
Deflation-based preconditioners for stochastic
models of flow in porous media

by

c© Razan Abu-Labdeh

A thesis submitted to the School of Graduate Stud-

ies in partial fulfillment of the requirements for the

degree of Master of Science.

Department of Mathematics and Statistics

Memorial University

August 2018

St. John’s, Newfoundland and Labrador, Canada

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Memorial University Research Repository

https://core.ac.uk/display/211574891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Numerical analysis is a powerful mathematical tool that focuses on finding approx-

imate solutions to mathematical problems where analytical methods fail to produce

exact solutions. Many numerical methods have been developed and enhanced through

the years for this purpose, across many classes, with some methods proven to be well-

suited for solving certain equations. The key in numerical analysis is, then, choosing

the right method or combination of methods for the problem at hand, with the least

cost and highest accuracy possible (while maintaining efficiency). In this thesis, we

consider the approximate solution of a class of 2-dimensional differential equations,

with random coefficients. We aim, through using a combination of Krylov methods,

preconditioners, and multigrid ideas to implement an algorithm that offers low cost

and fast convergence for approximating solutions to these problems. In particular, we

propose to use a ”training” phase in the development of a preconditioner, where the

first few linear systems in a sequence of similar problems are used to drive adaptation

of the preconditioning strategy for subsequent problems. Results show that our algo-

rithms are successful in effectively decreasing the cost of solving the model problem

from the cost shown using a standard AMG-preconditioned CG method.

ii

To my loving parents and sweet husband.

iii

Lay summary

Many real-life situations can be modelled using mathematical equations. In this

thesis, I look at a mathematical problem that emerges from models related to water

purification or oil extraction. Many factors affect the behaviour of these models, such

as fluid pressure and the type of rocks in the subsurface. Many times, the type of

rock in the subsurface is unknown, so the model pressure cannot be calculated with-

out additional information. Thus, we usually represent these models with a kind of

statistical approximation, requiring solution of many models, drawn from a statistical

distribution.

There are two types of mathematical methods for finding a solution to the problem

at hand, ones that give exact results and others that give approximations of the solu-

tion. For the problem presented in this thesis, exact methods take an extremely long

time to compute a solution, so it is better if the second kind of methods is used. The

field of mathematics that studies approximate methods is called Numerical Analysis,

and the main goal of this thesis is to develop a method that can efficiently solve the

model problem.

To measure which method is best, two main questions are asked:

1. How fast is an approximation to the solution produced?

2. How expensive is it to reach the best approximation?

These two questions are the main focus of study here, with the best method being

the fastest to achieve acceptable accuracy.

iv

Acknowledgements

I would like to take this opportunity to thank all those that, in one way or another,

helped and supported me in writing this thesis.

I would like to begin with thanking with all my heart my parents, Dr.Abdel-

Rahman and Manal, for all their love, support, encouragement, and guidance. With-

out them, I may have never reached where I am today. I would also like to extend

my deep thanks to my husband, Abed Alsalam, for his love, patience, and support

now and for years to come. I also thank my sisters (Ahlam, Ruhuf, and Hazar) and

brother (Omar) for their encouragement and kindness.

I would like to thank my supervisor, Dr. Scott MacLachlan, for his suggestions,

advice, contributions, and help in this research project. I would like to thank the

examiners of the thesis for their time and comments. I also would like to thank Dr.

Hisham Bin Zubair for all his help with the programming included in my thesis. I

extend thanks for the technical support provided by Lawrence Greening of the Math-

ematics and Statistics department.

I wish to acknowledge the financial assistance provided by the School of Graduate

Studies, Department of Mathematics and Statistics, and Natural Sciences and Engi-

neering Research Council of Canada, in the form of graduate fellowships and teaching

assistantships.

Finally, thank you to all my friends and student fellows for all their help, conver-

sations, and good wishes through this process.

v

Statement of contribution

This thesis is a collaboration of work by Razan Abu-Labdeh and Dr. Scott MacLach-

lan. All algorithms included were developed by both parties, while the program coding

used in the research and writing of thesis was done by Razan. Supervision and editing

of the thesis was done by Dr.Scott MacLachlan.

vi

Table of contents

Title page i

Abstract ii

Lay summary iv

Acknowledgements v

Statement of contribution vi

Table of contents vii

List of tables ix

List of figures xi

1 Introduction 1

2 Background 6

2.1 Iterative Methods . 6

2.2 Lanczos, Conjugate Gradient and Deflation 15

2.3 Multigrid methods . 41

3 Methodology 72

vii

3.1 Finite-element discretization . 74

3.2 Solution of Stochastic Model . 81

4 Results/Conclusions 96

4.1 Results for Solution-based deflation: . 96

4.2 Results for Eigenvector-based deflation: 101

4.3 Conclusions and Future work: . 105

Bibliography 108

viii

List of tables

3.1 Iteration count and total time of solve AMG precondtioner. 83

4.1 Detailed timing of solution of testing set for Solution-based deflation

with 13 problems in the training set, 4 singular vectors used to define

the deflation space, and 4 subdomains. 97

4.2 Time and iteration counts (its) for Solution-based deflation with vary-

ing numbers of subdomains (sub). 98

4.3 Time and iteration counts (its) for Solution-based deflation with vary-

ing number of problems in the training set and 4 singular vectors used

to define the deflation space. 99

4.4 Time and iteration counts (its) for Solution-based deflation with vary-

ing numbers of singular vectors used to determine the deflation matrix

and 12 training vectors. 100

4.5 Time and iteration counts (its) for Eigenvector-based deflation with

varying numbers of subdomains (sub), 12 problems in the training set,

4 eigenvectors per problem in the training set, and 4 singular vectors

used to define the deflation space. 102

4.6 Time and iteration counts (its) for Eigenvector-based deflation with

varying number of problems in the training set, 4 singular vectors used

to define the deflation space, and 4 eigenvectors computed for each

problem in the training set. 103

ix

4.7 Time and iteration counts (its) for Eigenvector-based deflation with

varying number of eigenvectors computed for each problem in the train-

ing set with 12 training problems and 4 singular vectors used to deter-

mine the deflation space. 104

4.8 Time and iteration counts (its) for Eigenvector-based deflation with

varying numbers of singular vectors used to determine the deflation

space with optimal numbers of problems in the training set and eigen-

vectors computed per problem in the training set. 105

4.9 Optimal total time and iteration counts for algorithm 1, 2 and 3. 106

x

List of figures

1.1 General 2D porous media model. 1

2.1 Uniform mesh with nodes {0, x1, . . . , xn−1, 1} 43

2.2 Eigenvalues of Rω . 48

2.3 Mode with wave number 4 appearing smooth on 12 node mesh and

oscillatory on coarser meshes of 6 and 3 nodes, respectively. 50

2.4 Linear interpolation from Ω2h to Ωh. 52

2.5 Injection from Ωh to Ω2h. 53

2.6 Full weighting restriction from Ωh to Ω2h. 53

2.7 Multigrid schemes:(a) upper left corner: V-cycle, (b) upper right cor-

ner: W-cycle, (c) below: FMG cycle. 57

2.8 damping process on grids. 60

3.1 Samples of log(K) of some mesh sizes produced using the algorithm

above. 73

3.2 Basis functions of 1D FEM are piecewise polynomial functions. 76

3.3 Triangular finite elements on 2D mesh. 78

3.4 A single triangular element T1. 80

3.5 Ω divided into subdomains:(a) 4 subdomains, (b) 8 subdomains, (c) 12

subdomains, (d) 16 subdomains. 88

xi

Chapter 1

Introduction

The focus of this thesis is on the efficiency of numerical algorithms used to model the

flow of fluids through a porous medium, a material containing pores or small holes

within it. Liquid or gas can flow through such a medium, either naturally or for exper-

imentation and research purposes. Rocks differ in composition and naturally contain

pore spaces filled with gas or liquid. Many real-life applications involve flow through

porous media, including management of oil reservoirs and water purification, as oil

and water not only can flow through the pores in the rocks but also navigate around

them. As such, models of flow through porous media are of great interest to study for

their potential practical impact. In particular, finding ways of improving computer

simulation algorithms for these models can contribute to real-world improvements in

industrial practices. A general representation of these models consists of fluid entering

a medium from one side and exiting through the opposite end. The amount of fluid

and its flow through the medium is studied. We work in a two-dimensional setting in

this thesis, so, a presentation of the modelled system is pictured in Figure 1.1.

(x, y)

Figure 1.1: General 2D porous media model.

2

This system is studied in the field of Fluid Dynamics [8, 2]. Studying these sys-

tems on a reservoir scale is very complicated. In this work, we will simplify the model

(considering single-phase flow), but not the complication due to unknown material

properties of the porous medium, which we treat using a stochastic formulation. Such

systems can be represented through one or more mathematical equations, which are

then studied to find solutions. Two important equations are typically used when

modelling the systems considered here, conservation of mass and Darcy’s law.

To derive a general conservation law, we use L to denote the density of a conserved

quantity of a fluid flowing with velocity u, and consider the time-rate of change in the

amount of L in an arbitrary domain, Ω, given by

d

dt

∫
Ω

LdV = −
∫
∂Ω

(Lu) · nds+

∫
Ω

qdV,

where −
∫
δΩ

(Lu) · nds is the outward flux across the boundary of Ω and
∫

Ω
qdV

represents external sources or sinks of L in the region. Thus, by Leibniz’s rule and

the divergence theorem, we get∫
Ω

(
∂

∂t
L)dV = −

∫
Ω

∇ · (Lu)dV +

∫
Ω

qdV

∫
Ω

(
∂L

∂t
+∇ · (Lu))dV =

∫
Ω

qdV.

So, taking L to be the mass density, ρ, and noting that Ω was an arbitrary domain,

we have
∂ρ

∂t
+∇ · (ρu) = q.

For an incompressible fluid, where ρ is constant, this yields,

∇ · (ρu) = q,

where ∇· is the divergence operator, ρ is the density of fluid, u is the so-called Darcy

velocity, and q represents external sources and sinks of fluid [8].

Darcy’s Law is an emperical law resulting from Darcy’s experimentation on the

3

flow of water in the fountains in Dijon, France in the 1850’s [2]. Darcy’s law is

u = −K∇p,

where p denotes pressure and K is called the hydraulic conductivity. By replacing the

velocity in the conservation of mass equation with Darcy’s law, and assuming ρ = 1

(or combining into K), we get

∇ ·K∇p = q.

In some cases, it is very difficult to know the hydraulic conductivity before hand.

Thus, we are left with the question of how to approximate the value of K. In this

work, a statistical approach to this question will be used.

Our research problem is a two-dimensional boundary value problem with Neumann

boundary conditions,

−∇ · (K∇u(x, y)) = f(x, y), for (x, y) ∈ Ω

(Ku(x, y)) · −→n = 0, for (x, y) ∈ ∂Ω

where Ω is the domain and −→n is the outward unit normal vector on ∂Ω. The problem

above is explained in more detail in Chapter 3.

Analytical methods for solving differential equations can sometimes be very time

consuming, and can sometimes fail to give solutions in a useful form. In such cases,

numerical methods may be used to produce approximations of the true solution, where

the error in approximation is acceptable, i.e. suitably small. The advantage of these

methods is that they can greatly decrease the computational effort required, making

them a desirable choice. Furthermore, when analytical solutions are impossible to

obtain, the only approach that we have to the problem is through numerical approx-

imation.

As a first step in numerical analysis, the differential equation is usually required

to be converted from continuous to discrete form, approximating the equation via a

simpler system of linear or nonlinear equations. This is achieved through applying

4

a discretization scheme to the continuous equation. These schemes vary in complex-

ity and performance. The simplest of these are called Finite Difference methods,

which discretize the differential equation using difference equations at each node in

a mesh. More complex schemes include finite element, finite volume, and spectral

discretization schemes [14, 27, 33]. Finite difference methods are presented as moti-

vating examples in Chapter 2, while finite element methods are used for our research

problem in Chapter 3.

The choice of method used to solve a problem depends on the characteristics of the

problem at hand. They also vary in complexity. When choosing a suitable method to

work with, two main concerns must stay in mind: is the method giving an accurate

approximation, and is it doing so quickly? In measuring if our chosen method is effi-

cient or not, we must have some recording of the effort needed to reach convergence

(i.e. a good approximation) and the time spent approximating the solution. There is

often a trade-off that happens with these two; that is, some methods may have high

accuracy but be somewhat time-consuming. Hence, the key is to find a method with

an appropriate balance.

The main cost in approximating the solution of a differential equation typically

comes from solving the associated linear or nonlinear system. We discuss several nu-

merical methods for solving such linear systems in the next chapter. Our interest is

in using these methods in solving our research problem above. The main focus is on

iterative methods, that start by using an initial guess of the solution and iterate (a

finite number of times) until an approximation of suitable accuracy is reached. In this

chapter, two common methods are presented. These are the Jacobi and Gauss-Seidel

methods. Next, a sequence of numerical methods of increasing complexity and effec-

tiveness is also given. Each algorithm is given with explanation, and the convergence

and cost, both computational and storage, are discussed for each method, along with

its limitations.

Chapter 3 presents more details on the specifics of the problem and algorithms

developed here. In particular, the statistical technique used to generate samples of

the hydraulic conductivity is given, along with details of the finite-element approach

5

(using the FEniCS library [49]) considered. Here, the separation of the set of systems

to be solved into a ”training” set and the remainder is explained, as well as how the

training set is used to generate a preconditioner for the remaining systems. Exam-

ples of codes, using the PETSc and SLEPc libraries [50, 51] are included. Numerical

results, discussion, and recommendations for future work given in Chapter 4.

Chapter 2

Background

In this chapter, we explore various numerical methods for solving systems of linear

equations. We discuss the motive for calculating an approximate solution of the

system using each method and their limitations (if any). We also present the cost of

these methods.

2.1 Iterative Methods

In numerical analysis, among other aspects of math, we are often faced with solving

systems of linear equations, which we will refer to as Ax = b with

A =


a11 a12 a1n

a21 a22
. . . a2n

...
...

. . .
...

an1 an2 ann

 , x =



x1

x2

...

...

xn


, and b =



b1

b2

...

...

bn


. (2.1)

These systems are often very large in size, and sometimes even so large that it is

impractical to store them on a computer and solve using standard approaches. They

can be extremely difficult and time consuming to solve by direct methods (such as

Gaussian Elimination), thus adding unnecessary cost to the overall analysis. Hence,

7

iterative methods were born.

Direct methods are methods that solve linear systems in a finite number of op-

erations, whereas, in iterative methods, the number of operations to find the exact

solution may not be finite. The overall aim is to keep iterating until a reasonable

approximation to the solution is reached. Another disadvantage for direct methods

is that they do not efficiently deal with sparse matrices, matrices with most of their

elements equal to zero. The computational cost of Gaussian Elimination for solving

linear systems with dense matrices is O(n3) for an n× n matrix. While sparse direct

methods offer some improvement in operations and storage cost, they are often far

from competitive with modern iterative methods, which are also easier to implement

on parallel computers [41].

Iterative methods are usually easy to use and, most importantly, do not consume

a lot of time per iteration, making them very useful in many settings. These methods

have been studied and enhanced to reach the best possible convergence rates. They

have also been compared against each other in many settings, each having their strong

and weak points. They can be divided into stationary and non-stationary methods.

Stationary methods are iterative methods where the form of each iteration stays the

same throughout the entire iteration process. Otherwise, a method is called non-

stationary.

There are many different kinds of iterative methods, see [48] for a brief explana-

tion. In this section, we will present two stationary iterative methods: Jacobi and

Gauss-Seidel, and give a variation of Gauss-Seidel. A discussion of convergence will

also be presented briefly at the end of the section.

Jacobi methods

The Jacobi method was introduced by Carl Jacob Jacobi. It is considered one of the

easiest iterative methods for solving a system of linear equations in the form of Ax = b.

8

To apply the Jacobi method to the system in (2.1), we rewrite the first equation

to solve for x1, the second equation for x2, the third for x3, and so forth, to get the

following set of equations:

x1 = 1
a11

(b1 − a12x2 − a13x3 − · · · − a1nxn)

x2 = 1
a22

(b2 − a21x1 − a23x3 − · · · − a2nxn)
...
...

xn = 1
ann

(bn − an1x1 − an2x2 − · · · − an(n−1)x(n−1)).

(2.2)

Let the vector x(0) = [x
(0)
1 , x

(0)
2 . . . x

(0)
n]T be an initial guess for the solution. Using

x(0) as an input into the right-hand side of the set of equations in (2.2) , we compute

x(1) = [x
(1)
1 , x

(1)
2 . . . x

(1)
n]T , where the components of x(1) are given by the left-hand side

of (2). By this, we will have completed the first iteration of the method, getting the

first approximation, x(1). We repeat the process again, using the first approximation as

inputs in the right-hand side of the equations to obtain the next approximation, x(2).

Repetition is then continued, until we eventually reach some measure of convergence.

In general, the iteration takes the form:

x
(k+1)
1 = 1

a11
(b1 − a12x

(k)
2 − a13x

(k)
3 − · · · − a1nx

(k)
n)

x
(k+1)
2 = 1

a22
(b2 − a21x

(k)
1 − a23x

(k)
3 − · · · − a2nx

(k)
n)

...
...

x
(k+1)
n = 1

ann
(bn − an1x

(k)
1 − an2x

(k)
2 − · · · − an(n−1)x

(k)
(n−1)),

(2.3)

where the superscript k denotes the previous iteration and k + 1 is the current it-

eration, giving vectors x(k) as the previous approximation and x(k+1) as the next

approximation. Convergence, simply put, is reaching an approximate solution that is

close enough to the exact solution. It should guarantee that the error in our approx-

imation is small in comparison to the discretization error of the underlying differen-

tial equation, given by the difference between the exact and approximate solutions,

e = exact− approximation.

This method requires the entries on the diagonal of A to be all non-zero elements.

To simplify the explanation, we will present the matrix form of the method. Writing

9

A = D − L− U , where D is the diagonal of matrix A and L,U are the strictly lower

and upper triangular parts of A, respectively, we can then write out the iteration as

in [7] by

x(k+1) = RJx
(k) +D−1b, (2.4)

where RJ = D−1(L+ U).

Gauss-Seidel

The Gauss-Seidel (GS) method was first introduced by two German mathematicians,

Carl Friedrich Gauss and Philipp Ludwig von Seidel. It is an iterative method similar

to Jacobi’s method, but with important differences.

Take the same linear system (2.1) from above with the same requirement that the

diagonal elements of A be nonzero. In Jacobi, it is clear that any entry in x(k+1)

can be obtained once all the components of x(k) are calculated but without any other

components of x(k+1). Gauss-Seidel is an alternative to that process, updating the

components of x(k+1) using components of x(k) that have been previously calculated,

as well as those of x(k+1) that are already known. This can be seen from the component

form of the method in the following:

x
(k+1)
i =

1

aii

(
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

)
, (2.5)

for i = 1, 2, . . . , n. The reuse of entries in x(k+1) is clear here from the first summation,

where we use x
(k+1)
j , for j = 1, 2, . . . i − 1 to find x

(k+1)
i . This is the main difference

between Jacobi and Gauss-Seidel. For clarity, writing out the n equations from (2.5)

gives:

x
(k+1)
1 = 1

a11
(b1 − a12x

(k)
2 − a13x

(k)
3 − · · · − a1nxn

(k))

x
(k+1)
2 = 1

a22
(b2 − a21x

(k+1)
1 − a23x

(k)
3 − · · · − a2nx

(k)
n)

... =
...

x
(k+1)
n = 1

ann
(bn − an1x

(k+1)
1 − an2x

(k+1)
2 − · · · − an(n−1)x

(k+1)
(n−1))

10

Again, we can write Gauss-Seidel in matrix form [7],

x(k+1) = (D − L)−1[Ux(k) + b], (2.6)

where L,D and U are defined as above.

A further method based on Gauss-Seidel is the weighted Gauss-Seidel method,

often called successive over relaxation (SOR). Simply speaking, it incorporates a re-

laxation parameter, ω, into the GS method. Eigenvalue analysis is usually needed to

find the best parameter ω, which gives the best improvement to the rate of conver-

gence of the iteration process. In component form, the SOR method is:

x
(k+1)
i =

ω

aii

(
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

)
+ (1− ω)x

(k)
i , (2.7)

or, as a system,

x
(k+1)
1 = ω

a11
(b1 − a12x

(k)
2 − a13x

(k)
3 − · · · − a1nx

(k)
n) + (1− ω)x

(k)
1

x
(k+1)
2 = ω

a22
(b2 − a21x

(k+1)
1 − a23x

(k)
3 − · · · − a2nx

(k)
n) + (1− ω)x

(k)
2

... =
...

x
(k+1)
n = ω

ann
(bn − an1x

(k+1)
1 − an2x

(k+1)
2 − · · · − an(n−1)x

(k+1)
(n−1)) + (1− ω)x

(k)
n

A detailed proof of how to derive SOR from GS can be found in [42]. It is quite

clear that if ω = 1, then the last term of the equations above vanishes and we end up

with GS. It can be viewed in matrix form as:

(D − ωL)x(k+1) = [(1− ω)D + ωU]x(k) + ωb. (2.8)

In most literature, the case ω < 1 is referred to as under-relaxation, and the case

ω > 1 is over-relaxation. ω can also, in some cases, be taken to be different at every

11

iteration, so the iterative method would use a set of {ω1, ω2, . . . } [48].

Kahan’s theorem is an interesting result, presenting the essential choice of ω. It

states that if SOR converges then 0 < ω < 2. Choosing ω outside this interval will

result in divergence of SOR. The analysis of SOR and the choice of ω is discussed in

detail in [48].

To compare these methods to one another, we introduce some common notation.

Any stationary one-step iterative method to solve Ax = b can be written as

Mx(k+1) = Nx(k) + b,

where b is the right-hand side vector, and M is a non-singular matrix with A = M−N .

Writing

x(k+1) = (M−1N)x(k) + b̂, (2.9)

where b̂ = M−1b, gives the iteration matrix M−1N . In Jacobi and GS, M−1
J NJ =

D−1(L+U) and M−1
G NG = (D−L)−1(U). Note that what we refer to as R(J) in (2.4)

is the same as M−1
J NJ .

For comparison between these methods, tools such as the spectral radius and rate

of convergence are needed. The spectral radius is determined by the eigenvalues, λ ,

of a matrix; for any square matrix, G,

ρ(G) := max{|λ|: λ ∈ λ(G)}

This is particularly important when studying the convergence of iterative methods.

The error of the kth iteration can be expressed as e(k) = x− x(k), where x is the exact

solution (or true solution) and x(k) is the approximated solution after k iterations. It

is natural that if, after k iterations we have reached x, then x(k) = x and, normally,

the next iteration x(k+1) = x so Equation (2.9) can be written as

x = (M−1N)x+ b̂, (2.10)

12

which can also be derived directly from Ax = (M −N)x = b. Subtracting Equation

(2.10) from (2.9) yields

x(k+1) − x = (M−1N)[x(k) − x]

e(k+1) = (M−1N)e(k).

Repeating this process k times, each time decreasing the index in the superscript by

1, we get

e(k+1) = (M−1N)e(k) = (M−1N)2e(k−1) = · · · = (M−1N)k+1e(0).

Note that, in most practical problems, we have no idea what e(0) is (otherwise x would

be known, and there would not be a need to iterate any more).

Using simple matrix norms, however, we get

||e(k)||≤ ||(M−1N)k||.||e(0)||.

This shows that if ||(M−1N)k||→ 0 then ||e(k)||→ 0, and the method converges.

The closer ||(M−1N)k|| is to zero, the faster ||e(k)||→ 0, i.e, the faster convergence

is guaranteed to be. Alternately, the closer it is to one, the slower the convergence.

Note that ||(M−1N)k|| may be greater than or equal to 1 as well, indicating that the

method is diverging, and that the error can get larger as iterations proceed.

When M−1N is diagonalizable, ||M−1N ||= |λmax|= ρ(M−1N), and ||(M−1N)k||=
ρ(M−1N)k so, instead of taking these matrix norms, it is easier to deal with eigenval-

ues. If ρ(M−1N) < 1, the method converges.

An n × n matrix, A, is diagonally dominant when
n∑
j=1
i 6=j

|aij |
aii
≤ 1. Strictly diagonal

dominant just means the inequality is strictly less than instead of allowing equality.

By direct calculation, the ijth entry in the Jacobi iteration matrix, D−1(L + U), is

zero if i = j and −aij/aii otherwise. Thus, Gerschgorin’s theorem guarantees that the

13

Jacobi method converges, ρ(D−1(L + U)) < 1, if A is strictly diagonally dominant.

Usually, the more dominant the diagonal is (the smaller
∑n

j 6=i
|aij |
aii

is), the more rapid

the convergence [16].

A square matrix, A, is symmetric if aij = aji, j 6= i holds and it is positive-definite

if xTAx > 0 for any n × 1 real-valued vector, x 6= 0, when A is real-valued. The GS

method is guaranteed to converge, ρ((D − L)−1(U)) < 1, if A is an n× n symmetric

and positive-definite matrix. This can be found in more detail in [47, Section 3.4]

through the discussion of the Ostrowski-Reich theorem.

Here is where SOR can be an attractive method in comparison to GS. In many

cases, the spectral radius, ρ((D − L)−1(U)), is close to 1. This results in the GS

method being slow to converge. By choosing the SOR weight, ω 6= 1, we can make

ρ((D−ωL)−1((1−ω)D+ωU)) potentially much smaller than ρ((D−L)−1U). Another

tool for comparisons is the rate of convergence. In simple terms, it is the speed at

which ||(M−1N)k|| will go to zero.

The average rate of convergence, denoted by R(.) can be defined as in [47] for an

n× n matrix, A, with ||Ak||< 1 as

R(Ak) := −1

k
ln||Ak||,

and the asymptotic rate of convergence, denoted by R∞(.), is

R∞(Ak) :=
∣∣∣ lim
k→∞

R(Ak)
∣∣∣ = − ln ρ(A).

Following [47], if R(Ak) < R(Bk) for matrices A and B, then B is iteratively faster

than A.

The average rate of reduction in error per iteration after k iterations is denoted

by

σ :=
(||e(k)||
||e(0)||

) 1
k
.

14

So, since ||e(k)||≤ ||e(0)||||(M−1N)k|| then

σ ≤ ||(M−1N)k||
1
k= e−R((M−1N)k),

which means that the average rate of reduction after k iterations is bounded above

by exponential decay at the average rate of convergence after k iterations [47].

Now, with these definitions, we can present some comparison between GS and

Jacobi.

Theorem (Stein-Rosenberg) [31]: If each aij ≤ 0 for i 6= j, and A has non-negative

diagonal elements, then one and only one of following statements holds:

1. ρ(M−1
G NG) = ρ(M−1

J NJ) = 0.

2. ρ(M−1
G NG) = ρ(M−1

J NJ) = 1.

3. 0 < ρ(M−1
G NG) < ρ(M−1

J NJ) < 1.

4. 1 < ρ(M−1
J NJ) < ρ(M−1

G NG).

This theorem presents the relationship between the spectral radii of both Jacobi

and GS. The interesting thing they show is that, under these assumptions, Jacobi and

GS either both converge or both diverge. Point 3 is of particular importance; saying

that ρ(M−1
G NG) is closer to zero than ρ(M−1

J NJ), stating that GS is faster to converge

than Jacobi when both converge. In other words, R∞(M−1
G NG) > R∞(M−1

J NJ). In

fact, in many relevant cases, what takes Jacobi 2 iterations to accomplish, takes GS

only one iteration to do [47].

We note that the condition on A in the theorem is important. If the diagonal

is non-positive, then the theorem does not apply any more and, in fact, we can find

counterexamples where one method converges while the other diverges.

As for the average rate of convergence, a simple example seen in [47] shows that, for

a single iteration, the rate of convergence for Jacobi can be faster than that for GS.

15

So, we are unable to generalize that R(M−1
G NG) > R(M−1

J NJ) for all iterations.

Storage: From the explanation of both Jacobi and GS methods above, one nat-

urally expects to need more storage space for Jacobi due to the fact that, in GS, the

method overwrites its components. In [7], Jacobi is shown to need storage of 2n real

values for the approximation vectors, x(k) while, in GS, it is reduced to only n real

values.

While both Jacobi and GS are powerful stationary iterative methods, they both

have their strong and weak points. We cannot say that GS is always better to use

than Jacobi. In fact, for some systems, GS is the wrong choice of method and is found

to be completely useless, even diverging in some cases. They are both tools used to

this day in numerical analysis among other stationary and non-stationary methods.

We do note that while the GS method is often faster to converge than the Jacobi

method, both methods are still generally very slow to converge. This is the reason why

these methods are rarely used alone in solution but are excellent choices as relaxation

methods in multigrid methods, which will be discussed in detail later on in the chapter.

2.2 Lanczos, Conjugate Gradient and Deflation

In the previous section, stationary iterative methods were shown to use previous ap-

proximate solutions, x(k), to find the next approximate solution, x(k+1). We start this

section by introducing non-stationary polynomial methods.

Recall, the residual of system (2.1) is r = b−Ax. If the initial guess is used, x(0),

we write r(0) = b− Ax(0). Substituting b with Ax, we get

r(0) = A(x− x(0)).

16

Recall the error is defined as e(i) = x− x(i). The residual above then becomes

r(0) = Ae(0).

Generally speaking,

r(i) = Ae(i). (2.11)

This is an important equation, showing the relationship between the residual of a

system and the error at the ith iteration.

Another family of iterative methods can be written as

x(k+1) = x(k) + ωk+1r
(k),

where r(k) and ωk+1 are the residual at the kth step, and the weight that represents

the step size at step (k + 1), respectively. So,

x(1) = x(0) + ω1r
(0)

= x(0) + ω1(b− Ax(0))

x(2) = x(1) + ω2r
(1)

= x(1) + ω2(b− Ax(1))
... =

...

x(k+1) = x(k) + ωk+1r
(k)

= x(k) + ωk+1(b− Ax(k)).

If we subtract both sides from x ,the true solution, we obtain

x− x(k+1) = x− [x(k) + ωk+1(b− Ax(k))]e(k+1) = e(k) − ωk+1(b− Ax(k)).

Substituting (2.11) in the last step, we reach

e(k+1) = e(k) − ωk+1Ae
(k) = (I − ωk+1A)e(k). (2.12)

Retracing our steps by substituting e(k) = (I − ωkA)e(k−1) in (2.12) we get

e(k+1) = (I − ωk+1A)(I − ωkA)e(k−1).

17

Repeating this (k − 2) times, we have

e(k+1) =
k+1∏
i=1

(I − ωiA)e(0). (2.13)

Defining Pk+1(z) =
∏k+1

i=1 (I − ωiz), we write Pk+1(A) =
∏k+1

i=1 (I − ωiA) as a poly-

nomial in matrix A. Hence, a method that can be written as e(k+1) = Pk+1(A)e(0) is

called a polynomial method.

An interesting observation is in the following theorem.

Theorem 1 x(k)−x(0) can be written as a combination of Air(0), for i = 0, 1, . . . , (k−
1).

Proof:

If we work a bit with x(i+1) = x(i) + ωi+1r
(i) iteratively, we have

x(1) = x(0) + ω1r
(0)

x(2) = x(0) + ω1r
(0) + ω2r

(1)

= x(0) + ω1r
(0) + ω2(b− Ax(1))

= x(0) + ω1r
(0) + ω2(b− A(x(0) + ω1r

(0)))

= x(0) + ω1r
(0) + ω2(b− Ax(0) − ω1Ar

(0))

= x(0) + ω1r
(0) + ω2(r(0) − ω1Ar

(0))

= x(0) + (ω1 + ω2)r(0) − ω1ω2Ar
(0).

(2.14)

For x(3), by the same procedure, we have

x(3) = x(0) + (ω1 + ω2 + ω3)r(0) + (−ω1ω2 − ω1ω3 − ω2ω3)Ar(0) + ω1ω2ω3A
2r(0).

Note, since {ωi}k+1
i=1 are just weights, one can consider (ω1 + ω2 + ω3) as one

constant, say c̃1,(−ω1ω2 − ω1ω3 − ω2ω3) as c̃2, and ω1ω2ω3 as c̃3. So, x(3) becomes

x(3) = x(0) + c̃1r
(0) + c̃2Ar

(0) + c̃3A
2r(0).

18

By induction, if

x(k) = x(0) + c̃1r
(0) + c̃2Ar

(0) + c̃3A
2r(0) + · · ·+ c̃k−1A

k−1r(0).

Then

Ax(k) = A(x(0) + c̃1r
(0) + c̃2Ar

(0) + c̃3A
2r(0) + · · ·+ c̃k−1A

k−1r(0)).

So, by using x(k+1) = x(k) + ωk+1r
(k), we get

x(k+1) = x(0) + c1r
(0) + c2Ar

(0) + c3A
2r(0) + · · ·+ ckA

kr(0),

where

cj =


c̃1 + ωk+1, for j = 1

c̃j − ωk+1c̃j−1, for 1 < j < k

−ωk+1c̃k−1, for j = k.

�

This is the idea of Krylov space methods. A Krylov space is a space spanned from

the set of vectors : {A0r(0), A1r(0), A2r(0), . . . , Ak−1r(0)}. The number of vectors in the

set is k, thus, the space resulting from spanning this set is typically of dimension k.

It is denoted as

Kk(A, r
(0)) = span{r(0), Ar(0), A2r(0), A3r(0), . . . , Ak−1r(0)}. (2.15)

With each iteration taken the dimension of the respective Krylov space increases

by one.

There exist a large number of methods that aim at finding the best approxima-

tion of the form x(k) = x(0) + yk, for yk ∈ Kk(A, r
(0)). These methods are classified

as Krylov methods. In some resources, they are also referred to as Krylov projections.

These methods can be classified into 4 main categories [46]:

19

1-Ritz-Galerkin.

2-Minimum residual norm approach.

3-Petrov-Galerkin.

4-Minimum error norm approach.

The Ritz-Galerkin approach leads to both the Lanczos and conjugate gradient

methods, while the minimum residual norm approach gives the MINRES and GM-

RES methods [46].

Arnoldi Method:

In 1951, the Arnoldi method was first introduced. It aims to compute an orthonor-

mal basis set that spans the space Kk(A, r
(0)). Recall, the vectors in {v1, v2, . . . , vs}

are orthonormal if vi ⊥ vj, ∀i 6= j, and ||vi||= 1, ∀i = 1, 2, . . . , s. Before we present

Arnoldi’s algorithm, we define Hessenberg matrices.

Definition: An upper Hessenberg matrix (Hk)ij is a square matrix with entries

(Hk)ij =

hij, j = 1, 2 . . . , k, i = 1, 2, . . . ,min(j + 1, k)

0, otherwise

In other words, an upper Hessenberg matrix has all entries under the first sub

diagonal equal to zero. For example, the following is an upper Hessenberg matrix:
X X X X

X X X X

0 X X X

0 0 X X

 .

Arnoldi’s algorithm is given in the following.

Arnoldi’s algorithm:

Let q1 be a given normalized vector (||q1||= 1):

20

For j = 1, 2, 3, . . . , (k − 1)

{q̂j+1 := Aqj

For i = 1, 2, 3, . . . , j

{hij = qTi q̂j+1

q̂j+1 = q̂j+1 − hijqi
}

hj+1,j = ||q̂j+1||
qj+1 =

q̂j+1

hj+1,j

}

The algorithm outputs a set of vectors {q1, q2, . . . }. These form a basis of the

Krylov space, Kk(A). They are clearly all normalized vectors, due to normalization

in the final step in the algorithm. They are also all orthogonal to one another, be-

cause of the orthogonalization step, q̂j+1 = q̂j+1 − hijqi. Hence, the vectors in the set

{q1, q2, . . . } are orthonormal. They also span Kk(A). By induction, it can be shown

that qj can be written as pj−1(A)q1, where pj−1 is a polynomial of degree (j − 1) [39].

We note the obvious break-down point of the algorithm is when hj+1,j = 0. Hence,

q̂j+1 = 0 at this point. From the algorithm, this says that q̂j+1 = Aqj−
∑j

i=1 hijqi = 0,

implying that qj is the last possible independent vector that can be added to the set

{q1, q2, . . . , qj} that spans the subspace, making the subspace Kj(A) invariant under

A [39]. Since Aqj =
∑j

i=1 hijqi, Aqj ∈ span { q1, q2, . . . , qj}.

Theorem 2 Given q1 = 1
||r(0)||r

0,

then span{q1, q2, . . . , qj+1} = span{r(0), Ar(0), A2r(0), . . . , Ajr(0)}.

Proof:

We prove this by induction. Let q1 = r(0)

||r(0)|| .

(1) For j = 1, by our assumption, it is clear that r(0) = ||r(0)||q1 and span{q1} =

span{r(0)}.

(2) Now we prove the result for the general case, j. Assume the result holds for

21

i = 1, 2 . . . j,

span{q1, q2, . . . , qi} = span{r(0), Ar(0), A2r(0), . . . , Ai−1r(0)}.

In particular, this means that there are constants α1, . . . , αj and β1, . . . , βj such that

qj = α1r
(0) + α2Ar

(0) + · · ·+ αjA
j−1r(0) and Aj−1r(0) = β1q1 + β2q2 + · · ·+ βjqj.

For the first direction, we multiply A into qj = α1r
(0) + α2Ar

(0) + · · ·+ αjA
j−1r(0)

to get Aqj = α1Ar
(0) + α2A

2r(0) + · · · + αjA
jr(0). By the orthogonalization step in

Arnoldi, q̂j+1 = Aqj −
∑j

i=1 hijqi. From above, we can write Aqj as a linear com-

bination of the vectors Air(0). By induction, we can do the same for each qi. So,

qj+1 = α1r
(0) + · · ·+ αj+1A

jr(0) for some constants, α1, . . . , αj+1.

For the reverse inclusion, the same process can be used to show Ajr(0) = β1q1 +

β2q2 + · · ·+ βj+1qj+1 for some constants β1, . . . , βj+1 .

�

We can now say that Kj(A, r
(0))=span{q1, q2, q3, . . . , qj}. We denote the matrix

Qk with columns consisting of the vectors in the set {q1, q2, . . . , qk} from the Arnoldi

algorithm, and Hk,(k−1) is the upper Hessenberg matrix with elements hij. Now, the

Arnoldi algorithm [46] gives the relation

AQk−1 = QkHk,(k−1).

This is the matrix form of Aqj =
∑j+1

i=1 hijqi, for j = 1, 2, . . . , k. A simpler way of

writing this relation is

AQk = QkHk + S, (2.16)

for S = (qk+1 · h(k+1),k)e
T
k , where ek is the unit vector of length k with a 1 in its last

position. We note that S is n× k, A is n× n, Qk is n× k and Hk is a k × k matrix.

Since the basis vectors are orthogonal, QT
k qk+1 = 0. Thus, (2.16) implies that [36]

QT
kAQk = Hk. (2.17)

22

Cost: For computational cost, Arnoldi does one vector update of q̂j+1 for j = 1,

two updates for j = 2, the next iteration, three for the next iteration and so forth. For

each iteration, the method computes 1 matrix-vector multiplication Aqj. The major

cost of the algorithm comes from this multiplication. As for accumulated computa-

tion, it performs 1 matrix vector multiplication and then orthogonalization adding up

to overall computational cost of 2nm2 + m ∗ (No of nonzeros(A)) for m iterations.

Overall, Arnoldi is somewhat cheap in comparison with other methods with a cost

of O(m2n). As for storage, the only additional vector to be stored at iteration j is

qj+1. For accumulated storage over m iterations, the method stores the Hessenberg

matrix and the matrix Q consisting of the vectors {q1, q2, . . . , qm}, giving total cost of

nm + 1
2
m2 doubles, where nm is the storage for Q and 1

2
m2 is the estimated storage

for Hk =
∑k

j=1(j + 1) [39].

Lanczos Method:

A more efficient method was developed after the Arnoldi method. It is, in essence,

an extension of Arnoldi, with the additional condition that the matrix A be a sym-

metric matrix. Lanczos developed this method in the 1950’s. When first constructed,

the algorithm was intended to find the eigenvalues and eigenvectors of a symmetric

matrix. It was later used as an efficient way to find an orthonormal basis of the

Krylov space. In 1950, Lanczos also published a paper on the non-symmetric Lanczos

method for non-symmetric matrices [36].

Theorem 3 If A is symmetric matrix, then the upper Hessenberg matrix Hk =

QT
kAQk is a symmetric and tridiagonal matrix.

Proof:

The proof is fairly straight forward. Since A is symmetric, AT = A. So, using simple

matrix properties, we get

Hk = QT
kAQk,

(Hk)
T = (QT

kAQk)
T

= (Qk)
T (A)T (QT

k)T

= QT
kAQk.

23

Hence, Hk = HT
k meaning Hk is symmetric. Because of the upper triangular struc-

ture of the Hessenberg matrix, Hk, if it is a symmetric matrix then it is also tridiagonal.

�

The Lanczos algorithm is given in the following.

Lanczos Algorithm: [38]

Let q1 be any given normalized vector with ||q1||= 1. Let β1 = 0, q0 = 0

For j = 1, 2, . . .

{wj = Aqj − βjqj−1

αj = wTj qj

wj = wj − αjqj
βj+1 = ||wj||
qj+1 =

wj
βj+1

.

}

The advantage of this method over Arnoldi is that it only needs to save 3 vectors,

wj, qj and qj+1. As for computation, it requires only 1 dot product, for αj, and 1

AXPY (matrix-vector multiply plus vector), wj, giving an overall cost of O(n) per

iteration, independent of how many iterations have been performed.

Applying Lanczos with j = 1, we can see that

w1 = Aq1

α1 = wT1 q1

= qT1 Aq1

w1 = Aq1 − w1q1

β2 = ||w1||
q2 = w1

||w1|| .

(2.18)

If we were to compare with the elements of Hk from QT
kAQk = Hk, we can find

24

some relations between them. First, from the second line in the algorithm, we see that

qT1 Aq1 is equivalent to h11. Secondly, from the tridiagonal structure of Hk, we can con-

clude that h13 = h14 = · · · = 0. Thirdly, from symmetry of Hk, we get hj−1,j = hj,(j−1).

By direct computation, β2 = ||Aq1 − (qT1 Aq1)q1|| is equal to h12 = h21. So, in other

words, for the first step of the algorithm, we have:

1- the diagonal of Hk, hjj, equals αj.

2- hij = 0 for i = 1, 2, . . . , (j − 2).

3- hj−1,j = hj,(j−1) = βj.

We denote the symmetric form of the (k + 1)× k matrix Hk+1,k by T̂k,

T̂k =



α1 β2

β2 α2 β3

β3 α3 β4

.

βk−1 αk−1 βk

βk αk

βk+1


. (2.19)

From Lanczos, we have AQk = Qk+1T̂k. In polynomial methods, we also saw the

solution can be written as

x(k) = x(0) + Pk(A)r(0). (2.20)

If we write Vk = [r(0), Ar(0), . . . , Ak−1r(0)], we get x(k) = x(0) + Vkyk, where yk ∈ Rk,

and, after Arnoldi, we are able to use Qk = [q1, q2,, qk] to write (2.20) as

x(k) = x(0) +Qkyk. (*)

From here, one approach is to find the x(k) that will result in the smallest residual

in norm, such that x(k) − x(0) ∈ Kk(A, r
(0)). Using the above,

min ||b− Ax(k)|| = min ||b− A(x(0) +Qkyk)||

25

= min ||b− Ax(0) − AQkyk||
= min ||r(0) − AQkyk||
= min ||r(0) −Qk+1T̂kyk||
= min ||QT

k+1r
(0) − T̂kyk||.

This leads to a method called MINRES. We omit the details of this method here since

we will not use it. Taking a Ritz-Galerkin approach, requiring QT
k r

(k) = 0, leads to

another method that we can use to solve sparse symmetric linear systems, called the

conjugate gradient algorithm (CG).

Conjugant gradient:

The set of vectors, {r(i)}ki=1, that form the residual at each iteration in the CG

method are forced to be orthogonal to one another, i.e (r(i), r(j)) = 0 for all i 6= j [21].

So, if we were to enforce that r(k) be orthogonal to every vector in the range of Qk, then

QT
k r

(k) = 0

QT
k (b− Ax(k)) = 0

QT
k (b− A(x(0) +Qkyk)) = 0

QT
k (r(0) − AQkyk) = 0

QT
k r

(0) = QT
kAQkyk.

Defining Tk = QT
kAQk to be a tridiagonal matrix that matches T̂k but without the

last row, making Tk a (k×k) matrix, then this can be written as Tkyk = QT
k r

(0). Note

that Tk is also symmetric and positive definite if A is.

We now derive the conjugate gradient method from Lanczos in the case that A

is positive definite. We follow the method presented in [30]. Start by performing a

Cholesky decomposition of Tk. Let Tk = LkUk, where

26

Lk =



1 0 . . . 0

λ1 1 0 . . . 0

0 λ2 1 0 . . . 0
...

.
...

...
. 0

0 0 . . . λk 1


, Uk =



ζ1 β2 0 . . . 0

0 ζ2 β3 0 . . . 0

0 . . . 0
...

.
...

...
. . . βk

0 0 . . . 0 ζk


,

with ζ1 = α1, ζj = αj−λj−1βj for j = 2, 3, . . . , k and λj =
βj+1

ζj
for j = 1, 2, . . . , (k−1) .

Since Tkyk = QT
k r

(0) = β1e1, where e1 is the canonical unit vector,

x(k) = x(0) +QkT
−1
k β1e1

= x(0) +Qk(LkUk)
−1β1e1

= x(0) +QkU
−1
k L−1

k β1e1.

Let Pk = QkU
−1
k and zk = L−1

k β1e1. Thus, from PkUk = Qk, we can express the

columns of Pk in terms of those of Qk as ζjpj + βjpj−1 = qj, for every 1 ≤ j ≤ k. We

find Pj by iteratively calculating:

pj =
1

ζj
(qj − βjpj−1).

Next, we construct the different components that make up the CG algorithm:

(1) Considering P T
k APk and substituting the definition of Pk gives:

P T
k APk = (QkU

−1
k)TAQkU

−1
k

= U−Tk QT
kAQkU

−1
k

= U−Tk TkU
−1
k

= U−Tk LkUkU
−1
k −→ (from Cholesky)

= U−Tk Lk.

27

Since Lk is a lower triangular matrix, and U−Tk is the transpose of an upper tri-

angular matrix, and the product of two lower triangular matrices is lower triangular,

U−Tk Lk is a lower triangular matrix. Thus, since P T
k APk is symmetric, it is diagonal,

i.e, pTi Apj = 0 for all i 6= j. Since AT = A, we get

(Apj, pi) = (pj, A
Tpi) = (pj, Api) = 0, for all i 6= j. (2.21)

The set of vectors {pi}ki=1 are called direction vectors. From Equation (2.21), we

see that these vectors are conjugate (orthogonal) to one another [21].

(2) Writing

x(k) = x(0) +Qkyk from (*)

b− Ax(k) = b− A(x(0) +Qkyk)

b− Ax(k) = r(0) − AQkyk.

Since AQk = Qk+1T̂k and Tkyk = QT
k r

(0), we get

r(k) = r(0) −QkTkyk − δkqk+1

= −δkqk+1,

for some δk ∈ R. The last line shows r(k) to be in the same direction as qk+1. Since

the q’s are orthogonal, the vectors in the set {r(i)}ki=0 are orthogonal to one another,

i.e, (r(i), r(j)) = 0, for all i 6= j [21]. Another interesting fact presented in [21] is that

(pj, r
(0)) = (pj, r

(1)) = (pj, r
(2)) = · · · = (pj, r

(i)) = 0,

for i < j.

(3) From (2) and the relation PkUk = Qk, we can write

pj+1 = r(j+1) + γjpj, (2.22)

28

for γj ∈ Rk. Multiplying pTj A to both sides of (2.22) we get:

pTj Apj+1 = pTj Ar
(j+1) + pTj Aγjpj,

and, using conjugate properties, 0 = pTj Ar
(j+1) + pTj Aγjpj. So,

γj =
−pTj Ar(j+1)

pTj Apj
=
−(Ar(j+1), pj)

(Apj, pj)
. (2.23)

(4) Let x(j+1) = x(j) + αjpj. Using r(j) = b− Ax(j),

Ax(j+1) = Ax(j) + αjApj

b− Ax(j+1) = b− (Ax(j) + αjApj).

r(j+1) = r(j) − αjApj, (2.24)

multiplying both sides with (r(j))T , we get (r(j))T r(j+1) = (r(j))T r(j) − αj(r(j))TApj.

So, using (r(j+1), r(j)) = 0, we have

αj =
(r(j))T r(j)

(r(j))TApj
=

(r(j), r(j))

(Apj, r(j))
. (2.25)

By (2.22), we see that r(j+1) = pj+1 − γjpj and (r(j))T = (pj − γj−1pj−1)T . So,

(r(j))TApj = (pj − γj−1pj−1)TApj

= pTj Apj − γjpTj−1Apj

= pTj Apj.

Thus, (2.25) becomes

αj =
(r(j), r(j))

(Apj, pj)
. (2.26)

(5) Rearranging (2.24) to Apj = 1
αj

(r(j) − r(j+1)), we can substitute this in (2.23)

to give:

29

γj =
−pjAr(j+1)

pTj Apj

=
−(Apj)

T r(j+1)

pTj Apj

= (r(j+1)−r(j))T
αj

. r
(j+1)

pTj Apj

= 1
αj
. (r

(j+1))T r(j+1)

pTj Apj
.

From (2.26), αjp
T
j Apj = (r(j))T r(j). So,

γj =
(r(j+1))T r(j+1)

(r(j))T r(j)
=

(r(j+1), r(j+1))

(r(j), r(j))
.

These five steps lead to the common form of the Conjugate Gradient (CG) algo-

rithm [46, 30].

CG algorithm:

Given x(0), r(0) = b− Ax(0), p0 = r(0):

For j = 0, 1, 2, . . .

{αj = (r(j),r(j))
(Apj ,pj)

x(j+1) = x(j) + αjpj

r(j+1) = r(j) − αjApj
γj = (r(j+1),r(j+1))

(r(j),r(j))

pj+1 = r(j+1) + γjpj.

}

Since x(j), r(j), and pj are needed to compute x(j+1), r(j+1), and pj+1, usually the

method stores 3 vectors: x, r, and pj+1 [21, 46, 36].

Cost: Computation wise, the cost of CG is fairly small compared with that of

previous methods. It requires only 1 matrix-vector product, 2 inner products, and 3

vector updates per iteration [21].

Convergence:

In exact arithmetic, the method converges in at most n iterations, so the method can

30

not only be considered as a Krylov method, but also a direct one [21].

The general bound on the rate of convergence of CG is

||x− x(j+1)||A≤ 2||x− x(0)||A

(√
κ(A)− 1√
κ(A) + 1

)j+1

, (2.27)

where x(0), {x(j)}nj=1 are the initial guess and set of solution vectors that are ob-

tained from the CG algorithm, respectively [43]. κ(A) is called the condition number

of matrix A, and is the ratio of the maximum eigenvalue of A to the minimum,

κ(A) = λmax(A)
λmin(A)

. Note, ||.||2A is called the A-norm, where ||s||2A= (s, As) = sTAs. The

best possible x(i+1) is that which makes x− x(i+1), the error at the (i+ 1)th iteration,

to be the smallest possible. From (2.18), we see that this, in general, happens fastest

when κ(A) is as close to 1 as possible, leading to faster CG convergence.

Preconditioned Conjugate Gradient:

CG, like most other Krylov methods, works more efficiently when transforming

the system Ax = b into M−1Ax = M−1b, where M−1 is called a preconditioning

matrix (or preconditioner). Preconditioned systems are generally easier to solve than

their original counterparts for sensible choices of the preconditioner. That is why

preconditioning methods have been an extensive focus for research in the past few

decades [25, 43, 11]. Equivalent to the system M−1Ax = M−1b is M− 1
2AM− 1

2M
1
2x =

M− 1
2 b. To set notation, we shall apply the CG method to

Âx̂ = b̂ (2.28)

to derive the Preconditioned Conjugate Gradient (PCG), where Â = M− 1
2AM− 1

2 ,

x̂ = M
1
2x and b̂ = M− 1

2 b. We assume that M−1 is also an SPD matrix, so that its

principle square root, M− 1
2 , is well-defined, and Â is SPD if A is.

We note the following notation to be used, following [43]

31

x̂(j) = M
1
2x(j),

r̂(j) = M− 1
2 r(j),

p̂j = M
1
2pj,

wj = Apj,

ŵj = M
1
2wj,

where x(j),r(j) and pj are as above.

(1) From r̂(0) = b̂− Âx̂(0), we have

M− 1
2 r(0) = M− 1

2 b−M− 1
2AM− 1

2M
1
2x(0)

= M− 1
2 [b− Ax(0)].

(2) At j = 0, p0 and p̂0 are found by

p̂0 = r̂(0)

M
1
2p0 = M− 1

2 r(0)

p0 = M− 1
2M− 1

2 r(0)

= M−1r(0).

Since M is SPD, (M− 1
2)T = M− 1

2 . Let y0 = M−1r(0), i.e My0 = r(0). So,

p0 = y0.

(3) Taking yj = M−1r(j), αj becomes

αj = (r̂(j))T r̂(j)

p̂j
T Âp̂j

= (M−
1
2 r(j))TM−

1
2 r(j)

(M
1
2 pj)T (M−

1
2AM−

1
2)(M

1
2 pj)

= (r(j))TM−
1
2M−

1
2 r(j)

pTj M
1
2M−

1
2AM−

1
2M

1
2 pj

= (r(j))TM−1r(j)

pTj Apj

=
(r(j))T yj
pTj Apj

=
(r(j),yj)

(pj ,Apj)
.

(4) For x(j+1),

32

x̂(j+1) = x̂(j) + αj p̂j

M
1
2x(j+1) = M

1
2x(j) + αjM

1
2pj

M
1
2x(j+1) = M

1
2 [x(j) + αjpj]

x(j+1) = x(j) + αjpj.

(5) r(j+1) becomes, from r̂(j+1),

r̂(j+1) = r̂(j) − αjÂp̂j
M− 1

2 r(j+1) = M− 1
2 r(j) − αjM− 1

2AM− 1
2M

1
2pj

M− 1
2 r(j+1) = M− 1

2 [r(j) − αjApj]
r(j+1) = r(j) − αjApj.

(6) To find βj

βj = (r̂(j+1))T r̂(j+1)

(r̂(j))T ˆr(j)

= (r(j+1))TM−
1
2M−

1
2 r(j+1)

(r(j))TM−
1
2M−

1
2 r(j)

= (r(j+1))TM−1r(j+1)

(r(j))TM−1r(j)

=
(r(j+1))T yj+1

(r(j))T yj

=
(r(j+1),yj+1)

(r(j),yj)
.

(7) For pj+1,

p̂j+1 = r̂(j+1) + βj p̂j

M
1
2pj+1 = M− 1

2 r(j+1) + βjM
1
2pj

pj+1 = M− 1
2 [M− 1

2 r(j+1) + βjM
1
2pj]

= M−1r(j+1) + βjpj

= yj+1 + βjpj.

Now the PCG algorithm becomes [43]

PCG algorithm:

Let x(0) be initial guess, r(0) = b− Ax(0), p0 = y0. Solve My0 = r(0),

For j = 0, 1, . . .

{ αj = (r(j),yi)
(pj ,Apj)

33

x(j+1) = x(j) + αjpj

r(j+1) = r(j) − αjApj
Solve Myj+1 = r(j+1)

βj =
(r(j+1),yj+1)

(r(j),yj)

pj+1 = yj+1 + βjpj.

}

Cost: In terms of storage, PCG needs to store 4 vectors, one more than unpre-

conditioned CG, and 2 matrices, A and M (although these may be only implicitly

stored). As for computation, it has almost the same cost as CG, but with the addition

of an extra system solve per iteration, in the step requiring solution of Myj+1 = r(j+1).

Due to this extra step, M must be easy to assemble, and it should be cheap to

solve Myj+1 = r(j+1), or else the goal of increasing effeciency of CG with PCG will not

be achieved. There are many choices of preconditioners from which one can choose.

Details on incomplete Cholesky preconditioners, incomplete block preconditioners and

others, are presented in [16]. The simplest choice for a preconditioner is the Jacobi (or

diagonal scaling) preconditioner, with M = diag(A). To gain some insight into the

choice of M , consider the 2 extreme cases of either M = I or M = A. In the first case,

M = I only gets us back to the CG method, so there is not much use in applying

this preconditioner. It is cheap to use, but does not improve performance. As for

M = A, this gives M−1Ax = M−1b −→ A−1Ax = A−1b, which is again the original

complicated problem x = A−1b. Thus, this is effective, but has an impractical cost

per iteration. So, the choice of M is usually, in a sense, between these two extremes.

Other factors also affect the performance of PCG, like the choice of initial guess

and the stopping criteria. They are omitted from our discussion, but can be found in

Chapter 2 of [43].

Convergence: Again we derive the convergence rate from that of CG:

34

Theorem 4 Given initial guess x(0), after j + 1 steps of PCG, the approximate so-

lution satisfies

||x− x(j+1)||A≤ 2||x− x(0)||A

(√
κ(M−1A)− 1√
κ(M−1A) + 1

)j+1

,

where κ(M−1A) = λmax(M−
1
2AM−

1
2)

λmin(M−
1
2AM−

1
2)
.

Proof

From the convergence rate of CG with the system Âx̂ = b̂, we have

||x̂− x̂(j+1)||Â≤ 2||x̂− x̂(0)||Â
(√

κ(Â)−1√
κ(Â)+1

)j+1

.

Since ||s||2A= (s, As) = sTAs,

||x̂− x̂(j+1)||2
Â

= (x̂− x̂(j+1))T Â(x̂− x̂(j+1))

= (M
1
2x−M 1

2x(j+1))TM− 1
2AM− 1

2 (M
1
2x−M 1

2x(j+1))

= (M
1
2 [x− x(j+1)])TM− 1

2AM− 1
2 (M

1
2 [x− x(j+1)])

= (x− x(j+1))TM
1
2M− 1

2AM− 1
2M

1
2 (x− x(j+1))

= (x− x(j+1))TA(x− x(j+1))

= ||x− x(j+1)||2A

Using this, and the fact that Â = M− 1
2AM− 1

2 is similar to M−1A, we have our

result.

�

Deflation:

We have seen the natural bound on the convergence rate of PCG depends on the

maximum and minimum eigenvalues of the matrix M−1A. Typically, the smallest

eigenvalues correspond to the slowest to converge components of the solution to the

system [45]. In order to eliminate the effects of these eigenvalues on the convergence of

PCG, we can wisely choose a preconditioner that specifically deals with these modes

35

to enhance the overall efficiency of the PCG method. This is what leads to the intro-

duction of deflation and the deflation preconditioner.

Following [43, 25] in our presentation of the deflation method, we begin with the

following definitions

E = ZTAZ,

Q = ZE−1ZT ,

P = I − AQ.

Here, Z is a given n × k matrix, (k < n), with full rank, meaning that its columns

are linearly independent. E is called a Galerkin matrix or coarse matrix, Q is called

the correction matrix, and P is the deflation matrix. The columns of Z are the defla-

tion vectors, sometimes called projection vectors. It is easy to see that E is invertible,

when A is SPD. E and Q are both symmetric, and P is a projection; meaning P 2 = P .

Some interesting properties of E, Q, and P can be found in [43]. A proper choice

of Z is key to achieving good performance from the deflated PCG algorithm. The

definition of Z is treated in a set-up phase that occurs before the solve phase. The

algorithms presented below are for the solve phase alone; in Chapter 3, we discuss the

set-up phase where Z is defined.

Deflated CG:

Given P , we make the following decomposition of x:

x = (I − P T)x+ P Tx. (2.29)

(I −P T)x = Qb and, so, this is easy to compute directly without knowing x. The

difficulty lies in computing P Tx. This can be resolved by solving the system

PAx̂ = Pb, (2.30)

where x̂ = x+ y, such that x is the solution of Ax = b and y belongs to the null space

of P T [40]. x̂ is called the deflated solution, and (2.30) is referred to as the deflated

36

system. This can be observed as a preconditioned system with the deflation matrix,

P , as the preconditioner.

After solving for x̂, we then have the equality

P T x̂ = P T (x+ y) = P Tx,

since P Ty = 0. So, (2.29) becomes x = Qb+ P T x̂.

This deflated Conjugate Gradient algorithm is as follows.

Deflated CG algorithm: [43]

Let x(0) be initial guess, r(0) = b− Ax(0), p0 = r̂(0), and r̂(0) = Pr(0),

For j = 0, 1, . . .

{ ŵj = PApj

αj = (r̂(j),r̂(j))
(ŵj ,pj)

x̂(j+1) = x̂j + αjpj

r̂(j+1) = r̂(j) − αjŵj
βj = (r̂(j+1),r̂(j+1))

(r̂(j),r̂(j))

pj+1 = r̂(j+1) + βjpj.

}

The deflated CG method is an extension of the CG method, and all components

in deflated CG marked with the ”hat” notation are called deflated components. So,

r̂ is called the deflated residual, since it is the residual of (2.30).

Deflated Preconditioned Conjugate Gradient method:

Deflated CG often suffers from similar poor performance as unpreconditioned CG,

unless the deflation space is prohibitively large. To improve performance, we can also

37

use a preconditioner within deflated CG, effectively adding a preconditioning opera-

tion to (2.30). This gives a method referred to as the deflated PCG algorithm. This

method is often seen to be more robust than PCG and more stable [25].

Applying a preconditioner, (2.30) becomes

M−1PAx̂ = M−1Pb,

which is equivalent to

P (M− 1
2AM− 1

2)(M
1
2x) = P (M− 1

2 b)

or

PAx = Pb,

where A = M− 1
2AM− 1

2 , x = M
1
2 , b = M− 1

2 b, [43], and the definitions from before

become

E = ZTAZ

Q = ZE−1ZT

P = I − AQ.

Here, Z is a preconditioned deflation matrix; easy calculations show that P =

M− 1
2PM− 1

2 when Z = M− 1
2Z.

In the following, the deflated preconditioned conjugate gradient algorithm is pre-

sented.

Deflated PCG algorithm: [43]

Let x(0) be initial guess, r(0) = b− Ax(0),r̂(0) = Pr(0) . Solve My0 = r̂(0), p0 = y0,

For j = 0, 1, . . .

{ ŵj = PApj

αj = (r̂(j),yi)
(pj ,ŵj)

x̂(j+1) = x̂(j) + αjpj

38

r̂(j+1) = r̂(j) − αjŵj
Solve Myj+1 = r̂(j+1)

βj =
(r̂(j+1),yj+1)

(r̂(j),yj)

pj+1 = yj+1 + βjpj.

}

This can be derived in a similar manner as we derived PCG.

Theorem 5 Let A, M , and Z be given, with A and M SPD n × n matrices, and

Z be a full rank n × k matrix, with k < n. Let P = I − AZ(ZTAZ)−1ZT and

let r(0) = P (b − Ax(0)), for given right-hand side vector, b, and initial guess, x(0).

Then, the PCG algorithm with balancing preconditioner P TM−1P is equivalent to the

deflated PCG algorithm with preconditioner M−1P up to a shift in the null space of

P T , Range(Z).

Proof: We prove this by induction.

(1) Let j = 0:

In PCG: Let p0 = y0 = P TM−1Pr(0).

(a) ω0 = Ap0

= PAM−1Pr(0).

(b) α0 =
yT0 r

(0)

ωT0 p0

= (r(0))TPTM−1Pr(0)

(r(0))TPTM−1APT p0
.

In DPCG: Let p0 = y0 = M−1Pr(0).

(a) ω̂0 = PAp0

= PAM−1Pr(0).

(b) α0 =
yT0 r̂

(0)

ω̂T0 p0

= (r(0))TPTM−1Pr(0)

(r(0))TPTM−1APT p0
.

39

So, in both algorithms the steps correspond to one another for j = 0.

(2) Now we prove for general case j. Assume the two algorithms are equivalent for

j − 1,

so that

r̂(j) = r(j), yj−1 = P T ŷj−1, βj−1 = β̂j−1, and pj−1 = P T p̂j−1.

For the PCG algorithm, using the definitions given above, we have the set-up

phase equivalent, so

(c) r(j) = r(j−1) − αj−1Apj−1

= Pr(j−1) − (r(j−1))TPTM−1Pr(j−1)

(r(j−1))TPTM−1APT p(j−1) (r
(j−1))TP TM−1AP Tpj−1.

(d) yj = P TM−1Pr(j)

= P TM−1Pr(j−1)−P TM−1 (r(j−1))TPTM−1Pr(j−1)

(r(j−1))TPTM−1APT p(j−1) (r
(j−1))TP TM−1AP Tpj−1.

(e) βj−1 =
yTj r

(j)

yTj−1r
(j)

= [1−(r(j−1))TP TM−1PAM−1Pr(j−1)

(r(j−1))TP TM−1AP Tpj−1

−(r(j−1))TP TM−1AP TM−1Pr(j−1)

(r(j−1))TP TM−1AP Tpj−1

+

+
(r(j−1))TP TM−1AP TM−1(r(j−1))TP TM−1Pr(j−1)PAM−1Pr(j−1)

((r(j−1))TP TM−1AP Tpj−1)2
].

(f) pj = βj−1pj−1 − yj

= P T [βj−1M
−1Pr(j−1) +M−1Pr(j−1)

−M−1 (r(j−1))TP TM−1Pr(j−1)

(r(j−1))TP TM−1AP Tp(j−1)
(r(j−1))TP TM−1AP Tpj−1].

For DPCG:

(c) r̂(j) = r̂(j−1) − αj−1ω̂j−1

= Pr(j−1) − (r(j−1))TPTM−1Pr(j−1)

(r(j−1))TPTM−1APT p(j−1) (r
(j−1))TP TM−1AP Tpj−1.

40

(d) yj = M−1r̂(j)

= M−1Pr(j−1) −M−1 (r(j−1))TPTM−1Pr(j−1)

(r(j−1))TPTM−1APT p(j−1) (r
(j−1))TP TM−1AP Tpj−1.

(e) βj−1 = (r̂(j))TM−1r̂(j)

yTj−1r̂
(j−1)

= [1−(r(j−1))TP TM−1PAM−1Pr(j−1)

(r(j−1))TP TM−1AP Tpj−1

−(r(j−1))TP TM−1AP TM−1Pr(j−1)

(r(j−1))TP TM−1AP Tpj−1

+
(r(j−1))TP TM−1AP TM−1(r(j−1))TP TM−1Pr(j−1)PAM−1Pr(j−1)

((r(j−1))TP TM−1AP Tpj−1)2
].

(f) pj = βj−1pj−1 − yj−1

= P T [βj−1M
−1Pr(j−1) +M−1Pr(j−1) − . . .

. . .M−1 (r(j−1))TP TM−1Pr(j−1)

(r(j−1))TP TM−1AP Tp(j−1)
(r(j−1))TP TM−1AP Tpj−1].

This concludes that the algorithms are equivalent up to a shift in the direction of

the null space of P T .

�

The error bound of the deflated PCG algorithm is now

||x− x(j+1)||A≤ 2||x− x(0)||A

(√
κ̃(M−1PA)− 1√
κ̃(M−1PA) + 1

)j+1

,

where κ̃(S) is called the effective condition number and is the ratio of the largest eigen-

value to the smallest non-zero eigenvalue of a SPD matrix S, i.e., κ̃(S) = λmax(S)
minλ6=0 λ(S)

.

The smaller κ̃(M−1PA) is, the faster convergence of deflated PCG becomes, i.e.

the more accurate the approximation x(j+1) will be in comparision with the exact

solution, x. To make effective use of this idea, deflation vectors can be chosen, in

such a way as to reduce the value of κ(M−1PA), such as if eigenvectors of M−1A

corresponding to extreme eigenvalues were used for deflation vectors then κ̃(M−1PA)

is decreased [43]. We also see in [43] that κ(M−1A) > κ̃(M−1PA), which makes using

deflation potentially an effective method to improve performance of the PCG method.

41

The efficiency of deflated methods depends strongly on our choice of the deflation

vectors in Z. To acheive our goal of using deflation, must choose the columns of Z

wisely to get faster convergence. Usually, the best choice of Z varies depending on

the problem at hand. Many techniques have been suggested for the choice of these

vectors [43, 25]. An impractical choice would be to choose eigenvectors of the system

M−1A to reduce the condition number κ̃(M−1PA). Typically, we try to make choices

to either improve the clustering of eigenvalues of the deflated system or to reduce its

effective condition number, both of which lead to improved performance. One choice

is to take the domain of the problem and divide it into subdomains. For each subdo-

main, we take a column of Z with entries of 1 for the nodes in that subdomain and 0

for all other points outside. In this case, called subdomain deflation, Z is a matrix of

zeros and ones. Another possibility is to build vectors of Z from eigenvectors of the

system, similar to what we will consider later on in our research. A recycling delation

method could be also used [43] or multigrid/ multilevel deflation [11]. For a more

detailed discussion of these methods, see [43].

As an additional note, the preconditioner defined in Theorem 5 for PCG is called

the balancing preconditioner due to its construction using P . Since we have estab-

lished through this theorem that both PCG and DCG are equivalent with the certain

set-up of preconditioners and because standard software packages, such as PETSc,

offer well-tested and optimized versions of standard PCG, but not DPCG, we im-

plement the deflation preconditioners described later as balancing preconditioners for

standard PCG. This is discussed in more detail in Chapter 3.

2.3 Multigrid methods

Differential equations can naturally be approximated using different sized grids. This

is used as an advantage in a class of numerical methods called multigrid methods, first

developed in the 1960’s [7, 4, 35, 44, 6]. These methods use multiple levels of division

of the domain to efficiently approximate the solution of a boundary value problem.

This, thus, contributes to solving a bigger range of problems more efficiently than

42

previous numerical methods. In fact, they are among the fastest numerical solution

techniques developed to this day for a wide range of discretized elliptic differential

equations. We tend to use them because they are faster to converge than classical

iterative methods, although they are still iterative methods. This class of method in-

cludes diverse techniques in the way the levels of the multigrid hierarchy constructed,

either using geometric information obtained from the problem or algebraically con-

structing them using properties obtained only from the matrices defining the system

of equations at hand. The first group of approaches are called geometric multigrid

and the latter are called algebraic multigrid. Both are presented in the following sub-

section. Many other types of multigrid methods exist, including adaptive methods

and “black-box” multigrid methods. For more details on these, see [12, 7, 44].

We will consider the following boundary value problem,

−u′′(x) = f, in Ω = (0, 1),

u(0) = u(1) = 0,
(2.31)

as our model problem and aim to solve (2.31) using multigrid methods. These nu-

merical methods are used to solve the linear system of equations formed by the dis-

cretization of partial differential equations. Thus, we introduce finite-difference and

finite-element discretizations. Finite differences will be discussed here and finite ele-

ments in Chapter 3.

First, we divide Ω into a set of points {xi}ni=0 such that

0 = x0 < x1 < · · · < xn−1 < xn = 1.

To generate a uniform mesh, we take h = 1
n

and xi = ih; see Figure 2.1. h is referred

to as the mesh size.

43

Ω

0=x0
x1 x2 xn−1 xn=1

h

Figure 2.1: Uniform mesh with nodes {0, x1, . . . , xn−1, 1}
.

Finite differences:

Recall the definition of the derivative of a smooth function, u, at a point x ∈ R is

u′(x) = lim
h→0

u(x+ h)− u(x)

h
.

We clearly can approximate u′(x) by replacing the limit by a fixed (small) value of h.

Doing this when h is as close to zero as possible gives the best possible approximation

of u′(x).

Consider the Taylor expansion with Lagrange remainder. Assuming u ∈ Cn+1(0, 1),

we have

u(x+ h) = u(x) + hu′(x) +
h2

2!
u′′(x) +

h3

3!
u′′′(x) + · · ·+ hn

n!
u(n)(x) +

hn+1

(n+ 1)!
u(n+1)(ξ),

(2.32)

where u(n)(x) is the nth derivative of u, hn is the nth power of h, and ξ is a real number

between x and x + h. Taking n = 1 yields u(x + h) = u(x) + hu′(x) + O(h2), where

O(h2) includes the remainder terms of the expansion, again gives the approximation

u′(x) ≈ u(x+ h)− u(x)

h
.

We can also write out the derivative exactly as

u′(x) =
u(x+ h)− u(x)

h
− h

2!
u′′(ξ),

where the O(h2) term neglected in the approximation above is included in Lagrange

form as −h2

2!
u′′(ξ), scaled by 1

h
.

44

Using our mesh notation above, we write u at mesh points xi+1 and xi−1 as

u(xi+1) = u(xi) + (xi+1 − xi)u′(xi) +
(xi+1 − xi)2

2!
u′′(ξ+),

u(xi−1) = u(xi) + (xi−1 − xi)u′(xi) +
(xi−1 − xi)2

2!
u′′(ξ−),

(2.33)

where ξ+ ∈ (xi, xi+1) and ξ− ∈ (xi−1, xi). Denoting hi = xi − xi−1, we get:

u(xi+1) = u(xi) + hi+1u
′(xi) +

h2
i+1

2!
u′′(ξ+) (2.34a)

u(xi−1) = u(xi)− hiu′(xi) +
h2
i

2!
u′′(ξ−). (2.34b)

There are three kinds of difference methods that can be directly obtained from (2.34):

forward, backward and central differences.

The forward difference approximation is taken from (2.34a) :

u′(xi) =
u(xi+1)− u(xi)

hi+1

− hi+1

2!
u′′(ξ+).

The backward difference approximation is taken from (2.34b) :

u′(xi) =
−u(xi) + u(xi−1)

hi
+
hi
2!
u′′(ξ−).

The central difference approximation is the weighted average of the last two dif-

ferences:

u′(xi) =
hi

hi + hi+1

(u(xi+1)− u(xi)

hi+1

− hi+1

2
u′′(ξ+)

)
+

+
hi+1

hi + hi+1

(u(xi)− u(xi−1)

hi
+
hi
2
u′′(ξ−)

)
. (2.35)

The central difference approximation is important for getting a more precise ap-

proximation of the derivative by taking more terms in the expansion. For example,

45

writing

u(xi+1) = u(xi) + hi+1u
′(xi) +

h2
i+1

2!
u′′(xi) +

h3
i

3!
u′′′(ξ+)

u(xi−1) = u(xi)− hiu′(xi) +
h2
i

2!
u′′(xi)−

h3
i

3!
u′′′(ξ−),

(2.36)

and considering the uniform-mesh case with h = hi+1 = hi gives us a central difference

approximation,

u′(xi) =
u(xi+1)− u(xi−1)

2h
− h2

12

(
u′′′(ξ+) + u′′′(ξ−)

)
.

If u ∈ C3((0, 1)), this gives an O(h2) approximation as opposed to the O(h) precision

we get for the forward and backward differences.

By the exact same process, we can find expressions for difference equations approx-

imating higher derivatives by simply isolating the higher derivative on the left-hand

side in place of u′(xi). For the second derivative on a uniform mesh, the central

difference scheme is

u′′(xi) =
u(xi+1)− 2u(xi) + u(xi−1)

h2
− h2

24

(
u′′′′(ξ+) + u′′′′(ξ−)

)
.

Approximations to partial derivatives on higher dimensional meshes can also be

found similarly.

Geometric Multigrid:

Going back to our model problem, we approximate ui ≈ u(xi) and write fi = f(xi),

giving the central difference approximation to −u′′ = f as

1

h2

(
− ui+1 + 2ui − ui−1

)
= fi, for 1 ≤ i ≤ n− 1

u0 = un = 0. (2.37)

This leads to a linear system of equations

Au = f, (2.38)

46

where

A =



2
h2

−1
h2

0 . . . 0
−1
h2

2
h2

−1
h2

0 . . . 0
...

...
...
...

0 0 −1
h2

2
h2


, u =



u1

u2

...

...

un−1


, f =



f1

f2

...

...

fn−1


. (2.39)

Notice that A is a symmetric, positive-definite, sparse, and diagonally dominant

matrix. We denote v as an approximation vector to the exact solution u, with v =

(v1, . . . , vn−1)T . As in previous sections, the error is denoted as e = u − v and the

residual is r = f − Av = Ae.

The idea of residual correction is to solve Ae = r to get a correction to the

approximation, v [7]. This idea plays a big role in multigrid methods. The solution

of system (2.37) can be approximated using a relaxation scheme like weighted Jacobi

or GS.

Using a standard ansatz, we let

V
(k)
i = sin

(kπi
n

)
(2.40)

be the ith component of the kth eigenvector of A in (2.38) for 1 ≤ k ≤ n − 1 [31].

Since (Au)i = 1
h2

(
− ui+1 + 2ui − ui−1

)
, we can find the eigenvalues using simple

trigonometric identities, as:

(AV (k))i = 1
h2

[
− sin

(
kπ(i+1)

n

)
+ 2 sin

(
kπi
n

)
− sin

(
kπ(i−1)

n

)]
= 2

h2

[
sin
(
kπi
n

)
− cos

(
kπ
n

)
sin
(
kπi
n

)]
= 2

h2

[
1− cos

(
kπi
n

)]
sin
(
kπi
n

)
= 4

h2
sin2

(
kπ
2n

)
V

(k)
i .

So, 4
h2

sin2
(
kπ
2n

)
is the eigenvalue of A associated with the eigenvector V (k). Now,

for the weighted Jacobi method applied to this system as in [7], we have

v(k+1) = v(k) + ωD−1r(k).

47

Using the residual equation, we get

e(k+1) = e(k) + ωD−1Ae(k)

e(k+1) = (I − ωD−1A)e(k).

Let Rω = (I − ωD−1A) be the iteration matrix for weighted Jacobi. Since D is

the diagonal of A, and D = 2
h2
I, from (2.39), we have D−1 = h2

2
I. Hence [34],

Rω = I − h2

2
ωA.

Note: The weighted Jacobi scheme converges if |λk(Rω)|< 1 for 1 ≤ k ≤ n − 1.

We can directly compute

λk(Rω) = λk(I − h2

2
ωA)

= 1− ω h2

2
λk(A)

= 1− ω h2

2
4
h2

sin2
(
kπ
2n

)
= 1− 2ω sin2

(
kπ
2n

)
.

Hence, it is clear that the choice of 0 < ω ≤ 1 guarantees the condition for con-

vergence is fulfilled. Because of the form of V
(k)
i , k is called the wave number. See

[7, 34] for graphs of these vectors for various wave numbers on a mesh of n nodes. By

simple graphing, we can see the eigenvectors of A are smooth for 1 ≤ k ≤ n
2
, and we

call these low-frequency modes, while they are oscillatory for n
2
≤ k ≤ n− 1, and we

call these high-frequency modes [7]. To find the optimal choice of ω, we graph λk(Rω)

for ω = 1
2
, 2

3
, and 1, see Figure 2.2.

48

k

λk

ω = 1

ω = 2
3

ω = 1
2

n
2

n

Figure 2.2: Eigenvalues of Rω

The best possible ω will be that which results in λk(Rω) being as small as possible.

In [34], it is found that, for the smoothest modes, when 1 ≤ k ≤ n
2
, the choice of ω

has only a small effect on reducing the error. However, the choice of ω can make a

big difference on the error reduction for the oscillatory modes, n
2
≤ k ≤ n− 1.

To get the best convergence over the high-frequency modes, we require that

λn
2
(Rω) = −λn(Rω)

as in [7] noting that λn(Rω) serves only as an approximation to the true eigenvalue

λn−1(Rω). Since,

λn
2
(Rω) = 1− 2ω sin2

(π
4

)
and λn(Rω) = 1− 2ω sin2

(π
2

)
,

we have

1− 2ω sin2
(
π
4

)
= 2ω sin2

(
π
2

)
− 1

1− ω = 2ω − 1

ω = 2
3
.

So, from the perspective of the high-frequency modes, the best choice of ω for

49

weighted Jacobi is 2
3
. For this ω,

λk(Rω) = 1− 2
(

2
3

)
sin2

(
kπ
2n

)
= 1− 4

3
sin2

(
kπ
2n

)
.

Using the fact that 1
2
≤ sin2

(
kπ
2n

)
≤ 1 for n

2
≤ k ≤ n− 1, we have

λn(R 2
3
) ≤ λk(R 2

3
) ≤ λn

2
(R 2

3
)

1− 4
6
≤ 1− 4

3
sin2

(
kπ
2n

)
≤ 1− 4

3

−1
3
≤ 1− 4

3
sin2

(
kπ
2n

)
≤ 1

3

Hence, |λk|≤ 1
3

for n
2
≤ k ≤ n − 1. This is often called the smoothing factor

[7], and it indicates that with each sweep (iteration) of the relaxation method, the

error is reduced by a factor of at least 3 over the oscillatory modes. After a certain

number of sweeps, the oscillatory error can always be effectively eliminated by this

smoothing effect. Thus, we seek to implement a method that reduces the error in the

smooth modes, since relaxation does not greatly affect these modes [34]. From this

motivation, multigrid algorithms are developed.

Merely from the name of multigrid methods, one can expect to use multiple grids

(meshes) in the algorithm. We start with the uniform one-dimensional grid Ωh, indi-

cating that the mesh size used is h. A coarser mesh to Ωh is Ω2h, a grid with mesh

size 2h. We continue with this concept to reach a mesh that cannot be coarsened any

further. That grid is called the coarsest grid. In Figure 2.3, we illustrate these grids

with n = 12 and a wave number k = 4 as in [7].

50

Ωh

Ω2h

Ω4h

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6

0 1 2 3

Figure 2.3: Mode with wave number 4 appearing smooth on 12 node mesh and oscil-
latory on coarser meshes of 6 and 3 nodes, respectively.

Note that the number of nodes is reduced by half as we travel from a fine grid

to the next coarser grid. Also, the nodes on any coarse grid are positioned at the

even numbered nodes of the finer grid before it. Thus, the components of the kth

eigenvector on Ωh at an even node become

V
(k)

2i = sin
((2i)πk

n

)
= sin

(iπk
n/ 2

)
,

which is exactly the eigenvector of the discretization matrix on Ω2h at the ith node of

Ω2h [31]. The same process applies on coarser grids.

It is clear from this example that, as we move further down the grids, the smooth

modes on the finer grids are much more oscillatory relative to the coarser grids. This

is true only for the smooth modes. We can perform relaxation sweeps on a certain

grid until the oscillatory error is reduced as much as possible. When further error

51

reduction on this grid is not advantageous, we transfer our components to a coarser

grid, yielding a more oscillatory error there. This, then, allows the possibility of fur-

ther error to be reduced with relaxation. This process is repeated to eliminate as

much error as we can over the smooth modes using multiple grids. To do this, we

need to define how these grids communicate with each other to transfer components.

These communication tools are called the restriction and interpolation operators.

Interpolation methods are used to transfer information from a coarse to a finer

grid. There are many types of interpolation methods, the easiest of which is called

linear interpolation. We will denote the interpolation operator as Ih2h, denoting the

direction of movement between grids from Ω2h to Ωh. Linear interpolation is defined

by taking

Ih2hv
2h = vh,

where v2h and vh are vectors on Ω2h and Ωh, respectively. For linear interpolation,

the operator assigns the values from v2h to the even-numbered nodes on Ωh. For the

odd-numbered fine-grid nodes, the average value of the of the two immediate coarse-

grid neighbours is used.

For the example above with h = 1
12

, linear interpolation is given by

vh0 = v2h
0

vh1 = 1
2
(v2h

0 + v2h
1)

vh2 = v2h
2

vh3 = 1
2
(v2h

1 + v2h
2)

... =
...

vh12 = v2h
6 ,

see Figure 2.4.

52

Ωh

Ω2h

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6

Figure 2.4: Linear interpolation from Ω2h to Ωh.

In matrix form, we have

1
2



1

1 1

2

1 1

2
.

2

1 1

1


12×6


v0

v1

...

v6

 =



v0

v1

...

...

v12


.

Interpolation is not limited to one-dimensional problems, and can be applied to higher-

dimensional grids. For an explanation of two-dimensional bilinear interpolation, see

[7].

Restriction is the process ”opposite” to interpolation, since it transfers values

of vectors from a fine grid to a coarser grid. As with interpolation, there are many

methods of restriction to choose from. The simplest is called injection. Let I2h
h denote

our restriction operator from Ω2h to Ωh, which is applied as

I2h
h v

h = v2h.

For injection, this simple matrix merely assigns the values of a fine-grid vector at the

even-numbered fine-grid nodes to the corresponding coarse-grid nodes,

v2h
i = vh2i.

53

For many 1D problems , the restriction method used is the full weighting method

in place of injection. Full weighting is given by

v2h
i =

1

4
(vh2i−1 + 2vh2i + vh2i+1),

for 1 ≤ i ≤ n
2
− 1 [7]. In the following, we give both grid illustrations and matrix

forms of both injection and full weighting.

For injection, the operation can be visualized on the grid as in Figure 2.5,

with matrix form

1
2



1

0 0 1

0 0 0 0 1
. . .

1


6×12



v0

v1

...

...

v12


=


v0

v1

...

v6

 .

Ωh

Ω2h

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6

Figure 2.5: Injection from Ωh to Ω2h.

For full weighting, the operation can be visualized on the grid as in Figure 2.6.

Ωh

Ω2h

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6

Figure 2.6: Full weighting restriction from Ωh to Ω2h.

54

In matrix form, it becomes

1
4



1

1 2 1

1 2
. . .

2 1

1





v0

v1

...

...

v12


=


v0

v1

...

v6

 .

An interesting relation comes from the use of full weighting restriction, which is

Ih2h = c(I2h
h)T ,

where c is a real constant. This is called a variational property and will be revisited

later.

Now, we are ready to tie our pieces together to present the two-grid algorithm.

We start off by using a relaxation method and an initial guess, vh, to perform m1

sweeps on the finest grid, Ωh, to reduce as much oscillatory error as possible, until the

error can not be effectively reduced any further. Then, we compute the residual of

our problem on this grid, rh = f − Ahvh, which we restrict to Ω2h using a restriction

operator, I2h
h , by computing I2h

h r
h = r2h. We next find the exact error, e2h, on Ω2h,

by solving the residual equation, A2he2h = r2h. The vector that is interpolated then

is this error approximation using the operator, Ih2h, by computing Ih2he
2h = eh. We

use this vector to update our approximation, vh, calculated earlier, as vh ← vh + eh.

Finally, we again perform m2 relaxation sweeps on our problem with the initial guess

now being the corrected approximation vector. Here, m1 and m2 are usually 1,2, or 3

[7]. They might be equal or different, depending on the problem at hand.

Up to now, we have not properly defined the matrix A2h on Ω2h. Using the

interpolation step in the two-grid algorithm, we aim to approximate the error on Ωh

as eh = Ih2he
2h. Multiplying this equation by Ah on both sides, we get a version of the

residual equation,

rh = Aheh = AhIh2he
2h.

55

Now, we can restrict this by applying I2h
h on both sides to get

I2h
h r

h = I2h
h A

hIh2he
2h,

where we define A2h = I2h
h A

hIh2h. This definition is referred to as the Galerkin condi-

tion [31] when I2h
h = c(Ih2h)

T .

If e2h
i is the ith elementary vector defined on Ω2h, we can calculate A2h columnwise

as

e2h
i =


0

1

0


(n
2
×1)

→ Ih2he
2h
i =



0
1
2

1
1
2

0


(n×1)

→ AhIh2he
2h
i =



−1
2h2

0
1
h2

0
−1
2h2


(n×1)

→ I2h
h A

hIh2he
2h
i =


−1
4h2

1
2h2

−1
4h2


(n
2
×1)

.

Why is this a plausible definition of A2h? From this calculation, we see that A2h

has a stencil of 1
4h2

[−1 2 −1], while we know from discretization of the model problem,

the stencil of Ah is 1
h2

[−1 2 − 1]. That these coincide suggests that our definition of

A2h = I2h
h A

hIh2h is reasonable.

The problem with two-grid correction schemes is that we are still faced with a

complex coarse grid problem on Ω2h if our original problem is large, which usually it

is [44]. To address this, we apply the two-grid approach recursively leading to multi-

grid methods. We follow the notation in [7], where the restricted residual is denoted

as f 2h not r2h and the error is denoted as u2h instead of e2h. The first multilevel

scheme is called the V-cycle scheme, recursively defined as:

Multigrid V- cycle method recursion:

V h(vh, fh)→ vh

56

1-Relax m1 times on Ahuh = fh using vh as an initial guess, calling result uh.

2-If Ωh is the coarsest level , go to step 4.

else: (a) compute the residual, rh = fh − A2huh and restrict f 2h = I2h
h r

h.

(b) set v2h = 02h.

3-Correct the approximation by computing V 2h(v2h, f 2h)→ v2h.

4-Relax m2 times on Ahuh = fh with the initial guess uh + Ih2hv
2h.

This is called the V-cycle because of the pattern of travelling all the way to the

coarsest grid then back up to the finest, resulting in a V motion as shown in Figure

2.7. Other methods have the same details with different patterns. For example, the

W-cycle results from travelling to the coarsest grid and then up one level, then down

one level, then up 2 levels and so on, resulting in a W pattern. Full multigrid (FMG)

is another type of scheme, which begins at the coarsest grid. We omit the details of

this cycle here. We will refer later on to the V-cycle with m1and m2 relaxation sweeps

as V (m1,m2).

57

h

2h

4h

8h

8h

4h

2h

h

Figure 2.7: Multigrid schemes:(a) upper left corner: V-cycle, (b) upper right corner:
W-cycle, (c) below: FMG cycle.

Cost of multigrid methods:

Storage cost:

For the V-cycle, each grid in the scheme stores 2 vectors: the current approximation

of the solution (or error on coarse grids) and the right-hand side vector associated

with that grid. If we consider a d dimensional grid with n nodes in each dimension,

we would have nd total number of nodes on Ωh. Hence, on Ωh, we need 2nd storage

locations for both vectors. From the fact that each time we coarsen we reduce the

amount of nodes by half in each dimension, on Ω2h we will need 1
2d

(storage of Ωh), on

Ω4h we need 1
4d

(storage of Ωh) and so forth. So, summing the geometric series, we get

58

V-cycle storage = 2nd(1 + 1
2d

+ 1
4d

+ · · ·+ 1
Ld

)

= 2nd(1 + 1
2d

+
(

1
2d

)2

+ · · ·+
(

1
2d

)L
)

< 2nd

1−2−d
,

Note:

1-For d = 1, the storage needed on Ωh = 2n, and the total cycle storage cost is

bounded by 2n
1− 1

2

= 4n.

2-For d = 2, the storage needed on Ωh = 2n2, and the total cycle storage cost is

bounded by 2n2

1− 1
4

= 8
3
n2.

3-For d = 3, the storage needed on Ωh = 2n3, and the total cycle storage cost is

bounded by 2n3

1− 1
8

= 16
7
n3.

Note that the storage costs of MG decrease relative to the fine-grid storage cost

for higher dimensions, d.

Computational cost:

We define a work unit (wu) as the cost of performing 1 relaxation sweep on Ωh. In our

cost estimates, interpolation and restriction costs are disgarded, since they typically

account for less than 20% of the total computational cost of the cycle [5]. For the

V-cycle, relaxation is performed on each grid m = m1 + m2 times. Again, summing

the geometric series, we have

V-cycle computation cost = m(1 + 1
2d

+ 1
4d

+ · · ·+ 1
(2L)d

)

= m(1 + 1
2d

+
(

1
2d

)2

+ · · ·+
(

1
2d

)L
)

< m
1−2−d

wu.

1-For V(1,1) with d = 1, m = 2, the total cycle computation cost is bounded by
2

1− 1
2

= 4 wu.

2-For V(1,1) with d = 2, m = 2, the total cycle computation cost is bounded by
2

1− 1
4

= 8
3

wu.

3-For V(2,1) with d = 2, m = 3, the total cycle computation cost is bounded by
3

1− 1
4

= 4 wu.

Convergence of MG methods:

Numerical experiments with MG show the high efficiency of the method, but it is a

59

difficult process to prove convergence of MG theoretically. Two-grid convergence is

easier to show and can often be generalized to multigrid convergence.

Now, to establish convergence, we define some notation. Our model problem,

−u′′ = f , is called the continuous problem and Ahuh = fh is the discrete problem on

Ωh. We define the global error as Eh = u(xi)−uhi , for 1 ≤ i ≤ n−1 where u(xi) is the

exact solution of the continuous problem and uhi is the exact solution to the discrete

problem. Define the algebraic error as eh = uh − vh, where vh is the approximate

solution to the discrete problem.

The L2 norm of the global error is typically bounded by ||Eh||≤ Khp, where K and

p are a positive constant and positive integer, respectively, depending on the discretiza-

tion [7]. This error is hard to calculate exactly since we do not know the exact solutions

of the problem, so the algebraic error is somehow more tractable. To show conver-

gence, we look to find a bound for u− vh, where u = (u(x1), u(x2), . . . , u(xn−1))T , i.e.

, we aim to satisfy

||u− vh||< ε, (2.41)

for some given ε.

By the triangle inequality, we have

||u− vh||≤ ||u− uh||+||uh − vh||= ||Eh||+||eh||.

Thus, condition (2.41) is true if ||Eh||+||eh||< ε. This is possible if we choose ||Eh||< ε
2

and ||eh||< ε
2
. For ||Eh||< ε

2
, using the standard bound on global error, we have

Khp <
ε

2
−→ h <

(ε

2K

) 1
p
.

Let h∗ =
(

ε
2K

) 1
p
, and choose h < h∗. Thus, we can use a desired global error tolerance

to determine the grid spacing [31]. To reduce the algebraic error to a similar level

determines the number of iterations that the relaxation method should do on each

grid and the number of MG cycles in total.

60

As mentioned earlier on a grid with n elements, relaxation damps oscillatory modes

of error, for modes n
2
≤ k ≤ n−1. Since this is true on each grid in the MG hierarchy,

using relaxation on coarse grids damps the oscillatory modes on that grid

0 n
16

n
8

n
4

n
2

n

damps for Ωh
Ω2hΩ4hΩ8h

Figure 2.8: damping process on grids.

Recall, the smoothing factor is the largest magnitude eigenvalue of the iteration

matrix over the oscillatory modes. Above, we saw that the smoothing factor for re-

laxation is small and independent of the grid size h. Since all modes are oscillatory

on some grid, the overall convergence rate for MG is expected to be small and inde-

pendent of h. Figure 2.8 shows this heuristic argument for multigrid convergence.

Before moving forward, we note how eigenvectors change with the value of k.

Recall, the 2ith component of the kth eigenvector of A is sin
(

2πki
n

)
for wave numbers

1 ≤ k < n
2

on Ωh. We notice this kth mode is also the kth mode on Ω2h, as

sin
(2πki

n

)
= sin

(πki
n/2

)
.

For k = n
2
, this mode on Ωh is the zero vector on Ω2h because

sin
(2π(n

2
)i

n

)
= sin

(
πi
)

= 0.

The eigenvectors for n
2
< k ≤ n undergo a process called aliasing on the coarse grid,

meaning that these modes on Ωh appear as modes with wave numbers n− k on Ω2h.

Let k = n− k̂, where 1 ≤ k̂ < n
2
. Then,

sin
(

2πi(n−k̂)
n

)
= sin

(
2πi− 2πik̂

n

)
= sin(2πi) cos

(
2πik̂
n

)
− cos(2πi) sin

(
2πik̂
n

)
= − sin

(
2πik̂
n

)
.

61

So, high-frequency modes on Ωh appear as low-frequency modes on Ω2h. The same is

true on coarser grids.

To establish convergence, we need to consider how restriction and interpolation

map modes between grids. Restricting a mode with 1 ≤ k < n
2

using full weighting

we get the ith component

(I2h
h V

(k))i = 1
4
(V

(k)
i−1 + 2V

(k)
i + V

(k)
i+1)

= 1
2

sin
(

2kπi
n

)
+ 1

4

[
sin
(

2kπ(i−1)
n

)
+ sin

(
2kπ(i+1)

n

)]
= 1

2
sin
(

2πik
n

)(
1 + cos

(
kπ
n

))
.

So, if we denote V̂ (k) as the kth mode on Ω2h, we have I2h
h V

(k) = µk(I
2h
h)V̂ (k), where

µk(I
2h
h) = 1

2

(
1 + cos

(
kπ
n

))
. Applying the same process to modes with n

2
< k < n,

we find that I2h
h V

(k) = µk̂(I
2h
h)V̂ (k̂), where µk̂(I

2h
h) = −1

2

(
1 + cos

(
kπ
n

))
, where V̂ (k̂) is

the k̂th mode on Ω2h.

Considering the effect of restriction on modes with 1 ≤ k < n
2
, we can write

this as I2h
h (ckV

(k) + ck̂V
(n−k)) = (ckµk + ck̂µk̂)V̂

(k), where ck and ck̂ are constants

associated with kth and k̂th modes, respectively. Using similar analysis, we can con-

sider interpolation of the kth mode on Ω2h using linear interpolation to get Ih2hV̂
(k) =

ckV
(k) + skV

(n−k), where ck > sk for 1 ≤ k < n
2
. The first term, ckV

(k), is a smooth

component of the solution while the second term is an oscillatory component [31].

Thus, for convergence, we must analyse actions of relaxation and coarse-grid cor-

rection on a linear combination of both V (k) and V (n−k). Doing this, the two-grid

cycle with m = 2 total sweeps of relaxation using weighted Jacobi with ω = 2
3

gives

an error reduction of a factor of about 0.1 per iteration [31]. In general, since we know

that V-cycles visit each grid two times per cycle, the cost of a d-dimensional V-cycle

with nd nodes is O(nd). Assuming we had a V-cycle with convergence rate γ, then for

the V-cycle to get from an initial, O(1) error, to the order of the global error, O(n−p),

the total number of cycles needed must be equal to O(log n). Thus, total multigrid

cost for V-cycles is O(nd log n). FMG costs a little more per cycle than V-cycles but

gives a total cost bound without the logarithmic factor. For more detail on this, see [7].

62

Algebraic Multigrid:

In the previous subsection, we presented geometric multigrid methods. These meth-

ods use structured grids on which the method is implemented. A natural question

to ask is what if we are faced with a problem where no structured grids exist. Does

multigrid fail then? The answer is no, multigrid, in general, does not fail, only geo-

metric multigrid (GMG) is no longer suitable. In the early 80’s, this was a topic of

concern, and algebraic multigrid methods arose [7, 44]. Algebraic multigrid (AMG)

methods are multigrid methods that depend only on the entries of the underlying

matrices, A, of the problem, with no requirement of geometric grids. In the following

discussion, we assume our problem is of the form Au = f . We also assume A to be a

symmetric, positive-definite matrix.

Recall that our main goal is to find the best approximation possible for our prob-

lem, i.e., reducing the error as much as possible using smoothing and coarse-grid

correction. Smoothing reduces oscillatory error but not smooth error, and the multi-

grid idea is used to reduce these smooth errors. So, we must find a way of smoothing

and performing coarse-grid correction on non-geometric ”grids”. One main difference

between GMG and AMG is that in GMG, the coarsening method is fixed by pre-

defining a certain number of coarser grids, and we are left to choose the appropriate

smoothing method. However, in AMG, it is the opposite, where a relaxation method

is chosen before-hand and fixed throughout the process, while we are left to choose

the best coarse-grid correction method, by choosing appropriate coarse levels and in-

terpolation operators. Often in AMG, the relaxation method used is GS.

We note that AMG clearly has a wider range of possible application than GMG,

since it may be applied to structured and unstructured grids. Also, unlike GMG,

there are two phases of AMG: a setup phase and a solution phase. Setup phases are

done at the begining of the computation, where the problem is analysed, all coarse

levels are produced and operators are all defined. Much of the cost of AMG comes

from this phase, but it is often worth the price [35]. The solution phase is simple, and

usually follows the same cycling as in GMG.

We note that the reader should keep in mind that, in the following discussion of

63

AMG, we use the notations H and h to only indicate the level we are referring to.

This does not have any connection to the grid spacing, since geometric grids are not

defined in AMG. We will define coarsening, transfer operators and coarse-grid oper-

ators. To specify the setup phase, we start by defining a coarsening method. Since

no physical grids exist in AMG, instead of grids, we have levels, and instead of grid

nodes, we have variables or points. We use Ωh to denote the fine level with a set of

points {1, 2, 3 . . . , n}. To coarsen, we split Ωh as Ωh = Ch ∪ F h, where the points

in Ch are called C-variables and make up the coarse level. Points in F h are called

F-variables and lie only on the fine level, being the complement of the C-variables on

the fine level. We define our coarser level as ΩH = Ch.

We now need to find a way of choosing these C-variables. The number of C-

variables chosen should be as small as possible in order to keep the cost of AMG low,

since costs for computing AH and subsequent calculations depends on the number of

C-variables. Also, keeping in mind that the coarse level must be able to represent

the error after relaxation restricted from the fine level, the coarse set should not be

too small. In AMG, the coarsening process is usually carried out in as uniform a

way as possible, with C-variables on the fine level surrounded by F-variables. This

distribution has been found to support a better interpolation operator resulting in

faster convergence [35].

There are many methods of corsening. Here, we will present the standard Ruge-

Stüben coarsening algorithm. In this, and other coarsening methods, connections

between variables play a big role. We say that a point i ∈ Ωh is connected directly

(coupled) to another point j ∈ Ωh if ahij 6= 0, where ahij are elements of the matrix

Ah. These sets of points are referred to as the neighbourhood of node i denoted as

Nh
i = {j ∈ Ωh : j 6= i, ahij 6= 0}, for i ∈ Ωh. These connections could be strong or

weak, negative or positive. For the M-matrices typical of discretizations of diffussion

equations, most strong connections are negative. A variable i is said to be strongly

connected (strongly coupled) to another point, j, if

−aij ≥ ε max
k s.t. aik<0

|aik|,

where 0 < ε < 1 is a fixed constant usually taken to be equal to 0.25 [35]. Any other

64

connections are called weak connections. Let Si = {j ∈ Ni : i is strongly coupled to j}
be the set of all strongly coupled variables to i. This set defines the matrix of strong

connections, S, with elements

Sij =

{
1, if i is strongly connected to j

0, otherwise .

Since the set Si need not be symmetric, even if A is, we also consider STi , which

is the set of strong transpose couplings of i, containing all points j that are strongly

coupled to i,

STi = {j ∈ Ω : i ∈ Sj}.

The steps of coarsening are done in 2 stages or passes. The first pass starts by

defining one i point to be a C-variable. Then, all the strongly coupled points to that

first C-variable are assigned to be F-variables. We repeat this process, picking another

C-variable from the set of unassigned points and marking its unassigned neighbours

as F-variables until all points are assigned to either F or C-variables. But, in what

order do we pick the C-variables? For this, we use a measure of importance,

λi = number of elements in (STi ∩ U) + number of elements in (STi ∩ F),

for each i ∈ U , the set of currently unassigned points. This measure is calculated

and updated for each point in the fine level in the coarsening phase. The coarsening

algorithm becomes:

1. Start by having the sets C and F both empty and U be the set of all points,

{1, 2, . . . , n}.

2. Find λi for all points in U .

3. Find the unassigned point, i ∈ U , which has the largest λi.

4. Add i to the set of coarse points, C.

5. Find all j points that are strongly connected to this i and add them to the set

of fine points.

65

6. For each of these j’s, find every point k strongly connected to j and increase λk

by 1.

7. If U is empty, then the partitioning is done. If not, repeat from step 3.

Often, a ”second pass” is used to improve the equality of the coarsening. The sec-

ond pass involves going back to the points assigned in the first pass and checking the

connections between F-points. If 2 F-points have a strong connection between them,

but no common strongly connected C-point, we usually add one of the F-points to

the coarse set. This ensures that it is possible to construct a reasonable interpolation

operator in the next stage of the setup.

Remarks:

1- In the first pass, C-points are assigned in a way that there are no direct connections

between them but, in the second pass, such direct connections might arise.

2- This standard coarsening method is only effective if any positive connections in

the matrix are small enough to be neglected. If they are not, another method of

coarsening should be chosen.

For multilevel coarsening, this method is applied to the coarse level, ΩH , to define

an even coarser level, ΩH2 , and so on until, like GMG, we reach a level where we

cannot coarsen further and the discrete operator is small enough that a direct solve

can be used.

With each coarse level, we need to define an interpolation operator. Like coars-

ening, there are many ways of defining an interpolation operator. We present direct

interpolation, which assumes the standard coarsening algorithm is used and use IhH to

denote interpolation in AMG from a coarse level to the next finer level. For interpo-

lation, we have to transfer an error vector on the coarse level to an error vector on the

fine level. If a C-variable, j, has a strong coupling with i ∈ F , then the coarse-grid

value at point j strongly affects the value of ei on the fine level [7].

To determine interpolation, we consider the condition, ||She||A≈ ||e||A, where ||.||A
is the A-norm, ||u||2A= (u, u)A = (Au, u) and Sh is the error-propagation operator

66

for the relation scheme used in AMG. For Jacobi smoothing, for example, we write

||(I − wD−1A)e||A≈ ||e||A. This is equivalent to

(D−1Ae,Ae)� (e, Ae),

where � denotes much less than. Along with the fact that A is symmetric and using

Ae = r, we then have

(D−1r, r)� (e, Ae),

or ||r||D−1� ||e||A. Now, because ||e||2A= (Ae, e) = (D−
1
2Ae,D

1
2 e) ≤ ||r||D−1 ||e||D, if

||She||A≈ ||e||A, ||e||A� ||e||D. Writing (Ae, e) = 1
2

∑
i,j(−aij)(ei − ej)2 +

∑
i,j aije

2
i ,

we reach the condition ∑
i

∑
i 6=j

|aij|(ei − ej)2 �
∑
i

aiie
2
i

by assuming
∑

j aij ≈ 0 as is typical for discretized diffusion equations. Eliminating

the summation over i and dividing both sides gives

∑
j 6=i

(
|aij|
aii

)(
ei − ej
ei

)2

� 1, (2.42)

for 1 ≤ i ≤ n [7]. Note that,
|aij |
aii

can be large or small. If it is large, then the second

term,
(
ei−ej
ei

)2

must be small, i.e ei ≈ ej. This motivates consideration of error that

varies slowly in the direction of strong connections.

Following [7, 35], for point i ∈ F , we can divide the points in the neighbourhood

set, j ∈ Ni, to 3 different categories.

1. j is a coarse-level point with a strong connection to i. This set is denoted as Pi

and called the interpolatary set for i.

2. j is an F-variable and has a strong connection to i. This set is denoted by Ds
i .

3. j is either in F or a C-variable and has weak connections to i. This set is denoted

as Dw
i .

67

This division of Ni is key to the definition of interpolation. Direct interpolation is

defined to take form

(IhHe
H)i =

 ehi , if i ∈ C∑
j∈Pi

wije
h
j , if i ∈ F,

where wij are called the interpolation weights. To find wij, we notice that when

Ae ≈ 0, we have the componentwise relation

aiiei ≈ −
∑
j∈Ni

aijej.

If we were to divide the summation in this equation into the 3 kinds of points in

Ni, we would have

aiiei ≈ −
∑
j∈Pi

aijej −
∑
j∈Dsi

aijej −
∑
j∈Dwi

aijej.

So, to define wij, we should try to only have a summation over only Pi on the

right-hand side above. For j ∈ Dw
i , since connections are weak to i, we can estimate

ej by ei. This is not the best approximation, but we can do this because the effect

of this summation on i is not significant. We can, thus, move this summation to the

left-hand side.

For j ∈ Ds
i , replacing ej is more tricky. One thing we can do is to use the following

estimate of ej

ej ≈

∑
k∈Pi

ajkek∑
k∈Pi

ajk
.

This approximation uses points k in the coarse variable set, C, within a weighted

average of those points strongly connected to both i and j [7]. We can then input this

68

into the above, giving

wij =

−aij +
∑
m∈Dsi

 aimamj∑
k∈Pi

amk


aii +

∑
n∈Dsi

ain
.

Now, with interpolation defined, we simply use the variational property discussed

previously for restriction,

IHh = (IhH)T .

For the coarse level matrix, AH , we also just use the Galerkin condition to define

AH = IHh A
hIhH .

We now have all of the pieces of necessary to construct a two-level AMG. This

method is exactly the same as the two-grid GMG with the transfer operators, AH ,

and coarsening defined in the AMG environment. Like GMG, this method can be ex-

tended to define a multilevel method, with V-,W-, and full multigrid methods defined

in exactly the same way as GMG.

The two-level AMG method is as:

1. (Pre-smoothing) Relax on Ωh using Sh.

2. Restrict the residual from Ωh to ΩH , fH = IHh (fh − Ahuh).

3. Solve the coarse-level problem AHuH = fH directly.

4. Interpolate the coarse-grid correction to Ωh from ΩH .

5. Correct the current approximation on Ωh.

6. (Post-smoothing) Relax the problem again on Ωh using the corrected approxi-

mation as initial guess.

A useful way to think of AMG is to reorder the system, Ahuh = fh, based on the

connections between F- and C-variables. If we were to define a permutation matrix,

69

P , that reorders the degrees of freedom to give the F-points first and C-points second,

P TAP , P Tu and P Tf can be written in block form as[
AFF AFC

ACF ACC

][
uF

uC

]
=

[
fF

fC

]
. (2.43)

We can also do the same for the interpolation and restriction matrices,

IhH =

[
IFC

ICC

]
=

[
WFC

I

]
, IHh =

[
ICF ICC

]
=
[
W T
FC I

]
, (2.44)

where I is the identity matrix and WFC comes from the weights of interpolation.

Convergence of AMG:

In the following discussion, we follow [32, 35]. Before we demonstrate convergence,

we clarify some notation. Let Sh denote the relaxation operator, such as GS. In the

previous subsection, we wrote the error correction step in multigrid as v ← v + IhHe
h,

where v is the current approximation found by relaxation before coarse-grid correction.

Tracing through the coarse-grid correction process, we have an error update of

eh ← (I − IhH(IHh A
hIhH)−1(IhH)TAh)eh,

where I is the identity matrix of size same as size of Ah [32]. Since we know

AH = IHh A
hIhH , the coarse-grid correction operator can be written as T h = I −

IhH(AH)−1(IhH)TAh.

We use the following inner products:

< u, v >0=< Du, v >, < u, v >1=< Au, v >, < u, v >2=< D−1Au,Av >,

where D = diag(A). The norms ||.||0, ||.||1 and ||.||2 are associated with the above

inner products, respectively, such that ||u||2i=< u, u >i for i = 0, 1, 2.

70

Denote ||ShT h||1 as the two-level convergence factor measured in the A norm.

Theorem 6 Assume A is SPD, and Sh as defined earlier. Let ||Sheh||21≤ ||eh||21−δ||T heh||21,

where δ > 0 is independent of h and eh. Then δ ≤ 1 and the convergence factor of a

V-cycle, with 1 smoothing sweep after coarse-grid correction is ||ShT h||1≤
√

1− δ.

Theorem 7 Assume A is SPD, and Sh as defined earlier. Let ||Sheh||21≤ ||eh||21−δ||T hSheh||21,

where δ > 0 is independent of h and eh. Then δ ≤ 1 and the convergence factor of a

V-cycle, with 1 smoothing sweep before coarse-grid correction , is ||T hSh||1≤ 1√
1−δ .

The proofs of these two theorems are omitted here, but can be found in [35].

We can separate the inequality conditions assumed in both theorems into two

different inequalities in many ways. A common separation is to assume

||Sheh||21 ≤ ||eh||21−α||eh||22,−→ this is called the smoothing assumption ,

||T heh||21 ≤ β||eh||22, −→ this is called the approximation assumption ,

where α and β are both positive constants and δ in the theorems above is re-

placed by α
β

[32, 35]. We note that the smoothing assumption is derived from

Theorem 6. If we were to use Theorem 7, we would rewrite this assumption as

||Sheh||21≤ ||eh||21−α||Sheh||22.

For two-level convergence of AMG, using the first form of the smoothing assump-

tion, we can state a convergence theorem as follows:

Theorem 8 If A and Sh are defined as before, and mineH ||eh − IhHe
H ||20≤ β||eh||21,

where β is independent of eh, then β ≥ α and the two-level convergence factor for

AMG is

||ShT h||1≤
√

1− α

β
.

It is difficult to extend these results from two-level convergence to prove conver-

gence of V-cycle AMG methods. For AMG W- and F- cycles, convergence has been

found to be the same as in Theorem 8 if the assumptions hold uniformly on all grids.

71

So, for V-cycles, we generally need a stronger condition that that used in Theorem 8.

Convergence is guaranteed under the condition ||T heh||21≤ β||eh||22 which requires the

stronger bound

min
eH
||eh − IhHeH ||20≤ β2||eh||22.

This leads us to the important requirement of defining more accurate interpolation

operators. Further details on this are found in [32].

Chapter 3

Methodology

In this work, we analyse the following two-dimensional boundary value problem, with

Neumann boundary conditions. We aim to study some iterative methods for solving

this problem and compare the costs of these methods. Consider the equation

−∇ · (K(x, y)∇u(x, y)) = f(x, y), for (x, y) in Ω

(K(x, y)∇u) · −→n = 0, for (x, y) in ∂Ω
(3.1)

where Ω is the domain, with boundary ∂Ω and −→n is the (outward) unit normal vector

on the boundary. Following [10], we set Ω = [0, 3] × [0, 1], and use a source function

composed of a sum of Gaussians,

Ae
−
[

(x−x0)
2

2δ2x
+

(y−y0)
2

2δ2y

]
,

where δ = (δx, δy) is the variance. Here, we set δx = δy = 0.05 and consider four terms,

associated with the four corners of our domain, with associated weights {1, 2, 3,−6},
giving

f(x, y) = e−[x
2+y2

0.005
] + 2e−[

(x−3)2+y2

0.005
] + 3e−[

(x−3)2+(y−1)2

0.005
] − 6e−[

x2+(y−1)2

0.005
].

Note that
∫∫

Ω
f(x, y) = 0 and, consequently, (3.1) has a solution, u(x, y), that is

unique up to constant shifts. K is called the permeability field and is specified to

have a log-normal prior distribution, K = exp(κ), with κ ∼ N(0,Γ), where the

73

covariance matrix, Γ, is defined via the covariance kernel

Cov(κ(s), κ(s′)) = σ2
u exp

(
−1

2

(
(s− s′)TΣ−1(s− s′)

) 1.8
2

)
,

for s, s′ ∈ Ω. In the covariance above, σu = 1.15, and the matrix Σ is given by

Σ =

[
0.165 −0.135

−0.135 0.165

]
.

Denoting the Cholesky factor of covariance defined above by L, the following

pseudo-code generates different realizations, Ki,

Algorithm 1 Calculate vectors Ki

for i = 1 to total number of samples do
ri = normal random vector of length n.
Ki = exp (L ∗ ri).

end for

Presented in Figure 3.1 are graphs of log(K) for a mesh of size 1282 in (a) and for

642 in (b). These are similar to the permeability fields shown in [10].

(a) log(K) for a mesh of 128× 128 (b) log(K) for a mesh of 64× 64

Figure 3.1: Samples of log(K) of some mesh sizes produced using the algorithm above.

In our research, we use meshes of size n2, where n is 16, 32, 64 and 128. A limi-

tation arises from the algorithm above. Due to the use of a Cholesky factorization of

the dense covariance matrix, it is impractical to generate data for meshes finer than

128 × 128. We note, however, that this limitation in grid sizes does not affect the

conclusions drawn later and can be circumvented using, for example, the stochastic

74

PDE approach presented in [28]. Going forward, we associate a piecewise linear in-

terpolation of the nodal values of K as a function K(x, y), distinct from the set of

vectors of these values generated in this way.

3.1 Finite-element discretization

Before we go further, a very elementary introduction to Finite Element methods is

needed. For more detail on this subject see [7, 37]. Finite Element methods are one

family of discretization methods. We start by considering the same model problem

as (2.31), but with a slight change in boundary conditions,

−u′′(x) = f(x), in Ω = (0, 1),

u(0) = u′(1) = 0,
(3.2)

where the Dirichlet boundary condition is called an essential boundary condition while

the Neumann boundary condition is called a natural boundary condition. The solution

to (3.2) is called the solution of the strong form. After multiplying both sides by a test

function, v(x), taking the integral of both sides and integrating by parts, we define

the associated bilinear form,

a(u, v) =

∫ 1

0

u′(x)v′(x)dx.

Considering the space V = {v ∈ L2([0, 1]) : a(v, v) <∞ and v(0) = 0}, we define

the weak form as finding u ∈ V such that a(u, v) = 〈f, v〉 =
∫ 1

0
f(x)v(x)dx, ∀v ∈ V .

The solution of the strong form is always a solution of the weak form. The converse

is only true if f(x) is continuous in Ω and u ∈ V ∩ C2([0, 1]).

For the finite-element method, we restrict the solution of the weak form to a finite-

dimensional subspace, S ⊂ V , where we define us ∈ S to be the (unique) solution such

that a(us, v) = 〈f, v〉, ∀v ∈ S. This is called the Ritz-Galerkin approximation. Indeed,

a unique solution exists for the Ritz-Galerkin approximation if f(x) ∈ L2([0, 1]). This

solution, us, turns out to be the best possible approximation to the solution of the

75

weak form if measured in energy norm [31],

||u||2e= a(u, u).

To quantify the quality of the FEM solution, we need to consider a specific choice

of the finite-dimensional approximation space, S. To do this, we divide the domain

into cells called elements. In one dimension, this is done by dividing the domain into

a mesh with points {xj}nj=0, giving elements [xj−1, xj], with mesh sizes hj = xj−xj−1.

The points between the elements are called nodes.

Within each element, the values of a function are determined by interpolating val-

ues at the nodes. So, the finite element method reduces to finding an approximation

at each point in the domain, i.e., the nodes. The values at the nodal points are found

explicitly and values at the non-nodal points are approximated by interpolation from

the nodal values [24].

We then choose a piecewise polynomial representation of us on each element. We

define the spaces

V h
k = {u ∈ V ∩C0([0, 1]) : u(x) is a polynomial of degree at most k for x ∈ [xi−1, xi],∀i},

and a suitable basis for these spaces. The nodal basis functions for 1 ≤ j ≤ n− 1 of

V k
1 are:

φj(x) =


x−xj−1

xj−xj−1
, for xj−1 ≤ x ≤ xj

xj+1−x
xj+1−xj , for xj ≤ x ≤ xj+1

0, otherwise.

Basis functions associated with the end points are

φ0(x) =

{
x1−x
x1−x0 , for x0 ≤ x ≤ x1

0, otherwise,

76

φn(x) =

{
x−xn−1

xn−xn−1
, for xn−1 ≤ x ≤ xn

0, otherwise.

Note that these functions satisfy φj(xi) = 1 if i = j and zero if i 6= j. The nodal

functions above are linear polynomials and are graphed in Figure 3.2.

φi(x)

1

x1 x2 x3 x4

φ1 φ2 φ3

Figure 3.2: Basis functions of 1D FEM are piecewise polynomial functions.

Notice that φ0 is not included in Figure 3.2 nor in the expansions that follow. This

is because φ0 is the basis function at the end point, x0 = 0, and the value of u(0) is a

fixed known value, which is 0.

For a function uh ∈ V h
k , the weak form specifies

∫ 1

0
u′hv

′
hdx =

∫ 1

0
f(x)vhdx, ∀vh ∈

V h
k . Writing uh =

∑n
j=1 ujφj, this becomes

∑n
j=1 uj

∫ 1

0
φ′iφ

′
jdx =

∫ 1

0
f(x)φidx, for

1 ≤ i ≤ n which can be written as Au = b, where

u =



u1

u2

...

...

un


and b =



∫ 1

0
f(x)φ1dx∫ 1

0
f(x)φ2dx

...

...∫ 1

0
f(x)φndx


.

77

Matrix A it is called the global stiffness matrix. In this setting, the matrix is

symmetric and tridiagonal. The elements of A are aij = a(φi, φj) and can be found

as:

a11 =
∫ 1

0
φ′1φ

′
1dx =

∫ x1
0

(
1
h1

)2

dx+
∫ x2
x1

(
−1
h2

)2

dx

a12 =
∫ 1

0
φ′1φ

′
2dx =

∫ x2
x1

−1
h22
dx

a22 =
∫ 1

0
φ′2φ

′
2dx =

∫ x2
x1

(
1
h2

)2

dx+
∫ x3
x2

(
−1
h3

)2

dx,
... =

...

Note aij = aji. In general,

a(φi−1, φi) =
∫ xi
xi−1

φ′i−1(x)φ′i(x)dx

a(φi, φi) =
∫ xi
xi−1

(φ′i(x))2dx+
∫ xi+1

xi
(φ′i(x))2dx

a(φi+1, φi) =
∫ xi+1

xi
φ′i+1(x)φ′i(x)dx.

We note here that a(φn, φn) cannot be defined in the same way as the general

case, since the interval [xn, xn+1] lies outside of the physical domain. Instead, we

define a(φn, φn) =
∫ xn
xn−1

(φn(x))2dx. Note that this is quite different than the treat-

ment of the Dirichlet boundary condition, where φ0 is dropped completely from the

discretized form.

A thus becomes

1
h1

+ 1
h2

−1
h2

0 . . .
−1
h2

1
h2

+ 1
h3

−1
h3

0 . . .

0
.

. −1
hn−1

0
−1
hn−1

1
hn−1

+ 1
hn

−1
hn

−1
hn

1
hn


.

We note that in finite element methods, boundary conditions, both essential and

natural, are accounted for. Natural boundary conditions are implicitly included in

the method by their use in the integration by parts step when defining the weak

form. This is seen using Green’s theorem. This term drops out in our problem be-

cause the natural condition is chosen to be homogeneous. If the natural condition is

78

non-homogeneous, an adjustment to the construction of b is required such that the

boundary condition is accounted for in the last entry. Dealing with Neumann condi-

tions is easier in FEM than in finite difference methods. This is why these conditions

are called natural conditions. As for the essential conditions, they are explicitly im-

posed by requiring both the test function v to satisfy v(0) = 0, and requiring the

Ritz-Galerkin approximation to satisfy us(0) = 0.

In summary, the essential steps of discretizing using finite elements are:

1. Formation of the weak form of the boundary value problem.

2. Partition of domain into elements, called triangulation.

3. Define finite element space, V h
k .

4. Build the basis functions of the space in step 3.

5. Assemble the global stiffness matrix and solve the finite-element system Au = f .

In two dimensions, the finite-element method is slightly more complicated. The

elements are usually triangular or quadrilateral, in contrast to the elements in 1 di-

mension [31]. In both cases, the process of forming these elements is usually called

triangulation. A mesh of triangular shaped elements is shown in Figure 3.3. Each

element shares 2 nodes and an edge with each adjacent element. The vertices of the

triangles are the nodes denoted as (xi, yi). More approximation nodes can be added

in the middle of the edges for higher-order 2D finite-element methods.

Figure 3.3: Triangular finite elements on 2D mesh.

79

Again, we need a space V h
k with a piecewise polynomial basis such that

V h
k = {u ∈ C0(Ω) : ∀ T ∈ Ωh, u(x) is a polynomial of degree no more than k on T}.

Basis functions can be defined by polynomial interpolation of nodal values. So, the

basis functions φi, for i = 1, 2, 3 in a triangle, T , associated with a point (xi, yi) can

be written as

φi(x, y) = ai + bix+ ciy,

where ai, bi, ci are constants to be found later. Since the element, T , is triangular, we

find φ1, φ2 and φ3 for the three different nodes. Taking the vector [1, x, y] to be the

vector of polynomial basis functions, φi(x, y) can be written in matrix form as

φi(x, y) =
[
1 x y

]aibi
ci

 .
We then require

φi(xj, yj) =

{
1, for i = j

0, for i 6= j

Thus, φ1(x1, y1) = 1, φ1(x2, y2) = 0 and φ1(x3, y3) = 0, with similar requirements for

φ2 and φ3. So, for the first basis function, we have the system of equations:

1 x1 y1

1 x2 y2

1 x3 y3


a1

b1

c1

 =

1

0

0

 .
By Gaussian elimination, the system can be solved to find the values a1, b1, c1. These

are

a1 = x2y3−y2x3
(x2y3−x3y2)+(y2−y3)x1+(x3−x2)y1

b1 = y2−y3
(x2y3−x3y2)+(y2−y3)x1+(x3−x2)y1

c1 = x3−x2
(x2y3−x3y2)+(y2−y3)x1+(x3−x2)y1

.

The final step is to assemble the stiffness matrix. This is done in 2 steps, defining the

80

element stiffness matrix and then assembling the global stiffness matrix.

The element matrix for an element T , denoted as AT , is formed by aT (φk, φj) =∫∫
T
∇φj · ∇φkdA. Consider the first element shown in Figure 3.4.

(1) (2)

(3)

Figure 3.4: A single triangular element T1.

If node (1) has coordinates of (xi, yj), then (2) has coordinates of (xi+1, yj), and (3)

has coordinates of (xi, yj+1). As above, we can find the basis functions for the three

nodes,

φ1(x, y) = (yi+1−y)
(yi+1−yi) + (xi−x)

(xi+1−xi)

φ2(x, y) = −xi
xi+1−xi + x

xi+1−xi
φ3(x, y) = −yi

yi+1−yi + y
yi+1−yi .

We then find the vectors ∇φ1,∇φ2,∇φ3 and then integrate aT (φk, φj) over the ele-

ment T to find all entries of the element stiffness matrix AT .

We then extend all element matrices to a matrix of the size n× n, where n is the

total number of nodes in the mesh. Entries of AT are filled in to the bigger matrix at

places corresponding to the nodes associated with each element. After this extension,

the global stiffness matrix is equal to the summation of the extended element stiffness

matrices.

81

3.2 Solution of Stochastic Model

We need to find a method that will give us a good approximate solution for (3.1).

This problem can be discretized using FEM by multiplying both sides with v and

integrating both sides to get

−
∫

Ω

∇ · (K∇u)v =

∫
Ω

fv, ∀v.

Integrating by parts, we have∫
Ω

(K∇u) · ∇v =

∫
Ω

fv, ∀v. (3.3)

Now, letting u =
∑

j ujφj, and v = φi, (3.3) becomes

∑
j

uj

∫
Ω

(K∇φj) · ∇φi =

∫
Ω

fφi, ∀i.

K is uniquely defined at each node, and interpolates over each element adjacent to the

node. So, the above equation can be evaluated elementwise, leading to the element

stiffness matrices analogous to those discussed above. Note that the continuous sys-

tem in (3.1) is singular, since both the differential equation and boundary conditions

allow any constant shift of a solution, u(x, y), to also be a solution of (3.1). This re-

mains true for the discretized system, Ax = b, resulting from this discretization, with

the constant vector in the null-space of A. Note, also, that the system is consistent,

since the right-hand side vector will be orthogonal to this null-space. Thus, in what

follows, we consider solution of the discrete system up to its null-space component

(which, if needed, we will fix by taking x to be orthogonal to the constant vector). All

of the preconditioners considered below are “robust” to this singularity, perhaps with

the addition of a simple orthogonal projection to remove the null-space component of

the solution.

To solve this discretized problem, we follow a simple idea of trying to solve (3.1)

for many realizations of the coefficient K, using the PCG method along with vari-

ous preconditioners. A standard choice to use here is AMG, for which we use the

82

HYPRE BoomerAMG implementation [20, 15]. HYPRE is a library of precondition-

ers implemented using MPI (message passing interface), which is essential in parallel

programming. All of our codes are run in serial, but we use HYPRE for simplicity of

implementation.

In this thesis, three algorithms for solving the discretized system in the form

Ax = b are considered. As mentioned earlier, these algorithms are all implemented

in the C++ language and use FEniCS [49] for the finite-element discretization and

PETSc [50] for the numerical solution, possibly interfacing to HYPRE/BoomerAMG.

FEniCS is a package like PETSc that provides the user with many commands for solv-

ing a differential equation using the FEM method. In the following, four algorithms

are discussed with specific parts of codes presented.

As a baseline, we would like to see how efficient it is using a standard preconditioner

to solve each realization. To measure efficiency, we monitor the time it takes to

converge and the number of iterations the method uses to converge. For this routine,

we ran PCG with the AMG preconditioner to solve the discretized problem for 100

realizations of the coefficient field, K, asking for a reduction of the norm of residual by

a factor of 10−8. We set the stopping criterion for AMG to be the relative tolerance.

For the initial guess of PCG, we use the zero vector. Now, since AMG is a multigrid

method, we need to fix a few settings for the routine. These are:

1. Type of cycle used: V-cycle.

2. Maximum number of levels used is: 25.

3. Relaxation method: Jacobi, both for pre- and post-relaxation. Direct solve

was used on the coarsest level by simple Gaussian elimination.

4. Number of sweeps on each level: 1 both pre and post-relaxation, i.e m1 =

m2 = 1.

Each solve of the problem has its own AMG set-up phase with some cost plus the

solve cost. In all our routines implemented in this work, we include several read/write

commands from various files to load coefficient values or save solutions, for example.

This cost is disregarded in all of our results. Also, some overhead costs were recorded,

83

consistently in all results, coming from the building of the mesh for the discretized

problem and other aspects. We used FEniCS to build these meshes and to define the

source of the problem, f(x, y), the variational spaces and the bilinear forms of the

FEM method.

As first data, we applied AMG-preconditioned CG to each of 100 linear systems,

for each mesh size given in Table 3.1, recording the observed median number of PCG

iterations for each solve, as well as the total time to solve all 100 systems.

Mesh size (n) Iteration count Total time (in sec.)

16 6 11.3
32 7 15
64 7 29.6
128 8 97.1

Table 3.1: Iteration count and total time of solve AMG precondtioner.

We see here that iteration counts are low, but solve times are substantial, especially

on finer meshes. Total time here is the time recorded for the actual solve of the

problem. The increase in time as we move to finer meshes is expected because of

the increase in the total number of nodes used and the problem sizes to be solved.

Noting the large time required for small n, we approximate the time in the above as:

time = c0 + c1

(
n
16

)2

, where c0 and c1 are constants. This yields the system

11 = c0 + c1

15 = c0 + 4c1

30 = c0 + 16c1

97 = c0 + 64c1.

Solving this system, we get c0 ≈ 10 and c1 ≈ 1.25 which (roughly) satisfies all equa-

tions. Using finer-grained timings, we see the time associated with c0 comes primarily

from building the mesh and function space in FEniCS. This cost is considered as an

overhead that we cannot decrease and have no control over. Dividing c0 by 100, we

find that it takes about 0.1 seconds for FEniCS to build the mesh and function space

for each system. This time is seen to be independent of the mesh size, i.e. the number

84

of nodes used. On the other hand, c1 is the cost of the algorithm to solve all 100

realizations, on the 16×16 mesh. This is a reasonable method with reasonable times,

but the focus of this work is whether we can decrease these times by incorporating a

better solution method.

AMG is an effective “black box” to solve these linear systems, but has no ability

to incorporate information emerging from the solves. Deflation, in contrast, is typi-

cally less effective as a preconditioner, but has low cost per iteration, and information

can be easily added into the deflation space. We adapt our deflation space here by

following two separate methods. In both, we divide our set of permeability fields into

two subsets, called the training set and testing set. The training set is usually a small

set of coefficients, ranging from 2 to 16 realizations. The testing set is composed of

the coefficient realizations remaining from the 100 selected, after removing those from

the training set. Information obtained using the training set is used to help solve the

problems in the testing set. The two methods proposed here both use the singular

value decomposition (SVD). These methods, in brief, are:

Solution-based deflation: Solve the systems Aixi = b for the training set to get

a set of solution vectors X = [x1, x2, . . . , xm]. Then, find the SVD of X and identify

a few of the vectors with largest singular values. Finally, solve the remaining systems

Aixi = b for the testing set, using these singular vectors to define the deflation space.

Eigenvector-based deflation: For the systems Aixi = b in the training set, find

t of the smallest eigenvalues of Ai and their associated eigenvectors,

E = [e11, e21, . . . , et1, . . . , e1m, . . . , etm]. Then, find the SVD of E and identify a few

of the vectors with largest singular values. Finally, solve Aixi = b for the testing set,

using these singular vectors to define the deflation preconditioner.

The rest of this chapter focuses on our work on the two methods above. We

start by describing solution-based deflation in detail. This method consists of 3 parts

implemented by 3 individual codes. We note that this method has some similarity

to reduced-basis methods [13]; however, here, we use the reduced-order model as a

component of our preconditioner, but still solve the full fine-scale discretization.

85

We start by solving the discretized systems Aixi = b for the training set just

as above. For this part, we run the same routine as before using AMG from the

HYPRE library with the same parameters as set previously. For each coefficient in

the training set, we form Ai, and solve using AMG-preconditioned CG, giving an

approximate solution denoted as xi. These solution vectors are stored column-wise

in a matrix denoted as X, such that X = [x1, x2, . . . , xm]. The number of iterations

performed is consistent with those reported above, with about 8 iterations per solve.

Time recorded for this part of this method includes:

1. Assembly of mesh and finite element space using FEniCS.

2. Defining the bilinear form, assembly of A, setting the parameters of AMG and

solving the system.

Condensed code to achieve this is given below.

1 // Def ine v a r i a t i o n a l forms

2 Poisson1 : : Bi l inearForm a (V1 , V1) ;

3 Poisson1 : : LinearForm L(V1) ;

4 auto f = std : : make shared<Source >() ;

5 auto g = std : : make shared<dUdN>() ;

6 auto k = std : : make shared<d o l f i n : : Function>(V1 , coe fv e c) ;

7 L . f = f ;

8 L . g = g ;

9 a . k = k ;

10

11 //Assemble the system

12 auto A=std : : make shared<PETScMatrix>() ;

13 PETScVector b ;

14 assemble (∗A, a) ;

15 assemble (b ,L) ;

16

17 // s o l v e

18 s o l v e r . s o l v e (∗u . vec to r () , b) ;

In the above, the definition of variational forms is contained in a ”UFL form file”.

Source is a function defining the right-hand side of (3.1), dudN is a function defining

86

the (homogeneous) Neumann boundary condition, and coefvec is a FEniCS vector

whose elements are the values of the coefficient K at each node on the fine mesh. The

bilinear form, denoted a, using the finite-element space denoted as V h
1 above is

a(u, v) =

∫
Ω

(K∇u) · (∇v)dx.

The linear form, denoted by L, is

L(v) =

∫
Ω

fvdx.

The associated weak form is to find u ∈ V h
1 such that

a(u, v) = L(v), for v ∈ V h
1 .

A is the matrix assembled from the bilinear form a(u, v), and b is the vector defined

by the linear form L(v). Both are assembled using data types from the PETSc library.

This system is solved by the solver.solve command with options set via the PETSc

interface.

We now move on to the second part, which includes finding the SVD of X. In the

singular value decomposition, the given matrix X of size n× p is represented by the

product of matrices, USV T , where S is the same dimension as X and the diagonal

elements of S are the singular values, while all other values in S are zero. The columns

of the n×n matrix U are called the left singular vectors while the columns of the p×p
matrix V are called the right singular vectors. Both U and V are orthogonal matrices.

For this second part of the method, PETSc has a very useful extension called

SLEPc [51]. Using the following clip of code, we obtain the singular vectors.

1 // f i nd the svd f o r X mat

2 SVD svd ;

3 Petsc Int i t s , nsv , ncov , ncv ;

4 ncv=50;

5 nsv=25;

6 PetscReal e r ror , sigma ;

87

7 Vec uu , vv ;

8 MatCreateVecs (A,&uu,&vv) ;

9 i e r r=SVDCreate (PETSCCOMMWORLD,&svd) ;

10 i e r r=SVDSetOperator (svd , X mat) ;

11 i e r r=SVDSetType(svd ,SVDCROSS) ;

12 i e r r=SVDSetFromOptions (svd) ;

13 i e r r=SVDSolve (svd) ;

14 i e r r=SVDGetIterationNumber (svd ,& i t s) ;

Here, svd is the SLEPc SVD object. We set nsv = 25 to request 25 singular values

be approximated and ncv = 50 to be the maximum dimension of the subspace used

by the solver. We initialize svd and set X mat to be the associated matrix of which

the SVD is computed. SVDSolve(svd) is the command to solve the SVD problem.

The total number of iterations executed in the SVD process is saved in its.

The singular vectors in U , ordered from largest singular value to smallest, provide

a basis for the space generated by the span of X. Those associated with the largest

singular values are, in some sense, most prominent in the solution set. Assuming the

solution character does not change between the training and the testing sets, we use

these to define deflation vectors for use in preconditioning the testing set.

Singular vectors associated with the largest singular values are produced and saved

to file. Since no linear system solve is performed here, the only time taken into con-

sideration is that of the SVD solver finding the singular values and vectors. We note

here the time of this part is usually the smallest contributing time to the overall to-

tal time of the method. An added purpose of using the SVD is to insure that the

set of vectors used in the deflation matrix are linearly independent, so that the pro-

jected system, E, is non singular (aside, perhaps, from inheriting the singularity of A).

After these vectors have been stored, they are then read into the final stage, which

is defining a deflation preconditioner and solving the systems Aixi = b for the testing

set. In this routine, we construct a deflation matrix denoted as Z. This matrix con-

sists of columns that are the singular vectors found previously. The size of Z depends

on the mesh size and number of singular values taken. For example, if we were to

take only 4 singular vectors, then the size of Z would be (n2 × 4).

88

As a further step, we also consider results when Z is formed using subdomains, i.e.

that the domain is divided into several equally sized geometric ranges. For example,

for 4 subdomains we could divide Ω into:

1- x ∈ [0, 1.5) and y ∈ [0, .5),

2- x ∈ [1.5, 3] and y ∈ [0, .5),

3- x ∈ [0, 1.5) and y ∈ [.5, 1],

4- x ∈ [1.5, 3] and y ∈ [.5, 1].

The subdivisions of Ω into 4, 8, 12, and 16 subdomains are illustrated in Figure

3.5. There are, of course, many ways of dividing Ω into geometric subdomains. For

instance, 8 subdomains can naturally be either a 4 × 2 or 2 × 4 array. We disregard

the effect of this as a parameter in our research.

(a)

(c)

(b)

(d)

Figure 3.5: Ω divided into subdomains:(a) 4 subdomains, (b) 8 subdomains, (c) 12
subdomains, (d) 16 subdomains.

Note there is no overlapping of subdomains, and nodes on the geometric boundary

between two subdomains are included in only 1 subdomain. For each subdomain and

each vector from the SVD, there is an associated deflation vector (column) in Z. In

other words, each singular vector is divided up over these subdomains. So for the

deflation vector, v, on the subdomain D, corresponding to SVD vector Z,

v =

{
Z(xi, yj), if (xi, yj) ∈ D
0, otherwise.

89

Each singular vector is divided into deflation vectors that correspond to each subdo-

main. The advantages of deflation have been discussed in the previous chapter; here,

we add that subdomains are used because we expect convergence to be faster with a

preconditioner using subdomains than that with a deflation preconditioner with no

subdomain division. This is due to both the sparsity structure of this new Z and the

increasing dimension of span(Z).

Numerical tests show that in order to construct an effective deflation space, we

have to take the constant vector, 1, divided over subdomains, and add the resulting

vectors as columns of Z. From the original PDE, we know that since the gradient

of a constant function is zero, then 1 is in the “near null space” of the discretization

matrices, Ai. 1 is always associated with the slowest converging error, so if 1 is not

included in the construction of Z, then convergence may be very poor.

1 Mat PP;

2 i n t c o l ;

3 double va l [1] ;

4 i e r r=MatCreateSeqAIJ (PETSCCOMMWORLD, (nx∗ny) , ncol , 5 ,NULL,&PP) ;

5 MatSetOption (PP,MATNEWNONZERO LOCATION ERR,PETSC FALSE) ;

6 MatSetOption (PP,MAT IGNORE ZERO ENTRIES,PETSC TRUE) ;

7 i e r r=MatSetUp(PP) ;

8 l x=3/subx ; l y=1/suby ;

9

10 i n t i =0, j =0;

11 f o r (c=0;c<subx∗ suby ; c++)

12 { i f (j<suby)

13 { i f (i<subx)

14 { c o l=c ;

15 f o r (i n t q=0;q<nx∗ny ; q++)
16 { i f ((Vdofcoords [2∗ q]>=(i ∗ l x)) && (Vdofcoords [2∗ q]<=((i +1)∗ l x)) &&

(Vdofcoords [2∗ q+1]>=(j ∗ l y)) && (Vdofcoords [2∗ q+1]<=((j +1)∗ l y)))

17 { va l [0]= svd so l1 new [q] ;

18 i e r r=MatSetValues (PP,1 ,&q ,1 ,& col , val , INSERT VALUES) ;}
19 }
20 i++;

21 }
22 e l s e

23 { i =0; j++;c ; }

90

24 }
25 e l s e

26 p r i n t f (”0\n”) ;
27 }

Here, subx and suby are the user-defined values denoting the number of subdo-

mains taken in the x-direction and y-direction, respectively. col is a specific col-

umn number of the deflation matrix, which is denoted by PP , and ncol is the to-

tal column size of PP , such that ncol is the number of subdomains taken mult-

plied by the number of vectors to be divided over the subdomains, i.e, ncol =

no subdomains ∗ (total svd + 1). Thus, the dimension of PP is (nx ∗ ny) × ncol.

The MatSetOption commands indicate to set PP as a sparse matrix. For each svd

vector, we loop over all subdomains in the x-direction then y-direction (lexicographi-

cal ordering), dividing the vector into multiple vectors with entries equalling the value

of the particular svd vector under consideration at a node that lies in that subdomain

and 0 otherwise. These subdomain vectors are stored column-wise in PP . We em-

phasize here that the use of node locations is important, since we do not order our

vectors geometrically.

Having defined the deflation matrix, Z, we now solve the linear systems in the

testing set using deflation-preconditioned CG. For convenience, we implement this as

a balancing preconditioner, using a composite preconditioner in PETSc. The deflation

solve itself is implemented as a Galerkin preconditioner, consisting of a two-level nu-

merical process with interpolation matrix as the deflation matrix, Z, discussed above,

either with subdomains or without, and restriction as ZT . As a direct solver on the

coarsest grid, with E = ZTAZ, an LU decomposition method was used. This is com-

plemented by an ILU preconditioner, for which we use the standard incomplete LU

factorization of A used with no fill-in. For details on ILU, see [38].

The balancing preconditioner is a composite preconditioner with three stages,

corresponding to a Galerkin method, then an ILU, which we denote by M , and then

Galerkin again. The residual from the CG method is input into the first Galerkin

preconditioner. A deflated PCG method is applied where the residual is restricted to

the coarse level, the coarse-level system is solved by a direct solver and a correction

is interpolated to the fine grid. The process, following the PCG algorithm in Chapter

91

2, is seen as first solving for xc in

Exc = ZT r(k),

where E is the Galerkin matrix defined in deflated PCG earlier, and r(k) is the residual

associated with the current CG iteration. Then, the coarse level solve and interpola-

tion gives

δx(G,1) = Zxc = ZE−1ZT r(k).

The corrected residual is then passed on to the second preconditioner, ILU. De-

noting the incomplete factorization as M , the system

Mδx(F) = r(k) − Aδx(G,1),

is solved for the solution vector of this method on the finest grid, δx(F). Note that

the right hand side includes the correction from the first step.

Finally, the residual of that system is then passed on to the last preconditioner,

where a Galerkin method is again applied solving

Exc = ZT (r(k) − Aδx(G,1) − Aδx(F)).

Then, the solution vector for the second Galerkin method, x(G,2) is found by

δx(G,2) = Z(E−1ZT (r(k) − Aδx(G,1) − Aδx(F))).

So, the composition of preconditioners gives in the end a solution of the system

Aδx = r(k) in the form of a summation of δx(G,1), δx(F), δx(G,2). Code to define

this in PETSc is given as

1 // f i r s t pc

2 PC P1 ;

3 PC coa r s e pc ;

4 i e r r=PCCompositeAddPC(pc ,PCGALERKIN) ;

92

5 i e r r=PCCompositeGetPC(pc ,0 ,&P1) ;

6 i e r r=PCGalerk inSetRestr i c t ion (P1 ,PP) ;

7 KSP ksp ga l ;

8 i e r r=PCGalerkinGetKSP(P1,& ksp ga l) ;

9 Mat A ga l e rk in ;

10 i e r r = MatRARt(A,R,MAT INITIAL MATRIX,PETSC DEFAULT,&A ga l e rk in) ;

11 i e r r=KSPSetOperators (ksp ga l , A galerk in , A ga l e rk in) ;

12 KSPGetPC(ksp ga l ,& coa r s e pc) ;

13 PCSetType (coarse pc ,PCLU) ;

14

15 // second pc

16 PC P2 ;

17 i e r r=PCCompositeAddPC(pc ,PCILU) ;

18 i e r r=PCCompositeGetPC(pc ,1 ,&P2) ;

19 i e r r=PCSetType (P2 ,PCILU) ;

20

21 // th i rd pc

22 PC P3 ;

23 PC coar s e pc2 ;

24 i e r r=PCCompositeAddPC(pc ,PCGALERKIN) ;

25 i e r r=PCCompositeGetPC(pc ,2 ,&P3) ;

26 i e r r=PCGalerk inSetRestr i c t ion (P3 ,PP) ;

27 KSP ksp ga l 2 ;

28 i e r r=PCGalerkinGetKSP(P3,& ksp ga l 2) ;

29 Mat AA galerkin ;

30 i e r r = MatRARt(A,R,MAT INITIAL MATRIX,PETSC DEFAULT,&AA galerkin) ;

31 i e r r=KSPSetOperators (k sp ga l 2 , AA galerkin , AA galerkin) ;

32 KSPGetPC(ksp ga l ,& coar s e pc2) ;

33 PCSetType (coarse pc2 ,PCLU) ;

In the algorithm presented above, PC1 is the first Galerkin preconditioner. PC-

CompositeADDPC is the command to add a new preconditioner to the multiplicative

process such that PCCompositeGetPC(pc,0,&P1) just sets P1 to be the first pre-

conditioner. We set the deflation matrix, PP , to be the restriction matrix in the

Galerkin method. It is enough in the PETSc routines to indicate either the restric-

tion matrix or the interpolation matrix since, by default, one is the transpose of the

other. A galerkin denotes the product matrix solved in the Galerkin method i.e

A galerkin = (PP)TA(PP) and is set using the command MatRARt. (PP)T is de-

noted by R in our algorithm, such that hence A galerkin = RART , and coarse pc and

coarse pc2 are both the LU direct solve preconditioner in PC1 and PC3, receptively.

93

The second preconditioner is denoted as P2 and set to be the incomplete factorization.

Within this methodology we identify three important parameters (with an additional

fourth in the next approach):

1. Number of problems in the training set.

2. Number of singular vectors used in deflation.

3. Number of subdomains considered.

In the following chapter, we experiment with finding optimal values of these pa-

rameters.

For the eigenvector-based deflation approach, instead of using solutions of the

problems in the training set, we find the eigenvectors associated with the t smallest

eigenvalues of each matrix in the training set. We consider t ≤ 15, for each system.

The respective eigenvectors, eik for i = 1, 2, . . . , t, k = 1, 2, . . . ,m are stored column-

wise in a matrix denoted as E, such that E = [e11, e21, . . . , et1, . . . , e1m, . . . , etm]. Note

this matrix replaces matrix X in the previous method. We consider taking eigenvec-

tors instead of solutions in this part, because the solution of (3.1) is dominated by the

eigenvectors associated with the smallest eigenvalues. This is since the eigenvector

expansion of any SPD linear system, Ax = b, can be written as

Ax = b =
∑
i

civ
(i),

where ci is determined by the right-hand side, b, and v(i) is the ith eigenvector of A.

Assuming Av(i) = λiv
(i) and λi 6= 0, then we can write the solution as

x =
∑
i

ci
λi
v(i).

So, since λi is in the denominator, the smaller the eigenvalue, the larger the contri-

bution to the solution, if all ci are roughly the same size.

94

The code presented in the following clarifies the eigenvalue computation.

1 // f i nd the l e a s t e i g enve c t o r f o r Ak

2 Mat AA=A>mat () ;

3 PetscViewer viewer ;

4 EPS eps ;

5 Petsc Int nev , max its ; // number o f r equ i r ed i t e r a t i o n s i e e i g enva lu e s

6 nev=10;

7 max its = 1000 ;

8 Vec xr , x i ;

9 Pet s cSca la r e i g e n r e a l ;

10 Pet s cSca la r e igencomplex ;

11 Petsc Int i t s , nconv ;

12 ST s t ;

13

14 i e r r=MatCreateVecs (AA,&xr ,& x i) ;

15 i e r r=EPSCreate (PETSCCOMMWORLD,&eps) ;

16 i e r r=EPSSetOperators (eps ,AA,NULL) ;

17 i e r r=EPSSetProblemType (eps ,EPS HEP) ;

18 i e r r=EPSSetWhichEigenpairs (eps ,EPS SMALLEST REAL) ;

19

20 i e r r=EPSSetDimensions (eps , nev , max its ,PETSC DEFAULT) ;

21 i e r r=EPSSetFromOptions (eps) ;

22 i e r r=EPSSolve (eps) ;

In the above code, eps is the SLEPc object for its eigenvalue solver, nev is the

number of requested eigenvalues of the problem, and max its is the maximum dimen-

sion of the subspace associated with the eigenvalue problem. We define xr to be the

real component of the eigenvector eik, requesting only the eigenvectors associated with

the smallest eigenvalues with the command line EPSSetWhichEigenpairs(eps, EPS

SMALLEST REAL). The type of eigenvalue problem is set here with EPS HEP ,

which indicates that A is Hermitian.

We run this code with m problems in the training set and find t eigenvectors for

each matrix. Next, we use the eigenvectors found in the previous part to define the

deflation space. This is done using the exact same process as in the second part of

the previous method. We also use the same code to execute this. Singular vectors are

found and stored ready for use in the last part of the method.

95

The last part of this method is also the same as the the first method. We also

use deflation, with the same three preconditioners and balancing technique. In this

approach, as above, we also identify important parameters to test. These are the

three mentioned earlier, plus the number of eigenvectors taken for each problem in

the training set. Since these replace the solution vectors in defining the deflation

space in the previous approach, we expect variation in the number of eigenvectors

considered to have some effect in the overall performance of this method.

Chapter 4

Results/Conclusions

In this chapter, we present the results that were obtained from the algorithms pro-

posed above, and compare them to results found using the AMG-preconditioned CG

algorithm. At the end of this chapter, we conclude our results and discuss possibilities

for future work.

For both methods proposed above for defining the deflation matrix and balancing

preconditioner, we aim to see if we can achieve better efficiency, in terms of iteration

counts and total run-times, than simply solving the systems with AMG-preconditioned

CG.

4.1 Results for Solution-based deflation:

Recall, we have 3 main parameters here to consider, number of problems in the train-

ing set, number of singular vectors taken and number of subdomains considered. We

go through these parameters fixing all but one, varying each in order to find the best

value for that parameter.

Before we examine the different parameters, we were curious to see in detail the

time required for solution of the problems in the testing set using the balancing

preconditioned CG algorithm, to identify which component of this part takes up most

97

of the computing time. We recorded timing for the four main aspects of the code

related to solving Ax = b, divided as follows:

1. Time 1: time required for FEniCS to assemble the mesh on the finest level and

to define the function space V h
1 .

2. Time 2: time spent by FEniCS to define the bilinear and linear forms.

3. Time 3: time required by FEniCS to assemble the matrix A defined in the

discretized problem in PETSc format.

4. Time 4: PETSc time to define the three preconditioner matrices and PETSc

solve time.

For Table 4.1, we fixed the number of problems in the training set to be 13, the

number of singular vectors used to define the deflation preconditioner to be 4, and the

number of subdomians to be 4, where the number of subdomains in both the x and

y-directions is 2. We note that we add the constant vector, 1, to the set of singular

vectors so the number of columns in matrix P is 20. All times in this chapter are in

seconds.

Mesh size (n× n) Time 1 Time 2 Time 3 Time 4

162 7.9 0.0014 0.11 0.8
322 8.15 0.0014 0.3 1.9
642 8.0 0.015 1.04 8.13
1282 6.6 0.018 4.5 78.24

Table 4.1: Detailed timing of solution of testing set for Solution-based deflation with
13 problems in the training set, 4 singular vectors used to define the deflation space,
and 4 subdomains.

The first observation from this data is that the generation of meshes and function

spaces, Time 1, is roughly independent of the mesh size. Since these times are accu-

mulated from times recorded in all solves with the 87 problems in the testing set, each

solve with one of these vectors takes about 0.1 seconds to build a mesh and function

space. This could, perhaps, be removed by optimizing code to do this only once for

all problems in the testing set, but we have not considered this here, due to practical

98

difficulties in memory management with FEniCS.

We also notice it is very cheap for FEniCS to define the variational forms in the

FEM. The cost that is really of interest is the cost spent on the actual calculation

process, Time 4. It is natural that this cost increases with the increase of mesh size

of the problem, since the number of nodes used for solving our problem is increased.

Assuming perfect scaling, given a solve time of 8 seconds for 642 nodes, the solve time

for 1282 nodes would be about 32 seconds, indicating a suboptimal preconditioner is

used in those results.

We now move to choosing appropriate parameters. We first fix the training set

to have 8 problems and the number of singular vectors used in defining the deflation

preconditioner to be 4 and, hence, vary the subdomain count. For simplicity, we

use odd-numbered subdomain decompositions on meshes with numbers of elements

given by powers of 2 subdomains. This simplifies the implementation of loops in the

subdomain code by removing any decisions regarding overlap. For 1 subdomain the

mesh is divided as 1 × 1, for 9, the mesh is divided into 3 × 3 subdomains, and, for

49 subdomains, the mesh is divided into 7 × 7 subdomains. The total time required

for this method and observed median iteration counts while varying the number of

subdomains is recorded in Table 4.2.

nodes sub=1 sub=9 sub=49

its time its time its time

162 15 10.73 13 10.98 - -

322 28 12.16 16 21.76 - -

642 58 18.80 45 18.81 43 21.4

1282 120 143.84 51 68.57 25 200.19

Table 4.2: Time and iteration counts (its) for Solution-based deflation with varying
numbers of subdomains (sub).

In Table 4.2, it is impractical to use a deflation matrix with 49 subdomains for

the smaller sized meshes. We find that the iterations needed to converge consistently

decreases when using more subdomains, but that the overall cost increases when too

99

many subdomains are used. We find that the smallest times are seen when 1 subdo-

main is used for construction of a deflation space for the 162 and 322 meshes and 9

subdomains is used for the 642 and 1282 meshes.

Fixing these subdomain counts, we move to variation in size of the training set.

We keep the number of singular vectors chosen to define the deflation space fixed to 4

vectors plus the constant vector, 1. We test for 4, 8, 12 and 16 problems in the training

set. Iteration counts and total time spent by the algorithm are presented in Table 4.3.

nodes training=4 training=8 training=12 training=16

its time its time its time its time

162 15 10.68 15 10.73 15 10.73 15 10.57

322 31 12.45 31 12.40 31 12.16 31 12.79

642 44 16.31 44 17.43 44 18.81 44 19.77

1282 51 65.64 51 65.71 51 68.57 51 67.81

Table 4.3: Time and iteration counts (its) for Solution-based deflation with varying
number of problems in the training set and 4 singular vectors used to define the
deflation space.

Notice that, in Table 4.3, total times recorded increase the as we increase problem

size. The smaller the training set, the less time is used in solving these problems using

AMG and more time is naturally spent in the solution of the testing set problems,

since 4 problems in the training set means there are 96 problems in the testing set,

8 problems in the training set means 92 problems in the testing set, and so on. No-

tice also that the number of iterations does not change as we increase the size of the

training set, which is expected. The important realization to take from this study is

that the cost of this algorithm is largely independent of the size of the testing and

training sets chosen when keeping the number of vectors taken from the SVD fixed.

For convenience in optimizing the last parameter, we fix the size of the training set

to be 12. We note that further increasing the size of the training set may improve the

performance of the resulting preconditioner, by including more information about the

linear systems in the definition of the deflation matrix; however, this also increases

the overall cost of solution, since the resulting deflation preconditioner is more effi-

cient than the black-box AMG preconditioner used for the training set. Appropriately

100

balancing these costs is an important factor when considering a fixed number of total

linear systems to be solved.

We finally consider the last parameter, choosing the optimal number of singular

vectors taken. We vary this parameter to be 0,1,2,4 and 8, and remind the reader

both that this determines the number of columns in the deflation matrix, P , and that

the constant vector, 1, is always included with these vectors and divided over the

subdomains on the mesh. So, 0 singular vectors means that only the constant vector

is used in defining P . Results are presented in Table 4.4.

nodes singular=0 singular=2 singular=4 singular=8

its time its time its time its time

162 20 10.76 17 10.72 15 10.73 14 10.86

322 40 12.79 34 13.00 31 12.16 25 12.41

642 63 20.69 52 21.33 44 18.81 37 15.54

1282 114 115.34 68 79.33 51 68.57 44 71.57

Table 4.4: Time and iteration counts (its) for Solution-based deflation with varying
numbers of singular vectors used to determine the deflation matrix and 12 training
vectors.

In Table 4.4, using no singular vectors, the SVD time is, of course, zero since no

singular vectors are used in defining the balancing preconditioner. We note that the

SVD time in each variation is the same, since SLEPc calculates all singular vectors of

the solution matrix, X. We also note that time spent for AMG preconditioned CG is

fixed, since the size of the training set is fixed.

From the table above, we see that the iteration count decreases for each mesh as

the number of singular vectors chosen is increased. This is attributed to the advan-

tage of using deflation over a larger space. Total time also varies, although irregularly.

This comes from the varying size of P in the last part of the algorithm and the balance

between cost per iteration and number of iterations. We find that the smallest times

per iteration are generally when 4 singular vectors are used.

101

Overall, the best times are recorded for this method when choosing a training set

containing 12 permeability fields, and 4 singular vectors with (1,1,9,9) subdomains

for respective mesh sizes. The method spends about 0.11 seconds to solve Ax = b for

each permeability field for a 162 mesh, about 0.12 seconds per problem for the 322

mesh, about 0.19 seconds per problems for the 642 mesh, and about 0.69 seconds per

problem for the 1282 mesh.

4.2 Results for Eigenvector-based deflation:

In this section, we present results obtained from following the same process of choos-

ing parameters in the previous section, but for Eigenvector-based deflation. Recall

the main difference in these methods is the use of eigenvectors from the training set

matrices to find the deflation space, instead of using solution vectors from the train-

ing set. This change requires the addition of a new parameter mentioned earlier, the

number of eigenvectors taken for each problem in the training set. This parameter is

consistent for all problems in the testing set chosen.

We begin with again considering variations in the number of subdomains. For con-

sistency in comparison to other algorithms, we test for the same subdomain counts

as in the previous section, i.e 1, 9, and 49. For the finest mesh, 1282, we also added

255 subdomain results, where we set 15 subdomains in both the x and y directions.

In optimizing this parameter, we fixed the number of singular vectors used to define

the deflation space to 4 vectors, problems in the training set to 12 problems and 4

eigenvectors for each matrix from the training set.

102

nodes sub=1 sub=9 sub=49 sub=225

its time its time its time its time

162 16 8.287 14 8.141 - - - -

322 30 10.172 15 9.941 - - - -

642 59 13.506 42 12.37 45 14.893 - -

1282 120 86.661 42 40.839 21 28.193 12 32.483

Table 4.5: Time and iteration counts (its) for Eigenvector-based deflation with varying
numbers of subdomains (sub), 12 problems in the training set, 4 eigenvectors per
problem in the training set, and 4 singular vectors used to define the deflation space.

Due to problems with the interface to SLEPc, we were unable to use an efficient

eigenvalue solver to determined the eigenvectors needed for this test and were, unfor-

tunately, limited to brute force iteration. This, naturally, produces very high timings

for the eigenvalues needed, which skews the analysis of the resulting methods. Since

this is purely a software issue (that we hope to resolve in future work), we have dis-

regarded this time in Table 4.5, and all further results in this section; thus, the times

reported are only those for the SVD computation and solves of the problems in the

testing set using the balancing preconditioner. This, naturally, leads to a slightly

more optimistic view of overall timing than is justified, since we do not account for

one of the non-trivial costs of the algorithm.

In Table 4.5, we see an almost steady decrease in iteration count as we increase the

size of the deflation space used, but not in total time. Results for the 1282 mesh are

quite interesting; with 225 subdomains, the iterations are extremely cheap, costing

only about 0.37 seconds to solve each problem in the testing set. Since we focus on

decreasing time per solve for the algorithms, however, we find the optimal choice of

size of the deflation space for the 1282 mesh is using 49 subdomains. Also, in the

same mind set, we find the optimal sizes of the deflation spaces for the 162, 322, and

642 mesh is 9 subdomains, with about 0.09 seconds, 0.11 seconds, and 0.14 seconds

for each solve, respectively.

We next move to the second parameter, choosing the optimal size of the training

set. As in the previous method, we choose 4,8,12, and 16 problems in the training

103

set, while fixing 4 singular vectors used to define the deflation space and 4 eigenvec-

tors for each problem in the training set. The iteration counts for convergence of the

balancing preconditioned CG method are shown in Table 4.6.

nodes training=4 training=8 training=12 training=16

its time its time its time its time

162 14 9.03 14 8.83 14 8.29 14 7.98

322 15 10.88 15 10.43 15 9.94 15 9.43

642 42 13.62 42 13.22 42 12.37 42 12.21

1282 22 30.69 22 30.47 22 28.19 24 29.70

Table 4.6: Time and iteration counts (its) for Eigenvector-based deflation with varying
number of problems in the training set, 4 singular vectors used to define the deflation
space, and 4 eigenvectors computed for each problem in the training set.

As in Solution-based deflation, the size of the training set does not greatly affect

the effectiveness of the algorithms. Considering timing for the 1282 mesh, with about

0.32 seconds per solve, the optimal size of the training set to choose for this method

contains 12 vectors. This is also a reasonable choice for other problem sizes.

Now that we have fixed the size of both the deflation space and training set, we

move to optimizing the next parameter, the number of eigenvectors computed for each

matrix from the training set. This is done by producing t eigenvectors for each prob-

lem in the training set, and we consider values for t of 2,4,6 and 8. Iteration counts

and times for these choices are shown in Table 4.7 below. The number of singular

vectors used in determining the deflation space is fixed to 4 vectors. For the 1282

mesh with 8 eigenvectors per problem in the training set and 12 training problems

in total, the matrix E is of size 16384 × 96. Our implementation of the SVD code

prevented us from calculating the singular vectors in this case.

104

nodes eigen.vec=2 eigen.vec=4 eigen.vec=6 eigen.vec=8

its time its time its time its time

162 13 8.29 14 8.29 13 8.37 13 8.30

322 15 9.91 15 9.94 14 10.10 15 10.09

642 42 12.48 42 12.37 42 12.78 43 13.17

1282 24 29.46 21 28.19 22 30.31 - -

Table 4.7: Time and iteration counts (its) for Eigenvector-based deflation with varying
number of eigenvectors computed for each problem in the training set with 12 training
problems and 4 singular vectors used to determine the deflation space.

In these results, since SLEPc produces all eigenvectors and singular vectors at once

with each run of the method, the eigenvector time in the first part of the algorithm

is the same regardless of the number of eigenvectors we request. We hope to fix this

with proper tuning of our usage of SLPEc in future work. Another finding is that

the SVD time increases as we increase the number of eigenvectors used, due to the

increase in the size of the matrix E.

We see very little variation in performance of the balancing preconditioned CG

method in this algorithm as we vary the eigenvector parameter. The variation in to-

tal time in Table 4.7 originates primarily from the SVD time. Considering the finest

mesh, we see that computing 4 eigenvectors appears to be the optimal choice here.

Finally, we vary the number of singular vectors taken to determine the deflation

space. We again pick the same potential numbers of vectors chosen as in the previous

method. The results are shown in Table 4.8.

105

nodes singular=0 singular=2 singular=4 singular=8

its time its time its time its time

162 18 8.21 15 8.27 14 8.29 10 8.59

322 30 9.31 20 9.98 15 9.94 11 9.96

642 65 15.62 49 14.66 42 12.37 33 10.11

1282 57 48.43 30 31.62 22 28.19 17 31.01

Table 4.8: Time and iteration counts (its) for Eigenvector-based deflation with vary-
ing numbers of singular vectors used to determine the deflation space with optimal
numbers of problems in the training set and eigenvectors computed per problem in
the training set.

The expected behaviour in Table 4.8 is that the larger the deflation space, i.e.,

the larger number of singular vectors chosen, the faster the CG method converges, in

terms of iteration counts. However, the cost per iteration increases. We see a clear

benefit to taking 4 singular vectors to define the deflation space for the 1282 mesh, but

note that more vectors improve performance on the 642 mesh where fewer subdomains

are used.

In conclusion, we have found that the best parameters chosen for this method are

to use 9 subdomains for the 162, 322, and 642 meshes and 49 subdomains for the

1282 mesh. The optimal number of problems in the training set is 12 problems, with

4 eigenvectors computed for each problem in the training set, making a total of 48

eigenvectors for this method. The optimal number of singular vectors taken in the

deflation space is found to be 4 singular vectors.

4.3 Conclusions and Future work:

The best performance for each method is shown in Table 4.9, although we again note

that the timings recorded for eigenvector-based deflation neglect the important con-

tribution of the time needed to compute the eigenvectors themselves.

106

AMG Solution-based Eigenvector-based

nodes its time its time its time

162 6 11.3 15 10.73 14 8.29

322 7 15 31 12.16 15 9.94

642 7 29.6 44 18.81 42 12.37

1282 8 97.1 51 68.57 22 28.19

Table 4.9: Optimal total time and iteration counts for algorithm 1, 2 and 3.

In this thesis, our main goal was to construct 2 variants on the deflation method-

ology that efficiently solve the model problem with varying permeability fields. We

compare the cost of these algorithms to that of using only an AMG preconditioned

CG method. Although our algorithms are more complex in construction than AMG,

we have found them to achieve our purpose. Through the use of eigenvectors, singular

vectors, and deflation-based balancing preconditioners, we have found that we were

able to greatly decrease the total time spent for solving the problem per permeability

field from about 1 second per solve to about 0.28 seconds per solve for a mesh of size

1282. A steady and clear decrease in time is evident in all our results in Table 4.9.

In particular, the solution-based deflation algorithm is efficient but not as efficient as

eigenvector-based deflation. While the number of iterations needed for the CG method

to converge increases in both of our proposed algorithms in comparison to AMG, this

can be considered a good trade off since the iteration counts stay low, and the cost

per iteration decreases significantly. These results show insight into the power of in-

formation obtained from a small set of the permeability fields in effectively enhancing

solvers for these model problems. We note that similar research has been undertaken

in [11], but that work considers fixed permeability fields and a time-dependent porous

media model problem.

Many possible extensions to our algorithms were not included in this work due to

lack of time. For example, we were limited to generating permeability fields on meshes

of size 1282 and smaller. This limitation arises due to the way we have implemented

the code, but we are aware of a more scalable algorithm to do this [28].

In this thesis, all meshes constructed on the finest level are square meshes with

107

equal numbers of nodes in both the x and y directions. We would like to repeat our

testing on rectangular meshes where the ratio of nodes between the x and y directions

is 3:1. We might see different results, or this construction may not affect the outcome.

Another direction for future work is to try implementing our two methods for GPU

computing since deflation is very GPU friendly. Effective GPU processing would re-

quire dividing the method of solution of our problem into very small blocks of data

with very few degrees of freedom, efficiently accessing the memory of the cluster of

processors. This is denoted as ”fine-scale parallelism” [3]. Parallel coding is a pow-

erful tool that might decrease the time seen in our work in serial particularly when

extending to larger problem sizes. A very important advantage we may use is the

ability to parallelize the incomplete LU factorization which we have seen in this work

to play a big role in the construction of our algorithms. This work has recently been

shown to be possible in [9, 29]. For more information on incorporating parallelism

into similar work see [1, 18, 19].

Bibliography

[1] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief, P.
Luszczek, and S. Tomov, Numerical Linear Algebra on Emerging Architectures:
The PLASMA and MAGMA Projects, J. Phys.: Conf. Series, 180 (2009), p.12037.

[2] J. Bear, Dynamics of Fluids in Porous Media, Dover Publications Inc., 1972.

[3] N. Bell, S. Dalton, and L. Olson, Exposing Fine-Grained Parallelism in Algebraic
Multigrid Methods, SIAM J. Sci. Comp., 34 (2012), pp. C123–C152.

[4] J. H Bramble, Multigrid methods, Pitman Research Notes in Mathematics, V. 294,
John Wiley and Sons, 1993.

[5] A. Brandt, Multi-Level Adaptive Solutions to Boundary-Value Problems, Math.
Comp. 31 (1977), no. 138, p.p 333–390.

[6] A. Brandt and O.E. Livne, Multigrid Techniques: 1984 Guide with Applications in
Fluid Dynamics, Revised edition of the 1984 original [MR0772748]. Classics in Ap-
plied Mathematics, 67. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2011. xx+218 pp.

[7] W.L. Briggs, S.F. McCormick, V.E. Henson, A multigrid tutorial. Second edition,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.

[8] Z. Chen, G. Huan, Y. Ma, Computational Methods for Multiphase Flows in Porous
Media, Computational Science and Engineering, 2. Society for Industrial and Ap-
plied Mathematics(SIAM), Philadelphia, PA, 2006. xxx+531 pp.

[9] E. Chow and A. Patel, Fine-Grained Parallel Incomplete LU Factorization, SIAM
J. Sci. Comp., 37 (2015), pp. C169–C193

[10] T Cui, J Martin, Y M Marzouk, A Solonen, A Spantini, Likelihood-informed
dimension reduction for nonlinear inverse problems, Inverse Problems 30 (2014),
no. 11, 114015, 28 pp.

[11] G. B. Diaz Cortes, C. Vuik, J. D. Jansen, On POD-based Deflation Vectors for
DPCG applied to porous media problems. , J. Comput. Appl. Math. 330 (2018),
193–213. 65M22 (76S05).

109

[12] J.E. Dendy, Black box Multigrid, J. Comput. Phys. 48 (1982), no. 3, pp. 366–386.

[13] H.C Elman and V. Forstall, Preconditioning techniques for reduced basis methods
for parameterized elliptic partial differential equations, Society for Industrial and
Applied Mathematics, 2015, Vol. 37, No. 5, pp. S177–S194.

[14] R. Eymard, R. Gallout, T. R. Herbin, The finite volume method, Handbook of
Numerical Analysis, Vol. VII, 2000, p. 713–1020. Editors: P.G. Ciarlet and J.L.
Lions.

[15] R.D. Falgout and U.M. Yang, Hypre: a Library of High Performance Precondi-
tioners, Computational Science - ICCS 2002: International Conference, Amster-
dam, The Netherlands, April 21-24, 2002. Proceedings, Part III, Springer-Verlag.

[16] G.H.Golub, C.F.Van Loan Matrix computations, third edition, Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore,
MD, 1996.

[17] D. Gottlieb and S. Orzag, Numerical Analysis of Spectral Methods : Theory and
Applications, CBMS-NSF Regional Conference Series in Applied Mathematics,
No. 26. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1977.
v+172 pp.

[18] R. Gupta and D. Lukarski and M.B. van Gijzen and C. Vuik, Evaluation of
the Deflated Preconditioned CG method to solve Bubbly and Porous Media Flow
Problems on GPU and CPU, International Journal for Numerical Methods in
Fluids, 80, pp. 666–683, 2016.

[19] R. Gupta and M.B. van Gijzen and C. Vuik, Efficient two-level preconditioned
conjugate gradient method on the GPU High Performance Computing for Com-
putational Science, VECPAR 2012 10th International Conference, Kope, Japan,
July 17-20, 2012, Revised Selected Papers Editors: M. Dayde, O. Marques, K.
Nakajima Lecture Notes in Computer Science, Volume 7851 Springer, Berlin, pp.
36–49, 2013.

[20] V.E. Henson and U.M. Yang, BoomerAMG: a Parallel Algebraic Multigrid Solver
and Preconditioner, Applied Numerical Mathematics, Vol. 41, pages 155-177, 2002.

[21] M. Hestenes, E.Stiefel , Methods of conjugate gradients for solving linear systems,
J. Research Nat. Bur. Standards 49 (1952), 409–436 (1953).

[22] M. Hestenes, Conjugate direction methods in optimization, Applications of Math-
ematics, 12. Springer-Verlag, New York-Berlin, 1980. x+325 pp.

[23] A.S. Householder, The theory of matrices in numerical analysis, Blaisdell Pub-
lishing Co. Ginn and Co. New York-Toronto-London 1964 xi+257 pp.

110

[24] D. Hutton, Fundamentals of finite element analysis, McGraw Hill publishing Inc.,
New York, 2004.

[25] T.B Jönsthövel, The deflated preconditioned conjugate gradient method applied
to composite material, Ph.D. Thesis, Delft University of Technology, The Nether-
lands, 2012.

[26] T.B Jönsthövel, M.B. van Gijzen, C.Vuik, C. Kasbergen, A. Scarpas, On the
use of rigid body modes in the deflated preconditioned conjugate gradient method,
SIAM J. Sci. Comput. 35 (2013), no. 1, B207–B225.

[27] R. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Uni-
versity Press, Cambridge, 2002. xx+558 pp.

[28] F. Lindgren and H. Rue, An explicit link between Gaussian fields and Gaussian
Markov random fields: the stochastic partial differential equation approach, J. R.
Stat. Soc. Ser. B Stat. Methodol. 73 (2011), no. 4, pp. 423–498.

[29] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, Efficient Sparse Matrix-Vector
Multiplication on x86-based Many-Core Processors, in Proc. HPC Netw., Stor.
Anal., SC 13, ACM, 2013, pp. 273–282.

[30] S. P. MacLachlan, Iterative Methods in Numerical Linear Algebra , Math 6204
Lecture notes, Memorial University.

[31] S. P. MacLachlan, Numerical Solutions of Differential equations, Math 6210 Lec-
ture notes, Memorial University.

[32] S. P. MacLachlan, L. N. Olson, Theoretical Bounds for Algebraic Multigrid Per-
formance: Review and Analysis, Numer. Linear Algebra Appl. 21 (2014), no. 2,
p.p 194–220.

[33] S.P. MacLachlan,J.D. Moulton, and T.P. Chartier , Robust and Adaptive Multi-
grid Methods: comparing structured and algebraic approaches, Numer. Linear Al-
gebra Appl. 19 (2012), no. 2, pp. 389–413.

[34] S. F. McCormick, (Editor) Multigrid methods, Chapter 1: Introduction, W.Briggs
and S. McCormick, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA 1987, pp. xvii + 275.

[35] J.W. Ruge and K. Stüben, Algebraic multigrid (AMG), in Multigrid Methods,
S. F. McCormick, ed., vol. 3 of Frontiers in Applied Mathematics, SIAM, Philadel-
phia, PA, 1987, pp. 73–130.

[36] G. Meurant, The Lanczos and conjugate gradient algorithms. From theory to
finite precision computations, Software, Environments, and Tools, 19. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006. xvi+365 pp.

111

[37] J.N Reddy, On the numerical solution of differential equations by the finite ele-
ment method. I. An Introduction to the Finite Element Method, (the Ritz models),
Indiana J. Pure Appl. Math. 16 (1985), no. 11, 1341–1376.

[38] Y. Saad, Iterative methods for sparse linear systems,Second edition, Society for
Industrial and Applied Mathematics, Philadelphia, PA, 2003. xviii+528 pp.

[39] Y. Saad, Numerical methods for large eigenvalue problems. Algorithms and Ar-
chitectures for Advanced Scientific Computing, Manchester University Press, New
York,1992.

[40] J.M. Tang, S.P. MacLachlan, R. Nabben, C. Vuik, A comparison of two-level
preconditioners based on multigrid and deflation, SIAM J. Matrix Anal. Appl. 31
(2009/10), no. 4, pp. 1715–1739.

[41] S. Sickel, A Comparison of Some Iterative Methods in Scientific Computing,
Summer Research Apprentice Program, University of Wyoming, USA, 2005.

[42] D. M. Strong, ”Iterative Methods for Solving Ax=b,” Convergence (July
2005), url: https://www.maa.org/press/periodicals/loci/joma/iterative-methods-
for-solving-iaxi-ibi.

[43] J.M. Tang, Two-Level Preconditioned Conjugate Gradient Methods with Applica-
tions to Bubbly Flow Problems, Ph.D. Thesis, Delft University of Technology, The
Netherlands, 2008.

[44] U. Trottenberg, C. Oosterlee, A. Schuller, Multigrid. With contributions by A.
Brandt, P. Oswald and K. Stüben, Academic Press, Inc., San Diego, CA, 2001.
xvi+631 pp.

[45] A. Van der Sluis, H. A. Van der Vorst, The rate of convergence of conjugate
gradients, Numer. Math. 48 (1986), no. 5, 543560.

[46] H.A. Van Der Vorst, Iterative Krylov methods for large linear systems, Cam-
bridge Monographs on Applied and Computational Mathematics, 13. Cambridge
University Press, Cambridge, 2003.

[47] R. Varga, Matrix iterative analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J.
1962 xiii+322 pp.

[48] D.M Young, Iterative solutions of large linear systems, Academic Press, New
York-London, 1971. xxiv+570 pp.

[49] M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richard-
son, J. Ring, M. E. Rognes and G. N. Wells, The FEniCS Project Version 1.5,
Archive of Numerical Software, vol. 3, 2015.

112

[50] S. Abhyankar, J. Brown, E.M. Constantinescu, D. Ghosh, B.F. Smith, and H.
Zhang, PETSc/TS: A Modern Scalable ODE/DAE Solver Library, arXiv preprint
arXiv:1806.01437, 2018.

[51] V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit
for the solution of eigenvalue problems. ACM Trans. Math. Software, 31(3):351-
362, 2005.

