
PhD Thesis:

Modelling Evolvability in Genetic Programming

Submission to the School of Graduate Studies

Supervisor: Dr. Wolfgang Banzhaf

by
c⃝ Benjamin Fowler

A thesis proposal submitted to the
School of Graduate Studies
in partial fulfilment of the

requirements for the degree of
Doctor of Philosophy

Department of Computer Science
Memorial University of Newfoundland

August 2018

St. John’s Newfoundland

Abstract

We develop a tree-based genetic programming system, capable of modelling evol-

vability during evolution through artificial neural networks (ANN) and exploiting

those networks to increase the generational fitness of the system. This thesis is empi-

rically focused; we study the effects of evolvability selection under varying conditions

to demonstrate the effectiveness of evolvability selection. Evolvability is the capa-

city of an individual to improve its future fitness. In genetic programming (GP), we

typically measure how well a program performs a given task at its current capacity

only. We improve upon GP by directly selecting for evolvability. We construct a

system, Sample-Evolvability Genetic Programming (SEGP), that estimates the true

evolvability of a program by conducting a limited number of evolvability samples.

Evolvability is sampled by conducting a number of genetic operations upon a pro-

gram and comparing the fitnesses of resulting programs with the original. SEGP is

able to achieve an increase in fitness at a cost of increased computational complexity.

We then construct a system which improves upon SEGP, Model-Evolvability Genetic

Programming (MEGP), that models the true evolvability of a program by training

an ANN to predict its evolvability. MEGP reduces the computational cost of sam-

pling evolvability while maintaining the fitness gains. MEGP is empirically shown

to improve generational fitness for a streaming domain, in exchange for an upfront

increase in computational time.

ii

Acknowledgements

I thank my supervisor, Dr. Wolfgang Banzhaf, for advice, guidance, and editing.

I thank my parents, Scott and Kathleen Fowler, for their long-standing support of my

academic pursuits. I thank my girlfriend, Jahyd Chubbs, for her continued support.

I also thank Dr. Andrew Webb for naming the Modelling Evolvability in Genetic

Programming system.

I thank ACENET for material support. Experiments were conducted on har-

dware provided by ACENET, in partnership with Compute Canada, a high perfor-

mance computing (HPC) consortium for universities based in the Atlantic Provinces

of Canada. ACENET is funded by the Atlantic Provinces Opportunities Agency, the

Canada Foundation for Innovation, and the provincial governments of Nova Scotia,

New Brunswick, and Newfoundland and Labrador.

iii

Contents

Abstract ii

Acknowledgements iii

List of Tables vi

List of Figures vii

List of Abbreviations x

1 Introduction 1
1.1 Contributions of the Thesis . 2
1.2 Thesis Structure . 4

2 Background and Related Work 5
2.1 Genetic Programming Background 5
2.2 Evolvability . 8
2.3 Robustness . 16
2.4 Dormancy and Locality . 19

3 Experimental Approach 22
3.1 apEGP . 22
3.2 SEGP and MEGP . 25
3.3 Selection Mechanisms . 27
3.4 GP Statistics . 29
3.5 Evolvability Metrics . 30

4 Preliminary Experiments 32
4.1 Parity . 33
4.2 Regression . 36
4.3 Discussion . 38

iv

5 Order Tree Experiments 40
5.1 Experiments . 41

5.1.1 Sampling Accuracy . 43
5.1.2 Selection of Evolvability . 46
5.1.3 Modelling of Evolvability . 55
5.1.4 Parallel Learning and Evolution 60

6 Electricity Domain Experiments 77
6.1 Background . 78

6.1.1 GP and Streaming Problems 79
6.1.2 Data Description . 83
6.1.3 Concept Drift . 84
6.1.4 Prequential Accuracy . 86
6.1.5 Kappa Plus Statistic . 87
6.1.6 Sliding Windows . 88
6.1.7 Label Costs . 89
6.1.8 Electricity Domain Related Results 89

6.2 Experiments . 90
6.2.1 Best Use of Previous Parameters 91
6.2.2 Sampling . 98
6.2.3 Modelling . 109

7 Conclusion 117
7.1 apEGP . 117
7.2 SEGP . 118
7.3 MEGP . 119
7.4 Limitations and Future Work . 119
7.5 Concluding Remarks . 122

Bibliography 123

Appendix A Software 132
A.1 Open BEAGLE . 132
A.2 EpochX . 132
A.3 WEKA . 134
A.4 Encog . 135
A.5 Integration . 136
A.6 Hardware . 137

Appendix B About the Author 138
B.1 Selected Publications . 138
B.2 Education . 139

v

List of Tables

4.1 GP evolutionary parameters for the six parity domain. 34
4.2 Mean minimum generation to achieve fitness levels for the six parity

problem . 35
4.3 Failure rates to reach fitness levels for SGP and apEGP 35
4.4 GP evolutionary parameters for the regression domain. 36
4.5 Mean minimum generation to achieve fitness levels for the regression

problem . 37

5.1 Summary of OT experimental results 42
5.2 Evolutionary parameters for the OT4 problem 44
5.3 Probability of an incorrect selection using sampled evolvability 48
5.4 Probability of an incorrect selection comparing SEGP and MEGP . . 56
5.5 Evolutionary and ANN parameters for parallel learning and evolution

using the OT 8 problem. 61

6.1 Summary of properties of the NSWED domain 82
6.2 Summary of NSWED experimental results 92
6.3 GP evolutionary parameters for the electricity domain. 93

vi

List of Figures

2.1 Phenotype-space graph illustrating high evolvability 10
2.2 Phenotype-space graph illustrating low evolvability 11
2.3 Bloat in the parity problem . 13
2.4 A perfectly unfit solution to the 3-parity problem 14
2.5 A high-fitness solution to the 3-parity problem 15
2.6 A fair fitness solution to the 3-parity problem 17
2.7 A low fitness solution to the 3-parity problem 18
2.8 A dormant solution to the 3-parity problem. 21

3.1 Flow chart of the apEGP system . 24
3.2 Flow chart of the SEGP system . 26
3.3 Flow chart of the MEGP system . 28

5.1 MAE of evolvability for an increasing number of samples 45
5.2 OT4 fitness over time, varying evolvability weights 48
5.3 OT4 fitness over time, varying evolvability ceasing generations 49
5.4 OT5 fitness over time, varying evolvability weights and ceasing gene-

rations I . 50
5.5 OT5 fitness over time, varying evolvability weights and ceasing gene-

rations II . 51
5.6 OT6 fitness over time, varying evolvability weights 51
5.7 OT6 fitness over time, varying evolvability weights and ceasing gene-

rations . 52
5.8 OT7 fitness over time, varying evolvability weights and ceasing gene-

rations . 52
5.9 OT8 fitness over time, varying evolvability weights 53
5.10 OT8 fitness over time, varying evolvability weights and ceasing gene-

rations . 53
5.11 OT4 fitness over time, using apEGP, varying samples and training

instances . 57
5.12 OT5 fitness over time, using SEGP and apEGP 58
5.13 OT6 fitness over time, using SEGP and apEGP 58
5.14 OT7 fitness over time, using SEGP and apEGP 59

vii

5.15 OT8 fitness over time, using SEGP and apEGP 59
5.16 OT8 fitness over time, using SEGP and MEGP with weak evolvability

pressure . 62
5.17 OT8 fitness over time, using SEGP with strong decaying evolvability

pressure . 62
5.18 OT8 fitness over time, using SEGP with strong evolvability pressure

and low decay . 63
5.19 OT8 fitness over time, using SEGP and MEGP without evolvability

decay . 63
5.20 OT8 fitness over time, using SEGP and varying evolvability selection

strength . 64
5.21 OT8 fitness over time, using SEGP and varying evolvability ceasing

generations . 64
5.22 OT8 fitness over time, using SEGP and cycling evolvability pressure I 66
5.23 OT8 fitness over time, using SEGP and cycling evolvability pressure II 66
5.24 OT8 fitness over time, using SEGP and cycling evolvability pressure III 67
5.25 OT8 fitness over time, using SEGP and cycling evolvability pressure IV 67
5.26 OT8 fitness over time, using SEGP and MEGP and cycling evolvability

pressure I . 69
5.27 OT8 fitness over time, using SEGP and MEGP and cycling evolvability

pressure II . 69
5.28 OT8 fitness over time, using SEGP and MEGP and cycling evolvability

pressure III . 70
5.29 OT8 fitness over time, using SEGP and MEGP and varying difference-

in-selection thresholds . 71
5.30 OT8 fitness over time, using SEGP and MEGP and varying max trai-

ning epochs . 72
5.31 OT8 fitness over time, using SEGP and MEGP and non-decaying evol-

vability ceasing generations . 73
5.32 OT8 fitness over time, using SEGP andMEGP and fitness-improvement

thresholds . 74
5.33 OT8 fitness over time, using SEGP and MEGP best performers . . . 75
5.34 OT8 time over generation, using SEGP and MEGP best performers . 76

6.1 NSWED fitness over time, using SEGP and MEGP best performers of
OT8 . 93

6.2 NSWED prequential error over time, using SEGP and MEGP best
performers of OT8 . 94

6.3 NSWED generations over time, using SEGP and MEGP best perfor-
mers of OT8 . 95

6.4 NSWED Kappa+ over time, using SEGP and MEGP best performers
of OT8 . 96

viii

6.5 NSWED prequential error over time, using SEGP and ME and PPE . 100
6.6 NSWED prequential error over time, using SEGP and various evolva-

bility weights I . 102
6.7 NSWED prequential error over time, using SEGP and various evolva-

bility weights II . 102
6.8 NSWED prequential error over time, using SEGP and various evolva-

bility samples . 103
6.9 NSWED fitness over time, using SEGP and noise best performers . . 104
6.10 NSWED prequential error over time, using SEGP and noise best per-

formers . 105
6.11 NSWED generations over time, using SEGP and noise best performers 106
6.12 NSWED Kappa+ over time, using SEGP and noise best performers . 107
6.13 NSWED prequential error over time, using SEGP and MEGP and

various evolvability samples . 110
6.14 NSWED prequential error over time, using SEGP and MEGP and

various evolvability samples . 111
6.15 NSWED fitness over time, using SEGP and MEGP best performers . 112
6.16 NSWED prequential error over time, using SEGP and MEGP best

performers . 113
6.17 NSWED generations over time, using SEGP and MEGP best performers114
6.18 NSWED Kappa+ over time, using SEGP and MEGP best performers 115

ix

Nomenclature

g Evolvability Ceasing Generation

p Evolvability Weight Parameter

apEGP a priori Evolvability Genetic Programming

ANN Artificial Neural Network

ESC Evolvability Selection Criteria

GP Genetic Programming

HPC High-Performance Computing

ME Magnitude Evolvability

MEGP Model-Evolvability Genetic Programming

NSWED New South Wales Electricity Demand

OT# OrderTree #

PPE Positive-Probability Evolvability

PR Probability Robustness

SEGP Sample-Evolvability Genetic Programming

SGP Standard Genetic Programming

x

Chapter 1

Introduction

Genetic programming (GP) is an evolution-inspired machine learning method where

different programs compete with one another to perform a specified task [49]. The

programs are usually initialized as a random starting population, and then the pro-

grams are tested using some fitness metric. Programs may also be initialized less

randomly, as more functional programs [5]. Those that are more fit are more likely to

be selected as parent programs for the next generation, where mutation and recom-

bination modify the children. This process repeats until a program is fit enough or

some other stopping condition is reached. How fitness is measured determines which

programs are more likely to be selected. However, fitness, by itself, misses details

which may be useful in determining which programs may actually be more useful

to evolution. Some programs, judged to be more fit, may actually be less useful to

evolutionary processes than those judged as less fit.

GP could be more effective or efficient if we select individuals not solely on their

fitness but also on how they may contribute to evolutionary processes. It would be

useful to select more evolvable individuals that may contribute more to the fitness

of future generations. Evolvability is a measurement of this property. Evolvability

1

CHAPTER 1. INTRODUCTION

indicates the capacity of an individual to improve its fitness [1]. We opt to define

different types of evolvability based upon how it is measured, as detailed in Chapter 3.

However, evolvability is computationally expensive to measure, which means that it

is computationally impractical, in real-world applications, to measure evolvability for

individuals and then use evolvability to aid selection processes. We therefore propose

to model evolvability using GP properties that are computationally inexpensive to

generate, and, once such models are developed, evolvability may be calculated and

utilized in the GP selection process to increase the efficacy of evolution.

The viability of evolvability modelling is verified experimentally in three parts: a

priori evolvability calculation, parallel evolvability sampling, and parallel evolvability

modelling. First, we generate properties related to evolvability, as well as evolvability

itself, a priori for a specific problem, using that data to develop a machine learning

model for evolvability. An a priori environment provides idealized modelling conditi-

ons, but it lacks practicality. Secondly, we demonstrate that sampling for evolvability

to use in selection, while evolution actually occurs, can provide fitness improvements.

However, sampling is computationally expensive. Thirdly, we build evolvability mo-

dels for evolvability, while evolution actually occurs.

1.1 Contributions of the Thesis

The primary contributions of this thesis are the development of a priori Evolvability

Genetic Programming (apEGP), Sample-Evolvability Genetic Programming (SEGP),

and Model-Evolvability Genetic Programming (MEGP). We verify each system empi-

rically. Additionally, we develop evolvability selection pressures. Previous work with

evolvability in some of the domains explored in this thesis was published [20].

We use apEGP to demonstrate that modelling evolvability in ideal conditions is

2

CHAPTER 1. INTRODUCTION

possible, and further, that modelled evolvability can be used in fitness selection to

achieve improved fitness results. We conduct experiments on GP benchmark pro-

blems. The results indicate that evolvability can be modelled accurately from easily

(computationally inexpensive) generated evolutionary statistics. Further, modelled

evolvability can be used in fitness selection to improve the true fitness. Since a priori

evolutionary statistics are required to generate an evolvability model, apEGP has

practical reservations. It is necessary to run standard genetic programming (SGP)

first to generate enough data to use in modelling. Furthermore, many runs may be

necessary to obtain diversity in programs, which is required for an accurate evolva-

bility model. Additionally, the course of evolution is altered by using evolvability in

selection, so the underlying distribution of programs may no longer be representative,

thus weakening the evolvability model.

To rectify these problems, we develop an evolvability system that runs in parallel

with GP. SEGP approximates the true evolvability of an individual, to reduce the

computational burden. Evolvability is approximated by conducting a limited number

of genetic operations upon a program and measuring the resulting programs’ fitnesses.

Samples are conducted as evolution occurs. This increases computational complexity,

as more fitness evaluations are required in order to evaluate evolvability. We evaluate

SEGP on a synthetic domain and a real streaming domain. SEGP is able to out-

perform SGP on both domains, in terms of best generational true fitness. However,

the additional computations required to achieve these improved fitness results are

onerous.

We develop MEGP to improve upon the computational demands of SEGP. In

MEGP, we conduct some initial evolvability sampling generations to build an evol-

vability model. We ensure that this evolvability model performs well by periodically

comparing the predicted evolvability with the sampled evolvability. We use sampled

3

CHAPTER 1. INTRODUCTION

evolvability in selection when it is calculated, otherwise we use the less computatio-

nally intensive predicted evolvability. We evaluate MEGP on the same domains as

SEGP. MEGP outperforms SGP on those domains, in terms of best generational true

fitness. Furthermore, it suffers only marginal best generational true fitness loss com-

pared to SEGP. In return, computational complexity is greatly reduced, being only

about twice that of SGP. In the streaming domain, the increase in computational

complexity compared to SGP can be front-loaded, offering ongoing fitness benefits at

almost no ongoing cost. The true fitness results in the streaming domain for both

SEGP and MEGP are comparable to state-of-the-art machine learning methods.

In order to use evolvability to improve evolution, we use evolvability fitness pres-

sures. The fitness function of SGP is modified to include evolvability for selection

purposes. We develop several mechanisms to enforce varying amounts of evolvability

pressure. This includes a decaying evolvability weight, an eventual drop of evolva-

bility selection, and interleaved evolvability selection. Further, different measures

of evolvability are used in selection, including the probability that a program will

improve, and the average magnitude of the change in fitness.

1.2 Thesis Structure

Before we describe our experiments and their results, we review related literature

in Chapter 2, describing GP and related concepts in detail. Chapter 3 describes

evolvability metrics and fitness selection processes. Chapter 4 describes the metho-

dology and results of preliminary experiments, using a priori evolvability modelling.

Chapter 5 describes experiments in the OrderTree (OT) domain. Chapter 6 describes

experiments in a real-world streaming domain. Finally, Chapter 7 offers a conclusion

to the achieved results.

4

Chapter 2

Background and Related Work

This chapter describes the motivation for developing a genetic programming (GP)

system incorporating an evolvability model. It describes related work, explains prior

research regarding evolvability and related concepts, and describes relevant properties

that may be used to model evolvability.

2.1 Genetic Programming Background

As mentioned in Chapter 1, GP is an evolution-inspired machine learning method

where different programs compete with one another to perform a specified task [49].

The ultimate goal of artificial intelligence and machine learning, in general, is to able

to give a computer a task, then have it learn and perform the task on its own [5].

GP would allow a computer to program itself to accomplish this goal. GP has not

been able to accomplish this lofty goal. However, GP has practical uses. GP has

produced at least seventy-six results that are capable of competing with directly-

human solutions [50]. These results come from fields as diverse as circuit design,

image recognition, and bioinformatics. In particular, GP can find competitive results

5

CHAPTER 2. BACKGROUND AND RELATED WORK

where relationships among variables are not well understood, where there is a clear

objective, but no human insights on how to achieve that objective. There has not

been a particular focus on developing GP for the purpose of generalization [28, 61, 67].

There is more focus on reducing bloat. Bloat describes excessively large programs

that occur when using GP, where much of the program is of negligible impact on

fitness. Occam’s Razor and Minimum Description Length principles indicate that

larger programs should be worse than smaller programs, so it is thought that reducing

bloat would improve generalization [5].

A widespread way of measuring efficacy in machine learning is generalization or

predictive accuracy. A model has good generalization if it can accurately predict

the label of unseen instances. This is a general problem in machine learning, where

if we train our model on all possible instances, the resulting models will overfit to

represent those instances. A model is overfit if it is specifically tuned to training

instances, which means the model will be accurate at predicting the values of those

instances, but poor at predicting values of unseen instances. Conventional machine

learning uses learning as a paradigm, and evolutionary computation uses evolution as

a paradigm; learning is adaptation at the individual level, and evolution is adaptation

at the population level [52]. To prevent overfitting, one usually just splits the instance

space between training and testing, to validate training models. Test instances are

unobserved during the training of the algorithm. Once training is complete, the

model’s predictive power can be evaluated by comparing the predicted labels with

the true labels of the test instances. The difficulty seems to be the evolutionary

paradigm; namely, trying to solve one specific problem using all possible test cases,

instead of building a learning system that can adapt to a class of similar problems. In

the evolutionary paradigm, there is a lack of emphasis on building a learning system;

instead, there is just one problem to be solved.

6

CHAPTER 2. BACKGROUND AND RELATED WORK

There are thoughts that reducing bloat would reduce overfit and vice versa, but

other results question this [88]. Making GP more generalizable is not as simple as

biasing the search toward smaller solutions to reduce bloat. Other machine lear-

ning methods, such as artificial neural networks (ANNs), support vector machines

(SVMs), and Bayesian networks are more developed in terms of success in generali-

zation/classification problems [10, 21].

The core difference between machine learning methods is how they search the

problem space. GP randomly searches in many directions, forming a complex rela-

tionship between the individual programs, their resulting characteristics, and their

impact on fitness. The analysis is facilitated by using a genotype-phenotype mapping,

or a genotype-fitness mapping. A genotype in GP is the set of genes of a program.

A gene in the program is the fundamental unit of information, whose characteristics

vary by what representation is being used. There are many different representations

for programs available for GP, including machine code, trees, and graphs. A gene in

tree-based GP would be a node in the tree, and the genotype would be the tree. The

actual observed characteristics of a program, the underlying program derived from

the genotype, is called the phenotype. The phenotype is the program encoded in the

genotype. The phenotype may or may not change significantly with changes in the

genotype, or a small change in the genotype can drastically change the phenotype,

so the distinction between them is important [58].

GP may be inspired by natural selection, but there are many components of bi-

ological systems that are not considered when using GP, such as epigenetics and

evolvability [4, 37]. There is fierce debate about the role of evolvability in biological

systems; whether it acts as a catalyst for natural selection or is a by-product of it [65].

Properties related to evolvability and robustness, such as self-repair, may emerge in

artificial systems without modifying the underlying systems to encourage their emer-

7

CHAPTER 2. BACKGROUND AND RELATED WORK

gence [64]. The lack of consensus on the role of evolvability in biological systems

serves as an impetus for this work, which is to analyze the role of evolvability and

other properties in GP. The lack of human understanding of the human-competitive

results [50] serves as a further reason to study the structure of GP; understanding

where GP succeeds and why could yield insights to improvements in other problems.

Using genotype-phenotype or genotype-fitness mappings could also prove beneficial

to the study of these properties [56]. In fitness landscapes, independent axes are

genotypes, and dependent axes measure fitness. The shape of these landscapes indi-

cates how fitness is distributed in the search space. Observable characteristics such

peaks, valleys, and plateaus in the landscape indicate problem characteristics. For

example, having many plateaus indicates that there are many genetic operations that

have a neutral effect on fitness. The following sections more rigorously define evol-

vability and robustness and describe how we can exploit their properties to improve

the efficacy or efficiency of GP.

2.2 Evolvability

Evolvability in GP refers to the ability of an individual or population of programs to

produce higher fitness individuals [1]. The ability of the individual program to solve a

specific problem by using testing instances judges individual fitness; such an approach

encourages the evolution of programs which best solve a specific problem, though it

does not encourage evolvability. Consequently, such solutions are not applicable when

confronted with a similar problem. Additionally, it is difficult to evolve a solution to

the new problem from our existing one. To encourage more evolvable programs, it

would be beneficial to quantify evolvability and exploit the resulting quantities when

judging fitness.

8

CHAPTER 2. BACKGROUND AND RELATED WORK

Biologically, evolvability is defined as the ability of a population to respond to

selection [19]. In his review of other works, Pigliucci [65] comes the conclusion that

evolvability, however it may be defined, itself evolves, but there is a lack of evidence

to see if this is caused by natural selection or other evolutionary mechanisms. The ge-

netic makeup of biological species influences the cross-over and mutation rates, which

is strong evidence that biological evolvability evolves. The biological perspective of

evolvability is important, as it may indicate if we need to select for evolvability during

GP or if it should occur on its own. Altenberg [2] notes that evolutionary computation

brought about more biological-based evolutionary interest in evolvability; evolvabi-

lity in organisms was simply presumed to exist. Altenberg further notes that there

were 170 papers published in 2013 alone that mention the evolution of evolvability.

To encourage more evolvable programs, it would be beneficial to quantify evolvabi-

lity and exploit the resulting quantities when judging fitness. Kattan and Ong [44]

use Bayesian inference to adjust fitness functions in order to encourage evolvability.

Using genotype-phenotype or genotype-fitness mappings could also prove beneficial to

the study of these properties [56]. Properties related to evolvability and robustness,

such as self-repair, may emerge in artificial systems without modifying the underlying

systems to encourage their emergence [64].

We visualize evolvability in Figures 2.1 and 2.2. In Figure 2.1, we see a high

evolvability phenotype. The chosen phenotype has low fitness, but is surrounded by

higher-fitness phenotypes. The chosen phenotype is easily able to change to a higher

fitness phenotype. In Figure 2.2, we see a low evolvability phenotype. The chosen

phenotype has high fitness, but is surrounded by lower-fitness phenotypes. The chosen

phenotype is more likely to become lower fitness. In standard genetic programming

(SGP), comparing the two central phenotypes, we would consider the higher fitness,

lower evolvability phenotype to be better. We may gain on fitness relative to the other

9

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: Phenotype-space graph with a central chosen phenome with high evol-
vability and low fitness. Each node represents a phenotype, a physical characteristic
mapped from a genotype. The number in each phenotype indicates its fitness, which
we are attempting to maximize. The edges represent genetic operations, such as mu-
tation, that will change the chosen phenotype into another of its neighbours. Genetic
operations lead to fitness improvements, so the chosen individual in this Figure has
high evolvability.

phenotype, but the high evolvability phenotype has much greater capacity for future

fitness. This demonstrates the primary motivation for selecting for evolvability. In

SGP, evolvability is ignored.

We are concerned with maximizing fitness in SGP. To maximize fitness we fa-

vour programs that currently have greater fitness. There are various selection met-

hods [5, 49, 66] that apply varying amounts of selection pressure. However, selection

is inherently driven by differences in fitness. This procedure ignores other informa-

tion and follows an assumption based upon natural selection: the fittest individuals

should be more likely to be selected to produce the proceeding generation, and such

offspring are more likely to be more fit, so gradually, good fitness individuals result.

10

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.2: Phenotype-space graph with a central chosen phenotype with low evolva-
bility and high fitness. Genetic operations lead to fitness loss, so the chosen individual
has low evolvability. However, the chosen phenotype in this Figure has a higher fitness
than the central phenotype of Figure 2.1.

This process does not directly consider structural properties of programs, such as

bloat [76]. Instead, selection is meant to allow more desirable structural properties,

which allow greater fitness, to emerge [3]. The process further ignores how changes

in genotype change the phenotype [24], how this affects fitness, and how this might

skip optima in the fitness search space [79]. Evolvability is related to these structu-

ral properties; by analyzing their interrelatedness, we should have insight to improve

GP by accommodating them, in lieu of ignoring them, by measuring and selecting

for evolvability. Basset et al. [6] postulate that bloat occurs because offspring are

not effectively inheriting the phenotype traits from their parents. The notion is that

ideally, we want to perform a cross-over on the phenotype, not the genotype.

Pragmatically, we can improve upon exhaustive searches to measure evolvability

by using sampling or estimation [90]. This is much more computationally feasible

11

CHAPTER 2. BACKGROUND AND RELATED WORK

than exhaustive search. In either case, why not simply keep the resulting most fit

individual? Sampling still adds a significant computational burden compared to SGP,

as sufficient samples are required to estimate evolvability, but even adding a single

sample doubles the computational time required in SGP. This is because the main

unit of work in GP is fitness evaluation, and each sample requires its own fitness eva-

luation. As such, evolvability is too computationally expensive to measure directly.

Instead, current literature efforts to exploit evolvability do so indirectly, without ha-

ving to measure it, such as defining new evolvability metrics [82] and characterizing

evolvability’s relatedness to other properties [35]. There has been some success in

determining how much to select for evolvability, but only under limited circumstan-

ces [91, 92]. Li et al. [54] have had success balancing fitness selection with diversity

metrics, using multi-objective optimization. Multi-objective approaches using Pareto

dominance or hypervolume indicators, with various objective criteria, are well-studied

in the literature, generally targeting concepts related to evolvability, such as diversity,

rather than evolvability itself [29, 77].

The consequences of selecting fitness without considering any structural properties

can be demonstrated by the parity problem. The parity problem is commonly used

in GP [9, 32, 16, 49, 63, 74, 97]. The parity problem is counting the number of 1’s

that occur in a bitstring of a specified length, and returning 0 for an even number of

occurrences, and 1 for an odd number of occurrences. It is sensible to use the entire

instance space as training instances. The simplest solution in tree-based GP is simply

using the exclusive-or operation (XOR) on each input. We see that Figure 2.3 has a

solution for the 3-parity problem. OR and AND represent their respective boolean

operations, 0 and 1 represent their respective constant inputs, and X1, X2, X3 repre-

sent inputs of the bitstring. Considering only fitness, Figure 2.3 is a perfect solution.

A portion of this solution is not contributing anything to fitness, either positive or

12

CHAPTER 2. BACKGROUND AND RELATED WORK

negative; this is bloat. Considering only fitness, this program is as good as a solution

that has the bloated portion removed. Bloat is an extensively covered topic in GP [5].

It was considered to be correlated with overfitting and functional complexity; howe-

ver, recent research has shown this not to be the case [87]. Furthermore, eliminating

bloat may not be beneficial [76].

Figure 2.3: Bloat in the parity problem. The problem is solved without the bloat, but
the bloated portion contributes no negative or positive fitness, and so will remain.

Consider the 3-parity problem, concerning evolvability. In Figure 2.4, we have a

solution which produced a fitness of 0; every input sequences produces the incorrect

output. However, consider how close the solution is to the ideal solution; if the

constant input 1 were to be changed to 0, we would have the best solution. If we

were to consider a genotype-fitness landscape, then Figure 2.4 would represent the

13

CHAPTER 2. BACKGROUND AND RELATED WORK

minimum fitness, with single operations that could yield the maximum fitness. Such

information is completely ignored in SGP; we only see the fitness of 0. Figure 2.4 is

a high evolvability solution, in theory, since it can easily move to higher fitness.

Contrast such a solution to an alternative of higher fitness, Figure 2.5. Consider

its complexity, and how difficult it may be to transform it into the ideal solution. As

fitness is concerned, Figure 2.5 is a much better solution than Figure 2.4, though we

observe that it should have low evolvability, in theory. Measuring evolvability would

involve the automatic recognition of the potential for greater fitness that Figure 2.4

represents, and exploiting it would involve using those measurements properly to

reduce the number of generations GP required to find a good solution while improving

the final fitness of those solutions. The question is this: can the potential for greater

fitness without explicitly testing fitness values?

Figure 2.4: A perfectly unfit solution to the 3-parity problem, of high evolvability.

14

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.5: A high-fitness solution to the 3-parity problem, of low evolvability.

Altenberg [1] describes a method of measuring evolvability through a transmission

function. Essentially, one considers all possible results of genetic operations on an in-

dividual and computes the average fitness of those results. This is an intuitive method

of measuring evolvability; an individual is highly evolvable if its potential offspring

have high fitness. It also requires extensive computations; instead of conducting one

genetic operation on an individual, we need to conduct all possible operations. Then,

each fitness case needs to be evaluated for each such operation. Thus, measuring evol-

vability in this matter would require many orders of magnitude more computational

effort than SGP. Furthermore, measuring evolvability in this matter only considers

the average potential fitness, which may be disproportionately low; there may be

clusters of operations which produce very fit individuals, but many more operations

which produce poor fitness individuals. There may even be an ideal solution reachable

in one operation. The average does not indicate the distribution of how often fitness

is improved and by how much. Smith et al. [79] propose several variants considering

the relative fitness of offspring, and one considering only a constant percentage of the

15

CHAPTER 2. BACKGROUND AND RELATED WORK

top-performing offspring.

Furthermore, such definitions only consider evolvability from offspring of single

generation at a time. That is, if two or more genetic operations yield high fitness

solutions, it is not encapsulated by these metrics. While these metrics may be in-

tuitive, it is impractical to use them to alter development in GP; they require too

much additional computation. To calculate them, we need to calculate all possible

offspring for every program we have as well as their fitnesses. If we were willing to do

that, it would be simpler to select the greater fitness offspring anyway. This provides

motivation for a more exploitable evolvability metric.

2.3 Robustness

Robustness in GP refers to the ability of an individual or population of programs to

retain functionality despite perturbations that occur during evolution [39]. An evolva-

ble individual becomes more fit more easily, and a robust individual does not become

less fit more easily. Evolvability concerns fitness gains, where robustness concerns

maintaining fitness. Robustness competes with evolvability, but both qualities can

facilitate faster evolution. By effectively measuring both robustness and evolvability

we can generate individuals with both properties, or at least analyze the tradeoff be-

tween them. This will lower the computational cost of GP, which has many practical

ramifications.

Consider again the 3-parity problem, this time concerning robustness. In Fi-

gure 2.6, we have a solution which is nearly correct; it merely ignores the X1 input,

while the other inputs are computed correctly. However, consider what operations

could take place to worsen the solution; there are many damaging changes that could

occur. If we were to consider a genotype-fitness landscape, then Figure 2.6 would

16

CHAPTER 2. BACKGROUND AND RELATED WORK

represent fair fitness, with many operations that would reduce fitness. As with evol-

vability, such information is completely ignored in SGP. Figure 2.6 is a brittle since

it can easily move to lower fitness.

Contrast such a solution to an alternative of lower fitness, given in Figure 2.7.

Consider its complexity, and how difficult it may be to transform it to worse solutions.

Once again, as for fitness is concerned, Figure 2.6 is a much better solution than

Figure 2.7, though we observe it has lower robustness. Measuring robustness would

involve the automatic recognition of the potential for fitness retention that Figure 2.7

represents, and exploiting it would involve using those measurements properly to

reduce the number of generations GP requires to find a good solution since worse

solutions are less likely to be developed. The question is this: can we measure the

potential for fitness retention without explicitly testing fitness values?

Figure 2.6: A fair fitness solution to the 3-parity problem, of low robustness.

17

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.7: A low fitness solution to the 3-parity problem, of high robustness.

As mentioned earlier, a solution with high evolvability is one that becomes more

fit more easily, while a solution with a high robustness is one that does not become

less fit more easily. Metrics for robustness involve counting how many neutral genetic

operations are possible against how all possible genetic operations [25, 38, 39]. A neu-

tral operation is one where the genotype changes, but fitness and/or the phenotype

does not change. More neutral operations indicate greater robustness. Biologically,

by genotype, robustness and evolvability compete with each other [89]. Results from

biological perspectives and computational perspectives indicate that robustness and

evolvability may be negatively correlated at the genotype level, but support one

another at the phenotype level, when considering mutation [38, 39, 89]. However,

this may indicate that a negative correlation may still exist in representations where

the genotype and phenotype are equivalent. Schulte et al. [73] survey the mutatio-

nal robustness of 22 pieces of software and find they are highly robust; 37% of the

mutations had neutral effects on functionality. This indicates that robustness may

emerge inadvertently through selection in both biological and artificial systems. Ho-

18

CHAPTER 2. BACKGROUND AND RELATED WORK

wever, natural systems still have more evolvability and robustness than observed in

man-made systems [81].

Intuitively, a robust individual is likely more resistant to change than one that is

not, where an evolvable individual is more likely to change to a more fit individual.

These appear to be competing factors. A greater understanding of their interope-

rability should yield more efficient and accurate GP. If evolvability and robustness

are negatively correlated, such that obtaining both highly evolvable and robust in-

dividuals is difficult, evolvability and robustness may benefit from being favoured at

different generations; e.g., evolvable when fitness is low in the early generations, ro-

bust when fitness is high in later generations. This would reduce the total number of

generations required to reach an acceptable solution by increasing the rate at which

we explore the solution search space in early generations and reducing it to check

for more optimal solutions later in learning, similar to adjusting the learning rate

parameter in ANNs [96].

2.4 Dormancy and Locality

In GP, there can be significant sections of programs which, in addition to not affecting

fitness, provide no change in output, regardless of input. These sections are referred to

as introns in the GP literature. Introns may be categorized by their behaviour; Nordin

et al. [60] propose several categories, based on whether their lack of contribution of

fitness is due to the fitness cases themselves or apply to the entire problem domain,

and whether cross-over operations can introduce a change in fitness. Identifying all

introns is computationally expensive. However, it is computationally inexpensive to

identify a certain type of intron, that occurs when a code section is never executed

for any fitness case; these are dormant sections [41]. In tree-based or cartesian GP,

19

CHAPTER 2. BACKGROUND AND RELATED WORK

these nodes are referred to as dormant nodes and can account for the majority of the

nodes, around 90%−95% [41, 59]. Dormancy is a type of bloat, and since it does not

affect fitness, it is not normally encouraged or discouraged through fitness selection

in GP. Despite the apparent uselessness of dormant sections of code, dormancy is

helpful; if dormant nodes are detected and removed, performance actually suffers,

and more generations are required to reach comparable solutions [41]. The potential

use of dormant nodes is characterized in Figure 2.8. A full fitness solution to the

problem has is found and is contained within a dormant section of the tree. It

does not contribute to fitness, and so simply removing that section would not affect

fitness. However, if a cross-over operation occurred at the proper node, we would

have a perfect solution. Essentially, we have a high evolvability solution, once more

indicating the interrelatedness of these structural concepts and indicating that normal

fitness testing ignores them. The amount of dormancy is a structural property in GP,

which may relate to evolvability and robustness. Individuals may have useful dormant

code, unaccounted by fitness. The dormant code may allow fitness to improve more

easily, or improve the fitness stability of the individual.

Locality is another structural property in GP, relating to evolvability, robustness,

and genotype-phenotype mappings. A problem has high locality if neighbouring ge-

notypes correspond to neighbouring phenotypes [24]. High locality problems are

generally easier to solve. Low locality indicates a more rugged search space, which

indicates a more difficult search. Furthermore, the ruggedness describes how robust

and evolvable the search space is [25, 43, 79, 90]. Neutral genetic operations repre-

sent plateaus in the search space. Evolvability and robustness act as counterparts;

steep inclines indicate great fitness gains moving toward optima, but also great fitness

losses moving away from optima. There is motivation to organize all the structural

properties together, to analyze their interactions, for they all affect problem difficulty,

20

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.8: A dormant solution to the 3-parity problem.

the efficiency of the search, and the efficacy of the search.

21

Chapter 3

Experimental Approach

This chapter describes the theoretical foundations for the experimental approach

of evolvability-influenced fitness selection. The experiments follow a development of

evolvability evaluation concepts culminating in the development of Model-Evolvability

Genetic Programming (MEGP). We design evolvability metrics, models, and selection

pressures to achieve fitness improvements. The a priori Evolvability Genetic Pro-

gramming (apEGP) system is developed initially to demonstrate that accurately mo-

delling evolvability using easily generated GP statistics is possible. We then develop

Sample-Evolvability Genetic Programming (SEGP) and MEGP in parallel. We con-

tinually refine the GP systems to achieve further fitness and computational time

improvements. We empirically evaluate these refinements in Chapters 4, 5, and 6 but

we detail the theory of the experimental approach here.

3.1 apEGP

We demonstrate the potential of evolvability modelling with apEGP in Chapter 4.

The ultimate goal of this work is to develop a system that can model evolvability

22

CHAPTER 3. EXPERIMENTAL APPROACH

in parallel to evolution. To demonstrate that evolvability modelling using easily

generated evolutionary statistics is possible, we first show that evolvability can be

modelled accurately in idealized conditions. Using a large amount of evolutionary

statistics generated a priori, we can confirm that such statistics can sufficiently predict

the evolvability of an individual. Without such confirmation, evolvability modelling

is moot.

We design and implement a tree-based GP system that records measurements of

evolvability by sampling, along with records of other structural properties for every

population that occurs during evolution. Further, we model evolvability using these

records, then exploit their predicted values during evolution, in order to develop a

faster and more efficient GP system. This is accomplished by modifying an exis-

ting tree-based GP system to track and record additional structural elements for

specific problems. Once generated, evolvability is modelled using machine learning

algorithms.

Evolvability models are incorporated into the existing tree-based GP system, to

predict evolvability without the need to sample them. Then, the predicted values will

be used to influence selection beyond the standard fitness measurements. Initially, we

consider the various structural properties of solutions generated by genetic program-

ming (GP) for a small parity problem, and a contrived regression problem consisting

of a single input variable. These problems are not known for their complexity, though

they are commonly used as benchmark problems. These simple conditions provide a

useful environment to evaluate the potential of evolvability modelling and selection.

Generating good models for evolvability before evolution is not eminently practical

(why would we run evolution in its entirety first to generate training instances for

our machine learning algorithms ahead of time?), but it can demonstrate which are

the most relevant statistics required for modelling, and the most appropriate learning

23

CHAPTER 3. EXPERIMENTAL APPROACH

Population
Initialization

Standard Selection

Evolvability
Model

Statistic
Generation and

Evolvability Sampling

Genetic Operations

Train Model

Population
Initialization

Evolvability Weighted
Selection Predicted

Evolvability

Evolvability
Model

Statistic
Generation

Genetic Operations

Terminating Condition
Met

Use existing model

Terminating Condition
Met

Figure 3.1: Flow chart of the apEGP system. apEGP consists of two processes. In
the first, we build an evolvability model. We initialize a population of programs.
We generate evolutionary statistics for each program. We proceed with selection
based on fitness, conduct genetic operations, and repeat until end conditions are met
(which is either perfect fitness or a specific number of generations occur). We train an
evolvability model on the evolutionary statistics. In the second, we conduct evolution
again, only this time, selection is altered by evolvability. Evolvability is predicted for
each program, as they occur, using the evolvability model.

24

CHAPTER 3. EXPERIMENTAL APPROACH

parameter settings. The flow of the apEGP system is shown in Figure 3.1.

3.2 SEGP and MEGP

Following the creation of a priori evolvability models, we demonstrate that evolva-

bility calculated (or sampled) as evolution occurs can provide fitness improvements.

Using calculated evolvability is computationally expensive, but it can indicate some

model-agnostic parameters, such as the strength of the selection of evolvability, un-

der set conditions. Model-agnostic parameters possible should be determined before

introducing potential errors by using models for evolvability. We use SEGP in combi-

nation with varying selection mechanisms and evolvability metrics to ensure we can

improve on the true fitness of standard genetic programming (SGP). This establishes

the benefits of evolvability selection without the potential accuracy loss introduced

by a model. The flow of the SEGP system is shown in Figure 3.2.

These results inform the next phase of experiments, using MEGP, where models

are training in parallel to evolution. Dynamically-built models have practical signifi-

cance. The previous experiments establish the best parameters to build the models,

and the best conditions to exploit evolvability. Experiments with the dynamic mo-

dels make further adjustments to establish the effectiveness of modelling evolvability,

considering the most efficient ways to exploit evolvability during evolution. The flow

of the MEGP system is shown in Figure 3.3.

SEGP is a necessary component of MEGP. Further, we evaluate the effectiveness

of evolvability models as they correspond to fitness improvements relative to sampled

evolvability. For these reasons, SEGP and MEGP are deployed in parallel on expe-

riments in Chapter 5 and Chapter 6. SEGP establishes that sampled evolvability

can be used in selection to improve fitness results, and MEGP improves upon those

25

CHAPTER 3. EXPERIMENTAL APPROACH

Population
Initialization

Evolvability Weighted
Selection

Fitness Calculation and
Evolvability Sampling

Genetic Operations

Terminating Condition
Met

Figure 3.2: Flow chart of the SEGP system. We initialize a population of programs.
We generate evolutionary statistics and sample evolvability values for each program.
We proceed with selection based on fitness and sampled evolvability. Then we conduct
genetic operations, and repeat until end conditions are met (which is either perfect
fitness or a specific number of generations occur).

26

CHAPTER 3. EXPERIMENTAL APPROACH

results by substantially reducing the computational time required to provide them.

3.3 Selection Mechanisms

We use evolvability in fitness selection to find individuals that are more capable than

fitness alone can indicate. As discussed in Chapter 2, fitness may be missing details

that indicate a more capable individual. Evolvability can compensate for some of the

missing detail. However, evolvability alone should not be used to judge the capability

of an individual. Selecting for mere capacity of improvement leads to low fitness

individuals, for it is a trivial matter to improve their fitness when they cannot be any

less fit. Furthermore, at evolution’s end, we are only concerned with the highest true

fitness individual. Fitness and true fitness are equivalent in problems such as parity

or OrderTree (OT). Using fitness alone to select the best individual when evolution

ends is sensible for such problems. True fitness is not known, or should not be used, in

concept shift problems such as electricity demand prediction. True fitness should not

be used since the purpose of the model is to predict classes of unseen instances. We

must build models that can generalize, not merely classify what is already known.

More evolvable individuals may generalize better. Nevertheless, fitness cannot be

abandoned completely. Even where true fitness is used, selecting for evolvability

provides benefits. A more evolvable population is less likely to be trapped in local

fitness minima and its fitness is more likely to improve.

However, we must determine how important evolvability is relative to fitness and

if this importance varies over time or domains. We devise a weighted sum of evol-

vability and fitness called the Evolvability Selection Criteria (ESC). The weights are

determined experimentally. With large weights, fitness is overpowered by evolvability,

such that we select for evolvability and use fitness as a mere tiebreaker. This is a

27

CHAPTER 3. EXPERIMENTAL APPROACH

Population
Initialization

Evolvability Weighted
Selection

Model Training

Evolvability
Training Instances

Statistic Generation

Genetic Operations

Terminating Condition
Met

Evolvability Sampling

Sampling GenerationSkip Sampling

Model

Figure 3.3: Flow chart of the MEGP system. We initialize a population of programs.
We generate evolutionary statistics for each program. We then determine if we are
conducting an evolvability sampling generation. Evolvability samples are needed
to train the evolvability model. The first few generations sample evolvability, and
sampling may occur later to ensure the model is sufficiently accurate. If sampling
occurs, we collect the program statistics and evolvability labels to create training
instances, which are then used to train the model. Sampled evolvability is used in
selection, where it occurs. If sampling is not conducted, the program statistics are
fed to the model to generate predicted evolvability labels, which are then used in
selection. Then we conduct genetic operations, and repeat until end conditions are
met (which is either perfect fitness or a specific number of generations occur).

28

CHAPTER 3. EXPERIMENTAL APPROACH

lexicographical ordering where evolvability is selected first. With small weights, evol-

vability is overpowered by fitness, such that we select for fitness and use evolvability

as a tiebreaker. A balance of evolvability and fitness exists. We search for the balance

by applying varying weights at varying times.

We favour evolvability more in earlier evolutionary generations in problems that

use true fitness since fitness is clearly most significant at evolution’s end. Stronger

early evolvability and weaker late evolvability is similar to simulated annealing, which

adjusts temperature according to a schedule, allowing for less optimal (low fitness) so-

lutions earlier, and enforcing more optimal (high fitness) solutions later [48]. Research

into optimizing annealing schedules may provide insight into evolvability selection.

We favour a more consistent evolvability selection in all other domains. ESC inclu-

des, but is not limited to, weights decaying over time, random usage, generational

interleaving, and generational cut-off points.

3.4 GP Statistics

GP offers many potential statistics that are generated as evolution occurs. We may

use any statistic that can aid the prediction of evolvability. However, as the pur-

pose of modelling evolvability is to reduce the time complexity inherent in sampling

evolvability, any statistics we use should not require significant overhead to generate.

Furthermore, statistics that may seem indicative of evolvability may be too sparsely

generated to be of practical use. For example, a full frequency count of each node type

may strongly predict evolvability, but requires so many attributes to track that a mo-

del has difficulty functioning accurately. The most relevant statistics are determined

by feature selection. GP statistics that we use are generation, size, height, number

of terminal nodes, number of functional nodes, dormancy ratio, previous fitness, and

29

CHAPTER 3. EXPERIMENTAL APPROACH

fitness.

3.5 Evolvability Metrics

We measure evolvability using several methods. The true evolvability of a function

requires measuring the fitnesses of all its possible offspring. This is computationally

infeasible. We sample for evolvability instead. Evolvability is sampled by conducting

a certain number of genetic operations, at random (as it would occur during stan-

dard evolution), and measuring the fitnesses of the resulting offspring. More samples

translates to greater accuracy, at the cost of increased computational time. Each

sample increases computational time significantly since the main unit of work in GP

is typically fitness evaluation. We find how many samples are required to achieve

fitness improvements. We model evolvability based on the sampled evolvability, so

more error is introduced into the model based on the error of the sampled evolvability.

If the sampled evolvability is too inaccurate, the model may fail to predict well, as it

trains on something that is too noisy.

There are variations in how to measure sampled evolvability. Evolvability is de-

fined as the capacity of an individual to improve, but this is vague. We develop

evolvability metrics based on sampling, genetic operation, and other criteria. The

first type of evolvability metric is the probability of improvement, Positive Probabi-

lity Evolvability (PPE). PPE is the percent chance that an individual will improve

its fitness when a genetic operation is conducted. The magnitude of improvement is

ignored in PPE, and neutral changes are equivalent to negative ones. The second type

of evolvability metric is the probably of a neutral or better change when a genetic

operation is conducted. This is actually a measure of robustness; a measure of the

resistance to negative change. As such, it is referred to as Probability Robustness

30

CHAPTER 3. EXPERIMENTAL APPROACH

(PR). The third type of evolvability metric is the mean change in fitness, Magnitude

Evolvability (ME). PPE is generally small, as few changes are positive ones. There

is less chance of variation with PPE.

We conduct either mutation or crossover operations to measure evolvability. Mu-

tation is favoured, as the results are independent of the population. Crossover evol-

vability depends on the population, and we can consider either the incoming fitness

(change of the current individual) or outgoing fitness (change of the population).

31

Chapter 4

Preliminary Experiments

In this chapter, we describe experiments and results regarding parity and a regression

problem using a priori Evolvability Genetic Programming (apEGP). These experi-

ments establish that building an accurate evolvability model is possible on some

common genetic programming (GP) benchmark problems, and further, that selecting

for evolvability, not just fitness, can be beneficial. These experiments provide en-

couraging results, indicating that more extensive research on modelling evolvability

is justified. Evolvability models are constructed a priori, training with instances from

evolution occurring in standard genetic programming (SGP) with similar experimen-

tal conditions.

Initial experiments focus on the small parity and simple regression domains. Furt-

her experiments extend to other classification problems, of artificial and real domains,

that have performance results available using state-of-the-art tree-based GP. This ve-

rifies that performance gains obtained by modelling evolvability and robustness are

broadly applicable and comparable to the best available methods in tree-based GP.

Initial experiments involve these domains, and structural data generated by one run

in each, under specific GP evolutionary parameters. SGP, that is, GP without con-

32

CHAPTER 4. PRELIMINARY EXPERIMENTS

sideration of evolvability, provides a baseline with which to compare apEGP. The

earliest generation in which a certain degree of fitness is attained is recorded, if one

is found in the specified number of generations. This is repeated, to find a mean ge-

neration required to achieve a specified amount of fitness, as well as a rate of failure

to achieve that fitness.

4.1 Parity

The six parity problem is used. That problem has 64 fitness cases. For the Boolean

domain, the symbols used in the tree-based GP are: AND, OR, XOR, NOT , 0, 1,

and one input for each of the six bits. Dormancy is tracked through short-circuiting

of the AND and OR operations. That is, if the first input to an AND function is

0 for all fitness cases, or the first input to an OR function is 1 for all fitness cases,

there is no need to evaluate the second input, and that entire subtree will be flagged

as dormant.

The evolutionary parameters are as shown in Table 4.1. Evolvability is modelled

by an artificial neural network (ANN), with the following learning parameters: a

number of hidden nodes equal to half the sum of the number of attributes and classes

used, a learning rate of 0.1, momentum of 0.01, a random seed of 0, a training time

of 10000 epochs, a validation set size of 10%, and a validation threshold of 20 epochs.

There is further validation of the model through use of 10-fold cross-validation. The

attributes, generated a priori by the GP system, are as follows: generation, tree size,

function frequency, non-input terminal frequency, input frequency, dormancy ratio,

previous fitness, and fitness. The class is evolvability, as determined by sampling, as

the probability of a positive change in fitness within one cross-over operation of at

least 5%.

33

CHAPTER 4. PRELIMINARY EXPERIMENTS

Table 4.1: GP evolutionary parameters for the six parity domain.

Parameter Value
Runs 500
Population Size 100
Generations 400
Crossover Probability 0.9
Tournament Size 3
Probability of Non-Terminal Crossover 0.9
Min Initial Depth 2
Standard Mutation Probability 0.1
Standard Mutation Max Regeneration Depth 2
Swap-point Mutation Probability 0.05
Max Initial Depth 6
Mutation Max Regen Depth 2
Max Depth 8
Swap Mutation Probability 0.1
Initial Grow Probability 0.5
Probability to Mutate a Function Node 0.5
Initial Evolvability Samples 100

Selection is altered by first selecting the individual with the greater fitness, as

normal. If the individuals have identical fitness, select by evolvability. In the six

parity problem, there are only 64 possible fitness results, and there are many fitness

collisions. Fitness collisions are when individuals have equal fitness.

The ANN model had an accuracy of 81.8%, under 10-fold cross-validation. Under

the evolvability class-split condition, about one-third of the instances reported posi-

tive, and the rest negative. That is, about one-third of the individuals, sampled for

evolvability, had a 5% chance or greater of increasing their fitness with one cross-over

operation. Under the experimental conditions, this would be sufficiently accurate,

since evolvability was only significant during selection if the comparable individuals

had equal fitness. Any guess that one would be more likely to improve than the other

would be welcome, since that is an improvement over arbitrarily selection one instead

34

CHAPTER 4. PRELIMINARY EXPERIMENTS

Table 4.2: The mean minimum generation to achieve the specified fitness levels for
the six parity problem. The error range indicates the mean with 95% confidence,
as generated using the Student’s t-distribution. The P-Value is calculated using
Student’s t-test, which indicates whether those means are significantly different.

70% 80% 90% 100%
SGP 34.72± 3.58 61.52± 5.83 93.49± 8.66 97.44± 9.63
apEGP 26.00± 2.24 50.36± 4.83 77.76± 7.18 89.95± 8.46
P-Value 0.0001 0.0039 0.0061 0.2512

of the other. Fitness would always be more significant.

It is shown in Table 4.2 that apEGP allows for faster convergence toward the

optimal solution for the six parity problem. However, the difference in generations

appears to increase as the threshold increases, but lowers to insignificance for the

perfect fitness solution itself. Table 4.3 indicates that this may be due to apEGP

being able to find a perfect fitness solution where SGP fails to do so; the more

difficult initial conditions are not overcome by SGP, and so do not count against the

mean, but apEGP succeeds, though it still requires more generations to do so. The

effectiveness of apEGP system is further demonstrated by the failure rates, which are

much less in all cases. These results indicate that developing models a priori and

predicting evolvability can increase evolutionary effectiveness.

Table 4.3: The failure rate of the specified systems to reach the specified fitness level
before evolution is terminated for exceeding the maximum allowed generations.

70% 80% 90% 100%
SGP 0.162 0.208 0.312 0.410
apEGP 0.004 0.032 0.114 0.206

35

CHAPTER 4. PRELIMINARY EXPERIMENTS

4.2 Regression

A contrived regression problem involving one input is used. The contrived formula

is:

x× (x× (x× (x+ 37.67859) + 14.53219)− 8.3724)

The fitness cases are determined by sampling 100 random points between −1 and 1,

inclusive. For the regression domain, the functional symbols used in the tree-based

GP are: addition, subtraction, multiplication, protected division. Protected division

returns 1, if the second input is less than 0.001. The terminals are the input, and

random terminals valuing between −1 and 1, inclusive, may be generated. Dormancy

is tracked through short-circuiting of protected division and multiplication where the

first input is 0.

Table 4.4: GP evolutionary parameters for the regression domain.

Parameter Value
Runs 300
Population Size 100
Generations 1000
Crossover Probability 0.9
Tournament Size 3
Probability of Non-Terminal Crossover 0.9
Min Initial Depth 2
Standard Mutation Probability 0.1
Standard Mutation Max Regeneration Depth 2
Swap-point Mutation Probability 0.05
Max Initial Depth 6
Mutation Max Regen Depth 2
Max Depth 8
Swap Mutation Probability 0.1
Initial Grow Probability 0.5
Probability to Mutate a Function Node 0.5
Initial Evolvability Samples 100

36

CHAPTER 4. PRELIMINARY EXPERIMENTS

The evolutionary parameters are as shown in Table 4.4. Evolvability is modelled

by an ANN, with the following learning parameters: a number of hidden nodes equal

to half the sum of the number of attributes and classes used, a learning rate of 0.1,

momentum of 0.01, a random seed of 0, a training time of 10000 epochs, a validation

set size of 10%, and a validation threshold of 20 epochs. There is further validation of

the model through use of 10-fold cross-validation. The attributes, generated a priori

by the GP system, are as follows: generation, tree size, function frequency, non-input

terminal frequency, input frequency, dormancy ratio, previous fitness, and fitness.

The class is evolvability, as determined by sampling, as the probability of a positive

change in fitness within one standard mutation operation.

Selection is altered by first determining if the comparable individuals have signifi-

cantly similar fitness. If the difference in their fitness is less than 0.01, then instead of

selecting by fitness, we consider the sum of fitness and evolvability for each individual.

The ANN model had a correlation coefficient of 0.9558, and a root mean squared

error of 0.0282, under 10-fold cross-validation. Under the experimental conditions,

this would be sufficiently accurate, since evolvability was only significant during se-

lection if the comparable individuals had nearly equal fitness. Fitness is more likely to

be significant, and is still under consideration, even when the comparable individuals

are nearly equal. SGP achieves a mean best accuracy of 83.48%, and apEGP 81.02%.

Table 4.5: The mean minimum generation to achieve the specified fitness levels for the
contrived regression problem. SGP outperforms apEGP for the regression problem.

70% 80% 90%
SGP 272.5 303.0 405.6
apEGP 278.6 343.7 439.7

37

CHAPTER 4. PRELIMINARY EXPERIMENTS

4.3 Discussion

We find that lexicographical evolvability selection provides benefits to the six parity

problem but pseudo-lexicographical evolvability selection does not provide benefits

to the constructed regression problem. Fitness in GP has a tendency to plateau in

the six parity problem. The population reaches points where it is difficult to improve

upon fitness or has achieved optimal fitness. Evolvability selection encourages the

evolution of a population that can escape these fitness plateaus. The parity search

space is rugged and the population may converge to low fitness. The six parity

results are contrasted by the regression problem results. The regression problem has

a smoother search space and its fitness does not plateau easily. There exists some

single genetic operations that yield improved fitness. Using pseudo-lexicographical

evolvability selection does not increase the population’s ability to escape local minima.

The discrete search space of parity contrasts with the more continuous search space

of regression. If it is always easy to achieve improved fitness in a problem then there

is not enough evolvability differentiation between individuals to make a difference.

We hypothesize that evolvability is more desirable in earlier generations, where

fitness has not yet converged and it is not yet inherently desirable to have high fitness.

In later generations, fitness becomes more significant, as we desire to optimize fitness

(and thus find the best solution to the problem) even at the expense of evolvability.

The experiments in this chapter use lexicographical or pseudo-lexicographical evolva-

bility selection, which instead provides uniform light evolvability selection pressure.

The light pressure ensures that fitness is indeed prioritized in later generations. Ho-

wever, evolvability is not favoured over fitness in early generations. The light pressure

still allows the parity problem to escape local minima but does not encourage a more

evolvable population for the regression problem. Regression may benefit from stron-

38

CHAPTER 4. PRELIMINARY EXPERIMENTS

ger early evolvability pressure but light uniform evolvability selection pressure does

not provide benefits.

39

Chapter 5

Order Tree Experiments

In this chapter, we describe experiments and results regarding the OrderTree (OT)

domain. These experiments explore the ideal learning parameters for using evolva-

bility in selection and expand on the preliminary experiments by conducting model

building in parallel to evolution.

An extendible synthetic domain will be most useful for this work. White et al. [93]

proposed a set of benchmark problems to replace previously-used, simple problems.

Among the list of new synthetic, extendible problems is the OT problem [36]. A

synthetic, extendible problem such as the OT problem allows for tunable problem

difficulty; thus the conditions under which the use of evolvability is most beneficial

may be more easily examined.

An OT domain may be defined as having a size of n. Function nodes and terminal

nodes take on values of whole numbers on a range of [0, n−1]. Function nodes all take

two arguments. The fitness of a solution is calculated in a top-down fashion. A node

will add 1 to the total fitness of the solution if its numeric value is strictly greater than

its parent’s numeric value, and, in the restricted version of the OT problem, only if the

parent is also adding to the total fitness of the solution. Thus, the optimal solution

40

CHAPTER 5. ORDER TREE EXPERIMENTS

is an ordered tree, where the root is the functional node valued at 0, its children are

valued at 1, and so on. The OT problem is useful because the difficulty is tunable to

n, where difficulty may be increased by increasing n, thus increasing our functional

and terminal set. Furthermore, node dormancy is easily determined as a by-product

of fitness evaluation. Problem difficulty may be further tuned by adjusting how much

fitness is contributed by each node; by weighing higher-valued nodes more greatly

(i.e., by increasing fitness greater than 1 for any given node) the fitness structure

may be changed. This alters the fitness landscape, and encourages higher-valued

nodes to be selected, even though this interferes with finding the optimal solution.

A more evolvable solution would still favour lower-valued nodes. This allows for

tuning the desirability of evolvability. Tuning the OT problem in these two ways will

demonstrate the problem conditions for the effectiveness of the proposed system.

5.1 Experiments

We conduct a series of experiments to determine the conditions under which evol-

vability may be used to produce improved fitness results in OT problems of varying

difficulty. We begin by verifying that evolvability selection is useful with Sample-

Evolvability Genetic Programming (SEGP). We verify that modelling evolvability in

ideal conditions is possible with a priori Evolvability Genetic Programming (apEGP).

Then we verify that evolvability selection is still beneficial when modelling occurs in

parallel with evolution, with Model-Evolvability Genetic Programming (MEGP). The

experiments, their supporting figures and results are summarized in Table 5.1.

41

CHAPTER 5. ORDER TREE EXPERIMENTS

Table 5.1: Summary of OT experimental results.

Figures Parameters Purpose Results
5.2-5.10 Evolvability

weight,
evolvabi-
lity ceasing
generation

Evaluate SEGP
on increasingly
difficult problems

Low evolvability weights and
low evolvability ceasing gene-
rations preferred. More dif-
ficult problems benefit from
more evolvability.

5.11-
5.15

Evolvability
weight,
evolvabi-
lity ceasing
generation

Evaluate apEGP
on increasingly
difficult problems

apEGP performs comparably
with SEGP.

5.16-
5.21

Evolvability
weight,
evolvabi-
lity ceasing
generation

Optimize evolva-
bility weight and
evolvability cea-
sing generation on
OT 8.

MEGP performs comparably
with SEGP. Moderate evolva-
bility weight and low evolvabi-
lity ceasing generation produ-
ces the best performers.

5.22-
5.25

Evolvability
weight,
evolvabi-
lity cycling
generations

Optimize evolvabi-
lity cycling genera-
tion parameters.

Interleaved evolvability se-
lection performs significantly
better than evolvability ceasing
generations.

5.26-
5.28

Evolvability
weight,
evolvabi-
lity cycling
generations

Evaluate MEGP
with cycling gene-
rations.

MEGP is still able to produce
comparable results with interle-
aving evolvability generations.

5.29-
5.32

Max trai-
ning epochs,
fitness im-
provement
thresholds,
non-decaying
evolvability

Evaluate other
evolvability pres-
sure methods.

Alternative methods fail to per-
form as well as evolvability cy-
cling.

5.33,
5.34

Evolvability
weight,
evolvabi-
lity cycling
generations

Compare best per-
formers of SEGP
and MEGP.

Both SEGP and MEGP per-
form significantly better than
SGP, and comparably with
each other. MEGP requires
comparable time complexity to
SEGP for the OT 8 problem,
and both only require about
twice as much time as SGP.

42

CHAPTER 5. ORDER TREE EXPERIMENTS

5.1.1 Sampling Accuracy

How many samples are needed to estimate evolvability for an individual? Calculating

precise evolvability is computationally infeasible for practical genetic programming

(GP). Instead of calculating all possible results of all possible genetic operations for

any given individual genetic program, we elect to instead conduct sampling, where

a random subset of all possible genetic operations is applied. Sampling can approx-

imate the precise calculation of evolvability for a fraction of the computational cost.

How many samples are necessary to produce a reasonable approximation of the cor-

rect evolvability, such that selection errors will occur less than 5% of the time? How

accurate must the approximation be to achieve an improvement when using evolvabi-

lity to guide selection? This subsection details experiments conducted to determine

how many evolvability samples should be obtained for each individual, to balance

accuracy and computational efficiency.

In order to answer these questions, we must first define more experimental pa-

rameters. Sampling accuracy experiments are conducting using the Open BEAGLE

Puppy and WEKA based system. We need only compare the difference in evolvability

given by various numbers of samples; we would expect more samples to represent true

evolvability more accurately. A simple problem will be as useful as a difficult one,

so the OT 4 problem is used. Several evolvability metrics exist. We opt to define

evolvability as the probability of a mutation operation resulting in a strictly positive

fitness change. This may differ from other metrics in two ways: the probability of

change instead of magnitudes of change, and excluding neutral changes. Preliminary

experiments indicated that selecting for the probability of a positive fitness change

were more productive than when neutral changes were included. Similarly, they indi-

cated that using probabilities instead of the average magnitude of fitness change were

43

CHAPTER 5. ORDER TREE EXPERIMENTS

Table 5.2: Evolutionary parameters for varying the number of samples, for the OT 4
problem.

Parameter Value
Population Size 50
Crossover Probability 0.9
Tournament Size 3
Probability of Non-Terminal Crossover 0.9
Min Initial Depth 3
Standard Mutation Probability 0.05
Max Initial Depth 6
Mutation Max Regen Depth 2
Max Depth 6
Swap Mutation Probability 0.05
Initial Grow Probability 0.5
Probability to Mutate a Function Node 0.5

more productive. Mutation operations are considered, in order to evaluate evolva-

bility of individuals without considering how the gene pool of the population would

affect measurements, as it would measuring evolvability using cross-over operations.

More samples are required to achieve a good approximation if we consider the average

magnitude of change of fitness. Furthermore, selecting for the greater positive magni-

tude of fitness change will heavily bias evolution toward lower fitness individuals, as

they have the greatest capacity for fitness improvement. We discount neutral changes,

as this encourages a bias toward large trees in the OT problem, as they have many

possible neutral mutations. Considering neutral changes to be equivalent to positive

ones encourages robustness, but not evolvability. We use Positive Probability Evol-

vability (PPE) to evaluate evolvability in this chapter. For brevity, when we refer to

evolvability in this chapter, we refer to PPE.

To determine how many samples are necessary to achieve a reasonable approx-

imation of evolvability, we conduct the following experiment. We vary the number

of samples while keeping other experimental conditions constant, and compare the

44

CHAPTER 5. ORDER TREE EXPERIMENTS

0 200 400 600 800 1000

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

Mean Average Error per Number of Samples

Samples

E
rr

o
r

Figure 5.1: Mean Absolute Error of evolvability for number of samples compared to
1000 samples.

sampled evolvability to the strongest approximation (using the largest sample size).

Even for a smaller OT problem, it is still computationally infeasible to calculate the

correct evolvability. By selecting for fitness, higher fitness individuals are more likely

to occur. If we select for evolvability, more evolvable individuals are likely to occur.

The experimental parameters are shown in Table 5.2. 10000 runs with different

random seeds are completed for standard genetic programming (SGP), and 1000 runs

for everything else. The maximum tree depth was raised for the 7th and 8th OT

problems. These parameters are consistent throughout the experiments in this work.

We define the mean absolute error of evolvability as follows:

MAE =
1

n
∗

n∑
k=1

|e′k − ek| (5.1)

where n is the number of runs, e′k is the measured evolvability for 1000 samples, and

ek is the measured evolvability of the indicated number of samples.

Figure 5.1 shows that a reasonable approximation for evolvability occurs when the

45

CHAPTER 5. ORDER TREE EXPERIMENTS

number of samples is about 100. Similar experiments for higher-order OT problems

produces similar results (excluded for brevity). Since the purpose of evolvability for

this system is to be used with an altered fitness function in order to guide selection, the

required accuracy of sampling and modelling evolvability is proportional to the actual

influence evolvability has on selection. Therefore, it is necessary to choose precisely

how evolvability will guide selection in order to determine how many samples are

sufficient to ensure accurate selection. This can be evaluated by using the modified

fitness function, and compare which individuals are selected when using a reduced

number of samples (or a model) for evolvability with individuals selected using a

large number of samples. Discrepancies indicate that an individual was incorrectly

selected.

5.1.2 Selection of Evolvability

This subsection describes the effectiveness of altering the fitness mechanism of SGP to

consider evolvability in various ways. This will demonstrate the effectiveness of using

sampled evolvability to improve GP. The significance of evolvability on selection will

be monitored, so the optimal amount of selection can be used. Once the necessary

conditions for the effectiveness of using evolvability in selection have been determined,

it can be used to gauge the effectiveness of modelling evolvability.

We need to determine how to select for evolvability. To determine the optimal

selection amount, we conduct the following experiment. We vary the SGP selection

mechanism by using the sampled evolvability in various ways while keeping other

experimental conditions consistent. There are several methods to guide selection

with evolvability. One is a threshold for fitness; if the fitness of two individuals falls

within a specific threshold, then we select the one with greater evolvability. Another

46

CHAPTER 5. ORDER TREE EXPERIMENTS

is a weighted sum; we sum the fitness and evolvability, each weighted by a specified

amount, and select individuals according to their weighted sum. We can allow a

generational modifier for using a weighted sum; as the number of generations increase,

we select less strongly for evolvability. Using a weighted sum and a generational

modifier, we have, formally:

F ′ =

(f + e∗p(gmax−g)

gmax
) if g < gmax

f otherwise

(5.2)

where F ′ is the adjusted fitness function, f is the standard fitness function, e is

evolvability, p is the evolvability weight parameter, gmax is the evolvability ceasing

generation parameter, and g is the current generation. This translates to the fitness

function being modified by the probability of a change being positive multiplied by

the weight parameter for the initial population, and where this modifier linearly ap-

proaches zero as the generation increases. Upon reaching zero, the modifier becomes

zero for the remaining generations, rendering evolvability uninfluential. This is desi-

rable because evolvability should become less significant as the number of generations

increases, as standard fitness approaches optimal values. Maximizing standard fitness

becomes the only goal when evolution completes. Eventually, we would just want to

select for standard fitness. We conduct experiments for different OT problems under

varying selection pressures (varying the weight and maximum generation parame-

ters). The other experimental parameters are identical to the previous experiment,

as shown in Table 5.2, however, the maximum initial depth and maximum depth are

equal to 7 and 8 for the OT 7 and OT 8 problem, respectively.

Figures 5.2-5.10 show the average maximum fitness as the generation increases,

for subsets of the tested problems. Confidence intervals of 95% as determined by

47

CHAPTER 5. ORDER TREE EXPERIMENTS

0 20 40 60 80 100

0.
02

0.
05

0.
20

0.
50

2.
00

5.
00

Mean Minimum Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
Pareto
p2
p3
p4
p6

Figure 5.2: Fitness over generation for varying evolvability weights, as well as Pareto
selection, for the OT 4 problem. Notationally “px” indicates the evolvability weight
is x. OT4 is solved fairly easily by SGP on most runs, but using evolvability weights
can find an optimal solution slightly more frequently. Pareto selection of evolvability
and fitness simply performs worse. The evolvability weights differences do not provide
significantly different results. Confidence intervals of 95% as determined by the Stu-
dent’s t-distribution are shown. Since more SGP runs are completed, its confidence
interval is hardly visible.

Table 5.3: Probability of an incorrect selection comparing 100 samples with 1000
samples under various modified fitness functions over 100 runs.

Order p g Mean Selection Error
4 7 10 0.34495%
5 10 N/A 2.6304%
6 5 N/A 3.6288%
7 10 N/A 4.338%
8 20 40 0.34230%

48

CHAPTER 5. ORDER TREE EXPERIMENTS

0 20 40 60 80 100

0.
02

0.
05

0.
20

0.
50

2.
00

5.
00

Mean Minimum Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
p7 g10
p7 g20
p14 g10
p14 g20

Figure 5.3: Fitness over generation for varying evolvability weights and evolvability
ceasing generations for the OT 4 problem. Notationally “px” indicates the evolvability
weight is x. Notationally “gx” indicates evolvability ceasing generation is x. OT4 is
solved fairly easily by SGP on most runs, but using evolvability weights can find an
optimal solution slightly more frequently. Ceasing evolvability selection earlier leads
to equivalent eventual convergence to optimal solutions, but optimal solutions are
found earlier.

49

CHAPTER 5. ORDER TREE EXPERIMENTS

0 20 40 60 80 100

1
2

5
10

20

Mean Minimum Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
p3
p5
p10
p15

Figure 5.4: Fitness over generation for varying evolvability weights and evolvability
ceasing generations for the OT 5 problem. OT5 is solved fairly easily by SGP on
most runs, but using low evolvability weights can find an optimal solution slightly
more frequently. Using high evolvability weights leads to underperformance; though
the gap closes more quickly, it would take many more generations before it would
outperform SGP.

50

CHAPTER 5. ORDER TREE EXPERIMENTS

0 20 40 60 80 100

1
2

5
10

20
Mean Minimum Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
p15 g10
p15 g20
p20 g20
p30 g20
p30 g30

Figure 5.5: Fitness over generation for varying evolvability weights and evolvability
ceasing generations for the OT 5 problem. Stronger evolvability selection yields slig-
htly worse fitness performance. Strong initial selection pressure with a slower fade
leads to a better fitness rate of change but is unable to catch up to the baseline in
100 generations. Low evolvability pressure with a faster fade outperforms SGP.

0 20 40 60 80 100

20
30

40
50

60

Mean Minimum Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
p3
p5
p10
p15
p20

Figure 5.6: Fitness over generation for varying evolvability weights for the OT 6
problem. SGP has difficulty solving OT6 each run. Using evolvability weights allows
GP to find an optimal solution slightly more frequently, but sufficiently large values
cause fitness performance to drop.

51

CHAPTER 5. ORDER TREE EXPERIMENTS

0 20 40 60 80 100

20
30

40
50

60
Mean Minimum Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
p20 g20
p30 g30
p50 g10
p100 g10
p150 g10

Figure 5.7: Fitness over generation for varying evolvability weights and evolvabi-
lity ceasing generations for the OT 6 problem. Lower selection weights and lower
evolvability ceasing generations yield better fitness performance. SGP outperforms
evolvability selection in the short term, but evolvability selection continues to yield
fitness gains even once it is no longer being selected for.

0 20 40 60 80 100

60
80

10
0

12
0

Mean Minimum Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
p10
p20 g10
p20 g20
p20 g40
p50 g10

Figure 5.8: Fitness over generation for varying evolvability weights and evolvabilty
ceasing generations for the OT 7 problem. The best performer uses a relatively large
evolvability weight and a middling evolvability ceasing generation.

52

CHAPTER 5. ORDER TREE EXPERIMENTS

0 20 40 60 80 100

16
0

18
0

20
0

22
0

24
0

Mean Minimum Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
p10
p20
p50

Figure 5.9: Fitness over generation for varying evolvability weights for the OT 8
problem. The best performer uses a relatively low evolvability weight.

0 20 40 60 80 100

16
0

18
0

20
0

22
0

24
0

Mean Minimum Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
p5 g20
p10 g100
p50 g10
p50 g20
p100 g10

Figure 5.10: Fitness over generation for varying evolvability weights and evolvabilty
ceasing generations for the OT 8 problem. The best performers use low evolvability
weight.

53

CHAPTER 5. ORDER TREE EXPERIMENTS

the Student’s t-distribution are shown. These results indicate that using modified

fitness functions that use evolvability in addition to standard fitness outperform using

standard fitness functions alone. The results demonstrate that apEGP is able to

achieve better or comparable fitness performance than SGP.

In particular, the results indicate the general appropriate proportion of evolvabi-

lity to use for selection, as shown by the better performing selection pressures. Easier

problems (the lower order OT problems) benefit from less evolvability pressure, in

the form of lower evolvability weights or lower evolvability ceasing generations. Using

a greater weight parameter is still useful, provided that a maximum generation para-

meter is specified, so fitness becomes more dominant as individuals approach higher

fitness values. Using extreme values for a weight parameter, even tempered by small

maximum generation parameter, does not produce fit results. For the higher diffi-

culty problems, a greater emphasis on evolvability improves the results. We also note

that selection based on Pareto-dominance, where fitness and evolvability are the two

objectives, produces worse results than SGP. The fitness of Pareto selection follows

a different trajectory than the other selection methods. Fitness improves slightly,

then gradually worsens before improving more sharply. The initial random popula-

tion is easy to improve upon with with both fitness and evolvability. Then, higher

fitness individuals also have low evolvability, leading the population to appear to

stagnate. However, while fitness stagnates, evolvability of the population is increa-

sing, up until evolvability also stagnates. Then, improved fitness is more likely to

be Pareto-dominant. Pareto selection may lead to a more evolvable population, but

fitness suffers too much compared to other selection methods. The fitness trajectory

may indicate that evolvability is more valuable in the middle generations. A subset

of all the tested values for varying selection pressures are shown, for clarity.

We see in Table 5.3 that under the varying selection pressures, that 100 samples

54

CHAPTER 5. ORDER TREE EXPERIMENTS

for evolvability differs from using 1000 samples less than 5% of the time. The tested

selection pressures were some of the top performing selection methods for their order of

problem, as shown in the previous experiments. Establishing a performance baseline

for evolvability selection pressure allows us to proceed to model evolvability.

5.1.3 Modelling of Evolvability

We test the apEGP system (see Figure 3.1) in this subsection. We demonstrated

the effectiveness of using sampled evolvability in the previous section. We now build

a model for evolvability and demonstrate its effectiveness. Firstly, we describe the

attributes we use to build the machine learning models for evolvability. We record

a number of attributes associated with individuals. These include generation, tree

height, tree size, functional and terminal frequency, number of dormant nodes, dor-

mancy ratio, previous standard fitness, fitness change, and standard fitness. These

may all be recorded for each individual without onerous computational costs beyond

standard fitness calculation. These attributes are subjected to attribute significance

testing using WEKA, using the correlation-based filter method Correlation-Based

Feature Selection [31], and further tests on WEKA classifiers. The most significant

attributes were determined to be generation, size, function frequency, terminal fre-

quency, number of dormant nodes, previous fitness, and fitness.

WEKA offers rapid use of many machine learning classifiers. In order to build

a model, we provide training data and choose a classifier. We can generate training

data by running SGP with the addition of evolvability sampling and selection; this

will produce individuals which will be similar to those that will occur when using

the model system, ensuring the models will be more accurate in practice. We can

evaluate the effectiveness of the different models for evolvability by comparing the

55

CHAPTER 5. ORDER TREE EXPERIMENTS

Table 5.4: Probability of an incorrect selection comparing a multilayer perceptron
model constructed with a varied number of training instances (themselves constructed
under a varied number of evolvability samples) with 1000 evolvability samples under
the 4th OT problem using the p7 g10 fitness function over 1000 runs.

Samples Training Instances Mean Selection Error
1000 2000 0.487524%
1000 4000 0.488446%
1000 8000 0.483173%
1000 40000 0.460605%

mean absolute error between them, also comparing this with the mean absolute error

of the evolvability by varying number of samples. Various experiments indicate that a

number of machine learning models are appropriate for this task, for they have similar

mean absolute error rates. We select the multilayer perceptron, an artificial neural

network (ANN), for verifying the effect of the number of training instances and the

number of evolvability samples that are required for acceptable mean absolute error

rates. Acceptable mean absolute error rates are those which indicate that erroneous

selection will occur less than 5% of the time. We experiment to find the minimum

required conditions to achieve this error rate. These experiments include varying the

number of training instances, the number of evolvability samples used to generate

those instances and measuring the frequency of selection error compared with 1000

samples of evolvability.

Once the conditions required for acceptable selection error rates have been deter-

mined, we test the system by comparing the top performing selective conditions in

each OT problem, compared with SGP and the improvements made by using sam-

pled evolvability, to indicate that modelling evolvability and modifying the standard

fitness function, we can improve GP. This will indicate that modelling evolvability is

viable.

56

CHAPTER 5. ORDER TREE EXPERIMENTS

0 20 40 60 80 100

0.
01

0.
05

0.
50

5.
00

Mean Minimum Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
S100 T4000
S1000 T4000
S1000 T1000
S1000 T400000
Sampled

Figure 5.11: Fitness over generation for ANN models built from various amounts of
training instances and various amounts of evolvability samples for the OT 4 problem.
Notationally “sx” indicates the number of evolvability samples is x, and “Tx” indi-
cates the number of training instances is x. The fewest samples and fewest training
instances outperform SGP, and increases to either are not distinguishably better.
They perform about as well as sampling evolvability.

We see in Table 5.4 that relatively few training instances are required to build an

accurate model of evolvability. Very few selection errors are made when the evolvabi-

lity used to train the model is accurate; when a large number of samples of evolvability

are taken to generate the model. We see in Figure 5.11 that the models perform suffi-

ciently well in practice. They are a statistical improvement over SGP and fare about

as well as sampled evolvability. Even as few as 2000 training instances can build a

successful model. Since a training instance is generated for each individual in the po-

pulation for each generation, a single run with these settings generates 5000 training

instances.

In Figures 5.12-5.15 we see that this trend holds in higher OT problems; model-

ling evolvability offers a statistically significant improvement over SGP, and performs

about as well as using samples to calculate evolvability. Note that using models

57

CHAPTER 5. ORDER TREE EXPERIMENTS

0 20 40 60 80 100

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

Mean Minimum Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
SEGP
apEGP

Figure 5.12: Fitness over generation comparing SGP, using SEGP and apEGP for
the OT 5 problem. Both evolvability use cases have a “p” value of 10. Modelling
evolvability produces the best results.

0 20 40 60 80 100

10
20

30
40

50
60

Mean Minimum Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
SEGP
S100 T2000
S1000 T2000

Figure 5.13: Fitness over generation comparing SGP, using SEGP and apEGP for the
OT 6 problem. Each evolvability use case has a “p” value of 5. Modelling evolvability
produces the best results. More samples relative to OT4 produces better results.

58

CHAPTER 5. ORDER TREE EXPERIMENTS

0 20 40 60 80 100

60
80

10
0

12
0

Mean Minimum Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
SEGP
apEGP

Figure 5.14: Fitness over generation comparing SGP, using SEGP and apEGP for
the OT 7 problem. Both evolvability use cases have a “p” value of 10. Modelling
evolvability produces the best results.

0 20 40 60 80 100

16
0

18
0

20
0

22
0

24
0

Mean Minimum Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
SEGP
apEGP

Figure 5.15: Fitness over generation comparing SGP, using SEGP and apEGP for
the OT 8 problem. Both evolvability use cases have a “p” value of 20 and a “g” value
of 40. Modelling evolvability produces the best results.

59

CHAPTER 5. ORDER TREE EXPERIMENTS

built 1000 samples of evolvability even performs better than continually sampling

evolvability 100 times for each individual.

5.1.4 Parallel Learning and Evolution

We have shown that models can be developed a priori which may provide benefits

when used to alter normal fitness selection in order to emphasize evolvability, without

significantly compromising efficacy when compared to sampled evolvability. We now

move to implementing models that are developed during evolution. In particular, we

move to a new system that can create evolvability models dynamically, MEGP. We

need to train a new model for each new run, and alter those models as the population

changes and generates new data. The existing system of Open BEAGLE Puppy and

WEKA, used for apEGP, does not meet our needs to train models in parallel to

evolution, so we move to one based on EpochX and Encog. We verify that good

evolvability models can still be developed under dynamic conditions. Further, we

demonstrate that the additional computational time devoted to sampling evolvability

and generating evolvability models produces sufficient gains in efficacy. As we move

toward practical applications, we consider if the benefits of modelling evolvability are

worth the costs. This subsection details the initial experiments with dynamic model

building during evolution for the OT problem.

We conduct experiments on the OT 8 problem, with the experimental conditions

shown in Table 5.5. We wish to verify the efficacy of the models in a dynamic

environment. We compare the baseline, SGP, with SEGP and MEGP.

Using small selection pressures, according to some good performers of prior expe-

riments, we find there is not much difference between SGP and using either SEGP or

MEGP, as shown in Figure 5.16. Those results indicate that we should increase the se-

60

CHAPTER 5. ORDER TREE EXPERIMENTS

Table 5.5: Evolutionary and ANN parameters for parallel learning and evolution using
the OT 8 problem.

Parameter Value
Population Size 500
Crossover Probability 0.9
Tournament Size 6
Probability of Non-Terminal Crossover 0.9
Min Initial Depth 1
Standard Mutation Probability 0.1
Max Initial Depth 6
Mutation Max Regen Depth 2
Max Depth 9
Swap Mutation Probability 0
Initial Grow Probability 0.5
Probability to Mutate a Function Node 0.5
Number of Runs 1000
Maximum Generation 400
ANN Max Epoch 1000
ANN Early Stop Error Min 0.01
Evolvability Samples 100

61

CHAPTER 5. ORDER TREE EXPERIMENTS

0 50 100 150 200

50
10

0
15

0
20

0
25

0
Average Best Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
SEGP
MEGP

Figure 5.16: Fitness over generation comparing SGP, using sampled evolvability and
modelled evolvability with a modified fitness function for the OT 8 problem, with
evolvability selection pressure values of p20 g40. The evolvability pressure is too
weak to amount to a significant difference.

0 50 100 150 200

50
10

0
15

0
20

0
25

0

Average Best Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
p400 g40
p800 g40
p1600 g40
p3200 g40

Figure 5.17: Fitness over generation comparing SGP, using SEGP for the OT 8
problem, with selection pressure values of g40 and various values for p. There is not
significant difference when using large values for p, but a threshold exists. Using p400
is not significantly different from SGP. Evolvability selection needs sufficiently large
p values to cause a difference.

62

CHAPTER 5. ORDER TREE EXPERIMENTS

0 50 100 150 200

50
10

0
15

0
20

0
25

0
Average Best Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
p200 g40
p200 g80

Figure 5.18: Fitness over generation comparing SGP, using SEGP for the OT 8
problem, with selection pressure values of p200 and various values for g. Allowing a
higher value for g does increase the rate of change in fitness once evolvability selection
is finished, but more generations are needed to catch up to a lower g.

0 50 100 150 200

50
10

0
15

0
20

0
25

0

Average Best Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
SEGP
MEGP

Figure 5.19: Fitness over generation comparing SGP, using SEGP and MEGP for
the OT 8 problem, without evolvability decay. Both use p10 and g0. A low constant
evolvability pressure does not cause much difference in fitness performance. MEGP
does not degrade from SEGP.

63

CHAPTER 5. ORDER TREE EXPERIMENTS

0 100 200 300 400

50
10

0
15

0
20

0
25

0
Average Best Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
p50 g40
p100 g40
p200 g40

Figure 5.20: Fitness over generation comparing SGP and SEGP for the OT 8 problem
with selection pressure values of g40 and varying values for p. Higher p values cause
a fitness stall until generation 40. A p value of 50 performs well, for it does not face
the plateau larger values face, while at least having an effect on fitness that lower
values do not. Each are able to surpass SGP.

0 100 200 300 400

50
10

0
15

0
20

0
25

0

Average Best Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
p50 g20
p50 g40
p50 g80
p50 g160

Figure 5.21: Fitness over generation comparing SGP and SEGP for the OT 8 problem
with selection pressure values of p50 and varying values for g. The best performer is
g40. Lesser values do not change enough from SGP, and greater values require too
many additional generations to achieve comparable fitness.

64

CHAPTER 5. ORDER TREE EXPERIMENTS

lection pressure, in order to obtain more significant results. We investigate increasing

the selection pressure, shown in Figure 5.17. Allowing a very strong pressure which

decays gradually as the generation approaches 40, and then terminates entirely, we

see that the population may actually benefit, though more generations are required to

confirm that effect. However, the performance suffers a considerable amount in earlier

generations. We consider a strong selection pressure with slower activating decays, in

Figure 5.18. We see that the population favours a faster-activating decay, as the best

fitness in the population does not rebound quickly enough to surpass the baseline if

the onset of total decay is too slow. We can see that using high selection pressure is

not sustainable without decay, as earlier generations will not improve their best fit-

ness individual in a significant way. Attempting small selection pressure without any

decay, we see in Figure 5.19 that constant low selection pressure does not significantly

impact the results. We observe the long-term effects of moderate decay, with varying

amounts of pressure in Figure 5.20. The relationship between selection pressure and

fitness over time is demonstrated quite clearly; less selection pressure means better

fitness early but slightly worse later. With enough generations to observe the change,

we see that very strong selection pressure will produce the best results, with enough

time. However, moderate pressure remains competitive, all outperform the baseline.

The best performer is used as a basis for the next experiment, which varies the decay

rate instead, with results shown in Figure 5.21. Once more, we see that stronger

pressure through a slower decay leads to the best fitness in later generations, though

faster decay is still competitive.

Figures 5.16-5.21 indicate that strong selection pressure with fairly rapid decay

is most effective. Having to calculate evolvability or maintain evolvability models is

fairly computationally expensive, so achieving similar results while only using evol-

vability for a portion of the total generations means we can save ourselves some

65

CHAPTER 5. ORDER TREE EXPERIMENTS

0 100 200 300 400

50
10

0
15

0
20

0
25

0
Average Best Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
SEGP p50 g0 i5-20
SEGP p100 g0 i5-20
SEGP p200 g0 i5-20

Figure 5.22: Fitness over generation comparing SGP and SEGP for the OT 8 pro-
blem with varying selection pressure values for p and cycling fitness with evolvability
selection. The cycling notation i5 − 20 indicates 5 generations of evolvability use
and 20 using standard fitness. Cycling outperforms previous experiments with OT8.
Greater values for p are favoured relative to previous experiments without cycling.

0 100 200 300 400

50
10

0
15

0
20

0
25

0

Average Best Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
SEGP p100 g0 i5-5
SEGP p100 g0 i1-5
SEGP p100 g0 i5-1
SEGP p100 g0 i1-1

Figure 5.23: Fitness over generation comparing SGP and SEGP for the OT 8 problem
with varying evolvability cycles. The most balanced cycles perform the best. Emp-
hasis on fitness cycles causes little difference from SGP, and emphasis on evolvability
cycles causes worse performance than SGP.

66

CHAPTER 5. ORDER TREE EXPERIMENTS

0 100 200 300 400

50
10

0
15

0
20

0
25

0
Average Best Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
SEGP p100 g0 i1-1
SEGP p100 g0 i1-2
SEGP p100 g0 i1-5
SEGP p100 g0 i1-10

Figure 5.24: Fitness over generation comparing SGP and SEGP for the OT 8 problem
with varying evolvability cycles. Equal emphasis on both fitness and evolvability
produces the best results.

0 100 200 300 400

50
10

0
15

0
20

0
25

0

Average Best Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
SEGP p100 g200 i5-20
SEGP p100 g200 i5-5
SEGP p100 g200 i1-5
SEGP p100 g0 i1-1

Figure 5.25: Fitness over generation comparing SGP and SEGP for the OT 8 problem
with varying evolvability cycles and decaying evolvability pressure. Balanced cycles
perform best. It is unnecessary to use decay when using cycles. The best performer
uses rapid balanced cycles with no decay.

67

CHAPTER 5. ORDER TREE EXPERIMENTS

computation. However, if we only use evolvability for a small number of generations,

and only initially, how many generations could we execute until the benefit is lost?

Perhaps a better way of continuing is to use strong evolvability pressure for short

periods of time, but not only for the first few generations, but interleaved in the fol-

lowing generations. To this end, we implement interleaved evolvability selection. We

conduct a number of generations that uses evolvability selection pressure, and then

a number of generations that use standard fitness, then cycling back. We conduct

tests using a set number of cycling generations and varied amounts of selection pres-

sure, without decay, in Figure 5.22. Using strong, interleaved evolvability pressure

produces much better fitness values, and converges on them more quickly. Strong

pressure is even more effective, and it only produces slightly worse results for earlier

generations, in comparison to the gains made in later generations. Running experi-

ments where the number of generations in the cycle varies, we see in Figure 5.23 using

at least as many generations running standard fitness as there are evolvability-usage

generations is required, or fitness suffers. The balance appears to be best when there

are comparable amounts of each. Too few and evolvability is not enforced enough, so

there are negligible gains. This is reinforced further with experiments varying only

the number of generations where only fitness is used, in Figure 5.24. However, we

need to consider the best performance ratio in the context of decay, as well. We see

in Figure 5.25 that using decay is no longer necessary, as the function it was per-

forming, the reduction in evolvability pressure over time, is compensated for by the

interleaving. Non-decay performs better.

We have verified the efficacy of interleaved evolvability selection using sampled

evolvability. We consider how interleaved selection will function with modelled evol-

vability. We conduct some initial experiments using similar parameters as our prior

sampled evolvability experiments and find the results are quite similar, as shown in

68

CHAPTER 5. ORDER TREE EXPERIMENTS

0 100 200 300 400

50
10

0
15

0
20

0
25

0
Average Best Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
MEGP p100 g0 i5-5
MEGP p100 g0 i5-20
MEGP p100 g200 i5-5
MEGP p100 g0 i1-1

Figure 5.26: Fitness over generation comparing SGP and MEGP for the OT 8 problem
with varying evolvability cycles. MEGP does not benefit from balanced cycles, relative
to SEGP. Each performs about equally well, except for rapid cycles, which performs
worse.

0 100 200 300 400

50
10

0
15

0
20

0
25

0

Average Best Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
MEGP p400 g200 i3-3
MEGP p400 g200 i5-5
MEGP p400 g100 i5-5
MEGP p800 g100 i5-5

Figure 5.27: Fitness over generation comparing SGP and MEGP for the OT 8 problem
with varying evolvability parameters. We exceed the current best MEGP performer
with a greater p value and a lower g value. SEGP did not benefit from using evolva-
bility ceasing generations when cycles are included, but MEGP benefits.

69

CHAPTER 5. ORDER TREE EXPERIMENTS

0 100 200 300 400

50
10

0
15

0
20

0
25

0
Average Best Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
MEGP p100 g0 i5-5
MEGP p100 g0 i10-10
SEGP p100 g0 i5-5
SEGP p100 g0 i10-10

Figure 5.28: Fitness over generation comparing SGP, SEGP and MEGP for the OT
8 problem. MEGP is able to achieve comparable fitness performance to SEGP, and
both surpass SGP.

Figure 5.26. We compare SEGP and MEGP together in Figure 5.28 and find com-

parable results, though the performance of the models suffers slightly. We observe

the effects of using decay with modelled evolvability in Figure 5.27. We again find

that strong selection works best, and decay is not necessary if we are interleaving

evolvability selection with standard fitness.

Up until now, dynamic evolvability models are generated by considering the first

several generations as training generations. Since we are sampling for evolvability as

evolution occurs, in order to have labelled training instances for our ANN, we use the

sampled evolvability to influence selection for those first few generations. Once we

have sufficient training data, which under these conditions is about 5 generations, we

switch over to using the evolvability model to influence selection and cease sampling

evolvability. With interleaved use of evolvability, we are concerned that the model

will degenerate more quickly, since the population transitions from the selection cy-

70

CHAPTER 5. ORDER TREE EXPERIMENTS

0 100 200 300 400

50
10

0
15

0
20

0
25

0
Average Best Fitness per Generation

Generation

M
in

 F
itn

es
s

Baseline
MEGP p400 g100 i5-5 T150
MEGP p400 g100 i5-5 T75

Figure 5.29: Fitness over generation comparing SGP and MEGP for OT 8 problem
using varied difference-in-selection threshold values. Threshold is specified as the
number following the “T”. Using threshold values does not cause much difference.
MEGP maintains a sufficiently good model without needing further training instances
in future generations.

cling so rapidly that the model might not be as representative. This may be further

exacerbated when there is no decay. Now we must consider whether our models are

still representative of the data, considering the interleaved use of evolvability. We

have noted there is a slight degradation in performance between sampled and model-

led evolvability, as should be expected, since the models should not be as accurate

as sampling, though we have computational gains. To that end, decay may still be

useful, even with interleaved evolvability, as halting the use of evolvability will allow

further computational gains, which may be merited, since fitness performance does

not suffer significantly with its inclusion.

We also consider an additional metric to control the effectiveness of the model:

the difference-in-selection threshold. We resample for evolvability every 20 generati-

ons and evaluate the individual selection difference between modelled and sampled

71

CHAPTER 5. ORDER TREE EXPERIMENTS

0 100 200 300 400

50
10

0
15

0
20

0
Average Best Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
MEGP p400 g200 i5-5 A100
MEGP p400 g100 i5-5 A10000
MEGP p800 g100 i5-5 A100
MEGP p400 g200 i5-5 A1000

Figure 5.30: Fitness over generation comparing SGP and MEGP for OT 8 problem
using varied ANN maximum training epochs. Allowing a larger number of ANN
training epochs generates improved results. While other evolvability parameters vary
within these results, they are comparable to generation 100, where allowing 10000
training epochs yields the best result.

evolvability. As the selection process is the only way we can consider the effectiveness

of the model, these selection errors indicate that our model is not accurate enough

and requires retraining with new instances. We consider the threshold value in Fi-

gure 5.29, and find that the values we are using do not make much difference, in

terms of fitness performance. We consider altering some of the ANN parameters to

encourage faster model development or more accurate model development. Varying

the maximum number of ANN epochs at each training step, we see in Figure 5.30

that allowing longer training times for ANNs does indeed improve the fitness results.

We must determine if this is worth the computational cost. We also note that strong

interleaved evolvability selection can cause a wavy effect in the average best fitness

that corresponds to the fitness selection cycle. We will return to the issue of model

accuracy later when we look more closely at computational performance tradeoffs.

72

CHAPTER 5. ORDER TREE EXPERIMENTS

0 100 200 300 400

50
10

0
15

0
20

0

Average Best Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
SEGP p400 g200 i5-5
MEGP p400 g50nd i5-5
MEGP p800 g50nd i5-5
MEGP p1600 g50nd i5-5

Figure 5.31: Fitness over generation comparing SGP and MEGP for OT 8 problem
using various p values, without decaying evolvability pressure. As evolvability use
is still stopped at a specified generation, we continue to use the g label, but we
add “nd” to indicate that no gradual decay of evolvability pressure occurs. Using
a sudden stop of evolvability pressure produces better results earlier, though fitness
performance is eventually matched by later, gradual stops. Note the steeper slope
of nd models, beginning at generation 45 (the last evolvability-selection generation
because of cycling).

73

CHAPTER 5. ORDER TREE EXPERIMENTS

0 100 200 300 400

50
10

0
15

0
20

0
Average Best Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
MEGP p1600 g50 i5-5 IT20
MEGP p1600 g50 i5-5 IT40
MEGP p1600 g50 i5-5 IT80
MEGP p1600 g50nd i5-5 IT20

Figure 5.32: Fitness over generation comparing SGP and MEGP for OT 8 problem
using various fitness-improvement thresholds. Fitness-improvement thresholds are de-
signated by “IT”. Forcing evolvability selection to be used when fitness has stagnates
does not yield significantly improved results.

Considering again the effect of large selection pressure balanced by interleaving

and potentially decaying evolvability pressure, we conduct an experiment to removes

the traditional gradual decay of evolvability and instead introduce a hard stop point

where evolvability is cut off. This allows computational gains by cutting off evolva-

bility at a certain point while forcing higher pressure for the earlier generations. The

results shown in Figure 5.31 demonstrate that the fitness performance does not suffer

when using a rapid cutoff point for evolvability selection compared with a gradually

decaying evolvability selection pressure.

We further consider another new method of dealing with potential selection er-

rors, which is the number of generations that have occurred without improvement in

the best fitness individual. A stagnant population means a low evolvability popula-

tion. We introduce extra evolvability selection that occurs if the population’s best

fitness has not improved after a certain number of generations, with results shown in

74

CHAPTER 5. ORDER TREE EXPERIMENTS

0 100 200 300 400

50
10

0
15

0
20

0

Average Best Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
MEGP 400-200 i5-5 A100
SEGP 400-200 i5-5

Figure 5.33: Fitness over generation comparing the best performers in the OT 8
problem. SEGP and MEGP both outperform SGP significantly. SEGP and MEGP
perform comparably.

Figure 5.32. The results are not much improved.

The best performers are summarized in Figure 5.33 and their computational per-

formance is summarized in Figure 5.34. Ultimately, the impetus of MEGP is im-

proving upon the computational time required to use SEGP. SEGP requires onerous

time because of the increased number of fitness evaluations, which is typically the

main unit of work in GP. However, fitness evaluation in OT problems is simple and

computationally inexpensive. The number of fitness evaluations is not as significant

in determining the required computational time as other operations. As such, MEGP

does not yield large decreases in computational time over SEGP. However, both re-

quire a fairly low amount of extra computational time compared to SGP relative

to the increased number of fitness evaluations. Fitness performances for the best

of SEGP and MEGP are comparable. Using MEGP does not lead to a significant

decline in fitness performance. We are able to model evolvability effectively enough

that doing so does not hinder the objective of increased fitness performance. These

75

CHAPTER 5. ORDER TREE EXPERIMENTS

0 100 200 300 400

0
20

0
40

0
60

0
80

0
10

00

Average Seconds per Generation

Generation

S
ec

on
ds

GP
MEGP 400-200 i5-5 A100
SEGP 400-200 i5-5

Figure 5.34: Time over generation comparing the best performers in the OT 8 pro-
blem. The best performing MEGP is only marginally faster than SEGP. OT is a
unique problem in that fitness calculation is not nearly as onerous as other problems,
so the gains made by reducing that number of fitness evaluations occur is marginal.
Even with hundreds of samples per program per generation required for SEGP, SEGP
only requires about 3 times the computational time.

experiments find conditions under which MEGP may perform as well as SEGP, and

under which both outperform SGP. A natural extension of allowing more generations

to SGP, to compete under similar computational time, would find its fitness perfor-

mance plateaued and unable to reach the plateaus of SEGP and MEGP. As such,

SEGP and MEGP both outperform SGP.

76

Chapter 6

Electricity Domain Experiments

In this chapter, we describe experiments and results regarding the New South Wales

electricity demand domain (NSWED) [33]. These experiments explore a commonly

used streaming data domain [8, 18, 84, 86, 100], examining the benefits evolvability

modelling provides to the shifting problem environments.

The electricity domain consists of time, price, and consumption information, with

class labels indicating if the price of electricity has increased or decreased relative to

the previous time period. This dataset demonstrates concept drift: a change in the

underlying patterns which create the data, which means a useful model trained on

earlier time periods may not function effectively on later time periods. We conjecture

that a model which may adapt more easily to changing paradigms should be effective

in compensating for concept drift. These properties make the NSWED domain a

good choice for evaluating the effectiveness of the evolvability modelling system.

First, we review the general qualities streaming problems possess, and other re-

quired background information for evaluating streaming problems. Then, we discuss

experimental designs and their results.

77

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

6.1 Background

Streaming data is characterized by its real-time generation [8]. In static problems,

fitness is defined a priori, but in dynamic problems fitness may change over time [17].

Streaming data is becoming ubiquitous with the rise of the Internet and increased

data processing speeds. Traditional data processing methods can no longer cope with

the volume of data that is now being produced in various enterprises [12, 68]. The

growth in volume generation is outpacing the growth in processing power. Traditi-

onal machine learning algorithms may have made assumptions about loading entire

datasets into memory, which may not be possible now that datasets have grown so

vast. Streaming environments are a key problem in Big Data analysis. Big Data is

characterized by the 3Vs or 4Vs, which are velocity, volume, variety [53], and either

value, variability, virtual, or veracity [45, 99]. In streaming environments, the most

relevant characterization is velocity. Instances may only be processed a few number

of times, or even once before they are discarded, as new data streams in rapidly.

In time-sensitive domains, old data quickly becomes less valuable, as it loses pre-

dictive power when the underlying data distribution changes in fundamental ways.

For example, consider electricity demand: sudden events (such as a heat wave, which

requires more power to run air conditioning units), not otherwise captured by data

(perhaps temperature is not explicitly recorded in training instances), may change

the results such that previous models are now inaccurate. These are some fundamen-

tal problems when using streaming data, that must be considered. It may be useful

to have a highly evolvable population that could shift models quickly, to react to a

changing problem. We describe previous work with streaming problems, describe the

electricity domain in more detail, and describe important concepts that are used in

the experiments, in the following subsections.

78

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

6.1.1 GP and Streaming Problems

Streaming data are a sequence of boundless, time-ordered instances [70]. The nature

of data streams poses computational problems: it is difficult to even store data arri-

ving at such a high speed, much less process and analyze [22]. Instances may arrive

at varying rates and are unknown a priori. Instances may have a short shelf-life if

the means to store them is limited. Even if storage is not so limited, the instances

may have a declining predictive value for future instances, as the underlying distribu-

tion may change gradually over time, or even suddenly. Instances must be processed

quickly, so that responsive action may be taken quickly. Knowledge of class labels

may be limited or delayed. These characteristics pose significantly more challenges

than static domains, but also an opportunity. Genetic programming (GP) may have

advantages over other machine learning paradigms, considering a population’s ability

to adapt to new instances with less regard to older instances. Previous instances may

have been used to select a population up to the current generation, but they may

be quickly abandoned from fitness considerations. This may indicate that a more

evolvable population will be able to adapt to the changing circumstances, presented

by streaming data problems, more quickly than other machine learning paradigms.

Nevertheless, GP does not have a great amount of research to date, pertaining to

streaming problems.

Chongstitvatana conducts experiments using GP in a dynamic environment, which

were simulated robot traversal environments [13]. There were difficulties in transfer-

ring success of GP in robot learning problems from simulation to the real world.

Robot movement speeds were too low to conduct training in the real world, and

slight differences in the simulation and real world would often have the simulated

GP solution break down when exposed to reality. In order to compensate for slight

79

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

environmental changes, Chongstitvatana uses perturbations in the simulated environ-

ment, which improves the robustness of the solutions. Previous work with GP focuses

on static environments, as dynamic environments posed additional challenges to deal

with. However, Chongstitvatana exploits the dynamic nature of the environment in

order to improve the solutions.

Yan and Clack conduct an early attempt at using GP for a continuous learning en-

vironment: hedge fund portfolio optimization [95]. They build upon previous efforts

in GP to improve the diversity of the population, with the intent of increasing adap-

tability. The diversity of standard fitness and of phenotypic behaviour is encouraged.

The diversity of standard fitness is easily encouraged by partitioning fitnesses into

segments of similar fitness. Phenotypic diversity is more difficult to measure, but

for the particular domain of hedge fund portfolios, correlation and contracorrelation

of individuals can be calculated by considering the Return of Investment of indivi-

duals at particular points in time. That is, phenotypic diversity can be preserved

by preserving individuals whose Return on Investment falls when others rise. Con-

tracorrelated Return on Investment pairs may have similar overall fitness, but their

phenotypic differences are still easily measured in this fashion.

Riekert et al. [72] look more directly at dynamic environments. They propose a

slight alteration to GP, dubbed adaptive genetic programming (AGP), and compare

its performance with GP and gradient descent on artificial dynamic domains. AGP

differs from standard genetic programming (SGP) by using adaptive control patterns

and adaptive elitism. Adaptive control patterns send the population into hibernation,

meaning no more genetic operations when some specified fitness is reached. Then,

only the fittest of the population is evaluated on new data until its performance has

deteriorated some specific amount, when evolution resumes. A specific amount of the

best individuals in the population are saved when using elitism. The percentage of

80

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

the population saved by adaptive elitism varies as the result of fitness improvement;

if best fitness improves in a generation, more elitism is encouraged, saving more

elite individuals, and if best fitness deteriorates, then elitism is reduced, allowing for

more exploration. Crossover rates are adjusted similarly. Mutation rates are cyclic,

adjusted when an environmental change is detected. Culling of the worst performers

is also used. The dynamic domains investigated were artificially generated. Points in

each domain space were generated according to particular patterns, and then those

patterns were redefined after a set number of points were generated, then those same

points are reclassified according to the new patterns. Sliding time windows could then

be used to simulate either sudden concept shift or gradual concept drift, important

concepts in dynamic domains that will be explored in a proceeding subsection.

Smith [78] conducts some experiments with GP and streaming data, showing that

GP can adapt to concept drift. Synthetic and real class domains are tested under

varied circumstances, to answer how GP should be initialized for streaming data,

what parameters are ideal for evolution, when GP populations should be reset in

response to concept drift, and whether evolution should continue when no drift is

occurring. Large populations had faster adaptation. Crossover, mutation and elitism

rates required a balance to achieve the best results and were domain dependent.

Resetting the population when concept drift occurs was detrimental since the existing

population would adapt faster than a new population would to new data. Continuous

evolution outperformed evolution that was only triggered when concept drift occurred.

These results provide useful experimental parameters for streaming problems using

GP.

Heywood [35] provides a survey of both evolutionary and non-evolutionary model

developments for streaming data classification tasks. A series of works by Vahdat et

al. [84, 85, 86] use GP to classify streaming data with a variety of improvements to

81

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

Table 6.1: Summary of properties of the NSWED domain.

Size 45312
Input Attributes 8
Classes 2
Class Balance 42.5%:57.5%
No-Change Classifier Accuracy 85.3%
Sliding Window Size 100
Sliding Window Overlap 20

SGP which address problems that occur when dealing with streaming data. Further

developments of those improvements were introduced by Khanchi et al. [46, 47]. These

works address some core problems posed by streaming data. Label budgeting is a

particular focus. In streaming problems, acquiring accurate labels for an instance

may impose significant costs, so reducing those costs or otherwise only paying them

for the most helpful instances can improve the efficacy of modelling the stream. There

is further attention on which instances should be archived for future use, and how

to manage data imbalances considering label budgets and archiving. Further, the

works make use of Symbiotic Bid-Based GP [55], which functions by maintaining two

populations: symbiont and host. A symbiont individual acts as a program which

produces a scalar, and is assigned an action, which for classification problems, takes

the form of a class. Each host individual indexes a subset of the symbionts. To

evaluate an instance for a host, each program of its associated symbionts is evaluated,

which will produce bids for each different class. The highest bid is the predicted

class. These works provide the most rigorous examination of GP applied to streaming

problems under both synthetic and real domains, considering their complexities and

experimental results.

82

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

6.1.2 Data Description

The NSWED domain [33] consists of 45312 instances representing two years of data.

Properties of the NSWED domain are summarized in Table 6.1 The NSWED data-

sets include 8 attributes and two classes. The attributes are date, day, time period,

New South Wales price, New South Wales demand, Victoria price, Victoria demand,

and the transfer rate between those Australian states. The class label indicates if the

change in price from the previous instance is greater or less than the moving average

of the last 24 hour time period. The private market prices are set every 5 minutes

by matching the demand for electricity with the cheapest possible combination of

electricity from the available power stations, which have their own individual price

schedules. Different magnitudes of electricity production cost varying amounts at

each station. Prices are determined by supply and demand. Primary factors deter-

mining electricity demand in New South Wales are season, weather, and time of day.

The principle factor determining electricity supply is the number of on-line genera-

tors. Generally, electricity prices are subject to recurring variation in the form of

seasons and day of the week, and short-term variation due to events such as weather

fluctuations. The dataset begins when the market was first privatized, so it is ex-

pected that the suppliers become more sophisticated as they learn the intricacies of

the market. Furthermore, on a specific date, the New South Wales market is linked to

a neighbouring Australian state, which moderated supply. Another unexpected dis-

ruption occurred when that link was suddenly severed for a short time. All of these

details indicate that the electricity domain is a useful streaming domain, where new

data is constantly generated, and the underlying distribution affecting prices changes

both gradually and swiftly over time.

Though the NSWED dataset is commonly used in streaming data domains, it may

83

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

have some problems [8, 100]. Particularly, it is possible to construct a näıve classifier

that classifies an instance according to the previous instance, which performs well.

This is called a No-Change classifier. If price is falling right now, it is likely it will be

falling in the next half hour. If price is rising right now, it is likely it will be rising in

the next half hour. If the data was distributed uniformly (without consideration to

time), the No-Change classifier would achieve an accuracy of about 51%. As the data

stands, it achieves an accuracy of 85%. If a classifier is unable to achieve an accuracy

of at least 85%, it should not be considered competitive. Further, if it can only achieve

comparable accuracy, the classifier may simply be modelling temporal dependence.

Classifiers should be compared to how well they perform on a per-instance basis with

the No-Change classifier, to see if their behaviour is significantly different than such

a näıve classifier.

6.1.3 Concept Drift

Concept drift is when changes in context induce changes in the target concept [94].

Considering electricity price datasets, concept drift occurs when the price of electricity

changes due to some external factor. Concept drift is what makes streaming problems

difficult; if the underlying data model never changes, we could just train a model

based on all our existing data, and it would predict the outcomes of unseen data well

enough. However, unpredictable changes in context may occur which will alter the

price, in ways existing data could not be used to predict. An effective learner needs

to be able to distinguish when concept drift is occurring. Furthermore, some concept

drift may actually occur with regularity, such as seasonal demands on the electrical

grid. An ideal learner should be able to adapt quickly, be resistant to noise, and treat

reoccurring contexts [83].

84

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

Changes in data context can occur in different forms, relating to the rate of change

in the underlying distribution [27]. Sudden concept shift is essentially an abrupt shift

from one context to another [86, 98]. In the NSWED dataset, that may be represen-

ted by the connection of the Victoria electrical grid to the New South Wales grid.

Incremental drift describes a slow change in context, a small amount in one direction

at each time interval. For electrical grids, that may represent a change in weather.

Gradual concept drift described a more oscillating change in context, where the next

context is phased in a more discrete pattern than incremental drift. Reoccurring

concept drift described a pattern of context shifting back and forth. Finally, all these

types of concept drift must separate from outliers, where the underlying distribution

of the data has not changed, but may appear as if it has.

There are many mechanisms to help compensate for concept drift, and Gama et

al. [27] propose a thorough taxonomy based on memory, change detection, learning

methods, and loss estimation. Briefly, memory is the consideration of which data

instances to save and which to forget, change detection is how we notice when con-

cept drift is occurring, learning methods involve how we may best generalize the data

considering concept drift, and loss estimation is how to accurately define how well

the model is performing considering concept drift. Older instances may be unhelpful

if they no longer represent the new distribution of data, though if concept drift is

recurring, some should be preserved. Identifying what type of concept drift is occur-

ring, if any, will inform decisions in the other taxonomies. Learning methods consider

how to adapt the model when facing concept drift and maintain multiple models to

make a combined prediction (ensemble learning). Loss estimation is altered when

concept drift occurs, since the environmental feedback may no longer be valid (if we

are unable to use true data labels).

Tsymbal [83] proposes there are three fundamental approaches to deal with con-

85

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

cept drift: instance weighting, instance selection, and ensemble learning. In instance

weighting, older instances are given more or less significance according to their age,

favouring newer instances. In GP, this can be done by according more fitness to ne-

wer instances. Instances may also be weighed according to their estimated predictive

value of the current concept if concept drift is explicitly detected. In instance se-

lection, only relevant instances are used in training, where the methods are designed

to identify relevant instances. Ensemble learners maintain multiple concept descrip-

tions through multiple models, using weighted voting to determine which concept is

most relevant.

6.1.4 Prequential Accuracy

There is an issue in determining the accuracy of a model using streaming data, in

comparison to static data. We demand that the model predict incoming, unseen in-

stances. In static domains, we can simply remove some portion of the data, using that

removed portion for testing (unseen), with the rest used for training (seen). Since

all data comes from one underlying distribution, if we simply remove instances in a

uniformly random way, both training and testing data will represent approximately

the same distribution. The testing error is an unbiased estimator of the true error.

In streaming domains, we cannot partition the data in this way, as the underlying

distribution of new instances may differ from prior instances, due to concept drift.

The testing error in streaming domains using this method, the holdout method, is

a biased estimator [27]. In streaming domains, we are primarily interested in pre-

dicting the labels of new instances. As such, it would be useful to define accuracy in

terms of performance of the model on only the newest instances. Predictive sequen-

tial (or prequential) accuracy [15] is a widely used performance metric for streaming

86

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

domains [86]. Each instance is first used in testing (besides some initial training in-

stances), which evaluates the effectiveness of the model, and then is incorporated into

the training data. Data is evaluated as it is collected. However, keeping all previous

data available as training data might blunt the properties of newer instances. If con-

cept drift has occurred, are not newer instances preferable for training? The sheer

volume of prior instances means that newer instances have less bearing on the develo-

ped model, and this only increases as more instances are collected. Fading factors and

forgetting are advantageous, as they increase the impact of newer instances [26, 51].

One such method, sliding windows, is discussed in Subsection 6.1.6. Prequential error

is simply one minus the prequential accuracy.

6.1.5 Kappa Plus Statistic

Streaming data can have high temporal dependence such that a good predictor of

an instance’s label is the label of the previous instance. This is true in the NSWED

domain; this No-Change in label predictor has 85.3% accuracy. A model that performs

worse than a No-Change classifier is not very interesting. A useful way to compare

models with the No-Change classifier is the Kappa Plus statistic [8]. The Kappa

statistic [14] is a useful way of comparing models that have imbalanced classes, in that

it compares the accuracy of a model to one that assigns classes randomly according

to the probability of any one instance belonging to a class. It is easy to build a model

that has a high accuracy when your dataset has a severe class imbalance; just always

predict the class that occurs the most, ignoring all other information. A classifier

that predicts class according to the frequency which it appears in the dataset is

called a Chance classifier. The Kappa statistic can demonstrate that high accuracy

is misleading. The Kappa statistic is given by:

87

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

κ =
a0 − ac
1− ac

, (6.1)

where a0 is the model’s accuracy, and ac is the Chance classifier’s accuracy. This is

adapted to the Kappa Plus statistic as follows:

κ+ =
a0 − anc
1− anc

, (6.2)

where a0 is the model’s accuracy, and anc is the No-Change classifier’s accuracy. A

model that only performs as well as the No-Change classifier will have a κ+ value of

0. One that performs worse will have a κ+ value of less than 0, and one that is better

will have a κ+ value greater than 0. A perfect classifier will have a κ+ value of 1.

6.1.6 Sliding Windows

Sliding windows is a data management technique used for streaming data. Simulating

streaming is necessary for the electricity dataset; the entire dataset is provided at

once, though in practice, instances are only generated every 30 minutes. We could

arbitrarily train a model on the whole dataset, and treat the domain as if it were

static. This would not generate a useful model, and the model methodology could

not be generalized to practical streaming problems. Instead, we treat the data as if it

is incoming through a stream, small portions at a time. Sliding windows denote which

data instances are visible. At initialization, only the first few instances are used to

train a model. The window of available instances “slides” along future data, allowing

new data to be used in training, while older instances “slide” out of consideration.

In GP, the window may slide each generation, or be allowed multiple generations

to evolve before sliding. The sliding window may overlap with previous windows or

88

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

contain only new instances. They may be of static size, or adaptive sizes [7]. They may

be combined with archiving policies, to track older instances that have been deemed

useful, though they may no longer belong in the sliding window. Larger sliding

windows require more computation and may lose sensitivity to recognize concept

drift. Too many older instances blunt the predictive power of fewer newer instances.

Smaller sliding windows may be too sensitive, attempting to adapt to a new concept

where no concept change has occurred, just noise or outliers.

6.1.7 Label Costs

Labelling instances can have cost. For static domains, all the necessary labelling may

have done already, though strategies exist to make the most out of existing labels. For

streaming domains, it may take extra computational (or human) resources to label

fresh instances. Active learning systems attempt to overcome label costs by working

directly with human operators to label as few instances as possible [75]. Vahdat et

al. [86] explicitly address the label budget issue as it pertains to streaming problems,

using a stochastic querying scheme. A subset of each sliding window is sampled and

labelled, which replace old instances according to an archiving policy. Archiving keeps

a limited number of older instances according to diversity and age. Label costs for

the NSWED domain are small, as human intervention is not required to calculate

average electrical grid prices. Further, it could be calculated inexpensively, at the

end of each demand period.

6.1.8 Electricity Domain Related Results

Bifet et. al conducted a survey of the literature, and found that only six of the sixteen

reported accuracies were greater than that of the No-Change classifier. None of those

89

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

used GP. The best performer using the entire dataset at that time was 88.5%, by an

ensemble classifier called Learn++.CDS [18]. Vahdat [86] use of a GP variant with

label budgets and achieve accuracy of about 60%. Castelli et al. [11] use of GP to

forecast electricity demand. Instead of the NSWED domain, they used a comparable

domain, electricity demand in Italy during summer months. It performed better than

artificial neural networks (ANNs) or a comparable ensemble classifier.

6.2 Experiments

Streaming domains bring their own challenges, but also an opportunity. Maintaining

an evolvable population might improve the populations’ ability to adapt to concept

drift. We have demonstrated in Chapter 5 that both sample-evolvability genetic

programming (SEGP) and model-evolvability genetic programming (MEGP) can be

effective in a static domain. Accuracy was increased with only modest increases in

time complexity. We conduct these experiments to show that MEGP can be effective

in a real-world domain. Evolvability lends itself to concept drift; a more adaptable

population should be able to reduce error that is incurred when concept drift occurs.

However, streaming domains are necessarily more dependent on low computational

complexity; the speed at which data arrives may be so swift that there are not enough

computational cycles to devote to evolvability sampling. Modelling becomes more im-

portant, to realize time gains. First, we must show that SEGP can be effective in

the electricity domain, even if it requires too much extra time to realize the accuracy

gains. Previous experiments, in the OrderTree (OT) domain, identified some sugge-

sted evolutionary parameters. The nature of streaming data requires some additional

analysis, however. The most appropriate evolvability selection parameters indicated

for the OT domain were very strong evolvability selection initially, interleaved, and

90

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

gradually decaying evolvability selection. Interleaved and decaying evolvability may

not be appropriate when concept drift occurs. Maintaining an evolvable population,

that may adapt quickly, should be preferable. The first experiments here investi-

gate under what evolvability pressures can sampling evolvability thrive. Then, we

show that MEGP can be comparably effective, but with a considerable reduction in

computational complexity. The experiments, their supporting figures and results are

summarized in Table 6.2.

6.2.1 Best Use of Previous Parameters

First, we examine the effectiveness of the previous best evolvability selection parame-

ters, as determined by top performers in the OT domain. We define some basic GP

parameters in Table 6.3. The increased complexity of the Electricity domain compa-

red to higher OT problems translates to some higher-demand parameters: population

size, tournament size, and maximum depth are all increased to ensure that a solution

can be evolved, though it adds to computational complexity.

We conduct 100 runs of 200 generations, where each run uses its own random

seed. We use an overlapping window size of 100, sliding 20 instances each generation.

The baseline consists of SGP, with no evolvability selection, sampling, or prediction

thereof. The top-performing sampling selection uses mutation positive-probability

evolvability, with an evolvability weight of 400 decaying to 0 by the 200th generation,

with interleaved evolvability selection for 5 generations after 5 generations without

evolvability selection. The top-performing model selection uses the same, with the

ANN training epochs limited to 100, with a cut-off error of 0.01. 100 evolvability

samples are used.

We compare results using fitness, prequential accuracy, computational time, and

91

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

Table 6.2: Summary of NSWED experimental results.

Figures Parameters Purpose Results
6.1-6.4 Evolvability

weight,
evolvabi-
lity cycling
generations

Evaluate SEGP and
MEGP using the
previous best per-
forming parameters

The previous best performing
parameters are outperformed
by SGP. Evolvability cycling
is inappropriate for a dynamic
problem.

6.5-6.7 Evolvability
weight,
magnitude
evolvability,
crossover
evolvability

Evaluate different
evolvability me-
trics with SEGP,
evaluate required
number of samples

Outgoing-crossover magnitude
evolvability is able to produce
better results than SGP.

6.8-6.12 Evolvability
weight,
magnitude
evolvability,
crossover
evolvability

Evaluate if evolva-
bility selection is
better than noisy
selection.

SEGP and SGP both outper-
form noise. SEGP consistently
scores higher than a 0 Kappa+
where SGP fails.

6.13,
6.14

Evolvability
weight,
magnitude
evolvability,
crossover
evolvability

Evaluate required
number of samples
to build an effective
model and requi-
red ANN training
parameters

MEGP benefits from more
evolvability samples, ANNs do
not require much time to build
a good model.

6.15-
6.18

Evolvability
weight,
magnitude
evolvability,
crossover
evolvability

Evaluate SEGP
and MEGP with
the best known
performers.

MEGP is still able to produce
results comparable to SEGP,
requiring only a fixed time in-
crease to build a good initial
model.

92

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

Table 6.3: GP evolutionary parameters for the electricity domain.

Parameter Value
Population Size 120
Crossover Probability 0.9
Tournament Size 6
Probability of Non-Terminal Crossover 0.9
Min Initial Depth 3
Standard Mutation Probability 0.1
Max Initial Depth 6
Mutation Max Regen Depth 2
Max Depth 10
Swap Mutation Probability 0.1
Initial Grow Probability 0.5
Probability to Mutate a Function Node 0.5

0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Average Best Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
Best OT8 SEGP Evolvability Parameters
Best OT8 MEGP Evolvability Parameters

Figure 6.1: Fitness over generation comparing SGP, SEGP, and MEGP on the Elec-
tricity problem using the best evolvability selection parameter performers of the OT
problem. Neither perform as well as SGP. MEGP causes less difference than SEGP.
Confidence intervals of 95% as determined by the Student’s t-distribution are shown.

93

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Average Prequential Error per Generation

Generation

P
re

qu
en

tia
l E

rr
or

SGP
Best OT8 SEGP Evolvability Parameters
Best OT8 MEGP Evolvability Parameters

Figure 6.2: Prequential error over generation comparing SGP, SEGP, and MEGP on
the Electricity problem using the best evolvability selection parameter performers of
the OT problem. Prequential error follows the pattern of fitness for SGP, SEGP, and
MEGP.

94

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

0 50 100 150 200

0
50

00
10

00
0

15
00

0

Average Time per Generation

Generation

S
ec

on
ds

SGP
Best OT8 SEGP Evolvability Parameters
Best OT8 MEGP Evolvability Parameters

Figure 6.3: Cumulative time over generation comparing SGP, SEGP, and MEGP on
the Electricity problem using the best evolvability selection parameter performers of
the OT problem. SEGP requires considerably more time to complete than either SGP
or MEGP. MEGP’s additional time mostly comes from the first few generations, where
sampling occurs to generate labelled training instances. Additional time is required on
retraining periods. MEGP has periods of increased time usage on retraining periods.

95

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

0 50 100 150 200

-8
-6

-4
-2

0

Kappa+ over Generation for Best OT Performers

Generation

K
ap

pa
+

SGP
Best OT8 SEGP Evolvability Parameters
Best OT8 MEGP Evolvability Parameters

Figure 6.4: Kappa+ over generation comparing SGP, SEGP, and MEGP on the Elec-
tricity problem using the best evolvability selection parameter performers of the OT
problem. A Kappa+ of 0 denotes the performance of the näıve No-Change classifier.
SGP does not outperform the NCC. SEGP and MEGP do not outperform the NCC
with these evolvability selection parameters.

96

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

Kappa+. We see in the fitness comparison, shown in Figure 6.1, that the top per-

formers in the OT domain are not adequate for a dynamic domain. They cannot

maintain fitness as well as the baseline and do not gradually overcome it by having a

more evolvable population. Efforts as in the OT domain are insufficient to maintain

the benefits of evolvability selection when facing a moving fitness target and concept

drift. The best performers in static domains tended to focus on heavy diversity and

evolvability in the first few generations. Ensuring an evolvable, diverse early popu-

lation had long-term consequences, eventually allowing more those populations to

outperform more fitness-focused populations. Though some interleaved evolvability

selection was also helpful, dynamic domains should require more constant pressure to

deal with the constantly shifting fitness targets. The model outperforms the sampling,

as for the current settings sampling itself is detrimental, and modelling is simply less

so.

Comparing prequential error in Figure 6.2, we see that prequential error fairly

closely follows fitness trends. Evolvability selection on its own was not enough to

improve prequential accuracy. We may have hoped that even without ideal evolva-

bility selection, that prequential accuracy would improve, as evolvability selection

should induce a more generalizable population, which may perform better on unseen

instances. That does not seem to be the case. This indicates that a further pivot

is necessary to ensure that a more evolvable population is maintained. Prequential

error is the error on the successive generation’s sliding window.

We see in Figure 6.3 that under the new domain, there are considerable time gains

to be made by using modelling instead of sampling. OT problems still required many

more fitness evaluations the more sampling occurred, but fitness evaluation was not

especially calculation intensive compared to all the other operations that occur, and

especially did not suffer too significantly compared to modelling due to the additional

97

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

overhead required to build and maintain evolvability models. The results highlight

the value in MEGP over SEGP.

We see in Figure 6.4 how well the baseline and best previous performers compare

to the No-Change classifier, using prequential accuracy. Recall that a method is better

than the No-Change classifier when Kappa+ is greater than 0. We see that even SGP

can perform better than that näıve classifier under most generations. It does not

perform very well early on, and still has trouble dealing with some generations when

concept drift occurs. However, its performance suggests GP is capable of handling

the electricity domain.

6.2.2 Sampling

We have determined that changes in the use of evolvability selection are necessary for

the streaming domain. Considering the challenges posed by concept drift, we must

use evolvability in different ways in order to produce useful results. Many different

methods of selecting for evolvability, measuring evolvability, and altering training

methods were employed to search for better results. We shall briefly describe the

failures, then describe the successful methods in more detail. Many alterations of

evolvability selection, including weights, decay, and evolvability selection cut-off ge-

nerations were employed, with no success. Rates of mutation were increased, hoping

the population would adapt more quickly, and higher mutation evolvability would be

more significant. Alternative methods of selecting the fittest individual, for the pur-

poses of selecting one for prequential accuracy, were proposed. These considered that

the most generalizable individuals were not accounted for with fitness, and different

evolvability rates could predict an individual that would perform better on unseen

future instances. We also attempted increasing the number of evolvability samples, to

98

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

ensure no uncertainty could be responsible for the worse performance. A method of

using evolvability for selection a random amount of the time was introduced, hoping

for a more even mixture of fitness-only and evolvability selection, without needing

interleaving generations, which would be problematic with streaming problems, also

met no success. Particular problems seem to be centred about the sliding window;

these early unsuccessful results were attempted with variously sized sliding windows,

but none of them ever used overlapping instances. Each sliding window had entirely

unseen instances, and older instances had no value. This proved to be too unstable

for GP, even when evolvability is used. Success was found only once more generous

overlapping of sliding window instances was allowed.

Success in selecting for evolvability in the electricity domain is possible. For the

following experiments, we use the GP evolutionary parameters as specified in Ta-

ble 6.3. Further, we conduct 100 runs of 200 generations, where each run uses its

own random seed. We use an overlapping window size of 100, sliding 20 instances

each generation. The baseline consists of SGP. To achieve more balanced results in

streaming domains, interleaved evolvability selection is dropped in favour of more

consistent pressure. Greater differentiation between individuals’ evolvability score

is achieved by switching from positive-probability evolvability (PPE) to magnitude

evolvability (ME). Mutation evolvability is switched to outgoing-crossover evolvabi-

lity. An individual that causes high magnitude fitness improvements in others in the

population is favoured. Cross-over operations occur more frequently than mutation

operations and are dependent upon the rest of the population to calculate. Crossing

into high-fitness individuals would more likely result in a worse outgoing evolvability

score, meaning it may be difficult to detect highly evolvable individuals when the

population has converged to a high fitness.

Firstly, we compare PPE with ME, using 100 samples and an evolvability weight

99

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Average Prequential Error per Generation

Generation

P
re

qu
en

tia
l E

rr
or

SGP
SEGP PPE
SEGP ME

Figure 6.5: Prequential error over generation comparing SGP and SEGP on the
Electricity problem using ME or PPE. PPE causes an increase in prequential error.
ME causes a decrease in prequential error and fairly consistently outperforms SGP.
ME does particularly well during generations where a large increase in error occurs.

100

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

of 10, with no other additional selection methods. As we see by their prequential

error in Figure 6.5, the PPE method performs more poorly than SGP. However,

using ME to influence selection produces results that are better than SGP in most

generations. Note that SEGP using PPE performs better than SGP by about a

set amount, following the general shape of the prequential error curves. However,

it adds significantly more stability for the poorly performing generations. Where

SGP has error rates that form mountains, ME selection forms hills. ME actually

performs worse on generations where SGP performs exceedingly well. Ultimately, this

is indicative of the greater stability that using evolvability offers. The opposite occurs

when PPE is used. It is not producing a more evolvable population, despite selecting

for a form of evolvability. The population is less tolerant of concept drift than SGP.

Simply identifying when evolvability increases does not carry enough information,

especially when individuals are most likely to change for the worse. Measuring the

magnitude can capture that information; though it may be more difficult to measure

accurately, it is a marked improvement in these circumstances.

Next, using strictly ME, we compare the effects of increasing the evolvability

weight. In Figure 6.6, we see that at low magnitudes, the weight does not make much

difference. Even at low magnitudes, prequential error is stabilized. In Figure 6.7,

increasing the evolvability weight further, we see that the best performer is an evol-

vability weight of 100. It is not much better than the others, but there is a definite

pattern of increasing results up to an evolvability weight 100 and then declining the-

reafter. That the results are so similar may suggest that evolvability magnitudes

differences between individuals dwarf fitness differences.

The large number of samples required in these experiments has added considerable

computational time, relative to the OT domain. We test if we can maintain these

results with fewer samples, with a constant evolvability weight of 1000, to magnify any

101

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Average Prequential Error per Generation

Generation

P
re

qu
en

tia
l E

rr
or

SGP
SEGP p1
SEGP p5
SEGP p10

Figure 6.6: Prequential error over generation comparing SGP and SEGP on the
Electricity problem, using various evolvability weights. The number following “p”
indicates the value of p. For streaming problems, we do not use an evolvability
ceasing generation parameter, so “g” is omitted. We use ME and outgoing crossover
evolvability. Each SEGP is able to outperform SGP. At low values, the evolvability
weight does not cause much difference.

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Average Prequential Error per Generation

Generation

P
re

qu
en

tia
l E

rr
or

SGP
SEGP p100
SEGP p200
SEGP p1000

Figure 6.7: Prequential error over generation comparing SGP and SEGP on the
Electricity problem, using various evolvability weights. A p value of 100 provides the
best performance. The larger values are all able to outperform SGP, and the lower p
values shown in Figure 6.6.

102

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Average Prequential Error per Generation

Generation

P
re

qu
en

tia
l E

rr
or

SGP
SEGP s5
SEGP s10
SEGP s100

Figure 6.8: Prequential error over generation comparing SGP and SEGP on the
Electricity problem, using various numbers of evolvability samples. There is not
much difference with more samples beyond 10. Five samples is not different enough
from SGP; in particular, it does not resist intervals of higher error as well as more
samples.

103

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Average Best Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
SEGP
Noise

Figure 6.9: Fitness over generation comparing SGP and SEGP on the Electricity
problem, using the best performing SEGP parameters and its noise counterpart. Noise
is implemented by using the same parameters as SEGP, but instead of sampling for
evolvability, we select a uniformly random value for evolvability. Noise performs
slightly worse than SGP, and SEGP outperforms both for fitness.

104

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Average Prequential Error per Generation

Generation

P
re

qu
en

tia
l E

rr
or

SGP
SEGP
Noise

Figure 6.10: Prequential error over generation comparing SGP and SEGP on the
Electricity problem, using the best performing SEGP parameters and its noise coun-
terpart. SEGP outperforms both for prequential accuracy.

105

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

0 50 100 150 200

0e
+
00

4e
+
04

8e
+
04

Average Time per Generation

Generation

S
ec
on
ds

SGP
SEGP
Noise

Figure 6.11: Cumulative time over generation comparing SGP and SEGP on the
Electricity problem, using the best performing SEGP parameters and its noise coun-
terpart. SGP and noise are indistinguishable. The best prequential performer of
SEGP requires about 65.6 times the amount of computational time that SGP does,
though the effect is not quite linear.

106

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

0 50 100 150 200

-8
-6

-4
-2

0

Kappa+ over Generation for Best Sample Performer

Generation

K
ap
pa
+

SGP
SEGP
Noise

Figure 6.12: Kappa+ over generation comparing SGP and SEGP on the Electri-
city problem, using the best performing SEGP parameters and its noise counterpart.
SEGP is much more consistently able to overcome the No-Change classifier than SGP.
Past the initial evolution and training generations, SEGP only fails in two intervals,
opposed to SGP, which fails in seven.

107

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

differences in SEGP. In Figure 6.8, we see that more samples does indeed produce

better results. However, the extra computational time required becomes onerous,

compared to the results.

The best SEGP result is obtained using 100 samples, outgoing-crossover-magnitude

evolvability, weighted constantly against fitness by 100 times its natural amount. For

further comparison, we introduce a noise method. The noise method functions use

evolvability selection as the proposed system does; however, whenever evolvability is

used in the selection process, a uniformly random value for it is generated in the [0, 1]

range. This comparison shows that merely introducing noise to selection does not

have the beneficial effect that sampling for evolvability does. We see in Figure 6.9

that its fitness is better than SGP on average. It achieves similar poor results on the

first few generations and then weathers changes in concept better than SGP. This

demonstrates that the noise method performs worse in fitness than SGP.

In Figure 6.10 we see that prequential error once more performs quite similarly to

fitness. The noise method is little steadier with SGP. Use of evolvability is lending an

general improvement in prequential accuracy, and particularly, is providing a stable

foundation for when concept drift occurs.

In Figure 6.11, we see the detriments of sampling evolvability. It requires conside-

rably more time in order to generate the superior model by selecting for evolvability.

SGP is about 65.6 times faster than sampling for evolvability 100 times. We have

seen in the number of samples experiments that a trade-off exists, where even limited

sampling can produce better results than SGP. Based on this ratio of sampling to per-

formance, we would expect SGP to be about 3.28 faster than 5 sampling evolvability

selection. We seek to improve this aspect and reduce the trade-off, in the proceeding

subsection, when MEGP is introduced.

In Figure 6.12, we see that evolvability selection is able to improve upon SGP, and

108

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

achieve much more stable gains over the No-Change classifier, only performing worse

for 2 concept changes after the initial evolutionary period. This is opposed to SGP,

which underperforms the No-Change classifier an additional 5 periods. This clearly

indicates the viability of evolvability selection in streaming domains. The increased

stability is evident in the gentler slopes of the curve. The comparison with a noise

method shows that this is due to evolvability selection. Exceeding the No-Change

classifier shows that it performs comparably well with the state-of-the-art machine

learning methods in the NSWED domain.

6.2.3 Modelling

We determined sufficiently helpful evolvability selection settings in the preceding

section, considering SEGP. We now conduct experiments to improve upon those re-

sults, in the manner of computational time relative to SGP. We move to replace SEGP

with MEGP, as much as possible, to realize time gains while keeping as much as ne-

cessary to keep accuracy gains. First, we examine how many samples are necessary

for these conditions to maintain an effective model.

We see in Figure 6.13 that we can generate models that outperform SGP fairly

easily, even trying to calculate outgoing-crossover-magnitude evolvability. ME poses

additional challenges relative to PPE, given that outliers have a more significant

effect on magnitude. Crossover also poses additional challenges, since it necessarily

depends on the condition of the rest of the population, which are not considered

in the evolvability ANN model. These factors increase the difficulty of modelling

evolvability and thus increase the error. We further see that additional samples do

not increase performance greatly relative to the additional computations that such

sampling requires. However, the additional sampling required to generate a good

109

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Average Prequential Error per Generation

Generation

P
re

qu
en

tia
l E

rr
or

SGP
MEGP s5
MEGP s10
MEGP s100
MEGP s1000

Figure 6.13: Prequential error over generation comparing SGP and MEGP on the
Electricity problem, using various numbers of evolvability samples. More samples
yields better performance. The effect is not linear, as many more samples are required
to achieve incremental gains.

110

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Average Prequential Error per Generation

Generation

P
re

qu
en

tia
l E

rr
or

SGP
MEGP ANNv1
MEGP ANN v2

Figure 6.14: Prequential error over generation comparing SGP and MEGP on the
Electricity problem, using various ANN parameters, with modelling. Allowing more
training epochs does not make the ANN perform better enough such that it decreases
prequential error.

model is an early fixed time cost. In a streaming problem, our evolvability model

will persist, and as long as it performs adequately, it do not require much additional

time to use. Devoting additional resources to train a model with some set instances

is reasonable, as the recurring costs while new streaming instances are generated is

very low compared to sampling all new instances. It may still be valuable to devote

extra time to have more accurate sampling if this leads to a better model. While each

performs quite similarly, there is a trend that more samples lead to more concept drift

resistance.

We attempt fine-tuning some ANN parameters, with little effective difference.

Our original ANN used a maximum of 1000 epochs and an early stopping error of

0.001. Changing these values by orders of magnitude did not alter results significantly.

111

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Average Best Fitness per Generation

Generation

M
in

 F
itn

es
s

SGP
SEGP
MEGP

Figure 6.15: Fitness over generation comparing SGP, SEGP, and MEGP on the Elec-
tricity problem using the best performing evolvability parameters. SEGP performs
the best, MEGP slighty worse, but both outperform SGP.

The ANN predictive results for evolvability did not improve noticeably, nor did the

difference in computational time required to compute more or fewer epochs impact

the total time required by the entire system onerously. In Figure 6.14, we see that

ANN v2 does not perform better than v1, despite allowing 10 times the training

epochs.

The best performing MEGP is similar to SEGP, only it uses 1000 samples to

train. It only trains in the first 20 generations and uses the model to predict evol-

vability for selection purposes from then on. We see in Figure 6.15 that it performs

about as well as sampling when concept drift is weaker. However, it is much less

able to resist concept drift, working about half as well at resisting concept drift as

ongoing sampling does. This is also evident in Figure 6.16. However, the benefits

are an ongoing reduction in computational complexity. In Figure 6.17, we see that

112

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Average Prequential Error per Generation

Generation

P
re

qu
en

tia
l E

rr
or

SGP
SEGP
MEGP

Figure 6.16: Prequential error over generation comparing SGP, SEGP, and MEGP
on the Electricity problem using the best performing evolvability parameters. SEGP
performs the best, MEGP slighty worse, but both outperform SGP.

113

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

0 50 100 150 200

0e
+
00

4e
+
04

8e
+
04

Average Time per Generation

Generation

N
an
os
ec
on
ds

SGP
SEGP
MEGP

Figure 6.17: Cumulative time over generation comparing SGP, SEGP, and MEGP on
the Electricity problem using the best performing evolvability parameters. MEGP
requires the most initial time, to generate good training instances. Once the evolva-
bility model is built, it suddenly plateaus, only requiring as much time as SGP. SEGP
requires additional time throughout. If the initial training generations are treated as
a fixed time cost, as we would in a long-running streaming problem, MEGP is nearly
equivalent to SGP.

114

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

0 50 100 150 200

-8
-6

-4
-2

0

Kappa+ over Generation for Best Performers

Generation

K
ap
pa
+

SGP
SEGP
MEGP

Figure 6.18: Kappa+ over generation comparing SGP, SEGP, and MEGP on the
Electricity problem using the best performing evolvability parameters. MEGP is
much more consistently able to overcome the No-Change classifier than SGP. Past the
initial evolution and training generations, MEGP only fails in two intervals, opposed
to SGP, which fails in seven. This is similar to the SEGP performance.

115

CHAPTER 6. ELECTRICITY DOMAIN EXPERIMENTS

the additional initial samples that build a good model requires a steep time cost,

far outpacing sampling alone. However, once training ends, modelling method time

quickly plateaus, becoming similar to SGP. The benefits over sampling become more

significant the more generations we allow. In streaming problems, the generations

should continue indefinitely. The initial training period becomes more of a fixed cost.

Furthermore, resources may be considered less strained in the initial training period.

We require more judicious use of ongoing resources. Finally, in Figure 6.18 we see

that MEGP is still able to surpass the No-Change classifier in all but the most se-

rious incidents of concept drift. MEGP’s benefits are made clear. MEGP sacrifices

accuracy, compared to SEGP, but at considerable gains in computational complexity,

that is, there is additional initial expense in computational complexity, in return for

a massive reduction in post-training computational complexity.

116

Chapter 7

Conclusion

In conclusion, we designed three genetic programming (GP) systems that each exploit

evolvability to produce more accurate results than standard genetic programming

(SGP) alone. These systems culminated in Model-Evolvability Genetic Programming

(MEGP), which is able to produce more accurate results than SGP without onerous

additional computation time. We empirically investigated the conditions required for

evolvability selection to be useful, and we demonstrated the superiority of evolvability

selection in artificial, real, static, and dynamic domains.

7.1 apEGP

a priori Evolvability Genetic Programming is demonstrated primarily in Chapter 4.

apEGP is shown to have benefits in parity and regression domains. apEGP is de-

signed primarily to show that evolvability in GP can be modelled effectively with

easily generated evolutionary statistics. It is not practical to generate evolvability

models for a problem a priori, as the potential statistical space is large and requires

too many evolvability samples to chart. It presents idealized modelling conditions,

117

CHAPTER 7. CONCLUSION

which demonstrate that modelling evolvability is possible. The experiments further

show that introducing modelled evolvability within the selection process can lead to

improved fitness results. Ultimately, this demonstrates that modelling evolvability

has merits.

7.2 SEGP

Sample-Evolvability Genetic Programming (SEGP) is demonstrated in Chapter 5 and

Chapter 6. SEGP is compared with MEGP to demonstrate how much efficacy is lost

when using modelled evolvability. Since some accuracy is lost in the modelling process,

we first demonstrate that sampled evolvability can be used to produce fitter results.

SEGP provides more idealized conditions than MEGP, to observe selection conditions

without considering model accuracy losses. We use SEGP to consider multiple forms

of evolvability and multiple forms of evolvability selection, in search of fitness gains.

SEGP is able to produce fitter results when using the appropriate amount of evolva-

bility selection. The appropriate amount varies from domain to domain. Strong but

interleaved mutation evolvability selection is most successful in the static domains

of Chapter 4 and Chapter 5, and moderate, constant, outgoing-crossover evolvability

selection is most successful in the dynamic domain of Chapter 6. However, SEGP

requires constant additional computation time to sample for evolvability as long as

evolvability is used in selection. This may be mitigated by only using evolvability in

selection a portion of the time, but the additional time required to evaluate fitness

so many additional times is onerous, especially in dynamic domains.

118

CHAPTER 7. CONCLUSION

7.3 MEGP

The efforts of this thesis culminate in MEGP. With modelling evolvability shown to

be possible, and selection of evolvability shown to be useful, MEGP is deployed to

make evolvability selection practical. MEGP does not require the constant onerous

evolvability sampling that SEGP requires. Instead, the extra computation is mostly

front-loaded, to acquire accurate labels for training instances in the first few gene-

rations. Once the evolvability model is made, it requires little extra computation,

relative to SGP, to predict evolvability. Furthermore, it does not suffer onerously in

fitness performance relative to SEGP. MEGP is able to achieve fitness performance

gains relative to SGP for a modest increase in computational time, which diminishes

with increasing generations. Thus, MEGP is particularly well suited to streaming

problems, such as those of Chapter 6.

7.4 Limitations and Future Work

apEGP, SEGP, and MEGP all rely on sampling evolvability to obtain an estimate for

true evolvability. They will not function if a fairly accurate estimate cannot be obtai-

ned. The number of samples required to achieve a fair evolvability estimate for the

examined problems is low. Problems with a higher fitness variance require more sam-

ples to achieve fair magnitude evolvability (ME) approximation. Positive-probability

evolvability (PPE) can be similarly vulnerable to fitness variance. More samples

translate to more computational complexity. Modelling evolvability, in particular,

requires good evolvability estimates.

We have demonstrated that evolvability can be modelled with easily generated

evolutionary statistics on the examined problems. However, it is possible that these

119

CHAPTER 7. CONCLUSION

statistics are insufficient to model evolvability in all problems. There may be domains

where generation, tree size, function frequency, non-input terminal frequency, input

frequency, dormancy ratio, previous fitness, and fitness do not predict future fitness

reliably. We have restricted ourselves to easily generated statistics, but it may be

that more computationally expensive statistics could be useful enough in evolvability

modelling that it would be worth spending the extra time to generate them. The

generational age of the best performing program may be useful as it indicates how

long the population has been unable to improve upon fitness.

We have restricted ourselves to tree-based GP. It is possible that evolvability

is not easily modelled in other paradigms. We have further restricted ourselves to

mutation and crossover evolvabilities. Crossover evolvability is population dependent,

but evolutionary statistics regarding the population are not used to model evolvability,

only individual statistics are. Modelling crossover evolvability is incomplete without

considering population dynamics, though we have observed that it may be modelled

sufficiently well as to produce fitness improvements.

We have empirically shown that MEGP can produce fitness performance gains,

but we have not described the problem conditions necessary for it to do so. We

conjecture that since the fitness landscape of OrderTree (OT) is structured such that

there are many local minima which are quite disconnected from the global minimum,

evolvability is useful there. We conjecture that since concept shift demands a more

evolvable population to ensure good ongoing fitness that evolvability is useful there.

We have not defined how rugged a fitness landscape must be, nor defined how much

a fitness landscape much shift, for evolvability to be useful. The impact of diversity

and evolvability along fitness landscapes could be used to characterize problems where

evolvability is useful. There are many potential dynamic domains where evolvability

could be useful, due to the ubiquity of streaming data.

120

CHAPTER 7. CONCLUSION

SEGP and MEGP are able to achieve efficacy gains relative to SGP but at a cost of

computational time. MEGP reduces the computational cost considerably, relative to

SEGP. If additional computational time is not problematic, and efficacy is favoured,

SEGP is favoured. However, computational time may be limited. Particularly, if

a rapid response to new data is required, MEGP offers benefits for minimal loss

in efficacy. Problems, where computational limits or accuracy demands are known,

could benefit from a more flexible system, one that could adapt to sample evolvability

more or less, as required. Such a system would be useful in a long-running dynamic

domain. The balance between efficacy and efficiency are problem dependent, such

that it may be difficult to decide a general balance between the two.

Simulated annealing schedule optimization is well researched and is analogous to

varying the strength of evolvability selection. Further investigation into simulated an-

nealing schedule optimization may yield insights into the ideal timing of evolvability

selection. This work has mainly focused on stronger evolvability pressure in earlier

generations, or consistent pressure for dynamic domains. The optimal evolvability

pressure may be more complex. Pareto selection indicates there may be more com-

plexity to optimal evolvability selection. Optimal selection may involve non-linear

combinations of fitness and evolvability.

A more evolvable population may have benefits when searching for solutions for

similar tasks. Evolvable populations may be useful as initial populations, replacing

random initial populations. We have focused on using evolvability to improve fitness

within single tasks, but there may be fitness gains in using evolvable populations for

similar tasks. Evolvability selection is beneficial for dynamic domains which indicates

that evolvability selection helps a population adjust to new problem distributions.

Models were developed both a priori and parallel to evolution. The success of

apEGP indicates that evolvability models are portable within a single task. It is

121

CHAPTER 7. CONCLUSION

possible that evolvability models may be portable between similar or even dissimilar

tasks. Reusing evolvability models would produce computational complexity gains.

7.5 Concluding Remarks

In conclusion, we have demonstrated the necessary amount of evolvability sampling

to generate a sufficiently accurate calculation of evolvability. We have further de-

monstrated how evolvability may be used to modify the standard fitness function, in

order to encourage the selection of evolvable individuals, and how this may generate

an overall increase in standard fitness. We have demonstrated how many instances

and samples are required to build a sufficiently accurate model of evolvability, in order

to predict it to guide selection. Finally, we have shown that modelling evolvability

and using it in selection allows for a similar improvement in overall fitness than simply

sampling for evolvability. The additional number of evaluations required to sample

evolvability to guide selection is prohibitive. The extra computational time required

to predict evolvability using an external program is prohibitively computationally ex-

pensive, as well. Furthermore, its use is limited in these experiments by gathering

training instances a priori. However, the results demonstrate that predicting evolva-

bility from relatively few training instances with a relatively small number of samples

still leads to improved fitness. This indicates the viability of modelling evolvability

in order to improve GP.

122

Bibliography

[1] L. Altenberg. Advances in Genetic Programming. Chapter 3, The evolution of
evolvability in genetic programming. pages 47–74. MIT Press, 1994.

[2] L. Altenberg. Evolvability and robustness in artificial evolving systems: Three
perturbations. Genetic Programming and Evolvable Machines, 15(3):275–280,
2014.

[3] W. Banzhaf. Genetic Programming and Emergence. Genetic Programming and
Evolvable Machines, 15(1):63–73, 2013.

[4] W. Banzhaf, G. Beslon, S. Christensen, J. A. Foster, F. Képès, V. Lefort, J. F.
Miller, M. Radman, and J. J. Ramsden. Guidelines: From artificial evolu-
tion to computational evolution: A research agenda. Nature Reviews Genetics,
7(9):729, 2006.

[5] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Programming:
An Introduction. Morgan Kaufmann San Francisco, 1998.

[6] J. K. Bassett, M. Coletti, and K. A. De Jong. The relationship between evolva-
bility and bloat. In Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation, pages 1899–1900. ACM, 2009.

[7] A. Bifet and R. Gavalda. Learning from time-changing data with adaptive
windowing. In Proceedings of the 2007 SIAM International Conference on Data
Mining, pages 443–448. SIAM, 2007.

[8] A. Bifet, J. Read, I. Žliobaitė, B. Pfahringer, and G. Holmes. Pitfalls in ben-
chmarking data stream classification and how to avoid them. In Proceedings of
the Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 465–479. Springer, 2013.

[9] E. K. Burke, S. Gustafson, and G. Kendall. Diversity in genetic programming:
An analysis of measures and correlation with fitness. IEEE Transactions on
Evolutionary Computation, 8(1):47–62, 2004.

123

BIBLIOGRAPHY

[10] E. Byvatov, U. Fechner, J. Sadowski, and G. Schneider. Comparison of support
vector machine and artificial neural network systems for drug/nondrug classifi-
cation. Journal of Chemical Information and Computer Sciences, 43(6):1882–
1889, 2003.

[11] M. Castelli, M. De Felice, L. Manzoni, and L. Vanneschi. Electricity demand
modelling with genetic programming. In Proceedings of the Portuguese Confe-
rence on Artificial Intelligence, pages 213–225. Springer, 2015.

[12] C. P. Chen and C.-Y. Zhang. Data-intensive applications, challenges, techniques
and technologies: A survey on big data. Information Sciences, 275:314–347,
2014.

[13] P. Chongstitvatana. Improving robustness of robot programs generated by ge-
netic programming for dynamic environments. In Proceedings of the 1998 IEEE
Asia-Pacific Conference on Circuits and Systems, pages 523–526. IEEE, 1998.

[14] J. Cohen. A coefficient of agreement for nominal scales. Educational and Psy-
chological Measurement, 20(1):37–46, 1960.

[15] A. P. Dawid. Present position and potential developments: Some personal
views: Statistical theory: The prequential approach. Journal of the Royal
Statistical Society. Series A (General), 147(2):278–292, 1984.

[16] E. D. De Jong and J. B. Pollack. Multi-objective methods for tree size control.
Genetic Programming and Evolvable Machines, 4(3):211–233, 2003.

[17] I. Dempsey, M. O’Neill, and A. Brabazon. Foundations in Grammatical Evolu-
tion for Dynamic Environments. Springer, 2009.

[18] G. Ditzler and R. Polikar. Incremental learning of concept drift from streaming
imbalanced data. IEEE Transactions on Knowledge and Data Engineering,
25(10):2283–2301, 2013.

[19] T. Flatt. The evolutionary genetics of canalization. The Quarterly Review of
Biology, 80(3):287–316, 2005.

[20] B. Fowler and W. Banzhaf. Modelling evolvability in genetic programming. In
European Conference on Genetic Programming, pages 215–229. Springer, 2016.

[21] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers.
Machine Learning, 29(2-3):131–163, 1997.

[22] M. M. Gaber. Advances in data stream mining. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 2(1):79–85, 2012.

124

BIBLIOGRAPHY

[23] C. Gagné and M. Parizeau. Genericity in evolutionary computation software
tools: Principles and case study. International Journal on Artificial Intelligence
Tools, 15(2):173–194, 2006.

[24] E. Galván-López, J. McDermott, M. ONeill, and A. Brabazon. Defining locality
as a problem difficulty measure in genetic programming. Genetic Programming
and Evolvable Machines, 12(4):365–401, 2011.

[25] E. Galván-López, R. Poli, A. Kattan, M. ONeill, and A. Brabazon. Neutrality
in evolutionary algorithms What do we know? Evolving Systems, 2(3):145–163,
2011.

[26] J. Gama, R. Sebastião, and P. P. Rodrigues. On evaluating stream learning
algorithms. Machine Learning, 90(3):317–346, 2013.

[27] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia. A survey
on concept drift adaptation. ACM Computing Surveys (CSUR), 46(4):44, 2014.

[28] I. Gonçalves and S. Silva. Balancing learning and overfitting in genetic program-
ming with interleaved sampling of training data. In Proceedings of European
Conference on Genetic Programming, pages 73–84. Springer, 2013.

[29] D. Hadka and P. Reed. Borg: An auto-adaptive many-objective evolutionary
computing framework. Evolutionary Computation, 21(2):231–259, 2013.

[30] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten.
The WEKA data mining software: An update. ACM SIGKDD Explorations
Newsletter, 11(1):10–18, 2009.

[31] M. A. Hall. Correlation-based feature selection of discrete and numeric class
machine learning. In Proceedings of 17th International Conference on Machine
Learning, pages 359–366, 2000.

[32] S. Harding, J. F. Miller, and W. Banzhaf. Evolution, development and learning
using self-modifying cartesian genetic programming. In Proceedings of the 11th
Annual Conference on Genetic and Evolutionary Computation, pages 699–706.
ACM, 2009.

[33] M. Harries. Splice-2 comparative evaluation: Electricity pricing. Technical
report, University of New South Wales, 1999.

[34] J. Heaton. Encog: Library of interchangeable machine learning models for Java
and C#. Journal of Machine Learning Research, 16:1243–1247, 2015.

[35] M. I. Heywood. Evolutionary model building under streaming data for classifi-
cation tasks: opportunities and challenges. Genetic Programming and Evolvable
Machines, 16(3):283–326, 2015.

125

BIBLIOGRAPHY

[36] T.-H. Hoang, N. X. Hoai, N. T. Hien, R. I. McKay, and D. Essam. ORDER-
TREE: a new test problem for genetic programming. In Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation, pages 807–814.
ACM, 2006.

[37] T. Hu and W. Banzhaf. Evolvability and speed of evolutionary algorithms in
light of recent developments in biology. Journal of Artificial Evolution and
Applications, 2010:1, 2010.

[38] T. Hu, W. Banzhaf, and J. H. Moore. Robustness and evolvability of recombi-
nation in linear genetic programming. In Proceedings of European Conference
on Genetic Programming, pages 97–108. Springer, 2013.

[39] T. Hu, J. L. Payne, W. Banzhaf, and J. H. Moore. Evolutionary dynamics
on multiple scales: A quantitative analysis of the interplay between genotype,
phenotype, and fitness in linear genetic programming. Genetic Programming
and Evolvable Machines, 13(3):305–337, 2012.

[40] G. Iuhasz, V. I. Munteanu, and V. Negru. Data mining considerations for
knowledge acquisition in real time strategy games. In Proceedings of the 2013
IEEE 11th International Symposium on Intelligent Systems and Informatics
(SISY), pages 331–336. IEEE, 2013.

[41] D. Jackson. The identification and exploitation of dormancy in genetic pro-
gramming. Genetic Programming and Evolvable Machines, 11(1):89–121, 2009.

[42] H. Jeff. Programming neural networks with Encog3 in Java. Heaton Research,
2011.

[43] T. Jones. Evolutionary algorithms, fitness landscapes and search. PhD thesis,
The University of New Mexico, 1995.

[44] A. Kattan and Y.-S. Ong. Bayesian inference to sustain evolvability in genetic
programming. In Proceedings of the 18th Asia Pacific Symposium on Intelligent
and Evolutionary Systems, volume 1, pages 75–87. Springer, 2015.

[45] J. Kepner, V. Gadepally, P. Michaleas, N. Schear, M. Varia, A. Yerukhimovich,
and R. K. Cunningham. Computing on masked data: A high performance met-
hod for improving big data veracity. In High Performance Extreme Computing
Conference (HPEC), pages 1–6. IEEE, 2014.

[46] S. Khanchi, M. I. Heywood, and A. N. Zincir-Heywood. Properties of a GP
active learning framework for streaming data with class imbalance. In Procee-
dings of the Genetic and Evolutionary Computation Conference, pages 945–952.
ACM, 2017.

126

BIBLIOGRAPHY

[47] S. Khanchi, A. Vahdat, M. I. Heywood, and A. N. Zincir-Heywood. On botnet
detection with genetic programming under streaming data label budgets and
class imbalance. Swarm and Evolutionary Computation, 39:123–140, 2017.

[48] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[49] J. R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, 1992.

[50] J. R. Koza. Human-competitive results produced by genetic programming.
Genetic Programming and Evolvable Machines, 11(3-4):251–284, 2010.

[51] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woźniak. Ensemble
learning for data stream analysis: a survey. Information Fusion, 37:132–156,
2017.

[52] I. Kushchu. Learning, evolution and generalisation. In Proceedings of the 2003
Congress on Evolutionary Computation, volume 4, pages 2441–2448. IEEE,
2003.

[53] D. Laney. 3D data management: Controlling data volume, velocity and variety.
META Group Research Note, 6:70, 2001.

[54] K. Li, S. Kwong, J. Cao, M. Li, J. Zheng, and R. Shen. Achieving balance
between proximity and diversity in multi-objective evolutionary algorithm. In-
formation Sciences, 182(1):220–242, 2012.

[55] P. Lichodzijewski and M. I. Heywood. Managing team-based problem solving
with symbiotic bid-based genetic programming. In Proceedings of the 10th An-
nual Conference on Genetic and Evolutionary Computation, pages 363–370.
ACM, 2008.

[56] K. M. Malan and A. P. Engelbrecht. A survey of techniques for characteri-
sing fitness landscapes and some possible ways forward. Information Sciences,
241:148–163, 2013.

[57] O. Matviykiv and O. Faitas. Data classification of spectrum analysis using
neural network. Lviv Polytechnic National University, Technical Report, 2012.

[58] J. F. Miller. Cartesian Genetic Programming, Chapter 2, Cartesian genetic
programming. pages 17–34. Springer, 2011.

[59] J. F. Miller and S. L. Smith. Redundancy and computational efficiency in car-
tesian genetic programming. IEEE Transactions on Evolutionary Computation,
10(2):167–174, 2006.

127

BIBLIOGRAPHY

[60] P. Nordin, F. Francone, and W. Banzhaf. Explicitly defined introns and de-
structive crossover in genetic programming. Advances in Genetic Programming.
pages 111–134. MIT Press, 1996.

[61] M. ONeill, L. Vanneschi, S. Gustafson, and W. Banzhaf. Open issues in genetic
programming. Genetic Programming and Evolvable Machines, 11(3-4):339–363,
2010.

[62] F. Otero, T. Castle, and C. Johnson. Epochx: Genetic programming in Java
with statistics and event monitoring. In Proceedings of the 14th Annual Con-
ference Companion on Genetic and Evolutionary Computation, pages 93–100.
ACM, 2012.

[63] F. E. Otero and C. G. Johnson. Automated problem decomposition for the
Boolean domain with genetic programming. In Proceedings of the European
Conference on Genetic Programming, pages 169–180. Springer, 2013.

[64] C. Öztürkeri and C. G. Johnson. Self-repair ability of evolved self-assembling
systems in cellular automata. Genetic Programming and Evolvable Machines,
15(3):313–341, 2014.

[65] M. Pigliucci. Is evolvability evolvable? Nature Reviews Genetics, 9(1):75, 2008.

[66] R. Poli, W. Langdon, N. McPhee, and J. Koza. A field guide to genetic pro-
gramming. Genetic Programming and Evolvable Machines, 10(2):229–230, 2009.

[67] R. Poli, L. Vanneschi, W. B. Langdon, and N. F. McPhee. Theoretical results in
genetic programming: The next ten years? Genetic Programming and Evolvable
Machines, 11(3-4):285–320, 2010.

[68] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng. A survey of machine learning
for big data processing. EURASIP Journal on Advances in Signal Processing,
2016(1):67, 2016.

[69] R. Ramos-Pollán, M. Á. Guevara-López, and E. Oliveira. A software framework
for building biomedical machine learning classifiers through grid computing
resources. Journal of Medical Systems, 36(4):2245–2257, 2012.

[70] S. Ramrez-Gallego, B. Krawczyk, S. Garca, M. Woniak, and F. Herrera. A sur-
vey on data preprocessing for data stream mining. Neurocomputing, 239(C):39–
57, 2017.

[71] M. Riedmiller and H. Braun. RPROP-a fast adaptive learning algorithm.
In Proceedings of the International Symposium on Computer and Information
Sciences VII, pages 32–44. Springer, 1992.

128

BIBLIOGRAPHY

[72] M. Riekert, K. Malan, and A. Engelbrect. Adaptive genetic programming for
dynamic classification problems. In Proceedings of the IEEE Congress on Evo-
lutionary Computation, pages 674–681. IEEE, 2009.

[73] E. Schulte, Z. P. Fry, E. Fast, W. Weimer, and S. Forrest. Software mutatio-
nal robustness. Genetic Programming and Evolvable Machines, 15(3):281–312,
2014.

[74] K. Seo and C. Pang. Tree-structure-aware genetic operators in genetic program-
ming. Journal of Electrical Engineering and Technology, 9(2):749–754, 2014.

[75] B. Settles. Active learning literature survey. Computer Sciences Technical
Report 1648, University of Wisconsin–Madison, 2009.

[76] S. Silva, S. Dignum, and L. Vanneschi. Operator equalisation for bloat free gene-
tic programming and a survey of bloat control methods. Genetic Programming
and Evolvable Machines, 13(2):197–238, 2012.

[77] K. Sindhya, K. Miettinen, and K. Deb. A hybrid framework for evolutionary
multi-objective optimization. IEEE Transactions on Evolutionary Computa-
tion, 17(4):495–511, 2013.

[78] M. Smith and V. Ciesielski. Adapting to concept drift with genetic program-
ming for classifying streaming data. In Proceedings of the IEEE Congress on
Evolutionary Computation, pages 5026–5033, 2016.

[79] T. Smith, P. Husbands, and M. O’Shea. Fitness landscapes and evolvability.
Evolutionary Computation, 10(1):1–34, 2002.

[80] T. Taheri. Benchmarking and Comparing Encog, Neuroph and JOONE Neural
Networks, 2014.

[81] U. Tangen. On evolvability and robustness in the matrix-GRT model. Genetic
Programming and Evolvable Machines, 15(3):343–374, 2014.

[82] D. Tarapore and J.-B. Mouret. Evolvability signatures of generative encodings:
beyond standard performance benchmarks. Information Sciences, 313(1):43–61,
2015.

[83] A. Tsymbal. The problem of concept drift: definitions and related work. Com-
puter Science Department, Trinity College Dublin, 106(2), Technical Report,
2004.

[84] A. Vahdat, A. Atwater, A. R. McIntyre, and M. I. Heywood. On the application
of GP to streaming data classification tasks with label budgets. In Proceedings
of the Companion Publication of the 2014 Annual Conference on Genetic and
Evolutionary Computation, pages 1287–1294. ACM, 2014.

129

BIBLIOGRAPHY

[85] A. Vahdat, J. Morgan, A. R. McIntyre, M. I. Heywood, and A. N. Zincir-
Heywood. Tapped delay lines for GP streaming data classification with label
budgets. In Proceedings of the European Conference on Genetic Programming,
pages 126–138. Springer, 2015.

[86] A. Vahdat, J. Morgan, A. R. McIntyre, M. I. Heywood, and N. Zincir-Heywood.
Evolving GP classifiers for streaming data tasks with concept change and label
budgets: a benchmarking study. In Handbook of Genetic Programming Appli-
cations, pages 451–480. Springer, 2015.

[87] L. Vanneschi, M. Castelli, and S. Silva. Measuring bloat, overfitting and functi-
onal complexity in genetic programming. In Proceedings of the 12th Annual
Conference on Genetic and Evolutionary Computation, pages 877–884. ACM,
2010.

[88] L. Vanneschi and S. Silva. Using operator equalisation for prediction of drug
toxicity with genetic programming. In Proceedings of the Portuguese Conference
on Artificial Intelligence, pages 65–76. Springer, 2009.

[89] A. Wagner. Robustness and evolvability: A paradox resolved. In Proceedings
of the Royal Society of London B: Biological Sciences, 275(1630):91–100, 2008.

[90] Y. Wang and M. Wineberg. Estimation of evolvability genetic algorithm and dy-
namic environments. Genetic Programming and Evolvable Machines, 7(4):355–
382, 2006.

[91] A. M. Webb. On Selection for Evolvability. PhD thesis, University of Manches-
ter, 2016.

[92] A. M. Webb, J. Handl, and J. Knowles. How much should you select for evol-
vability? In Proceedings of the 2015 European Conference on Artificial Life,
pages 487–494. MIT Press, 2015.

[93] D. R. White, J. McDermott, M. Castelli, L. Manzoni, B. W. Goldman, G. Kron-
berger, W. Jaśkowski, U. M. O’Reilly, and S. Luke. Better GP benchmarks:
Community survey results and proposals. Genetic Programming and Evolvable
Machines, 14(1):3–29, 2013.

[94] G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden
contexts. Machine Learning, 23(1):69–101, 1996.

[95] W. Yan and C. D. Clack. Behavioural GP diversity for dynamic environments:
an application in hedge fund investment. In Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation, pages 1817–1824. ACM,
2006.

130

BIBLIOGRAPHY

[96] X.-H. Yu, G.-A. Chen, and S.-X. Cheng. Dynamic learning rate optimization
of the backpropagation algorithm. IEEE Transactions on Neural Networks,
6(3):669–677, 1995.

[97] B.-T. Zhang and H. Mühlenbein. Balancing accuracy and parsimony in genetic
programming. Evolutionary Computation, 3(1):17–38, 1995.

[98] X. Zhu, P. Zhang, X. Lin, and Y. Shi. Active learning from stream data using
optimal weight classifier ensemble. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 40(6):1607–1621, 2010.

[99] P. C. Zikopoulos and C. Eaton. Understanding big data: Analytics for enterprise
class hadoop and streaming data. McGraw-Hill Osborne Media, 2011.

[100] I. Zliobaite. How good is the electricity benchmark for evaluating concept drift
adaptation. arXiv preprint arXiv:1301.3524, 2013.

131

Appendix A

Software

A.1 Open BEAGLE

In an earlier system, working with parity, regression, and OrderTree (OT) domains,
we used a modified minimalist version of Open BEAGLE, referred to as BEAGLE
Puppy [23]. Open BEAGLE is an evolutionary computation framework, developed
in C++. BEAGLE Puppy utilizes the core GP algorithms of Open BEAGLE, but
is simpler to modify for the purposes of modelling and exploiting evolvability, since
it is minimalist. It contains a tree-based GP implementation of simple parity and
regression problems. Our methodology requires editing the selection process, additi-
onal tracking of various statistics (such as dormancy), and sampling for evolvability.
These steps are all required to dynamically model evolvability. These steps are easier
to implement by editing core GP algorithms. Furthermore, we are afforded more
flexibility by working with a lesser amount of code. Another advantage is working
with an efficient object-oriented language. To sample for evolvability and robustness,
more fitness cases need to be evaluated, which is already the most computationally
intensive part of GP. Object-oriented code allows for more easily reusable code; as
we expand into more difficult problem domains, we can reuse our efforts building
simpler ones. Eventually, BEAGLE Puppy proved too limiting for some major im-
plementation changes that were necessary, and we moved on to another framework,
EpochX.

A.2 EpochX

EpochX is an open sourced genetic programming (GP) framework, written in Java [62].
It naturally supports three different GP representations: strongly-typed trees, context-
free grammar, and grammatical evolution. It is highly modular, as it was designed
to be used primarily by researchers, who would add their own functionality. This
work is no exception; EpochX is modified to achieve a system capable of measuring

132

APPENDIX A. SOFTWARE

evolvability and using it in selection. EpochX tracks a wide variety of statistical
data about each run, which can be used to both help model evolvability, and more
easily understand the consequences of doing so. EpochX has a common core package
which describes how the evolutionary algorithm functions, regardless of representa-
tion. This is further split into several managerial classes, which serve as the core of
different evolutionary functions. This means that some functions, such as selection,
may be altered quite independently from other functions. Thus, EpochX serves as a
useful framework for this work.

EpochX is designed with an event framework, based on the Java event handling
model. Events can take forms such as the end of population initialization, start or
end of a training generation, or even be tied to statistics and performance of genetic
operators. Using events, we can easily describe what we want the system to do, at
different magnitudes of the best fitness or best evolvability in the population.

Problem domains in EpochX are specified as models. The model defines the fitness
function as well as representational parameters, such as node definitions for tree-based
GP. Additionally, how to calculate evolvability is defined here. These aspects all vary
depending on the problem domain, and are programmer supplied. Representation-
based parameters, such as maximum tree depth, may also be specified as a property
of the model. The traits allow new problem domains to be introduced rapidly, since
little is required to specify a problem. Models are fed into a run manager, which
contain a initialization and generational manager. The generation manager, in turn,
contains elitism, selection, and genetic operation managers. Of chief concern of this
work are the generation and selection managers.

Generational listeners are added which specify the conditions under which evol-
vability must be measured or modelled. On certain generations, evolvability is not
required for selection or training at all, so it would waste computational resources
to calculate it. Generational listeners allow us to trigger the measurement or model-
ling of evolvability as desired. These circumstances include, but are not limited to,
initial evolvability model building, model inaccuracy, or reaching defined generation
numbers. Statistical listeners may indicate if the evolvability model is not performing
well, and thus indicate more training time or instances are needed.

The selection manager must be altered to include evolvability, and how evolvabi-
lity influences selection. Since the impact of evolvability on selection will vary, the
selection manager is edited to allow varying selection pressures, even after its initia-
lization. Further, in order to evaluate the effectiveness of the evolvability model, it is
necessary to track the selection of individuals based on their predicted evolvability,
and the measured evolvability; this is accomplished in the selection manager.

Of further interest to this work is statistical information. Programmers may add
their own statistic definitions, and they may be treated as all the innately defined sta-
tistics. This allows the specification of multiple evolvability statistics, tied to different
genetic operators, different base metrics (such as magnitude of improvement versus
probability of improvement), and whether it was predicted by a model or sampled

133

APPENDIX A. SOFTWARE

for. As statistics are not calculated unless required, specifying an evolvability statistic
does not necessarily mean it will always be calculated, thus performance of standard
genetic programming (SGP) on the system will not suffer. Further, dormancy sta-
tistics are added, since they are used to build evolvability models. Statistics may be
calculated using other statistics, forming dependencies, which may not be circular.
Once calculated, statistics may be cached, so they will not need to be recalculated,
unless an event occurs which indicates that those statistics are no longer valid, such
as a new generation beginning.

EpochX naturally supports several GP paradigms, of which tree-based GP is
one. Additional functionality, unique to tree-based GP, is included in the framework.
This functionality includes statistics unique to tree-based GP (e.g. tree size and
depth), implementation for genetic operators of mutation and crossover, as well as tree
initialization and evaluation. As this work focuses on tree-based GP, the separation
of GP paradigms is useful, as it allows easier modification and expansion of the
framework, to consider the tree representation specifically, instead of more general
purpose modifications that must function with all forms of GP representation.

Problem domains themselves have their own class definitions, extended from the
representation models. Programmers need to specify how fitness is evaluated, and
describe domain-specific information, such as the function and terminal set for tree-
based GP. These are representation-specific as well. If functions or terminals are
needed that are not already described in the standard EpochX library, then they
must be implemented in their own class, as well. Nodes need to have a return type,
an identifier, and a method of evaluation. Functions also need specifications for child
nodes. Describing fitness evaluation and the nodes are all that is required for new
tree-based GP problems to be specified in EpochX.

A.3 WEKA

Modelling evolvability and robustness requires faster machine learning algorithms
than evolutionary computation provides. These may be provided by a machine lear-
ning suite, the Waikato Environment for Knowledge Analysis (WEKA) [30]. WEKA
provides several interfaces which are useful for this methodology; a command line
interface, and an exploration interface. The exploration interface provides data ma-
nipulation, visualization, and statistical queries. The significance and relatedness of
attributes is easily compared. Furthermore, it is a convenient interface to run many
different machine learning algorithm tests on, allowing changes to learning parame-
ters, which data attributes are included, and which algorithms to use, while yielding
easily comparable results. Any models that are generated may be saved, and used to
predict output for new data. We can experiment on the WEKA explorer until we find
a model which is deemed sufficiently accurate. The command line interface allows the
execution of any models that are generated by WEKA to evaluate new data, which
can easily be executed from the modified BEAGLE Puppy system. The predicted

134

APPENDIX A. SOFTWARE

values can then be used to modify the selection process in the modified BEAGLE
Puppy system. WEKA is implemented in Java, but there is no need to modify any
WEKA code, or bridge the code to C++; the command line interface is sufficient for
this methodology.

This implementation can be expanded to allow models to be generated by WEKA
as evolution occurs. The accuracy of these models can be monitored until they are suf-
ficiently accurate, in order to stop sampling evolvability and robustness, and instead,
predict them. Sampling may still be interleaved to ensure the models remain accurate.

WEKA allows rapid prototyping of different machine learning methods, but does
not offer as much flexibility as frameworks based upon a single, or even a few machine
learning methods. Once artificial neural networks (ANNs) were identified as good
predictors of evolvability, a more specialized framework for ANNs, Encog, replaced
it.

A.4 Encog

Encog is a machine learning framework for Java and C# [34]. It is available as a
JAR, DLL package, and source code library. It provides machine learning algorithms
for classification, clustering, and regression. Its machine learning paradigms include
ANNs, Bayesian networks, support vector machines, simple recurrent networks, even
tree-based GP, among others. However, its speciality is ANNs. Encog models are
implemented with a strong consideration for efficiency; it outperforms many other
machine learning Java and C# libraries [40, 57, 80, 69]. Efficiency is critical for
the ANN component of Model-Evolvability Genetic Programming (MEGP). We are
interested in the gains that can come from modelling evolvability using ANNs, as an
improvement over SGP. The underlying GP algorithm affects the SGP results, as well
as the evolvability systems. Any gains brought about by changes in the evolvability
systems would affect one using a different framework for GP equally. Furthermore, no
modifications to the underlying ANN algorithm is necessary, so a rigorous, complex
source code, that may not be easily modified, is of no consequence. Neural networks
may be saved and used as initial positions for future training. Thus, Encog meets the
needs of the evolvability systems.

Unlike EpochX, which required changes to the underlying source code in order
to support the use of evolvability most effectively, the source code of Encog has
no required changes. Training data for Encog is generated through the statistical
faculties of EpochX, which may then be stored as a text file (for analysis) or as arrays
(for speed). The data must be converted to a usable form for Encog, the MLDataSet.
MLDataSets may be generated from text files, if they adhere to a certain formatting.
Alternatively, they may be generated from input-output pairs, generated manually
from EpochX statistics. Neural network architecture may be specified, and altered,
according to how well the ANN is performing, as a measure of how accurately it may
predict evolvability.

135

APPENDIX A. SOFTWARE

The training algorithm used for ANN fitting in the apEGP and MEGP systems
is resilient backpropagation [71]. Resilient backpropagation is similar to standard
backpropagation, but it requires no set learning parameters, such as learning rate
and momentum. Instead, learning rates are maintained separately for each weight,
and each are adapted during training. Instead of using the magnitude of the gradient,
combined with the learning rate and momentum, to adjust each weight, only the sign
of the gradient is used, along with adapted values replacing the use of the learning
rate and momentum. This usually translates to a more efficient training algorithm
than backpropagation, at the cost of increased implementation complexity. Encog’s
full user manual encourages the use of resilient backpropagation as a general purpose
training algorithm [42]. Different networks are interchangeable in Encog, so other
training algorithms may be tested easily, if any show promise as being more efficient
than resilient backpropagation. The structure of the network (number of hidden no-
des) must still be specified, and affect the training time and accuracy of the model.
Training algorithms can even be changed between generations. The most significant
parameters affecting training time that may be adjusted are the terminating condi-
tions, which are generally when the model is generating a small error rate or when
a specified number of training generations for the ANNs (epochs, in the Encog par-
lance) have occurred. These may be adjusted dynamically in the evolvability systems,
by considering how many epochs are acceptable for the increase in accuracy we may
benefit from. We may measure the error rate of unseen, newer generation individuals
compared to the error rate of the previously seen individuals, to determine if the
model is no longer performing as well as necessary.

A.5 Integration

The EpochX GP framework serves as the foundation for the Sample-Evolvability Ge-
netic Programming (SEGP) and MEGP systems. BEAGLE Puppy is appropriate for
a priori Evolvability Genetic Programming (apEGP), but more intrinsic GP changes
are required to handle the more complex systems. Problems are defined in EpochX,
and the existing code can be used as an SGP baseline, to compare with the evolva-
bility systems. We determine if Encog training will occur for each new generation,
and whether or not evolvability needs to be calculated or predicted with the existing
model. If training occurs, we process the generational data so that Encog may use
it, and use the existing network (or if there has not been any training yet, a random
network) as the initial network. We then train the network with the new generati-
onal data, and any previous labelled generational data. If the network is accurate
enough, successive generations may use the network to predict evolvability, instead
of calculating it. Intermittently, evolvability may still be calculated and used to test
the accuracy of the existing network, to determine if more training is needed with
newer generations, in order to maintain its accuracy. This describes the integration
of the EpochX and Encog frameworks in the evolvability systems. More specific

136

APPENDIX A. SOFTWARE

implementation details regarding the use of evolvability is discussed in Chapter 5.
Statistics used in evolvability training, as well as time elapsed, fitness, and run

number, are saved to a comma separated value file. These are loaded as data frames
in an R interpreter. Data is aggregated by mean based on generation, which is then
plotted. The plots describe the desired statistics (such as fitness or evolvability)
under various conditions, such as the weight of evolvability selection. This is used
to demonstrate the effectiveness of the system against SGP, and other changing-run
conditions against one another.

A.6 Hardware

Experiments were conducted on hardware provided by ACENET, in partnership with
Compute Canada, a high performance computing (HPC) consortium for universities
based in the Atlantic Provinces of Canada. ACENET is funded by the Atlantic Pro-
vinces Opportunities Agency, the Canada Foundation for Innovation, and the provin-
cial governments of Nova Scotia, New Brunswick, and Newfoundland and Labrador.

ACENET offers four HPC clusters: Mahone (based at St. Mary’s University),
Placentia (Memorial University of Newfoundland), Fundy (University of New Bruns-
wick), and Glooscap (Dalhousie University). They have 532, 3756, 636, and 2196
cores, and RAM ranges per core of 4-16 Gb, 2-16 Gb, 4-8 Gb, and 1-8 Gb, respecti-
vely. Each uses Red Hat Enterprise Linux 6 as the operating system.

Clusters were accessed using WinSCP and PuTTY. Experiments were run as
array jobs, which allow arbitrary numbers of tasks to be scheduled independently
on a particular cluster, with the only difference between them being a task number,
which may be used as a random number seed, and to track the run number. This
allows many experiments to be run at once, allowing statistically significant results
to be achieved in a much shorter period of time than running jobs serially on local
hardware.

137

Appendix B

About the Author

The author is a PhD Candidate with a Master’s degree in Computer Science, with
theses based on machine learning. He has a largely academic background with expe-
rience in building machine learning systems with various frameworks and languages,
with particular specialization in artificial neural networks and genetic programming.
His Master’s thesis work in artificial neural networks features multiple task learning
and consolidating domain knowledge.

B.1 Selected Publications

B. Fowler and W. Banzhaf. Modelling Evolvability in Genetic Programming. In
Proceedings of the European Conference on Genetic Programming, pages 215-229.
Springer International Publishing, 2016.

V. Veloso de Melo, B. Fowler, W. Banzhaf. Evaluating methods for constant op-
timization of symbolic regression benchmark problems. In Proceedings of the 2015
Brazilian Conference on Intelligent Systems, pages 25-30. IEEE, 2015.

R.A. Enguehard, B. Fowler, O. Hoeber, R. Devillers, W. Banzhaf. Integrating hu-
man knowledge within a hybrid clustering-classification scheme for detecting patterns
within large movement data sets. In Proceedings of the Workshop on Complex Data
Mining in a Geospatial Context, pp. 18-21, 2012.

B. Fowler. Context-Sensitive Multiple Task Learning with Consolidated Domain Kno-
wledge. Master’s Thesis. Acadia University, 2010.

L. Tu, B. Fowler, D.L. Silver. CsMTL MLP For WEKA: Neural Network Learning
with Inductive Transfer. In Proceedings of the International Florida Artificial Intel-
ligence Research Society Conference. AAAI Press, 2010.

138

APPENDIX B. ABOUT THE AUTHOR

B.2 Education

Sept 2011-Present In Progress: Doctor of Philosophy
in Computer Science
at Memorial University of Newfoundland, St. John’s, NL
Thesis:
Modelling Evolvability in Genetic Programming
Advisor: Dr. Wolfgang Banzhaf

Sept 2008-Dec 2010 Master of Science
in Computer Science
at Acadia University, Wolfville, NS
Thesis: Context-Sensitive Multiple Task Learning with
Consolidated Domain Knowledge
Advisor: Dr. Daniel Silver

Sept 2004-May 2008 Bachelor of Science with Distinction
in Mathematics
at Mount Allison University, Sackville, NB

139

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Contributions of the Thesis
	Thesis Structure

	Background and Related Work
	Genetic Programming Background
	Evolvability
	Robustness
	Dormancy and Locality

	Experimental Approach
	apEGP
	SEGP and MEGP
	Selection Mechanisms
	GP Statistics
	Evolvability Metrics

	Preliminary Experiments
	Parity
	Regression
	Discussion

	Order Tree Experiments
	Experiments
	Sampling Accuracy
	Selection of Evolvability
	Modelling of Evolvability
	Parallel Learning and Evolution

	Electricity Domain Experiments
	Background
	GP and Streaming Problems
	Data Description
	Concept Drift
	Prequential Accuracy
	Kappa Plus Statistic
	Sliding Windows
	Label Costs
	Electricity Domain Related Results

	Experiments
	Best Use of Previous Parameters
	Sampling
	Modelling

	Conclusion
	apEGP
	SEGP
	MEGP
	Limitations and Future Work
	Concluding Remarks

	Bibliography
	Appendix Software
	Open BEAGLE
	EpochX
	WEKA
	Encog
	Integration
	Hardware

	Appendix About the Author
	Selected Publications
	Education

