
Semi-analytical Modelling of Fluid Flow in
Unconventional Fractured Reservoirs Including

Branch-fracture Permeability Field
by

c©Ayon Kumar Das

A thesis submitted to the School of Graduate Studies in partial fulfillment of the
requirements for the degree of

Master of Engineering

Department of Process Engineering

Memorial University of Newfoundland

October 2018

St. John’s Newfoundland



Abstract

Growing demand for energy and unavailability of new viable energy resources have
played a crucial role in the persistent exploitation of unconventional resources through
multistage hydraulic fracturing. Currently, standard modelling approaches idealize a
fractured media as an interplay of several homogeneous continuum of normal diffusive
characteristics. However, evolved branch-fractures generate a space with extreme
heterogeneity around primary fracture plane. The precise characterization of these
branch-fractures is imperative for well performance analysis along with subdiffusive
behaviour of unconventional matrices. This study presents two semi-analytical models
that account for the branch-fracture permeability field and subdiffusion.

The first model, Induced Branch-fracture Subdiffusive Flow model (SIBFF), ac-
counts for exponential permeability field concept and subdiffusive transport behaviour
of matrices. Compared to the earlier analytical models, the SIBFF model accounts
for more comprehensive transport mechanisms and medium properties. The other
model, Fractal Branch-fracture model, couples fractal porosity/permeability distribu-
tion of branch-fracture and subdiffusion to account for more detailed description of
stimulated reservoir volume (SRV) and unfractured inner region.

The wellbore pressure solution is derived by discretizing the reservoir into several
flow regions and imposing both flux and pressure continuity at the interface between
contiguous segments. The inclusion of permeability field and fractional flux law intro-
duces important complexities to the mathematical model that are carefully resolved
by implementing Bessel functions and Laplace transformation (LT). Finally, the so-
lution is inverted to time domain using Gaver-Wynn-Rho (GWR) algorithm. This
study also assessed the applicability of four numerical inversion methods and found
GWR method more suitable and predictive.

The sensitivity of important model parameters is presented. Results were verified
analytically and validated against Niobrara and Eagleford field data. It is shown that
the models could be implemented to quantify the efficiency of a stimulation job, to
decide on the necessity of re-fracturing a formation and to analyze horizontal well
performance with better predictive capability. The proposed models could further be
employed to characterize different flow regimes for unconventional reservoirs.
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Chapter 1

Introduction

1.1 Unconventional Fractured Reservoir

Unconventional resources have made a significant paradigm shift in the business of
energy exploration and exploitation, with shale and ultralow permeability reservoirs
contributing as the leading hydrocarbon producer through complementing hydraulic
stimulation and horizontal well technology. Unconventional resources typically include
shale gas and shale oil in low permeability shales, tight oil and gas, coal bed methane
(CBM), oil/gas sands and hydrates. The resource triangle concept introduced by
Gray (1977) is the best way to categorize the unconventional resources in nature. The
concept explains that all natural resources are distributed log-normally in nature. As
the figure 1.1 depicts, the high quality reservoirs with high permeability are small in
volume, hard to find but are easy to extract when they are discovered. Going deeper
into the resource triangle requires advanced technology to produce economically as the
quality of the reservoirs severely deteriorates in terms of conductivity. For instance, in
the 1980s, tight gas sands and coal seams were unlocked by the advent of vertical wells
with hydraulic fracturing. However, the economic production from unconventional
shale and tight formations requires multistage hydraulic stimulation and horizontal
well technology. In the literature of reservoir engineering, unconventional fractured
reservoirs are therefore synonymous to the shale and tight formations upgraded by
hydraulic fracturing and horizontal well completion.

The enormous volume of hydrocarbon reserve in shale and ultralow formations
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Figure 1.1: The concept of resource triangle (adapted from Gray, 1977)

has been a major stimulant for carrying out more investigation in fluid flow through
hydraulically fractured media. The intense heterogeneity in shale and tight plays
is inherited from the diagenesis of those reservoirs. The application of hydraulic
fracturing further complicates the geometry and environment of the flow paths in
the reservoir. The multistage fracturing enhances the productivity by generating an
invasive fracture network in the vicinity of the horizontal well. The affected space is
usually referred to as stimulated reservoir volume.

1.2 Branch-fracture Permeability Field

The practice of inducing hydraulic fracturing to exploit energy from unconventional
resources has been a common practice in the oil and gas industry. The advances in
horizontal drilling and stimulation technology has made many countries to produce
from their unconventional reservoirs. However, in order to ensure economic recovery
from unconventional reservoirs, an efficient stimulation technique and realistic mod-
elling of fluid flow in induced fractures are necessary. During the fracturing treatment,
a number of perforations are performed to inject fracturing fluid into the formation.
The high velocity fluid induce a primary fracture plane of greater permeability around
the perforation point. In this study, it is assumed that the primary fracture plane
is highly permeable and rectangular in shape to facilitate the analytical solution for
fluid flow. However, the fracturing treatment also induces numerous branch fractures
stemming from the primary fracture plane due to the shear and tensile failure of the
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natural fractures away from the main fracture plane (Palmer et al., 2007; Ge et al.,
2011; Fuentes-Cruz, Gildin, Valkó, et al., 2014). According to Taleghani et al. (2011),
in an event of fluid driven stimulation, different types of critical situation may arise
inside the reservoir:

- Pre-existing transverse natural fractures may arrest the propagation of the in-
duced fracture

- The propagation of induced fractures may reactivate the stationary fractures

- The aperture of the pre-existing fracture may decrease or begin to close perma-
nently

Therefore, the growth of the interactive induced fractures creates a network of branch
fractures. The aperture and the density of those fractures decreases away from the
primary fracture plane creating a field of altered permeability in the stimulated reser-
voir volume. These secondary branch fractures enhances the reservoir contact area
and maximizes hydrocarbon recovery from low permeability reservoirs.

3



1.3 Problem Description

An inherent difficulty in developing a mathematical model for fluid flow in fractured
media comes from translating the flow through complex fractures in analytical form.
The particle displacement in a well-connected fracture network follows Fickian or
normal diffusion and the fluid flux can be described by the Darcy’s law. Most of
the developed analytical models idealize the fracture continuum as a homogeneous
but highly permeable media in the SRV of stimulated reservoir. However, the spatial
variation of branch-fracture permeability introduces heterogeneity in the fracture con-
tinuum. The diffusivity can no longer be assumed constant in the fracture continuum.

Conventional formulations of transient diffusion in heterogeneous media assume
that fluid flux changes proportionally with the change in imposed pressure gradient.
This formulation performs well only when fracture network or matrix medium is well
connected. However, the unconventional matrix possess heterogeneity in different
scales that results in a flow field that cannot be described by Gaussian distribution.
This shift from Gaussian diffusion to non-Gaussian diffusion are well described by the
sub-diffusion phenomena assuming that mean square displacement of fluid particles is
no longer linearly dependent on time. Raghavan (2011) accounted for this deviation
and proposed a fractional flux law for sub-diffusive flow behaviour. The fractional flux
law defines production rate at a point as a reflection of the pressures and gradients
that extend to the previous times.

In order to produce a fractured reservoir efficiently, engineers must be able to
simulate the fluid flow as realistic as the formulation and problem geometry permits.
We believe that the coupling of the spatial variation of induced fracture permeabil-
ity and subdiffusion with appropriate transfer function between different continua is
necessary for a better understanding of the unconventional fractured reservoirs. This
will enhance the performance of the prevailing analytical models and predict well
performance with a high degree of accuracy.
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1.4 Research Objectives

The main objective of this work is to perform a rigorous analytical study to account
for branch-fracture permeability field in SRV and subdiffusion phenomena in uncon-
ventional matrix and present semi-analytical solutions simulating single-phase fluid
flow in hydraulically stimulated unconventional reservoirs. The semi-analytical mod-
els include a significant segment which is numerical and prone to errors if proper care
is not taken in the implementation of inversion algorithm. Therefore, this research
will:

� assess the applicability and accuracy of the widely used Laplace inversion meth-
ods and compare results from these methods with the analytical and numerical
results for fracture flow problems.

� develop semi-analytical solution for fluid flow in multifractured horizontal reser-
voir incorporating exponential branch-fracture permeability field and subdiffu-
sion in unconventional matrix. Also, analyze field data to introduce practical
guidelines and establish confidence in applying the derived solution

� develop fractal branch-fracture flow model assuming the generated branch-fracture
network around the horizontal well as a fractal object. Also, validate the model
with field data to extract useful information about the SRV and USRV of ul-
tralow unconventional reservoirs.

1.5 Thesis Outline

This thesis is divided into six chapters:

Chapter 1 introduces the thesis and discusses about the necessity of including the
branch-fracture permeability field in hydraulically stimulated reservoirs.

Chapter 2 outlines standard modelling approaches, especially dual-porosity and
anomalous diffusion approaches, applied to simulate fluid flow in fractured media.

Chapter 3 presents a comparative study of four numerical Laplace inversion meth-
ods that are widely used in the semi-analytical modelling of fluid flow through porous

5



media. In addition, it also discusses about the background, limitations and applica-
bility of those four methods.

Chapter 4 describes the formulation of the Induced Branch-fracture Sub-diffusive
Flow model. We discretize the whole reservoir into five flow regions and present a
detailed description of the mathematical models for each flow regions, defining the
governing relations and assumptions. It also presents a section where the SIBFF
model is validated against an analytical model and the field data from Niobrara Shale
field.

Chapter 5 presents the fractal branch-fracture flow model. The governing equa-
tions and the mathematical formulations of SRV and USRV flow region is documented
in this chapter. It also presents a sensitivity study of the influential parameters to
illustrate the constraints and the capabilities of the presented fractal model. Finally,
we provide a field example (with Eagle Ford data) to establish the model as the finest
tool for the characterization of ultra-low unconventional reservoirs.

Chapter 6 summarizes the main conclusions of this research along with recommen-
dations for possible future work.

6



Chapter 2

Standard Approaches to Model
Fluid Flow in Fractured Reservoirs

This chapter reviews a number of standard fluid flow models that have bolstered
the understanding of fluid flow in fractured reservoirs. The underlying assumptions,
geometry of the fractured media and the transfer functions between fracture and
matrix continuum are the vital features of any of those analytical models. Based on
the idealization scheme and diffusion, we divide the these model into two approach:
Continuum and Anomalous approach. These approaches are discussed in the following
sections.

2.1 Continuum Approach

Fluid flow modelling in fractured unconventional reservoirs is of paramount impor-
tance as the hydraulic fracking treatment to those reservoirs has been a promising
option. As we know the fluid flow through fractured media is controlled by the con-
tinuous interaction and interplay of fracture and matrix. Researchers have studied
fractured reservoirs for decades and proposed several idealistic and oversimplified mod-
els of dual porosity type to capture the physics of fluid flow in fractured media. The
basic idea behind dual porosity models is the assumption that the total reservoir sys-
tem is composed of two uniform continua. One continuum is the uniform rock matrix
and another continuum is the uniform fracture network. This continuum assumption
simplifies that any infinitesimal chunk of reservoir volume contains both fractures and

7



matrix components. Consequently, at every point in space, there exist two different
pressures: the matrix pressure and fracture pressure. The exchange of fluid between
these two continuum takes place by a coupling equation, termed as transfer function,
under specific flow condition. But there is no exchange of fluid among matrix blocks
and no direct communication between the matrix and the wellbore. As the fluid pro-
duction begins, a significant pressure drop occurs in the fracture medium due to the
depletion of fluid. As fluid production continues, differential pressure between the
matrix and fractures causes the matrix fluid flow towards the fractures. This flow,
termed as interporosity flow, continues until the pressures in both continua reach
equilibrium.

For a slightly compressible fluid, the fluid pressure in the fracture continuum is
governed by the diffusion equation (Matthews and Russell, 1967).

∇ ·
(
kf
µ
∇pf

)
+ Q̇ = φfcf

∂pf
∂t

(2.1)

Diffusion equation in matrix continuum,

∇ ·
(
km
µ
∇pm

)
= φmcm

∂pm
∂t

(2.2)

These two equations are usually coupled by a source/sink term that can be evaluated
from a surface integral of Darcy’s law at the matrix block boundary.

Q̇ = − 1
Vm

‹
∂Vm

km
µ

(∇pm · n) dS (2.3)

Barenblatt (1962) proposed the very first concept of dual porosity model to define
heterogeneity of fractured reservoirs. They assumed the total complex reservoir as
a system of two overlapping media: fissures or fractures and Matrix blocks. They
reported that each media is defined by its own average liquid pressure where fissures
have the highest conductivity but very low porosity. On the other hand, the matrix
blocks have the highest storativity but low permeability. They wrote two different set
of equations for the two continua and coupled them together by a transfer function
under pseudo steady state condition.

Warren and Root (1963) developed the very first comprehensive dual porosity
model, called Sugar-Cube model and introduced dual porosity concept into petroleum
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engineering literature. According to this model, the reservoir comprises of uniformly
structured fractures immersed in a uniform setting of matrix grains. The fracture net-
work possesses a significantly higher conductivity but low storativity. All the matrix
blocks acts as a source of fluid and feeds to the fractures. All the fractures are the
only flow medium that feeds to the wellbore. Figure 2.1 illustrates the idealization of
Warren and Root model as proposed. They assumed an average pressure distribution
in each block. The average pressure in the matrix block is given by,

pm =
ˆ
Vm

1
Vm

pm∂V (2.4)

Integrating over the entire matrix block and applying divergence theorem to convert
the volume integral into surface integral:

φmcm
∂pm
∂t

= 1
Vm

‹
∂Vm

km
µ

(∇pm · n) dS = −Q (2.5)

Figure 2.1: Idealization of a comprehensive model of dual porosity models. (a) Actual
reservoir (b) Reservoir model (adapted from Wu, 2016)

The most distinctive assumption of this model is that it assumes pseudo steady state
interporosity flow between matrix and fractures. This means that the average pres-
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sure in the matrix blocks decline linearly as a function of time. To couple fracture
equation and matrix equation together, they assumed the source term Q̇ to be directly
proportional to (pf − pm).

Q = −αkm
µ

(pf − pm) = −φmcm
∂pm
∂t

(2.6)

Where, α is referred to as shape factor, which is used to eliminate the matrix geometry
effect. The difference between the average matrix pressure and the average pressure
of the contiguous fracture is used as a main driving force in the interporosity flow. As
pseudo steady state condition is assumed, the pressure at the middle of the matrix
elements gets affected from time zero. Besides that, as the fluid pressure in the ma-
trix continuum is governed by ordinary differential equation, the computational time
needed to evaluate the source term becomes remarkably negligible when implemented
in a reservoir simulator (Zimmerman et al., 1993).The diffusion equation for fracture
continuum in Warren and Root model takes the following form.

∇ ·
(
kf
µ
∇pf

)
− φmCm

∂pm
∂t

= φfCf
∂pf
∂t

(2.7)

Figure 2.2 illustrates the pressure profile in the matrix blocks and contiguous fractures.
This model proposed that only two parameters are sufficient to effectively describe the
deviation from single porosity reservoirs to dual porosity reservoirs. One is a measure
of the fluid capacitance of the secondary porosity and the other one is a measure
related to the scale of heterogeneity. The first parameter, ω, is the ratio between the
storativity of fracture and the storativity of the total system:

ω =
(φV c)f

(φV c)f + (φV c)m
(2.8)

λ = αr2
w

km
kf

(2.9)

The other parameter,λ, is the interporosity flow coefficient. It represents the ability
of the fluid to flow the storage continuum to the conductive continuum. It determines
how rapidly storage continuum feeds to the fracture media. Warren and Root ana-
lyzed the pressure transient responses by utilizing these two parameters. However,
Odeh (1965) analyzed pressures transient behaviour of fractured media and proved
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Figure 2.2: Pressure profile along the cube shaped matrix in the idealization of Sugar-
cube model

mathematically that the build-up and drawdown data of fractured reservoirs look
identical to those of a homogeneous reservoir.

Kazemi et al. (1976) extended the Warren and Root model to two phase flow
which incorporates the effects of relative fluid permeabilities, imbibition, gravitation
and variation in formation properties. They idealized the fractured reservoir as an
equivalent system of horizontal fractures immersed in between two matrix layers. Un-
like the Warren and Root model, they assumed that the fluid exchange between matrix
domain and fracture domain occurs under transient flow condition. The application
of transient flow condition into dual porosity model eliminates the limitations of early
time flow in Warren and Root model. As with sugar cube model, two differential
equations are written to describe the dual porosity system-one for flow in fractures
and another for flow in matrix. They discretized the governing differential equations
in three-dimensional system and solved the model numerically. The finite difference
form of governing differential equations for fracture and matrix continuum are given
as below:

[∑
Tlλpρp∆ (pp − γpD) + ρpq

w
p

]
− τmf =

[
V

∆t∆t (φSpρp)
]
f

(2.10)

τmf =
[
V

∆t∆t (∅Spρp)
]
m

(2.11)
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The transfer function for fluid exchange is given as:

τmf = KmV λpρp
[
(pp − γpD)f − (pp − γpD)m

]
(2.12)

de Swaan O et al. (1976) developed an analytical model for transient flow condition
in fractured reservoirs. This model doesn’t require any adjusting parameters like
shape factors. Only fluid and reservoir properties are enough to explain a fractured
reservoir. The matrix elements were assumed as horizontal layered slabs between
high permeable fractures. Flow in the matrix slab is unidirectional and perpendicular
to the flow direction within the fractures. This type of flow is usually referred to
as bilinear flow. Having a layered continuum of matrix elements, the solution of
diffusion equation for the matrix was more convenient and easier. Unlike the Warren
and Root model the matrix layers are not assumed as an overlapped source when
fracture diffusion equation was written. Rather, the fluid transfer from the matrix
layers is included according to the Darcy’s law at the interface of matrix and fracture.
In the model, he showed that the two straight-line well pressure responses during well
test, a key feature of Warren and Root model, is preserved. However, the approach
presented in the model does not describe the transition between these two straight
lines.

Ozkan et al. (2009) implemented the dual porosity concept to simulate fluid fluid
flow in a multiply fractured horizontal well and proposed a trilinear dual-porosity
(TDP) model. They subdivided a multifractured reservoir into three linear flow re-
gions: rectangular hydraulic fracture, dual porosity inner region and a homogeneous
outer region. However, the TDP model did not account for any unfractured region
in the inner reservoir that would produce erroneous result when the inner reservoir
is not fully affected by the fracturing job. The inner region was modelled as a dual
porosity idealization and the results for assuming the matrix-fracture fluid transfer as
the pseudosteady(Warren & Root, 1963) or transient transfer function(de Swaan O et
al., 1976; Kazemi et al., 1976) was shown in the study. The laplace solution of each
flow domain was coupled at the interface by applying pressure and flow continuity.
It was shown that TDP model was a predictive tool for evaluating productivity of
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multifractured horizontal reservoir when the available reservoir data is very low. It
was determined that the increase in the number of natural fractures in inner region
is the most efficient way to improve the productivity of unconventional reservoirs.

Stalgorova and Mattar (2013) accounted for an unfractured region in between two
hydraulic fractures assuming that the stimulated region did not traverse the total
space between any two transverse hydraulic fracture and developed a Five Region
model with five linear flow domain. The analytical derivation of the model follows the
same lines as Trilinear Dual-porosity model by Ozkan et al. (2009). The inner region
divided into two flow regions: homogeneous SRV with higher permeability and USRV
with reservoir’s inherent permeability. This assumption enables it to be used in a
wide range of geometries for multifractured reservoir and produces realistic estimation
for productivity. They verified their solution with existing semianalytical solution
and found useful for practical analysis of horizontal well performance. However, the
assumption of homogeneous SRV region is not realistic as the fracturing fluid generates
a space with spatially altered permeability. The spatial variation of permeability and
dual-continuum in SRV should be considered in order to delineate a comprehensive
picture of SRV.

2.2 Anomalous Diffusion Approach

The flow field generated by the particles in unconventional reservoirs is significantly
different from the field of a conventional reservoirs. In order to incorporate the het-
erogeneity in the flow domain, generalized diffusion concept has gained popularity
in the las few decades(Fomin, Chugunov, & Hashida, 2011; Caputo, 1998; Chang &
Yortsos, 1990; Raghavan, 2011). The generalized diffusion concept includes normal
diffusion: when mean square displacement (MSD) of particles follows linear relation-
ships with time; and anomalous diffusion: when the MSD is nonlinearly dependent
on time. According to Holy (2016), the anomalous diffusion concept applied to an
unconventional reservoirs are based on the following three hypotheses:

- The deviation of straight line slopes observed on log-log plots of rate vs time
in unconventional reservoirs from the slopes of conventional reservoirs are the
result of anomalous diffusion
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- The fractional relation between the flux and pressure gradient captures the
physics of the anomalous diffusion and the conservation law of mass still holds.

- The hydraulically stimulated space in unconventional reservoirs can be regarded
as an disordered media in which particle displacement is nonlinearly dependent
on time.

In the continuum approach, the fracture medium is idealized as a homogeneous,
continuous and uniformly distributed medium. However, the geometry of the fracture
network generates a flow field which resembles with the anomalously diffusive flow
field. The anomalous diffusion due to the geometric irregularity is analytically mod-
elled with fractal concepts (Chang & Yortsos, 1990; J. Acuna & Yortsos, 1991; Beier
et al., 1994; Camacho Velazquez, Fuentes-Cruz, Vasquez-Cruz, et al., 2006).

Metzler et al. (1994); Park et al. (2000) presented a generailized fractal diffusivity
equation that accounts for temporal dependencies on fluid flux in the form of a time
fractional derivative. Raghavan (2011) upgraded the time fractional model and re-
vealed that the application of fractional constitutive flux law is inherent in the nature
of the unconventional fractured reservoirs that exhibits a number of scales in the form
of obstacles and channels as well as induced changes affected by the stimulation job.
Assuming a Continuous-Tine-Random-Walk process in the particle displacement of
the diffusion in porous media, a fractional velocity equation incorporating subdiffusion
is given by (Fomin et al., 2011; C. Chen & Raghavan, 2015; Raghavan, 2011),

~vx = −kβ
µ

∂1−β

∂t1−β
∂∆p
∂x

(2.13)

Where, β is the anomalous diffusion parameter. When, β < 1, hindrance to fluid flow
is more pronounced than the normal diffusion case (β = 1). Superdiffusion occurs
when β > 1. The fractional derivative term in (2.13) is defined using Caputo’s
definition,

∂1−β

∂t1−β
{p (x, t)} = 1

Γ (β)

ˆ t

0

∂p (x, t)
∂t

(t− τ)−(1−β) dτ (2.14)

Ozcan (2014a) proposed an Trilinear Anomalous Diffusion (TAD) model that ide-
alizes the nano-porous inner reservoir as a space where the conditions for anomalous
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Figure 2.3: (A). Trilinear Model (Ozkan et al., 2009) , (B). Induced Permeability-
double Porosity Model (Fuentes-Cruz, Gildin, & Valkó, 2014), (C). Five Region Model
(Stalgorova & Mattar, 2013) and (D) TADDP Model (Albinali, 2016)(Figures are
taken from the respective papers)

diffusion holds. This model assumes that the fracturing job generates a disordered
and fractured space between any two hydraulic fractures. The temporal fractional
equation was applied to capture the hereditary effects of anomalous diffusion in the
inner reservoir. The normal diffusion was idealized in hydraulic fracture and outer re-
gions and the Darcy’s law was applied to represent the relationships between pressure
gradient and fluid velocity in the porous media. The derivation of the TAD model
follows the similar procedure to that in trilinear model(Ozkan et al., 2009).

Albinali et al. (2016) proposed a Trilinear Anomalous Diffusion and Dual Porosity
model (TADDP) which idealizes the SRV as a dual porosity continuum: Spherical
matrix with anomalous diffusion and induced fractures with uniform properties (kαf
is uniform for the fracture continuum). TADDP model is one of the established
anomalous diffusion models that was validated against the standard analytical models
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and field data. Like TAD model, they applied the generalized diffusion equation to
account for anomalous behaviour of disordered medium. However, this model coupled
dual porosity representation with anomalous diffusion that enables the model to study
the effect of flow hindrance of matrix and fracture continuum independently. They
concluded that the unconventional matrix shows subdiffusive flow behaviour that
could be taken into account by time fractional Darcy’s law by Raghavan (2011). It was
also shown that the induced fracture network can be simulated by normal diffusion
formula when the connectivity of fracture network is good. However, the TADDP
model did not incorporate the effect of unfractured region between two fracture planes.
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Chapter 3

Numerical Laplace Inversion of
Fracture Flow Solution

3.1 Introduction

The economic production from unconventional plays compliments the stimulation by
hydraulic fracturing and horizontal drilling. Reservoir engineers make their invest-
ment decisions based on two classes of fluid flow models of fractured reservoir with
embedded hydraulic fractures (Xu, Li, Du, et al., 2011). The first class of those mod-
els includes the decline curve models which are developed by following the decline
trend of the rates. These models, developed by Arps et al. (1945), requires knowl-
edge of a distinctive line between the transient and boundary dominated flow periods
and do not involve reservoir parameters in the analysis of forecasting rates. These
limitations of decline models made the other class, analytical models, attractive for
predicting rates and estimating reserves. The development of a fully analytical model
for a complex geometry posed by multifractured reservoir is always cumbersome and if
the solution is found, it often involves infinite series solution which is not well suited
for forecasting and history matching with field data. However, the semi-analytical
models, that requires a part of the model to be dealt with numerical methods, have
been the best tool that allow reservoir engineers to obtain solutions to the complex
problems of different geometries (Furman & Neuman, 2003). Unlike the common
practice, the history matching with the developed model is much easier when it is
performed entirely in Laplace domain (La, 2015). In all of these applications of LT,
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numerical inversion from Laplace domain to the real time domain is a crucial part and
the possible errors form this segment is often neglected in the process. The numerical
inversion of LT could be a potential source of errors if the accurate method with a
desirable range of method parameter is not chosen for the inversion job. There is a
large volume of published studies describing the methods of inverting Laplace trans-
form from the complex domain to the real-time domain. So, it is natural and timely
to assess the applicability of these methods in the problems of fluid flow through
fractured media. We investigate the applicability of these methods in solving flow
problems of fractured reservoir.This study has focused on the two directions of the
inverse problems associated with the fractured reservoir modelling: First is to inves-
tigate the applicability to a wide range of inversion problems and the other one is the
numerical accuracy of the approximant which can be obtained on a digital computer.
We start off the discussion of the four methods by defining the Laplace transform and
inverse Laplace transform equation:

F (s) =
ˆ ∞

0
e−stf (t) dt (3.1)

f (t) = lim
T→∞

1
2πi

ˆ a+iT

a−iT
estF (s) ds (3.2)

Here, s is a complex variable in the Laplace domain. F (s) represents the function
defined in Laplace domain that needs to be inverted to the time domain to obtain
f (t).

3.2 Numerical Laplace Inversion Methods

3.2.1 Fourier Series Method

A considerable amount of literature has been published on the Fourier series method
of Laplace transform inversion. The main idea of these methods lies in converting the
basic Laplace inversion equation into a Fourier transform and then approximating the
time function using a certain Fourier series. The development of this method starts
with replacing s with (a+ iv) in the original inverse equation (Abate & Valkó, 2004).
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f (t) = 2eat
π

ˆ ∞
0

[Re {f (a+ iv)} cos (vt)− Im {f (a+ iv) sin (vt)}] dv (3.3)

Crump(1976) showed that the function f̂ (s) and f (t) can be written in terms of
Fourier Cosine transform.

Re {f (s)} =
ˆ ∞

0
eatf (t) cosvtdt (3.4)

f (t) = 2eat
π

ˆ ∞
0

Re {f (s)} cosvtdv (3.5)

Therefore, it is evident that the continuous function f (t) should be completely de-
termined from the frequency spectrum of Re{f̂ (t)}.Dubner and Abate (1968) have
derived an approximation formula for evaluating f (t) with the application of trape-
zoidal rule. The approximate inversion formula is given by:

f (t) = 2eat
T

[
1
2Re {f (a)}+

∞∑
k=1

Re
{
f

(
a+ kπi

T

)}
cos

(
kπ

T
t

)]
(3.6)

They eliminated the cosine factor by letting T = 2t in the above equation to accelerate
the computation as there are no cosines and presented the following equation:

f (t) = eat

t

{
1
2F (a) + Re

n∑
k=1

F

(
a+ i

kπ

t

)
(−1)k

}
(3.7)

3.2.2 Fixed Talbot Method

Talbot (1979) proposed an approach to invert a function defined in Laplace domain
by deforming the standard contour in the Bromwich integral. Later, Abate and Valkó
(2004) upgraded the method by fixing the contour path which led to Fixed Talbot
algorithm. This method approximates the inverse of any Laplace transform by the
following equation,

f (t) = r

M

{
1
2f (r) exp (rt) +

M−1∑
k=1

Re [exp (ts (θk)) f (s (θk)) (1 + iσ (θk))]
}

(3.8)
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Where, s (θ) and σ (θ) are defined as below:

s (θ) = rθ (cotθi) , − π < θ < +π

σ (θ) = θ + (θcotθ − 1) cotθ
(3.9)

And, θk is defined as,
θk = kπ

M
, r = 2M

5t (3.10)

3.2.3 Gaver-Stehfest Method

Stehfest algorithm (Stehfest, 1970) is the one which has been widely used to invert
Laplace transform irrespective of fields and problem types due to its simplicity for
implementation and the reported accuracy level. It should be remarkably noted here
that almost every research work concerning the pressure behaviour of wells over the
last few decades has based on the Gaver-Stehfest method (C.-C. Chen et al., 1996).
This method has been derived from, an alternative way of evaluating inverse problem,
the Post-Widder method proposed by Abate and Whitt (1995). Post Widder method
evaluates f (t) as a pointwise limit of φk (t) as φ→∞.

φk (t) = (−1)k

k!

(
k

t

)k+1

f (k)
(
k

t

)
(3.11)

Where f̂ (k) (s) represent the nth derivative of f̂ (s). One main advantage of this
formula is that it avoids the computation for complex arguments and also it computes
f (t) from the value of and its derivatives. However, the evaluation of f̂ (s) and it’s
derivatives. However, the evaluation of f̂ (s) to the nth derivative and the associated
round-off errors in computing binomial coefficient makes the formula less accurate
and less efficient. During the investigation for the assessment of time dependent
behaviour of stochastic processes, it was found that the Post Widder’s formula can be
transformed into a discrete equation which does not require to evaluate the high order
derivatives. Those discrete version of equation 13 are known as Gaver functionals and
can be written as (Gaver Jr, 1966),
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fk (t) = (−1)k
(

2k
k

)
∆kf (kτ) = kτ

(
2k
k

)
k∑
j=0

(−1)j
(
k

j

)
f ((k + j) τ) (3.12)

Where τ = ln2
t

and ∆ denotes the forward difference operator,

∆f (nτ) = f ((n+ 1) τ)− f (nτ) (3.13)

Gaver Jr (1966) also showed that fk (t) can be represented by an asymptotic expansion
which leads to f (t) as k approaches to ∞.

fk (t) ∼ (t) + α1

k
+ α2

k2 + . . . (3.14)

Where α1, α2.... are the functions of t. This asymptotic expansion suggests that the
value of k should be chosen as a very large number to obtain (t) with desirable
accuracy. However, this expansion provides an insight to apply different sequence
acceleration methods to obtain the convergence of the sequence faster than the usual.
The Gaver functionals can also be computed by the following recursive relations.

Gn
0 = nτ f̂ (nτ) , n ≥ 1 (3.15)

G
(n)
k =

(
1 + n

k

)
G

(n)
k−1 −

(
n

k

)
G

(n+1)
k−1 , k ≥ 1, n ≥ k (3.16)

fk (t) = G
(k)
k (3.17)

Stehfest (1970) exploited the useful features of Salzer sequence acceleration scheme
and applied it on the Gaver functionals to find the inversion of Laplace transform
(Salzer, 1954). The approximation of (t) using Stehfest algorithm can be written as,

f (t) = ln2
t

N∑
j=1

Ajf

(
jln2
t

)
(3.18)

Aj = (−1)(
N
2 +1)

min(j,N2 )∑
k=( j+1

2 )

k(N2 +1) (2k)!(
N
2 − k

)
!k! (j − k)! (2k − 1)!

(3.19)
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Where N, Stehfest number, should necessarily be even and it represents the number
of the total coefficients. The value of the coefficients does not depend on the elements
of the time domain. In a fixed machine precision, as the value of M increases, the
accuracy of the approximantf (t,M) also increases to a certain limit, thereafter the
instability and the error of the approximation become pronounced.

3.2.4 Gaver-Wynn-Rho Method

Abate and Valkó (2004) exploited the ability of nonlinear sequence acceleration meth-
ods and presented an effective Laplace inversion method which produces accurate re-
sults in a multiprecision computing environment. The sequence of Gaver functionals
shows a logarithmic convergence behaviour, which can be mathematically written by
the following equation,

lim
k→∞

f (t)− fk+1 (t)
f (t)− fk (t) = 1 (3.20)

The authors assessed the acceleration of convergence for the sequence of Gaver func-
tionals by applying five sequence acceleration methods and conclusively showed that
Wynn’s Rho algorithm is the most effective acceleration scheme and it provides reli-
able performance on a wide variety of time functions. Other sequence transformations
used in that study were Levin’s u-transformation, Lubkin’s iterated w-transformation
and Brzezinski’s theta algorithm. The recursive Wynn rho algorithm is given by
(Wimp, 1981),

ρ
(n)
−1 = 0, ρ(n)

0 = fn (t) , n ≥ 0 (3.21)

ρ
(n)
k = ρ

(n+1)
k−2 + k

ρ
(n+1)
k−1 − ρ

(n)
k−1

, k ≥ 1 (3.22)

Here fn (t) are the Gaver Functionals with n representing the number of elements of
Gaver sequence that have been used in the corresponding transformation. The value
of the approximant to f (t) is evaluated from the following term of the algorithm,

f (t,M) = ρ
(0)
M (3.23)
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Where M must be an even integer. The recursive algorithms produce a matrix which
takes the form of the following:,

ρ
(0)
−1 f0 (t) ρ

(0)
1 ρ

(0)
2 ρ

(0)
3 · · · · · · ρ

(0)
n−2

ρ
(1)
−1 f1 (t) ρ

(1)
1 ρ

(1)
2 ρ

(1)
3 · · · · · · ρ

(1)
n−2

ρ
(2)
−1 f2 (t) ρ

(2)
1 ρ

(2)
2

... . . .

ρ
(3)
−1 f3 (t) ... ... ...
... ... ... ... ρ

(n−4)
3

... ... ... ρ
(n−3)
2

... ... ρ
(n−2)
1

ρ
(n)
−1 fn−1 (t)

(3.24)

From the above matrix, the value of f (t) is approximated from the last element of
the first row which is ρ(0)

n−2. It should be noted that the alternating signs and the
binomial coefficients are the good source of round-off errors in the computation of
Gaver functionals in a fixed precision environment. As the value of M increases
the accuracy of the approximant is supposed to increase too, but the round off errors
eclipses the effect of choosing largeM . Hence, Abate and Valkó (2004) suggested that
the computation should be performed in a multiprecision computational environment
which allows for the following requirement,

Number of precision decimal digits = (2.1)M

The relative error estimate for the Gaver Wynn Rho algorithm was found to be the
following,

∣∣∣∣∣f (t)− f (t,M)
f (t)

∣∣∣∣∣ ∼ 10−0.8M (3.25)

That is the obtained accuracy in the evaluation of f (t) is about 0.8M significant
digits.
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3.3 Comparative Analysis with Analytical and Nu-
merical Results

A significant number of inversion methods are available in the literature. As we
are focusing on the capability of inverting a fracture flow solution, two general test
functions and one fracture flow solution will be tested here.

3.3.1 Comparison with Example Functions

Two test functions were selected to analyze the applicability of the discussed four
methods. The tested functions were carefully chosen where the first one represents
an oscillating function and the other one shows an exponential decline. From the
discussion of the four methods, it is evident that all of these methods are subjected
to the round off and truncation errors. The elimination of truncation errors could be
minimized by considering a large number as the algorithm’s characteristic number.
However, the effect of round off errors is tested using computing environments with
different precisions.

� Test function 1
f (s) = 1

(1 + s2)0.6 (3.26)

� Test function 2
f (s) = 1

(1 + s)2 (3.27)

Figure 3.1 shows the performance of the inversion methods applied to the test
functions. In this figure, it can be seen that GWR, Fixed Talbot and Fourier methods
are in good agreement with the analytical solution. The computation was done in
MATLAB where the default precision is Double (to the 16 significant digits). However,
the Stehfest method show a diversion from the analytical solution. The Stehfest
number, N, was chosen 14 to invert the test function 1. The Stehfest number is
important in achieving precision in the inversion. The inversion of second test function
provides excellent match with the analytical result. Only the Fourier method diverges
in the late time periods in a small extant.
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Figure 3.1: Inversion of test function 1 and 2 compared against the analytical solution

As the accuracy of the Gaver-stehfest method, at 32 significant digits, is poor in
comparison with the exact analytical solution, the inversion of function 1 with big
Stehfest number (N = 26) is computed and shown graphically in Figure 3.2. In this
case, the default precision was changed and set to the 100 significant digits. The plot
shows a comparison that how a computing environment can affect the inversion results.
The left plot was computed in double precision with N = 26 and the right plot was
computed in symbolic environment of MATAB with precision level 100. As can be seen
from the plot, the inversion overlapped with the exact solution perfectly ultimately
improving the accuracy. Therefore, the accuracy of finding an accurate inversion
result from Gaver-stehfest depends on both computing environment and the number
of Sthefest coefficient to be considered. From the analysis it can be summarized that
GWR, Talbot and Fourier methods perform well in a double precision environment.
The Stehfest algorithm should be used in a symbolic environment to achieve high
accuracy.

3.3.2 Comparison with Single Compartment Fracture Solu-
tion

In order to analyze the applicability and accuracy of the presented four methods to
the solution of fracture flow, a simplistic yet standard model is chosen. The solutions
derived in a multi-fractured horizontal reservoir requires the Laplace variable to be
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Figure 3.2: Inversion of Test function by Gaver-stehfest method; Left: when computed
with the default precision level (to the 32 significant digits); Right: when computed
in higher precision level (to the 100 significant digits)

nested a number of lumped parameters. The nesting of the Laplace variable makes
it difficult to arrive at an analytically inverted result. The numerical inversion of
those problems become the last resort to achieve the result and interpret well data.
The model simulates single phase oil flow from a multi-fractured reservoir into an
infinitely conductive fracture. The single compartment system consists of evenly-
spaced, transverse hydro-fractures in a rock matrix. The geometry of the problem is
shown in Figure 3.3.

The diffusivity equations that governs fluid flow in matrix are,

∂2pDm
∂y2

D

=∂pDm
∂tD

pDm (yD, 0) = 0

pDm (−1, tD) = 0

pDm (= 1, tD) = 0

(3.28)

We can solve the equation (3.28) at least three ways: fully analytically , semi-
analytically and numerically. The results from the semi-analytical solution using the
four inversion methods are compared against the results from analytical solution and
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Figure 3.3: Flow geometry of single compartment multi-fractured horizontal reservoir
(adapted from La, 2015)

a numerical simulator. The results of numerical solution was adopted from La (2015).
The problem was simulated in CMG simulator. Reservoir specification used in the
simulation and the analytical solution process are listed in Table 3.1.

• The analytical solution

qt (t) = 2E
F

∞∑
n=1

e
−φ2(2n−1)2t

4F2 (3.29)

• The semi-analytical solution using Laplace Transform

q (s) = E√
s

tanh
(
F
√
s
)

E = 4 (N − 1)Afkm (pi − pwf )
µ
√
αm

F = ye
2√αm

(3.30)

The analytical solution of the equation (3.28) involves infinite series which is in-
compatible and somewhat cumbersome in the history matching and well test data in-
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Table 3.1: Reservoir specifications used in the reservoir simulation model by La (2015)

Parameters Values

Reservoir grid configuration 101× 1× 1
Reservoir size 50.5ft× 1000ft× 10ft
Initial reservoir pressure, pi, psia 5000
Bottom hole flowing pressure, pwf , psia 2000
Matrix permeability, km, md 0.01
Matrix porosity, φm 6.5× 10−2

Fracture width, wF , ft 0.5
Oil viscosity, µ, cp 2.0
Oil saturation, Sw 1.0
Total compressibility, ct, psi−1 3.7× 10−5

terpretation. On the other hand, the Laplace solution provides advantages in history
matching as reported by (La, 2015). The figure 3.4 presents analytical and numerical
solution of the problem and comparison of the four methods. Because the analytical
solution itself is an infinite series approximation, the coherence of the results from
numerical simulator and analytical approximate solution was checked and found in
good agreement. The comparison with the inversion methods shows that GWR and
Talbot method performs excellent in achieving accuracy. In order to quantitatively
evaluate the performance of these methods, we calculate four error measures of these
algorithms. The error measures are defined below,

� Root Mean Squared Error (RMSE)

RMSE =
√∑n

i=1 (Xact −Xsemi)
n

� Mean Absolute Percentage Error (MAPE)

MAPE = 1
n

n∑
i=1

∣∣∣∣Xact −Xsemi

Xact

∣∣∣∣× 100%
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� Normalized Root Mean Squared Error (NRMSE)

NRMSE = RMSE
Xmax −Xmin

� Le (Davies & Martin, 1979)

Le =
∑n
i=1 (Xact −Xsemi)2 e−i√∑n

i=1 e
−i

10-3 10-2 10-1 100 101 102

Time, day

10-6

10-4

10-2

100

102

104

O
il

 F
lo

w
 R

a
te

, 
m

3
/d

a
y

CMG

Analytical

10-3 10-2 10-1 100 101 102

Time, day

10-6

10-4

10-2

100

102

104

O
il

 F
lo

w
 R

a
te

, 
m

3
/d

a
y

Analytical and

Numerical (CMG)

Fixed-Talbot

Gaver-Wynn-Rho

Gaver-Stehfest

Fourier Series

Figure 3.4: Results from analytical and numerical simulator (Left) and; Comparison
of four methods against analytical and numerical results (Right);

Table 3.2 lists the error measures of the four algorithms for the initial values and
Table 3.3 lists the errors when the entire data set is taken into account. From a
close inspection of the errors, it can be seen that Fourier method completely fails
to converge with the analytical result at the late time periods as the MAPE error
measures are increasing in a significant way. The Stehfest show a little diversion
in the late time periods and the MAPE measure is also greatly increased when full
dataset was accounted for. The accuracy from Stehfest could be increased if it is
applied in a symbolic environment (sym and vpa function in MATLAB, MAPLE,
Mathematica) with high number of Stehfest coefficients. However, the Gaver-Wynn-
Rho and Fixed Talbot algorithms performs well in accurately inverting the fracture
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flow solution.

Table 3.2: Error measures for the initial time values (first 50 points) of the fracture
flow problem

Inversion Methods RMSE NRMSE MAPE Le

Fourier Series Method 34.7749 0.0911 20.8873 35.6501

Fixed Talbot Method 0.5195 0.0014 0.7878 0.4928

Gaver-stehfest Method 0.5195 0.0014 0.7878 0.4928

Gaver-Wynn-Rho Method 0.5195 0.0014 0.7879 0.4928

Table 3.3: Error measure for the full data set values (118 points) of the fracture flow
problem

Inversion Methods RMSE NRMSE MAPE Le

Fourier Series Method 22.6830 0.0561 4.6853× 104 33.2056

Fixed Talbot Method 0.4012 9.914× 10−4 0.7879 0.5018

Gaver-stehfest Method 0.4012 9.914× 10−4 219.9678 0.5017

Gaver-Wynn-Rho Method 0.4012 9.914× 10−4 0.7879 0.5018

From the above analysis, it can be concluded that the possible truncation errors
and round off errors could be minimized if a perfect combination of precise comput-
ing environment and large number of inversion coefficient is considered. The analysis
is important because it establishes confidence in employing a particular inversion
method to a obtain a solution in time domain. GWR methods performs very well
irrespective of the function types and show excellent agreement with the compart-
mentalized solution of multi-fractured well. It should be noted that Fixed Talbot
is also a good candidate for choosing as a tool for inversion, however special atten-
tion should be taken as it involves imaginary values in the computations. The most
popular Gaver-stehfest algorithms shows poor convergence when applied in double
precision computing environment with big/small number of Stehfest coefficient. Also,
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It is recommended that the large Stehfest number should be considered and the com-
putation should be employed in symbolic environment to obtain high accuracy at late
time periods of fracture flow solution.

3.4 Conclusion

The following conclusions can be drawn from the assessment of four widely used
Laplace inversion methods:

� Gaver-Wynn-Rho algorithm and Fixed Talbot performs well in the inversion
of a variety of functions. The algorithms also produce accurate result in the
inversion of nested fracture flow solution.

� Stehfest algorithm accumulates round off errors when it is used in the inversion
of oscillating function. In order to obtain good result with Stehfest algorithm,
big Stehfest number should be chosen for the inversion and the computation
should be done in symbolic environment.

� If MATLAB is used as a computational tool for the inversion, the Sym and VPA
function should be used for better result.
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Chapter 4

Induced Branch-fracture
Subdiffusive Flow Model

4.1 Introduction

The Induced Branch-fracture Subdiffusive Flow (SIBFF) 1 model couples hydrauli-
cally induced fracture network and subdiffusive flow in tight or shale matrix into a
new semi-analytical flow model. Most of the analytical flow models including the pro-
posed SIBFF model are the upgrades of the classical trilinear flow model developed
by Ozkan et al. (2009). In most cases, earlier models have based their idealization
on the assumption of constant, isotropic and homogeneous reservoir properties. Al-
though, few models have incorporated spatial variation of the reservoir properties in
their formulation, they carry with them a number of limitations. Table 4.1 presents
a comprehensive comparison of the features of the proposed model with the other
standard analytical models. The newly developed model connects a realistic physical
model with the subdiffusive flow in unconventional reservoir. In order to capture the
field scale heterogeneity after stimulation, this study incorporates the spatial variation
of branch-fracture permeability in the stimulated reservoir volume (SRV). The flow
domain, derivation steps and pseudo-function assumptions are analogous to those of
Five Region model by Stalgorova and Mattar (2013). However, the proposed model
brings unique complexity due to the incorporation of exponential branch-fracture per-

1For the ease of pronounciation, we rearranged the exact acronym "IBFSF" to "SIBFF". The
word "SIBFF" can easily be pronounced as "siff"
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meability field into the diffusion equation and it was taken care of by applying Bessel
functions and an integral transform.

The major features of the SIBFF model can be summarized as:

- Multi-Region flow with sub or normal diffusion: Two regions in the outer reser-
voir, Induced fracture and spherical matrix idealization in SRV, inner unfrac-
tured region and hydraulic fracture.

- Anisotropic stimulated reservoir volume

- Subdiffusive flow in the spherical matrix blocks of SRV matrix

- Subdiffusion in the two regions of the outer reservoir

- Normal diffusion in induced fracture network due to the well connectivity of
induced branch fractures and reopened natural fractures

- Transient fluid transfer from sub diffusive spherical matrix to the induced frac-
ture with classical diffusion

- Application of innovative analytical methods to ease the complexities of the
SIBFF model, such as Laplace Transform, Bessel Transform and asymptotic
expansion; use of multiprecision Laplace inversion method (Gaver-Wynn-Rho
Method).

4.2 Physical Model Description

The skeleton of the proposed model is analogous to that of the Five-Region model
which was developed by Stalgorova and Mattar (2013). However, the SRV segment
of the new model assumes dual porosity idealization, whereas Five-Region model as-
sumed a homogeneous SRV with higher permeability. Figure 4.1 depicts a top view
of a multiple fractured horizontal well (MFHW) in an unconventional reservoir. The
reservoir segment in each symmetry element (red dotted in Figure 4.1) is divided
into five flow regions: hydraulic fracture, SRV and region 2 in inner reservoir and
region 3 and 4 in the outer reservoir. This model assumes that the hydraulic frac-
ture in each stage is of a biwing transverse shape and maintains an equal distance
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Table 4.1: Model features comparison of the proposed model with standard analytical
models

Model Features

Models
Ozkan et
al. (2009)

Stalgorova
and
Mattar
(2013)

Ozcan
(2014b)

Fuentes-
Cruz,
Gildin,
Valkó, et
al. (2014)

Albinali et
al. (2016)

The proposed
Model

1. Transport Medium in
SRV

Isotropic Isotropic Isotropic Isotropic Isotropic Anisotropic

2. Scale Variability of
Permeability

Uniform Uniform Uniform Exponential Uniform Exponential

3. Regions in Outer
Reservoir

One region Two re-
gions

One region None One region Two regions

4. USRV in inner reser-
voir

Not Considered Considered Not con-
sidered

Not con-
sidered

Not con-
sidered

Considered

5. Matrix blocks in SRV Horizontal slab N/A N/A Vertical
slab

Spherical Spherical

6. Diffusion in SRV Ma-
trix

Classical Classical Subdiffusion Classical Subdiffusion Subdiffusion

7. Diffusion in SRV Frac-
ture

Classical N/A N/A Classical Subdiffusion Classical

8. Diffusion in Outer Re-
gion

Classical Classical Classical Classical Subdiffusion Subdiffusion

from the nearby hydraulic fracture stages. The uniform spacing assumption between
hydraulic fractures is realistic because it is a completion norm for MFHW to design
equally spaced hydraulic fractures with similar properties. Necessarily, a complex
branch fracture network composed of induced fractures and reopened natural fracture
is created around each of the hydraulic fractures during the stimulation operation.
Since, the complexity and orientation of the induced fracture network is so convoluted,
the exact idealization of the induced network is difficult to simulate in a realistic way.
Hence for simplicity, the SRV segment is considered as an alternating stack of spherical
matrix and induced fracture continuum. The half-length of the hydraulic fractures
indicates the spread of the inner reservoir and the range of the stimulation job. Region
2 indicates that there lies an unfractured region between two consecutive hydraulic
fractures.
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Figure 4.1: Top view of a horizontal well and symmetry element (red dotted) of
the proposed model; R2= region 2, R3= region 3, R4=region 4, SRV= Stimulated
Reservoir Volume

4.3 Development of the Semi-analytical Solution

This section presents a description of the governing flow equations with necessary
boundary conditions for five different regions of multi-fractured reservoirs and deriva-
tion to find the bottomhole pressure solution. The formulation of analytical solution
for fluid flow in fractured reservoir always poses a difficulty to couple different regions.
In this study, the pressure continuity and flux continuity at the interface of every two
regions has been considered to couple the pressure diffusion. In the proposed model,
fluid flows from the outer reservoir (Region 3 and Region 4) to the inner reservoir
following subdiffusion phenomenon, then to the induced branch-fractures to the SRV,
then to the primary hydraulic fracture plane and ultimately to the wellbore. For each
segment of the reservoir, there exist a different governing diffusivity equation with
different boundary conditions. With the help of Laplace transform, the pressure solu-
tion for each segment of figure 4.1 is achieved. The pressure solution is then coupled
through flux continuity and pressure continuity. A representative term from each seg-
ment carries diffusion information to the other segment and finally yields a pressure
solution for the bottomhole of the horizontal well. The obtained bottomhole pressure
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in Laplace domain is then inverted back to real time domain using Gaver-Wynn-Rho
algorithm.

The mathematical derivation of the proposed model starts with honouring the
laws of physics. The mass balance or continuity equation with a source from the
neighbouring matrix stack or fracture stack could be written as,

∇ · (ρ~v) + Q̇m = −∂ (φρ)
∂t

(4.1)

where ρ = fluid density, ~v = fluid velocity, φ = porosity of the medium and Q̇m de-
notes the source term from the neighbouring matrix/fracture stack representing the
influx of mass into the control volume for a time interval of dt. Equation (4.1) is the
most fundamental diffusivity equation for fluid flow in a media with a source and it
is a starting point for the models to derived and analyzed here. The ∇ notation is
used here for the compatibility of Equation to the various flow geometry, appropriate
operators will be used in the later developments of the derivation corresponding to
rectangular flow geometry. To incorporate pressure in the derivation we need a de-
scription of the velocity term in terms of pressure. During the classical diffusion in
the porous media, the Darcy’s law predict the velocity of the fluid. Darcy’s law,

~v = −k
µ

(∇p+ ρ~g) (4.2)

where ρ~g denotes the gravitational effect. However, since we are assuming horizontal
linear flow in each of the flow medium, this term can be neglected. Then using the
definition of the fluid compressibility, Equation (4.2) reduces to,

c(∇p)2 +∇ ·
(
k

µ
∇p

)
+ Q̇ = φc

∂p

∂t
(4.3)

The c (∇p)2 in Equation (4.3) is nonlinear, as this term squares the gradient of pressure
and multiplies this group by another weak function of pressure, fluid compressibility.
Solution of nonlinear equation with a source term poses multiple difficulty to achieve
an analytical pressure equation. An analytical solution developed by Finjord, Aadnoy,
et al. (1989) using perturbation method is not well suited for the interpretation of
well test data. However, c (∇p)2 term approaches to zero for the assumption of small
and constant fluid compressibility value. Therefore, for a slightly compressible fluid ,
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the governing diffusivity equation reduces to,

∇ ·
(
k

µ
∇p

)
+ Q̇ = φct

∂p

∂t
(4.4)

Before moving on to the core derivation segment, the pressure variable is changed to
the pressure difference ∆p = pi − p, where pi is the initial reservoir pressure. This
transformation facilitates the derivation in making initial condition zero and boundary
conditions favourable. In terms of pressure difference ∆p while velocity is positive in
the opposite direction of positive gradient, we write,

~v = −k
µ
∇(∆p) (4.5)

As the dominant fluid flow in unconventional matrix conituum is sub-diffusion, a
fractional velocity term should be used in the 4.1. Assuming a Continuous-Tine-
Random-Walk process in the particle displacement of the diffusion in porous media, a
fractional velocity equation incorporating subdiffusion is given by (Fomin et al., 2011;
C. Chen & Raghavan, 2015; Raghavan, 2011),

~vx = −kβ
µ

∂1−β

∂t1−β
∂∆p
∂x

(4.6)

In this study, we only focus on the subiffusive behaviour of unconventional matrices,
the anomalous diffusion term, β, is therefore referred to subdiffusion exponent in the
rest of the thesis. The fractional derivative term in (4.6) is defined using Caputo’s
definition,

∂1−β

∂t1−β
{p (x, t)} = 1

Γ (β)

ˆ t

0

∂p (x, t)
∂t

(t− τ)−(1−β) dτ (4.7)

4.3.1 Subdiffusive Fluid Transport in Region 4

Governing diffusivity equation to be applied in the region 4 of the figure 4.1 can be
derived from Equation (4.1) and (4.6). That is:

∂

∂x

(
kβ
µ

∂1−β

∂t1−β
∂∆p4

∂x

)
= (φct)

∂∆p4

∂t
(4.8)

Equation (4.8) is subjected to the following initial and boundary conditions which
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Figure 4.2: Schematic of region 4 of the outer reservoir and its governing equations

facilitate to find the pressure solution for Region 4. Figure 4.2 depicts the boundary
of the region 4 and also presents the governing diffusivity equation and boundary
conditions.

� Initial condition (Initial reservoir pressure prevails everywhere at t = 0):

∆p|t=0 = 0 (4.9)

� Boundary condition 1 (No flow boundary at x = x2):

∂∆p4

∂x

∣∣∣∣∣
x=x2

= 0 (4.10)

� Boundary condition 2 (Pressure continuity at the interface of Region 4 and
Region 2):

(∆p4) |x=x1 = (∆p2) |x=x1 (4.11)

By exploiting the features of Laplace transform and the dimensionless variables
defined in Table 4.2, the pressure solution is derived in Appendix A.1. Therefore, the
derived pressure solution for the domain of region 4 is,

p4D = (p2D)
cosh

[√
ε4 ( x2D − xD)

]
cosh

[√
ε4 ( x2D − x1D)

] (4.12)

38



It should be stated that the bar over the function represents the Laplace transform of
that function. In Equation (4.12), ε4 carries all the necessary subdiffusion information
to the neighbouring reservoir segment while coupling is performed.

ε4=
(
x2
F

ηβ

)(
ηi
x2
F

)β
sβ (4.13)

Table 4.2: Dimensionless and scaled variables used in the formulation of the proposed
SIBFF model

Dimensionless and scaled variables

Pressure differential, ∆p (pi − p)

Dimensionless length in the x-direction xD = x
xF

Dimensionless length in the y-direction yD = y
xF

Dimensionless radius rD = r
xF

Dimensionless pressure pD = 2πkihft(p−pi)
qBµ

= 2πkihft
qBµ

(∆p)

Dimensionless time tD = kit
(φµct)i

x2
F =

(
ηi
x2
F

)
t

Dimensionless flowrate qD = qBµ
2πkihft(p−pi)

= qBµ
2πkihft(∆p)

Dimensionless diffusivity ηD = η
ηi

Hydraulic fracture conductivity CFD = kFwF h
kixF hft

Average intrinsic branch-fracture permeability in x-
direction

kx = ki
(
kβD−1
βD

)

Bulk permeability in x-direction k̃x = kxhft
h

Bulk permeability in y-direction k̃y = kβihft
h

Also, derivative of Equation (4.12) at xD = x1D is calculated for flux from the region
4 to the region 2:
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∂∆p4D
∂xD

∣∣∣∣∣
xD=xiD

= −(p2D)|xD=xiD
√
ε4tanh [√ε4 (x2D − x1D)] (4.14)

4.3.2 Subdiffusive Fluid Transport in Region 3

Region 3 and Region 4 are two part of the outer reservoir. In most cases the char-
acteristic parameters in both regions are same. The governing diffusivity equation is
same as region 3. However, the boundary conditions differs from one another as this
region is contiguous with the SRV. The governing diffusivity equation can be written
as,

∂

∂x

(
kβ
µ

∂1−β

∂t1−β
∂∆p3

∂x

)
= (φct)3

∂∆p3
∂t

(4.15)

Equation (4.15) is subjected to the following initial and boundary conditions which
facilitate with finding an exact solution for the Region 3. Figure 4.3 depicts the
boundary of the region 3 and also presents the governing diffusivity equation and
boundary conditions.

� Boundary Condition 1 (No flow boundary at x = x2):

∂∆p3
∂x

∣∣∣∣∣
x=x2

= 0 (4.16)

� Boundary condition 2 (Pressure continuity at the interface of region 3 and SRV
branch-fractures):

(∆p3)|x=x1
= (∆pi)|x=x1

(4.17)

By applying Laplace transform and the dimensionless variables defined in Table
4.2, the pressure solution is derived in Appendix A.2. Therefore, the derived pressure
solution for the domain of region 3 is,

p3D = (piD)|xD=x1D

cosh
[√
ε3 (x2D − xD)

]
cosh

[√
ε3 (x2D − x1D)

] (4.18)
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Figure 4.3: Schematic of region 3 of the outer reservoir and its governing equations

Like ε4 of the region 4, ε3 carries all the necessary subdiffusive information to the
neighbouring SRV segment while coupling is performed by transfer functions.

ε3=
(
x2
F

ηβ

)(
ηi
x2
F

)β
sβ (4.19)

The derivative of Equation (4.18) at xD = x1D is evaluated as this function will be
used in SRV branch-fracture solution.

∂p3D
∂xD

∣∣∣∣∣
xD=x1D

= −(piD)|xD=x1D

√
ε3tanh [√ε3 (x2D − x1D)] (4.20)

4.3.3 Subdiffusive Fluid Transport in Region 2

The diffusion equation in region 2 involves x and y component of the fluid flux due
to the need for coupling of region 4 influx. The governing diffusivity equation can be
written as,

∂

∂x

(
kβ
µ

∂1−β

∂t1−β
∂∆p2

∂x

)
+ ∂

∂y

(
kβ
µ

∂1−β

∂t1−β
∂∆p2

∂y

)
= (φct)2

∂∆p2
∂t

(4.21)

The diffusivity equation (4.21) is subjected to the following initial and boundary
conditions that will be used to search for a exact solution for the domain of region
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Figure 4.4: Schematic of region 2 of the outer reservoir and its governing equations

2. The necessary boundary conditions and governing equations are also depicted in
figure 4.4.

� Boundary condition 1 (Flux continuity at the interface of region 4 and region
2)

(q4)|x=x1
= (q2)|x=x1

(4.22)

� Boundary condition 2 (No flow boundary at y = y2)

∂∆p2
∂y

∣∣∣∣∣
y=y2

= 0 (4.23)

� Boundary condition 3 (Pressure continuity at the interface of SRV branch-
fracture and region 2)

(∆p2)|y=y1
= (∆pi)|y=y1

(4.24)

By applying Laplace transform and the dimensionless variables defined in Table
4.2, the pressure solution is derived in Appendix A.3. Therefore, the derived pressure
solution for the domain of region 2 is,
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p2D = (piD)|y=y1D

cosh
[√
ε2 (y2D − yD)

]
cosh

[√
ε2 (y2D − y1D)

] (4.25)

In Equation (4.25), ε2 carries all the important information about region 2 to the SRV
branch-fracture. It should be noted that, the branch-fractures are the only medium
for fluid transport in SRV whereas spherical matrix acts as a storage of fluid.

ε2=
√ε4tanh [√ε4 (x2D−x1D)] +x

2
F

ηβ

(
ηi
x2
F

)β
sβ

 (4.26)

Also, derivative of (4.25) is calculated at yD = y1D for flux from region 2 to the SRV
branch-fractures.

∂p2D
∂yD

∣∣∣∣∣
yD=y1D

= −(piD)|yD=y1D

√
ε2tanh [√ε2 (y2D − y1D)] (4.27)

4.3.4 Exponential Branch-fracture Permeability Field in SRV

The fracturing job alters the permeability of the SRV region by generating branch-
fractures. The density and the size of the aperture of those fractures decreases away
from the primary fracture plane. It is assumed in this study that the generated
fractures are well-connected but having varying spatial permeability. Therefore, the
classic diffusion in the branch-fracture medium is a natural choice. The porosity of the
fracture medium is kept constant and the aperture of the fracture is also constant along
the width of the SRV. However, the assumption of constant aperture is compensated
by the consideration of the variation of permeability in the fracture continuum. The
fracturing treatment generates numerous branch fractures stemming from the primary
fracture plane due to the shear and tensile failure of the natural fractures away from
the main fracture plane (Palmer et al., 2007; Ge et al., 2011; Fuentes-Cruz, Gildin,
Valkó, et al., 2014). Fuentes-Cruz, Gildin, Valkó, et al. (2014) concluded that the
monotonic increase of permeability enhancement due to the induced branch-fractures
follows exponential trends after a stimulation job is carried out in unconventional
reservoirs. They defines the variability of permeability in single-porosity reservoir by
the following equation,
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Figure 4.5: Exponential branch-fracture permeability field (left); The variation of
fields in terms of different ki (right)

k (y) = k0
(
k∗

k0

) y
ye

(4.28)

This exponential variation of single porosity SRV is adopted and modified to the
geometry of the problem considering in this study. Therefore, the branch-fracture
permeability field for the proposed model is presented as,

k (y) = ki

(
kβi
ki

) y−wF /2
y1−wF /2

(4.29)

Where, ki is the highest permeability in the branch-fracture that happens in vicinity
of the primary fracture plane; kβi is the lowest permeability in the stimulation affected
space generated by hydraulic fracturing. kβi can be same as the matrix permeability
kβ. However, the quantity of kβi depends on the formation characteristics and stim-
ulation job. When kβi is same as the matrix inherent permeability, the ratio of ki to
kβi represents the stimulation ratio (SR) of SRV region. The stimulation ratio is an
indicator of stimulation job efficiency that could be determined if the branch-fracture
permeability is accounted for in the flow modelling multi-fractured reservoir.

In order to facilitate the incorporation of the field into the fracture diffusivity equation,
we convert Equation (4.29) into dimensionless form:
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kD (yD) = (kβD)
yD−wD/2
y1D−wD/2 (4.30)

Where, kβD = kβi
ki

and kβD represents the reciprocal of the stimulation ratio of the
stimulated reservoir volume.

SR = ki
kβi

= 1
kβD

(4.31)

In the SRV region, the permeability of branch fractures in y-direction is represented
by Equation (4.29). However, all the previous analytical models calculate the fluid
transfer at the interface of SRV and outer reservoir assuming isotropic condition in
SRV. However, The SIBFF model accounts for the anisotropy in permeability of
SRV. The permeability in the x-direction is assumed to be equal to the permeability
averaged over the interface of SRV branch-fracture and region 3. Therefore, the
permeability in the x-direction,

kx = kx (4.32)
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4.3.5 Subdiffusive Fluid Transport in SRV Matrix

Stimulated reservoir Volume (SRV) region is assumed to be consisted of two con-
tinua: one is spherical matrix continuum which is governed by fractional diffusion
equation and another is induced (exponential distribution) branch-fracture region
which is governed by normal diffusion. It should be noted that, in a well-connected
fractured region, the assumption of normal diffusion is a natural choice. The normal
diffusion in induced fractured permeability field not only captures the heterogeneity
in a realistic way, but also involves less number of unknown variables than the frac-
tional diffusion assumption. In this section, we resent the pressure solution derived in
Appendix A.4 for the SRV spherical matrix which will subsequently be incorporated
into the branch-fracture diffusivity equation. The governing diffusivity equation in
spherical matrix:

1
r2

∂

∂r

(
r2kβ
µ

∂1−β

∂t1−β
∂∆pm
∂r

)
= (φct)β

∂∆pm
∂t

(4.33)

The initial and boundary conditions that are imposed in the spherical matrix domain
are:

� Boundary condition 1
∆pm (r = 0, t) = 0 (4.34)

� Boundary condition 2 (Pressure continuity at the interface of spherical matrix
and branch-fracture medium)

∆pm|r=rm = (∆pi)|r=rm (4.35)

By applying the above boundary conditions , Laplace transform and dimensionless
variables (Table 4.2), the pressure solution for the spherical matrix domain is derived
in Appendix A.4. Therefore, the pressure solution:

pmD = rmD
rD

sinh
(√

εm rD
)

sinh
(√

εm rmD
) (piD)|rD=rmD (4.36)

Where,

εm=
(
x2
F

ηβ

)(
ηi
x2
F

)β
sβ (4.37)
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Also, the derivative of Equation (4.36) is calculated at rD = rmD for fluid influx from
spherical matrix to the SRV branch-fractures (see Appendix A.5).

(
∂pmD
∂rD

)∣∣∣∣∣
rD=rmD

=
(piD)|rD=rmD

rmD
[rmD
√
εmcoth (√εm rmD) − 1] (4.38)

4.3.6 Classic Diffusion in Branch-fracture Network

The branch fracture network is assumed well-connected and the gaussian distribution
of particle displacements prevail over a given time. Therefore, Fickian or classical
diffusion defines the fluid movement in branch-fracture medium. The spatial variation
of permeability described in section 1.2 and 4.3.4 is incorporated in the governing
diffusivity equation of branch-fractures. The governing equation can be written as,

∂

∂x

(
kx
µ

∂∆pi
∂x

)
+ ∂

∂y

(
k (y)
µ

∂∆pi
∂y

)
+ Q̇ = (φct)i

∂∆pi
∂t

(4.39)

Figure 4.7 depicts the necessary boundary conditions and the underlying govern-
ing equations. The branch-fracture diffusivity equation is subjected to the following
boundary conditions,

� Boundary condition 1 (Flux continuity at the interface of SRV branch-fracture
and region 3)

(qi)|x=x1
= (q3)|x=x1

(4.40)

� Boundary condition 2 (Flux continuity at the interface of SRV branch-fracture
and region 2)

(qi)|y=y1
= (q2)|y=y1

(4.41)

� Boundary condition 3 (Pressure continuity at y = wF/2)

(∆pi)|y=wF /2 = (∆pF )|y=wF /2 (4.42)

� Boundary condition 4 (Pressure continuity at y = y1)

(∆pi)|y=y1
= (∆p2)|y=y1

(4.43)
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Figure 4.7: Schematic of the top view SRV branch-fracture domain and its governing
equations

In Equation (4.39), Q̇ denotes the transient fluid transfer from the SRV matrix spheres
into the branch-fracture. According to de Swaan O et al. (1976), the matrix source
term should be the ratio of the total flux across the surface of a spherical matrix to
the half of the fracture volume envelope around each sphere. As shown in 4.8, the
SRV region is composed of repetitive nf units of array of spherical matrix and branch-
fracture slabs. The figure also shows a fracture volume envelope that is assumed to
be filled by the fluid influx from a single spherical matrix.
In the light of above discussion, the matrix source term can be written as,

Q̇ = −kβ (4πr2
m)

µ

∂1−β

∂t1−β

(
∂∆pm
∂r

)
r=rm

1
4πr2

m(hf/2 ) (4.44)

After the source term of Equation (4.44) is incorporated in Equation (4.40), the
exploitation of dimensionless variables and Laplace transform lead to,
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kxD

(
∂piD
∂xD

)∣∣∣∣∣
xD=x1D

+ ∂

∂yD

(
kD (yD) ∂piD

∂yD

)
− 2kβ
kihfD

(
ηi
x2
F

)1−β

s1−β
(
∂pmD
∂rD

)
rD=rmD

= s (piD)
(4.45)

Recalling the derivative of pressure solution for spherical matrix presented in Equation
(4.38),

(
∂pmD
∂rD

)∣∣∣∣∣
rD=rmD

=
(piD)|rD=rmD

rmD
[rmD
√
εmcoth (√εm rmD) − 1] (4.46)

Recalling Equation (4.20) and applying the flux continuity condition stated in Equa-
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tion (4.40), we can obtain the following,

(
∂piD
∂xD

)∣∣∣∣∣
xD=x1D

= −kβ
k̃x

(
ηi
x2
F

s

)1−β√
ε3tanh [√ε3 (x2D − x1D)] (piD)|xD=x1D

(4.47)

Plugging Equation (4.46) and (4.47) in Equation (4.45) results in,

− kxDkβ

k̃x

(
ηi
x2
F

s

)1−β√
ε3tanh [√ε3 (x2D − x1D)] (piD)|xD=x1D

+ ∂

∂yD

(
kD (yD) ∂piD

∂yD

)

− 2kβ
kihfD

(
ηi
x2
F

s

)1−β (piD)|rD=rmD
rmD

[rmD
√
εmcoth (√εm rmD) − 1] = s (piD)

(4.48)

Now, identifying the terms that are independent of yD and lumping them together
into a function of Laplace variable s reduces Equation (4.48) to,

∂

∂yD

(
kD (yD) ∂piD

∂yD

)
− εi (piD) = 0 (4.49)

Where,
εi = εa + εb + s (4.50)

And, the lumped model functions εa and εb are defined as:

εa = kxDkβ

k̃x

(
ηi
x2
F

s

)1−β√
ε3tanh [√ε3 (x2D − x1D)]

εb = 2kβD
hfDrmD

(
ηi
x2
F

s

)1−β

[rmD
√
εmcoth (√εm rmD) − 1]

(4.51)

Next, we incorporate the exponential branch-fracture permeability field to the
diffusivity equation of fracture medium. Recalling the branch-fracture permeability
field in dimensionless form from Equation (4.30),

kD(yD) = (kβD)
(
yD−wD/2
y1D−wD/2

)
(4.52)

To simplify branch-fracture diffusivity equation, we let the following:
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M =
(

lnkβD
y1D − wD/2

)
, zD = eM(yD−wD/2) (4.53)

Therefore, the diffusivity equation for branch-fracture can be simplified to the follow-
ing equation. (Details of this transformation is derived in Appendix A.5)

z2
D

∂2piD
∂zD

+ 2zD
∂piD
∂zD

−
(
εi
M2

)( 1
zD

)
piD = 0 (4.54)

Equation (4.54) resembles to the modified Bessel differential equation. In order
to find the solution to this equation, we complement the techniques of determining
solutions from a standard Bessel differential equation. Therefore, the general solution
to the modified Bessel differential equation can be written as below:

piD = z
−1/2
D

[
AI1

(
2√εi
M

z
− 1

2
D

)
+BK1

(
2√εi
M

z
− 1

2
D

)]
(4.55)

Here, I1 and K1 are the modified Bessel function of first and second kind.A and B are
two constants which needs to be evaluated with the available boundary conditions.
For the ease of algebraic manipulation, we let the argument of Bessel functions as:

X = 2√εi
M

z
− 1

2
D (4.56)

This simplifies Equation 4.55 to,

piD = z
−1/2
D [AI1 (X) + BK1 (X)] (4.57)

In order to obtain the exact pressure solution for branch-fracture domain, we need to
transform the constants A and B in terms of (piD)|yD=y1D

. Then, applying pressure
continuity at the interface of branch-fracture and primary fracture plane, we can
obtain the desired pressure solution for branch-fracture domain.

Now, the differentiation rules for Iν and Kν are given by,

I
′

ν (x) = Iν−1 (x)− ν

x
Iν (x)

K
′

ν (x) = −Kν−1 (x)− ν

x
Kν (x)

(4.58)

Taking the derivative of Equation (4.57) and evaluating at yD = y1D,
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(
∂piD
∂yD

)∣∣∣∣∣
yD=y1D

=
√
εi

kβD
[BK0 (X1)− AI0 (X1)] (4.59)

Recalling Equation (4.27) from Region 2 and implementing the boundary condition
stated in Equation (4.41), we can transform the constants A and B to:

A = D (piD)|yD=y1D

B = C (piD)|yD=y1D

(4.60)

Where, the lumped functions C, D and εα are defined as below,

C =


√
kβDI0 (X1)− εαI1 (X1)

K1 (X1) I0 (X1) +K0 (X1) I1 (X1)


D =


√
kβD

I1 (X1) −
(
K1 (X1)
I1 (X1)

)
C


εα =

(√
ε2√
εi

)(
kβkβD

k̃y

) (
ηi
x2
F

s

)1−β

tanh [√ε2 (y2D − y1D)]

(4.61)

This simplifies Equation (4.57) to:

(piD)| = z
−1/2
D [DI1 (X) + CK1 (X) ] (piD)|yD=y1D

(4.62)

Now, applying the pressure continuity condition stated in Equation (4.42) into Equa-
tion (4.62), we obtain,

piD = z
− 1

2
D

[
DI1 (X) + CK1 (X)
DI1 (X0) + CK1 (X0)

]
(pFD)|yD=wD

2
(4.63)

Equation (4.63) represents the exact pressure solution for branch-fracture domain in
terms of hydraulic fracture pressure. Where, X,X1and X0 are the arguments of I and
K and they are defined as below:
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X =
2√εiln

(
1

kβD

)
y1D − wD

e
(lnkβD)

(
yD−wD/2
y1D−wD/2

)

X1 =
2√εiln

(
1

kβD

)
y1D − wD/2

1√
kβD

X0 =
2√εiln

(
1

kβD

)
y1D − wD/2

(4.64)

The derivative of Equation (4.63) at yD = wD/2 is evaluated, as this function is
required to couple the branch-fracture solution with the primary fracture solution.
Therefore,

(
∂piD
∂yD

)∣∣∣∣∣
yD=wD/2

= εγ (pFD)|yD=wD
2

(4.65)

Where,

εγ = δ
√
εi

[
C K0 (X0)−D I0 (X0)
DI1 (X0) + CK1 (X0)

]
(4.66)

In the above equation, when kβD = kβ
ki
< 1, δ = −1. Equation (4.65) is now ready to

be coupled with the hydraulic fracture region to incorporate the effect of all the four
regions. The term εγ accounts for the effect of outer regions, inner unfractured region,
the branch-fracture permeability distribution in the SRV and the effect of fractional
diffusion in spherical matrix.

4.3.7 Classic Diffusion in Primary Fracture Plane

In the analytical modelling of fluid flow through multi-fractured reservoirs, the pri-
mary fracture plane is usually assumed as a porous medium with high permeability.
In this study, primary hydraulic fracture is modelled as a vertical rectangular slab
intersecting the horizontal wellbore. This medium is well connected and provides
less hindrance to flow. Therefore, the diffusion phenomena can be defined by using
classical diffusion formula. Fluid flows linearly from branch-fracture network to hy-
draulic fracture in the y-direction, then flows along the x-direction to the wellbore.
Flow inside the hydraulic fracture is also assumed linear. The diffusivity equation for
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hydraulic fracture region is,

∂

∂x

(
kF
µ

∂∆pF
∂x

)
+ ∂

∂y

(
kF
µ

∂∆pF
∂y

)
= (φct)F

∂∆pF
∂t

(4.67)

Figure 4.9 shows a schematic of the cross-section of primary fracture plane and its
governing equations. Equation (4.67) is subjected to the following boundary condi-
tions,

� Boundary condition 1 (Flux continuity at the interface of SRV branch-fracture
and primary fracture region)

(qF )|y=wF /2 = (qi)|y=wF /2 (4.68)

� Boundary condition 2 (Flux continuity at the interface of primary fracture plane
and the wellbore) (

Bqf
4

)∣∣∣∣
x=0

= (qF )|x=0 (4.69)

� Boundary condition 3 (No flow boundary at x = x1)

(
∂∆pF
∂x

)∣∣∣∣∣
x=x1

= 0 (4.70)

By applying Laplace transform and the dimensionless variables defined in Table 4.2,
the wellbore pressure solution is derived in Appendix A.6. Therefore, the derived
wellbore pressure solution in Laplace domain is,

pFD|xD=0 = pWD = π

s CFD
√
εF tanh

[√
εF
] (4.71)

Where, εF is a nested function of Laplace variable s and it carries the diffusion charac-
teristics and effect of all the other flow regions. CFD is hydraulic fracture conductivity.
The definition of CFD and εF are given below.
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Figure 4.9: Schematic of the cross-section of primary fracture plane and its governing
equations

CFD = kFwD

k̃i
= kFwFh

kixFhft

εF = s

ηFD
− 2
CFD

εγ

(4.72)

Therefore, Equation (4.71) presents the constant rate solution for the buttomhole
pressure of the proposed SIBFF model in Laplace domain. It should be noted that the
calculation of εF requires the evaluation of ε4,ε3,εm,ε2,εi,εα and εγ and these parameters
are functions of Laplace variable, s. Finally, we accumulate the final set of model
functions that should be evaluated to obtain the wellbore pressure in Laplace domain.
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ε4 = ε3=εm=
(
x2
F

ηβ

)(
ηi
x2
F

)β
sβ, εi = εa + εb + s

ε2 =
√ε4tanh [√ε4 (x2D−x1D)] +x

2
F

ηβ

(
ηi
x2
F

)β
sβ



εa = kxDkβ

k̃x

(
ηi
x2
F

s

)1−β√
ε3tanh [√ε3 (x2D − x1D)]

εb = 2kβD
hfDrmD

(
ηi
x2
F

s

)1−β

[rmD
√
εmcoth (√εm rmD) − 1]

εα =
(√

ε2√
εi

)(
kβkβD

k̃y

) (
ηi
x2
F

s

)1−β

tanh [√ε2 (y2D − y1D)]

C =


√
kβDI0 (X1)− εαI1 (X1)

K1 (X1) I0 (X1) +K0 (X1) I1 (X1)



D =

√
kβD

I1 (X1) −
(
K1 (X1)
I1 (X1)

)
C



εγ = δ
√
εi

[
C K0 (X0)−D I0 (X0)
DI1 (X0) + CK1 (X0)

]

εF = s

ηFD
− 2
CFD

εγ

pFD|xD=0 = pWD = π

s CFD
√
εF tanh

[√
εF
]

A computational code for the developed model equations was written in MATLAB
and the model solution in real domain is obtained applying the multiprecision Gaver-
Wynn-Rho algorithm in a symbolic environment to avoid the round-off error. In the
subsequent segments, the analysis of the derived solution is presented.
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4.4 Results, Verification and Validation

In this chapter, we determine the applicability of the proposed SIBFF model by com-
paring the results with the standard analytical model and the field data obtained
from the literature. By imposing asymptotic conditions, the solution have been ver-
ified with an established analytical model. A sensitivity analysis on the effect of
various model parameter is carried out in this section. The flow rate solution for
constant bottom hole pressure case is developed by using superposition theory on
Laplace space. Then the flowrate solution is used to analyze rate transient behaviour
of the presented model. Finally, with the knowledge of sensitivity analysis, the pro-
posed model is matched with Niobrara shale oil field data and evaluated the values
of constrained parameters.

4.4.1 Analytical Verification with TADDP Model

Asymptotic cases of this model can be used to verify the model with the existing
simplified models. Albinali et al. (2016) proposed a Trilinear Anomalous Diffusion and
Dual Porosity model (TADDP) which idealizes the SRV as a dual porosity continuum:
Spherical matrix with anomalous diffusion and induced fractures with uniform kαf .
TADDP model is one of the established anomalous diffusion models that was validated
against the standard analytical models and field data. However, the TADDP model
did not incorporate the effect of unfractured region between two fracture planes,
which was accounted for in this model. The wellbore pressure solution of SIBFF
model should yield the solution of TADDP model when applied necessary asymptotic
conditions. Table 4.3 summarizes the necessary modifications that should be made to
the TADDP model to yield the SIBFF model.

The wellbore pressure solution for TADDP model can be summarized as below,

βo =
(
x2
F

ηβ

)(
ηf
x2
F

)β
sβ (4.74)

βm =
(
x2
F

ηβ

)(
ηi
x2
F

)β
sβ (4.75)
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Figure 4.10: Schematic of the TADDP model idealization (adapted from Albinali et
al., 2016)

βff = kβ

k̃i

(
s
ηi
x2
F

)β√
βotanh

[√
βo (x1D − 1)

]

+
 2kβ
hfDkirmD

(
ηi
x2
F

s

)1−β {
rmD

√
βmcoth

(√
βm rmD

)
− 1

}+ s

(4.76)

βHF =
√
βff tanh

[√
βff (y1D − wD/2)

]
(4.77)

αHF = s

ηFD
+ 2

CFD
βHF (4.78)

Therefore, setting y1D = y2D , k̃X = k̃i , limkβD→1 εi and limkβD→1 εγ in the proposed
model should yield the above solution of TADDP.

Setting y1D = y2D results in:

εα = 0, ε2 = 0

58



Table 4.3: Feature comparisons and necessary modifications needed to verify the
proposed SIBFF model with TADDP model

Regions The TADDP model The proposed model Necessary modifi-
cations

Outer Reservoir

Only one region with
isotropic transfer function
coupling with SRV fracture

Two regions with
anisotropic coupling of
region 3 and SRV branch-
fracture y1D = y2D

Fluid flows directly to SRV
fractures only

Fluid flows to both SRV
branch-fracture and unfrac-
tured region 2

Inner Reservoir

SRV spans from one frac-
ture plane to the other frac-
ture plane

SRV spans from the frac-
ture plane to the onset of
the unfractured region

lim
kβD→1

εi

Isotropic fracture contin-
uum with anomalous diffu-
sion

Anisotropic fracture con-
tinuum with normal diffu-
sion

k̃x = k̃y = k̃i

ε3 = βo εm = βm

Since SRV is isotropic in TADDP model. Setting kxD = 1, k̃Y = k̃i confirms that
SIBFF has isotropic SRV. This results in,

εi= βff = kβ

k̃i

(
s
ηi
x2
F

)β√
ε3tanh [√ε3 (x1D − 1)]

+
 2kβ
hfDkirmD

(
ηi
x2
F

s

)1−β {
rmD

√
βmcoth

(√
βm rmD

)
− 1

}+ s

(4.79)

As kβD approaches to 1, the permeability distribution in the SRV branch-fractures
approaches to as like as in the TADDP model (Uniform Permeability Distribution).
Now, applying εα = 0 and limkβD→1 into the solution of SIBFF model yields,

C =
[

I0(X1)
K1(X1) I0(X1) +K0(X1) I1(X1)

]
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D =
[

K0(X1)
K1 (X1) I0(X1) +K0(X1) I1(X1)

]

εγ =
√
βff

[I0 (X1)K0 (X0)−K0 (X1) I0 (X0)]
[I0 (X1)K1 (X0) + I0 (X1)K1 (X0)] (4.80)

where,

X1 = 2√εi (y1D − wD/2)
ln(kβD)

√
kβD

, X0 = 2√εi (y1D − wD/2)
ln(kβD)

As kβD approaches to 1, X1 and X0 approaches to infinity and the modified Bessel
functions behaves as below:

lim
z→∞

Iν (z) ∼ 1√
2π

ez√
z

(4.81)

lim
z→∞

Kν(z) ∼
√
π√
2
e−z√
z

(4.82)

Applying the asymptotic relations of Equation (4.81) and Equation (4.82) into Equa-
tion (4.80).

εγ =
√
βff

eX1 e−X0 − e−X1eX0

eX1 e−X0 + e−X1eX0
(4.83)

Finding the limiting value for the exponent first:

lim
kβD→1

(X1 −X0) = lim
kβD→1

2√εi (y1D − wD/2)
 1

ln(kβD)
√
kβD

− 1
ln(kβD)


(4.84)

lim
kβD→1

(X1 −X0) = 2√εi (y1D − wD/2) lim
kβD→1

 1−
√
kβD

ln(kβD)
√
kβD

 (4.85)

Application of L’Hospital’s Rule helps to find the limit here. Applying the rule,

lim
x→a

f (x)
g (x) = 0

0 =⇒ lim
x→a

f (x)
g (x) = lim

x→a

f ′ (x)
g′ (x) (4.86)
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εγ =
√
βff

e√εi(y1D−
wD

2 ) − e−
√
εi(y1D−

wD
2 )

e
√
εi(y1D−

wD
2 ) + e−

√
εi(y1D−

wD
2 )

 (4.87)

εγ =
√
βff tanh√εi

(
y1D −

wD
2

)
= βHF (4.88)

In summary, when kβD → 1 and y1D = y2D :

ε3 = βo, εm = βm, εi = βff , εγ = βHF and εF = αHF (4.89)

Therefore, the proposed SIBFF model yields the conventional TADDP model when
applied certain modifications and asymptotic conditions. The graphical verification is
also presented in the Figure 4.11. The wellbore pressure solution completely matches
with the TADDP model when un-fractured region of the SRV and varying branch-
fracture permeability condition is disregarded. The necessary data used in the veri-
fication is listed in Table 4.4. Therefore, the coherence with the standard model in
the literature has increased the confidence to apply the proposed model for practical
purposes.

4.4.2 Sensitivity Study

Pressure drop at the wellbore is tested by varying a set of diverse parameters of the
presented model such as permeability at the vicinity of fracture plane (ki), intrinsic
matrix permeability (kβ) and subdiffusion exponent of matrix (β). The analysis of
sensitive parameters helps to categorize the most influential parameters that should
be handled differently in history matching ultimately leading to a quick match. Ta-
ble 4.5 lists the inputs of the SIBFF model. The Figure 4.12, 4.13 and 4.14 show
the sensitivity of permeability field, matrix permeability and subdiffusion exponent
respectably.

Effect of ki on wellbore pressure drop

Branch-fracture permeability field is significantly affected by the permeability at the
vicinity of the primary fracture plane. We have learnt from Figure 4.5 of Section
4.3.4 that each different ki generates a distinct permeability field in branch-fracture
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Figure 4.11: Verification of SIBFF model with TADDP model

domain. In the SRV flow domain, branch-fractures are the only transport medium
while the SRV matrices acts as a storage only. In order to analyze the effect, we have
evaluated the wellbore pressure drop for varying values of ki and the pressure drop
responses are depicted in Figure 4.12.

In Figure 4.12, the wellbore pressure drop responses moves downward with the
increase of ki. As ki is the highest permeability in the branch-fracture, the value of
ki indicates the performance of of the stimulation job in a distinct formation. As
the value of ki increases, the permeability of the other points in the branch-fracture
domain also increases due to the assumption exponential, monotonic behaviour of
branch fracture permeability field (Fuentes-Cruz, Gildin, Valkó, et al., 2014). There-
fore, as the value of ki increases, the hindrance to flow in the SRV region decreases.
The decrease in flow resistance ultimately results in a decrease in pressure drop (∆p).
It is also evident from Figure 4.12 that this highest permeability significantly affects
the pressure responses throughout the life of the reservoir with high impact in the
early times. Therefore, in order to enhance productivity of an unconventional reser-
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Table 4.4: Synthetic data used for the verification with TADDP model (Albinali et
al., 2016)

Parameters Typical values

Matrix Subdiffusion exponent, β 0.8
Hydraulic fracture half-length, xF , ft 250
Distance to boundary to well, x2, ft 400
Hydraulic fracture half-spacing, y1 = y2, ft 140
Pay zone thickness, h, ft 200
Radius of spherical matrix, rm, ft 0.5
Matrix porosity, φβ, 0.05
Matrix intrinsic permeability, kβ 0.0001
Total matrix compressibility, cmt, psi−1 1× 10−5

Average branch fracture aperture, hf , ft 3× 10−3

Branch fracture porosity, φi 0.56
Branch fracture permeability ki → kβi, md 0.1
Branch fracture compressibility, cfi,psi−1 1× 10−4

Hydraulic fracture aperture, wF , ft 0.01
Hydraulic fracture porosity, φF 0.38
Hydraulic fracture permeability, kF 1× 104

Hydraulic fracture compressibility, ctF , psi−1 5× 10−4

Fluid viscosity, µ, cp 0.3
Single fracture flow rate, qF , stb/day 100

voir, the hydraulic fracturing design should carried out in such a tactic manner so
that it creates branch-fractures with high value of ki.

Effect of intrinsic matrix permeability, kβ

In outer region and USRV of inner region, the matrix is the transport medium. The
term kβ is also termed as a phenomenological coefficient as it is a special parameter in
the fractional flux law by Raghavan (2011). However, when the subdiffusion exponent
equals 1, this phenomenological coefficient turns into the intrinsic permeability of
the matrix. From this standpoint, we analyze the effect of kβ on the pressure drop
behaviour of the proposed model.
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Table 4.5: Synthetic data used for the sensitivity analysis of SIBFF model (Albinali
et al., 2016)

Parameters Typical values

Hydraulic fracture half-length, xF , ft 250
Distance to boundary to well, x2, ft 400
Hydraulic fracture half-spacing, y2, ft 150
Pay zone thickness, h, ft 250
Radius of spherical matrix, rm, ft 0.5
Matrix porosity, φβ, 0.05
Total matrix compressibility, cmt, psi−1 1× 10−5

Average branch fracture aperture, hf , ft 3× 10−3

Branch fracture porosity, φi 0.56
Branch fracture compressibility, cfi,psi−1 1× 10−4

Hydraulic fracture aperture, wF , ft 0.01
Hydraulic fracture porosity, φF 0.38
Hydraulic fracture compressibility, ctF , psi−1 5× 10−4

Fluid viscosity, µ, cp 0.3
Single fracture flow rate, qF , stb/day 100

From Figure 4.13, two pressure behaviours can be recognized for this impact.
The first one exhibits very small decreases of pressure drops with increasing values
of kβ at the early times. At intermediate times, the impact of kβ is the highest on
pressure drop. In order to focus the pressure drop behaviour (∆p) qualitatively, we
tabulated the pressure drops in Table 4.6 at different times of the flow period. At early
production, the contribution of fluid from hydraulic fracture and SRV is dominant and
the sensitivity of kF and ki is significant. Hence, the pressure drop at the early times
are more sensitive to kF and ki than kβ. On the other hand, at the intermediate
times, the depletion effect from the outer region and USRV becomes pronounced.

Effect of subdiffusion exponent, β

The unconventional matrix is disordered, extremely tight and full of various scales
of natural microfractures that renders significant hindrance to the flow. According
to (Raghavan, 2011), when β is less than 1, subdiffusion prevails over the porous
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Figure 4.12: Effect of branch-fracture permeability at the vicinity of fracture plane

medium. Figure 4.14 exhibits the pressure responses of varying values of β.

As the impact of hydraulic fracture and ki of SRV is pronounced at the early
times of the flow period, the effect of subdiffusion is small. However, at intermediate
and late times, the severity of subdiffusion is greatly increased due to the delay of
fluid contribution into the production. At late times, as the value of β increases,
the hindrance to flow decreases and the diffusion gets closer to the normal diffusion.
The decrease in hindrance to flow in unconventional matrices ultimately results in a
decrease in pressure drop (∆p).

4.4.3 Rate Transient Solution

This section presents variable rate solution of the SIBFF model while the bottom-hole
pressure at the horizontal well are kept constant. The field data analysis in the next
section requires constant bottomhole pressure solution for the diffusivity equations of
the SIBFF model. The semi-analytical solution derived in Section 4.3 represent the

65



10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Time, Hour

10
0

10
1

10
2

10
3

10
4

10
5

10
6

P
re

s
s

u
re

 D
ro

p
, 

(
p

),
 p

s
i

k = 10e-6 md. day
1-

k = 10e-4 md. day
1-

k = 10e-2 md. day
1-

k = 10e-1 md. day
1-

k  increases

Figure 4.13: Effect of intrinsic matrix permeability

solution for constant rate condition. According to Duhamel’s superposition theorem,
the constant rate and constant pressure solutions to the diffusivity equations of fluid
flow through porous media are coupled in Laplace domain as (Van Everdingen, Hurst,
et al., 1949),

pDqD = 1
s2 (4.90)

where pD is the dimensionless wellbore pressure for the constant rate solution and
qD is the dimensionless flow rate for the constant pressure solution in the Laplace
domain. This is one of the most quintessential relations of reservoir engineering that
are frequently used to switch back and forth to the solution of constant pressure inner
boundary condition.
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4.4.4 Field Application

This section presents production history matching of a multifractured horizontal well
with the SIBFF model. The well was drilled in Niobrara Shale formation in Weld
County, Colorado with a horizontal length of 3885 ft and 14 fracture stages. The
neccessary parameters for initializing the SIBFF model for the history match was
adopted from Albinali et al. (2016) and listed in Table 4.7. As of 2014(EIA), this
formation contains 0.512 billion barrels of oil, gas and gas condensate with TOC
ranging from 2 to 8 weight % (Sonnenberg, 2011). Albinali et al. (2016) acquired
the monthly production data (such as production volumes, number of production
days and oil API) and the other well completion data from Colorado Oil and Gas
Conservation Commission (COGCC) website. The data contains production history
of 3.25 years from October 2012 to January 2016. The constrained parameters that
are to be determined from the history match are as follows:

� Hydraulic fracture half-length, xF
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Table 4.6: Effect of kβ on the pressure behaviour of the proposed model

kβ , md.day1−β
Pressure Drop (∆p), psi

t= 100 hrs t= 1000 hrs t= 10000 hrs t= 100000 hrs

10× 10−6 25.30 98.67 673.08 5106.48
10× 10−4 22.74 79.75 515.78 3810.25
10× 10−2 19.39 61.11 374.74 3247.80
10× 10−1 17.90 50.72 345.98 3425.40

� Branch fracture permeability at the vicinity of primary fracture plane, ki

� Branch fracture permeability at y = y1, kβi

� Subdiffusion exponent, β

� Matrix intrinsic permeability, kβ

� Average permeability in the x-direction, kx

After initialization of the SIBFF model with that data summarized in Table 4.7,
the dimensionless flowrate values, qD are computed for a required set of dimension-
less time values, tD using Gaver-Wynn-Rho Laplace inversion algorithm. From the
definition of the dimensionless qD and tD, the flow rate and time are computed and
compared against the field data. In the sensitivity analysis of type curves for SIBFF
model, we observe that production performance is most influenced by hydraulic frac-
ture permeability (kF ) and branch fracture permeability field (ki and kβ) in the early
and intermediate time period. These parameters are therefore carefully adjusted to
obtain the early trend of the production behaviour. Through the adjustment of most
influential parameters, such as branch fracture permeabilities (ki and kβ), hydraulic
fracture half-length (xF ), effective SRV width (y1) and subdiffusion parameter (β),
the optimum history match is obtained and presented in figure 4.15.

The model match with the Niobrara field data results in determination of the con-
strained parameters. The matched parameters are listed in 4.8. The realistic deter-
mination of these parameters is always a difficult job with a number of uncertainties.
The model match quantifies the matrix permeability as 0.001. Cho et al. (2016) also
determined the matrix permeability to be 0.001 md from a core analysis of Niobrara
formation. The proposed semi-analytical model has shown a good agreement with the
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Table 4.7: Model initialization with typical values for a horizontal well in Niobrara
Field (Albinali et al., 2016)

Parameters Typical values

Initial reservoir pressure, pi, psi 4000
Flowing bottomhole pressure, pwf , psi 800
Number of hydraulic fracture stages, nF 14
Horizontal lateral length, ft 3885
Perforated interval length, ft 3417
Distance to boundary to well, x2, ft 400
Hydraulic fracture half-spacing, y2, ft 122.5
Pay zone thickness, h, ft 200
Radius of spherical matrix, rm, ft 0.5
Matrix porosity, φβ, 0.02
Total matrix compressibility, cmt, psi−1 1× 10−5

Branch fracture porosity, φi 0.6
Average branch fracture aperture, hf , ft 3× 10−3

Branch fracture compressibility, cfi,psi−1 1× 10−4

Hydraulic fracture porosity, φF 0.38
Hydraulic fracture permeability, kF 5× 104

Hydraulic fracture compressibility, ctF , psi−1 1× 10−5

Hydraulic fracture aperture, wF , ft 0.01
Fluid viscosity, µ, cp 0.5

Niobrara field data. The model match characterizes the SRV region with quantifying
the branch fracture permeability field and it’s effective width. This validates that the
SIBFF model can serve as an analytical tool for SRV region characterization, stimula-
tion job plan, production evaluation and prediction of multi-fractured unconventional
reservoirs.

4.5 Conclusion

In this Chapter, an upgraded semi-analytical model for the analysis of production
data with variable rate and wellbore pressure for multifractured horizontal wells in
unconventional reservoirs is developed, which accounts for branch-fracture perme-
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Figure 4.15: History matching results with the proposed SIBFF model

ability field, subdiffusive fluid transport in matrix, and USRV region. Based on the
analysis of the proposed model, the following conclusions can be drawn:

� The standard models for unconventional reservoirs are reviewed and compared
to the new features of the presented model. Advanced analytical methods are
employed to handle the complexity of the mathematical model introduced by
the spatial permeability function in SRV.

� The proposed SIBFF model generalizes the standard models with uniform frac-
ture permeability and normal diffusion. The solution of this model was accu-
rately verified with a standard model, the TADDP model.

� The presented SIBFF model can be applied to characterize unconventional frac-
tured reservoirs considering several flow regions: Outer reservoir, Inner reservoir
and Hydraulic fracture with finite conductivity.

� Wellbore pressure is highly sensitive to the branch-fracture permeability field

70



Table 4.8: Values of the constrained parameters determined from the history matching

Parameters Matched values

Hydraulic fracture half-length, xF , ft 265
Branch fracture permeability at the vicinity of pri-
mary fracture plane, ki, md

0.7

Branch fracture permeability at y = y1, kβi, md 0.013
Subdiffusion exponent, β 0.5
Matrix intrinsic permeability, kβ 0.001
Average permeability in the x-direction, kx, md 0.17234
Effective SRV width, y1, ft 117

and it affects the production behaviour throughout the whole life of an uncon-
ventional reservoir. The study also bolsters the fact that generating high per-
meability complex branch-fractures should significantly increase the production
rates.

� Results of history matching for a Niobrara Shale well data for 39 months of pro-
duction validates the applicability and predictability of the SIBFF model. The
new semi-analytical model provides a mathematically-efficient tool for charac-
terization, production evaluation and forecast for multifractured unconventional
reservoirs.
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Chapter 5

Unlocking the Heterogeneity Using
Fractal Theory and Subdiffusion

5.1 Introduction

In the new era of energy exploitation, multi-fractured horizontal well technology have
quickly transformed ultra-low unconventional resources sector by introducing a eco-
nomic completion technology. The enhancement of the extent of induced permeability
region in these reservoirs is the first job in the planning for the development of the
unconventional reservoirs. Drilling a long and lateral well with multiple stimulation
stages is regarded as the most effective production technique to facilitate the economic
recovery from these reservoirs. In the case of ultralow unconventional reservoirs, the
effect of outer reservoir is neglected as it has negligible impact in the production from
the inner reservoir (Mayerhofer et al., 2006). Therefore, the drainage area of the
reservoir can necessarily be assumed to be confined only in the inner reservoir with
stimulated and unstimulated reservoir volume. The stimulation job using hydraulic
fracturing generates a complex fracture network around a primary fracture plane and
enhances total reservoir contact area ultimately improving recovery (Zhou, Banerjee,
Poe, Spath, & Thambynayagam, 2013). In order to unlock the heterogeneity of var-
ious scales, it is critical to employ the most realistic model that describe the flow
process and accounts for the complex interplay of matrix and fractures. The region
of enhanced permeability around the primary fracture plane, often referred to as the
Stimulated Reservoir Volume (SRV), is an important component in characterization
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of a stimulated reservoir. Alongside SRV, a hydraulically stimulated reservoir con-
sists of hydraulic fracture, unstimulated reservoir volume (USRV) and outer reservoir.
Anderson et al. (2010) also showed that the outer reservoir plays an insignificant role
in terms of a 20-year estimated ultimate recovery when the matrix permeability is
below 10 nano Darcy. The USRVs are the non-affected region where no branch frac-
tures is created from the primary fracture plane and the permeability in that region
remains in nano-Darcy level (Fan & Ettehadtavakkol, 2017b).

The SRV region is composed of branch fractures, the reactivated natural fractures
and matrix with ultralow permeability. The seminal work of Warren and Root (1963)
has assumed the fracture continuum of a fractured media as a homogeneous medium of
Euclidean geometry. Chang and Yortsos (1990) investigated a number of conventional
models on describing pressure transient behavior of fractured media and outlined three
premises on which those models are founded.

- Fractured media contains two media with two distinct scale of conductivity and
storage capacity

- The fracture network is a Euclidean object which is embedded in another Eu-
clidean object, matrix.

- There is no connectivity in the matrix. It only acts as a storage of fluid and
does not produce to the well. Only perfectly connected fractures produce to
well.

Ozkan et al. (2009) developed a trilinear model that idealizes the SRV as a vertical
stack of matrix and uniform fracture slabs honouring these premises. Yuan et al.
(2015) extended the idea of the trilinear model by subdividing the SRV into two
regions with different permeability and fracture densities.

In order to account for the conductive potential of the matrix in fractured media,
Al-Ghamdi and Ershaghi (1996) developed a triple porosity model incorporating the
inflow from the matrix to the well. Ezulike and Dehghanpour (2014) suggested a
simultaneous depletion model which also relaxes the the first premise and the matrix
contributes to the both, natural fractures and hydraulic fractures. However, recogniz-
ing the need for further enhancement in the SRV categorization, (Chang & Yortsos,
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1990) applied fractal theory to define the systems exhibiting a large number of dif-
ferent scales, poor connectivity and disordered spatial distribution. They idealized
the SRV as fractal fracture network embedded in a Euclidean matrix where the frac-
ture properties are scale dependent. Their model results in the following power-law
expressions for porosity and permeability distribution, respectively:

φ (r) = AVs
G

rD−d (5.1)

k (r) = AVsm

G
rD−d−θ (5.2)

where D is the fractal dimension or Hausdorff dimension; d is the Euclidean dimen-
sion (d = 2 for planes, d = 3 for volumes); θ is the connectivity index, also referred
to as tortuosity index; r is the radius from the centre of the wellbore and φ , k are
the posoity and permeability respectably. Later,J. Acuna and Yortsos (1991) verified
this hypothesis using numerical simulations for 2D fracture networks. Cossio, Moridis,
Blasingame, et al. (2013) simplified the fractal porosity/permeability relationship and
applied the relation in cartesian coordinates making it possible to be used in hori-
zontal well where fluid flow is almost linear. The trilinear model of Ozkan et al.
(2009) was upgraded by Wang, Shahvali, and Su (2015); Wang, Su, Sheng, Cossio,
and Shang (2015) incorporating fractal distribution of porosity and permeability in
the SRV under pseudo-steady state flow conditions. Fan and Ettehadtavakkol (2017b)
developed a semi-analytical solution for shale gas flow in fractal reservoirs and pre-
sented a detailed workflow to evaluate induced fractures’ porosity/permeability when
only microseismic data of induced fracture density is available.

The aforementioned models captures the diffusion phenomenon in the matrix con-
tinuum using classical diffusivity equation and assumed the matrix as a well connected
, continuous and well-distributed medium in the reservoir system. However, the above
fractal models incorporated the deviation from classic diffusion in SRV fractures con-
sidering the subdffusion as a consequence of the presence the highly disordered ge-
ometry only (Holy, 2016). A number of authors have investigated the importance of
considering other reservoir properties of different scales and suggested that different
scale dependent transport mechanisms should be considered in the modelling of fluid
flow in unconventional reservoirs (Javadpour et al., 2007, 2007; Akkutlu et al., 2012).
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Metzler et al. (1994); Park et al. (2000) presented a generalized fractal diffusivity
equation that accounts for temporal dependencies on fluid flux in the form of a time
fractional derivative of pressure gradients. Raghavan (2011) upgraded the time frac-
tional model and revealed that the application of fractional constitutive flux law is
inherent in the nature of the unconventional fractured reservoirs that exhibits a num-
ber of scales in the form of obstacles and channels as well as induced changes affected
by the stimulation job. In the light of the above literatures, it can conclusively stated
that the factors influencing the production most are the fractal characteristics of the
complex branch fractures and temporal dependencies in the matrix media of SRV and
USRV. An extensive study should be done to elicit a comprehensive set of features
from the characterization process of unconventional reservoirs.

The effect of subdiffusive fluid transport in ultralow matrix is more pronounced
than that in conventional, high permeability matrix. Also, the fractal fracture network
generated by the stimulation job effectively captures the heterogeneity of fracture con-
tinuum in a dual-porosity idealization of SRV. This study couples subdiffusive fluid
transport and fractal branch-fracture permeability field into a new semi-analytical flow
model in an endeavour to better characterize the SRV and USRV of ultralow perme-
ability reservoir. Although, all the reported fractal models assumed fluid transfer from
USRV matrix to SRV matrix which is unrealistic from the reservoir engineering point
of view, this study considers fluid influx from the USRV matrix to the fractal branch
fractures and investigates the impact of USRV on the production. Table 5.1 compares
the proposed fractal branch-fracture model with the existing standard models for fluid
flow in multi-fractured reservoir. The generated solution in this study captures het-
erogeneity of matrix in terms of subdiffusion exponent and accounts for the variation
of permeability and porosity in terms of fractal dimension and connectivity index
and thus can be employed for pressure and rate transient analysis of unconventional
reservoirs with ultralow permeability.
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Table 5.1: Feature comparison of the proposed model with the other standard semi-
analytical models

Model Features

Models
Ozkan et al.
(2009)

Cossio et al.
(2013)

Wang, Shah-
vali, and Su
(2015)

Fan and
Ettehad-
tavakkol
(2017a)

Fan and Et-
tehadtavakkol
(2017b)

Fractal Branch
Fracture Model

1.SRV idealization Dual porosity Single
porosity

Dual porosity Dual porosity Dual porosity Dual porosity

2.Diffusion in SRV matrix Classical N/A Classical Classical Classical Subdiffusion
3.Fluid Transfer from
SRV matrix to fracture

Transient N/A Pseudo-
steady

Transient Transient Transient

4.SRV matrix blocks Slab N/A Sugar-cube Slab Slab Spherical
matrix

5.USRV idealization Not considered Not consid-
ered

Not consid-
ered

Dual porosity Single porosity Single porosity

6.Diffusion in USRV N/A N/A N/A Classical Classical Subdiffusion
7.Flow regime from
USRV to branch fracture

N/A N/A N/A Not consid-
ered

Not considered Considered
(Transient)

5.2 Fractal Distribution of Porosity and Perme-
ability

Naturally occurring fractured porous media exhibits fractal behaviour in its properties
(Barton & La Pointe, 2012). In order to describe the properties of porous media,
Chang and Yortsos (1990) carried out an investigation for the fluid flow across a
cylindrical differential shell that contains a fracture network with fractal dimension.
The fractal network was necessarily embedded in a Euclidean matrix. They came up
with power law distribution of porosity and permeability. The derived relations are
stated in equation (5.2) and (5.2). J. A. Acuna and Yortsos (1995) simplified the
relations and proposed in a different way, these are

φ (r) = φ0

(
r

r0

)D−d
(5.3)

k (r) = k0

(
r

r0

)D−θ−d
(5.4)

where k0, φ0 and r0 are permeability, porosity and radius, respectively. These rela-
tions are suitable for simulating fractal flow in radial geometry. Cossio et al. (2013)
later modified the relations and made them possible to apply in linear geometry. The
rectangular geometry is the centre of concern for us, because the theoretical and lab-
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oratory analysis show that the dominant flow in hydraulically stimulated reservoir is
linear flow. Therefore, fractal porosity/permeability relations in cartesian coordinates
takes the following form,

φ (x) = φ0

(
x

xw

)D−d
(5.5)

k (x) = k0

(
x

xw

)D−θ−d
(5.6)

where, kw, φw and xw are the permeability , porosity and the distance from a specified
point in a fractal reservoir defined in cartesian coordinate. A handful of studies have
been carried out to implement the fractal distribution of porosity/permeability in
multifractured flow modelling (Fan & Ettehadtavakkol, 2017a; Wang, Shahvali, &
Su, 2015; Fan & Ettehadtavakkol, 2017b). The relations applied to the geometry of
rectangular multi-fractured reservoirs are given as,

k (y) = ki

(
y

wFH

)H−E−θ
(5.7)

φ (y) = φi

(
y

wFH

)H−E
(5.8)

where, ki and φi the permeability and porosity at the distance of wFH ; FH is the
half-width of the primary fracture plane. H is the Hausdorff dimension or fractal
dimension and θ is the tortuosity index or connectivity index. These relations have
been employed in this study to define the distribution of porosity and permeability
of branch-fracture in SRV. The assumption of fluid influx from USRV to SRV matrix
provided an ease in the mathematical formulation of previous models. However, unlike
the previous analytical models, the presented model takes the fluid influx directly from
the USRV to the fractal network into account. The analytical complexities has been
carefully resolved by applying Bessel functions and Laplace transformations.

The fractal dimension H and the tortuosity index θ have a significant impact
on the distribution of the meduim properties. Figure 5.1 shows a branch fracture
permeability field and the effect of ki on the distribution of the fields.
The dimension H describes how rough, irregular and disordered the object is and the
tortuosity index θ characterizes diffusion process in that medium. Higher values of

77



0

100

x
F

30

40

0 200

50

Length of SRV from the primary fracture plane (y), ft

60

B
ra

n
c
h

 F
ra

c
tu

re
 P

e
rm

e
a
b

il
it

y
 k

(y
),

 m
d

50

70

80

100

90

100

150 0 50 100 150

y,ft

0

100

200

300

400

500

600

700

k
(y

),
 m

d

k
i
=100 md

k
i
=300 md

k
i
=500 md

k
i
=700 md

H=1.95

=0.1

w
F
=0.1 ft

Figure 5.1: Fractal branch-fracture permeability field (left); The variation of fields in
terms of different ki (right)

θ indicate that significant hindrance would be experience by the fluid if a pressure
differential exists in that media. This geometric property indicate classical random
walk diffusion when θ equals to zero and more general continuous walk diffusion when
θ is greater than zero(Cossio et al., 2013). The exact physical meaning and connec-
tion between θ and H may be identified through exhaustive investigation through
mathematics and Fractal theory, which is beyond the objective of this study.

Figure 5.2 presents the impact of the fractal dimension and the tortuosity index
in the branch fracture permeability field. The idea behind the properties distribution
equation is that the branch-fracture with fractal dimension is embedded in a medium
with dimension 2 (Euclidean dimension). As the value of H with a fixed θ decreases
from the embedded dimension E, the network becomes more complex and irregular
ultimately inducing a gradual decrease in permeability. However, when the value of
H becomes larger than the embedded dimension E, it starts to behave like a piece of
volume rather than an area with dimension 2 and enhances the permeability of the
field. The figure 5.2 shows a gradually-increasing permeability field whenH equals 2.1.
On the other hand, as the value of θ increases from 0, the permeability field exhibit
greater hindrance to the flow and a significant decrease in the trends of permeability
fields.
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Figure 5.2: Effect of fractal dimension (left) and tortuosity index (right) on branch-
fracture permeability

5.3 Model Description and Solution

This section presents a fractal branch-fracture model coupling two important con-
cepts in the modelling of heterogenous media. Figure 5.3 illustrates the development
and idealization of the geometry of fractal-branch fracture flow model. The branch-
fractures with fractal dimension H are embedded in the matrix with Euclidean di-
mension E. In this model, we assume that the effect of outer reservoir is negligible
due to the extreme low permeability of unconventional matrix. The semi-analytical
solution is based on the following assumptions:

- The reservoir is rectangular with closed boundaries and with a fractured hori-
zontal well in the center of the reservoir.

- The formation permeability is so low that the effect of outer reservoir can be
neglected.

- The primary hydraulic fractures are transverse, fully-penetrated and finitely
conductive in nature.

- Multiple transverse fracture interaction is modelled using symmetry with no-
flow boundaries
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- The fluid is single phase oil or gas.

- The matrix does not produce to the well

- Pressure loss inside the horizontal well is negligible

The symmetry element of the multifractured horizontal well (illustrated in Figure 5.3)
is composed of three flow regions: unstimulated reservoir volume (USRV), stimulated
reservoir volume (SRV) and a primary hydraulic fracture. In the derivation of the
fractal branch fracture flow model, we exploit the Darcy’s law and fractional flux law
to define normal and subdiffusion, respectably.

Euclidean object with dimension EFractal object with dimension H

Fractal object embedded 
in Euclidean object 

k (y) = ki

✓
y

wFH

◆H�E�✓

� (y) = �i

✓
y

wFH

◆H�E

SRV USRV

Permeability and Porosity
Distribution:

Figure 5.3: Idealization of the fractal branch fracture property distribution in frac-
tured reservoir; Branch-fractures with fractal dimension and matrix with euclidean di-
mension (Top); Branch-fractures embedded in matrix (Middle); Symmetry element of
the multifractured horizontal well with spherical matrix and slabs of branch-fractures
(Bottom)
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The mass balance or continuity equation with a source which continuously feeds
influx of fluid into the representative elementary volume, could be written as,

∇ · (ρ~v) + Q̇m = −∂ (φρ)
∂t

(5.9)

where ρ =fluid density, ~v =superficial fluid velocity, φ = porosity of the medium and
Q̇m denotes the source term from the contiguous fracture/matrix segment representing
the influx of mass into the control volume for a time interval of dt. Expanding the
equation (5.9) and introducing the concept of isothermal compressibility,

ρ (∇ · ~v) + ~v · (∇ρ) + ρQ̇ = −ρφ (y) ct
∂p

∂t
(5.10)

~v · (∇ρ) term in equation (5.10) can be neglected for the slightly compressible fluid.
The equation (5.10) now reduces to,

ρ (∇ · ~v) + ρQ̇ = −ρφ (y) ct
∂p

∂t
(5.11)

The equation (5.11) presents a basic diffusivity equation for fluid flow in porous media.
The definition of velocity term (~v) in equation (5.11) varies with the assumption of the
diffusion characteristics in the medium of interest. For normal or classical diffusion,
Darcy’s law defines the fluid transport. Darcy’s law:

~vn = −k
µ

(∇p) (5.12)

As the dominant fluid flow in unconventional matrix conituum is sub-diffusion, a
fractional velocity term should be used in the 5.11. Assuming a Continuous-Tine-
Random-Walk process in the particle displacement of the diffusion in porous media, a
fractional velocity equation incorporating subdiffusion is given by (Fomin et al., 2011;
C. Chen & Raghavan, 2015; Raghavan, 2011),

~vs = −kβ
µ

∂1−β

∂t1−β
∂p

∂y
(5.13)

The following segments discuss the fluid transport and governing diffusivity equa-
tions for each flow regions in detail.
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Table 5.2: Scaled and dimensionless variables used in the formulation of Fractal
Branch-fracture Flow model

Dimensionless and Scaled Variables

Dimensionless length in the y-direction yD = y
xF

Dimensionless radius rD = r
xF

Scaled pressure pD = 2πkihft(p−pi)
qBµ

= 2πkihft
qBµ

(∆p)

Scaled time tD = kit
(φµct)i

x2
F =

(
ηi
x2
F

)
t

Scaled flowrate qD = qBµ
2πkihft(p−pi)

= qBµ
2πkihft(∆p)

Dimensionless diffusivity ηD = η
ηi

Hydraulic fracture conductivity CFD = kFwF h
kixF hft

Bulk permeability at y = y1 k̃1 = kβhft
h

5.3.1 Transport in USRV

USRV region contains inherent formation characteristics and extends from the no-flow
region to the boundary of the SRV region. We assume that the pre-existing natural
fractures and ultralow unconventional matrix creates a flowfield which is non-gaussian
and could be best described by subdiffusion phenomena. The governing diffusivity
equation in USRV can be derived from equation (5.11) and (5.13),

∂

∂x

(
kβ
µ

∂1−β

∂t1−β
∂∆pu
∂x

)
= (φct)

∂∆pu
∂t

(5.14)

� Initial condition (Pressure difference ∆pu at t = 0):

∆pu|t=0 = 0 (5.15)

� Boundary condition 1 (No flow boundary at y = y2):

∂∆pu
∂y

∣∣∣∣∣
y=y2

= 0 (5.16)

82



� Boundary condition 2 (Pressure continuity at the interface of SR branch-fracture
and SRV):

(pi) |y=y1 = (pu) |y=y1 (5.17)

The diffusivity equation in (5.14) is solved for the initial and boundary conditions
in equation (5.15), (5.16) and (5.17) by applying Laplace transform. The derived
pressure solution for USRV is,

∂puD
∂yD

∣∣∣∣∣
yD=y1D

= − piD|yD=y1D

√
εu tanh [√εu (y2D − y1D)] (5.18)

5.3.2 Transport in SRV

The SRV flow region is composed of repetitive matrix medium and fractal branch-
fracture slabs. Unlike all the other fractal flow models, we assume fluid flows directly
to the SRV branch-fractures and there is no flow transfer from USRV to SRV matrix.
Fluid flow in SRV fractures consists of flux from matrix medium, total flow from
USRV and the flow from itself. The flow in the fractal branch-fracture is assumed to
be one-dimensional and perpendicular to the primary fracture plane.

Transport in Spherical Matrix

The matrix medium in SRV is assumed to be composed of repetitive array of spherical
matrix. The governing diffusivity equation for spherical matrix can be written as,

1
r2

∂

∂r

(
r2kβ
µ

∂1−β

∂t1−β
∂∆pm
∂r

)
= (φct)β

∂∆pm
∂t

(5.19)

The diffusivity equation (eq. (5.19)) is subjected to the following boundary con-
ditions,

� Boundary condition 1

∆pm (r = 0, t) = 0

MD (rD = 0, s) = 0
(5.20)

� Boundary condition 2 (Pressure continuity at the interface of spherical matrix
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and branch-fracture medium)

pmD|rD=rmD = (piD)
∣∣∣
rD=rmD

(5.21)

The diffusivity equation in (5.19) is solved for the boundary conditions in equation
(5.40) and (5.41) by applying Laplace transform. The derived pressure solution for
SRV spherical matrix is,

pmD = rmD
rD

sinh
(√

εm rD
)

sinh
(√

εm rmD
) (piD)|rD=rmD (5.22)

Transport in Fractal Branch-fracture

The fluid transport in the branch-fractures is sensitive to the variation of permeability
and porosity. The distribution of porosity and permeability is given in equation (5.7)
and (5.8). The diffusivity equation for branch-fracture with matrix medium as a fluid
source can be derived from (5.11) and (5.12):

∂

∂y

[
k (y)
µ

∂∆pi
∂y

]
+ Q̇ = φ (y) ct

∂∆pi
∂t

(5.23)

Where Q̇ accounts for the influx of fluid from the array of spherical matrix. Substi-
tuting (5.7) and (5.8) in (5.23):

ki
µ

(
y

wFH

)H−E−θ [H − E − θ
y

∂∆pi
∂y

+ ∂2∆pi
∂y2

]
+ Q̇ = φi

(
y

wFH

)H−E
ct
∂∆pi
∂t

(5.24)

According to de Swaan O et al. (1976), the matrix source term should be the ratio
of the total flux across the surface of a spherical matrix to the half of the fracture
volume envelope around each sphere. Therefore, the source term Q̇ that accounts for
matrix influx can be written as:

Q̇ = − 2kβ
µhf

∂1−β

∂t1−β
∂∆pm
∂r

∣∣∣∣∣
r=rm

(
y

wFH

)H−E
(5.25)

Substituting equation (5.25) in equation 5.24:
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ki
µ

[
H − E − θ

y

∂∆pi
∂y

+ ∂2∆pi
∂y2

]
− 2kβ
µhf

∂1−β

∂t1−β
∂∆pm
∂r

∣∣∣∣∣
r=rm

(
y

wFH

)θ

= φi

(
y

wFH

)θ
ct
∂∆pi
∂t

(5.26)

Transforming the equation (5.26) into dimensionless form utilizing the definition of
dimensionless variables listed in Table 5.2,

[
H − E − θ

yD

∂piD
∂yD

+ ∂2piD
∂y2

D

]
− 2kβ
hfDki

(
ηi
x2
F

)1−β
∂1−β

∂t1−βD

∂pmD
∂rD

∣∣∣∣∣
rD=rmD

(
yD
wHD

)θ

=
(

y

wHD

)θ ∂piD
∂tD

(5.27)

Taking Laplace transform of the both sides of equation (5.27) yields,

[
H − E − θ

yD

∂piD
∂yD

+ ∂2piD
∂y2

D

]
− 2kβ
hfDki

(
ηi
x2
F

)1−β
∂pmD
∂rD

∣∣∣∣∣
rD=rmD

s1−β
(
yD
wHD

)θ

=
(

y

wHD

)θ
spiD

(5.28)

From the pressure solution for spherical matrix given in (5.22), we can derive,

∂pmD
∂rD

∣∣∣∣∣
rD=rmD

=
piD|rD=rmD

rmD
[rmD
√
εm coth (√εm)− 1] (5.29)

Substituting equation 5.29 in the equation 5.28 and identifying the terms that are
independent of yD and lumping them into as a function of s variable,

[
H − E − θ

yD

∂piD
∂yD

+ ∂2piD
∂y2

D

]
− εiyθDpiD = 0 (5.30)

The equation 5.30 is the general form of the double porosity fractal diffusivity
equation. Where,

εi = 2kβ
hfDkirmD

(
ηi
x2
F

s

)1−β ( 1
wHD

)θ
[rmD
√
εm coth (√εm)− 1] (5.31)
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The equation 5.30 is analogous to the general form of the modified Bessel equation.
The general solution can be obtained in terms of modified Bessel functions, Kν and
Iν .

piD = yaD [C1Iν (bycD) + C2Kν (bycD)] (5.32)

In the equation 5.32, a, b and c are the lumped parameter of θ,H and εi and C1

and C2 are the constants to be determined from the boundary conditions.

a =
(
θ + 3−H

2

)
b =

(
2√εi
θ + 2

)

c =
(
θ + 2

2

)
ν =

(
θ + 3−H
θ + 2

)

� Boundary condition 1 (Flux continuity at the interface of SRV branch fracture
and USRV)

qi|y=y1
= qu|y=y1

(5.33)

� Boundary condition 2 (Pressure continuity at the interface of SRV branch-
fracture and primary hydraulic fracture)

∆pi|y=wF /2 = ∆pF |y=wF /2 (5.34)

Applying the fractional flux law stated in equation (5.13) into equation (5.33)
results in,

∂piD
∂yD

∣∣∣∣∣
yD=y1D

= kβ

k̃1

(
ηi
x2
F

s

)1−β
∂puD
∂yD

∣∣∣∣∣
yD=y1D

(5.35)

where, k1 represents the intrinsic branch-fracture permeability evaluated at y = y1

k̃1 = ki

(
y1

wFH

)H−E−θ
(5.36)

Recalling the pressure solution for USRV given in (??),

∂puD
∂yD

∣∣∣∣∣
yD=yD1

= − piD|yD=yD1

√
εu tanh [√εu (y2D − y1D)] (5.37)
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In the equation (5.37), εu contains USRV attributes.

εu =
(
x2
F

ηβ

)(
ηi
x2
F

)β
sβ (5.38)

Differentiating the equation (5.32) and evaluating at yD = y1D,

∂piD
∂yD

∣∣∣∣∣
yD=y1D

= √εiya+c−1
1D [C1Iν−1 (byc1D)− C2Kν−1 (byc1D)] (5.39)

Substituting the equations (5.39) and 5.37 in the equation (5.35),

− kβ

k̃1
√
εu

(
ηi
x2
F

s

)1−β

tanh {√εu (y2D − y1D)} piD|yD=y1D

= √εiya+c−1
1D [C1Iν−1 (byc1D)− C2Kν−1 (byc1D)]

(5.40)

Identifying parameters that remain constant and lumping them into a single param-
eter, εα

εα piD|yD=y1D
= [C2Kν−1 (byc1D)− C1Iν−1 (byc1D)] (5.41)

Where,

εα =
 kβ

k̃1
√
εu

(
ηi
x2
F

s

)1−β

tanh {√εu (y2D − y1D)}
 (5.42)

Now we recall the general solution (eq. (5.32)) to the fracture diffusivity equation.
Evaluating the equation (5.32) at yD = y1D yields,

p̄iD|yD=y1D
= ya1D [C1Iν (byc1D) + C2Kν (byc1D)] (5.43)

Rearranging the equation (5.43) and evaluating for C1,

C1 =
piD|yD=y1D

ya1DIν (byc1D) −
Kν (byc1D)
Iν (byc1D) C2 (5.44)

From equation (5.41) and (5.44), we solve for C2,

C2 =
[

εαy
a
1DIν (byc1D) + Iν−1 (byc1D)

Kν−1 (byc1D) Iν (byc1D) +Kν (byc1D) Iν−1 (byc1D)

]
piD|yD=y1D

(5.45)
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Identifying constants in equation (5.44) and (5.45) and letting

A =
[

εαy
a
1DIν (byc1D) + Iν−1 (byc1D)

Kν−1 (by1Dc) Iν (byc1D) +Kν (byc1D) Iν−1 (byc1D)

]
(5.46)

B =
[

1
ya1DIν (byc1D) −

Kν (byc1D)
Iν (byc1D) A

]
(5.47)

Substituting A and B in equation (5.44) and (5.45) results in,

C2 = A piD|yD=y1D
C1 = B piD|yD=y1D

The integration constants C1 and C2 were carefully written in terms of piD|yD=y1D
to

facilitate the solution. Now, writing the general solution equation (5.33) in terms of
piD|yD=y1D

,

piD = yaD [BIν (bycD) + AKν (bycD)] (5.48)

Applying the 2nd boundary condition from equation (5.34) in equation (5.48), we
obtain the pressure solution for the fluid transport in branch-fracture network.

piD = yaD [BIν (bycD) + AKν (bycD)](
wD
2

)a [
BIν

{
b
(
wD
2

)c}
+ AKν

{
b
(
wD
2

)c}] (5.49)

Now, we derive the derivative of equation (5.49) and evaluate it at yD = wD/2.
We will need this result to derive the final wellbore solution in primary fracture flow
region.

∂piD
∂yD

= √εi
(
wD
2

)c−1
[
D Iν−1 (X0)− C Kν−1 (X0)
D Iν (X0) + C Kν (X0)

]
(pFD)|yD=wD/2 (5.50)

Here, the argument, X0, in the Bessel functions I and K is,

X0 = b
(
wD
2

)c
(5.51)

Identifying the constants and lumping into a single term,
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εγ = √εi
(
wD
2

)c−1
[
D Iν−1 (X0)− C Kν−1 (X0)
D Iν (X0) + C Kν (X0)

]
(5.52)

The equation (5.50) reduces to:

∂piD
∂yD

= εγ (pFD)|yD=wD/2 (5.53)

Therefore, the equation (5.53) is ready to be coupled with the pressure solution
of primary hydraulic fracture. In this equation εγ carries all the transport informa-
tion from SRV matrix, branch-fracture and USRV to the hydraulic fracture pressure
solution.

5.3.3 Transport in Primary Hydraulic Fracture

In this study, primary hydraulic fracture is idealized as a vertical slab intersecting the
horizontal wellbore. This medium is well connected and provides less hindrance to
flow. Therefore, the diffusion phenomena can be defined by using classical diffusion
formula. Fluid flows linearly from fractal branch-fracture network to hydraulic frac-
ture in the y-direction, then flows along the x-direction to the wellbore. Flow inside
the hydraulic fracture is also assumed linear. The Governing diffusivity equation for
hydraulic fracture flow region can be written as,

∂

∂x

(
kF
µ

∂∆pF
∂x

)
+ ∂

∂y

(
kF
µ

∂∆pF
∂y

)
= (φct)F

∂∆pF
∂t

(5.54)

� Boundary condition 1 (Flux continuity at the interface of fractal branch-fracture
and primary fracture region)

(qF )|y=wF /2 = (qi)|y=wF /2 (5.55)

� Boundary condition 2 (Flux continuity at the interface of primary fracture plane
and the wellbore) (

Bqf
4

)∣∣∣∣
x=0

= (qF )|x=0 (5.56)

� Boundary condition 3 (No flow boundary at x = x1)
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(
∂∆pF
∂x

)∣∣∣∣∣
x=x1

= 0 (5.57)

Utilizing the flux continuity condition stated in (5.55), the effect from the fractal
branch-fracture, Spherical matrix and USRV is incorporated to the hydraulic fracture
diffusivity equation. Finally, utilizing boundary condition 2 and 3, we obtain the
following wellbore pressure solution,

pWD = π

s CFD
√
εF tanh

[√
εF
] (5.58)

The equation (5.58) presents the constant rate solution for the buttomhole pressure
of the fractal-branch fracture flow model in Laplace domain. It should be noted that
the term εF carries the fluid depletion information from all the flow regions. The
pressure solution terms for the regions other than hydraulic fracture are nested in εF .
The full solution with all the model functions are summarized below,
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pWD = π

s CFD
√
εF tanh

[√
εF
]

εF = s

ηFD
− 2
CFD

εγ

εγ = √εi
(
wD
2

)c−1
[
D Iν−1 (X0)− C Kν−1 (X0)
D Iν (X0) + C Kν (X0)

]

A =
[

εαy
a
1DIν (byc1D) + Iν−1 (byc1D)

Kν−1 (by1Dc) Iν (byc1D) +Kν (byc1D) Iν−1 (byc1D)

]

B =
[

1
ya1DIν (byc1D) −

Kν (byc1D)
Iν (byc1D) A

]

εα =
 kβ

k̃1
√
εu

(
ηi
x2
F

s

)1−β

tanh {√εu (y2D − y1D)}


εi = 2kβ
hfDkirmD

(
ηi
x2
F

s

)1−β ( 1
wHD

)θ
[rmD
√
εm coth (√εm)− 1]

εu =
(
x2
F

ηβ

)(
ηi
x2
F

)β
sβ

εm =
(
x2
F

ηβ

)(
ηi
x2
F

)β
sβ

A computational code for the developed model equations was written in MATLAB
and the model solution in real domain is obtained applying the multiprecision Gaver-
Wynn-Rho algorithm in a symbolic environment to avoid the round-off error. In the
subsequent segments, the analysis of the derived solution is presented.

5.4 Results and Field Applications

Horizontal well performance in a unconventional reservoir is governed by a numerous
physical parameters as presented in the fractal model. The accurate computation of
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these parameters always poses challenge to the engineers. Some of these parameters
exhibits significant influence in the field scale observation and some presents negligi-
ble impact on production. A comprehensive sensitivity analysis of these important
parameters is presented in this section. Finally, in order to validate the applicability
of the presented model, the simulated response is matched with data from a well in
the Eagle Ford Shale. The match and the evaluation of the constrained parameters
is also presented in this section.

5.4.1 Sensitivity of Important Parameters

Effect of Fractal Dimension

We have learnt from the Section 5.2 that the branch-fractture permeability field is
significantly affected by the fractal dimension H. Each different fractal dimension
generates a distinct permeability field provided that the connectivity index θ is con-
stant. The branch-fractures are the only flowing path in the SRV flow region. We
have evaluated the pressure drop at the wellbore for fractal dimensions starting from
2 with an increment of 0.2. Figure 5.4 exhibits pressure responses of this model af-
fected by fractal dimension H. As shown in Figure 5.2, the induced permeability field
becomes more stimulated and enhanced when the fractal dimension is larger.

In Figure 5.4, the wellbore pressure drop (∆p) curves moves downward with the
increase of the fractal dimension. As the value of H increases, the permeability of
each point in the SRV fractures increases and subsequently hindrance to flow in SRV
region decreases. The decrease in hindrance to flow in SRV region ultimately results
in a decrease in pressure drop (∆p). In addition, the impact of fractal dimension
on pressure response is evident throughout the entire production period. It also can
be observed from the Figure 5.4, the impact of H is smaller at early times due to
the fact that the early time flow is dominantly affected by the hydraulic fracture
conductivity. However, the late time production is greatly affected by the variation
of fractal dimension.
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Figure 5.4: Effect of fractal dimension on the pressure drop behaviour

Effect of Tortuosity Index

Fractal theory suggests, fractal dimension shows how complex a branch-fracture net-
work is, whereas the tortuosity index exhibits how well-connected a given fractal
object is. Therefore, H and θ are independent and are unique of branch-fracture
physical properties. The Figure 5.2 in section 5.2 illustrate the impact of tortuosity
index on branch-fracture permeability field. It can be observed that the increase of
θ induces the average decrease in induced fracture permeability. When θ = 0, the
diffusion process in the fractures is normal and the permeability field is only affected
by the fractal dimension H. The impact of θ on the pressure drop responses (∆p) is
presented in Figure 5.5.

In Figure 5.5, the pressure response curves move upward with the increase of
θ. The increase of tortuosity index reflects the hindrance that the reservoir fluid is
subjected to. In the curves with higher value of θ, two slopes are evident throughout
the flowing period. These two slopes represents two characteristic flow regimes in the
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reservoir. In early production times, the hydraulic fracture linear flow and HF-SRV
bilinear flow is dominant. In addition, the impact of θ is more pronounced in the
middle times of the production period.
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Figure 5.5: Effect of tortuosity index on the pressure drop behaviour

5.4.2 Analysis of Field Data

The presented fractal model was run to match the production history of an Eagle
Ford shale well. The Eagle Ford is composed of organic-rich calcaerous mudstones
and marls with payzone thickness ranging from 50 to 350 feet (Curnow, 2015). The
monthly production data, pressure data, reservoir properties data and other important
inputs are adopted from Albinali et al. (2016); Curnow (2015) and listed in Table 5.3.
The well produces from three horizontal laterals. The monthly production rates were
normalized based on the following premises: (i)Each lateral produces 33.3% of the
total production, (ii) The properties of all hydraulic fractures are same and shares
the stimulation efficiency and (iii)Average fracture spacing is based on the laterals
stimulation design
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Table 5.3: Model initialization with typical values for a horizontal well in Eagle Ford
Shale (Curnow, 2015; Albinali et al., 2016)

Parameters Typical values

Initial reservoir pressure, pi, psi 5375
Flowing bottomhole pressure, pwf , psi 800
Hydraulic fracture half-spacing, y2, ft 170
Pay zone thickness, h, ft 150
Radius of spherical matrix, rm, ft 0.5
Matrix porosity, φβ, 0.1
Matrix permeability,kβ, md 0.0001
Total matrix compressibility, cmt, psi−1 1× 10−5

Average branch fracture aperture, hf , ft 3× 10−3

Branch fracture compressibility, cfi,psi−1 1× 10−4

Hydraulic fracture porosity, φF 0.38
Hydraulic fracture permeability, kF 5× 104

Hydraulic fracture compressibility, ctF , psi−1 1× 10−5

Hydraulic fracture aperture, wF , ft 0.01
Fluid viscosity, µ, cp 0.5

First, the presented model is initialized with the measured data listed in Table 5.3.
Some of these data are estimates of established models. The following parameters have
been considered as constrained parameters that are to be evaluated from the match.
The parameters are,

� Hydraulic fracture half-length, xF

� Branch fracture permeability at the vicinity of primary fracture plane, ki

� Branch fracture porosity at the vicinity of primary fracture plane, φi

� Fractal dimension of the branch-fracture network, H

� Tortuosity index, θ

� Matrix intrinsic permeability, kβ
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The results of the production history matching for 39 months from October 2012
to January 2016 are presented in Figure 5.6. The knowledge from the sensitivity
analysis was utilized to match the field data with the model response. The model
shows convincing agreement with the field data. The evaluated fitting parameters are
listed in Table 5.4.
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Figure 5.6: History matching results with the proposed fractal branch-fracture flow
model

One of the most interesting features of this model is that it can glean important
information about the SRV with providing ki, H, θ and β. From the values of ki, φi H
and θ, the predicted branch-fracture permeability/porosity field is generated. Figure
5.7 presents the permeability and porosity field predicted by the proposed model.

A number of conclusions can be drawn from values evaluated by the model. An in-
effective fracture network was generated by the stimulation job and the fracture. The
fractures are extremely tortuous and provide significant hindrance to the flow. The
fracturing job failed to reactivate the existing natural fractures and/or to generate
new branch-fractures ultimately increasing the tortuosity index (θ=0.34) and decreas-
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Table 5.4: Values of the constrained parameters determined from the history matching

Parameters Matched values

Hydraulic fracture half-length, xF , ft 540
Branch fracture permeability at the vicinity of pri-
mary fracture plane, ki, md

0.1

Branch fracture porosity at the vicinity of primary
fracture plane, φi

0.6

Tortuosity index, θ 0.34
Fractal dimension of the branch-fracture network,
H

1.78

Matrix subdiffusion exponent, β 0.7
Effective SRV width, y1, ft 140

ing fractal dimension (H=1.78). The stimulation job also failed to make the fractures
traverse the total distance between fractures. Curnow (2015) also suggested that SRV
has extremely low permeability by analyzing geo-mechanical effects in SRV. Albinali
et al. (2016) matched the Eagle Ford well data with TADDP model and concluded
that induced fractures have diffusion exponent of 0.2 which translates to significant
hindrance to flow. The solution therefore is in good agreement with the existing stan-
dard models. The application of the presented model also revealed some important
features of the SRV, which, to the best of our knowledge, was not investigated before
with the Eagle Ford Shale well. The model match shows that effective SRV width
is 140 feet whereas the half-spacing between two hydraulic fractures was considered
170 feet during stimulation. Therefore, there exists a region of width of 30 ft where
the stimulation job did not generate any fracture network. Most of the trilinear mod-
els did not account for the USRV regions in a stimulated reservoirs. Neglecting the
USRV may lead a forecast error as it posses entirely different characteristics from
SRV. The width of effective SRV also indicates the efficacy of the fracturing design
and could be accounted for in the next completion design. On the other hand, the
matrix sub-diffusion exponent of 0.7 indicates the matrix provide less conductivity
to the fluid flow. In order to achieve economic production rates in this formation,
massive stimulation is required.

The possible further applications of the result generated by the proposed model
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Figure 5.7: Branch-fracture peremability field (left); Branch-fracture porosity distri-
bution (right)

can be summarized as:

- The porosity/permeability distribution can be taken as input to build a robust
numerical simulator

- The values of ki, H, θ and y1 can be taken into account to make an investment
plan for re-fracturing a existing well and/or completing a new well in the same
formation

- The permeability field can be utilized to design completion plan in terms of
optimum SRV width

- The optimum half-fracture spacing can be computed from the field and width

- The effective width can be utilized in the determination of injection fluid velocity
so that the induced fractures can traverse the whole distance between fractures

5.5 Conclusion

In this Chapter, an upgraded fractal model for the analysis of production data with
variable rate and borehole pressure for multifractured horizontal wells in ultralow
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unconventional reservoirs is developed, which takes subdiffusive fluid transport snd
USRV-branch-fracture flow into consideration.

The following conclusions are derived from the development and analysis of the
fractal branch-fracture flow model:

� The novel fractal reservoir model, Fractal Branch-fracture model, idealizes the
heterogeneity of ultralow multi-fractured reservoir by applying fractal charac-
teristics of medium and subdiffusive behaviour of matrix. The availability of
enough micro seismic data makes this model more efficient in determining other
important properties of SRV and USRV.

� The proposed semi-analytical model incorporates the hindrance to flow in SRV
by fractal characteristics of the medium and honours the physics of fluid flow
in SRV by taking the flow from the USRV to branch fractures into account.
The coupling of subdiffusion in the matrix enables the proposed fractal model
to deliver comprehensive physical and flow characteristics of unconventional
reservoirs.

� The proposed model confines its drainage region in the inner reservoir only as the
ultra-low unconventional reservoir shows insignificant impact of outer reservoir
on production behaviour. Hence, the number of constrained parameters to be
evaluated decreases and evaluating more parameters regarding the SRV becomes
feasible.

� The robustness of the semi-analytical model was tested, and the predictability
of the fractal model was validated by matching 39 months of production history
from Eagle Ford field data. The history matching shows excellent agreement
during early, intermediate and late time production ultimately bolstering the
basis of the model. The history matching with field data also provides important
parameters such as SRV width, Matrix permeability and Fractal permeability
field.

� The variability of diffusion phenomena as a result of geometric and temporal
consequence was carefully characterized by the Fractal branch-fracture model
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and therefore this model provides a solid tool to investigate and forecast perfor-
mance of multifractured unconventional reservoirs.
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Chapter 6

Conclusions and Future Research

In this research, the effect of branch-fracture permeability field and subdiffusion on
the well performance of multifractured unconventional reservoirs were investigated.

This thesis presents two semi-analytical models for two distinct types of uncon-
ventional fractured reservoirs. In addition, an assessment of the widely used inverse
Laplace methods was carried out to establish confidence in applying those methods in
the solution of flow problems of fractured media. The novelty of the proposed models,
findings of the research and the recommended future research works are discussed in
the following sections.

Novel Features of the Proposed Models

� The proposed SIBFF model enables extracting more detailed information of the
SRV such as branch-fracture permeability field, the size of the SRV and subdif-
fuisive characteristics of SRV matrix. The dimension of the outer reservoir can
also be extracted from the production data interpretation. The comprehensive
data extracted by matching the previous production history help evaluate and
predict stimulation efficiency.

� The proposed fractal model for ultralow permeability reservoirs incorporates
the hindrance to flow in SRV branch-fractures by fractal characteristics of the
medium and honors the physics of fluid flow by taking USRV-fracture flow into
account. Fluid flow from USRV matrix to SRV matrix is not realistic as assumed
by the previous fractal models.
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Conclusion

The following major conclusions are made by the work presented in this thesis:

� The proposed SIBFF model generalizes the standard models with uniform frac-
ture permeability and normal diffusion. The solution of this model was accu-
rately verified with a standard model, the TADDP model.

� Wellbore pressure drop is highly sensitive to the branch-fracture permeability
field and it affects the production behaviour throughout the whole life of an
unconventional reservoir. The generation of permeability field with high ki and
more complexity significantly enhances the production.

� History match of production data from Niobrara Field with the proposed SIBFF
model gleans important physical parameters of SRV (y1, ki, kβi and β), USRV
and outer reservoir.

� The proposed fractal model for ultralow permeability reservoirs couples tempo-
ral subdiffusion phenomena and fractal porosity/permeability distribution. The
porosity and permeability distribution of branch-fractures, SRV width of the
reservoir of Eagle Ford field was extracted from the production history match
with the presented model. The parameters (High θ and low H) indicate that
the stimulation job failed to generate effective network of branch-fractures.

� The parameters determined by applying the proposed models helps to evalu-
ate efficiency of stimulation job, necessity of refracturing and the velocity of
fracturing fluid.

Possible Future Research

The following approaches and measures to enhancement of the proposed two models
can be employed to improve the performance,

* The semi-analytical solution derived in this work assumes that the horizontal
well is intercepted by transverse hydraulic fracture. Extensions of the proposed
models can be derived using non-planar non-uniform hydraulic fractures.
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* The branch-fracture aperture is sensitive to the variation of the effective stress.
The possible changes to the aperture, porosity and permeability for the variation
of effective stress can be accounted for to obtain more realistic picture of the
unconventional fractured reservoirs
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Nomenclature

β Subdiffusion exponent

ε Model functions

η Diffusivity

µ Viscosity, cp

ν The order of Bessel funcion

φ Porosity

θ Tortuosity index

k̃ Bulk permeability, md

B Formation volume factor, rb/stb

ct Total compressibility, psi−1

cmt total matrix compressibility, psi−1

ctF Hydraulic fracture total compressibility, psi−1

H Hausdorff Fractal dimension

h Reservoir thickness, ft

hf Branch-fracture aperture, ft

hft Total branch-fracture fracture thickness

I Modified Bessel function of the first kind
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K Modified Bessel function of the first kind

k Permeability, md

ki Branch-fracture permeability at the vicinity of hydraulic fracture

kβ Phenomenological constant

nf Number of branch-fractures

p pressure

qF Single fracture flowrate, stb/day

r Radius, ft

rm Radius of matrix, ft

s Laplace variable

tD Dimensionless time

x Distance in the x-direction, ft

xF Fracture half length, ft

y Distance in the y-direction, ft

z Distance in the z-direction, ft
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Appendix A

Derivation of Induced
Branch-fracture Subdiffusive Flow
Model

A.1 Derivation of Pressure Solution for Region 4

Governing diffusivity equation to be applied in the region 4 of the figure 4.1 can be
derived from Equation (4.1) and (4.6),

∂

∂x

(
kβ
µ

∂1−β

∂t1−β
∂∆p4

∂x

)
= (φct)

∂∆p4

∂t
(A.1)

Taking ∂β−1

∂tβ−1 of the both sides of Equation (A.1) yields,

∂

∂x

(
∂∆p4

∂x

)
=
(
φµct
kβ

)
4

∂β∆p4

∂tβ
(A.2)

Transformation into dimensionless variables facilitate an analytical solution for
fluid flow with easier boundary condition setting and compatibility with different
unit systems. Table 4.2 lists the different scaled and dimensionless variables used in
this derivation. This transformation reduces Equation (A.2) to,

1
x2
F

∂2p4D

∂x2
D

= 1
ηβ

(
ηi
x2
F

)β
∂βp4D

∂tβD
(A.3)

where, ηβ is equivalent to the diffusivity of the region 4. Some rearrangements leads
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to,

∂2p4D

∂x2
D

−
(
x2
F

ηβ

)(
ηi
x2
F

)β
∂βp4D

∂tβD
= 0 (A.4)

Equation (A.4) is the governing diffusivity equation for the region 4 of the outer
reservoir. Taking Laplce transform of Equation (A.4) results in,

∂2p4D
∂x2

D

−
(
x2
F

ηβ

)(
ηi
x2
F

)β
sβp4D = 0 (A.5)

The initial reservoir pressure is assumed constant for each flow region of the proposed
model. Therefore, PD (xD, 0) = 0. Now, identifying the terms that are independent
of xD and lumping them into as a function of s variable yields:

∂2p4D
∂x2

D

− ε4p4D = 0 (A.6)

In Equation (A.6), ε4 carries all the necessary subdiffusion information to the neigh-
bouring reservoir segment while coupling is performed.

ε4=
(
x2
F

ηβ

)(
ηi
x2
F

)β
sβ (A.7)

By superposition principle, Equation (A.6) has a general solution:

p4D = A exp (−√ε4 xD) + B exp (√ε4 xD) (A.8)

Equation (A.8) is subjected to the following initial and boundary conditions which
facilitate with the determination of the integration constants.

� Initial condition (Pressure difference ∆p at t = 0):

∆p|t=0 = 0 (A.9)

� Boundary condition 1 (No flow boundary at x = x2):

∂∆p4

∂x

∣∣∣∣∣
x=x2

= 0 (A.10)
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Assuming a no-flow boundary at x = x2 is realistic when there exists two more
horizontal well on the both sides of the interested well. This is an industry practice to
drill parallel well in an unconventional reservoir. Now, transforming Equation (A.10)
into dimensionless form and taking Laplace transform of both sides leads to,

∂p4D
∂xD

∣∣∣∣∣
xD=x2D

= 0 (A.11)

Taking the derivative of Equation (A.8) and applying the boundary condition 1.

∂p4D
∂xD

= −√ε4 A exp (−√ε4xD) +√ε4 B exp (√ε4xD) (A.12)

Substituting (A.11) into Equation (A.12) results in,

A = Bexp(2√ε4 x2D) (A.13)

Equation (A.8) reduces to,

p4D = Bexp(2√ε4 x2D) exp (−√ε4 xD) + Bexp (√ε4 xD) (A.14)

Some rearrangements to Equation (A.14) results in,

p4D = Bexp (√ε4 x2D) {exp [√ε4 ( x2D − xD)] + exp [−√ε4 ( x2D − xD)] } (A.15)

The second boundary condition will ultimately solve the pressure solution for
region 4. Transforming Equation (4.11) into dimensionless form and taking Laplace
transform of both sides leads to,

(p4D)|xD=x1D
= (p2D)|xD=x1D

(A.16)

Applying the second boundary condition into Equation (A.15) reduces to,

p2D = Bexp (√ε4 x2D) {exp [√ε4 ( x2D − x1D)] + exp [−√ε4 ( x2D − x1D)] }
(A.17)
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Solving for B results in,

B = p2D

exp
(√

ε4 x2D
) {

exp
[√
ε4 ( x2D − xD)

]
+ exp

[
−√ε4 ( x2D − xD)

] } (A.18)

Therefore, the pressure solution in region 4 is,

p4D = (p2D)
cosh

[√
ε4 ( x2D − xD)

]
cosh

[√
ε4 ( x2D − x1D)

] (A.19)

Also, derivative at xD = x1D is calculated for flux from the region 4 to the region 2:

∂p4D
∂xD

∣∣∣∣∣
xD=x1D

= −(p2D)|xD=x1D

√
ε4tanh [√ε4 (x2D − x1D)] (A.20)

A.2 Derivation of Pressure Solution for Region 3

The governing diffusivity equation of region 3 can be written as,

∂

∂x

(
kβ
µ

∂1−β

∂t1−β
∂∆p3

∂x

)
= (φct)3

∂∆p3
∂t

(A.21)

According to the rules of fractional calculus (Uchaikin, 2013), we take ∂β−1

∂tβ−1 of the
both sides of Equation (A.2) yields,

∂

∂x

(
∂∆p3

∂x

)
=
(
φµct
kβ

)
3

∂β∆p3

∂tβ
(A.22)

Transforming into dimensionless introducing the variables listed in Table 4.2, Equation
reduces to,

1
x2
F

∂2p3D

∂x2
D

= 1
ηβ

(
ηi
x2
F

)β
∂βp3D

∂tβD
(A.23)

where, ηβ is equivalent to the diffusivity of the region 3. This parameter is similar as
it is in region 4 due to the assumption that the unconventional matrix of the whole
reservoir possess same level of sub-diffusive characteristics. Some rearrangements
leads to,
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∂2p3D

∂x2
D

−
(
x2
F

ηβ

)(
ηi
x2
F

)β
∂βp3D

∂tβD
= 0 (A.24)

Equation (A.24) is the governing diffusivity equation in terms of scaled and dimen-
sionless variable for the region 3. Taking Laplace transform of Equation (A.24) results
in,

∂2p3D
∂x2

D

−
(
x2
F

ηβ

)(
ηi
x2
F

)β
sβp3D = 0 (A.25)

Now, identifying the terms that are independent of xD and lumping them into as a
function of s variable yields:

∂2p3D
∂x2

D

− ε3p3D = 0 (A.26)

Like ε3 of the region 3, ε4 carries all the necessary subdiffusive information to the
neighbouring SRV segment while coupling is performed by transfer functions.

ε3=
(
x2
F

ηβ

)(
ηi
x2
F

)β
sβ (A.27)

By superposition principle, Equation (A.26) has a general solution,

p3D = Aexp (−√ε3 xD) + Bexp (√ε3 xD) (A.28)

Equation (A.28) is subjected to the following initial and boundary conditions which
facilitate with the determination of the integration constants.

� Boundary Condition 1 (No flow boundary at x = x2) in dimensionless form:

∂p3D
∂xD

∣∣∣∣∣
xD=x2D

= 0 (A.29)

� Boundary condition 2 (Pressure continuity at the interface of region 3 and SRV)
in dimensionless form:

(p3D)|xD=x1D
= (p1D)|xD=x1D

(A.30)
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In a similar fashion, applying Equation (A.29) and (A.30) into Equation (A.28)
yields,

p3D = (piD)|xD=x1D

cosh
[√
ε3 (x2D − xD)

]
cosh

[√
ε3 (x2D − x1D)

] (A.31)

Equation (A.31) is the pressure solution for region 3. The derivative at xD = x1D

is calculated for the flux from the region 3 to the region 2,

∂p3D
∂xD

∣∣∣∣∣
xD=x1D

= −(piD)|xD=x1D

√
ε3tanh [√ε3 (x2D − x1D)] (A.32)

A.3 Derivation of Pressure Solution for Region 2

The diffusion equation in region 2 involves x and y component of the fluid flux due
to the need for coupling of region 4 influx. The governing diffusivity equation can be
written as,

∂

∂x

(
kβ
µ

∂1−β

∂t1−β
∂∆p2

∂x

)
+ ∂

∂y

(
kβ
µ

∂1−β

∂t1−β
∂∆p2

∂y

)
= (φct)2

∂∆p2
∂t

(A.33)

Taking ∂β−1

∂tβ−1 of the both sides of Equation (A.33) yields,

∂

∂x

(
∂∆p2

∂x

)
+ ∂

∂y

(
∂∆p2

∂y

)
=
(
φµct
kβ

)
β

∂β∆p2
∂tβ

(A.34)

We assumed that the fluid flow in every region is unidirectional. Now, integrating
Equation (A.34) with respect to x in [0, xF ] results in,

ˆ xF

0

∂2∆p2

∂x2 dx+
ˆ xF

0

∂2∆p2

∂y2 dx =
(
φµct
kβ

)
β

ˆ xF

0

∂β∆p2

∂tβ
dx (A.35)

Since, there is no flow in the x-direction, a pseudo-function assumption is made.
According to the derivation procedure of Trilinear (Ozkan et al., 2009) , Five Region
(Stalgorova & Mattar, 2013), and FTSGF (Fan & Ettehadtavakkol, 2017b) model,
the first derivatives of ∆p with respect to y and t are not function of x. This pseudo-
function assumption is made to search for an analytical solution.
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∂∆p2

∂y
,
∂∆p2
∂t
6= f(x) (A.36)

The integration in Equation (A.35) results in,

xF

(
∂2∆p2

∂y2

)
+
(
∂∆p2

∂x

)∣∣∣∣∣
xF

= xF
ηβ

∂β∆p2

∂tβ
(A.37)

Transforming into dimensionless variables reduces Equation (A.37) to,

(
∂p2D

∂xD

)∣∣∣∣∣
xD=x1D

+ ∂2p2D

∂y2
D

= x2
F

ηβ

(
ηi
x2
F

)β
∂βp2D

∂tβD
(A.38)

Taking Laplace Transform of both sides,

(
∂p2D
∂xD

)∣∣∣∣∣
xD=x1D

+ ∂2p2D
∂y2

D

= x2
F

ηβ

(
ηi
x2
F

)β
sβ (p2D) (A.39)

� Boundary condition 1 (Flux continuity at the interface of region 3 and region
2)

(q4)|x=x1
= (q2)|x=x1

(A.40)

� Boundary condition 2 (No flow boundary at y = y2)

∂p2D
∂yD

∣∣∣∣∣
yD=y2D

= 0 (A.41)

� Boundary condition 3 (Pressure continuity at the interface of SRV branch-
fracture and region 3)

(p3D)|yD=y1D
= (piD)|yD=y1D

(A.42)

Matrix-matrix fluid transfer happens at the interface at x = x1. Therefore, ex-
panding Equation (A.40),

kβ
µ

∂1−β

∂t1−β

(
∂∆p4

∂x

)∣∣∣∣∣
x=x1

= kβ
µ

∂1−β

∂t1−β

(
∂∆p2

∂x

)∣∣∣∣∣
x=x1

(A.43)

Transforming into dimensionless variables and taking Laplace transform of both sides,

119



(
∂p4D
∂xD

)∣∣∣∣∣
xD=x1D

=
(
∂p2D
∂xD

)∣∣∣∣∣
xD=x1D

(A.44)

Substituting Equation (A.44) into Equation (A.39) results in,

(
∂p4D
∂xD

)∣∣∣∣∣
xD=x1D

+ ∂2∆p2D
∂y2

D

= x2
F

ηβ

(
ηi
x2
F

)β
sβ (p2D) (A.45)

From Equation (A.32) and Equation (A.45), we derive,

∂2∆p2D
∂y2

D

−
√
ε4tanh [√ε4 (x2D − x1D)] (p2D)|xD=x1D

= x2
F

ηβ

(
ηi
x2
F

)β
sβ (p2D) (A.46)

Recalling the pseudo-function assumption and assuming (p2D)|xD=x1D
= p2D .

Therefore, identifying the terms that are independent of yD and lumping them into
as a function of s variable yields,

∂2∆p2D
∂y2

D

− ε2 (p2D) = 0 (A.47)

In Equation (A.47), ε2 carries all the important information about region 2 to the
region 1.

ε2=
√ε4tanh [√ε4 (x2D−x1D)] +x

2
F

ηβ

(
ηi
x2
F

)β
sβ

 (A.48)

By superposition principle, we write from Equation (A.47),

p2D = Aexp (−√ε2 yD) + Bexp (√ε2 yD) (A.49)

Applying the boundary conditions from Equation (A.41) and (A.42) into Equation
(A.49) leads to,

p2D = (piD)|y=y1D

cosh
[√
ε2 (y2D − yD)

]
cosh

[√
ε2 (y2D − y1D)

] (A.50)

The resulted solution in Equation (A.50) presents the pressure solution for region
2. Also, derivative of (A.50) is calculated at yD = y1D for flux from region 2 to the
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SRV.

∂p2D
∂yD

∣∣∣∣∣
yD=y1D

= −(piD)|yD=y1D

√
ε2tanh [√ε2 (y2D − y1D)] (A.51)

A.4 Derivation of Pressure Solution for Spherical
Matrix

The governing diffusivity equation in spherical matrix:

1
r2

∂

∂r

(
r2kβ
µ

∂1−β

∂t1−β
∂∆pm
∂r

)
= (φct)β

∂∆pm
∂t

(A.52)

Taking ∂β−1

∂tβ−1 of the both sides of Equation (A.52) yields,

1
r2

∂

∂r

(
r2∂∆pm

∂r

)
=
(
φµct
k

)
β

∂β∆pm
∂tβ

(A.53)

Introducing dimensionless variables in (A.53)

1
r2
D

∂

∂rD

(
r2
D

∂pmD
∂rD

)
= x2

F

ηβ

(
ηi
x2
F

)β
∂βpmD

∂tβD
(A.54)

Let,
MD = pmDrD (A.55)

From Equation (A.55) and (A.54), we can derive,

∂2MD

∂r2
D

= x2
F

ηβ

(
ηi
x2
F

)β
∂βMD

∂tβD
(A.56)

Taking Laplace transform of both sides of Equation (A.56).

∂2MD

∂r2
D

−
(
x2
F

ηβ

)(
ηi
x2
F

)β
sβMD = 0 (A.57)

Identifying the parameters that remain constant at a fixed time in Laplace domain
and lumping them together in εm:

∂2MD

∂r2
D

− εmMD = 0 (A.58)
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Where,

εm=
(
x2
F

ηβ

)(
ηi
x2
F

)β
sβ (A.59)

Therefore, the general solution of Equation (A.58) in Laplace domain is,

MD = Aexp (−√εm rD) + Bexp (√εm rD) (A.60)

where, A and B are constants that needs to be evaluated by applying necessary
boundary conditions. The boundary conditions are,

� Boundary condition 1

∆pm (r = 0, t) = 0

MD (rD = 0, s) = 0
(A.61)

� Boundary condition 2 (Pressure continuity at the interface of spherical matrix
and branch-fracture medium)

pmD|rD=rmD = (piD)
∣∣∣
rD=rmD

(A.62)

Applying the boundary condition 1 from Equation (A.61) into Equation (A.60) yields
the following,

MD = 2B{sinh (√εm rD)} (A.63)

Plugging the relation of MD from Equation (A.55),

pmD = 2
rD

B sinh (√εmrD) (A.64)

Now, applying boundary condition 2 from Equation (A.62) results in,

piD|rD=rmD = 2
rmD

B sinh (√εmrmD) (A.65)

Evaluating for B,

B = rmD

2sinh
(√

εm rmD
) {(piD)|}rD=rmD (A.66)
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Therefore, we obtain the pressure solution in Laplace domain for the spherical
matrix.

pmD = rmD
rD

sinh
(√

εm rD
)

sinh
(√

εm rmD
) (piD)|rD=rmD (A.67)

A.5 Derivation of Pressure Solution for Branch-
fracture

The governing equation for the branch-fracture domain can be written as,

∂

∂x

(
kx
µ

∂∆pi
∂x

)
+ ∂

∂y

(
k (y)
µ

∂∆pi
∂y

)
+ Q̇ = (φct)i

∂∆pi
∂t

(A.68)

where, Q̇ denotes the transient fluid transfer from the SRV matrix spheres into the
branch-fracture. According to de Swaan O et al. (1976), the matrix source term should
be the ratio of the total flux across the surface of a spherical matrix to the half of the
fracture volume envelope around each sphere.

Q̇ = −kβ (4πr2
m)

µ

∂1−β

∂t1−β

(
∂∆pm
∂r

)
r=rm

1
4πr2

m(hf/2 ) (A.69)

After some rearrangements, Equation A.69 reduces to,

Q̇ = − 2kβ
µhf

∂1−β

∂t1−β

(
∂∆pm
∂r

)
r=rm

(A.70)

Plugging equation A.70 into equation A.68 yields,

∂

∂x

(
kx
µ

∂∆pi
∂x

)
+ ∂

∂y

(
k (y)
µ

∂∆pi
∂y

)
− 2kβ
µhf

∂1−β

∂t1−β

(
∂∆pm
∂r

)
r=rm

= (φct)i
∂∆pi
∂t

(A.71)

Now, integrating Equation A.71 over [0, xF ],
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ˆ xF

0

∂

∂x

(
kx
µ

∂∆pi
∂x

)
dx+

ˆ xF

0

∂

∂y

(
k (y)
µ

∂∆pi
∂y

)
dx

−
ˆ xF

0

2kβ
µhf

∂1−β

∂t1−β

(
∂∆pm
∂r

)
r=rm

dx = (φct)i
ˆ xF

0

∂∆pi
∂t

dx

(A.72)

The fluid flow is unidirectional and pressure gradient only varies in the y-direction.
Applying the pseudo-function assumption which states that the first derivatives of ∆p
with respect to y and t are not function of x.(Ozkan et al., 2009). The fluid flow is
unidirectional and pressure gradient only varies in the y-direction. Hence, we write,

∂∆pi
∂y

6= f(x) (A.73)

∂∆pi
∂t
6= f(x) (A.74)

k (y) 6= f(x) (A.75)

From Equation (A.73), (A.74), (A.75) and (A.72), we obtain,

kx
µ

(
∂∆pi
∂x

)∣∣∣∣∣
x=xF

+ xF
∂

∂y

(
k (y)
µ

∂∆pi
∂y

)
−

2xFkβ
µhf

∂1−β

∂t1−β

(
∂∆pm
∂r

)
r=rm

= xF (φct)i
∂∆pi
∂t

(A.76)

Introducing dimensionless variables and transforming the variables into dimensionless
form,

kx
µ

(
∂piD
∂xD

)∣∣∣∣∣
xD=x1D

+ ∂

∂yD

(
k (y)
µ

∂piD
∂yD

)
−

2xFkβ
µhf

(
ηi
x2
F

)1−β
∂1−β

∂t1−β

(
∂pmD
∂rD

)
rD=rmD

= (φct)i (ηi)
∂piD
∂tD

(A.77)
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Multiplying both sides of (A.77) by µ
ki

yields,

kx
ki

(
∂piD
∂xD

)∣∣∣∣∣
xD=x1D

+ ∂

∂yD

(
k (y)
ki

∂piD
∂yD

)
− 2kβxF

kihf

(
ηi
x2
F

)1−β
∂1−β

∂t1−β

(
∂pmD
∂rD

)
rD=rmD

= ∂piD
∂tD

(A.78)

Introducing the dimensionless permeability kD (yD) and dimensionless fracture slab
thickness hfD to Equation (A.78) results in,

kxD

(
∂piD
∂xD

)∣∣∣∣∣
xD=x1D

+ ∂

∂yD

(
kD (yD) ∂piD

∂yD

)
− 2kβ
kihfD

(
ηi
x2
F

)1−β
∂1−β

∂t1−β

(
∂pmD
∂rD

)
rD=rmD

= ∂piD
∂tD

(A.79)

Here, kxD = kx
ki
. Now, taking Laplace transform of Equation (A.79) and applying the

initial condition, pD (yD, 0) = 0:

kxD

(
∂piD
∂xD

)∣∣∣∣∣
xD=x1D

+ ∂

∂yD

(
kD (yD) ∂piD

∂yD

)
− 2kβ
kihfD

(
ηi
x2
F

)1−β

s1−β
(
∂pmD
∂rD

)
rD=rmD

= s (piD)
(A.80)

Recalling the pressure solution for spherical matrix stated in Equation (A.67) and
taking derivative,

∂pmD
∂rD

=
rmD (piD)|rD=rmD

sinh
(√

εm rmD
)
−sinh

(√
εm rD

)
r2
D

+
√
εm cosh

(√
εm rD

)
rD

 (A.81)
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Now, evaluating Equation (A.81) at rD = rmD, we obtain,

(
∂pmD
∂rD

)∣∣∣∣∣
rD=rmD

= rmD (piD)|rD=rmD

 −1
r2
mD

+
√
εm cosh

(√
εm rmD

)
rmDsinh

(√
εm rmD

)
 (A.82)

After some rearrangements, the derivative take the form,
(
∂pmD
∂rD

)∣∣∣∣∣
rD=rmD

=
(piD)|rD=rmD

rmD
[rmD
√
εmcoth (√εm rmD) − 1] (A.83)

Substituting Equation (A.83) in Equation (A.80), we obtain the following:

kxD

(
∂piD
∂xD

)∣∣∣∣∣
xD=x1D

+ ∂

∂yD

(
kD (yD) ∂piD

∂yD

)

− 2kβ
kihfD

(
ηi
x2
F

s

)1−β (piD)|rD=rmD
rmD

[rmD
√
εmcoth (√εm rmD) − 1] = s (piD)

(A.84)

The branch-fracture diffusivity equation is subjected to the following boundary
conditions,

� Boundary condition 1 (Flux continuity at the interface of SRV and region 3)

(q1)|x=x1
= (q3)|x=x1

(A.85)

� Boundary condition 2 (Flux continuity at the interface of SRV and region 2)

(q1)|y=y1
= (q2)|y=y1

(A.86)

� Boundary condition 3 (Pressure continuity at y = wF/2)

(pi)|y=wF /2 = (pF )|y=wF /2 (A.87)

� Boundary condition 4 (Pressure continuity at y = y1)

(pi)|y=y1
= (p2)|y=y1

(A.88)
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Expanding the boundary condition 1, we obtain,

kxAi
µ

(
∂∆pi
∂x

)∣∣∣∣∣
x=x1

= kβAh
µ

∂1−β

∂t1−β

(
∂∆p3

∂x

)∣∣∣∣∣
x=x1

(A.89)

Where Ai represents the area of the induced fractures intersecting at the interface
of the region 1 and region 3. This area of the fracture continuum plays as the sole
medium of fluid transport. On the other hand, the matrix continuum only acts as a
storage of fluid and does not produce to the well bore. The term Ah on the right side
represents the area of the region 3 that produce fluid and transport to the region 1.
If the fracture height is hf and there exists nf number of fractures in induced region,
Equation (A.89) can be written as:

kx (nfhfy1)
(
∂∆pi
∂x

)∣∣∣∣∣
x=x1

= kβ (nfhf + nfhm) y1
∂1−β

∂t1−β

(
∂∆p3

∂x

)∣∣∣∣∣
x=x1

(A.90)

In Equation (A.91), the total fracture height, hft equals nfhf .

(
kxhft

) (∂∆pi
∂x

)∣∣∣∣∣
x=x1

= (kβh) ∂
1−β

∂t1−β

(
∂∆p3

∂x

)∣∣∣∣∣
x=x1

(A.91)

Introducing the bulk permeability
(
k̃x = kxhft

h

)
in Equation (A.91) gives us,

k̃x

(
∂∆pi
∂x

)∣∣∣∣∣
x=x1

= kβ
∂1−β

∂t1−β

(
∂∆p3

∂x

)∣∣∣∣∣
x=x1

(A.92)

where, k̃x represents the bulk permeability at the interface of the induced region
and region 3. Now transforming Equation(A.92) into dimensionless and then taking
Laplace transform of both sides:

(
∂piD
∂xD

)∣∣∣∣∣
xD=x1D

= kβ

k̃x

(
ηi
x2
F

s

)1−β (
∂p3D
∂xD

)∣∣∣∣∣
xD=x1D

(A.93)

Recalling Equation(A.32) and substituting in Equation (A.93), we obtain the follow-
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ing,

(
∂piD
∂xD

)∣∣∣∣∣
xD=x1D

= −kβ
k̃x

(
ηi
x2
F

s

)1−β√
ε3tanh [√ε3 (x2D − x1D)] (p1D)|xD=x1D

(A.94)

Plugging Equation (A.93) in Equation (A.84) results in,

− kxDkβ

k̃x

(
ηi
x2
F

s

)1−β√
ε3tanh [√ε3 (x2D − x1D)] (piD)|xD=x1D

+ ∂

∂yD

(
kD (yD) ∂piD

∂yD

)

− 2kβ
kihfD

(
ηi
x2
F

s

)1−β (piD)|rD=rmD
rmD

[rmD
√
εmcoth (√εm rmD) − 1] = s (piD)

(A.95)

Now, identifying the constant terms at a fixed time and lumping them together into
single parameter simplify Equation (A.95) to,

−εa (piD)|xD=x1D
+ ∂

∂yD

(
kD (yD) ∂piD

∂yD

)
− εb (piD)|rD=rmD − s (piD) = 0 (A.96)

where, the lumped parameters εa and εb are defined as:

εa = kxDkβ

k̃x

(
ηi
x2
F

s

)1−β√
ε3tanh [√ε3 (x2D − x1D)]

εb = 2kβD
hfDrmD

(
ηi
x2
F

s

)1−β

[rmD
√
εmcoth (√εm rmD) − 1]

(A.97)

The fluid flow in SRV branch-fractures is necessarily unidirectional. Hence, piD
only depends on y direction. Again, recalling the pseudo-function assumption and
assuming (piD)|xD=x1D

= piD and (piD)|rD=rmD = piD lets us write,

∂

∂yD

(
kD (yD) ∂piD

∂yD

)
− εi (piD) = 0 (A.98)

where,
εi = εa + εb + s (A.99)
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Next, we incorporate the exponential branch-fracture permeability field to the
diffusivity equation of fracture medium. Recalling the branch-fracture permeability
field in dimensionless form,

kD(yD) = (kβD)
(
yD−wD/2
y1D−wD/2

)
(A.100)

Transforming it into an exponential form gives us flexibility to deal with the complex-
ity it introduces to the diffusivity equation,

kD (yD) = e
(lnkβD)

(
yD−wD/2
y1D−wD/2

)
(A.101)

From Equation (A.98) and (A.101), we find,

∂

∂yD

(
e

(lnkβD)
(
yD−wD/2
y1D−wD/2

)
∂piD
∂yD

)
− εi (piD) = 0 (A.102)

Now, expanding Equation (A.102):

e
(lnkβD)

(
yD−wD/2
y1D−wD/2

)
∂2piD
∂y2

D

+ ∂piD
∂yD

(
lnkβD

y1D − wD

)
e

(lnkβD)
(
yD−wD/2
y1D−wD/2

)
− εi (piD) = 0

(A.103)
To simplify the diffusivity equation, we let the following:

M =
(

lnkβD
y1D − wD/2

)
, zD = eM(yD−wD/2) (A.104)

Now the diffusivity equation becomes,

zD
∂2piD
∂y2

D

+ ∂piD
∂yD

MzD − εi (piD) = 0 (A.105)

Recalling Chain Rule of differentiation and finding the derivative terms of Equation
(A.105) in terms of zD.
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∂piD
∂yD

= ∂piD
∂zD

∂zD
∂yD

∂piD
∂yD

= ∂piD
∂zD

MeM(yD−wD/2)

(A.106)

In a similar fashion, we obtain:

∂2piD
∂y2

D

= M2z2
D

∂2piD
∂z2

D

+M2zD
∂piD
∂zD

(A.107)

Substituting Equation (A.106) and (A.107) into Equation (A.105) yields:

z2
D

∂2piD
∂zD

+ 2zD
∂piD
∂zD

−
(
εi
M2

)( 1
zD

)
piD = 0 (A.108)

Equation (A.108) resembles to the modified Bessel differential equation. In order
to find the solution to this equation, we complement the techniques of determining so-
lutions from a standard Bessel differential equation. Therefore, according to Bowman
(2012), the general solution to the modified Bessel differential equation can be written
as below:

piD = z
−1/2
D

[
AI1

(
2√εi
M

z
− 1

2
D

)
+BK1

(
2√εi
M

z
− 1

2
D

)]
(A.109)

Here, I1 and K1 are the modified Bessel function of first and second kind. A and B are
two constants which needs to be evaluated with the available boundary conditions.
For the ease of algebraic manipulation, we let the argument of Bessel functions as:

X = 2√εi
M

z
− 1

2
D (A.110)

This simplifies to,

piD = z
−1/2
D [AI1 (X) + BK1 (X)] (A.111)
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The differentiation rules for Iν and Kν are given by:

I
′

ν (x) = Iν−1 (x)− ν

x
Iν (x)

K
′

ν (x) = −Kν−1 (x)− ν

x
Kν (x)

(A.112)

Utilizing the differential rules given in Equation (A.112), the derivative of Equation
(A.109) is evaluated. We write:

∂piD
∂yD

= 1
√
zD

[
−A
√
εi√
zD

I0 (X) + AM

2 I1 (X) + B

√
εi√
zD

K0 (X) + BM

2 K1 (X)
]

− M

2√zD
[AI1 (X) + BK1 (X)]

(A.113)

Which simplifies to,
∂piD
∂yD

=
√
εi
zD

[BK0 (X)− AI0 (X)] (A.114)

When Equation is evaluated at yD = y1D, Equation (A.114) takes the form:
(
∂piD
∂yD

)∣∣∣∣∣
yD=y1D

=
√
εi

kβD
[BK0 (X1)− AI0 (X1)] (A.115)

In Equation (A.115), we define X1 as X evaluated at yD = y1D. We did this to keep
our equations and terms tidy and distinguishable. Hence, we write,

X1 = (X)|yD=y1D
= 2√εi

M

1√
kβD

(A.116)

Recalling the boundary condition 2 in Equation (A.86) and expanding it yields:

kβiAi
µ

(
∂∆pi
∂y

)∣∣∣∣∣
y=y1

= kβAh
µ

∂1−β

∂t1−β

(
∂∆p2

∂y

)∣∣∣∣∣
y=y1

(A.117)

Where Ai represents the area of the induced fractures intersecting at the interface
of the SRV and region 2. This area of the fracture continuum plays the as the sole
medium of fluid transport. On the other hand, the matrix continuum only acts as
a storage of fluid and does not produce to the well bore. The term Ah on the right
side represents the area of the region 2 that produce fluid and transport to the SRV.
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If the fracture height is hf and there exists nf number of fractures in induced region,
Equation (A.117) can be written as:

kβi (nfhfxF )
(
∂∆pi
∂x

)∣∣∣∣∣
y=y1

= kβ (nfhf + nfhm) xF
∂1−β

∂t1−β

(
∂∆p2

∂x

)∣∣∣∣∣
y=y1

(A.118)

Total branch-fracture height, hft = nfhf ,

(kβihft)
(
∂∆pi
∂y

)∣∣∣∣∣
y=y1

= (kβh) ∂
1−β

∂t1−β

(
∂∆p2

∂y

)∣∣∣∣∣
y=y1

(A.119)

Introducing bulk permeability to Equation (A.119) results in,

k̃y

(
∂∆pi
∂y

)∣∣∣∣∣
y=y1

= kβ
∂1−β

∂t1−β

(
∂∆p2

∂y

)∣∣∣∣∣
y=y1

(A.120)

Here,k̃y represents the bulk permeability at the interface of the induced region and
region 2. Now transforming Equation (A.120) into dimensionless and then taking
Laplace transform of both sides:

(
∂piD
∂yD

)∣∣∣∣∣
yD=y1D

= kβ

k̃y

(
ηi
x2
F

s

)1−β (
∂p2D
∂xD

)∣∣∣∣∣
yD=y1D

(A.121)

Recalling Equation (A.51) which is the derivative of the pressure solution from region
2 and applying in Equation (A.121).

(
∂piD
∂yD

)∣∣∣∣∣
yD=y1D

= −kβ
k̃y

(
ηi
x2
F

s

)1−β√
ε2tanh [√ε2 (y2D − y1D)] (piD)|yD=y1D

(A.122)

Plugging Equation (A.122) in (A.115), we obtain the following:

−
(√

ε2√
εi

) (
kβkβD

k̃y

) (
ηi
x2
F

s

)1−β

tanh [√ε2 (y2D − y1D)] (piD)|yD=y1D

= [BK0 (X1)− AI0 (X1)]
(A.123)

Now, lumping the important parameters that remain constant at a fixed time. We
define it as εα which equals to:
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εα =
(√

ε2√
εi

)(
kβkβD

k̃y

) (
ηi
x2
F

s

)1−β

tanh [√ε2 (y2D − y1D)] (A.124)

Then, Equation (A.123) reduces to:

εα (piD)|yD=y1D
= AI0 (X1)− BK0 (X1) (A.125)

Recalling Equation (A.109) and evaluating at yD = y1D reduces Equation (A.109) in
terms of (piD)|yD=y1D

which is desirable to compute the coefficients of integration.

(piD)|yD=y1D
= 1√

kβD
[AI1 (X1) + BK1 (X1)] (A.126)

Evaluating for A:

A =

√
kβD (piD)

∣∣∣
yD=y1D

I1 (X1) −
(
K1 (X1)
I1 (X1)

)
B (A.127)

From Equation (A.127) and (A.125), we derive:

εα (piD)|yD=y1D
=


√
kβD (piD)

∣∣∣
yD=y1D

I1 (X1) −
(
K1 (X1)
I1 (X1)

)
B

 I0 (X1)−BK0 (X1) (A.128)

Evaluating for B:

B =


√
kβDI0 (X1)− εαI1 (X1)

K1 (X1) I0 (X1) +K0 (X1) I1 (X1)

 (piD)|yD=y1D
(A.129)

We identify the constants and let:

B = C (piD)|yD=y1D
(A.130)

Here,

C =


√
kβDI0 (X1)− εαI1 (X1)

K1 (X1) I0 (X1) +K0 (X1) I1 (X1)

 (A.131)

Equation (A.127) reduces to the following after putting Equation for B:

133



A =

√
kβD

I1 (X1) −
(
K1 (X1)
I1 (X1)

)
C

 (piD)|yD=y1D
(A.132)

Again, we let:

D =

√
kβD

I1 (X1) −
(
K1 (X1)
I1 (X1)

)
C

 (A.133)

This simplifies Equation (A.132) to:

A = D (piD)|yD=y1D
(A.134)

Here, the two coefficients A and B have been expressed in (piD)|yD=y1D
and C and

D are constant at a fixed value of time. Then, applying the boundary condition 3
from Equation (A.87), the value of (piD)|yD=y1D

can be obtained. Now, the general
solution (eq. (A.111)) takes the form as:

(piD)| = z
−1/2
D [DI1 (X) + CK1 (X) ] (piD)|yD=y1D

(A.135)

Transforming the boundary condition 3 into dimensionless form:

(piD)|yD=wD/2 = (pFD)|yD=wD/2 (A.136)

Now, in order to evaluate the term (piD)|yD=y1D
, we apply the boundary condition 3.

First, if we set yD = wD/2 in Equation (A.111), Equation (A.111) reduces to:

(piD)|yD=wD/2 = [DI1 (X0) + CK1 (X0) ] (piD)|yD=y1D
(A.137)

Where,
X0 = (X)|yD=wD/2 = 2√εi

M
(A.138)

From Equation (A.136) and (A.137), we obtain,

(piD)|yD=y1D
=

(pFD)|yD=wD
2

[DI1 (X0) + CK1 (X0)] (A.139)

Therefore, the general solution (stated in Eq.(A.111)) can be written in terms of
hydraulic fracture pressure term as following:
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piD = z
− 1

2
D

[
DI1 (X) + CK1 (X)
DI1 (X0) + CK1 (X0)

]
(pFD)|yD=wD

2
(A.140)

Recalling the differentiation rules for Iν and Kν and differentiating Equation (A.141)
yields,

(
∂piD
∂yD

)
=
 (pFD)|yD=wD

2

DI1 (X0) + CK1 (X0)

 ∂

∂yD

[
z
− 1

2
D {DI1 (X) + CK1 (X)}

]
(A.141)

Expanding the differentiation and rearranging Equation (A.142),

(
∂piD
∂yD

)
=
 (pFD)|yD=wD

2

DI1 (X0) + CK1 (X0)

[ 1
√
zD

(
−D
√
εi√
zD

I0 (X) + DM

2 I1 (X)

+C
√
εi√
zD

K0 (X) + CM

2 K1 (X)
)
− M

2√zD
[DI1 (X) + CK1 (X)]

]
(A.142)

Equation (A.142) simplifies to,

(
∂piD
∂yD

)
=
 (pFD)|yD=wD

2

DI1 (X0) + CK1 (X0)

 √εi
zD

[C K0 (X)−D I0 (X)] (A.143)

Evaluating Equation (A.143) at yd = wD/2 results in,

(
∂piD
∂yD

)∣∣∣∣∣
yD=wD/2

= √εi
[
C K0 (X0)−D I0 (X0)
DI1 (X0) + CK1 (X0)

]
(pFD)|yD=wD

2
(A.144)

Identifying the constant term for a fixed value of time and letting:

εγ = √εi
[
C K0 (X0)−D I0 (X0)
DI1 (X0) + CK1 (X0)

]
(A.145)

Where the argument X0 represents the X evaluated at yD = wD/2. Since, for negative
argument X, Iν and Kν produce complex values, we can avoid that by placing positive
argument while keeping the expression coherent by factoring a term δ. Hence,

135



εγ = δ
√
εi

[
C K0 (X0)−D I0 (X0)
DI1 (X0) + CK1 (X0)

]
(A.146)

In the above equation, when kβD = kβ
ki
< 1, δ = −1 and the arguments and become:

X =
2√εiln

(
1

kβD

)
y1D − wD

e
(lnkβD)

(
yD−wD/2
y1D−wD/2

)

X1 =
2√εiln

(
1

kβD

)
y1D − wD/2

1√
kβD

X0 =
2√εiln

(
1

kβD

)
y1D − wD/2

(A.147)

Finally, Equation (A.144) takes the following form:
(
∂piD
∂yD

)∣∣∣∣∣
yD=wD/2

= εγ (pFD)|yD=wD
2

(A.148)

Here, Equation (A.148) is now ready to be coupled with the hydraulic fracture
region to incorporate the effect of all the four regions. The term εγ accounts for
the effect of outer regions, inner unfractured region, the branch-fracture permeability
distribution in the SRV and the effect of fractional diffusion in spherical matrix.

A.6 Derivation of Pressure Solution for Primary
Fracture Plane

The diffusivity equation for the primary fracture plane is,

∂

∂x

(
kF
µ

∂∆pF
∂x

)
+ ∂

∂y

(
kF
µ

∂∆pF
∂y

)
= (φct)F

∂∆pF
∂t

(A.149)

In order to incorporate the influx from the SRV into the fracture continuum, we should
integrate the above equation along the width of the fracture. Also, Equation (A.149)
becomes 1D after integration,
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ˆ wF /2

0

∂2∆pF
∂x2 dy +

ˆ wF /2

0

∂2∆pF
∂y2 dy =

(
φµct
kβ

)
F

ˆ wF /2

0

∂∆pF
∂t

dy (A.150)

The flow inside the primary hydraulic fracture is necessarily unidirectional. Therefore,
according to pseudo-function assumption (Ozkan et al., 2009), the first derivatives of
∆p with respect to x and t are not function of y.

∂∆pF
∂x

,
∂∆pF
∂t

6= f(y) (A.151)

The integration in Equation (A.150) simplifies to,

(
∂2∆pF
∂x2

)
wF
2 +

(
∂pF
∂y

)∣∣∣∣∣
wF /2

0
= 1
ηF

wF
2
∂∆pF
∂t

(A.152)

Transforming Equation (A.152) into dimensionless form yields,

∂2pFD
∂x2

FD

+ 2
wD

∂pFD
∂yD

∣∣∣∣∣
yD=wD/2

= ηi
ηF

∂pFD
∂tD

(A.153)

Now, we take the Laplace transform of both sides of Equation (A.153)

∂2pFD
∂x2

D

+ 2
wD

∂pFD
∂yD

∣∣∣∣∣
yD=wD/2

= s

ηFD
pFD (A.154)

Equation (A.154) is the diffusivity equation in Laplace domain for the hydraulic frac-
ture region. Equation (A.154) is subjected to the following boundary conditions,

� Boundary condition 1 (Flux continuity at the interface of SRV and primary
fracture region)

(qF )|y=wF /2 = (qi)|y=wF /2 (A.155)

� Boundary condition 2 (Flux continuity at the interface of primary fracture plane
and the wellbore) (

Bqf
4

)∣∣∣∣
x=0

= (qF )|x=0 (A.156)
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� Boundary condition 3 (No flow boundary at x = x1) in dimensionless form
(
∂pFD
∂xD

)∣∣∣∣∣
xD=x1D

= 0 (A.157)

Expanding the boundary condition from Equation (A.155) using Darcy’s law results
in,

AhkF
µ

(
∂∆pF
∂y

)∣∣∣∣∣
y=wF /2

= Aiki
µ

(
∂∆pi
∂y

)∣∣∣∣∣
y=wF /2

(A.158)

The effective area through which the primary fracture plane connects with the
branch-fracture volume can be found from the individual fracture height.

Ai = nfhftxF (A.159)

Equation (A.160) simplifies to,

kF

(
∂∆pF
∂y

)∣∣∣∣∣
y=wF /2

= kihft
h

(
∂∆pi
∂y

)∣∣∣∣∣
y=wF /2

(A.160)

The bulk branch-fracture permeability at the interface of SRV and primary fracture
region can be written as:

k̃i =
(
hft
h

)
ki (A.161)

Therefore, Equation (A.160) becomes,

(
∂∆pF
∂y

)∣∣∣∣∣
y=wF /2

= k̃i
kF

(
∂∆pi
∂y

)∣∣∣∣∣
y=wF /2

(A.162)

Transforming into dimensionless form and taking laplace transform of both sides of
Equation (A.162),

(
∂pFD
∂yD

)∣∣∣∣∣
yD=wD/2

=
(
k̃i
kF

) (
∂piD
∂yD

)∣∣∣∣∣
yD=wD/2

(A.163)

From Equation (A.154) and Equation (A.163) , the fracture diffusivity equation can
be rearranged as:
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∂2pFD
∂x2

D

+ 2
wD

(
k̃i
kF

) (
∂piD
∂yD

)∣∣∣∣∣
yD=wD/2

= s

ηFD
pFD (A.164)

Defining the dimensionless fracture conductivity,

CFD = kFwD

k̃i
= kFwFh

kixFhft
(A.165)

Introducing CFD into Equation (A.164),

∂2pFD
∂x2

D

+ 2
CFD

(
∂piD
∂yD

)∣∣∣∣∣
yD=wD/2

= s

ηFD
pFD (A.166)

Substituting Equation (A.148) into Equation (A.166), we obtain:

∂2pFD
∂x2

D

+ 2
CFD

εγ (pFD)|yD=wD
2

= s

ηFD
pFD (A.167)

Recalling the pseudo-function assumption, we set (pFD)|yD=wD
2

= pFD. Now, identi-
fying the terms that are independent of xD of primary fracture domain and lumping
them into as a function of s variable,

εF = s

ηFD
− 2
CFD

εγ (A.168)

Then, Equation (A.167) reduces to,

∂2pFD
∂x2

D

− εFpFD = 0 (A.169)

Applying superposition principle, we obtain a general solution to Equation (A.169),

pFD = Aexp (−√εF xD) + Bexp (√εF xD) (A.170)

As the boundary condition 2 defines that one-fourth of the individual fracture
flowrate (Bqf ) is producing through each symmetry element. The total well flowrate
qt = nF qf where nF is the number of primary hydraulic fractures intercepting the
horizontal well. Therefore, expanding the boundary condition 2 from equation A.156
using Darcy’s law results in,
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ˆ wF /2

0

ˆ h

0
(vx)|x=0 ∂z∂y = −kF

µ

ˆ wF /2

0

ˆ h

0

(
∂∆pF
∂x

)∣∣∣∣∣
x=0

∂z∂y (A.171)

Evaluating the integration yields,

(
Bqf

4

)
= −kF

µ

wF
2 h

(
∂∆pF
∂x

)∣∣∣∣∣
x=0

(A.172)

Introducing dimensionless fracture variables and dimensionless flow conductivity CFD
into Equation (A.172),

1 = − kFwFh
kixFhft

1
π

(
∂pFD
∂xD

)∣∣∣∣∣
xD=0(

∂pFD
∂xD

)∣∣∣∣∣
xD=0

=− π

CFD

(A.173)

Now, taking Laplace transform of Equation (A.173),
(
∂pFD
∂xD

)∣∣∣∣∣
xD=0

= − π

sCFD
(A.174)

Recalling the boundary condition 3 from Equation (A.157) and taking Laplace trans-
form of both sides yields,

(
∂pFD
∂xD

)∣∣∣∣∣
xD=x1D

= 0 (A.175)

The boundary condition 3 defines that there exists a no flow boundary at the tip of
the primary fracture plane. Applying Equation (A.175) and (A.174) into the general
solution (eq. (A.170)) yields the particular pressure solution in Laplace domain for
the SIBFF model,

pFD = π

sCFD
√
εF

cosh
[√
εF (1− xD)

]
sinh

[√
εF
] (A.176)

Setting xD = 0 in (A.176), we obtain the wellbore pressure solution,
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pFD|xD=0 = pWD = π

s CFD
√
εF tanh

[√
εF
] (A.177)

Equation (A.177) presents the constant rate solution for the buttomhole pressure
of the proposed SIBFF model in Laplace domain.
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