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Abstract 

A new predictive model is developed in this paper to analyze the height of the reactor for 

continuous production of copper oxy-chloride in the thermochemical Cu-Cl cycle for hydrogen 

production.  The volumetric phase fraction is used to develop an energy balance and integrated 

spatially to determine the inlet temperature of nitrogen and steam mixtures for continuous 

production of copper oxy-chloride. The effects of the ratio of mixing power to mass of the 

suspended particle, the ratio of interfacial surface area of the gas film to the volume of liquid, and 

diameter of the steam/nitrogen bubble in the reactor, on the height of the reactor are reported for a 

production capacity of 3 kg of hydrogen per day. Results indicate that a smaller ratio of interfacial 

surface area to volume of liquid significantly reduces the height of the reactor. 

1. Introduction 

One of the major technical challenges of the Cu-Cl cycle for thermochemical hydrogen 

production is the hydrolysis step to produce copper oxy-chloride (Cu2OCl2). Recent advances in 

the Cu-Cl cycle have shown that in order to improve the efficiency of the cycle, the drying of the 

CuCl2 particles from the electrolysis step and the hydrolysis step to produce Cu2OCl2 should be 

combined into one process. In order to achieve this objective, a spray roaster was determined as 
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an effective means to integrate the cycle and avoid the dual processes. This paper investigates the 

heat and mass transfer processes of the reaction kinetics in the spray roaster to produce Cu2OCl2. 

 Extensive experimental studies were conducted by researchers at the Argonne National 

Laboratory (ANL) for a spray reactor [1, 2] to determine the mass flow rate of steam required to 

produce Cu2OCl2, using a mixture of argon/steam to supply heat to the reactor. The results 

indicated that 100% yields of Cu2OCl2 were achieved when an ultrasonic nozzle is used to inject 

the reactants into the reactor at about 375 oC. The products were examined using X-ray diffraction 

(XRD) and scanning electron microscope (SEM) images. The results also indicated that a 

concurrent flow into the reactor chamber of CuCl2 slurry and steam was preferable for efficient 

production of Cu2OCl2.  

 The excess steam required by spray reactor experiments conducted by ANL to produce 

Cu2OCl2 reduces the efficiency of the system. The cost of the plant increases with an increasing 

steam requirement to achieve continuous production of Cu2OCl2. Pope et al. [3]  performed 

experimental studies to investigate the possibility of using nitrogen to reduce the steam 

requirement of the hydrolysis reaction in a fluidized bed reactor. The experimental results reported 

by Pope et al. [3] indicated that nitrogen will reduce the steam consumption, but the yield of 

Cu2OCl2 was not adequate for further development of the fluidized bed reactor. The gas film layer 

formed around the solid CuCl2 particles during the hydrolysis reaction may be responsible for the 

incomplete conversion observed in the hydrolysis reaction.  

This paper modifies the reaction by using nitrogen in the concurrent flow spray reactor 

proposed by Ferrandon et al. [4, 5] to achieve continuous production of Cu2OCl2. Past studies 

have indicated that the chemical conversion effectiveness decreases as reactants are consumed [3]. 
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Ferrandon et al. [6] reported that the conversion extent of the solid hydrolysis reactant indicated 

an optimal conversion of 4 mol to 15 mol of steam per mol of HCl produced [7]. Further studies 

[8] indicated thermodynamic an optimal temperature of the hydrolysis reactor to be approximately 

375 °C. 

The numerical investigation in this study determines the molar flow rate of N2 to sustain 

the reaction. The study also investigates the reactor size required to produce 3 kg of H2/day, which 

is the target production rate of a pilot-scale system under construction at the University of Ontario 

Institute of Technology (UOIT). This paper investigates the heat and mass transfer mechanisms of 

the spray reactor to reduce the consumption of steam and continuously produce 3 kg of H2/day. 

For an integrated Cu-Cl cycle with a hydrogen production rate of 3 kg/day, the corresponding 

required capacity of copper oxychloride production is about 13.3 kg/day in the spray reactor. The 

primary goals of this paper are to gain better understanding and insight into the effects of 

temperature, particle size, mixing power, interfacial reaction surface, and bubble dispersion in the 

spray reactor.  

2. System Description 

 The hydrolysis reaction can be represented by the following reaction: 

2( ) 2 ( ) 2 2( ) ( )2 2aq g s gCuCl H O Cu OCl HCl+ → +         (1) 

The products are fed into the thermolysis (Cu2OCl2) reactor and the electrolytic cell (HCl). The 

efficient operation of the electrolysis process requires that the concentration of HCl is between 6 

and 11 mol. Using the concurrent flow reactor suggested by Ferrandon et al. [5], the steam is 

injected with Ar at a flow rate of 400 mL/min at 370 oC for continuous production of Cu2OCl2.   

A steam to CuCl2 ratio of 20 produced the desired amount of Cu2OCl2 for the spray reactor. 
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Numerical investigations for a fluidized bed reactor reported by Daggupatti [9] reported a ratio of 

17:1 for the steam to CuCl2 for the reactor operating between 350 oC and 400 oC.    

 The spray reactor analysis is a complex transport problem involving atomization, heat and 

mass transfer, and phase change. The CuCl2 slurry is sprayed into the reactor at about 150 oC, 

while the nitrogen/steam mixture is injected at about 375oC.  The path of the reaction is depicted 

in Fig. 1 for the particle. The analysis assumes that when slurry enters the reactor, the high 

temperature mixture of steam and nitrogen evaporates the water in the slurry so the steam 

concentration decreases accordingly in Fig. 1. The steam subsequently diffuses down a 

concentration gradient in Fig. 1 through the film surrounding the surface of the particle. The 

reaction rate is slower within the core of the solid particle as the reaction takes place on the solid 

surface. The gaseous surface diffuses back through the film again down a concentration gradient 

and through the main body of the slurry. 

3. Reaction Rate Formulation 

Considering a multiphase concurrent flow configuration in Fig. 2, the kinetic equations for 

the chemical reaction are used to determine the height of the reactor. It is assumed that the reaction 

rate is slower than the mass transfer. The reaction rate is best measured in terms of unit volume of 

the reacting phase rather than the interfacial surface between phases. The material balance for the 

reactor can be expressed as follows: 

( )moles of Y reacted volume of liquid phase Height of element
(volume of liquid)(time) total volumey

LdXGdY r dh
b

 = − = − =  
 

  (2) 
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where Y is the CuCl2 slurry, X is steam, G is the molar flow rate of the inert gas in the gas phase, 

L is the molar flow rate of the inert gas in the liquid phase, ry is the reaction rate, h is the height of 

the reactor, and b is the moles of steam consumed.  

The model assumes that the slurry is insoluble in the steam, and the amount of the unreacted 

steam in the liquid is small compared to the steam in the gas phase. Each mole of reacting steam 

is replaced by fresh steam sprayed in the reactor. Integrating over the control volume, the height 

of the reactor can be estimated by 

2 2

1 1

y x

y x
y y

G dY L dXh
f r bf r

 
= = − 

  
∫ ∫          (3) 

where f is the volume fraction of the phase in which the reaction occurs, and dY and dX can be 

determined with respect to the inert gas in the reaction as follows: 

( )
2 2 2 2

2

2
N H O H O N

N

p dp p dp
dY

p

−
=          (4) 

( )
2 2 2 2

2

2
N CuCl CuCl N

N

C dC C dC
dX

C

−
=          (5) 

Here, p and C are mole fractions of the reacting species. The reaction rate ry is determined by 

combining the reaction rates across each boundary in the process as identified in Fig. 2 and the 

total rate is determined as: 

1
1y s

sl i l i l s lc s

r p
H H H

k a k a k a k a

− =
+ + +

          (6) 
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where H is Henry’s constant (the ratio of pressure to mole fraction of the reacting species), ai is 

the ratio of interfacial surface to the volume of the liquid, and as is the ratio of the suspended 

CuCl2 particle to the volume of liquid. These ratios are usually experimentally determined [10].  

The mass transfer coefficient varies for the gas-liquid interface, gas-solid interface, and 

liquid-solid interface. The mass transfer coefficient for the gas film is determined as follows [10]:  

( )1/ 3 0.62 1.1 Re k
sl

p

Sc D
k

d

 +  =          (7) 

where Dk is the molecular diffusion of the gas phase, Sc is the Schmidt number, Re is Reynolds 

number of the flow, and dp is diameter of the particle. The gas-liquid mass transfer coefficient is 

determined as [10]: 

4 2
K b l

l
l

D d
k

ε ρ
µ

=            (8) 

where ε  is the ratio of the stirring power to the mass of suspension, lρ  is the density of the fluid, 

db is the diameter of the gas bubble, and lµ  is the viscosity of the liquid. The mass transfer 

coefficient of the solid interface is estimated by replacing the diameter of the bubble in Eq. (8) 

with the diameter of the particle.   

The diffusion coefficient used for this study is adopted from correlations developed by 

Tapio et al. [10] and determined using the following expression: 

( )
( )

21/ 3 1/ 3

0.51.75 7
1

1

10

i
k

N k i k

k i k

x
D

x p v v

T M M −
=

−
=

 + 

+ ×
∑

        (9) 
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where T is the temperature (K), p is the pressure (atm), M is the molecular mass (g/mol), and v is 

the volume of the molecule. 

4. Formulation of Reaction Temperature 

 The energy balance is established for each phase accounting for interactions between 

phases. This analysis assumes that the temperature is equal in each phase for a small elemental 

volume in the reactor. An elemental volume in the reactor is RV∆ , gas phase SGV∆ , and the surface 

element for the gas-solid interface with surface area A∆ . The energy balance can be written as: 

( ) ( ) ( )
0

h

r r SG r L l pl g pg s psR H dz A R H V R H V Q m c T m c T m c T−∆ ∆ + −∆ ∆ + ∆ ∆ = ∆ + ∆ + ∆ + ∆∫     (10) 

where Q∆   is the chemical reaction heat effect for the elemental fluid in the reacting phase. Using 

the mass balance and volume fractions, Eq. (10) can be written as: 

( ) ( ) ( )( )
0

1 ( ) ( )
h

r v r r l r r l g r c l pl g pg s psR H dza V R H V R H V U s T T m c m c m c Tβ β β−∆ ∆ + −∆ ∆ + ∆ − + ∆ = ∆ − + + + ∆∫ (11) 

where R
R

ss V
V
 

∆ = ∆  
 

, SG
l

R

V
V

β
∆

=
∆

, v
R

Aa
V
∆

=
∆

 and U is the overall heat transfer coefficient. Also, Cp is 

the specific heat capacity, and m is the mass flow rate of each phase. The rate of temperature 

change across the elemental control volume can be determined from Eq. (11): 

( ) ( ) ( )( )
( )

0
1

h

r v r l r l g

R l pl g pg s ps

R H dza R H R HdT
dV m c m c m c

β β β−∆ + −∆ + ∆ − +
=

+ +
∫       (12) 

Eq. (12) is used to determine the temperature over the entire reactor height based on a specific 

temperature for the reactor wall, steam and slurry injected into the reactor. The temperature and 

mass transfer formulation can be combined to analyze the spray reactor. Previous studies by 
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Venkata et al. [11] have validated numerical predictions of steam conversion variations with 

temperature in the hydrolysis reaction through comparisons against experimental data. In the next 

section, results of the previous models will be presented and discussed. 

5. Results and Discussion 

The numerical model is developed to predict the height of the reactor required to generate 

3 kg of H2 per day using the thermochemical Cu-Cl cycle. The assumptions used for the numerical 

model are outlined in Table 1. Matlab is used to solve the coupled chemical reaction model and 

the energy balance model to predict the reactor height and temperature required for continuous 

production of Cu2OCl2.  

 The reactor is maintained between 370 oC and 400 oC during the simulation, as past studies 

[4, 6, 12] indicate the optimum yield of Cu2OCl2 occurs within this temperature range. The 

numerical model is used to determine the required supply temperature of nitrogen gas to sustain 

the reaction. Increasing the molar flow rate of N2 reduces the inlet temperature required for 

production of Cu2OCl2 as shown in Fig. 3. Based on the analysis, a steam/N2 ratio of 7 will sustain 

the reaction. This significantly reduces the space and cost of integrating the Cu-Cl cycle. When 

the molar flow rate of N2 is between 8 and 10 mol/s, the reactor temperature has less than a 10% 

difference in the required inlet temperature and the heat can be provided from waste heat recovered 

in the cycle. This can greatly improve the efficiency of the Cu-Cl cycle.   

 The ratio of mixing power to mass of the suspension has a significant effect on the height 

of the reactor as shown in Fig. 4.  At a mixing power ratio of 0.1, when the radius of the reactor is 

doubled, the height of the reactor required for continuous production of Cu2OCl2 reduces by a 

third of the original height. This effect is exponentially reduced as the mixing power increases. 
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Experimental measurements are required to determine the actual mixing power required for a 

specific reactor height. Experiments will be performed at UOIT to verify the results obtained by 

this model. The results will be used to scale-up the reactor for integration of the Cu-Cl cycle.   

 Increasing the ratio of the interfacial surface area of the solid to volume of the liquid 

increases the height of the reactor as shown in Fig. 5. The effect at a radius of 0.15 m is more 

pronounced, as the height of the reactor increases by about a meter. Increasing the height of the 

reactor may reduce the residence time in the reactor, which is favorable for integration. A 

compromise must be made due to space limitations for the pilot-scale. The size of the particle 

sprayed into the reactor will have an effect on ai, reducing the particle size, which reduces the ratio 

and size of the reactor. A reduced particle size also reduces the residence time in the reactor.  

During the actual reaction in the Cu-Cl cycle, the process involves simultaneous 

decomposition and hydrolysis reaction steps. Previous studies found that excess steam may react 

with chlorine formed during the decomposition step within the product layer. The chlorine reaction 

is a homogeneous gas phase reaction, coupled with a gas–solid heterogeneous reaction. A 

“uniform-conversion” model or “shrinking-core” model can be used for the prediction of 

conversion of cupric chloride in the hydrolysis reaction. These factors affect the actual reaction 

kinetics and process thermodynamics in the hydrolysis reaction. 

 The diameter of the gas bubble has a significant effect on the height of the reactor between 

2 and 6 µm as shown in Fig. 6. The slurry particle size is kept constant at 250 µm for the simulation 

in this study. Increasing the gas bubble diameter increases the surface area for the reaction, 

subsequently reducing the residence time in the reactor. Smaller gas bubbles will travel faster 

across the control volume, not allowing sufficient time for the reaction to occur. The increase in 
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the height of reactor is due to the same residence time in the reactor model. Experimental 

measurements will be performed to determine the bubble size for a specific reactor height to allow 

for the complete reaction. Although this model only performs a numerical solution for each 

parameter of interest, a numerical routine using a heuristic technique will be developed to optimize 

all the parameters required for a specific reactor height.  

6. Conclusions 

This paper presents a new predictive model for analyzing the required height and inlet temperature 

of steam/N2 for a spray reactor used for the production of Cu2OCl2 in the Cu-Cl cycle of 

thermochemical hydrogen production. The predicted results indicate the inlet temperature may 

vary between 1,000 K and 400 K depending on the molar flow rate of hydrogen and the radius of 

the reactor. Also, the analysis indicates that increasing the mixing power and reducing the ratio of 

interfacial surface area to volume of liquid significantly reduces the height of the reactor. These 

results will be used to design the spray reactor to integrate the electrolysis and copper 

decomposition reactors of the Cu-Cl cycle.  
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Table 1. Numerical simulation parameters 

Description  Quantity 

Particle diameter 250 µm 

Spray reactor pressure 0.4 bar 

Spray nozzle pressure 24 bar 

Density of CuCl2 slurry 1.227 g/mL 

Velocity at the tip of nozzle 0.518 cm/s 

 

 

 

Figure 1: Reaction resistance in spray roaster for a droplet in the spray reactor 
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Figure 2: Schematic of spray reactor for producing copper oxy-chloride and HCl 
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Figure 3: Effect of nitrogen temperature on molar flow rate 
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Figure 4: Effect of ratio of mixing power to mass of suspension on spray reactor height 
(production capacity of 3 kg H2/day) 
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Figure 5: Effect of interfacial surface area of steam film to volume of the slurry injected into the 
spray reactor 
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 Figure 6: Effect of injected steam bubble diameter on height of spray reactor for a fixed particle 
diameter 
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