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Abstract 

A new analytical model is developed to predict the transient velocity and voltage gnerated 

due to thermocapillary pumping in a micro heat engine (MHE). Modeling, fabrication, and 

experimental studies of the MHE are presented in this paper. The fabrication technique uses lead 

zirconate titanate (PZT) as a substrate for the MHE. Analytical and experimental results are 

reported for Ti-W microheaters that transfer heat to the thermocapillary motion. The effect of 

surface roughness on thermocapillary motion of the droplet in the MHE is examined. The results 

show that a higher bulk droplet velocity reduces the effect of surface roughness on the 

displacement of the droplet. The analytical model of the efficiency of the system considers the 

electromechanical coupling factor and frictional irreversibilities to yield about 1.6% efficiency 

with a maximum voltage of 1.25mV for the range of displacement considered in this study.  

Nomenclature 

A  cross sectional area (m2) 

b  width of membrane (m) 

cp  specific heat (J/kgK) 

Dij  electrical polarization (C/m2) 

dij  piezoelectric coefficient (C/N) 
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E   Young’s modulus of elasticity (N/m2) 

ev  uncertainty in voltage measurement (V) 

ei  uncertainty in current measurement (A) 

F  force (N)  

G  geometry constant 

Gf  leverage factor  

H  fixed height (m) 

I  current (mA, A) 

K  roughness height (m) 

Kb  bending modulus 

kp  coupling coefficient  

L  length (m) 

m  mass (kg) 

n  empirical corelation constant 

P  pressure (kPa) 

Pi  power (W) 

Pς    Poiseuille number  

Qf  quality factor 

 r  electrical resistance (kΩ ) 

R  gas constant (J/kgK) 

Re  Reynolds number 
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t  time (s) 

T  temperature (oC or K) 

Tij  applied mechanical stress (N/m2) 

tpzt  thickness of membrane (m)  

tsub  thickness of substrate (m) 

u  instantaneous velocity (m/s2) 

U  uncertainty 

u   average velocity (m/s2) 

*u    dimensionless velocity  

ub  bulk velocity (m/s2)  

V  volume (m3) 

Ve  induced electric field (V/m) 

VDout  output voltage (mV) 

Wm  piezoelectric displacement (m)  

x  displacement (m) 

Zi deposited material height (m) 

Zn  distance from neutral axis (m) 

Greek 

∆   change 

*δ    boundary layer thickness (m) 
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ε  resistivity (Ωm)  

η  efficiency (%) 

γo  residual stress (N/m) 

γ   proportionality factor  

µ  dynamic viscosity (kg/m s) 

ρ   sheet metal resistance (Ω/□) 

σ  surface tension (N/m) 

θ  contact angle (o) 

ς   dimensionless time 

ν   kinematic viscosity (m2/s) 

Φ   electric permittivity matrix (F/m)  

ψ    arbitrary length scale (m) 

χ   proportionality constant 

Subscripts 

a  air 

app  apparent  

d  droplet 

i  initial 

L  left 

m  meniscus 

o  start 
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pzt  lead zirconate titanate 

 

R  right 

sub  substrate 

 

Abbreviations 

CIRFE  Centre of Integrated Radio Frequency Engineering 

DC  Direct Current 

IPA   Isopropyl Alcohol  

LOR  Lift Off Resist 

MEMS  Microelectromechanical Systems 

MHE   Micro Heat Engine 

PZT  Lead Zirconate Titanate 

RF  Radio Frequency 

RIE  Reactive Ion Etching 

TCP  Thermocapillary Pumping 

Ti-W  Titanium Tungsten 

UV  Ultra Violet 

1. Introduction 

Increasing the efficiency of MEMS devices can increase their energy utilization and 

practical applicability. Waste heat from components in MEMS devices can be recovered to 

generate electricity for individual electrical components within micro devices. Waste heat recovery 

can be achieved by various methods of energy conversion such as thermoelectric or piezoelectric 
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materials. This paper examines the effects of droplet motion on the energy conversion in MEMS 

devices, particularly for a micro heat engine (MHE) application involving thermocapillary 

pumping (TCP).  

Micro heat exchangers have been used extensively for convective cooling of 

microelectronic circuits [1, 2]. MEMS have also been used for bio-devices to separate biological 

cells and perform blood analysis [3]. Near-wall flow control [4], micro engines [5], and 

microchannel batteries [6] are other examples of MEMS applications. A nano-motor, which 

operates by transferring atoms between two molten metal droplets in a carbon nanotube was 

developed at the University of California [7]. Researchers at the National Institute for 

Nanotechnology, University of Alberta, Canada, have fabricated a micro-device that produces 

electricity from the interaction between flowing water and the surfaces of microchannels [6]. Yang 

et al. [6] achieved electrical currents between 1 - 2 µA, by flowing water through a glass filter 

containing millions of microchannels across a 30 cm hydrostatic pressure drop.  Researchers at 

Oregon State University, Washington State University and the US Army Research Laboratory 

have developed a novel energy source called the P3 micro heat engine [5]. An external heat source 

is used to generate phase change and increase the vapor fraction of a saturated liquid-vapor mixture 

in a chamber. The expansion process flexes a piezoelectric membrane to generate an output 

voltage.  

This paper examines an new method of microfluidic electricity generation based on 

thermocapillary pumping processes. Its fabrication is presented, as well as modelling of the droplet 

dynamics associated with the MHE. The design uses a lead zirconate titanate (PZT) substrate as 

the base for the MHE, which has not been used previously in the literature to pattern microfluidic 

surfaces and devices. Although the surface roughness of the substrate may be larger than silicon 
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substrates, it possesses excellent surface characteristics for the microfluidic motion. The effect of 

surface roughness on transport properties will be investigated in this study.  

When heat is applied to one end of a droplet within a closed microchannel, an increase in 

temperature from the heat source at one side leads to a temperature gradient across the droplet. 

This results in the displacement of the droplet along the length of the channel towards the cooler 

end of the channel. This process is known as thermocapillary pumping (TCP). The resulting 

displacement increases the pressure at the closed end of the channel. The increased pressure is 

used to induce stress on a membrane at the closed end of the channel, which yields a mechanical 

deformation of the membrane. The mechanical deformation of the membrane results in the flow 

of electrons in an externally connected circuit, through a conversion of mechanical energy to 

electrical energy. A schematic of the MHE and the forces within the system are shown in Fig. 1.  

Accurate prediction of the transient nature of the droplet motion and heat transfer in the 

MHE are needed by performing numerical and experimental studies. Past steady-state models have 

over-predicted the experimental observations [8]. Also, they indicated that surface roughness had 

a significant effect on the droplet velocity. Past numerical analyses of heat transfer and fluid flow 

in microchannels showed that thermocouples embedded in the channels influenced the flow regime 

[9]. Friction was also shown to affect the thermal performance of the microchannels [10, 11]. The 

frictional losses decreased upon heating of the channel at low Reynolds numbers, due to a change 

of viscosity of the fluid in the channel. Khan and Yovanovich [11] showed that lower fluid friction 

increases the heat transfer effectiveness in the channels. Past studies [12-14] showed that accurate 

predictions of the effects of surface roughness on the flow distribution are important for effective 

control of the droplet motion. The surface roughness has a significant effect on the wall velocity 

slip, pressure gradient and heat transfer coefficient in a microchannel. These flow processes are 
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important to develop better theoretical models, which can more accurately predict the flow 

dynamics in microchannels. 

Experimental results of the effects of surface roughness on heat transfer in circular channels 

(1.06mm, 0.62mm diameters) were reported by Satish [15]. As the channel diameter decreases, 

the effect of surface roughness on heat transfer and pressure drop increases across the channel. A 

numerical model to investigate the effects of the different roughness patterns on the Poiseuille 

number and average Nusselt number was developed by Zhang et al. [16]. The roughness patterns 

included triangular, semicircular and rectangular patterns. Experimental results from this paper 

show that an average roughness height can be more accurate since patterns formed as a result of 

microfabrication are irregular. Experimental results for flow in a microtube were reported by Mala 

and Li [17]. At low Reynolds numbers, the Poiseuille flow assumption is sufficient for analytical 

predictions. However, the results showed that significant variations from the steady-state 

assumption are observed at higher Reynolds numbers. An empirical correlation was developed to 

predict the dynamic viscosity of the fluid for a rough surface.  

A main difference between various methods of piezoelectric electricity generation in past 

studies is the nature of the applied force on the piezoelectric material, as necessary for deformation 

required to generate the electric voltage. Past studies have used combustion [5], electrostatic 

induction [18], mechanical vibrations [19] and acoustic vibrations [20] to achieve distortion of the 

crystallographic structure of the piezoelectric membrane to produce an electric displacement in a 

preferred direction. Glockner and Naterer [21] proposed a process of TCP for the deflection of a 

piezoelectric membrane. A P3 micro heat engine uses combustion in a closed channel [5] and 

makes use of the resulting membrane deflection to generate a voltage. Most of the past 

piezoelectric energy harvesting devices in past literature focus on a mechanical deformation using 
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static loading conditions [22]. Cook-Chennault et al. [22] investigated the use of piezoelectric 

effects to harness energy from household devices with the aid of a bimorph composite of 

piezoelectric membranes.   

Different configurations of inserts have also been investigated as energy harvesters using 

piezoelectric membranes [23, 24] in 31-mode loading conditions. These devices were able to 

produce high voltage, low current, and low energy devices capable of storing energy like a 

capacitor.  A unique insert based on a two-layer unimorph curved membrane was developed by 

Yoon et al. [25]. The width of the membrane was found to have a more significant effect on the 

charge generation than its length. Also, increasing the thickness of the membrane improved the 

charge generation, but this can have an adverse effect on the load requirement to flex the 

membrane. Although an increased size of membrane will generally improve the quantity of charge, 

an optimal sizing of height, and length to width ratio, are required for a minimum force input.  

In bio-medical applications, piezoelectrics have been used to generate energy from 

fluctuating blood pressure [26]. An energy harvester fabricated from PZT, which vibrates in a 33-

mode, has been developed to power orthopaedic knee implants [27]. The life-cycle was found to 

decrease linearly over 10 years of device usage. The power output between stacked and single 

layers of PZT of the micro-assembly were compared. The results indicated that stacking does not 

have any significant effect on power output, but a reduced voltage output was recorded. Low 

voltage output harvesters are relatively easier to integrate into devices where they are required.  

This paper will present new experimental and analytical results of droplet motion, heat 

transfer and electricity generation associated with thermocapillary pumping in a micro heat engine. 

Typical forces, pressures, voltages and droplet velocities will be presented. The next section will 
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present the experimental setup and procedures to investigate the operation of the MHE design. 

Detailed steps on the fabrication techniques will be outlined and an uncertainty analysis of the 

experimental measurements will be presented. 

2. Experimental method and apparatus 

The Centre of Integrated Radio Frequency Engineering (CIRFE) at the University of 

Waterloo, Ontario, was used to fabricate the MHE and perform experimental measurements. The 

complete assembly of the MHE is shown in Fig. 2. Fabrication steps of the MHE are highlighted 

in Figs. 3 - 5. The MHE was fabricated with PZT wafers manufactured by B and H Industries, 

California. Two sets of wafers of different thicknesses were examined for the fabrication (100µm 

and 80µm).  

2.1 Fabrication of micro heater  

Wafer cleaning was performed using an RCA 1 (Radio Corporation of America) cleaning 

procedure. The heaters were fabricated with Ti-W as the heating element. A combination of 

photolithography, sputtering, and wet etching were used to fabricate the heater. The sputtering was 

performed in the electron vacuum deposition chamber at 5×10-6Torr. A sacrificial layer was used 

to outline where Ti-W is deposited during the sputtering process. LOR 5A is first dispensed onto 

the substrate and spin coated at 500rpm for 5s and 3000rpm for 45s. The substrate was then soft 

baked for two minutes at 160oC. AZ 3330 was deposited onto the cooled substrate and spin-coated 

at 500rpm for 15s and 4000rpm for 45s in one spin cycle. The substrate was soft baked at 90oC for 

five minutes on a vacuum hotplate and allowed to cool before exposure. The exposure was 

performed with a 365nm-UV wavelength mask aligner (Ultraviolet Illumination System (350 – 

450nm) - Model 87000) for 14s. The post exposure baking (PEB) of substrate was then performed 

at 110oC for three minutes on the vacuum hotplate. The development used AZ’s MIF 3000 
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developer solution for 300s. The developed substrate was then hard baked on the hotplate for two 

minutes at 110oC. 

Ti-W was sputtered for about sixty minutes at a rate of 23Angstroms (Å) per minute to provide 

a film thickness of about 138nm. The liftoff used PG remover in an ultrasonic bath for between 

twenty and forty minutes. The ultrasonic bath was heated to a temperature of 38oC and the power 

setting as fixed at 3 Watts. The sample was placed in a fresh beaker of isopropyl alcohol (IPA) for 

three minutes to remove any traces of PG remover that may have remained on the sample. Figure 

6 shows the completed Ti-W heaters.  

2.2 Back side etching  

The back of the substrate was etched to allow for flexing of the piezoelectric membrane. The 

etching pattern also created packaging support for the microassembly. The back of the substrate 

was processed using photolithography, sputtering and reactive ion etching (RIE). LOR 5A was 

spin coated on the substrate using a similar technique as outlined in section 2.1. AZ3330 was 

deposited as a sacrificial layer for the deposition of Cr, Au and Al. The process is the same as 

outlined in section 2.1. Then 300Å of Cr was deposited using the electron beam deposition, after 

which 500Å of Au was then deposited by a similar procedure. Al was sputtered at 180Å per minute 

for thirty minutes.  The liftoff process was carried out under similar conditions as outlined in 

section 2.1.  In order to protect the Ti-W heaters from the RIE process, AZ3330 was spin coated 

on the front side of the substrate to act as a masking layer. AZ3330 was then deposited with 

spinners at 500rpm for 15s and 4000rpm for 45s in one spin cycle. The substrate was then soft 

baked at 90oC for five minutes.  



12 
 

Trion Phantom II plasma etcher was used to carry out RIE for this experiment. The sample was 

suspended in the chamber in order to produce the isotropic etching finish. The parameters used in the 

RIE process are listed as follows: inductive coupled plasma (ICP) power of 250W, radio frequency 

(RF) power of 200W, Argon (Ar) flow rate of 50Sccm, Sulphur hexafluoride (SF6 ) flow rate of 

5Sccm, etching pressure of 50mTorr, and etching time of 1,080s. 

2.3 Fabrication of microchannels 

Photolithography was used to process SU-8 2025. The photoresist was dispensed on the 

substrate and spin coated at 500rpm for 10s, 2000rpm for 15s, and 4000rpm for 20s in one spin 

cycle. Soft baking was performed at 65oC for two minutes and 95oC for five minutes. The exposure 

time for SU-8 using the UV mask aligner was 240s.  Once the exposure was complete, the post 

exposure baking was performed for one minute at 65oC and five minutes at 95oC.  SU-8 Developer 

from Microchem was used to process the pattern after post-exposure baking. The optimal 

development time for SU-8 2025 was four minutes. The sample was then immersed in a solution 

of IPA for three minutes to remove any trace of the developer that may have remained on the 

substrate.  

Bungard dry film laminator was used to seal the channel and secure the droplet within the 

channel. A thin film of about 17µm was used to laminate the top of the MHE. A Hamilton micro 

syringe was used to place the droplet on top of the channel. The hydrophobic property of deionised 

water (DI-water) on SU-8 kept the droplet in the required location before the lamination process. 

The laminator was used to force the water droplet into the channel and seal the channel. The 

laminator was set to a temperature of 95oC and a pressure of 2bar with a roller speed of 0.5m/s.  
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2.4 Experimental measurements and uncertainty 

The voltage and current supplied to the heater were measured by a four point probe method. 

A resistance of a known value was connected across the direct current (DC) power supply and the 

current was measured using a DC multimeter. This method was used to determine the current 

flowing through the resistor (1kΩ) when the voltage is regulated. The resistor and Ti-W heater 

were connected in series. A second DC voltmeter was connected across the Ti-W heater to measure 

the voltage generated. The power output from the heater can then be estimated from the measured 

voltage and sheet resistance across the Ti-W heater.   

The uncertainty of the measurement was determined in accordance with the Kline and 

McClintock [28] method of estimating the uncertainty in a single sample experiment. This method 

was used to analyse the voltage and current measured across the heaters. The measurement of 

interest was the power output (q), which is a product of the voltage and current (q = VI). The 

uncertainty associated with measuring the power output was determined by the following 

correlation:  

1/ 22 2

q v i
q qU e e
V I

 ∂ ∂   = +    ∂ ∂             (1) 

where qU  is the uncertainty of the single sample measurement and ve , ie  are the uncertainties 

associated with measuring the voltage and current, respectively.  The calculated uncertainty of the 

experiment varied between ±1 and 5% for the range of data considered in this study. The next 

section presents the analytical models used to predict the effect of heat supplied by the microheater 

on the transport phenomena, voltage production, and efficiency of the MHE. 
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3. Formulation of droplet dynamics and electricity generation 

Analytical models will be developed in this section to examine important physical 

phenomena that affect the operation of the MHE. Experimental results of Odukoya et al. [8, 29, 

30] showed that earlier analytical models by Glockner and Naterer [21, 31] over-predicted the 

droplet displacement. This paper extends those past studies, to include surface tension hysteresis 

during initial start-up of droplet motion, modeling of the simultaneous effects of thermocapillary, 

pressure, and friction forces on the droplet displacement, and resulting friction irreversibilities.  

3.1 Surface roughness formulation 

Surface roughness affects the fluid momentum near the wall of a microchannel. This will 

affect the velocity profile of the flow motion. Mala and Li [17] developed a modified roughness 

viscosity model, which accounts for the momentum change along the wall of microchannels. The 

modified fluid viscosity is the sum of the roughness viscosity and fluid viscosity. The apparent 

viscosity can be represented as  

app R fµ µ µ= +           (2) 

The apparent viscosity can be used to model the flow of water in a microchannel. Qu et al. 

[14] developed an analytical model to determine the ratio of the roughness viscosity to the fluid 

viscosity, expressed as: 

( ) ( )
2

min minReRe 1 exp
Re

h hR K
p K

R l R l
A

K K
µ
µ

 − − 
= × − −  

   
     (3) 

where Ap is the coefficient of roughness viscosity, determined  by an empirical correlation of the 

experimental data, ReK is the local roughness Reynolds number, and lmin is the shortest distance 

between the peaks of the roughness elements and the channel wall, 
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0.35
0.94 55.8 exp Re 5.0 10 0.0031h h

p
R RA
K K

−    = × × −        
     (4) 

where K is the height of the roughness element and Rh is the hydraulic radius. The height of the 

roughness element must be determined experimentally. The apparent viscosity is determined by 

examining the substrate under a scanning electron microscope to determine the profile of the 

surface roughness. A profilometer is used to estimate the roughness height. The estimated viscosity 

is the substituted into the equation of motion of the droplet to obtain a better correlation between 

the theoretical and experimental results. In this paper, a Dektak profilometer was used to measure 

the roughness height of the substrate. 

3.2 Transient velocity formulation  

Unsteady viscous flow occurs when a sudden pressure gradient is applied to the droplet 

motion within the microchannel. Several channel geometries have been investigated in past 

literature [32-35], ranging from circular, rectangular, and non-circular geometries. The sudden 

pressure gradient can be induced by a uniformly distributed heat source via conduction through 

the substrate. If the heat source is continuous over time, the flow will approach a steady state and 

the transient effect can be negligible. The short period observed in the experiments of the MHE 

suggested that the droplet motion never actually reached a steady state, necessitating this present 

investigation into its short time flow behaviour. Szymanski [32] developed a solution of transient 

flow in circular tube. A solution of flow within a parallel channel was developed by Rouse and 

Arpaci et al. [33, 34]. Solutions to circular and rectangular configurations were presented by 

Muller et al. and Erdogan et al. [36, 37].  

Many or most of these past solutions used numerical methods. An analytical model for 

arbitrary configurations was developed by Muzychka and Yovanovich [37]. This paper extends 



16 
 

this latter model to predict the transient velocity in a closed microchannel. There is no known 

model (to our knowledge) that predicts the transient start-up flow of droplets in closed 

microchannels. The velocity and displacement of a droplet can be determined by integration of the 

equation of motion of the droplet, thereby yielding 

 o tu u F
m
∆

= +
          (5)

 

ox x u t= + ∆            (6) 

where m is the mass of the droplet, and uo and xo are the velocity and displacement at the previous 

time step. The force exerted on a droplet in a closed rectangular microchannel, based on a slug 

flow approximation (droplet modeled as a single lumped mass) can be dervied as: 

cos cos 12a a a a
b

R L a aL R

m T m TF GA AR Au x
H H V V H

σ θ σ θ µ
        = − + − + ∆                   

   (7) 

where G = 2 for a rectangular microchannel, Ɵ is the contact angle and µ is fluid viscosity. The 

terms on the right hand side of the equation represent the thermocapillary, external air and 

frictional forces, respectively. The transient velocity can be estimated from the spatial integral of 

the instantaneous velocity of the droplet,  

1

A

u udA
A

= ∫∫            (8) 

where ū is the average velocity and A is the cross sectional area. Using the Poisson equation of 

fluid motion, the instantaneous velocity distribution can be determined by  

21 1du P u
dt Lν µ

∆
= +∇           (9) 
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Based on the Muzychka and Yovanovich analogy [37, 38] of a short time flow scale in the case of 

the MHE, the dimensionless velocity as t→0 can be written as 

*
21

u tu P
L

ν
ψψ

µ

= =
∆

          (10)

 

where ψ  is an arbitrary length scale. Within the boundary layer, a mass balance leads to: 

*
*2

1 du u t
dt

δ ν
ν δ

= → =
         (11)

 

Poisson’s equation in equation (9) will be solved in the region of the boundary layer based on the 

boundary conditions of *(0) 0u =  and * *( )u t t= for a short time. Using the Stokes equation for 

momentum transport, the boundary layer thickness can be estimated as 

* 2 1.128t tδ ν ν
π

= ≈
         (12)

 

The length is determined from the hydraulic radius for a rectangular microchannel and it is 

taken as 4 /A pψ = , where A is the cross-sectional area and p is the wetted perimeter. Muzychka 

and Yovanovich [37] recommended Aψ =  for arbitrary cross sections. Using the start-up 

velocity and modifying the equation of motion in equation (5), an expression is obtained for the 

velocity in a closed microchannel. The acceleration of the droplet is the determined based on the 

net change in air pressure in the closed channel. The transient velocity distribution is determined 

by a temporal integration of the equation of motion. The transient velocity in a closed channel can 

be written as 

( )
1/

2 ( ) ( )1
nn

n a a a a

a a dR L

P A m T t m T tP tu t t R
L p V V m

ςψ
µ

          ∆  = + + −                          (13)

 



18 
 

where Pς  is the Poiseuille number of the flow. The asymptotic value of n is determined based on 

the aspect ratio of the channel. Extending the asymptotic correlation of Churchill and Usagi [39]  

to a closed channel where u∞  tends to zero:  

( ) ( )
1/

* * *
nn n

ou u u∞
 = +            (14)

 

Once the transient velocity is known, its effect on voltage generation will be determined 

from the following analytical model of the voltage production within the MHE. The next section 

presents this analytical modeling of the voltage generation of the MHE, as well as its efficiency.  

3.3 Electricity generation model 

The sum of the strain energy due to deformation and internal stresses yields the total strain 

energy on the piezoelectric membrane. The strain energy due to bending can be neglected for very 

thin films if the deflection is much larger than the thickness of the membrane [40]. Tabata et al. 

[41] used the energy minimization approach to determine the load-deflection in thin rectangular 

membranes. The relationship between pressure on the membrane and thickness of the membrane 

can be determined by the following relationship: 

2
12 2

( )
1

pzt
m o m

t f EP w C w
b b

νγ
ν

 = + − 
        (15) 

where t is the thickness of the membrane, b is the width of the membrane, γο is the residual stress 

in the membrane, ν is Poisson’s ratio, E is Young’s modulus of the membrane, and C1 and f(ν) are 

geometry dependent constants.  

The effect of the droplet motion on the piezoelectric membrane will be modeled as a 

uniformly distributed pressure that is applied to a thin membrane. This requires analysis of the 
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bending moment of each layer about a neutral axis relative to the piezoelectric membrane. The 

equation for determining the pressure due to stresses in the longitudinal and transverse directions 

across the membrane is given as follows: 

4 4 4

2 4 2 2 4

12 2
(1 )

m m m

pzt

w w wP
Et x x y yν

 ∂ ∂ ∂
= + + − ∂ ∂ ∂ ∂ 

       (16) 

Re-arranging equation (16), the deflection of the membrane can be expressed in terms of pressure 

exerted on the membrane. The pressure gradient across the channel is determined from the force 

balance across the droplet within the mocrochannel.  

The voltage produced by the piezoelectric membrane is a measure of the potential 

difference across the membrane. The deflection of the membrane is based on the change in pressure 

in the microchannel. The deflection can be related to the stress and strain in the piezoelectric 

membrane as follows,  

i ij j eD d T V= +Φ   (17) 

where Di, dij, Tj, Φ , Ve are the electrical polarization, piezoelectric coefficient matrix, applied 

mechanical stress, electric permittivity matrix, and the induced electric field. Since no electric field 

is induced to generate the voltage, equation (17) can be reduced to a matrix as follows: 

1

2
11 12 13 14 15 161

3
2 21 22 23 24 25 26

4
3 31 32 33 34 35 36

5

6

        0          0      0       0      584   0
        0          0      0
     

ij j

T
T

d d d d d dD
T

D d d d d d d d T
T

D d d d d d d
T
T

 
 
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The piezoelectric matrix coefficient depends on the nature of the piezoelectric material in 

the fabrication. The choice of piezoelectric material for this fabrication will be PZT-5. The T1, T2, 

and T3 variables are the normal stresses, while T4, T5, and T6 are the shear stresses in the channel. 

The mechanical stress occurs when heat is applied to the droplet and it is directly related to the 

change in pressure across the channel. The effect of the shear stress on the membrane is expected 

to be relatively small for the current design. The efficiency of the MHE can be estimated relative 

to the voltage produced from the piezoelectric membrane.  

The maximum deflection of the piezoelectric membrane will occur at the center of the 

membrane. This displacement can be expressed as:  

4

3centerm
comp pzt

Pbw
E t
β

=                      (19) 

where β is a constant related to a ratio of the length to width of the membrane and P is the uniform 

pressure on the membrane. The width of the membrane is represented by b, E is Young’s modulus 

of elasticity, and tpzt is the thickness of the membrane. The relationship in equation (19) can be 

extended to the mechanical stress on the membrane in the direction of the membrane as follows 

[42],  

2

2
ij

j
pzt

P b
T

t
χ

=             (20) 

where χ is a constant based on the ratio of the length to the width of the membrane. The estimated 

values of χ (0.1386) and β (0.0138) [42] are constant for any ratio of the length to width of the 

membrane, but they differ at the maximum normal stress. Substitution of equation (20) into 

equation (18) will be used to estimate the generated voltage from the membrane. 
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The net in-plane stress can be used to determine the location of the neutral axis, which is 

the point at which the stress makes the bending effect negligible. The position Zn is determined by 

taking account of each layer from the bottom to the top of the membrane, yielding:  

( )i i i
i

n
i i

i

Z E A
Z

E A
=
∑
∑

 (21) 

where Zi is the height of each material from the base of the structure, Ai is the cross-sectional area 

of each material and Ei is the Young’s modulus of elasticity for each material.  The Young’s 

modulus of elasticity of the composite structure is determined based on the ratio of the moment of 

inertia to the total moment of inertia. 
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i total
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 
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∑

         (22)  

The piezoelectric membrane deflection can be approximated as the bending of a simply 

supported beam under load. Murralt [43] and Cho et al. [40] showed that the electromechanical 

coupling factor could be approximated as: 
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where Gf is the leverage factor, and Kb is the bending modulus. The leverage factor can be 

determined relative to the neutral axis as follows:  

2
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G t Z
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The bending modulus is determined from an integration of the moment per unit length about the 

neutral axis using appropriate boundary conditions [40].  

22
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The predicted efficiency of the MHE can then be determined from the relationship between 

the electromechanical coupling factor and the quality factor of the piezoelectric membrane.  The 

energy input in the experimental setup will be equivalent to the heat supplied to the electric heaters 

to generate the droplet motion. This can be estimated based on the resistance of the heaters and 

current supplied to the heaters. The efficiency of the system, based on experimental measurements, 

is then estimated by the ratio of the power supplied to the heaters to the energy generated by the 

piezoelectric membrane under a resistive load.  

The efficiency determined from the experimental measurements could also be compared 

with analytical approximations of the efficiency based on the coupling coefficient. The power 

density of the energy harvester will determine its viability.  
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The following section highlights results from the analytical predictions and experimental results. 

Experimental results are also compared with the predicted models to validate the analytical 

modeling. 

4. Results and discussion 

The effects of temperature gradient, transient heat flux and surface roughness on the droplet 

motion will be presented in this section.  These results will be presented along with other analytical 

models that predict the voltage generation and efficiency of the MHE. Experimental results for 

power output from the microheater will be presented and compared with predicted results from 

analytical modeling of the heating processes.  

The main effect of surface roughness on flow in the microchannel is altering the “effective 

viscosity” of the droplet. Any changes in viscous force will affect the pressure gradient across the 

channel as modelled in equation (7). The effective viscosity is inversely proportional to the 

Reynolds number of the flow of the droplet in the microchannel. Although the percentage variation 

is only about ±1.5% for the range of Reynolds numbera in this study, the impact at this scale can 

have a significant effect on the frictional force. The effective viscosity increases as the Reynolds 

number increases for open channel flow [17], but the reverse occurs for a closed channel. This is 

due to the restraint of the fluid motion as the droplet moves towards the right end of the channel. 

The effect of the viscosity decreases towards the centre of the droplet, due to the diminishing 

effects of the boundary layer in the radial direction. The frictional force variation for different local 

roughness Reynolds numbers (Reek) is indicated in Fig. 7. The choice of Reek is based on 

measurement of the roughness height, which varies from 2-3µm as measured for different samples 

of the PZT substrate. The frictional force increases with an increase in the roughness height as 

observed in Fig. 7, which is as a result of the increase in local roughness mean velocity.   
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The frictional force is approximately doubled for an increase of Reek from 0.1 to 0.3. This 

further indicates the importance of the effect of surface roughness on the droplet displacement in 

the microchannel. The frictional force is inversely proportional to the bulk Reynolds number of 

the flow. The average bulk velocity increases with Reynolds number, thereby reducing the impact 

of the frictional force on the bulk motion of the droplet. The frictional force is smaller than other 

forces acting in the microchannel, as observed in Fig. 8. The capillary force is the main force that 

drives the motion of the droplet. As expected, it increases rapidly when heat is added to the droplet. 

The air force and frictional force act in opposite directions of the capillary force as the droplet 

moves from the left to the right end of the channel. The combined effect of air and frictional forces 

reduces the bulk velocity of the droplet to zero.   

Results will be presented for simulations of the droplet displacement in a closed 60 × 60 × 

15,000µm rectangular microchannel. The properties used for performing the simulation are shown 

in Table 1. Figure 9 shows the effects of droplet displacement on the pressure exerted on the 

piezoelectric membrane and temperature of the droplet.  The change in pressure is rapid with initial 

displacement of the droplet, but the rate of change decreases due to the external air pressure from 

the closed end of the channel. The total pressure change is about 0.1kPa, for a maximum deflection 

of about 13µm, which is obtained from the piezoelectric with the largest thickness.  

The change in deflection occurs in steps. It remains constant for a certain range of 

displacement for the different thicknesses. The overall change in deflection increases with a larger 

displacement of the droplet. However, when the different thicknesses are considered for a specific 

displacement, the change is approximately doubled between a thickness of 500 and 700nm, but 

only about 77% between 300 and 500nm. The voltage produced as a result of the deflection of the 

membrane was compared for three thicknesses in Fig. 10. The voltage produced in the MHE is 
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proportional to the thickness of the membrane, whereby the largest thickness produced the highest 

voltage, which varied between 1.2 and 1.3µV.  

The change in voltage for the range of displacements is about 1.7%. A steady supply can 

be achieved within a reasonable confidence interval. The lowest voltage was observed for the 

300nm membrane, with a value of 0.5mV. This suggests that the thickness of the membrane can 

be used to control the application in which the MHE is utilized. The voltage production is affected 

by the bulk velocity of the droplet. The transient velocity was investigated in order to predict the 

impact on the voltage production in the MHE. The predictive model was validated against past 

data of Muzychka [37].  

The dimensionless velocity was compared for different characteristic length scales, which 

affect the Reynolds number of the flow (Fig. 11). For different aspect ratios, the trends showed 

good agreement with Muzychka’s model. The transient velocity was compared with Poiseuille 

flow in Fig. 12. It can be observed that the Poiseuille flow assumption overpredicted the bulk 

velocity of the droplet. At early times, the difference in velocities is minimal but a significant 

deviation is observed at about 30µs. The droplet quickly attains a maximum velocity in the 

transient model and also decreases much faster than the case with the Poiseuille flow assumption.   

The maximum variation in the velocity when the droplet is advancing is about 33%. The 

droplet stops in about half of the time observed with the Poiseuille flow assumption, which 

indicates a faster response time will be achieved in the MHE.  Over-predicting the velocity of the 

droplet affects the predicted voltage from the MHE.  Fig. 13 shows a comparison of the effect of 

the transient and Poiseuille flow assumption on the voltage production in the MHE. The output 

voltage is over-predicted by the steady flow assumption by almost double its transient result. The 

corrected voltage can be used to estimate the efficiency of the MHE. The effect of the displacement 
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of the droplet on the efficiency of the MHE is shown in Fig. 14. It can be observed that the trends 

are similar to the results in Fig. 10. The results suggest that voltage production is directly 

proportional to the system efficiency. The maximum efficiency is about 1.67% for the 700 nm 

membrane for the largest droplet displacement. The minimum efficiency is about 0.7% for the 

300nm membrane. The total change in efficiency is about 0.02% for the range of droplet 

displacements. In practice, a compromise must be made between efficiency and cost of the material 

and fabrication. 

A four point probe test was used to determine the sheet metal resistance of Ti-W. The 

resistivity of Ti-W sputtering deposition varies with residual stress as a result of the deposition 

process and the pressure at which it is deposited (5.6 × 10-6Torr). The resistance can be estimated 

based on the sheet metal resistance, 

Lr
w

ρ  =  
             (28)

 

where ρ is the sheet metal resistance obtained from the four probe measurement, and  w and L are 

the width and the length of the heater, respectively. Based on the estimated resistance in equation 

(28), the actual heat flux transferred to the heater can be estimated from the measured contact area 

of the heaters and channels. The resistivity cited in past literature [44] was used to estimate the 

heat flux into the system. The measured resistivity of Ti-W from the experiment varied between 

21 and 31Ω/m2 for a deposition of 138nm. The resistance is inversely proportional to the thickness 

of the deposition. A non-dimensional comparison was made based on the measured voltage, 

current and heat flux in Fig. 15. This is analogous to the non-dimensional heat flux supplied to one 

microchannel. 
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The heat flux curve in Fig. 15 shows the relationship between voltage and power supplied 

to the heaters. The experimental and predicted results exhibit good agreement. The deviation from 

the predicted results may be associated with irreversibilities in the connections and heat losses to 

the substrate and surroundings. The resistance of the Ti-W heater was estimated to vary between 

893-918kΩ for the range of measured voltages across the heater. This was used to estimate the 

actual sheet resistance of Ti-W. The predicted and experimental measurements show good 

agreement for the range of voltages in the four point probe test. The maximum variation in the 

resistance is only about ±2.7%, which indicates a uniformly distributed heat flux could be achieved 

for a wide range of heat inputs. The measured heat flux supplied to each microchannel was between 

1.2 and 120µW/m2.   

5 Conclusions 

This paper examined the use of a PZT substrate for surface micromachining in 

microchannel flows. Past studies have used silicon or glass substrates for surface micromachining 

of microfluidic devices. This study has shown the feasibility of fabricating microheaters using Ti-

W. It also presented experimental and analytical results to verify the use of a microheater to 

generate a heat flux beneath the microchannel. The surface roughness was shown to have less 

impact on the droplet flow as the average bulk velocity of the fluid increased. New analytical 

results have been presented to determine the transient behaviour of the velocity of the droplet in a 

closed microchannel. A comparison was made between the steady state and transient 

approximations of the bulk velocity of the droplet with a time lag between both peaks. The peak 

transient velocity is about half of the peak of the steady state velocity. It was also shown that a 

similar effect is translated into a lower voltage when the transient droplet motion is considered. 

The efficiency of the MHE was presented for different thicknesses of the piezoelectric membrane. 
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The analytical study showed that the efficiency varied between 0.7 and 1.6% for the range of 

thicknesses. Although this efficiency appears relatively low, the exergy efficiency is relatively 

high, as the Carnot cycle efficiency for this system for an ambient temperature of 25oC is about 

4.4% for the maximum temperature of the MHE.  
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Property Value 

Conductivity of droplet  0.606W/mK  

Height of droplet  60µm 

Height of air  60µm 

Height of substrate  500 µm  

Thermal diffusivity  4.588m2s-1 

Thermal conductivity of air  0.0263W/mK  

Conductivity of substrate  0.96W/mK  

Heat transfer coefficient  4.82Wm2/K  

Heat flux  3.423W/m2  

Density of droplet  998kg/m3  

Density of substrate  2,500kg/m3  

Density of air  1.16kg/m3  

Length of channel  15mm 

 

Table 1: Parameters and thermophysical properties for rectangular channel with PZT substrate 
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Fig. 1: Schematic of problem configuration in the MHE 

 

 

Fig. 2: Complete micro heat engine assembly 
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Fig. 3: Surface micromachining steps for fabrication of Ti-W microheaters using 
photolithography, sputtering and wet etching 
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Fig. 4: Fabrication of SU-8 microchannels using photolithography and sealing of the 
microchannel using the Bungard dry film laminator 

 

 

Fig. 5: Surface micromachining steps for back side of PZT substrate using photolithography, 
electron vacuum deposition, sputtering, and reactive ion etching 
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Fig. 6: Fabricated Ti-W microheaters 

 

 

Fig. 7: Effect of local roughness Reynolds number on frictional force in a closed circular 
microchannel (16µm closed microchannel) 
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Fig. 8: Distribution of forces during a heating cycle of the MHE 

 

 

Fig. 9: Effects of droplet displacement on temperature and pressure in the MHE [rectangular 
cross section (60 × 60µm)] 
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Fig. 10: Effect of displacement of the microdroplet on the voltage produced for different 
piezoelectric heights 

 

 

Fig.11: The effect of friction factor on dimensionless velocity for open and closed microchannels 
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Fig.12: Comparison of the effects of the Poiseuille flow assumption and transient velocity in the 
MHE [rectangular cross section (60 × 60µm)] 

 

 

Fig.13: Comparison of the effects of the Poiseuille flow assumption and the transient voltage 
generated in the MHE [rectangular cross section (60 × 60µm)] 
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Fig.14: Effects of droplet displacement on the efficiency produced in a MHE for various heights 
of piezoelectric membranes 

 

 

Fig.15: Comparison between experimental and analytical measurements of the heat flux and 
voltage supplied to the MHE 
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