance curve had become 

discontinuous in the displacement process. In addition, capillary forces have significant 

influences on fluid distribution in the macroscopic flow behaviour (Singh, 1970). We consider 

a nonlinear solver and try to solve the Buckley-Leverett equation for a single-valued 

discontinuous solution of the immiscible oil displacement. For validation, an analytical 

solution is needed for the Buckley-Leverett equation with given initial and boundary 

conditions. Finding an exact solution (including the capillary pressure term) through analytical 

methods is closely related to numerical schemes and their resolution (Deb et al., 2017). The 

analytical result will help to identify numerical tools for solving the Buckley-Leverett equation, 

reducing the capillary effects during the solution stage. 

3.1.1. Background of the Research 

In reservoir engineering, many equations express nonlinear behaviors due to effects of the time 

interval, variation in fluid and formation properties (e.g., porosity, permeability, water 

saturation, viscosity), distribution of pressure responses, and simplification of the governing 

equations at formulation stage or the feasibility of multiple solutions. Islam and Nandakumar 

(1986, 1990) showed the nonlinear behaviour of the governing equations in petroleum reservoir 

engineering and simulation. To avoid nonlinearity, engineers and researchers have solved the 

governing equations using linearised methods (e.g., Taylor series expansion, Optimal 

linearization method, Global linearization method, Perturbation theory, Newton’s Iteration) 

along with some assumptions (Jordan, 2006). These procedures help researchers to understand 

the simulation model and control system design methods quickly. However, linearization 

effects can be significant, and results may not be accurate due to the wrong prediction of the 

parameter distribution and other errors. The interpretation of simulation models is also affected 

by neglecting higher order roots and other assumptions (Islam et al., 2016, and Deb et al., 

2017). 

Based on this, the present study offers analytical and numerical solutions for the Buckley-

Leverett equation in immiscible displacement. This work contains capillary pressure effects, 

finding consistent solutions, which is state-of-the-art in modelling oil/water displacement 

processes. Therefore, a suitable mathematical method for solving the Buckley-Leverett 

equation and generating approximate solutions are the new scope of research which are 

addressed in this study. 
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3.1.2. Literature Review 

Immiscible fluid flow and displacement in porous media have a significant role during natural 

resources recovery (especially for petroleum products), waste disposal and contamination 

transport evaluation (Wu et al., 1993). Due to the presence of multiple parameters, the fluid 

phases show complexities during these processes, and it is more challenging for multiphase 

flow rather than single phase flow. Since the 1940’s, several researchers have made some 

contributions on this issue. Until today, however, researchers face the problem of solving the 

nonlinear complexities of the Buckley-Leverett equation. This theory was first introduced by 

Buckley and Leverett (1942) to fractional flow, where the solution gives a sharp front saturation 

profile along the fluid flow direction. Capillary pressure and gravitational forces were 

neglected. They found multiple-valued saturation as time progresses. A few years later, 

Holmgren and Morse (1951) presented the average water saturation calculation, explaining the 

nonlinear parameters in the Buckley-Leverett equation. After that, Welge (1952) developed a 

simple graphical approach by considering the uniform initial saturation and determining the 

saturation front. After that, Sheldon and Cardwell (1959) used the method of characteristics for 

solving the water saturation problem, as previously described by Buckley-Leverett. At the same 

time, Fayers and Sheldon (1959) addressed the Buckley-Leverett equation by including the 

effects of gravity and capillary pressure on a linear waterflood driven reservoir, but detailed 

steps were not presented. Hovanessian and Fayers (1961) also considered capillary pressure 

effects in their applied numerical models. Codreanu et al. (1966) presented the solution of non-

capillary immiscible displacement for heterogeneous media. Other researchers (Chen, 1988; 

Yortsos and Fokas, 1983; McWhorter and Sunada, 1990, Wu et al., 1993) also presented 

analytical solutions by incorporating capillary pressure effects. Moreover, Craft and Hawkins 

(1991) introduced fluid distributions in a single homogeneous porous medium for various time 

intervals and found multiple values for water saturation along the fluid flow directions. These 

authors neglected gravity and the capillary pressure terms in their calculations. Due to the 

effects of linearization, Mustafiz et al. (2008a, 2008b) solved the nonlinear Buckley-Leverett 

equation (1942), considering capillary pressure effects and presented their solution for 1-D, 

two-phase flow using the Adomian decomposition method (ADM). However, they did not 

show any stability analysis for their proposed solution. Arabzai and Honma (2013) 

demonstrated Buckley-Leverett’s theory in quantitative ways, avoiding capillary pressure 

effects during the numerical solution, both in finite difference (FDM) and finite element (FEM) 
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methods. Later, Helvig (2013 - Unpublished) also investigated capillary pressure effects in a 

fractured reservoir, but could not present details of the solution procedure.   

Therefore, it is a challenge for researchers to analyse the governing equations in analytical and 

numerical methods simultaneously. The present research is trying to address capillary pressure 

effects along the fluid flow directions and solve the governing equation through simplified 

analytical and numerical solution methods. The authors also discuss the correlations between 

the fractional flow of water and water saturation and define the flux function for the Buckley-

Leverett equation. 

3.1.3. Objectives of the Research 

Nonlinearity increases the complexity of reservoir operations and reduces performance when 

applying simulation technologies. It also raises computational costs, taking more time to 

complete. An efficient numerical technique can handle nonlinear parameters and enhance 

petroleum recovery.  

In the Buckley-Leverett equation, the effects of capillary pressure were not extensively covered 

in the existing literature. Even solution procedures are not presented in detail. Therefore, the 

present author aims to solve the model equation using numerical methods, showing the steps 

in detail. In this research, the primary objective is to find analytical solutions for the Buckley-

Leverett equation and, later, to develop an efficient numerical method, which will give a stable, 

consistent and more accurate solution. It is also necessary to solve the resulting nonlinear 

algebraic equations in time and space dimensions. A nonlinear solver reduces the time step and 

error level with better algorithms for the equations. A nonlinear solver should also maintain 

the stability and consistency of a solution process. 

3.2. RESEARCH METHODOLOGY 

The Buckley-Leverett equation (1942) gives hyperbolic and parabolic partial differential 

equation (PDE) characteristics for two-phase flow in porous media when the capillary forces 

are neglected and considered respectively (Koch, 1992). Here, both hyperbolic and parabolic 

equations are first order in time and in the spatial variables (White and Subramanian, 2010). 

Therefore, the method of characteristics and the local Lax-Friedrichs finite volume technique 

are used to solve the differential equation in finite domains.  
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Here, the method of characteristics is used to solve PDEs that are hyperbolic in nature and 

mostly applies to first-order equations, though it is valid for any hyperbolic type PDEs. The 

curves that are generated by this method are known as characteristics curves along which the 

PDEs are transformed into a family of ordinary differential equations (ODEs). These curves 

help to find the solutions of the ODEs and, subsequently, the solutions of the PDEs. In this 

research, the characteristics curves show the saturation profiles in the (𝑥, 𝑡) plane for the 

Buckley-Leverett equation. 

Further, we apply the local Lax-Friedrichs finite volume scheme for computing saturation 

values, explicitly discretizing the Buckley-Leverett equation considering a one-dimensional 

horizontal reservoir where there are no capillary and gravitational forces. We neglect implicit 

schemes for their programming complexity, requiring more computational effort in each time 

step, although they allow for large time steps. The stability and accuracy are of concern for 

explicit schemes, requiring the time- and space step sizes to be (roughly) equivalent to ensure 

stability and accuracy. Finally, we compare the analytical and numerical solutions for different 

saturation values by presenting graphical plots.  

3.3. GOVERNING EQUATIONS 

The Buckley-Leverett equation can be written as: 

𝜕𝑆𝑤

𝜕𝑡
+

𝑞

𝐴𝜙

𝜕𝑓𝑤

𝜕𝑆𝑤

𝜕𝑆𝑤

𝜕𝑥
= 0        (1) 

where 𝑓𝑤  is defined as the fractional flow of water, given by: 

𝑓𝑤 = (
1

1+
𝑘𝑟𝑜𝜇𝑤
𝑘𝑟𝑤𝜇𝑜

) (1 +
𝐴𝑘𝑘𝑟𝑜

𝑞𝜇𝑜
[

𝜕𝑃𝑐

𝜕𝑥
− (𝜌𝑤 − 𝜌𝑜)𝑔𝑠𝑖𝑛𝛼])   (2) 

where 𝛼 is the angle of the fluid flow direction. 

The ratio of effective permeability to viscosity is defined as the mobility (𝜆), which is given 

for water and oil, respectively: 

𝜆𝑤 =
𝑘𝑘𝑟𝑤

𝜇𝑤
         (3) 

𝜆𝑜 =
𝑘𝑘𝑟𝑜

𝜇𝑜
         (4) 

The mobility ratio (𝑀) for oil and water is defined by: 
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𝑀 =
𝜆𝑜

𝜆𝑤
=

𝑘𝑟𝑜𝜇𝑤

𝑘𝑟𝑤𝜇𝑜
        (5) 

According to Islam et al. (2016), the assumptions associated with the Buckley-Leverett 

equation are as follows: (i) two-phase flow; (ii) incompressible porous medium; (iii) oil and 

water phases are incompressible; (iv) constant porosity; (v) constant cross-sectional area; (vi) 

no external sources or sinks in the porous medium; and (vii) fractional flow of water is fully 

dependent on the water saturation.  

Eq. [2] can be written as: 

𝑓𝑤 =
1

1+𝑀
         (6) 

when the flow is horizontal (𝑠𝑖𝑛𝛼 = 0) and the effects of capillary pressure are negligible 

(
𝜕𝑃𝑐

𝜕𝑥
= 0). 

The relative permeability of water and oil are related to the water saturation in the following 

form (Islam et al., 2016): 

𝑘𝑟𝑤 = 𝑎1𝑆𝑤𝑛
𝑛1          (7) 

𝑘𝑟𝑜 = 𝑎2(1 − 𝑆𝑤𝑛)𝑛2        (8) 

where the normalised water saturation (Al-Mutairi et al., 2012; Islam et al., 2016) is defined 

as: 

𝑆𝑤𝑛 =
𝑆𝑤−𝑆𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙

1−𝑆𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑆𝑜𝑟
        (9) 

If we consider the effects of capillary pressure in a horizontal reservoir (𝑠𝑖𝑛𝛼 = 0), Eq. [2] 

can be written as: 

𝑓𝑤 = (
1

1+
𝑘𝑟𝑜𝜇𝑤
𝑘𝑟𝑤𝜇𝑜

) (1 +
𝐴𝑘𝑘𝑟𝑜

𝑞𝜇𝑜

𝜕𝑃𝑐

𝜕𝑥
)      (10) 

For immiscible displacement, capillary pressure is a function of water saturation (Leverett, 

1941). The relationship is written in the following form: 

𝑃𝑐 = 𝑓(𝑆𝑤)         (11) 

Differentiating both sides of Eq. [11] with respect to displacement distance, 𝑥, the equation 

takes the form as: 
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𝜕𝑃𝑐

𝜕𝑥
=

𝜕𝑃𝑐

𝜕𝑆𝑤

𝜕𝑆𝑤

𝜕𝑥
= 𝑓′(𝑆𝑤)

𝜕𝑆𝑤

𝜕𝑥
        (12) 

To solve Eq. [1] analytically with 𝑓𝑤  given as in Eqns. [10] and [11], is very complicated and 

time-consuming. Systematic solutions for higher-order nonlinear differential equations are 

usually not possible. Therefore, researchers are always looking for numerical techniques that 

are less time-consuming and offer a complete approximate solution. In this research, we apply 

the method of characteristics (MOC) to determine the shock wave location and speed for a 

simplified equation (assuming there is no capillary pressure gradient and zero gravitational 

force) and, later, solve the equation numerically using the local Lax-Friedrichs scheme. The 

main reason to avoid Eq. [10] is that the method of characteristics works only for first-order 

equations to get the analytical solution. In addition, the local Lax-Friedrichs technique is also 

conservative and provides an accurate result for first-order PDEs. 

3.3.1. Correlation between Fractional Flow of Water (𝒇𝒘) and Water Saturation (𝑺𝒘) 

Using Eqs. [5], [7] and [8], the mobility ratio can be written as: 

𝑀 =
𝑘𝑟𝑜𝜇𝑤

𝑘𝑟𝑤𝜇𝑜
=

𝑎2(1−𝑆𝑤𝑛)𝑛2𝜇𝑤

𝑎1𝑆𝑤𝑛
𝑛1 𝜇𝑜

       (13) 

Differentiating Eq. [9] with respect to water saturation gives –  

𝜕𝑆𝑤𝑛

𝜕𝑆𝑤
=

1

1−𝑆𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑆𝑜𝑟
         (14) 

Again, differentiating both sides of Eq. [6] with respect to water saturation and incorporating 

Eq. [14] yields – 

𝜕𝑓𝑤

𝜕𝑆𝑤
=

𝜕

𝜕𝑆𝑤
(

1

1+𝑀
)  

⇒
𝜕𝑓𝑤

𝜕𝑆𝑤
= −

1

(1+𝑀)2

𝜕𝑀

𝜕𝑆𝑤
  

⇒
𝜕𝑓𝑤

𝜕𝑆𝑤
= −

1

(1+𝑀)2

𝜕𝑀

𝜕𝑆𝑤𝑛

𝜕𝑆𝑤𝑛

𝜕𝑆𝑤
  

⇒
𝜕𝑓𝑤

𝜕𝑆𝑤
= −

1

(1+𝑀)2

1

(1−𝑆𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑆𝑜𝑟)

𝜕𝑀

𝜕𝑆𝑤𝑛
      (15) 

Differentiating both sides of Eq. [13] with respect to normalized water saturation gives: 

𝜕𝑀

𝜕𝑆𝑤𝑛
= −

(𝜇𝑜𝑎1𝑛1(𝑆𝑤𝑛)𝑛1−1)(𝜇𝑤𝑎2(1−𝑆𝑤𝑛)𝑛2)+(𝜇𝑜𝑎1(𝑆𝑤𝑛)𝑛1)(𝑛2𝜇𝑤𝑎2(1−𝑆𝑤𝑛)𝑛2−1)

(𝜇𝑜𝑎1𝑆𝑤𝑛
𝑛1 )

2   (16) 
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Based on the Corey model (Johansen, 2008 (Unpublished)), 𝑛1 and 𝑛2 are called the Corey 

indices. Values between 1.5 and 2.5 are commonly used. In this case, Eq. [16] is simplified 

while taking 𝑛1 = 0 and 𝑛2 = 1 

𝜕𝑀

𝜕𝑆𝑤𝑛
= −

(𝜇𝑜𝑎1)(𝜇𝑤𝑎2)

(𝜇𝑜𝑎1)2 = −
𝜇𝑤𝑎2

𝜇𝑜𝑎1
       (17) 

From Eqs. [15] and [17], 

𝜕𝑓𝑤

𝜕𝑆𝑤
=

1

(1+𝑀)2

1

(1−𝑆𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑆𝑜𝑟)

𝜇𝑤𝑎2

𝜇𝑜𝑎1
=

𝜇𝑤𝑎2

(1+𝑀)2(1−𝑆𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑆𝑜𝑟)𝜇𝑜𝑎1
  (18) 

Eq. [18] indicates that there is no relationship between the fractional flow of water (𝑓𝑤) and 

water saturation (𝑆𝑤) for these values of 𝑛1 and 𝑛2. To solve this issue, we consider the 

mobility ratio along with oil and water viscosities for different saturation values, while the 

remaining parameters are treated as constant values. This correlation is used during the solution 

of the discretisation scheme and for finding the shock speed along with breakthrough time. 

3.3.2. Analytical Solution using the Method of Characteristics (MOC) 

3.3.2.1. Determination of Characteristic Curve for the Water Saturation 

To calculate the petroleum recovery efficiency for an immiscible displacement process, the 

Buckley-Leverett equation is: 

𝜕𝑆𝑤

𝜕𝑡
+

𝑞

𝐴𝜙

𝜕𝑓𝑤

𝜕𝑥
= 0        (19) 

For a simple waterflood model, the water injects into the reservoir and Eq. [19] becomes 

𝜕𝑆𝑤

𝜕𝑡
+

𝑞

𝐴𝜙

𝜕𝑓𝑤

𝜕𝑆𝑤

𝜕𝑆𝑤

𝜕𝑥
= 0         (20) 

Here, we take 𝑞, 𝐴, and 𝜙 to be constant. 

Let, 

 𝑎 =
𝑞

𝐴𝜙

𝜕𝑓𝑤

𝜕𝑆𝑤
          (21) 

From Eq. (20),  

𝜕𝑆𝑤

𝜕𝑡
+ 𝑎

𝜕𝑆𝑤

𝜕𝑥
= 0         (22) 

This equation is a one-dimensional (1-D) linear equation. From Eq. [22], the right moving wave 

solution is given by  
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𝑆𝑤(𝑥, 𝑡) = 𝑓(𝑥 − 𝑎𝑡)         (23) 

Using the chain rule, the exact solution of 𝑆𝑤(𝑥(𝑡), 𝑡) changes along a curve in the 𝑥𝑡-plane 

by following equation,  

𝑑

𝑑𝑡
𝑆𝑤(𝑥(𝑡), 𝑡) =

𝜕𝑆𝑤

𝜕𝑥(𝑡)

𝑑𝑥(𝑡)

𝑑𝑡
+

𝜕𝑆𝑤

𝜕𝑡
       (24) 

Comparing Eqs. [22] and [24], the slope of this curve is defined by  

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑎          (25) 

If the saturation of water has travelled the distance from 𝑥0 to 𝑥 over the time 𝑡, then Eq. [25] 

can be written in the following form 

 𝑥 = 𝑥0 + 𝑎𝑡         (26) 

where the slope is 𝑎. These curves are depicted in Figure 3.1(a-c). This figure does not represent 

any rarefaction or shock wave solution, but simply, the characteristics along which the solution 

is constant. The solution moves faster at larger slope value and moves slowly at lower slope 

values. Those are illustrated in Figure 3.1(a-c). Both cases, the slope is uniform along these 

curves, and the governing PDE equation changes into ODE form along these curves in the 𝑥𝑡 

plane (Figure 3.1(a-c)). 

 

(a) For slope, 𝑎 =  5 
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(b) For slope, 𝑎 =  10 

 

(c) For slope, 𝑎 =  25 

Figure 3.1 (a-c): Characteristics curves for the Buckley-Leverett equation for different 

constant initial and boundary conditions. 
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Substituting Eq. [25] into Eq. [24], we see that, along this special curve, 

𝑑

𝑑𝑡
𝑆𝑤(𝑥(𝑡), 𝑡) = 𝑎

𝜕𝑆𝑤

𝜕𝑥
+

𝜕𝑆𝑤

𝜕𝑡
= 0      (27) 

as in Eq. [22]. The curves generated from Eq. [25] are called the characteristic curves of the 

Buckley-Leverett equation. Since 𝑆𝑤 is constant along the characteristic curves, it follows that 

the slope of each line must be given by Eq. [21]. Further, the characteristic curves are allowed 

to enter into a shock wave but cannot emerge from the shock wave. Therefore, we need to find 

the shock position, where information is lost in the shock wave. 

3.3.2.2. Flux Function of Buckley-Leverett’s Model Equation 

According to the Buckley-Leverett equation, the differential form of the conservation law in 1-

D for state variable 𝑆𝑤(𝑥, 𝑡) is given by:  

𝜕𝑆𝑤

𝜕𝑡
+

𝑞

𝐴𝜙

𝜕

𝜕𝑥
(𝑓𝑤) = 0         (28) 

𝜕𝑆𝑤

𝜕𝑡
+

𝜕𝑓𝑛

𝜕𝑥
= 0          (29) 

where 𝑓𝑛 is called the flux function. From Eq. [28], we write:  

𝑓𝑛 = 𝑓𝑛(𝑆𝑤(𝑥, 𝑡)) =
𝑞

𝐴𝜙
𝑓𝑤 =

𝑞

𝐴𝜙
(

1

1+
𝑘𝑟𝑜𝜇𝑤
𝑘𝑟𝑤𝜇𝑜

)       (30) 

Applying the second fundamental theorem of calculus for an arbitrary interval [𝑎, 𝑏] in 1-D, 

and integrating Eq. [29] within this interval, we can interchange the integral and derivative 

operations, giving 

 
𝜕𝑆𝑤

𝜕𝑡
+

𝜕

𝜕𝑥
𝑓𝑛(𝑆𝑤) = 0 

 ⇒
𝑑

𝑑𝑡
∫ 𝑆𝑤𝑑𝑥

𝑏

𝑎
+ ∫

𝜕

𝜕𝑥
𝑓𝑛(𝑆𝑤)𝑑𝑥 = 0

𝑏

𝑎
  

 ⇒
𝑑

𝑑𝑡
∫ 𝑆𝑤𝑑𝑥

𝑏

𝑎
+ 𝑓𝑛(𝑆𝑤(𝑏, 𝑡)) − 𝑓𝑛(𝑆𝑤(𝑎, 𝑡)) = 0    (31) 

⇒
𝑑

𝑑𝑡
∫ 𝑆𝑤𝑑𝑥

𝑏

𝑎
= 𝑓𝑛(𝑆𝑤(𝑎, 𝑡)) − 𝑓𝑛(𝑆𝑤(𝑏, 𝑡))    (32) 

From Eq. [31], if we define 

𝑄(𝑡) = ∫ 𝑆𝑤(𝑥)𝑑𝑥
𝑏

𝑎
         (33) 
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Then 𝑄(𝑡) is a conserved quantity in [𝑎, 𝑏], i.e., 𝑄(𝑡) will only change in time when there is a 

net inflow or outflow of flux through the domain boundaries. From Eq. [31], we write the first 

integral form of a conservation law 

𝑑

𝑑𝑡
𝑄(𝑡) − (𝑓𝑛(𝑆𝑤(𝑎, 𝑡)) − 𝑓𝑛(𝑆𝑤(𝑏, 𝑡))) = 0     (34) 

Now, integrate Eq. [34] over some time interval 𝑡 ∈ [0, 𝑇], obtaining  

∫
𝑑

𝑑𝑡
𝑄(𝑡)𝑑𝑡

𝑇

0
− ∫ [𝑓𝑛(𝑆𝑤(𝑎, 𝑡)) − 𝑓𝑛(𝑆𝑤(𝑏, 𝑡))]𝑑𝑡

𝑇

0
= 0   (35) 

From Eq. [35], the second integral form of a conservation law is given by 

𝑄(𝑇) − 𝑄(0) − ∫ [𝑓𝑛(𝑆𝑤(𝑎, 𝑡)) − 𝑓𝑛(𝑆𝑤(𝑏, 𝑡))]𝑑𝑡
𝑇

0
= 0    (36) 

In terms of a mathematical interpretation for Figure 3.2, we obtain 

𝑄(𝑇) − 𝑄(0) = ∫ [𝑓𝑛(𝑆𝑤(𝑎, 𝑡)) − 𝑓𝑛(𝑆𝑤(𝑏, 𝑡))]𝑑𝑡
𝑇

0
    (37) 

In terms of a physical interpretation, Eq. [36] states that the difference in the total amount of 

the state variable 𝑆𝑤 in [𝑎, 𝑏] between time 0 and 𝑇 is equal to the difference in the total flux 

through the boundaries integrated from time 0 and 𝑇 (Figure 3.2). From the reservoir 

engineering view, when water is injected into an injection well located by 𝑎, oil is displaced 

through a production well at point 𝑏. The changing of water saturation between these wells 

indicates the flux difference for time, 𝑇. 

 

Figure 3.2: Conservations laws for the Buckley-Leverett equation (modified after De Sterck 

and Ullrich, 2009). 
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3.3.2.3. Shock Speed Calculation from Rankine-Hugoniot Relation 

The shock speed calculation provides a discontinuous feature of the governing equation where 

the differential form of the PDEs is no longer valid. This speed can give the pre- and post-

shock states of the water saturation in a simple waterflood model. The integral form of 

conservation law describes the behaviour of the shock wave under a few assumptions. Assume 

that after 𝑡 = 0 there is a single shock wave propagating rightward with a constant speed (𝑠) 

and the application is governed by a conservation law form (Eq. 37). Consider a region, Ω, in 

the 𝑥𝑡-plane given by 

Ω = [𝑎, 𝑏] × [0, 𝑇]         (38) 

and ensure that it is sufficiently large to contain the shock for all times 𝑡 ∈ [0, 𝑇] (Figure 3.3). 

In Figure 3.3, we use 𝑆𝑤𝑙
 and 𝑆𝑤𝑟

 to denote the state of the system to the left and right of the 

shock wave, respectively. We use 𝑄(𝑡) to denote the amount of material in the interval [𝑎, 𝑏] 

at time (𝑡), defined as in Eq. [33]. By inspection, 𝑄(𝑡) must satisfy 

𝑄(𝑇) − 𝑄(0) = 𝑠𝑇(𝑆𝑤𝑙
− 𝑆𝑤𝑟

)       (39) 

Using Eq. [36], we also have that 

𝑄(𝑇) − 𝑄(0) − ∫ [𝑓𝑛(𝑆𝑤(𝑎, 𝑡)) − 𝑓𝑛(𝑆𝑤(𝑏, 𝑡))]𝑑𝑡
𝑇

0
= 0  

⇒ 𝑄(𝑇) − 𝑄(0) = 𝑇[𝑓𝑛(𝑆𝑤𝑙
) − 𝑓𝑛(𝑆𝑤 𝑟

)]      (40) 

since 𝑆𝑤(𝑎, 𝑡) = 𝑆𝑤𝑙
 and 𝑆𝑤(𝑏, 𝑡) = 𝑆𝑤 𝑟

 for all 𝑡 ∈ [0, 𝑇]. Equating (39) and (40) and solving 

for 𝑠 then leads to the Rankine-Hugoniot Relation for the shock speed (𝑠), 

 𝑠𝑇(𝑆𝑤 𝑙
− 𝑆𝑤𝑟

) = 𝑇[𝑓𝑛(𝑆𝑤 𝑙
) − 𝑓𝑛(𝑆𝑤𝑟

)]    

 ⇒ 𝑠 =
𝑓𝑛(𝑆𝑤𝑙)−𝑓𝑛(𝑆𝑤𝑟)

𝑆𝑤𝑙−𝑆𝑤𝑟

         (41) 

Figure 3.3: Shock wave propagation diagram (modified after De Sterck and Ullrich, 2009). 
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Thus, the shock propagates rightward with constant speed (𝑠) depending on the different water 

saturation values. 

Consider a reservoir with initial water saturation of 15%, where water is injected into the 

reservoir with a linear flow rate of 1𝑓𝑡/𝑑𝑎𝑦. The water and oil viscosities are 0.52 𝑐𝑝 and 

1.73 𝑐𝑝, respectively. The residual oil saturation is assumed to be 10% along with an absolute 

permeability of 10 𝑚𝐷 and porosity of 25%. Using some correlations and the flux function 

definition, the following procedure can be used to calculate the shock speed for a given injected 

water saturation value. 

 Step i: The normalised water saturation (Al-Mutairi et al., 2012; Islam et al., 2016) is 

calculated using the following definition,  

𝑆𝑤𝑛
=

𝑆𝑤−𝑆𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙

1−𝑆𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑆𝑜𝑟
         (42) 

 Step ii: The relative permeability of water and oil are computed through the following 

correlations, where we take 𝑛1 = 4 and 𝑛2 =  2, as we do for all calculations in this study.  

 𝑘𝑟𝑤 = 0.59439𝑆𝑤𝑛

4
         (43) 

𝑘𝑟𝑜 = (1 − 𝑆𝑤𝑛
)

2
          (44) 

 Step iii: The flux function of the Buckley-Leverett equation is calculated from 

𝑓𝑛(𝑆𝑤) =
𝑞

𝐴𝜙
𝑓𝑤 =

𝑞

𝐴𝜙
(

1

1+
𝑘𝑟𝑜𝜇𝑤
𝑘𝑟𝑤𝜇𝑜

)       (45) 

 Step iv: Finally, the shock speed is found from 

𝑠 =
𝑓𝑛(𝑆𝑤𝑙)−𝑓𝑛(𝑆𝑤𝑟)

𝑆𝑤𝑙−𝑆𝑤𝑟

         (46) 

The distance travelled by the shock is given by multiplying the shock speed by the time elapsed. 

Table 3.1 represents the resulting values for different values of the injection water saturation. 

Based on the initial condition, the distribution of fluid (water and oil) in the reservoir formation 

is shown in Figure 3.4 (assuming the capillary pressure gradient is zero, and gravitational 

effects are neglected). This figure exhibits a double-valued saturation for some positions, which 

is unrealistic. For example, the water saturation after ten days at 50 𝑓𝑡 is 60 and 90% 
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respectively (Figure 3.4). The saturation can be only one value at any place and time. To resolve 

these difficulties, the shock wave characteristics would be a good choice and could provide 

single-valued saturation at any position and time.  

Table 3.1: Estimation of shock speed and breakthrough time. 

𝑆𝑤 𝑙
≈ 𝑆𝑤  𝑆𝑤 𝑟

 

(Residual water) 

𝑓𝑛(𝑆𝑤𝑙
)  𝑓𝑛(𝑆𝑤𝑟

) Shock speed (s) 

ft/day 

Distance (x), ft 

(10 days) 

0.3 0.1 0.01 0.001 0.04 0.39 

0.4 0.1 0.14 0.001 0.46 4.57 

0.5 0.1 0.80 0.001 2.00 19.98 

0.6 0.1 2.28 0.001 4.55 45.48 

0.7 0.1 3.50 0.001 5.83 58.29 

0.8 0.1 3.93 0.001 5.61 56.13 

0.9 0.1 4.00 0.001 5.00 50.00 

1.0 0.1 3.98 0.001 4.42 44.20 

 

Figure 3.4: Fluid distributions at initial conditions at 10 days. 
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3.3.3. Numerical Solution using Local Lax-Friedrichs Method 

To solve the Buckley-Leverett equation numerically, we introduce the local Lax-Friedrichs 

method. This method can address the hyperbolic nature of the partial differential equation and 

exhibits favorable dissipation and dispersion characteristics. In this method, the spatial domain 

is divided into equal size cells (∆𝑥) of finite volume (Figure 3.5), and later time discretisation 

leads to the subdivision of the domain (Figure 3.6). Here, cell interfaces are denoted by half-

integer indices, such as  (𝑖 +
1

2
) or (𝑖 −

1

2
). The Buckley-Leverett equation can written as the 

following form 

 ∫ ∫ [
𝜕𝑆𝑤

𝜕𝑡
+

𝜕𝑓(𝑆𝑤)

𝜕𝑥
]

𝑥
𝑖+

1
2

𝑥
𝑖−

1
2

𝑡𝑛+1

𝑡𝑛
= 0       (47) 

The second integral form of the conservation law (Eq. 36) can then be rewritten using cells 

from this discretised domain as  

𝑄𝑖
𝑛+1 − 𝑄𝑖

𝑛 + ∫ [𝑓 (𝑆𝑤 (𝑥
𝑖+

1

2

, 𝑡)) − 𝑓 (𝑆𝑤 (𝑥
𝑖−

1

2

, 𝑡))]
𝑡𝑛+1

𝑡𝑛
𝑑𝑡 = 0   (48) 

 

Figure 3.5: Finite volume discretisation (modified after De Sterck and Ullrich, 2009). 

 

Figure 3.6: Time-discretisation in finite volume methods (modified after De Sterck and 

Ullrich, 2009).   
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with  

 𝑄𝑖
𝑛 = ∫ 𝑆𝑤(𝑥, 𝑡𝑛)𝑑𝑥

𝑥
𝑖+

1
2

𝑥
𝑖−

1
2

        (49) 

where, 

 ∫ ∫
𝜕𝑆𝑤

𝜕𝑡

𝑡𝑛+1

𝑡𝑛

𝑥
𝑖+

1
2

𝑥
𝑖−

1
2

𝑑𝑡𝑑𝑥 = ∫ {𝑆𝑤(𝑥, 𝑡𝑛+1) − 𝑆𝑤(𝑥, 𝑡𝑛)}
𝑥

𝑖+
1
2

𝑥
𝑖−

1
2

𝑑𝑥 = 𝑄𝑖
𝑛+1 − 𝑄𝑖

𝑛 (50) 

We now define 𝑆𝑤̅𝑖

𝑛
, the average value of 𝑆𝑤(𝑥, 𝑡) in cell 𝑖 at time 𝑡𝑛 , by 

𝑆𝑤̅𝑖

𝑛
=

𝑄𝑖
𝑛

∆𝑥
          (51) 

and 𝑓̅
𝑖+

1

2

𝑛+
1

2, the average value of 𝑓(𝑆𝑤) at the interface 𝑖 +
1

2
 between 𝑡𝑛 and 𝑡𝑛+1, by 

𝑓̅
𝑖+

1

2

𝑛+
1

2 =
∫ 𝑓(𝑆𝑤(𝑥

𝑖+
1
2

,𝑡))
𝑡𝑛+1

𝑡𝑛
𝑑𝑡

∆𝑡
        (52) 

Divide Eq. [48] by ∆𝑥, and substitute Eq. [51], giving 

 𝑆𝑤̅𝑖

𝑛+1
− 𝑆𝑤̅𝑖

𝑛
+

1

∆𝑥
∫ [𝑓 (𝑆𝑤 (𝑥

𝑖+
1

2

, 𝑡)) − 𝑓 (𝑆𝑤 (𝑥
𝑖−

1

2

, 𝑡))] 𝑑𝑡
𝑡𝑛+1

𝑡𝑛
= 0  

Using the third integral form of the conservation law and dividing by ∆𝑡, the Buckley-Leverett 

equation becomes 

𝑆𝑤̅̅ ̅̅
𝑖
𝑛+1

−𝑆𝑤̅̅ ̅̅
𝑖
𝑛

∆𝑡
+

𝑓̅
𝑖+

1
2

𝑛+
1
2−𝑓̅

𝑖−
1
2

𝑛+
1
2

∆𝑥
= 0        (53) 

Eq. [53] is an exact equation, since it follows from rewriting the (exact) second integral form. 

Then, Eq. [53] is discretised by making the approximations 

𝑆𝑤
̅̅̅̅

𝑖

𝑛
≈ 𝑆𝑤 𝑖

𝑛
,  𝑓̅

𝑖+
1

2

𝑛+
1

2 ≈ 𝑓∗(𝑆𝑤𝑖
𝑛 , 𝑆𝑤𝑖+1

𝑛 )     (54) 

Here, 𝑓∗(𝑆𝑤 𝑖
𝑛 , 𝑆𝑤𝑖+1

𝑛 ) is called the numerical flux function, and is often denoted in shorthand 

by 𝑓∗(𝑆𝑤𝑖
𝑛 , 𝑆𝑤𝑖+1

𝑛 ) = 𝑓
𝑖+

1

2

∗𝑛  . This approximation assumes that the flux through the interface 𝑖 +

1

2
 can be calculated using the state of the system in cells 𝑖 and 𝑖 + 1. To define an explicit 

scheme for the Buckley-Leverett equation (assuming no capillary pressure), we take the 

following form using Eqs. [53] and [54]  
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𝑆𝑤𝑖
𝑛+1−𝑆𝑤𝑖

𝑛

∆𝑡
+

𝑓∗(𝑆𝑤𝑖
𝑛,𝑆𝑤𝑖+1

𝑛 )−𝑓∗(𝑆𝑤𝑖−1
𝑛 ,𝑆𝑤𝑖

𝑛)

∆𝑥
      (55) 

To define 𝑓∗, we reconsider the 1-D Buckley-Leverett model, rewritten in the following form 

𝜕𝑆𝑤

𝜕𝑡
+

𝜕𝑓𝑛(𝑆𝑤)

𝜕𝑥
= 0 ⇔

𝜕𝑆𝑤

𝜕𝑡
+

𝑞

𝐴𝜙

𝑑𝑓𝑤(𝑆𝑤)

𝑑𝑆𝑤

𝜕𝑆𝑤

𝜕𝑥
= 0     (56) 

Taking 
𝜕𝑃𝑐

𝜕𝑥
= 0 in Eq. [10] gives  

 𝑓𝑤 = (
1

1+
𝑘𝑟𝑜𝜇𝑤
𝑘𝑟𝑤𝜇𝑜

)         (57)  

From Eq. [56], we define 

𝜆(𝑆𝑤) =
𝑞

𝐴𝜙

𝑑𝑓𝑤(𝑆𝑤)

𝑑𝑆𝑤
= 𝑓𝑛

′(𝑆𝑤)  

So, Eq. [56] can be written as 

𝜕𝑆𝑤

𝜕𝑡
+ 𝜆(𝑆𝑤)

𝜕𝑆𝑤

𝜕𝑥
= 0         (58) 

In Eq. [58], 𝜆(𝑆𝑤) represents the slope of the characteristics, since 𝑆𝑤 is constant along 

characteristic curves. This function, 𝜆(𝑆𝑤), motivates us to define the flux function for the 

Buckley-Leverett model. The local Lax-Friedrichs flux function is defined by 

𝑓∗(𝑆𝑤𝑖
𝑛 , 𝑆𝑤𝑖+1

𝑛 ) =
𝑓𝑛(𝑆𝑤𝑖

𝑛)+𝑓𝑛(𝑆𝑤𝑖+1
𝑛 )

2
−

1

2
|𝜆 (

𝑆𝑤𝑖
𝑛+𝑆𝑤𝑖+1

𝑛

2
)| (𝑆𝑤𝑖+1

𝑛 − 𝑆𝑤𝑖

𝑛
)  (59) 

𝑓∗(𝑆𝑤𝑖−1
𝑛 , 𝑆𝑤𝑖

𝑛) =
𝑓𝑛(𝑆𝑤𝑖−1

𝑛 )+𝑓𝑛(𝑆𝑤𝑖
𝑛)

2
−

1

2
|𝜆 (

𝑆𝑤𝑖−1
𝑛 +𝑆𝑤𝑖

𝑛

2
)| (𝑆𝑤𝑖

𝑛 − 𝑆𝑤𝑖−1

𝑛
)  (60) 

Here, 

 𝑓𝑛(𝑆𝑤) =
𝑞

𝐴𝜙
(

1

1+
𝑘𝑟𝑜𝜇𝑤
𝑘𝑟𝑤𝜇𝑜

) =
𝑞

𝐴𝜙
(

1

1+𝑀
)      (61) 

 𝜆(𝑆𝑤) =
𝑞

𝐴𝜙
(

𝑑𝑓𝑤(𝑆𝑤)

𝑑𝑆𝑤
)        (62) 

From Appendix – A, Eq. [58] can be written as (Eq. [A-15]) 

 𝜆(𝑆𝑤) =
𝑞

𝐴𝜙
(

𝜇𝑤

𝜇𝑜

𝑎2

𝑎1
)

𝑆𝑤𝑛
3 (𝑆𝑤)

(𝑆𝑤𝑛
4 (𝑆𝑤)+

𝜇𝑤
𝜇𝑜

𝑎2
𝑎1

(1−𝑆𝑤𝑛(𝑆𝑤))
2

)
2 (

4−6𝑆𝑤𝑛(𝑆𝑤)+2𝑆𝑤𝑛
2 (𝑆𝑤)

1−𝑆𝑤𝑖−𝑆𝑜𝑟
)   (63) 

Now, using MATLAB programming, we use Eq. [55] to get the solution for 𝑆𝑤𝑖
𝑛+1

 for the new 

time steps (Figure 3.11), while the remaining parameters are known. 



80 

3.3.3.1. Consistency Analysis 

For a finite volume scheme, the definition of consistency (De Sterck and Ullrich, 2009) is that 

 𝑓∗(𝑣, 𝑣) = 𝑓(𝑣),    ∀ 𝑣 ∈ ℝ        (64) 

For the Buckley-Leverett equation the flux function needs to satisfy this consistency 

requirement in the following form 

 𝑓∗(𝑆𝑤𝑖
𝑛 , 𝑆𝑤𝑖

𝑛) = 𝑓𝑛(𝑆𝑤𝑖
𝑛)        (65) 

This naturally follows from the Lax-Friedrichs form in Eq. [59]. Recalling Eqs. [30, 42, 43, 

and 44], we get the solution for 𝑆𝑤𝑖
𝑛+1

 for the new time step through MATLAB programming 

(Figure 3.7), while the remaining parameters are known. From simple explicit scheme form, 

we get 

 𝑆𝑤𝑖
𝑛+1 = 𝑆𝑤 𝑖

𝑛 −
∆𝑡

∆𝑥
[𝑓𝑛(𝑆𝑤𝑖

𝑛) − 𝑓𝑛(𝑆𝑤𝑖−1
𝑛 )]      (66) 

Figure 3.7 represents the consistency of proposed numerical scheme when there is no capillary 

pressure and gravitational force. The solution is similar to the local Lax-Friedrichs method 

solution, which demonstrates that the proposed method for the simple governing equation is 

consistent. This technique applies to a linearised 1-D system of equations, and the complete 

solution (including capillary effect) will achievable only using a computational method. 

 

Figure 3.7: Consistency check of the Buckley-Leverett equation. 
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3.4. RESULTS AND DISCUSSIONS 

Consider a reservoir with initial water saturation of 18% with water injected into the reservoir 

with a linear flow rate of 1 𝑓𝑡3/𝑑𝑎𝑦. The water and oil viscosities are 0.52 𝑐𝑝 and 1.73 𝑐𝑝, 

respectively. The residual oil saturation is 10% along with an absolute permeability of 10 𝑚𝐷 

and porosity of 25%. To analyse the Buckley-Leverett equation numerically, the local  

Lax-Friedrichs finite volume method is used. This method has proven to be consistent with the 

simple form of that model (assuming capillary and gravitational forces are negligible). From 

the local Lax-Friedrichs method, the solution of water saturation is generated for the new time 

steps using Eq. [55]. We analyse the shock behaviour and shock position by changing the water 

saturation values that are injected from the injection well. Here we take small time steps to 

ensure stability of the explicit form. The spatial domain of [0,100] is divided into 200 cells, 

while the temporal domain of [0, 10] is divided into 1,000 cells. Using MATLAB 

programming, we change the value of injected water saturation, 𝑆𝑤𝑙 , and observe the behaviour 

of the analytical and numerical solutions. In Figure 3.11(a-c), it is demonstrated that the 

numerical solution converges with the analytical solution at 𝑆𝑤𝑙 = 0.70 (Figure 3.11-a). After 

the simulation run, we get the shock position at 64.68 𝑓𝑡 while the shock speed is 

6.468 𝑓𝑡/𝑑𝑎𝑦 for 𝑆𝑤𝑙 = 0.70. The saturation front is smeared in the numerical solution for 

that amount of water injection. In contrast, the saturation front is sharp in the analytical solution 

and we were able to validate the simulation code at lower values of 𝑆𝑤𝑙. When 𝑆𝑤𝑙 is larger 

than 70%, the analytical solution technique used here breaks down incorrectly predicting the 

shock speed and position. We are aware that we took too simplistic an approach to writing out 

the analytical solution, and our approach to doing this fails when 𝑆𝑤𝑙 is larger than about 70%. 

In addition, when injected water saturation reaches 70%, the relative permeability of oil is 

decreased and the relative permeability of water is increased, which directly reduces the oil 

recovery in waterflooding technique. This condition can be easily illustrated by the water-oil 

relative permeability curves shown in Figure 3.8. 

If we draw a tangent line from the point of residual water saturation to the fractional flow curve 

(Figure 3.9), the point indicates the water saturation percentage that was being injected and 

represents the corresponding fractional flow. The tangent line also depicts that for the value of 

𝑆𝑤𝑙 = 0.72, the maximum amount of oil will displace from the reservoir. This calculation was 

done when there are no capillary forces in the waterflooding technique. Later, the breakthrough 

time is calculated by considering the same condition, shown in Figure 3.10. Oil is produced 
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continually for various 𝑆𝑤𝑙  and when the value of 𝑆𝑤𝑙 is 72%, the breakthrough time (Figure 

3.10) is steady for the rest of the injected water saturation percentage. Here, the breakthrough 

time is approximately 15.14 days. The characteristic velocity of water and the amount of oil 

production is higher, before reaching this time. To find accurate breakthrough timing, we 

extend the temporal domain to a suitable length. For any injected water saturation percentage, 

this breakthrough means the time when that saturation is breaking at the outlet side. Moreover, 

the breakthrough time indicates the level of water saturation, from where the estimation of oil 

recovery needs to start and calculates the average water saturation percentage behind the shock 

front. The shock velocity also calculates from the fractional water flow rate curve (Figure 3.9). 

Since the present research is conducted for a one-dimensional (1-D) medium, we are assuming 

that the water is injected through the injection well and oil is produced through the production 

well of that medium. There are no other sources or sinks between the injection and production 

well in the medium.  

For different values of 𝑆𝑤𝑙, the shock wave is exhibited in the Buckley-Leverett equation along 

with their shock position (Figure 3.11(a-c)). Figures 3.11(b-c) depicts the changing of 

saturation profiles when 𝑆𝑤𝑙  is larger than 70%. Above this value, the analytical method 

provides various shock positions, while the numerical method gives a common position for all 

injected saturation values. This condition reveals that the fractional water flow rate (or, water 

cut) moves slowly (Figure 3.9) and increases the cost of displacing oil from the reservoir. The 

breakthrough time is also at a steady rate for those 𝑆𝑤𝑙 values (Figure 3.10). Only the numerical  

 

Figure 3.8: Water-oil relative permeability curves. 
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Figure 3.9: The fractional water flow rate with the water saturation. 

 

Figure 3.10: Breakthrough time calculation (No capillary). 

methods properly illustrate the frontal advancement of saturation profiles and explain the 

nature of the Buckley-Leverett equation. If we compare the numerical solutions (Figure 3.11(a-

c)) with fractional water flow (𝑓𝑤) profile (Figure 3.9), we see that, after reaching a particular  
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(a): at 𝑆𝑤 = 0.70 

 

(b): at 𝑆𝑤 = 0.75 
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 (c): at 𝑆𝑤 = 0.9 

Figure 3.11(a-c): Numerical solution of the Buckley-Leverett equation using local Lax-

Friedrichs finite volume method (No capillary). 

 

Figure 3.12: Saturation profile (3-D view) at different days (No capillary). 
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Figure 3.13: Saturation profile (2-D view) at different days (No capillary). 

position, the front advancement of 𝑓𝑤  is flat rather than steep, and the possibility of recovery 

is also minimised. Further, the conventional analysis (Figure 3.4) provides double-valued water 

saturation percentages for position and time. However, the present numerical scheme explains 

the water saturation profiles by generating shock fronts, and we will use this analysis for the 

Buckley-Leverett equation including the capillary term. Here, the shock position indicates that 

oil may yet be recovered by injecting large volumes of water through the reservoir. The region 

above 90% water saturation depicts that the oil is not recoverable since residual oil saturation 

is 10%. We also present the saturation profiles for different days after assuming a shock front, 

shown in Figures 3.12 and 3.13. The physical solution of the Buckley-Leverett equation is 

obtained here for various timesteps. These figures depict the saturation frontal advancement, 

where saturation fronts move forward with a definite speed at specific time and distance. The 

injected water saturations are varying behind the front, while it is constant ahead of the front. 

At the end of the injection time, the shock fronts provide the exact shock position along with 

the breakthrough time and water cut percentage. This water cut represents the water saturation 

percentage that is injected into the injection well and the oil production is economically viable 

up to that saturation level. 
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3.5. CONCLUSIONS 

The analytical and numerical solution of the Buckley-Leverett equation has been developed for 

a linear 1-D (one dimensional) immiscible displacement process. Both of these solutions 

provide an approximately discontinuous single-valued solution, which gives an indication of 

the shock characteristics for that governing model. The method of characteristics helps to 

define the nature of the model equation and can reduce the PDEs (Partial differential equation) 

to a family of ODEs (Ordinary differential equation) along which the solution can be integrated 

based on some initial data. The solution of ODEs along the characteristics curve is a transform 

solution of the original PDEs. This analytical solution technique is only reasonable when the 

injected water saturation is lower than 70% and converges with numerical solutions perfectly. 

Above this injected water saturation, the analytical solutions fail to compute the saturation front 

and the numerical solution is capable of representing those shock fronts and explaining the 

behaviour. On the contrary, the local Lax-Friedrichs finite volume scheme is a good choice for 

hyperbolic PDEs, using explicit, implicit, or semi-implicit form. To avoid the complexity and 

maintain the efficiency of the present study, we have used only the explicit form for the local 

Lax-Friedrichs scheme. It is difficult to get saturation shock characteristics in the reservoir by 

considering capillary terms. However, numerically it is possible to find the real shock scenario 

for different saturation values, considering capillary pressure gradients will ensure if a shock 

has appeared or not. Hence, future research will include advanced numerical techniques for 

accurately tracking breakthrough time, saturation fronts and their shock characteristics without 

distorting the physics. 
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Chapter 4 
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Abstract 

The Buckley-Leverett equation is one of the simplest waterflooding methods to estimate the 

fluid front advancement and its effect in an immiscible displacement process. In this chapter, 

we present the Buckley-Leverett equation including capillary pressure and solve it by a 

numerical technique, the cell-centred finite volume method. A fixed-point iteration is applied 

to solve the nonlinear equations in an implicit scheme. These calculations provide stable 

solution for waterflooding against diffusive forces (capillary pressure) in an immiscible 

displacement process. Saturation profiles are generated where shock solutions form without 

capillary pressure, showing how smoothly the method handles diffusion properties near a shock 

position. Moreover, the implicit form is used to achieve better stability and accuracy in this 

research. The current numerical method will help future researchers to utilise the solution in 

field-scale models and accurately track saturation fronts without distorting their physics.  

Keywords: The Buckley-Leverett equation, cell-centred finite volume, fixed-point iteration, 

reservoir simulation. 

4.1. INTRODUCTION 

The petroleum industry looks to maximise the recovery performance from their oil/gas fields. 

It is essential to maintain the economic value of oil/gas resources, and difficult to discover new 

hydrocarbon fields. Except for remote and environmentally sensitive areas, most petroleum 

basins are explored, and huge volumes of hydrocarbons are produced globally. Many 

unconventional hydrocarbons (shale gas/oil, gas hydrates and heavy viscous oils) are produced 

by exploiting advanced technologies (e.g., hydraulic fracturing, steam injection) to meet the 

present demands for hydrocarbons. Sometimes, production from those reservoirs is not 

possible, due to political unrest or environmental sensitivity. Apart from this issue, there are 

other technical and economic challenges that need to be addressed before maximising 

petroleum recovery (Muggeridge et al., 2014). To mitigate these constraints, researchers need 

to develop more effective recovery processes by addressing all complexities. These 
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complexities are presented by some inherent assumptions along with the governing equations 

that are used in the different cases. The mathematical models are based on the theory behind 

fluid flow through porous media, and their prediction process can mislead the petroleum 

industry's development. Therefore, advanced numerical tools are needed to predict exact 

solutions for multivariable problems with solutions that are realistic rather than impractical 

(Deb et al., 2017). 

The Buckley-Leverett equation is a reliable model for waterflooding prediction to understand 

immiscible displacement processes. Here, the saturation profiles are used to describe frontal 

displacement theory in petroleum engineering. However, the application of that theory is 

limited, since it requires certain assumptions and related conditions (Deb et al., 2017). In this 

research, the capillary pressure effect is included in the Buckley-Leverett equation using a 

numerical tool. This effect influences the interfacial and surface tension of the rock and fluids, 

the geometry and pore sizes, and the wetting characteristics in a petroleum system (Helvig, 

2013). 

We focus on the Buckley-Leverett equation that is used in secondary recovery techniques for 

petroleum fields. Capillary pressure is considered in the model equation as a function of 

normalised water saturation, and later this developed equation is solved through a cell-centred 

finite volume approximation. The stability of the proposed solution is attained using a fixed-

point iteration. This computational calculation will certainly help to optimise field recovery 

processes and mitigate all constraints effectively. 

4.2. Development of the Buckley-Leverett Equation Including Capillary Pressure 

From Buckley-Leverett’s theory (1942), the equation can be written as:  

 
𝜕𝑆𝑤

𝜕𝑡
+

𝑞

𝐴𝜑

𝜕𝑓𝑤

𝜕𝑥
= 0            (1) 

where,  

 𝑓𝑤 = (
1

1+
𝑘𝑟𝑜𝜇𝑤
𝑘𝑟𝑤𝜇𝑜

) (1 +
𝐴𝑘𝑘𝑟𝑜

𝑞𝜇𝑜
[

𝜕𝑃𝑐

𝜕𝑥
− (𝜌𝑤 − 𝜌𝑜)𝑔𝑠𝑖𝑛𝛼])              (2) 

Eqs. [1 and 2] are nonlinear PDEs. The relative permeability of oil and water are a function of 

normalised water saturation and can be expressed in the following form: 

𝑘𝑟𝑤 = 0.59439(𝑆𝑤𝑛)4        (3) 
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𝑘𝑟𝑜 = (1 − 𝑆𝑤𝑛)2        (4) 

where the normalised water saturation (Al-Mutairi et al., 2012; Islam et al., 2016) is defined 

as: 

𝑆𝑤𝑛 =
𝑆𝑤−𝑆𝑤𝑖

1−𝑆𝑤𝑖−𝑆𝑜𝑟
        (5) 

Differentiating both sides with respect to 𝑆𝑤, gives 

 
𝜕𝑆𝑤𝑛

𝜕𝑆𝑤
=

1

1−𝑆𝑤𝑖
−𝑆𝑜𝑟

         (6) 

For immiscible displacement, capillary pressure is a function of normalised water saturation 

(Leverett, 1941). The relationship is written in the following form: 

𝑃𝑐 = 𝑃𝑐(𝑆𝑤𝑛)         (7) 

In Eq. [1], 𝑓𝑤  is a function of 𝑆𝑤, but not derivatives of 𝑆𝑤. 

Let, 𝑓 = (
1

1+
𝑘𝑟𝑜𝜇𝑤
𝑘𝑟𝑤𝜇𝑜

)         (8) 

Rewrite Eq. [2] (considering a horizontal reservoir, 𝑠𝑖𝑛𝛼 = 0) to get 

 𝑓𝑤 = 𝑓 (1 +
𝐴𝑘

𝑞𝜇𝑜
𝑘𝑟𝑜(𝑆𝑤)

𝜕𝑃𝑐

𝜕𝑥
)       (9)  

 ⇒ 𝑓𝑤 = 𝑓 (1 +
𝐴𝑘

𝑞𝜇𝑜
𝑘𝑟𝑜(𝑆𝑤)

𝜕𝑃𝑐

𝜕𝑆𝑤𝑛

𝜕𝑆𝑤𝑛

𝜕𝑆𝑤

𝜕𝑆𝑤

𝜕𝑥
)      (10) 

where  𝑓𝑤  depends on both 𝑆𝑤 and 
𝜕𝑆𝑤

𝜕𝑥
 

Substituting these into Eq. [1], we obtain 

 
𝜕𝑆𝑤

𝜕𝑡
+

𝑞

𝐴𝜙

𝜕

𝜕𝑥
[𝑓 (1 +

𝐴𝑘

𝑞𝜇𝑜
𝑘𝑟𝑜(𝑆𝑤)

𝜕𝑃𝑐

𝜕𝑆𝑤𝑛

𝜕𝑆𝑤𝑛

𝜕𝑆𝑤

𝜕𝑆𝑤

𝜕𝑥
)] = 0    (11) 

 ⇒
𝜕𝑆𝑤

𝜕𝑡
+

𝑞

𝐴𝜙

𝜕

𝜕𝑥
[𝑓 + 𝑓

𝐴𝑘

𝑞𝜇𝑜
𝑘𝑟𝑜(𝑆𝑤)

𝜕𝑃𝑐

𝜕𝑆𝑤𝑛

𝜕𝑆𝑤𝑛

𝜕𝑆𝑤

𝜕𝑆𝑤

𝜕𝑥
] = 0    (12) 

 ⇒
𝜕𝑆𝑤

𝜕𝑡
+

𝑞

𝐴𝜙

𝜕𝑓

𝜕𝑥
+

𝑞

𝐴𝜙

𝜕

𝜕𝑥
[𝑓

𝐴𝑘

𝑞𝜇𝑜
𝑘𝑟𝑜(𝑆𝑤)

𝜕𝑃𝑐

𝜕𝑆𝑤𝑛

𝜕𝑆𝑤𝑛

𝜕𝑆𝑤

𝜕𝑆𝑤

𝜕𝑥
] = 0    (13) 

 ⇒
𝜕𝑆𝑤

𝜕𝑡
+

𝑞

𝐴𝜙

𝜕𝑓

𝜕𝑆𝑤

𝜕𝑆𝑤

𝜕𝑥
=

𝜕

𝜕𝑥
[(−

𝑞

𝐴𝜙

𝐴𝑘

𝑞𝜇𝑜
𝑓𝑘𝑟𝑜(𝑆𝑤)

𝜕𝑃𝑐

𝜕𝑆𝑤𝑛

𝜕𝑆𝑤𝑛

𝜕𝑆𝑤
)

𝜕𝑆𝑤

𝜕𝑥
]   (14) 

 ⇒
𝜕𝑆𝑤

𝜕𝑡
+

𝑞

𝐴𝜙

𝜕𝑓(𝑆𝑤)

𝜕𝑥
=

𝜕

𝜕𝑥
[𝑁

𝜕𝑆𝑤

𝜕𝑥
]       (15) 

where, 𝑁 is introduced for notational convenience as  
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 𝑁 = −
𝑞

𝐴𝜙

𝐴𝑘

𝑞𝜇𝑜
𝑓𝑘𝑟𝑜(𝑆𝑤)

𝜕𝑃𝑐

𝜕𝑆𝑤𝑛

𝜕𝑆𝑤𝑛

𝜕𝑆𝑤
       (16) 

Considering the integrated form of the conservation law in Chapter 3, Eq. [15] gives 

 𝑄𝑖
𝑛+1 − 𝑄𝑖

𝑛 + ∫ [𝑓 (𝑆𝑤 (𝑥
𝑖+

1

2

, 𝑡)) − 𝑓 (𝑆𝑤 (𝑥
𝑖−

1

2

, 𝑡))]
𝑡𝑛+1

𝑡𝑛
𝑑𝑡 =

∫ [𝑁
𝜕𝑆𝑤

𝜕𝑥
(𝑥

𝑖+
1

2

, 𝑡) − 𝑁
𝜕𝑆𝑤

𝜕𝑥
(𝑥

𝑖−
1

2

, 𝑡)]
𝑡𝑛+1

𝑡𝑛
𝑑𝑡       (17) 

Dividing Eq. [17] by ∆𝑥 gives 

 
1

∆𝑥
(𝑄𝑖

𝑛+1 − 𝑄𝑖
𝑛) +

1

∆𝑥
[∫ [𝑓 (𝑆𝑤 (𝑥

𝑖+
1

2

, 𝑡)) − 𝑓 (𝑆𝑤 (𝑥
𝑖−

1

2

, 𝑡))]
𝑡𝑛+1

𝑡𝑛
𝑑𝑡] =

1

∆𝑥
[∫ [𝑁

𝜕𝑆𝑤

𝜕𝑥
(𝑥

𝑖+
1

2

, 𝑡) − 𝑁
𝜕𝑆𝑤

𝜕𝑥
(𝑥

𝑖−
1

2

, 𝑡)]
𝑡𝑛+1

𝑡𝑛
𝑑𝑡]      (18) 

From Chapter 3, we write 

 𝑆𝑤̅𝑖

𝑛
=

𝑄𝑖
𝑛

∆𝑥
  and, 

 𝑓̅
𝑖+

1

2

𝑛+
1

2 =
∫ 𝑓(𝑆𝑤(𝑥

𝑖+
1
2

,𝑡))
𝑡𝑛+1

𝑡𝑛
𝑑𝑡

∆𝑡
        (19) 

Dividing Eq. [18] by ∆𝑡, substituting into Eq. [19] and taking the approximation,  

 
𝑆𝑤𝑖

𝑛+1−𝑆𝑤𝑖
𝑛

∆𝑡
+

1

∆𝑥
[𝑓∗(𝑆𝑤𝑖

𝑛 , 𝑆𝑤 𝑖+1
𝑛 ) − 𝑓∗(𝑆𝑤𝑖−1

𝑛 , 𝑆𝑤𝑖
𝑛)] 

=
1

∆𝑥
[𝑁

𝜕𝑆𝑤

𝜕𝑥
(𝑥

𝑖+
1

2

, 𝑡) − 𝑁
𝜕𝑆𝑤

𝜕𝑥
(𝑥

𝑖−
1

2

, 𝑡)]      (20) 

Rearranging Eq. [20], we write  

 𝑆𝑤𝑖
𝑛+1 − 𝑆𝑤𝑖

𝑛 +
∆𝑡

∆𝑥
[𝑓∗(𝑆𝑤𝑖

𝑛 , 𝑆𝑤𝑖+1
𝑛 ) − 𝑓∗(𝑆𝑤 𝑖−1

𝑛 , 𝑆𝑤𝑖
𝑛)] 

 =
∆𝑡

∆𝑥
[𝑁

𝜕𝑆𝑤

𝜕𝑥
(𝑥

𝑖+
1

2

, 𝑡) − 𝑁
𝜕𝑆𝑤

𝜕𝑥
(𝑥

𝑖−
1

2

, 𝑡)]       (21) 

Consider the term 
𝜕

𝜕𝑥
[𝑁

𝜕𝑆𝑤

𝜕𝑥
] and integrating this term from 𝑥

𝑖−
1

2

 to 𝑥
𝑖+

1

2

 gives  

 −(𝑁𝑆𝑤𝑥
) (𝑥

𝑖+
1

2

) + (𝑁𝑆𝑤𝑥
) (𝑥

𝑖−
1

2

)       (22) 

If we knew 𝑆𝑤 (𝑥
𝑖+

1

2

), we could approximate this as 
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 (𝑁
𝜕𝑆𝑤

𝜕𝑥
) (𝑥

𝑖+
1

2

) = 𝑁
𝑖+

1

2

= 𝑁𝑖

𝑆𝑤
𝑖+

1
2

−𝑆𝑤𝑖

ℎ

2

      (23) 

Requiring consistent fluxes from both sides leads to  

 𝑆𝑤𝑖+
1

2

=
𝑆𝑤𝑖+1𝑁𝑖+1+𝑆𝑤𝑖𝑁𝑖

𝑁𝑖+1+𝑁𝑖
       (24) 

which, in turn, allows us to give an expression for the approximation, 𝑁
𝑖+

1

2

, of  𝑁
𝜕𝑆𝑤

𝜕𝑥
(𝑥

𝑖+
1

2

) 

as 

 𝑁
𝑖+

1

2

= 𝜏
𝑖+

1

2

(𝑆𝑤𝑖+1
− 𝑆𝑤𝑖

)         (25) 

for  𝜏
𝑖+

1

2

=
2𝑁𝑖𝑁𝑖+1

ℎ𝑁𝑖+1+ℎ𝑁𝑖
         (26) 

Using Eq. [25], we write 

 𝑁
𝑖+

1

2

=
2𝑁𝑖𝑁𝑖+1

ℎ(𝑁𝑖+1+𝑁𝑖)
(𝑆𝑤𝑖+1

− 𝑆𝑤𝑖
)        (27) 

Eq. [27] represents the formulation for 𝑁
𝜕𝑆𝑤

𝜕𝑥
(𝑥

𝑖+
1

2

, 𝑡). Similarly, we obtain the other terms 

𝑁
𝜕𝑆𝑤

𝜕𝑥
(𝑥

𝑖−
1

2

, 𝑡). 

Substituting this into Eq. [15] and rearranging, we obtain 

𝜕𝑆𝑤

𝜕𝑡
+

𝑞

𝐴𝜙

𝜕𝑓(𝑆𝑤)

𝜕𝑥
=

2𝑁𝑖𝑁𝑖+1

ℎ(𝑁𝑖+1+𝑁𝑖)
(𝑆𝑤𝑖+1

− 𝑆𝑤𝑖
) −

2𝑁𝑖𝑁𝑖−1

ℎ(𝑁𝑖+𝑁𝑖−1)
(𝑆𝑤𝑖

− 𝑆𝑤𝑖−1
)  (28) 

Using MATLAB programming, the left-hand side of Eq. [28] is calculated using the local Lax-

Friedrichs scheme, shown in Chapter 3, and the right-hand side of Eq. [28] is added to that 

calculation to find the saturation for the new time step. 

4.3. Implicit Scheme using Fixed-Point Iteration 

A fixed-point iteration determines the roots of a given function by converting the function into 

an iteration form. For a given function 𝑓 and point 𝑥0, the fixed-point iteration can be written 

as 

𝑥𝑛+1 = 𝑓(𝑥𝑛),        𝑛 = 0,1,2, …       (29)  

Sometimes it is easier to analyse the fixed-point of the model problem in certain ranges. 

Moreover, it is locally convergent (Chang et al., 1998). An implicit scheme can solve the full  



96 

Start of simulation

Preprocess and initialize

Solve the equations to calculate saturation for time level “n+1” and 

iteration “g = 0”

Calculate the coefficients for new saturation

Solve the equations to calculate saturation for time level 

“n+1” and iteration “g+1”

Is difference of infinity norm 

between the saturation vectors of iteration “g” 

and “g+1” less than 10e-15?

Is calculation for all time

steps finished?

End of simulation

O
u

te
r 

lo
o
p

In
n

er
 i

te
ra

ti
o
n

 l
o
o
p

Yes

Yes

No

No

 

Figure 4.1: Computational algorithm for solving the Buckley-Leverett equation using a 

fixed-point iteration. 

mesh for each time step and solutions obtained by solving simultaneous equations of each grid. 

Larger time-steps can be implemented here, which makes the solution more stable than the 

explicit scheme. In this research, we studied the one-dimensional Buckley-Leverett equation 

in a heterogeneous medium. The computational algorithm for solving the Buckley-Leverett 

equation using the fixed-point iteration is illustrated in Figure 4.1. This method generates the 

saturation profiles using an iteration process and helps to find a stable solution for large time-
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steps. The computation time of this calculation is also captured for better simulation of water 

flooding. From Fig. 1, the saturation profile is first calculated for time-level 𝑛 + 1 and iteration 

𝑔 = 0. Using the prior time-step (i.e., explicitly), this step will provide a new saturation profile 

that is used to calculate further saturation at iteration, 𝑔 + 1. This step is repeated until 

consecutive solutions agree to high tolerance when all conditions are met, then the simulation 

will provide the stable solution for the governing equation. 

4.4. Oil Production Calculation 

In accordance with the proposed numerical solution, we tried to calculate the oil production from the 

water-oil formation. By injecting water into the injection well, the formulation will tell us the 

recoverable amount of oil based on the provided data parameters. For a particular time and position, the 

cumulative oil recovery at the production end, (𝑥𝑒𝑛𝑑) is defined by  

 𝑄(𝑡) = ∫ 𝑞(𝑥𝑒𝑛𝑑 , 𝑡)𝑑𝑡
𝑡

0
         (30) 

Recall the Darcy flux (for any position and time) (Yortsos and Fokas, 1983), 

 (For Oil)  𝑞0(𝑥, 𝑡) = −𝑘
𝑘𝑟𝑜

𝜇𝑜

𝜕𝑃𝑜

𝜕𝑥
       (31) 

 (For water) 𝑞𝑤(𝑥, 𝑡) = −𝑘
𝑘𝑟𝑤

𝜇𝑤

𝜕𝑃𝑤

𝜕𝑥
       (32) 

Based on the conservation law, we write – 

 
𝑑

𝑑𝑡
∫ 𝑆𝑤(𝑥, 𝑡)𝑑𝑥 = 𝑞𝑤(𝑥𝑒𝑛𝑑 , 𝑡) − 𝑞𝑤(0, 𝑡)

𝑥𝑒𝑛𝑑

0
      (33) 

 ⇒ 𝑞𝑤(𝑥𝑒𝑛𝑑 , 𝑡) = 𝑞𝑤(0, 𝑡) +
𝑑

𝑑𝑡
∫ 𝑆𝑤(𝑥, 𝑡)𝑑𝑥

𝑥𝑒𝑛𝑑

0
     (34) 

Here, 

 𝑞𝑤(0, 𝑡) = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 𝐼𝑛𝑙𝑒𝑡 𝑓𝑙𝑜𝑤 

 𝑞𝑤(𝑥𝑒𝑛𝑑 , 𝑡) = 𝑂𝑢𝑡𝑙𝑒𝑡 𝑓𝑙𝑜𝑤 

On the other hand, the total amount of water and oil are defined by  

 Total water = [∫ 𝑆𝑤(𝑥, 𝑡)𝑑𝑥
𝑥𝑒𝑛𝑑

0
] ∗ 𝐴𝑟𝑒𝑎 ∗ 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦     (35) 

 Total oil = 𝑉𝑜𝑙𝑢𝑚𝑒 ∗ 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 − 𝑇𝑜𝑡𝑎𝑙 𝑤𝑎𝑡𝑒𝑟     (36) 

Again, the oil flux can be defined as 

Oil Flux =  𝑂𝑖𝑙 𝑜𝑢𝑡 –  𝑂𝑖𝑙 𝑖𝑛        (37) 

=
𝑑

𝑑𝑡
(𝑇𝑜𝑡𝑎𝑙 𝑜𝑖𝑙) =

𝑑

𝑑𝑡
(−𝐴𝑟𝑒𝑎 ∗ 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 ∗ [∫ 𝑆𝑤(𝑥, 𝑡)𝑑𝑥

𝑥𝑒𝑛𝑑

0
])   (38) 
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where, oil out or oil production for any time (𝑡) can be written as  

 𝑂𝑖𝑙 𝑜𝑢𝑡(𝑡) = 𝑂𝑖𝑙 𝑖𝑛(𝑡) −
𝑑

𝑑𝑡
(𝐴𝑟𝑒𝑎 ∗ 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 ∗ [∫ 𝑆𝑤(𝑥, 𝑡)𝑑𝑥

𝑥𝑒𝑛𝑑

0
])   (39) 

or, 

 𝑂𝑖𝑙 𝑜𝑢𝑡 =  𝑂𝑖𝑙 𝑖𝑛 +
𝑑

𝑑𝑡
(𝑇𝑜𝑡𝑎𝑙 𝑜𝑖𝑙)       (40) 

Here, the amount of oil at initial time (𝑡 =  0) is  

 𝑂𝑖𝑙 𝑖𝑛 = 𝑞𝑖𝑛𝑗 ∗ (1 − 𝑆𝑤𝑙)       (41) 

From the finite volume approximation, we have 

 ∫ 𝑆𝑤(𝑥, 𝑡𝑛)𝑑𝑥
𝑥𝑒𝑛𝑑

0
= ∑ (∆𝑥) ∗ 𝑆𝑤𝑖

𝑛𝑁𝑥
𝑖=1       (42) 

Differentiating Eq. [42] with respect to time, 

𝑑

𝑑𝑡
∫ 𝑆𝑤(𝑥, 𝑡𝑛)𝑑𝑥

𝑥𝑒𝑛𝑑

0
=

1

∆𝑡
[∫ 𝑆𝑤(𝑥, 𝑡𝑛)𝑑𝑥

𝑥𝑒𝑛𝑑

0
− ∫ 𝑆𝑤(𝑥, 𝑡𝑛−1)𝑑𝑥

𝑥𝑒𝑛𝑑

0
]    (43) 

   =
1

∆𝑡
∑ (∆𝑥) ∗ (𝑆𝑤𝑖

𝑛 − 𝑆𝑤𝑖
𝑛−1)

𝑁𝑥
𝑖=1      (44) 

   =
1

∆𝑡
[∑ (∆𝑥) ∗ 𝑆𝑤𝑖

𝑛𝑁𝑥
𝑖=1 − ∑ (∆𝑥) ∗ 𝑆𝑤 𝑖

𝑛−1𝑁𝑥
𝑖=1 ]    (45) 

From Eq. [45], we compute the saturations for any time and position and, later, we calculate the oil 

production from Eq. [39] using MATLAB programming. 

4.5. RESULTS and DISCUSSION 

Consider a reservoir with initial water saturation of 18%, where water is injected into the 

reservoir with a linear flow rate of 1𝑓𝑡3/𝑑𝑎𝑦. The water and oil viscosities are 0.52 𝑐𝑝 and 

1.73 𝑐𝑝, respectively. The residual oil saturation is 10% along with an absolute permeability 

of 10 𝑚𝐷 and porosity of 25%. The capillary pressure data used in this calculation is shown 

in Table 4.1 and graphically represented in Figure 4.2. To capture the capillary pressure effects 

and converge the diffusion coefficient in the Buckley-Leverett equation, the cell-centred finite 

volume scheme is followed. The spatial domain of [0, 100] is divided into 200 cells, while the 

temporal domain of [0, 10] is divided into 1000 cells. For every new time-step, the saturation 

front is calculated from Eq. [28] using MATLAB programming. This saturation front creates a 

shock wave, and for a certain value of water saturation (𝑆𝑤𝑙) that are injected from the injection 

well, the shock position is obtained from the shock wave travelling. Due to stability criterion 

in explicit formulation, we are taking small time-steps for our calculations. As a result, the 

changing of capillary pressure gradients (
𝜕𝑃𝑐

𝜕𝑥
) has less effects on the Buckley-Leverett 
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equation. Theoretically, the capillary pressure values tend to infinity when the water saturation 

approaches the initial water saturation. For different 𝑆𝑤𝑙 values, the numerical solution deviates 

from analytical solution due to shock behaviour. In Figure 4.3(a-b), the numerical solution 

matches at 𝑆𝑤𝑙 = 0.70 (Figure 4.3a). For that 𝑆𝑤𝑙value, the shock position is 64.67 𝑓𝑡 while 

the shock speed is 6.47 𝑓𝑡/𝑑𝑎𝑦. Increasing the values of 𝑆𝑤𝑙, the numerical solution deviates 

clearly from analytical solution and, the shock position is firm for all numerical solutions 

instead of the analytical solution shock position, shown in Figure 4.3b. We took too simplistic 

an approach to writing out the analytical solution, and our approach to doing this fails when 

𝑆𝑤𝑙 is larger than about 70%. Besides, the water cut (or, the fractional flow of water) is highly 

increased and displaces lower amounts of oil from the reservoir. As a result, the cost of recovery 

will increase through the waterflooding process. This situation is also illustrated through the 

calculation of breakthrough time, shown in Figure 4.4. The breakthrough time is constant while 

water saturation is 70% or higher. Later, we compared the breakthrough time by considering 

with and without capillary, as shown in Figure 4.5. The breakthrough time is same for both 

capillary conditions. This time will help us to find average water saturation in waterflooding 

technique and gives an idea if it will be economical to continue the production or not. 

Considering different times, the saturation profiles are shown in Figure 4.6, and the saturation 

front moves forward using a shock wave. 

The saturation profiles are now calculated using a fixed-point iteration method, shown in 

Figure 4.7(a-c). This method represents how the successive iterations come with a solution. By 

following the computational algorithm (Figure 4.1), this method applied the basic upwind and 

Lax-Friedrichs schemes. For 1,000 time-steps and tolerance 10-15, this method took 26 

iterations per time-step on average (maximum 28 iterations at some time-steps) in the explicit 

and local  

Table 4.1: Capillary pressure data (Retrieved from Islam et al., 2016) 

𝑆𝑤𝑛 𝑃𝑐(𝑎𝑡𝑚) 𝑆𝑤𝑛 𝑃𝑐(𝑎𝑡𝑚) 𝑆𝑤𝑛 𝑃𝑐(𝑎𝑡𝑚) 𝑆𝑤𝑛 𝑃𝑐(𝑎𝑡𝑚) 

0 3.99 0.11 1.20 0.30 0.36 0.65 0.06 

0.01 3.59 0.15 0.87 0.36 0.27 0.72 0.04 

0.02 3.20 0.18 0.70 0.42 0.20 0.87 0.01 

0.05 2.26 0.21 0.57 0.48 0.15 0.95 0.003 

0.08 1.62 0.25 0.46 0.56 0.09 1 0 
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Figure 4.2: Variation of capillary pressure with respect to normalized water saturation. 

 

(a): at 𝑆𝑤 = 0.70 

 



101 

 

(b): at 𝑆𝑤 = 0.90 

Figure 4.3 (a-b): Saturation profiles including capillary pressure. 

 

Figure 4.4: Breakthrough time calculation (with capillary) 
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Figure 4.5: Comparison of breakthrough time with water saturation. 

 

Figure 4.6: Saturation profile at different days (with capillary) 
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(a) For simple explicit form (no capillary) 

 

(b) For local Lax-Friedrichs scheme in explicit form (no capillary). 
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(c) Cell-centered finite volume scheme (with capillary) 

Figure 4.7 (a-c): Development of saturation profiles using fixed-point iteration scheme. 

Lax-Friedrichs scheme, while 29 iterations per time-steps on average (maximum 31 iterations 

at some time-steps) for a basic upwind scheme. The numerical and analytical solutions are 

converged at shock position 64.67 𝑓𝑡 (Figure 4.7). This result means the solutions are stable 

and convergent through the proposed numerical scheme. Finally, to check the validity of all 

those mathematical schemes, we do a case study using real field data in the later section. 

If we compare our results with those of Mustafiz et al., (2008), they solved the Buckle-Leverett 

equation using the ADM (Adomian decomposition method), where the capillary pressure 

effects were addressed using a cubic spline method. They claimed that their solution converged 

rapidly and provided single-value saturation at each point. Regarding consistency, the ADM 

(Adomian decomposition method) calculation was cumbersome and failed to provide a stable 

solution. In contrast, the proposed numerical method in our research is consistent and provides 

a stable solution in detail. Even the proposed solution offers realistic saturation values without 

distorting their physics. The saturation profiles change mildly along the length and generate 

smoothed fronts here based on the presented rock and fluid properties. 
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4.5.1. Effects of Capillary Pressure 

The capillary pressure is the ratio of viscous and capillary forces and the gradient received from 

the capillary curve drives the saturation profile in waterflooding mechanism. The capillary 

effect governs the fluid phase motion in a porous medium and may happen due to decreasing 

the relative permeability in the pore volume or the pressure difference as a result of surface 

tension. The effect is generated by the relative permeability related to the capillary forces and, 

finally, effects on the cumulative oil production when injecting water in the injection well. 

Yortsos and Fokas (1983) presented an analytical solution briefly and show the effects of 

capillary pressure in the Buckley-Leverett equation for changing the viscosity ratio and 

injection rates. The oil recovery is decreased by increasing the capillary forces. And by 

changing the viscosity ratio, the saturation profiles give smooth distribution during the shock 

front advancement. In the present study, a comparison between numerical solutions (with and 

without capillary) is shown in Figure 4.8. The simulation is running for 70% injected water 

saturation and observed very little change in saturation profiles. Based on shock position, the 

saturation front generated with capillary pressure is ahead of the front without capillary 

pressure, and the profiles are smoother along the position with time. Numerically, the  

 

Figure 4.8: Comparison of numerical solutions (with and without capillary) at 𝑆𝑤𝑙 = 0.70 
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difference between shock positions is less than 0.0001 𝑓𝑡. More likely, though, this small 

change happens due to lower injection rates, or smaller viscosity ratio. To capture the more 

realistic scenarios in water flooding mechanism, future researchers could use exact field data 

and simulate all numerical calculations. 

4.5.2. Impact on Oil Production 

The oil production for a given reservoir formation is calculated using Eq. [39]. Both conditions 

(with and without capillary forces) are considered during calculation and illustrated in Figure 

4.9(a-b). For a certain amount of water injection in the injection well, oil is produced at a steady 

rate, except the first time-step of the simulation. Here, a small oscillation spike is observed in 

Figure 4.9(a-b) which occurs due to rapidly changing the injected water saturation (increases 

from 40 to 70%). Mathematically, we can define the reason for the oscillation in the following 

form 

𝑊𝑎𝑡𝑒𝑟 𝑉𝑜𝑙𝑢𝑚𝑒|𝑡=0 = ∑(∆𝑥)𝐴𝜙𝑆𝑤|𝑡=0 ≈ ∫ 𝐴𝜙𝑆𝑤𝑑𝑥
𝐿𝑒𝑛𝑔𝑡ℎ

0
   (46) 

For time difference (∆𝑡), changing the water volume is expressed by 

𝑊𝑎𝑡𝑒𝑟 𝑉𝑜𝑙𝑢𝑚𝑒|𝑡=∆𝑡 − 𝑊𝑎𝑡𝑒𝑟 𝑉𝑜𝑙𝑢𝑚𝑒|𝑡=0 ≈ ∆𝑥𝐴𝜙(𝑆𝑤|𝑡>0 − 𝑆𝑤|𝑡=0)    (47) 

 

(a) For 𝑆𝑤𝑙  =  0.40 
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(b) For 𝑆𝑤𝑙  =  0.70  

Figure 4.9(a-b): Comparison of oil production (with and without capillary) 

In Eq. [47], small changes in the water saturation or spatial values can bring about a significant 

change in the water volume and, later, will influence the amount of oil production. This change 

of water saturation creates the spike at the beginning, shrinks oil production from the 

waterflooding mechanism and, after that, the production goes on at a steady state rate. For 

injected water saturation (𝑆𝑤𝑙) 70%, the oil production against time are shown in Figure 4.9b. 

Here, the oscillation spike for oil production reaches approximately 1.40 𝑓𝑡3 per day at the 

first timestep, then decreases slightly and, from the second day onwards, the oil is produced at 

a steady rate in the amount of 0.30 𝑓𝑡3 per day. On the other hand, there are no spike or 

oscillation observed when the injected water saturation is 40%. The oil is produced at a steady 

rate in the amount of approximately 0.63 𝑓𝑡3 per day from the first day to the end (Figure 

4.9a). If we compare these results (Figure 4.9(a-b)), there is no significant changes in oil 

production rate with or without capillary pressure and simulations are quite stable, while the 

spatial and temporal dimensions are same, except for changes in the “spike” of first-day 

production when 𝑆𝑤𝑙 is 70%. This oscillation may come from grid effects or lower injection 
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rates, or the viscosity ratio in our presented simulation case study. We validated this calculation 

by another case study in the next section.  

4.6. VALIDATION OF THE PROPOSED MATHEMATICAL SCHEME 

In this section, we run a standard case study for validating the stability and consistency of our 

proposed mathematical schemes. Here, we choose a reservoir formation where water is injected 

at a rate of 900 𝑠𝑡𝑏/𝑑𝑎𝑦, porosity is 25%, the cross-sectional area is 26,400 𝑠𝑞𝑢𝑎𝑟𝑒 𝑓𝑡, initial 

water saturation is 20%, residual oil saturation is 20%, the viscosity of oil and water are 2 𝑐𝑝 

and 1 𝑐𝑝 respectively. The absolute permeability is 10 𝑚𝐷. The value of Corey indices is taken 

as 2.0 here. The values of the two constants (𝑎1 and 𝑎2) are 0.2 and 0.8 respectively. The mesh 

size is taken to be 512 for this problem. The capillary pressure data is also presented in Table 

4.2. The spatial domain [0, 10] is divided into 200 cells, while the and temporal domain of [0, 

10] is divided into 1,000 cells. At first, the local Lax-Friedrichs scheme is used for the 

simplified Buckley-Leverett equation (assuming zero gravitational forces and neglecting 

capillary pressure gradients), and later we applied the cell-centred finite volume method to 

check the capillary pressure effects in the Buckley-Leverett equation. Both of these calculations 

are run using the explicit form of discretisation. Each of these solutions is represented in 

Figures 4.12 and 4.13. The consistency of this study is also checked and presented in Figure 

4.11. For different values of 𝑆𝑤𝑙, the shock position is changed, and the numerical solution 

provides the exact shock position according to the breakthrough time, shown in Figure 4.14. 

The Buckley-Leverett equation with capillary provides more reasonable breakthrough time and 

water saturation percentage rather than the equation without capillary. Future researchers can 

further explore the more accurate approximation of water saturation percentage to make the oil 

recovery economically feasible. 

For 𝑆𝑤𝑙 = 0.75, the shock position after 10 days is 2.35 𝑓𝑡 (Figures 4.11, 4.12). The 

breakthrough time (Figure 4.10) indicates the point of fractional flow curve for water 

saturation, where the tangent line meets if drawn from the point of residual water saturation 

(Figure 4.10). This point of fractional flow provides the average water saturation value for the 

waterflooding mechanism, from where the economical production is viable. If we compare 

these results with our base case study, the analytical and numerical solutions are matched 

closely here for all values of 𝑆𝑤𝑙. The possibility of oil recovery is also lower after 𝑆𝑤𝑙 = 0.75. 

During the local Lax-Friedrichs scheme simulation, the slope of the characteristics 𝜆(𝑆𝑤), is 

written from Appendix – B [Eq. B-15] 
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𝜆(𝑆𝑤) =
𝑞

𝐴𝜙
(

𝜇𝑤

𝜇𝑜

𝑎2

𝑎1
)

𝑆𝑤𝑛(𝑆𝑤)

(𝑆𝑤𝑛
2 (𝑆𝑤)+

𝜇𝑤
𝜇𝑜

𝑎2
𝑎1

(1−𝑆𝑤𝑛(𝑆𝑤))
2

)
2 (

2−2𝑆𝑤𝑛(𝑆𝑤)

1−𝑆𝑤𝑖−𝑆𝑜𝑟
)   (48) 

Later, we determined the gradients of capillary pressure from Table 2 and utilized into the cell-

centred finite volume numerical simulation. During this simulation, we captured all capillary 

pressure gradients, which ensure that our mathematical scheme is accurate for the entire range. 

The results generated from this method are illustrated in Figure 4.13, and the shock position is 

2.35 𝑓𝑡 for 𝑆𝑤𝑙 is 70%, which means that there are no observable capillary effects. 

Table 4.2: Capillary pressure data. 

𝑆𝑤𝑛 𝑃𝑐(𝑝𝑠𝑖) 𝑆𝑤𝑛 𝑃𝑐(𝑝𝑠𝑖) 𝑆𝑤𝑛 𝑃𝑐(𝑝𝑠𝑖) 𝑆𝑤𝑛 𝑃𝑐(𝑝𝑠𝑖) 

0 53.47 0.25 11.80 0.50 3.88 0.75 2.40 

0.05 30.20 0.30 9.18 0.55 3.26 0.80 2.24 

0.10 24.26 0.35 7.35 0.60 2.85 0.85 1.70 

0.15 16.94 0.40 6.12 0.65 2.82 0.90 1.40 

0.20 14.29 0.45 5.05 0.70 2.80 0.90 1.22 

      1.00 1.02 

 

Figure 4.10: The fractional water flow rate with the water saturation. 
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Figure 4.11: Saturation profiles during simple explicit-form (at 𝑆𝑤𝑙 = 0.75) 

 

Figure 4.12: Saturation profiles during the local Lax-Friedrichs scheme (at 𝑆𝑤𝑙 = 0.75) 
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Figure 4.13: Saturation profiles during Cell-centered finite volume scheme (at 𝑆𝑤𝑙 = 0.75) 

 

Figure 4.14 : Comparison of breakthrough time with water saturation 
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(a) For local Lax-Friedrichs scheme at 𝑆𝑤 = 0.75  

 

 (b) For cell-centered FVM at 𝑆𝑤 = 0.75 

Figure 4.15(a-b): Saturation profiles during the Fixed-Point Iteration 
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Figure 4.16: Comparison of saturation profiles with and without capillary pressure. 

After this, the fixed-point iteration is used to check stability by following the implicit 

formulation and computing the number of iterations (average and maximum) at each solution. 

In Figure 4.15a, the average number of fixed point iterations is 48 per time-step, while the 

maximum number is 52 per time-step, assuming there are no capillary pressure gradients. In 

contrast, including the capillary gradients through the cell-centred finite volume scheme, the 

solution iterates more than with the local Lax-Friedrichs scheme. The maximum number of 

fixed point iterations is 58 per time-step, and the average number is 49 per time-step (Figure 

4.15b). During this implicit calculation, the analytical and numerical solutions are matched, 

and there is no deviation, like in the base case study of this research. The numerical solution 

provides the exact shock position for every solution. Finally, we compare both numerical 

solutions by considering and neglecting capillary forces, shown in Figure 4.16. The shock front 

is a little bit ahead when considering the capillary term than the shock front without capillary 

effects. Numerically, the difference between the shock fronts is 0.025 𝑓𝑡, which is remarkably 

small. This may happen due to the lower oil flowrate per day, or lower viscosity ratio or the 

lower capillary force. However, the capillary force still affects the solution during the 

waterflooding mechanism, and the effects are soluble through the proposed numerical schemes. 

This solution ensures that the proposed mathematical scheme in this research is stable for field 
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cases and will absorb the capillary effects during the waterflooding mechanism. Finally, the 

capture of capillary effects will help to improve the estimation of oil recovery calculation and 

core floods experimentation. 

4.6.1. Impact of Oil Production 

In this study, the calculation of oil production gives an idea about changing the injected water 

saturation and the effects of capillary pressure on oil production. All simulations are run for 10 

days, and the results are summarised in Figure 4.17(a-b). At injected water saturation (𝑆𝑤𝑙) of 

40%, the oil is produced at a steady rate from the beginning of the injection, and the amount is 

approximately 550 𝑆𝑇𝐵 𝑝𝑒𝑟 𝑑𝑎𝑦 at zero capillary forces (Figure 4.17a). When the injected 

water saturation increases to 70%, there is a small spike created at the first timestep, and after 

that, the oil is produced on a steady rate in the amount of 420 𝑆𝑇𝐵 𝑝𝑒𝑟 𝑑𝑎𝑦 approximately 

(Figure 4.17b). This oscillation may happen due to the rapid change in water saturation, which 

is explained earlier in Eq. [47]. The same things happen when we consider capillary forces in 

the numerical calculation, shown in Figure 4.17(a-b). Here, the oscillation is a little bit larger, 

but the oil production is at a steady rate after the first day onwards. We compare the results and 

observe the effect of capillary forces on oil production (Figure 4.17). The production decreases  

 

(a) For 𝑆𝑤𝑙  =  0.40 
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(b) For 𝑆𝑤𝑙  =  0.70 

Figure 4.17(a-b): Comparison of oil production (with and without capillary) 

due to the influence of capillary forces and the difference in oil production is highly observable 

when the water saturation front is 70% (Fig.17-b), more so than when the water saturation 

front is 40% (Fig.17-a). 

4.6.2. Effect of the Viscosity Ratio and Permeability 

The saturation profiles are influenced by the ratio of water (𝜇𝑤) to oil viscosity (𝜇𝑜). The 

solution has a shock front behaviour when the viscosity ratio is greater than one. In contrast, 

the saturation profiles are smoother for the frontal advancement when the viscosity ratio is 

lower than one (Yortsos and Fokas, 1983). We considered this in our study, and the results are 

illustrated in Figure 4.18(a-c). Figure 4.18a represents the base study (𝜇𝑜 = 2𝑐𝑝; 𝜇𝑤 = 1𝑐𝑝) 

where the shock position is approximately 2.70 𝑓𝑡. If we consider heavy oil (𝜇𝑜 = 10𝑐𝑝), the 

saturation profiles move forward, and the shock position is approximately 3.50 𝑓𝑡 (Figure 

4.18b). In contrast, if we consider light oil (𝜇𝑜 = 0.1𝑐𝑝), the shock position is approximately 

2.0 𝑓𝑡 due to saturation front movement, shown in Figure 4.18c. Moreover, for all cases, the 

numerical solution considering capillary pressure is a little bit ahead of the solution without 

capillary pressure. Similarly, changing the permeability, the solution with capillary pressure  
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(a) At  𝜇𝑜 = 0.1𝑐𝑝 𝑎𝑛𝑑 𝜇𝑤 = 1𝑐𝑝 

 

(b) At 𝜇𝑜 = 2𝑐𝑝 𝑎𝑛𝑑 𝜇𝑤 = 1𝑐𝑝 
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(c) At  𝜇𝑜 = 10𝑐𝑝 𝑎𝑛𝑑 𝜇𝑤 = 1𝑐𝑝 

Figure 4.18(a-c): Effect on saturation profiles when changing the viscosity ratio. 

 

Figure 4.19: Effect on saturation profiles when changing the permeability.  
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significantly changes in comparison to the solution without capillary pressure. The numerical 

solution with capillary pressure is moved ahead with time when the reservoir formation is 

highly permeable (𝐾 = 100𝑚𝐷), shown in Figure 4.19. With higher permeability, the oil 

flows more smoothly through the production well. 

4.7. CONCLUSION 

Water flooding is relatively cheap, especially for offshore fields because of the ready 

availability of seawater, although care has to be taken to ensure that the injected water does not 

result in unwanted, adverse reactions in the reservoir. To increase petroleum recovery, 

engineers should increase the microscopic displacement efficiency by reducing capillary 

effects.  

In this research, we develop a nonlinear solver to find single-valued solutions for the 

immiscible oil displacement application. The cell-centred finite volume scheme is used to 

capture the capillary effects in the Buckley-Leverett equation. The saturation profiles are 

generated following a shock wave mechanism. Smooth frontal advancement of saturation 

profiles indicates that there is little capillary pressure as well as diffusion forces in effect in the 

displacement process. Later, the fixed-point iteration scheme is applied to check the stability 

of the proposed finite volume schemes. However, these simulations are checked using lab scale 

data and might be wrong. In addition, we run another case study based on standard field data 

to validate the proposed numerical schemes and found that there are small capillary effects on 

saturation frontal advancement based on their shock position difference. The shock front with 

capillary effects is advanced in comparison to the shock front without capillary effects. 

Since the saturation wave propagates from the injecting well to the producing well, the solution 

should be consistent for different time-steps. The choice of proper time-steps and capillary 

pressure gradients will help to minimise the possibility of shock wave oscillation during 

saturation profile movement. This might happen due to an explicit formulation or the 

limitations of rock and fluid properties data. Moreover, this research provides an idea that how 

the oil production is affected by the presence of capillary effects. Further, we changed the other 

parameters (i.e., viscosity, permeability) in the numerical calculation and captured their 

behaviours through several plots. Nevertheless, we have tried to present detailed solution steps 

for the Buckley-Leverett equation including capillary term, and these solution procedures will 

help future researchers to find precisely the capillary effects on saturation profiles for oil 
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reservoirs. The present research finds consistent solution techniques for lab-scale simulation 

models, and future researchers can develop it for field scale simulations by simulating with 

more experimental results. 
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CHAPTER – 5 

CONCLUSION 

5.1 Conclusion 

This thesis focuses on mathematical techniques for solving nonlinear governing equations in 

petroleum engineering. Especially in reservoir engineering, the Buckley-Leverett equation is 

solved for a one-dimensional (1-D) immiscible displacement process, where the capillary 

pressure gradient term is included. Finding a stable and efficient scheme which can solve the 

model equation consider any parameters is a great challenge in this research area.  

The goal of this study is to develop a computational scheme which provides a realistic physical 

solution by generating sharp displacement fronts and accurately includes diffusion processes 

due to capillary pressure. In this research, the author applied the method of characteristics 

(MOC) and the local Lax-Friedrichs scheme to solve the Buckley-Leverett equation assuming 

there is no capillary pressure gradient and zero gravitational force for the 1-D immiscible 

process. Here, the MOC is used to define the Buckley-Leverett equation analytically, whether 

it is hyperbolic or not, and the solution is discontinuous or not. The flux function is considered 

for solution of the model equation and exhibits the shock wave characteristics and shock 

position owing to water saturation. The curves generated from the MOC are known as the 

characteristic curves for the Buckley-Leverett equation and the saturation front is moved 

forward with a definite speed. Also, conservation laws help the computational method to 

generate correct physical solutions where discontinuities are present, and the solution is 

converged. If this condition is not satisfied by numerical methods, diffusion will generate due 

to the capillary pressure gradient and make the saturation front smear. 

By following the finite-volume approach to conservation laws, water saturation values are 

advected from an injecting well and moved to the outlet side, while the outflow boundary 

condition is fixed at a producing well. This fixed boundary condition was used to save time 

and avoid complexity during the calculation. An explicit form discretisation was followed to 

make the calculation easier. The solution found from the analytical and numerical analysis are 

similar and consistent. All calculations are graphically presented using MATLAB 

programming.   

After this, the author applied the cell-centered finite volume technique along with the local 

Lax-Friedrichs scheme to capture capillary pressure effects on the Buckley-Leverett equation. 
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Here, the responses of shock waves are similar to previous calculations and exhibited that our 

proposed technique is well-fitted for that governing equation. There is a position difference 

between the shock waves that are calculated using both numerical schemes. Most likely, this 

difference comes from the effects of capillary forces. Capillary effects are most visible during 

the calculation of cumulative oil production and when changing the permeability of the 

reservoir formation. Later, the author followed the fixed-point iteration scheme. Though this 

method is conventional, of results in more stable solution for larger time steps. The solution is 

also consistent and valid for any mesh sizes and capillary pressure gradients. Finally, the author 

ran a standard case study to check the consistency of the proposed numerical solution and found 

that these schemes are best fitted for the Buckley-Leverett equation during water flooding 

techniques.   

In comparison with previous research like Mustafiz et al. (2008), our proposed numerical 

scheme is better-fitted for the Buckley-Leverett equation (including and excluding capillary 

pressure) and provides a good solution, matched with the analytical solution. Concerning 

stability and consistency, the present proposed scheme is better-fitted for the Buckley-Leverett 

equation.  

5.2 Future Directions 

The Buckley-Leverett equation is one of the key models for petroleum recovery through 

waterflooding. Due to the presence of nonlinear parameters, the application of that model 

equation is limited. Solving the nonlinear complexities is one of the major challenges for 

reservoir engineers, and this research has addressed this issue by treating real scenarios of 

petroleum fields. The finite volume methods are used for solving the nonlinear PDE’s and the 

detailed solution steps are presented in this study. We get an accurate solution by simple 

formulation and flux calculation using each neighbouring domain. Due to limited data sources 

and stability criterion issues, the present study is conducted using explicit and implicit scheme. 

This research considered small time steps but provides a stable solution in all cases, which 

saves computational time. 

Future researchers can implement these schemes in an implicit form where large time steps 

would be considered and validate the solution with real field and experimental data for different 

reservoirs. Changing the initial and boundary conditions would be another scope of the 

research. The estimation of oil recovery, analysing the core floods experiment and the 
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determination of average water saturation percentage from the breakthrough time behaviour 

and the fractional water flowrate curve would be another milestone for future researchers. They 

can also compare the present numerical solutions with different ECLIPSE and PETREL model 

solutions and employ them for industrial purposes.  
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Appendix – A 

The flux function (𝑓𝑛(𝑆𝑤)) in the Buckley-Leverett equation is defined as 

 𝑓𝑛(𝑆𝑤) =
𝑞

𝐴𝜙
(

1

1+𝑀
)         (A-1) 

Differentiating Eq. [A-1] with respect to water saturation (𝑆𝑤) gives 

 
𝜕𝑓𝑛(𝑆𝑤)

𝜕𝑆𝑤
= −

𝑞

𝐴𝜙

1

(1+𝑀(𝑆𝑤))
2

𝜕𝑀(𝑆𝑤)

𝜕𝑆𝑤
       (A-2) 

The mobility ratio (𝑀(𝑆𝑤)) is defined by 

 𝑀(𝑆𝑤) =
𝑘𝑟𝑜(𝑆𝑤)𝜇𝑤

𝑘𝑟𝑤(𝑆𝑤)𝜇𝑜
         (A-3) 

Differentiating Eq. [A-3], we get 

 
𝜕𝑀(𝑆𝑤)

𝜕𝑆𝑤
=

𝜇𝑤

𝜇𝑜
(
𝑘𝑟𝑤(𝑆𝑤)

𝜕𝑘𝑟𝑜(𝑆𝑤)

𝜕𝑆𝑤
−𝑘𝑟𝑜(𝑆𝑤)

𝜕𝑘𝑟𝑤(𝑆𝑤)

𝜕𝑆𝑤

(𝑘𝑟𝑤(𝑆𝑤))
2 )     (A-4) 

The variation of relative permeability to water as a function of water saturation can be written 

in the following form 

 𝑘𝑟𝑤(𝑆𝑤) = 𝑎1𝑆𝑤𝑛
4 (𝑆𝑤)       (A-5)  

Differentiating Eq. [A-5],  

 
𝜕𝑘𝑟𝑤(𝑆𝑤)

𝜕𝑆𝑤
= 4𝑎1𝑆𝑤𝑛

3 (𝑆𝑤)
𝜕𝑆𝑤𝑛

𝜕𝑆𝑤
       (A-6)  

Again, the variation of relative permeability to oil as a function of water saturation is defined 

as 

 𝑘𝑟𝑜(𝑆𝑤) = 𝑎2(1 − 𝑆𝑤𝑛(𝑆𝑤))
2
      (A-7) 

Differentiating Eq. [A-7],  

 
𝜕𝑘𝑟𝑜(𝑆𝑤)

𝜕𝑆𝑤
= −2𝑎2(1 − 𝑆𝑤𝑛(𝑆𝑤))

𝜕𝑆𝑤𝑛

𝜕𝑆𝑤
      (A-8) 
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To calculate the relative permeability, the normalized water saturation defined as – 

 𝑆𝑤𝑛(𝑆𝑤) =
𝑆𝑤−𝑆𝑤𝑖

1−𝑆𝑤𝑖−𝑆𝑜𝑟
         (A-9) 

Differentiating Eq. [A-9] gives 

 
𝜕𝑆𝑤𝑛

𝜕𝑆𝑤
=

1

1−𝑆𝑤𝑖−𝑆𝑜𝑟
         (A-10) 

Substituting Eqs. [A-6], [A-8], and [A-10] into Eq. [A-4], we obtained 

 
𝜕𝑀(𝑆𝑤)

𝜕𝑆𝑤
=

𝜇𝑤

𝜇𝑜
(
𝑎1𝑆𝑤𝑛

4 (𝑆𝑤)(−2𝑎2(1−𝑆𝑤𝑛(𝑆𝑤)))−𝑎2(1−𝑆𝑤𝑛(𝑆𝑤))
2
4𝑎1𝑆𝑤𝑛

3 (𝑆𝑤)

𝑎1
2𝑆𝑤𝑛

8 (𝑆𝑤)
)

1

1−𝑆𝑤𝑖−𝑆𝑜𝑟
  

 ⇒
𝜕𝑀(𝑆𝑤)

𝜕𝑆𝑤
=

𝜇𝑤

𝜇𝑜
(
𝑆𝑤𝑛(𝑆𝑤)(−2𝑎2(1−𝑆𝑤𝑛(𝑆𝑤)))−4𝑎2(1−𝑆𝑤𝑛(𝑆𝑤))

2

𝑎1𝑆𝑤𝑛
5 (𝑆𝑤)

)
1

1−𝑆𝑤𝑖−𝑆𝑜𝑟
  

 ⇒
𝜕𝑀(𝑆𝑤)

𝜕𝑆𝑤
=

𝜇𝑤

𝜇𝑜
(
(−2𝑎2(𝑆𝑤𝑛(𝑆𝑤)−𝑆𝑤𝑛

2 (𝑆𝑤)))−4𝑎2(1−2𝑆𝑤𝑛(𝑆𝑤)+𝑆𝑤𝑛
2 (𝑆𝑤))

𝑎1𝑆𝑤𝑛
5 (𝑆𝑤)

)
1

1−𝑆𝑤𝑖−𝑆𝑜𝑟
  

 ⇒
𝜕𝑀(𝑆𝑤)

𝜕𝑆𝑤
=

𝜇𝑤

𝜇𝑜

𝑎2

𝑎1
(
−4+6𝑆𝑤𝑛(𝑆𝑤)−2𝑆𝑤𝑛

2 (𝑆𝑤)

𝑆𝑤𝑛
5 (𝑆𝑤)

)
1

1−𝑆𝑤𝑖−𝑆𝑜𝑟
     (A-11) 

Incorporating Eq. [A-11] into Eq. [A-2] gives 

 
𝜕𝑓𝑛(𝑆𝑤)

𝜕𝑆𝑤
= −

𝑞

𝐴𝜙

1

(1+𝑀(𝑆𝑤))
2

𝜕𝑀(𝑆𝑤)

𝜕𝑆𝑤
   

 
𝜕𝑓𝑛(𝑆𝑤)

𝜕𝑆𝑤
=

𝑞

𝐴𝜙

1

(1+𝑀(𝑆𝑤))
2 (

𝜇𝑤

𝜇𝑜

𝑎2

𝑎1
) (

4−6𝑆𝑤𝑛(𝑆𝑤)+2𝑆𝑤𝑛
2 (𝑆𝑤)

𝑆𝑤𝑛
5 (𝑆𝑤)

)
1

1−𝑆𝑤𝑖−𝑆𝑜𝑟
   (A-12) 

Again, 

 
1

(1+𝑀(𝑆𝑤))
2 =

1

(1+
𝜇𝑤
𝜇𝑜

𝑎2
𝑎1

(1−𝑆𝑤𝑛(𝑆𝑤))
2

𝑆𝑤𝑛
4 (𝑆𝑤)

)

2 =
𝑆𝑤𝑛
8 (𝑆𝑤)

(𝑆𝑤𝑛
4 (𝑆𝑤)+

𝜇𝑤
𝜇𝑜

𝑎2
𝑎1
(1−𝑆𝑤𝑛(𝑆𝑤))

2
)
2   (A-13) 

Finally substituting Eq. [A-13] into Eq. [A-12], we obtain 

  
𝜕𝑓𝑛(𝑆𝑤)

𝜕𝑆𝑤
=

𝑞

𝐴𝜙
(
𝜇𝑤

𝜇𝑜

𝑎2

𝑎1
)

𝑆𝑤𝑛
8 (𝑆𝑤)

(𝑆𝑤𝑛
4 (𝑆𝑤)+

𝜇𝑤
𝜇𝑜

𝑎2
𝑎1
(1−𝑆𝑤𝑛(𝑆𝑤))

2
)
2 (

4−6𝑆𝑤𝑛(𝑆𝑤)+2𝑆𝑤𝑛
2 (𝑆𝑤)

𝑆𝑤𝑛
5 (𝑆𝑤)

)
1

1−𝑆𝑤𝑖−𝑆𝑜𝑟
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 ⇒
𝜕𝑓𝑛(𝑆𝑤)

𝜕𝑆𝑤
=

𝑞

𝐴𝜙
(
𝜇𝑤

𝜇𝑜

𝑎2

𝑎1
)

𝑆𝑤𝑛
3 (𝑆𝑤)

(𝑆𝑤𝑛
4 (𝑆𝑤)+

𝜇𝑤
𝜇𝑜

𝑎2
𝑎1
(1−𝑆𝑤𝑛(𝑆𝑤))

2
)
2 (

4−6𝑆𝑤𝑛(𝑆𝑤)+2𝑆𝑤𝑛
2 (𝑆𝑤)

1−𝑆𝑤𝑖−𝑆𝑜𝑟
)  (A-14) 

Substituting 
𝜕𝑓𝑛(𝑆𝑤)

𝜕𝑆𝑤
= 𝜆(𝑆𝑤), we obtain 

 𝜆(𝑆𝑤) =
𝑞

𝐴𝜙
(
𝜇𝑤

𝜇𝑜

𝑎2

𝑎1
)

𝑆𝑤𝑛
3 (𝑆𝑤)

(𝑆𝑤𝑛
4 (𝑆𝑤)+

𝜇𝑤
𝜇𝑜

𝑎2
𝑎1
(1−𝑆𝑤𝑛(𝑆𝑤))

2
)
2 (

4−6𝑆𝑤𝑛(𝑆𝑤)+2𝑆𝑤𝑛
2 (𝑆𝑤)

1−𝑆𝑤𝑖−𝑆𝑜𝑟
)  (A-15) 
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Appendix – B 

The flux function (𝑓𝑛(𝑆𝑤)) in the Buckley-Leverett equation is defined as 

 𝑓𝑛(𝑆𝑤) =
𝑞

𝐴𝜙
(

1

1+𝑀
)         (B-1) 

Differentiating Eq. [B-1] with respect to water saturation (𝑆𝑤) gives 

 
𝜕𝑓𝑛(𝑆𝑤)

𝜕𝑆𝑤
= −

𝑞

𝐴𝜙

1

(1+𝑀(𝑆𝑤))
2

𝜕𝑀(𝑆𝑤)

𝜕𝑆𝑤
       (B-2) 

The mobility ratio (𝑀(𝑆𝑤)) is defined by 

 𝑀(𝑆𝑤) =
𝑘𝑟𝑜(𝑆𝑤)𝜇𝑤

𝑘𝑟𝑤(𝑆𝑤)𝜇𝑜
         (B-3) 

Differentiating Eq. [B-3], we get 

 
𝜕𝑀(𝑆𝑤)

𝜕𝑆𝑤
=

𝜇𝑤

𝜇𝑜
(
𝑘𝑟𝑤(𝑆𝑤)

𝜕𝑘𝑟𝑜(𝑆𝑤)

𝜕𝑆𝑤
−𝑘𝑟𝑜(𝑆𝑤)

𝜕𝑘𝑟𝑤(𝑆𝑤)

𝜕𝑆𝑤

(𝑘𝑟𝑤(𝑆𝑤))
2 )     (B-4) 

The variation of relative permeability to water as a function of water saturation can be written 

in the following form 

 𝑘𝑟𝑤(𝑆𝑤) = 𝑎1𝑆𝑤𝑛
2 (𝑆𝑤)       (B-5)  

Differentiating Eq. [B-5],  

 
𝜕𝑘𝑟𝑤(𝑆𝑤)

𝜕𝑆𝑤
= 2𝑎1𝑆𝑤𝑛(𝑆𝑤)

𝜕𝑆𝑤𝑛

𝜕𝑆𝑤
       (B-6)  

Again, the variation of relative permeability to oil as a function of water saturation is defined 

as 

 𝑘𝑟𝑜(𝑆𝑤) = 𝑎2(1 − 𝑆𝑤𝑛(𝑆𝑤))
2
      (B-7) 

Differentiating Eq. [B-7],  

 
𝜕𝑘𝑟𝑜(𝑆𝑤)

𝜕𝑆𝑤
= −2𝑎2(1 − 𝑆𝑤𝑛(𝑆𝑤))

𝜕𝑆𝑤𝑛

𝜕𝑆𝑤
      (B-8) 



128 

To calculate the relative permeability, the normalized water saturation defined as – 

 𝑆𝑤𝑛(𝑆𝑤) =
𝑆𝑤−𝑆𝑤𝑖

1−𝑆𝑤𝑖−𝑆𝑜𝑟
         (B-9) 

Differentiating Eq. [B-9] gives 

 
𝜕𝑆𝑤𝑛

𝜕𝑆𝑤
=

1

1−𝑆𝑤𝑖−𝑆𝑜𝑟
         (B-10) 

Substituting Eqs. [B-6], [B-8], and [B-10] into Eq. [B-4], we obtained 

 
𝜕𝑀(𝑆𝑤)

𝜕𝑆𝑤
=

𝜇𝑤

𝜇𝑜
(
𝑎1𝑆𝑤𝑛

2 (𝑆𝑤)(−2𝑎2(1−𝑆𝑤𝑛(𝑆𝑤)))−𝑎2(1−𝑆𝑤𝑛(𝑆𝑤))
2
2𝑎1𝑆𝑤𝑛(𝑆𝑤)

𝑎1
2𝑆𝑤𝑛

4 (𝑆𝑤)
)

1

1−𝑆𝑤𝑖−𝑆𝑜𝑟
  

 ⇒
𝜕𝑀(𝑆𝑤)

𝜕𝑆𝑤
=

𝜇𝑤

𝜇𝑜
(
𝑆𝑤𝑛(𝑆𝑤)(−2𝑎2(1−𝑆𝑤𝑛(𝑆𝑤)))−2𝑎2(1−𝑆𝑤𝑛(𝑆𝑤))

2

𝑎1𝑆𝑤𝑛
3 (𝑆𝑤)

)
1

1−𝑆𝑤𝑖−𝑆𝑜𝑟
  

 ⇒
𝜕𝑀(𝑆𝑤)

𝜕𝑆𝑤
=

𝜇𝑤

𝜇𝑜
(
(−2𝑎2(𝑆𝑤𝑛(𝑆𝑤)−𝑆𝑤𝑛

2 (𝑆𝑤)))−2𝑎2(1−2𝑆𝑤𝑛(𝑆𝑤)+𝑆𝑤𝑛
2 (𝑆𝑤))

𝑎1𝑆𝑤𝑛
3 (𝑆𝑤)

)
1

1−𝑆𝑤𝑖−𝑆𝑜𝑟
  

 ⇒
𝜕𝑀(𝑆𝑤)

𝜕𝑆𝑤
=

𝜇𝑤

𝜇𝑜

𝑎2

𝑎1
(
2𝑆𝑤𝑛(𝑆𝑤)−2

𝑆𝑤𝑛
3 (𝑆𝑤)

)
1

1−𝑆𝑤𝑖−𝑆𝑜𝑟
      (B-11) 

Incorporating Eq. [B-11] into Eq. [B-2] gives 

 
𝜕𝑓𝑛(𝑆𝑤)

𝜕𝑆𝑤
= −

𝑞

𝐴𝜙

1

(1+𝑀(𝑆𝑤))
2

𝜕𝑀(𝑆𝑤)

𝜕𝑆𝑤
   

 
𝜕𝑓𝑛(𝑆𝑤)

𝜕𝑆𝑤
=

𝑞

𝐴𝜙

1

(1+𝑀(𝑆𝑤))
2 (

𝜇𝑤

𝜇𝑜

𝑎2

𝑎1
) (

2−2𝑆𝑤𝑛(𝑆𝑤)

𝑆𝑤𝑛
3 (𝑆𝑤)

)
1

1−𝑆𝑤𝑖−𝑆𝑜𝑟
    (B-12) 

Again, 

 
1

(1+𝑀(𝑆𝑤))
2 =

1

(1+
𝜇𝑤
𝜇𝑜

𝑎2
𝑎1

(1−𝑆𝑤𝑛(𝑆𝑤))
2

𝑆𝑤𝑛
2 (𝑆𝑤)

)

2 =
𝑆𝑤𝑛
4 (𝑆𝑤)

(𝑆𝑤𝑛
2 (𝑆𝑤)+

𝜇𝑤
𝜇𝑜

𝑎2
𝑎1
(1−𝑆𝑤𝑛(𝑆𝑤))

2
)
2   (B-13) 

Finally substituting Eq. [B-13] into Eq. [B-12], we obtain 

  
𝜕𝑓𝑛(𝑆𝑤)

𝜕𝑆𝑤
=

𝑞

𝐴𝜙
(
𝜇𝑤

𝜇𝑜

𝑎2

𝑎1
)

𝑆𝑤𝑛
4 (𝑆𝑤)

(𝑆𝑤𝑛
2 (𝑆𝑤)+

𝜇𝑤
𝜇𝑜

𝑎2
𝑎1
(1−𝑆𝑤𝑛(𝑆𝑤))

2
)
2 (

2−2𝑆𝑤𝑛(𝑆𝑤)

𝑆𝑤𝑛
3 (𝑆𝑤)

)
1

1−𝑆𝑤𝑖−𝑆𝑜𝑟
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 ⇒
𝜕𝑓𝑛(𝑆𝑤)

𝜕𝑆𝑤
=

𝑞

𝐴𝜙
(
𝜇𝑤

𝜇𝑜

𝑎2

𝑎1
)

𝑆𝑤𝑛(𝑆𝑤)

(𝑆𝑤𝑛
4 (𝑆𝑤)+

𝜇𝑤
𝜇𝑜

𝑎2
𝑎1
(1−𝑆𝑤𝑛(𝑆𝑤))

2
)
2 (

2−2𝑆𝑤𝑛(𝑆𝑤)

1−𝑆𝑤𝑖−𝑆𝑜𝑟
)   (B-14) 

Substituting 
𝜕𝑓𝑛(𝑆𝑤)

𝜕𝑆𝑤
= 𝜆(𝑆𝑤), we obtain 

 𝜆(𝑆𝑤) =
𝑞

𝐴𝜙
(
𝜇𝑤

𝜇𝑜

𝑎2

𝑎1
)

𝑆𝑤𝑛(𝑆𝑤)

(𝑆𝑤𝑛
2 (𝑆𝑤)+

𝜇𝑤
𝜇𝑜

𝑎2
𝑎1
(1−𝑆𝑤𝑛(𝑆𝑤))

2
)
2 (

2−2𝑆𝑤𝑛(𝑆𝑤)

1−𝑆𝑤𝑖−𝑆𝑜𝑟
)   (B-15) 




