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Abstract 

A calcium oxide/steam chemical heat pump (CHP) is presented in the study as a means to 

upgrade waste heat from industrial processes for thermochemical hydrogen production. The CHP 

is used to upgrade waste heat for the decomposition of copper oxychloride (CuO.CuCl2) in a 

copper-chlorine (Cu-Cl) thermochemical cycle. A formulation is presented for high temperature 

steam electrolysis and thermochemical splitting of water using waste heat of a cement plant. 

Numerical models are presented for verifying the availability of energy for potential waste heat 

upgrading in cement plants. The optimal hydration and decomposition temperatures for the 

calcium oxide/steam reversible reaction of 485K and 565K respectively are obtained for the 

combined heat pump and thermochemical cycle. The coefficient of performance and overall 

efficiency of 4.6 and 47.8% respectively are presented and discussed for the CHP and hydrogen 

production from the cement plant.   

Nomenclature 

oE  reversible cell potential (V) 

E  cell voltage (V) 
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F Faraday’s Constant (96,485 C/mol) 

g  specific Gibbs energy (kJ/kmol) 

,T PG  Gibbs energy at specific temperature and pressure (kJ) 

H  enthalpy (kJ) 

h  specific enthalpy (kJ/kmol) 

K  rate of reaction [m3/s] 

n  electron transfer  

N  molar flow rate (kmol/s) 

N molar concentration (kmol/m3) 

P  pressure (kpa) 

cellQ  heat transfer from electrolytic cell (kJ) 

condQ  heat transfer from condenser (kJ) 

fQ  energy available from flue gas (kJ/kmol) 

2H OQ  heat transfer to water entering electrolytic cell (kJ) 

R  universal gas constant (kJ/kmol.K) 

S  entropy (kJ/K) 
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genS  entropy generation (kJ/K) 

T  temperature (K) 

V  volume (m3) 

genW  steam cycle work output (kJ) 

pumpW  pump work (kJ) 

Greek 

Eη  efficiency of electrolytic hydrogen production 

pη  overall plant efficiency 

kµ  chemical potential 

Subscripts 

d decomposition 

E  electrolytic cell 

evap evaporator 

f flue gas 

o environment 

s surface 

Abbreviations 
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CHP chemical heat pump 

COP  coefficient of performance 

LHV  lower heating value [kJ/mol] 

1. Introduction 

Waste heat from energy intensive industrial processes such as cement and steel plants can 

be effectively utilized by other thermal processes to reduce energy losses and increase the system 

efficiency. Effective waste heat utilization depends on a combination of thermoeconomic analysis 

and needs of the industrial processes. This study specifically investigates the utilization of waste 

heat from cement plants. A waste heat case study of a cement plant in Bowmanville, Ontario, 

Canada is examined for this study of thermochemical production of hydrogen.  

Several studies have investigated the commercial viability of the copper-chlorine (Cu-Cl) 

cycle [1-7]. An efficiency of about 45% has been reported when combined with Generation IV 

nuclear power plants [8].  Steam methane reforming is the most common commercial method of 

producing hydrogen, while high temperature steam electrolysis is another alternative. Hydrogen is 

required as a feedstock in many applications such as the oil sands industry, pharmaceutical, 

biochemical and food industries. The use of hydrogen as a fuel can significantly reduce the 

greenhouse gas emissions of industrial processes. This paper studies the use of hydrogen as a fuel 

in the cement plant to reduce the overall greenhouse gas emissions from the plant and increase the 

overall efficiency of its operation.   

 Electrolysis is a commercial technology to produce hydrogen. When the overall efficiency 

of a system including the generation of electricity is considered, this efficiency typically becomes 

18 to 24% [9]. Thermochemical splitting of water is an emerging technology and promising 
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alternative to electrolysis of water. Two of the thermochemical cycles are the sulphur-iodine (S-I) 

and copper-chlorine (Cu-Cl) cycles. The Cu-Cl cycle (up to 550oC) requires lower temperature 

heat input to produce hydrogen than the S-I cycle (up to 825-900oC) [10, 11]. Although the reduced 

temperature is advantageous, materials to handle the highly corrosive HCl at high temperatures is 

a challenge. Naterer et al. [8] have demonstrated a large-scale Cu-Cl cycle at the University of 

Ontario Institute of Technology (UOIT). Brown et al. [11]  have studied the S-I cycle. Past studies 

have shown the viability of using waste heat from high temperature industrial applications to 

supply the heat required by the Cu-Cl cycle [8].   

This paper combines the thermochemical cycle presented by Naterer et al. [8] to a cement 

plant using a calcium oxide/steam (CaO/H2O) chemical heat pump (CHP). The precalciner 

(340oC) and the kiln (1067oC) of a cement plant produce high temperature flue gas. This paper 

investigates a CaO/H2O CHP to upgrade the flue gas from the cement plant to provide the heat 

required by a Cu-Cl plant for the decomposition of copper oxychloride (CuO.CuCl2) when the flue 

gas temperature is 340oC. This flue gas is typically not recycled in the plant and it is sent directly 

through the stack. The heat pump is used to upgrade the flue gas from the cement plant to a 

temperature required in the oxygen decomposition reactor.  The higher temperature (1067oC) 

available from the kiln is normally recirculated within the cement plant to improve the efficiency 

of the cement plant. Fig. 1 shows a schematic of the proposed system when combined with the 

oxygen reactor in the Cu-Cl cycle.  Zamfirescu et al. [12, 13] proposed a system of vapour 

compression of CuCl2 to upgrade waste heat for thermochemical hydrogen production.   

CHPs are investigated for heat upgrading in this study due to their high storage capacity 

and heat of reaction. Several working pairs were investigated by Wongsuwan et al. [14], who 

outlined the preferred combination for the appropriate working conditions. Ogura and Mujumdar 
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[15] proposed a CHP which produces hot dry air for an industrial drying process based on CaO 

hydration and decarbonization of CaCO3. The system had a COP of about 1.52 with an output 

temperature of about 550oC. Fujimoto [16] extended the work of Ogura et al. [17, 18] 

experimentally and numerically for a smaller system with an output temperature of about 400oC.   

Naterer [19] also investigated the second law viability of upgrading waste heat for 

thermochemical hydrogen production using a magnesium oxide/vapor CHP. The results showed 

that the COP increased with a higher evaporator temperature. The Carnot cycle for both cooling 

and heating were also reported and compared analytically. Although a maximum COP of about 

2.75 was reported for the CHP, this paper will show that higher COPs are achievable by replacing 

components in a CaO/H2O cycle. Sharonov and Aristov [20] compared the thermodynamic 

performance of chemical heat pumps and adsorption heat pumps for non-regenerative cycles. The 

results indicated that the Carnot efficiency can be obtained for mono-variant equilibrium gas-solid 

reactions but cannot be applied to di-variant equilibrium systems.  Kato et al. [21-23] also 

investigated a high temperature heat pump using a combination of CaO/CO2 and PbO/CO2. A 

temperature of about 860oC was achieved experimentally and optimal kinetics of the reactions is 

presented. The possibility of lead poisoning makes the system less attractive for 

commercialization.   

The CaO/H2O CHP is well suited for thermochemical production of hydrogen since 

Ca(OH)2 can be produced from limestone used to produced cement. This will reduce the 

possibility of contamination within the cement plant and also enhance possible integration. This 

paper analytically investigates a combined system using a pinch analysis and chemical energy 

balance of the reacting mixture. The effects of temperature and pressure of the flue gas from the 

cement plant on the operation are analyzed. The hydration and evaporator pressure of the heat 
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pump are also varied to achieve the optimal plant operating condition. The proposed system is 

compared with a system using flue gas to produce hydrogen via electrolysis and also electricity 

from a steam power plant. 

2. System Description 

Various cycle configurations have been proposed for thermochemical hydrogen production 

using the Cu- Cl cycle and between three to five major chemical reactions [8, 24]. The four-step 

cycle has been chosen as the preferred cycle because it avoids the problem associated with 

transporting solid copper particles. The chemical reactions for the four-step cycle are outlined in 

Table 1. The cycle configuration for the four-step process is shown in Fig. 2.  

The CHP is used to provide the heat required by the oxygen decomposition reactor as 

shown in Fig. 3. The heat upgrading of the flue gas from the cement plant is achieved by the 

hydration of CaO. The exothermic reaction of CaO and water vapor results in a high temperature 

Ca(OH)2. The extent of the reaction depends on the reaction coefficient, which is determined by 

the temperature and pressure of the reaction. The hydration reaction is given as follows: 

( )2 2
CaO H O Ca OH+           (1) 

The upgraded heat is passed through a heat exchanger to the oxygen decomposition reactor 

in the hydrogen production cycle. The cooled Ca(OH)2 is then fed into the 

dehydration/decomposition  reactor, where CaO and H2O are formed in the reverse reaction (from 

right to left) at a different temperature but at the same pressure. This reaction is endothermic and 

achieved by supplying the hot flue gas from the cement plant to form the desired products (CaO 

and vapor). The experimental setup by Fujimoto [16]  used tubular reactors to achieve the reaction. 

The vapor is throttled to the condenser pressure, where it is cooled to the saturation temperature 
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by the pressurized liquid flowing into the hydration reactor.  The liquid water is collected and 

pumped to the pressure of the hydration reactor. The circulation of steam in the reactors can be 

achieved in batches or operated continuously. This analysis assumes that two reactors are used for 

continuous operation of the plant. The steam/liquid flows are cycled between both reactors. The 

high pressure liquid is then passed into a heat exchanger where steam from the decomposition 

reactor is used to produce steam at the required temperature for the hydration reaction.  

The following section establishes mass, energy and chemical exergy balances to determine 

the optimal operating conditions of the system. The temperature and pressure of the hydration and 

decomposition reaction are determined by a thermodynamic analysis. The temperature and flow 

rate from existing cement plants are used in the analysis.  

3. Chemical Heat Pump 

A parametric analysis of the combined system is performed to determine the applicability 

of the CHP for the thermochemical production of hydrogen using the Cu-Cl cycle. Optimal 

parameters are determined for the plant’s operation. An energy analysis of each component and 

the interaction between different modules are considered in modeling the cycle performance. The 

system is designed to produce Ca(OH)2 between 550oC and 590oC. The molar flow rates and inlet 

temperature of the reactants in the hydrolysis reactor (CaO and vapor) are determined analytically. 

The Gibbs relation is used to determine the chemical exergy of the reaction in Eq. (1).  

In order for the reaction to proceed in the preferred direction, the following relation of 

molar flow rate, reaction potential, and entropy generation must be satisfied.  

0k
gen k

NS
T

µ ∂
∂ = >∑           (2) 



9 
 

where µ is the chemical potential of the species, N is the molar concentration, and T is the 

temperature of the reaction. This can be related to the change in Gibbs energy as follows: 

gendG SdT VdP TdS= − + −          (3) 

where P is pressure, S is the entropy of the mixture and V is the volume of the mixture.  At specified 

values of T, P and molar flow rate, the change in Gibbs energy can be expressed as:  

, 0T P k k gendG dN TdSµ= = − ≤∑         (4) 

For the decomposition/hydration reaction, the change in Gibbs energy is used to determine 

availability and direction of the reaction in Eq. (1). This can be expressed as: 

( ) ( ) ( )2 22 2
CaO CaO H O H OCa OH Ca OHN g N g N g= +          (5) 

where g is the specific Gibbs energy. This can also be expressed as k k kh T S− for each of the 

chemically reacting species.  

The change in enthalpy of the reaction in Eq. (1) is used to determine the inlet temperature 

of CaO and H2O(g). Earlier studies by Ogura [18] reported an optimal pressure for the reaction in 

Eq. (1) for an exit temperature of 500oC. The rate of the reactions was determined experimentally 

by Fujimoto et al. [16]. The rate of the reactions for the hydration and decomposition can be 

expressed as: 

1
18.305 3816.4435 exp

46.13
K

T
− = ⋅  − 

        (6) 

( )
( )

4

2 4

875 exp 4.81 10 /

1 51.1 exp 1.1096 10 /

RT
K

RT

× − ×
=

+ × − ×
       (7) 
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where K1 is the reaction rate for the decomposition reaction and K2 is the reaction rate for the 

hydration reaction. The reaction rates are based on a first order reaction for particle diameters of 

0.7-1mm. These rates are used to determine the concentration of the solid particles in the 

decomposition and hydration reactions. 

 A pinch point analysis is used to determine the exit temperature of Ca(OH)2 from the 

oxygen decomposition reactor. The chemical decomposition from the CuO.CuCl2 reactor is 

expressed as: 

2 2( ) ( ) 2( )  2   ½ s l gCu OCl CuCl O→ +         (8) 

The heat required for the reaction to proceed was determined by Lewis [9]  as 285kJ/molH2. The 

energy balance for the oxygen decomposition reactor is expressed as:  

( )2 2 2 2 2. ( ) ( ) ( )
in out

H CuO CuCl Ca OH Ca OH Ca OHN H N H H⋅∆ = ⋅ −        (9) 

where 
2HN  is the molar flow rate of hydrogen. The CuCl2 and oxygen (O2) exit the oxygen 

decomposition reactor at about 450oC. Assuming a pinch point of 10oC, the molar flow rate of 

Ca(OH)2 can be determined for the required temperature for the reactor operation. The oxygen 

from the reactor is used to preheat the steam in the Cu-Cl cycle. The cooled Ca(OH)2 is sent into 

the decomposition reactor. The flue gas from the cement plant is used as heat input for the 

decomposition reaction.  This is achieved at the same pressure of the hydration reaction but at a 

lower temperature,  

( ) ( )( )2 22 2
. out

f f CaO CaO H O H OCa OH Ca OHN Q N g N g N g+ = +          (10)  
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where Qf is the available energy from the cement plant and fN is the molar flow rate of the flue 

gas. The temperature of the flue gas from the cement plant will determine the reaction temperature. 

The numerical predictions assume that the temperature of the exit steam will be the final 

temperature of the decomposition reaction. The steam is throttled to the evaporator pressure, where 

it is used to generate steam for the hydrolysis reaction. The heat transferred to the steam for the 

hydrolysis reaction can be expressed as:  

( )
2cond H O d evapQ N h h= ⋅ −          (11) 

where dh  is the enthalpy of the steam leaving the decomposition reactor and evaph  is the enthalpy 

of the liquid at the evaporator saturation temperature. The numerical model assumes 30% of the 

available heat is lost to the surroundings in the heat exchangers. After determining the 

interdependence of each state point, the performance of the system can be estimated by taking into 

account extraneous heat losses to the surrounding. The coefficient of performance of the heat pump 

can be expressed as: 

2 2..H CuO CuCl

f f pump

N H
COP

N Q W
∆

=
+





         (12) 

where Wpump is the pump work. The overall efficiency of the combined system becomes:  

2 2H H
p

f f pump

N LHV
N Q W

η =
+





          (13) 

where 
2HLHV is the lower heating value of hydrogen (241.83kJ/mol). Numerical simulations are 

performed to determine the thermodynamic parameters to achieve the decomposition of 
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CuO.CuCl2 in the Cu-Cl cycle. The waste heat from the process is recycled within the Cu-Cl cycle. 

An audit of the recirculation of heat within the system has been reported in past studies [8].  

4. Rankine Steam Power Plant 

A Rankine steam power plant operating within the same pressure range as the heat pump 

is investigated to determine the overall efficiency of a system used to produce electrical power. 

The system is also compared with electricity generation from a steam cycle used to produce 

hydrogen via steam electrolysis. The electrochemical work for the separation of high pressure 

steam using electrolysis is estimated by the change in Gibbs energy (ΔG=-nFEo). The reversible 

cell potential is determined by the Nernst equation ( ( )- 2.303 lno
RTE E K
nF

 
= ⋅ 

 
). The overall 

efficiency of the combined steam cycle and combined electrolytic cycle is determined by: 

gen pump
steam

f f

W W
N Q

η
−

=


          (14) 

2 2

2

H H
E

f f H O

N LHV
N Q Q

η =
+





          (15) 

where steamη and Eη  are the efficiencies of the steam cycle to produce electricity and the efficiency 

of the cycle to produce both electricity and hydrogen respectively. The waste heat from the 

electrolytic cell can be used in a variety of ways to increase the efficiency of the electrolytic cell 

as reported by Zang et al. [25]. The results show that the maximum efficiency is achieved when 

excess heat is used to preheat the steam in the electrolysis cell. The resulting efficiency of the 

system is estimated as: 
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2 2

2
1 1

H H
E

o o
f f cell H O

s s

N LHV
T TN Q Q Q
T T

η =
   

+ − + −   
   





       (16) 

The performance of the CHP, steam cycle and electrolysis are compared in the following section 

by examining waste heat utilization for hydrogen production.  

5. Results and Discussion 

The numerical model is used to determine the performance of the heat upgrade via the CHP 

for thermochemical hydrogen production, using the flue gas available from the preclinker at 340oC. 

The study further examines the output efficiency if the waste heat at 1,067oC from the clinker is 

used directly in the CuO.CuCl2 decomposition chamber in the Cu-Cl cycle. The study also 

compares the heat used to produce electricity as a power source for high temperature electrolysis 

to split water to produce hydrogen. The parameters in the numerical modelling for the CHP are 

highlighted in Table 2. To simplify the model constant pressure was assumed during each sub 

process. The reactor temperature was assumed to be equivalent to the reaction temperature. The 

reference environment is assumed to be 25oC for the numerical simulation and a reference state 

for the thermodynamic data for each compound. The cooling water is assumed to be perfectly 

mixed. A 30% loss is assumed for the heat exchanger used for the condenser and evaporator.   

The simulation is performed with a combination of MATLAB [26] and Engineering 

Equation Solver (EES) [27]. An initial guess is made for the hydration process temperature. An 

iterative technique is used to determine the final temperature of the hydrolysis reaction. The result 

from each hydration process is the input to the oxygen decomposition chamber and the rate of 

hydrogen production is estimated. A similar iterative procedure is used to determine the exit 

temperature from the dehydration process. An iterative procedure is performed on the condenser 
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to determine the molar flow rate of cooling water required. The cooling water is assumed to be the 

supply water for the evaporation process. The simulation determines if makeup water is required 

for complete hydration of CaO.  

 The decomposition/hydration pressure is varied between 3.67 and 5.07 bar for a fixed inlet 

temperature into the Cu-Cl cycle. The COP varied between 2.5 and 4.6 for the range of pressures. 

Increasing the decomposition pressure reduces the COP of the cycle for the same temperature of 

decomposition. The COP of the CHP/Cu-Cl system declines with flow rate as shown in Fig 4. The 

reaction kinetics of the Cu-Cl cycle limits the flow rate of the CuOCuCl2 through the oxygen 

decomposition chamber. The temperature required for the reaction can be achieved at lower flow 

rates and lower flue gas temperatures. The excess thermal energy of the flue gas can be recycled 

within the system to increase the COP of the combined system. The COP at a flow rate of 3.2kg/s 

is about 25% higher than the COP at a mass flow rate of 4.2kg/s for the range of temperatures 

(591-613 K) considered in this paper. Increasing the flow rate will have no further impact on the 

production of hydrogen because the stoichiometric combination CaO/H2O reaction is necessary to 

produce the temperature required by the oxygen decomposition reactor. Higher flow rates of water 

into the condenser results in an increase in the pump work. The COP achieved is significantly 

higher than previously reported by Ogura and Mujumdar [15] for a similar CHP for drying.  This 

can be attributed to replacing the compressor in the design with a pump to reduce the work input 

to the CHP. 

 The effects of varying mass flow rate on COP for various flue gas temperatures are shown 

in Fig. 4. The changing temperature does not have a significant effect on the COP when comparing 

results from Figs. 4 and 5. At a fixed mass flow rate, the maximum change in COP is less than 1% 

(Fig. 5). Although the mass flow rate has a more significant effect on the COP, the required 
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temperature of the oxygen decomposition reactor is achieved at the lowest temperature of the flue 

gas. The minimum flow rate of flue gas for the decomposition reaction is numerically estimated 

as 3.2kg/s based on the pressure range considered in this study.  

The effects of evaporator pressure and condenser pressure on COP of the CHP are shown 

in Fig. 6. The slight change in evaporator pressure has a greater effect on the COP for a fixed flue 

gas mass flow rate (3.2kg/s) and temperature (318oC) than the decomposition pressure. The 

maximum COP will be achieved at the minimum evaporator pressure and minimum decomposition 

pressure for the range of flue gas properties in this paper. Fig. 6 is used to identify the optimum 

operating condition for the heat pump. Increasing the decomposition pressure increases the mass 

flow rate of flow flue gas required to achieve the decomposition of Ca(OH)2. This also increases 

the decomposition temperature, thereby increasing the heat lost from the decomposition chamber. 

The excess heat can be recycled in the Cu-Cl cycle for heating the steam used in the hydrolysis 

step of the cycle (Table 1; Step 3).  

The results from the studies are compared to past studies by Naterer [19] and Sharonov et 

al.[20] for a fixed mass flow rate and inlet temperature as shown in Table 3. The COP of the 

CHP/Cu-Cl cycle is lower than that reported by the previous authors as the derived estimates are 

based on the Carnot cycle operation of the cycles.  The heat generated from the CaO/H2O CHP 

reaction is much higher than that generated from either the MgO/H2O or salt/ammonia 

combinations. This would explain why the COP of the CHP/Cu-Cl cycle in this study is close to 

data reported in Table 3. 

 The results show that steam is supplied between 460K and 485K for the hydration reaction 

to proceed. The heat upgrade is dependent on the pressure shown in Fig. 6. Increased pressure 
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requires the steam to be supplied at higher temperatures. The decomposition reaction results in 

steam produced between 473K and 565K for the range of pressures considered. Two reactors will 

be required for continuous operation of the CHP for thermochemical hydrogen production. 

Experimental results by Ogura et al. [17] also suggest the use of two reactors for continuous 

operation.  

 The hydrogen production capacity for the proposed plant design is about 6.17tons/day 

based of the waste heat supplied from the cooling stack for a case study of a cement plant in 

Bowmanville, Ontario, Canada. When considering the waste heat from the clinker being diverted 

to produce hydrogen in the Cu-Cl cycle, an efficiency of about 47.8% is achievable from the cycle. 

The flue gas (1,067oC) recycled in the preclinker is used as a direct heat source for the oxygen 

decomposition reactor in the Cu-Cl cycle. Fig. 7 shows the effect of mass flow rate of the flue gas 

on the thermodynamic efficiency when combining the waste heat from the preclinker of the cement 

plant directly to the oxygen decomposition chamber of the Cu-Cl cycle. The lowest mass flow rate 

produces the highest efficiency since the temperature required for the reaction is 550oC. Increasing 

the temperature only increases the heat loss from the heat exchanger used to transfer energy to the 

decomposition reaction. It is assumed that heat from the heat exchanger can still be recycled to 

heat the raw material in the cement production line. A minimal flue gas flow rate will achieve the 

required reaction, and increase the efficiency of the combined system without requiring a heat 

pump. A thermoeconomic analysis will be required to determine the impact of diverting a portion 

of the flue gas currently used in the preclinker to produce hydrogen. The calorific value of 

hydrogen is much higher than the flue gas, hence burning the hydrogen produced in the preclinker 

might reduce the overall energy requirement for the cement production. This will also reduce the 

environmental impact of the industrial process.    
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 The flue gas from the cement plant at 340oC can be used in a variety of ways, which include 

producing process steam, hydrogen, and electricity amongst other industrial applications. These 

paper focuses on electricity and hydrogen production because cement production is a highly energy 

intensive process. The hydrogen produced could be used as a fuel to produce the heat required for 

the kiln process and also preheating of the raw materials. If electricity is produced, it can be used 

to power auxiliary systems within the plant.  

When the flue gas from the cement plant is used to generate electricity in a steam cycle and 

power the water electrolysis cell. The numerical study presented here uses the flue gas temperature 

available at 590 K and 640 K to model the steam/electrolysis cycle. This is necessary for 

consistency with other hydrogen production configurations considered in this study. The increase 

in flue gas temperature results in an increased net work output from the steam cycle. This increases 

the electrical work supplied to the electrolysis cell. The increase in electrical work to the cell results 

in a higher capacity to produce more hydrogen using electrolysis. The most hydrogen is produced 

at the lower pressures using water electrolysis. The effect of varying the pressure from 1.01bar to 

3.07bar is only about 4.5% for the range of flue gas temperatures considered in Fig. 8. The change 

of hydrogen production beyond 3.07bar is less than 1% for the range of temperatures considered. 

The hydrogen production from the combined CHP Cu-Cl cycle (6.017 tons/day) is significantly 

higher than using the flue gas for the water electrolysis process. The production of hydrogen from 

the Cu-Cl cycle does not vary with flue gas temperature due to the kinetics of the reaction that 

generates hydrogen.  

 The steam cycle is modeled using the input condition of the cement plant. The flue gas is 

assumed to pass through a heat exchanger where it is used to generate superheated steam that is 

passed into the steam turbine. A pinch point of 10oC is assumed when modeling the heat exchanger 
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and the exit flue gas temperature is assumed to be about 100oC. The steam cycle is also assumed 

to operate between the decomposition and evaporation pressure of the CHP to ensure a reasonable 

comparison. Increasing the flue gas temperature increases the efficiency of the steam/electrolysis 

cycle for generating hydrogen, as shown in Fig. 9. The maximum efficiency occurs at the lower 

pressure of water electrolysis. This provides useful verification of the results in Fig. 8, indicating 

the rate of hydrogen production from the steam/electrolysis combined system. The steam cycle 

efficiency is also directly proportional to the increase in flue gas temperature. The combined 

steam/electrolysis system increases the cycle efficiency by about 16% for the range of flue gas 

temperatures considered.  

The numerical prediction is validated by comparing the transient temperature distribution 

of the hydration process of the CHP/Cu-Cl with experimental results reported by Fujimoto et al. 

[16] (Fig. 10). The trend of the numerical simulation over predicts the start of the hydration process 

as shown in Fig. 10. This is may be due to the inability to adequately account for heat losses from 

the reactor chamber and the experimental errors in estimating the rate of the reaction before the 

equilibrium temperature is attained. The average difference between the predicted and 

experimental results is about 5.4%. It can be concluded that the results fall within a 90% confidence 

interval for the range of temperatures considered. 

6. Conclusions 

The results from this study confirm the viability of using waste heat for thermochemical hydrogen 

production. A high COP of about 4.6 is achievable at moderate decomposition temperatures and 

pressures. The optimal decomposition pressure (3.67 bar) and evaporator pressure (0.042 bar) is 

determined for the range of flue gas temperatures considered. A comparison between high 

temperature electrolysis and the combined thermochemical splitting of hydrogen shows that a 
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higher efficiency is achieved with the CHP. The possibility of also using waste heat from the kiln 

is examined and a higher efficiency is achieved using the flue gas directly in the thermochemical 

cycle. The viability of either using waste heat at 340oC or a portion at 1067oC from the cement 

plant to produce hydrogen is presented in this study. This model can be extended to other industrial 

processes to reduce the greenhouse gas emissions from such systems.  
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Step Reaction 
Temp. 

Range (°C) 

Feed 

Output* 

1 2CuCl(aq) + 2HCl(aq) → 
H2(g) + 2CuCl2(aq) 

<100 
(electrolysis) 

Feed: 

Output: 

Aqueous CuCl and HCl + V + Q  

(55kJ/molH2) 

H2 + CuCl2 (aq) 

2 CuCl2(aq) → CuCl2(s) <100 
Feed: 

Output: 

Slurry containing HCl and CuCl2 + Q 

(33.2kJ/molH2) 

Granular CuCl2 + H2O/HCl vapours 

3 
2CuCl2(s) + H2O(g) → 

Cu2OCl2(s) + 2HCl(g) 
400 

Feed: 

Output: 

Powder/granular CuCl2 + H2O(g) + Q 

(120.2kJ/molH2) 

Powder/granular Cu2OCl2 + 2HCl (g) 

4 Cu2OCl2(s) → 2CuCl(l) + ½ 
O2(g) 500 

Feed: 

Output: 

Powder/granular Cu2OCl2(s) + Q 

(125.5kJ/molH2) 

Molten CuCl salt + oxygen 

* Q = thermal energy, V = electrical energy 

Table 1: Steps and chemical reactions in the Cu-Cl cycle 
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Property Value 

Inlet temperature oxygen 
reactor  550oC 

Flue gas temperature 340oC 

Lower heating value of 
hydrogen (LHVH2) 241.83kJ/mol 

Mass flow rate of flue gas  600tons/day 

Decomposition pressure 4.72bar 

Exit temperature of oxygen 
reactor  450oC 

Table 2: Simulation parameters for chemical heat pump  

 

 Coefficient of performance  

Naterer [19]   4.75 

Sharonov et al. [20] 4.75 

Present model  4.49 

Table 3: Comparison of past studies for a decomposition pressure of 4.07bar, mass flow rate of 
flue gas 5.2kg/s, and flue gas temperature of 340oC  
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Fig. 1: Schematic of combined CHP and Cu-Cl cycle 
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Fig. 2: Schematic of the copper-chlorine (Cu-Cl) cycle 
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Fig. 3: Schematic of chemical heat pump for heat upgrading to the oxygen decomposition reactor.  
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Fig. 4: Effect of varying flue gas temperature of CHP / Cu-Cl cycle for various flow rates of flue 

gas at 340oC with an inlet temperature to the Cu-Cl cycle of 550oC. 
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Fig. 5: Effects of varying mass flow rate on COP for different flue gas temperatures and CHP 

with an inlet temperature to the Cu-Cl cycle of 550oC.  
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Fig. 6: Effects of evaporator pressure and decomposition pressure on the COP of the CHP with 

an inlet temperature to the Cu-Cl cycle of 550oC. 
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Fig. 7: Effects of varying mass flow rate on plant efficiency when using high temperature flue 

gas from the clinker to produce hydrogen directly from the Cu-Cl Cycle at 550oC. 
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Fig. 8: Hydrogen production using water electrolysis with electricity supplied from steam cycle 

with mass flow rate of flue gas at 600tons/day. 
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Fig. 9: Efficiency of steam cycle plant and electrolysis of water at different pressures for a fixed 

mass flow rate of flue gas of 5.2 kg/s. 
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Fig.1: Comparison of experimental and numerical prediction of hydration temperature 
distribution 
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