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Abstract 

 The ubiquity of petroleum in society has led to widespread pollution of the marine 

environment resulting in a need to identify suitable biomarkers. The aim of this study was 

two-fold: (1) To measure variables that influence baseline biomarker activity and (2) to 

determine their response to the water-accommodating fraction of used engine lubricating 

oil. The biomarkers glutathione peroxidase (GPx) and ethoxyresorufin-O-deethylase 

(EROD) were studied across three stages of the breeding cycle within the reproductive 

and digestive tissues of the common sea star, the orange-footed sea cucumber, the daisy 

brittle star, and the green sea urchin. Overall, sea stars were identified as the most 

promising cold-water biomonitors of oil contamination among the species studied, and 

GPx was found to be the most suitable biomarker due to its widespread activity, lack of 

seasonal baseline variation, and the simple separation of sexes during analyses. In 

comparison, the baseline activity of EROD was influenced by both season and sex.  
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1.1 Petroleum Pollution in Aquatic Environments 

1.1.1 Sources 

The latest report from the National Research Council (2003) places annual 

worldwide estimates of petroleum input into the world’s oceans as exceeding 

1.44 trillion litres. The single largest source of petroleum pollution emanates from natural 

seeps, contributing an estimated 681 million litres each year to the world’s oceans. 

Consumption of petroleum comes in at a close second, with an estimated 

530 million litres of petroleum released each year (NRC, 2003). Extraction and 

transportation contribute to the release of 42 million litres and 167 million litres of 

petroleum in the environment, respectively (NRC, 2003) (Fig. 1.1). Within consumption 

of petroleum, the major sources are land-based (river and run-off) and operational 

discharges of large vessels (≥100 gross tonnage) with 155 million litres and 

298 million litres, respectively (Table 1.1). Spills, operational discharges of small vessels 

(<100 gross tonnage), atmospheric deposition, and aircraft dumping make up the 

remainder. 

To help mitigate oil pollution, North America and Western Europe introduced 

stringent regulations to recycle the majority of spent petroleum products (Farrington, 

2013). However, less developed nations do not have these regulations and it is not 

uncommon for petroleum products, such as used engine oil, to be poured into sewer and 

storm-water drains (Chukwu and Odunzeh, 2006; Ssempebwa and Carpenter, 2009). 

Even in developed nations that rely on regulations, urban run-off contributes a significant 

amount of petroleum pollution (Farrington, 2013). 
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Figure 1.1: Best estimates of petroleum pollution entering oceans from North American 

and worldwide sources. Adapted from “Oil in the Sea III: Inputs, Fates, and Effects” 

National Academies Press 2003, Washington, DC.
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Table 1.1: Best estimate of worldwide average annual releases (1990-1999) of 

petroleum by input sources. Adapted from “Oil in the Sea III: Inputs, Fates, and 

Effects” National Academies Press 2003, Washington, DC. 

Input Sources Annual Release Worldwide    

(millions of litres) 

Natural Seeps 681 

Extraction of Petroleum 42 

Platforms 0.94 

Atmospheric deposition 1.4 

Produced waters 39 

Transportation of Petroleum 167 

Pipeline spills 13 

Spills (tank vessels) 111 

Operational discharges (cargo oil) 40 

Coastal facility spills 5.4 

Atmospheric deposition 0.44 

Consumption of Petroleum 530 

Land-based (river and runoff) 155 

Recreational vessel discharge nd 

Spills (commercial vessels ≥ 100 GT) 7.8 

Operational discharges (vessels ≥ 100 GT) 298 

Operational discharges (vessels < 100 GT) nd 

Atmospheric deposition 57 

Aircraft dumping 8.3 

  

Total 1 438 

nd – insufficient data available 

GT – vessel gross tonnage 

note: Totals may not equal sum of components due to independent rounding. 
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 Expansive research on petroleum pollution has been performed; however, used 

engine oil remains relatively understudied (Vazquez-Duhalt, 1989). Until 2005, 

Environment Canada had not made a decision on whether used engine oil (from the 

consumption of petroleum) had a significant toxic effect on the environment, as well as 

on terrestrial and aquatic biota, due to a lack of studies (Government of Canada, 1994, 

2005). Acute point-source pollution (spills) get the bulk of the attention and media 

coverage since they generate visually dramatic effects (Farrington, 2013; Hoffman et al., 

1982). Good examples of acute pollution include the 2010 Deepwater Horizon oil spill in 

the Gulf of Mexico, and the Exxon Valdez tanker spill (1989) in Prince William Sound, 

Alaska. While comparatively less often publicized, chronic inputs of petroleum are a 

concern and studies of their effects are also crucial (Farrington, 2013; Hoffman et al., 

1982; Tanacredi, 1977).  

1.1.2 Pollution in a Changing World 

Marine environments previously isolated from anthropogenic influence may be 

increasingly affected by inputs of petroleum, as oil and gas exploration, and shipping 

activities, intensify in previously unexplored, relatively remote areas. Case in point: the 

arctic and sub-arctic regions, which contain vast reserves of oil and natural gas (Lee et al., 

2011), have become new targets for exploitation. An estimated 400 oil and gas fields lie 

North of the Arctic Circle, with 70 % of these being offshore (Jonsson et al., 2010). Due 

to Arctic warming, these previously cost-prohibitive and inaccessible sources are gaining 

attention as traditional resources have begun to diminish (Lee et al., 2011; Pietri et al., 

2008). Moreover, as sea ice cover melts, there is increased interest in establishing arctic 
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shipping routes; the lengthening and intensification of commercial maritime activity will 

also lead to increased levels of pollution (Corbett et al., 2010; Pietri et al., 2008). With a 

surge in oil tanker traffic and production, the probability of petroleum spills will rise 

(Pietri et al., 2008). Importantly, low temperatures mean that any petroleum spills or 

discharges that do occur will likely persist for long periods of time (Jonsson et al., 2010). 

The change in climate is also expected to alter the base of the arctic food webs, 

migrations, and forestry, and to cause widespread thawing, along with a decrease in 

biodiversity (Pietri et al., 2008). Currently, there is limited data on the impact of 

petroleum products on cold-water species, highlighting a necessity to identify biomonitor 

species, and an associated need for collection of baseline data prior to any incident 

(Jonsson et al., 2010). Baseline data of biomonitor species will assist in the determination 

of the effect an incident has on the surrounding ecosystem.  

1.2 Response to Contamination in Marine Organisms 

1.2.1 General Principles 

A xenobiotic is defined as any external foreign chemical compound that an 

organism may uptake (Iyanagi, 2007; Livingstone, 1991, 1998; Parkinson, 2001). While 

the rate and route of uptake will differ between species (Livingstone, 1993), benthic 

organisms can take up xenobiotics through their diet, as well as contact with the 

contaminated substrate and/or water column (Danis et al., 2004; Livingstone, 1991). 

Upon exposure, the primary response of an organism is to decrease or eliminate the 

toxicity of the compound and convert it into an easily excretable form (Livingstone, 1991, 

1998; Parkinson, 2001). The transformation of xenobiotics is performed through a 
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metabolic process that can be broken down into two parts, i.e. phase I metabolism and 

phase II metabolism (Livingstone, 1991; Parkinson, 2001). There are some arguments 

towards phase III metabolism being present (Livingstone, 1991); however, it will not be 

covered here. Within vertebrates, phase I and II metabolic processes are concentrated in 

the liver (Livingstone, 1991). Since invertebrates do not necessarily possess equivalent 

organs, these processes primarily concentrate in other tissues, for example the stomachs, 

pyloric caeca, and gonads of sea stars, or the digestive gland and gonads of sea urchins 

(Livingstone, 1991). 

The phase I metabolic process involves the addition of reactive functional groups 

to xenobiotics. This allows conjugation with numerous water-soluble compounds to occur 

in phase II metabolism (Iyanagi, 2007; Livingstone, 1991). The phase I metabolic 

processes are governed by a wide variety of enzymes that catalyze reactions with 

xenobiotics, such as oxidation, reduction, hydrolysis, and hydration (Iyanagi, 2007; 

Livingstone, 1991; Parkinson, 2001). Some of the phase I metabolic processes can result 

in the production of toxic metabolites, which can be several times more toxic than the 

original compounds (Livingstone, 1991; Parkinson, 2001). The mixed function oxidases 

(MFOs) are an example of a phase I metabolic process. MFOs are a family of membrane-

bound enzymes that operate by modifying aromatic and lipophilic compounds to increase 

their water solubility (Hodson et al., 1991).  While phase II metabolism often uses the 

phase I metabolites, it is still possible for phase II to be performed on parent xenobiotic 

compounds (Iyanagi, 2007; Livingstone, 1991; Parkinson, 2001). Phase II metabolism is 

the primary source of water-soluble (excretable) products that are inactive (Livingstone, 

1991; Parkinson, 2001). While less frequent, it is still possible for phase II metabolites to 
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be toxic (Livingstone, 1991). Along with normal metabolic process, phase I and II 

metabolism can result in the production of oxyradicals and superoxides through 

undesirable side reactions (Livingstone et al., 1990).  

Additional defense against cellular damage involves the action of antioxidants to 

neutralize oxyradicals and superoxides, which are known to cause damage through redox 

imbalances, enzyme inactivation, protein degradation, lipid peroxidation, DNA damage, 

and cellular death (Livingstone, 1991; Livingstone et al., 1990). Ecotoxicology makes use 

of the aforementioned detoxification processes to monitor exposures to xenobiotics. 

1.2.2 Monitoring 

Environmental monitoring through bioindicators and biomonitors (biomarkers) 

can provide qualitative and quantitative information about a habitat (Markert et al., 2003). 

In particular, their use allows the study of anthropogenic effects, including petroleum 

pollution (Markert et al., 2003). The study of bioindicators may incorporate the ecology 

of entire communities and ecosystems, potentially over extended periods of time (i.e. 

months, years), to determine changes elicited by the modification or fragmentation of 

habitats, pollution, exploitation, and climate change (Lagadic et al., 1994; Markert et al., 

2003). Bioindicator species or groups of species are those that reflect the condition of the 

environment (Lagadic et al., 1994). Examples of bioindicators include changes in species 

foraging, feeding, and locomotive behaviour, reproductive efficiency and population 

dynamics (Lagadic et al., 1994). Biomarkers are a form of biomonitors that have been 

shown to provide indications on the health of individual animals living in areas exposed 

to pollutants (Morales-Caselles et al., 2008a) (Table 1.2). They are measurable quantities 
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within an organism such as genetic, enzymatic, behavioural, physical, or morphological 

variables (Markert et al., 2003; Sarkar et al., 2006). Ideal biomarkers are those with high 

sensitivity and specificity, that can be applicable to a wide range of animals (Livingstone, 

1993). Biomarkers have also been shown to detect early biological effects and have the 

ability to be monitored over time within organisms (Morales-Caselles et al., 2008a). The 

downside of using biomarkers is that it may be difficult to extrapolate data gathered from 

individuals to entire populations, due to the complexity of several stressors acting on 

genetically heterogeneous organisms in nature (Markert et al., 2003). 

 

Table 1.2: Brief overview of bioindicators and biomonitors (biomarkers). 

 Bioindicator Biomonitor (Biomarker) 

Type Qualitative Quantitative 

Scale Communities and 

Ecosystems 

Individual 

Period Usually long-term A specific time point or 

consecutive time points 

Examples Population Dynamics 

Habitat Changes 

Habitat Fragmentation 

Effects of Climate Change 

Genetic 

Enzymatic 

Behavioural 

Physical 

Morphological 
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1.2.3 Biomonitors 

In the search for biomonitoring species, some marine organisms present technical 

challenges due to the limited information available on their general biology, 

biochemistry, enzymology, and tissue/cell anatomy. Since they are familiar and central to 

economic imperatives, commercial species are commonly selected (Bignell et al., 2011; 

Costa et al., 2013). However, they are not necessarily the most representative or 

biologically relevant species for biomonitoring. Knowledge of the biology and ecological 

role of benthic organisms (abundance, morphology, lifespan, feeding mode, trophic level) 

should drive the choice of optimal biomonitor species that are sensitive, easy to collect, 

and lend themselves well to biochemical analyses. Ideally, they should have an easily 

identifiable taxonomy, a wide global distribution, a benthic lifestyle (close contact with 

sediment), low migratory activity, and a well-documented biology including physiology, 

feeding strategy, and life cycle (Martínez-Gómez et al., 2010b; Rainbow, 1995). 

1.3 The Use of Echinoderms as a Biomonitor in Cold-Ocean 

Ecosystems 

1.3.1 Benefits and Taxonomic Characteristics 

Echinoderms are known to occupy ecological niches that are essential to the health 

and functionality of marine ecosystems (Lawrence, 2001; Mah and Blake, 2012). Like all 

marine animals, they are threatened by anthropogenic activities, including chemical 

pollution, which is one of the primary threats to marine environments, along with 

overfishing, ocean acidification, and climate change in general (Markert et al., 2003; 
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Morales-Caselles et al., 2008a). The echinoderm species selected for the present study 

were chosen based on their global abundance, well-studied physiology, ecological 

importance, and benthic and sedentary lifestyles of the adults. Some of them are also 

commercially exploited. 

Unlike other marine invertebrates, such as annelids, mollusks and arthropods, 

which belong to the superphylum Protostomia, the phylum Echinodermata belongs to the 

superphylum Deuterostomia (Pawson, 2007; Ruppert et al., 2004), which also includes 

the phyla Hemichordata and Chordata. Hence, echinoderms are more closely related to 

vertebrates than to annelids, mollusks, and crustaceans. The majority of the ~7,000 living 

species of echinoderms are benthic animals that possess a water vascular system and 

mildly to heavily calcified tissues forming outward spines and warts (Lawrence, 1987b; 

Pawson, 2007; Ruppert et al., 2004). The phylum Echinodermata comprises the sub-phyla 

Asterozoa to which asteroids (sea stars) and ophiuroids (brittle stars) belong, Crinozoa to 

which crinoids belong, and Echinozoa to which echinoids (sea urchins) and holothuroids 

(sea cucumbers) belong (WoRMS, 2009). Because of their ecological significance and 

ubiquitous distribution in marine environments, Asterozoa and Echinozoa are the primary 

focus of this research. 

Many asteroids (sea stars) are scavengers and carnivores that consume mollusks, 

bivalves, crustaceans, polychaetes, and echinoderms (Jangoux, 1982; Ruppert et al., 

2004). Additionally, a few species of asteroids are suspension or deposit feeders that 

consume plankton and detritus (Jangoux, 1982; Ruppert et al., 2004). Asteroids have the 

ability to regenerate lost limbs and parts of the central disc (Chia and Walker, 1991; 

Lawrence, 2013; Ruppert et al., 2004). The majority of species are gonochoric, 
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possessing distinctive sexes, and release gametes into the surrounding seawater where 

fertilization occurs (i.e. broadcast spawning) (Mercier and Hamel, 2009, 2013). Several 

species of brooding asteroids exist, which protect their young by enveloping them in their 

arms, near the mouth, or carrying them in specialized chambers (Chia and Walker, 1991; 

Mercier and Hamel, 2009, 2013; Ruppert et al., 2004). To a lesser extent, instances of 

reproduction through fission, division and regrowth, have been observed in a few species 

(Chia and Walker, 1991; Mercier and Hamel, 2013). Additionally, reproduction through 

internal fertilization, parthenogenesis, and the birth of live juveniles (viviparity) are also 

known to occur (Chia and Walker, 1991; Mercier and Hamel, 2009, 2013). As predators 

of commercially important species of bivalves (mussels, clams, and oysters), asteroids 

may locally be considered an economic nuisance (Byrne et al., 2013; Ruppert et al., 

2004). In some areas, this has led to their intentional eradication by humans (Barkhouse et 

al., 2007; Byrne et al., 2013; Ruppert et al., 2004). 

Of the echinoderms, echinoids (sea urchins) have quite possibly the greatest range 

of food sources (Ridder and Lawrence, 1982). Typically, they are considered omnivores 

that actively graze on seagrasses, seaweeds, and encrusting algae; they are also known to 

consume soft-bodied animals, and opportunistically scavenge animal matter (Briscoe and 

Sebens, 1988; Lawrence, 1987a; Ridder and Lawrence, 1982; Ruppert et al., 2004). Most 

echinoids are gonochoric and release their gametes into the water column to be fertilized, 

although a few species brood their eggs on their ventral surface near their mouth 

(Lawrence, 1987b; Pearse and Cameron, 1991; Ruppert et al., 2004). Unlike other 

echinoderms (asteroids, ophiuroids, and holothuroids), no instances of reproduction 

through fission (division and re-growth) have been observed in echinoids (Pearse and 
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Cameron, 1991). However, like most echinoderms, they do possess the ability to 

regenerate lost spines, pedicellarias, denticles, and podia (Pearse and Cameron, 1991). 

Echinoids are of commercial importance to humans who collect their roe (gonads) for 

consumption; therefore overexploitation has led to the destruction of some echinoid 

populations (Lawrence, 2007; Ruppert et al., 2004).  

Holothuroids (sea cucumbers) are deposit or suspension feeders that may gather 

plankton and/or other organic matter from the sediment or the water column. Deposit 

feeding species consume sand and silt, filtering out food particles (Ruppert et al., 2004). 

Suspension feeders dominate rocky shores since they are able to capture and consume a 

wide variety of suspended particulate matter including phytoplankton, detritus, and 

bacteria, as well as dissolved nutrients (Ricciardi and Bourget, 1999). Some species 

possess the ability to eviscerate either special organs called Cuvierian tubules, or their 

viscera, including gonadal tubules, respiratory tree, and intestines, when threatened by a 

predator; these organs are later regenerated within a matter of weeks in temperate and 

tropical environments (García‐Arrarás et al., 1998, 1999; Vandenspiegel et al., 2000). 

Most holothuroids are gonochoric and reproduce through broadcast spawning. Brooding 

and fission have been observed in a few species (Ruppert et al., 2004; Smiley et al., 

1991). Holothuroids are preyed upon by asteroids (So et al., 2010), and to a lesser extent 

by fishes and crustaceans, due to their soft body and exposed lifestyle (Francour, 1997; 

Ruppert et al., 2004). However, the greatest predators of holothuroids are humans 

(Ruppert et al., 2004). Sea cucumbers are a luxury seafood that command high prices in 

Asian markets, which has led to the over-exploitation and near extinction of some of the 

most prized species (Gianasi et al., 2015; Purcell et al., 2013, 2014; So et al., 2010). 
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Like other echinoderms, ophiuroids (brittle stars) are found throughout the world, 

from coastal waters to the deepest part of the oceans (Stöhr et al., 2012). They may be 

carnivores, scavengers, deposit feeders or suspension feeders, with most combining 

several feeding strategies (Lawrence, 2012; Ruppert et al., 2004; Stöhr et al., 2012). 

Deposit and suspension feeders may consume detritus and plankton, while carnivores 

may consume small crustaceans (Ruppert et al., 2004; Stöhr et al., 2012). Similar to 

asteroids, ophiuroids possess the ability to replicate through fission, however the majority 

are gonochoric and reproduce through several methods: viviparity, brooding, and 

broadcasting (Hendler, 1991; Ruppert et al., 2004). Like most other members of 

Echinodermata, ophiuroids are able to regenerate lost limbs (Hendler, 1991; Lawrence, 

1987b). Predators of ophiuroids include fish, crustaceans, and echinoderms (Gaymer et 

al., 2001a; Mooi, 2001) 

1.3.2 Focal Species 

Four species of echinoderms (Fig. 1.2) were used to meet the goals of this 

research, including the common sea star Asterias rubens, the orange-footed sea cucumber 

Cucumaria frondosa, the daisy brittle star Ophiopholis aculeata, and the green sea urchin 

Strongylocentrotus droebachiensis. These cold-water species were chosen based on their 

well-known biology, wide distribution, abundance, and benthic sedentary lifestyle. 

The common sea star A. rubens (Fig. 1.2A), synonymous with A. vulgaris, 

occupies a broad range in the eastern and western North Atlantic; in the Northwest 

Atlantic, it occurs from the Arctic Ocean to the Gulf of Mexico (Byrne et al., 2013; 

Gaymer et al., 2001a; Mah, 2015). They can be found from the littoral zone down to a 
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depth of 400 m, in some cases 650 m (Vevers, 1949). Juveniles that occur at shallower 

depths generally consume a mixture of barnacles and bivalves (Vevers, 1949). The adults 

are opportunistic generalists consuming living and dead animal matter, with the former 

including worms, crustaceans, echinoderms, and bivalves (Byrne et al., 2013; Jangoux, 

1982; Vevers, 1949). Feeding ecology is typically dependent on prey availability and 

density within different regions (Byrne et al., 2013). Reproduction in A. rubens occurs 

through a process referred to as broadcast spawning that involves the release of gametes 

into the water column that develop into planktotrophic (feeding) larvae (Mercier and 

Hamel, 2010). Along the east coast of Newfoundland, Canada, spawning generally occurs 

in March and April (Mercier and Hamel, 2010). 

The orange-footed sea cucumber C. frondosa (Fig. 1.2B) is widely distributed 

throughout the North Atlantic Ocean, the Arctic Ocean, and the North Pacific Ocean 

(Hamel and Mercier, 1996; Paulay, 2015). Within its distribution, it can commonly be 

found from the littoral zone down to a depth of 300 m, and only rarely below 800 m 

(Hamel and Mercier, 2008). It is a suspension feeder that uses its 10 dendritic tentacles to 

capture food particles (living and nonliving) within the water column and transfer the 

food to its oral cavity (Hamel and Mercier, 1998). C. frondosa reproduces by 

broadcasting gametes into the water column that develop into lecithotrophic (non-

feeding) pelagic larvae (Mercier and Hamel, 2010). Spawning occurs during the full 

moon of March and April along the eastern coast of Newfoundland, Canada (Mercier and 

Hamel, 2010). Along the coast of the Northwest Atlantic they are harvested and sold 

primarily to Asian markets (Hamel and Mercier, 2008).  
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Figure 1.2: Focal species. A) The common sea star Asterias rubens. B) The orange-footed 

sea cucumber Cucumaria frondosa. C) The daisy brittle star Ophiopholis aculeata. D) 

The green sea urchin Strongylocentrotus droebachiensis. (© M. Osse 2016)
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The daisy brittle star O. aculeata (Fig. 1.2C) can be found within the Arctic, the 

North Atlantic, and the North Pacific Oceans (Stöhr, 2015). They occur in the littoral 

zone down to a depth of at least 100 m (Southward and Campbell, 2006). O. aculeata is a 

suspension feeder and facultative carnivore that uses strong ciliary currents to catch 

detritus (Roushdy and Hansen, 1960). Reproduction occurs through broadcast spawning, 

which involves the release of gametes into the water column that develop into 

planktotrophic (feeding) larvae (Mercier and Hamel, 2010). Daisy brittle star populations 

along the eastern coast of Newfoundland, Canada, generally spawn during the full moon 

of April (Mercier and Hamel, 2010). 

The green sea urchin S. droebachiensis (Fig. 1.2D) has a very wide distribution 

within the Arctic and North Atlantic Oceans, extending from the Canadian Arctic down to 

Cape Cod, USA, and across to Northern Europe (Kroh, 2015; Scheibling and Hatcher, 

2007). Within their distribution, they are found from the littoral zone down to a depth of 

300 m, typically at shallower depths (Scheibling and Hatcher, 2007). The green sea 

urchin is an omnivore that actively forages for seaweeds and sea grasses but is also 

known to be an opportunistic scavenger (Briscoe and Sebens, 1988; Scheibling and 

Hatcher, 2007). During reproduction it broadcast spawns its gametes into the water 

column, which develop into planktotrophic (feeding) larvae (Mercier and Hamel, 2010). 

Spawning occurs in spring, mainly during the March full moon in populations along the 

eastern coast of Newfoundland, Canada (Mercier and Hamel, 2010). 
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1.4 Thesis Objectives 

The aim of my research presented in this thesis was two-fold: (1) To determine 

variables that influence baseline activity of selected enzyme biomarkers in representatives 

of the main classes of cold-water echinoderms; and (2) to assess the acute response of the 

same biomarkers to low levels of oil contamination, in the form of the water 

accommodating fraction (WAF) of used engine lubricating oil (ULO). Two common and 

well-known biomarkers were selected for this study: the antioxidant biomarker GPx 

(glutathione peroxidase) and the phase I biomarker EROD (ethoxyresorufin-O-

deethylase). 

To attain the goals of my thesis, the activity of both biomarkers (GPx and EROD) 

within focal species of echinoderms (section 1.3.2) were measured in various tissues 

(digestive, storage, and reproductive organs) and at different times (before, during, and 

after the reproductive season). Control and exposed (in the presence of ULO WAF) 

treatments were used to elucidate biomarker activity over a series of 96-h acute exposure 

trials. In addition to experimental treatment and season, the importance of sex on 

biomarker activity was also determined.  
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Chapter 2: Markers of Oil Exposure in Cold-Water 

Benthic Environments: Insights and Challenges from a 

Study with Echinoderms 
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2.1 Abstract 

 In spite of increasing naval activities and petroleum exploration in cold 

environments, there is currently a paucity of tools available to monitor oil contamination 

in boreal marine life, especially in sedentary (non-fish) species that form the bulk of 

benthic communities. The present research aimed to identify biotic sources of variation in 

biomarkers using cold-water subarctic benthic species, and to identify suitable biomarkers 

of exposure to hydrocarbons. The focal species included the sea star Asterias rubens, the 

brittle star Ophiopholis aculeata, the sea urchin Strongylocentrotus droebachiensis, and 

the sea cucumber Cucumaria frondosa, which are among the most abundant echinoderms 

in the North Atlantic and Arctic Oceans. The latter two species are also commercially 

exploited. A series of 96-h acute exposures of the water-accommodating fraction (WAF) 

of used lubricating oil (ULO) were performed during different seasons (i.e. reproductive 

stages). Digestive and reproductive tissues were analyzed for baseline and response levels 

of glutathione peroxidase (GPx) and ethoxyresorufin-O-deethylase (EROD). GPx activity 

was detected in the pyloric caeca, stomach, and gonad of sea stars, the intestine and gonad 

of sea cucumbers, and the gonad of brittle stars and sea urchins. No seasonal variation in 

baseline GPx activity occurred. Upon exposure to the ULO WAF, sex-based differences 

were elicited in the GPx activity of sea star stomachs, whereby exposed females had 

significantly less activity than males. EROD activity was present in the pyloric caeca of 

sea stars, and the gonads of brittle stars and sea urchins. An interaction between season 

and sex on baseline EROD activity was measured in the gonads of sea urchins. Ovaries 

exhibited significant seasonal variation in EROD activity and had greater activity than 
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testes during the spawning and post-spawning seasons. Seasonal variation in EROD 

activity also occurred in sea star pyloric caeca and brittle star gonads. Furthermore, testes 

of sea urchins exposed to the ULO WAF exhibited suppressed EROD activity compared 

to baseline levels. The presence of GPx activity within all species and tissues under study 

highlights its potential as a universal biomarker, while the presence of EROD activity was 

more limited. Findings suggest a complex relationship between temporal and biotic 

factors on both the baseline and response levels of enzymatic activity, emphasizing the 

need to consider sex and sampling season in studies of biomarkers of hydrocarbon 

exposure in boreal indicator species that typically display annual reproductive cycles. 

2.2 Introduction 

Most diagnostic tools developed for assessing the effects of xenobiotics, including 

hydrocarbons, in the marine environment have focused on fishes and a limited number of 

invertebrates, such as bivalves and crustaceans. In recent years there has been an 

increased interest in researching species from polar and arctic environments; however, 

they still remain understudied in comparison to species originating from tropical and 

temperate regions (Hansen et al., 2013; Martínez-Gómez et al., 2010a; Payne et al., 2003; 

Sandrini-Neto et al., 2016; Sundt et al., 2012; Thain et al., 2008). Tools have not been 

developed to the same extent for assessing the effects of hydrocarbons on other benthic 

macro-invertebrates, despite their predominance in marine ecosystems. In particular, there 

is a general shortage of studies on boreal and cold-water invertebrate species (Bechmann 

et al., 2010; Hannam et al., 2010; Regoli et al., 2002; Sandrini-Neto et al., 2016), in spite 
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of a growing need for reliable biomarkers of human activity and climate change in arctic 

and subarctic environments (Nahrgang et al., 2013; Sandrini-Neto et al., 2016). 

Where biochemical studies have been carried out on tropical and temperate marine 

invertebrates (excluding bivalves and crustaceans), direct correlation of responses to 

hydrocarbons have sometimes been weak or absent (den Besten, 1998; Fossi et al., 2000; 

Payne and May, 1979; Pérez et al., 2004; Snyder, 2000; Solé and Livingstone, 2005). 

While bivalves and crustaceans are the most common invertebrate taxa studied and have 

shown promising results (Baussant et al., 2009; Fossi et al., 2000; Morales-Caselles et al., 

2008a; Morales-Caselles et al., 2008b; Nahrgang et al., 2013), their ability to rapidly 

metabolize some xenobiotics may not be ideal (Koenig et al., 2012).  At present, 

information is scarce on the optimal conditions for sample collection/processing, due to 

variations in biotic and abiotic factors (Shaw et al., 2004; Sheehan and Power, 1999; 

Viarengo et al., 1991), and the identification of suitable biomarkers in (cold-water) 

species necessitates a case-by-case approach (Martínez-Gómez et al., 2010b). 

Seasonal changes in animal physiology may occur through variations in nutrient 

availability, reproductive status, and growth (Sheehan and Power, 1999). Environmental 

variables such as food availability, photoperiod, and water temperature are important 

sources of fluctuations (Viarengo et al., 1991). Polar and temperate-cold regions are 

exposed to particularly marked environmental variations (Sheehan and Power, 1999), 

making them especially prone to seasonal changes in biological activities (i.e. feeding, 

growth, and reproduction), which have been shown to influence the expression of 

biomarkers (Shaw et al., 2004). Hence, there is a need to study changes in baseline 
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biomarker activity and response to anthropogenic effects separately across multiple 

seasons in focal species (Nahrgang et al., 2013). 

Biomarkers, including glutathione peroxidase (GPx) and ethoxyresorufin-O-

deethylase (EROD), are commonly used to detect the first signs of biological exposure to 

adverse compounds (Nahrgang et al., 2013). These assays focus on different enzymatic 

processes, covering a broad scope of putative responses, and standard techniques are 

already available to measure them routinely.  

Glutathione peroxidase (GPx) is a mitochondrial antioxidant enzyme (Morales-

Caselles et al., 2008a) that destroys hydrogen peroxide (H2O2) and organic 

hydroperoxides that may cause oxidative damage (Doyotte et al., 1997). Increases in GPx 

activity presumably indicates that the organism is under oxidative stress (Reid and 

MacFarlane, 2003). In the absence of antioxidants, oxidative stress may cause DNA 

damage, enzymatic inactivation, and lipid peroxidation (Doyotte et al., 1997). GPx 

activity is measured indirectly by a coupled reaction, whereby glutathione reductase and 

NADPH are used to reduce oxidized glutathione, which is produced during the reduction 

of hydroperoxide by GPx. The oxidation of NADPH results in a change in absorbance 

that can be measured (Ceballos-Picot et al., 1992; Forstrom et al., 1978; Paglia and 

Valentine, 1967). Significant dose-dependent increase in activity of GPx in the visceral 

mass of the gastropod mollusk Austrocochlea porcata has been observed after exposure 

to crude oil (Reid and MacFarlane, 2003). Additionally, Gamble et al. (1995) found GPx 

in the pyloric caeca of the sea star A. rubens. Since, the prevention of oxidative damage is 

beneficial to all types of tissues, it is expected that GPx activity will be widespread within 

most marine organisms. 
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Ethoxyresorufin-O-deethylase (EROD) is commonly used to measure cytochrome 

P450 1A (CYP450 1A) activity (Sarkar et al., 2006). The CYP450 1A subfamily is 

involved in the biotransformation of dioxins, furans, polychlorinated biphenyls (PCBs) 

and poly-aromatic hydrocarbons (PAHs) (Sarkar et al., 2006). The CYP450 dependent 

mixed-function oxidase (MFO) enzymatic system is a family of hemoproteins, which 

includes cytochrome P450, located on the smooth endoplasmic reticulum within cells 

(Gagné and Blaise, 1993). The primary function of the MFO system appears to be to alter 

nonpolar lipophilic organic compounds to make them more water-soluble and therefore 

more available for excretion (Neff, 1985). The assay operates by measuring the rate of 

conversion of 7-ethoxyresorufin (7-ER) to 7-hydroxyresorufin (7-HR) using fluorescence. 

The conversion of 7-ER to 7-HR is performed by CYP450 1A and therefore EROD 

induction is a clear signal of CYP450 1A1 and CYP450 1A2 enzyme activities (Martín-

Díaz et al., 2007). EROD has been used to measure the response to persistent organic 

pollutants in vertebrates (Sarkar et al., 2006). In fish from polluted estuaries, levels of 

hepatic EROD were increased by three classes of compounds: PAHs, heavy metals, and 

estrogenic compounds (Sarkar et al., 2006). An increase in EROD activity has been 

documented in crab and clam species exposed to sediments containing high 

concentrations of PCBs and PAHs (Martín-Díaz et al., 2007). The cytochrome P450 

family has previously been detected by Den Besten (1998) in the pyloric caeca and 

stomach of the sea star A. rubens as well as, the haemal plexus of the sea cucumber 

Holothuria forskali. Therefore, EROD activity is predicted to be the most prevalent in the 

digestive tissues (pyloric caeca, digestive gland and intestine) of echinoderms. 
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Used lubricating oil (ULO), sometimes referred to as used/spent crankcase or 

engine oil, is a significant contributor to petroleum pollution due to consumption, which 

itself constitutes approximately 70 % of the ~760 million litres of anthropogenic 

petroleum pollution released worldwide annually (NRC, 2003). Studies in Canada, the 

United States, and several other countries have found ULO to be a large contributor, if 

not the single largest source, of saturated and aromatic hydrocarbons in urban runoff 

(Fam et al., 1987; Government of Canada, 2005; Hoffman et al., 1982; Latimer et al., 

1990), a primary input of pollutant into the aquatic environment. While acute sources of 

pollution (spills) are more publicized, long-term chronic petroleum pollution from human 

activities may be equally damaging in a more insidious way (Martínez-Gómez et al., 

2010b). As oil weathers, the lightweight volatile compounds evaporate, leaving larger 

molecules behind, including partially water-soluble PAHs (Galt et al., 1991). These 

compounds are of particular interest to researchers since they can accumulate in animals 

and cause biological damage (Bechmann et al., 2010). Through the use of water-

accommodating fractions (WAFs) the effects of oil, which consists of a complex mixture 

of thousands of compounds (Singer et al., 2000), can be studied. WAFs contain the 

partially water-soluble compounds within oil that aquatic marine organisms are most 

likely to come in contact with (Gagnon and Holdway, 2000). 

The present research was designed to develop biomarkers of oil pollution in 

marine invertebrates from temperate-cold and subarctic regions. Four species among the 

most common in subtidal areas of the Northwest Atlantic and Arctic Oceans were chosen: 

the predatory sea star Asterias rubens, the suspension-feeding brittle star Ophiopholis 

aculeata, the herbivorous omnivore sea urchin Strongylocentrotus droebachiensis, and 
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the suspension-feeding sea cucumber Cucumaria frondosa. These exemplify four classes 

within the phylum Echinodermata; they also occupy different ecological niches and 

exhibit distinct reproductive strategies (Giese et al., 1991; Lawrence, 1987c; Mercier and 

Hamel, 2009). Two of them (S. droebachiensis and C. frondosa) are commercially 

exploited (Grabowski and Chen, 2004; Hamel and Mercier, 2008). The aim of the present 

study was twofold. (1) To ascertain whether there were seasonal and sex-related 

fluctuations in baseline levels of EROD and GPx activity within various tissues of the 

focal species, and (2) to test the sensitivity and specificity of standard enzymatic 

biomarkers through a series of acute exposures to WAF of ULO, by comparing induced 

responses to sex-dependent and seasonal fluctuations in baseline (control) activity levels. 

2.3 Materials and Methods 

2.3.1 Species Collection 

All species were collected from southeastern Newfoundland (47°18′57″N 

52°48′37″W) between 10-20 m depth, at least two weeks before using them for the 

various trials. Individuals were maintained under flow-through conditions (2.5 L min-1) in 

two large tanks (500 L) at a temperature of 6 ºC and mirrored ambient photoperiod with a 

daytime light intensity of ~200 lux within the Joe Brown Aquatic Research Building 

(JBARB) of the Department of Ocean Sciences (Memorial University). For all species 

only adult individuals of similar sizes were chosen. Sea stars (n=83 A. rubens, 8-11 cm 

radius) were fed ad libitum a diet of blue mussels (Mytilus edulis) while sea urchins 

(n=113 S. droebachiensis, 8-10 cm test diameter) were fed kelp (Laminaria sp.), up to 

1 week prior to experiments. The plankton feeders, such as sea cucumbers (n=117 C. 
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frondosa, 17-25 cm length) and brittle stars (n=540 O. aculeata, 1.2-2.0 cm central disc 

diameter), had access to a minimum level of fine planktonic material available in the 

natural seawater; no supplementary food was added since natural levels of phytoplankton 

are minimal during the study period, i.e. full blooms do not generally occur until late 

April or May along the eastern coast of Newfoundland (Fuentes‐Yaco et al., 2007). 

Only healthy individuals that did not exhibit any lesions or signs of stress, such as 

blistering in sea cucumbers, loss of spines in sea urchins, or missing limbs in brittle stars 

and sea stars, were selected for the trials. 

The study initially aimed to use the sea star species Leptasterias polaris but 

difficulties in obtaining adult, reproductively mature individuals were encountered for the 

spawning and post-spawning trials; therefore, collections shifted to A. rubens. Both 

species have similar size structures, spatial and temporal distributions, and feeding 

ecologies (Gaymer et al., 2001a, b), as well as similar reproductive periods (Hamel and 

Mercier, 1995; Mercier and Hamel, 2010). Nevertheless, in order to avoid any 

confounding effect of species, L. polaris was removed from the analyses, thus keeping 

only the spawning and post-spawning trials for sea stars. 

 Sex was not a predetermined factor in this study; individuals were allocated to 

treatment groups at random. While most species display a 1:1 sex ratio, variances are not 

uncommon and, therefore, skewed sex ratios were encountered in some instances. 

2.3.2 Experimental Design and Procedures  

The experimental setup consisted of 8 tanks (45 L), which were randomly 

disposed in 4 pairs (control/exposed) throughout the laboratory. Each pair of experimental 
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tanks were submerged in larger flow-through tubs that maintained temperatures at 6 °C 

throughout the trials with supplementary air provided via a bubbler. Each tank hosted 2 

sea stars, 2 sea urchins, 2 sea cucumbers, and 15 brittle stars (in total: 16 A. rubens, S. 

droebachiensis, and C. frondosa, and 120 O. aculeata). Each trial consisted of a 96-h 

static replacement in order to minimize fluctuations in hydrocarbon concentration over 

time and maximize the amount of time individuals were exposed while maintaining 

oxygen concentration (Benson and Krause, 1984). All tanks were cleaned and maintained 

under flow-through conditions between trials (and the control and experimental tanks 

were never crossed). During the trials, 50 % of the seawater and water-accommodating 

fraction (WAF) of the used lubricating oil (ULO), when applicable, was replaced every 

24 h. Individuals were not allowed to feed for 1 week prior to the trials, nor were they fed 

during the experimental period. It is common for cold-water echinoderms to undergo 

periods of decreased or null feeding during autumn/winter seasons (Franz, 1986; Hamel 

and Mercier, 1998; Singh et al., 1999) with short-term starvation not significantly 

affecting biochemical (lipid, protein, and carbohydrate) stores (Feral, 1985; Jangoux and 

Impe, 1977). The lighting was adjusted at ~140 lux under ambient photoperiod.  

Trial 1 was performed in early January 2014, using the low concentration WAF 

(0.22 mL of ULO L-1 seawater, see section 2.3.3). This trial coincided with the pre-

spawning period in all species under study (Mercier and Hamel, 2010). Trial 2 was 

performed in mid-March 2014, using a higher concentration of pollutant 

(0.33 mL ULO L-1). This trial coincided with the spawning period of all species tested. 

Trial 3 was performed in mid-May 2014, also using the higher concentration of toxicant, 

and it included a depuration period (96-h). For the later, the number of individuals from 
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each species was doubled such that a sufficient number of individuals remained to cover 

the depuration period sampling. This trial coincided with the post-spawning season of all 

species, as reported by Mercier and Hamel (2010). The increase in ULO concentration 

after trial 1 was performed in the interest of eliciting a response in case the lower 

concentration was insufficient.  

2.3.3 Contaminant and Water Accommodated Fraction (WAF) 

 Used lubricating oil (ULO) was obtained directly from multiple vehicles by a 

major garage in St. John’s (Newfoundland) and collected over 2 days (for a total of 35 L). 

ULO was stored in an amber glass bottle with PTFE cap in a cool dark location before 

and between uses. 

A seawater sample (750 mL) was obtained from each of the experimental tanks 

(to maintain a precise volume of seawater within the tanks) and heated to 20 ºC (to 

increase oil solubility in seawater) before adding either 10 mL or 15 mL of ULO (final 

concentration of WAF ULO 0.22 mL L-1 or 0.33 mL L-1) and vigorously agitated 

manually for 3 min in a separatory funnel. The ULO was then allowed to separate from 

the WAF for a period of 10 min, and the latter was used in the trials. The WAF was 

prepared daily, within 10 min prior to exposures or replenishment of the concentration 

after water changes. Each of the 4 control tanks were treated similarly (see above), except 

ULO was not added to seawater.  

A sample of the WAF prepared at the high exposure concentration was analyzed 

by an external analytical chemistry laboratory for PAHs and heavy metals. The 

concentration of PAHs within the sample was determined via gas chromatography (GC) 
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paired with a mass spectrometer (MS) based on EPA method 8207D. Heavy metal 

concentrations were determined by inductively coupled plasma (ICP) paired with a mass 

spectrometer (MS) based on EPA method 6020A R1.  

2.3.4 Monitoring of Environmental Factors 

 Temperature, light intensity, dissolved oxygen, and hydrocarbons were monitored 

in control and exposed tanks. A temperature/light data logger (Onset HOBO Pendant UA-

002) was placed within one of the control tanks, and set to measure temperature and 

lighting at intervals of 5 min. Dissolved oxygen was measured twice a day in one control 

and one exposed tank, in the morning and in the afternoon, using a CHEMetrics vacu-

vials kit (K-7513) combined with a Thermo Spectronic Genesys 10UV 

spectrophotometer. To rapidly and economically monitor fluctuations of specific PAH 

equivalents throughout the trials, a modified method (Aas et al., 2000) relying on fixed 

wavelength fluorometry was used. Samples were taken and measured twice a day, in the 

morning and in the afternoon. Collected water samples were extracted with HPLC-grade 

hexane and the fluorescence intensity (F.I.) of naphthalene (290/335 nm), phenanthrene 

(256/380 nm), pyrene (341/383 nm), general oil (355/430 nm), benzo(α)pyrene (380/430 

nm), and total petroleum hydrocarbons (TPH) (255/407 nm) equivalents were measured 

using a Perkin Elmer LS-5 fluorescence spectrometer. 

2.3.5 Behavioural and Physiological Monitoring 

Behavioural observations were made up to three times a day, in the morning prior 

to seawater monitoring, close to midday before replacement of seawater, and in the 

afternoon 2-4 hours after the seawater replacement. Sea stars, sea urchins, and sea 



 

 52 

cucumbers were visually monitored for position within tanks, posture, and interactions 

among individuals. For the sea cucumbers, instances of lesions on the body wall, 

evisceration and retraction/deployment of the feeding tentacles were used to determine 

the level of stress as per Gianasi et al. (2015). For sea stars and brittle stars, individuals 

were monitored for limb loss and adhesion to surfaces (Jangoux, 1984). Sea urchins were 

monitored for adhesion to surfaces (Jangoux, 1984; Scheibling and Stephenson, 1984) 

and spine loss (Scheibling and Stephenson, 1984). 

2.3.6 Sample Collection and Processing 

 At the end of the 96-h trials, all individuals in the control and exposed tanks were 

collected and processed, except in trial 3, where half the animals were collected (and the 

remainder were collected at the end of the 96-h depuration). Sea star gonads, pyloric 

caeca, and stomach were removed, weighed, and then stored at -80 ºC. In the brittle stars, 

only the gonads were collected; in addition, samples from specimens of the same sex and 

tank were pooled due to insufficient tissue available per individual. For each sex, all 

central disks were counted, pooled, and weighed together. For the sea urchins, the 

digestive gland and gonads were weighed and frozen at -80 ºC. For the sea cucumbers, 

the gonads, intestines, and respiratory trees were removed, weighed and frozen. In all 

species and individuals, sex was determined under a light microscope (Nikon eclipse 80i) 

based on the presence of oocytes or spermatozoa in a gonad smear.  

All tissue samples were processed using an S9 homogenization procedure to 

obtain the supernatant for enzymatic assay analysis (Hodson et al., 1991; Mathieu et al., 

2011). Samples were diluted, using a 3:1 volume (mL) to weight (g) ratio, with 50 mM 
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Tris-HCl buffer containing anti-protease tablets (Sigma S8820) to prevent the proteolytic 

degradation of cytochrome P450 (Livingstone, 1991). Tissues and buffer were then 

mechanically homogenized within a glass tube using a Teflon plunger. Homogenate was 

then centrifuged at 9 000 x g and the supernatant removed and frozen at -65 ºC until 

analysis (Hodson et al., 1991; Mathieu et al., 2011). 

2.3.7 Bioassays 

2.3.7.1 Glutathione Peroxidase (GPx) Assay 

 This assay was performed using GPx assay kits from Cayman Chemicals (Cat. 

703102) and Trevigen (Cat. 7512-100-K) (Ceballos-Picot et al., 1992; Chu et al., 2004; 

Forstrom et al., 1978; Mukhopadhyay et al., 2009; Ozdemır et al., 2005; Paglia and 

Valentine, 1967; Sindhu et al., 2005). Samples were loaded into wells and reacted with 

NADPH, glutathione, and glutathione reductase and then exposed to cumene 

hydroperoxide. The kinetic rate of reaction was measured, using absorbance at a 

wavelength of 340 nm, over a 10 min period and corrected for background activity. A 

GPx positive control was run simultaneously with samples to ensure assay reliability. 

GPx activity was standardized among samples using protein concentrations obtained from 

the Lowry protein assay (Lowry et al., 1951; see below). The final units for GPx activity 

and standard error were nmol min-1 mg of protein-1. Procedure defined unit (pdu) will be 

used in text. 

2.3.7.2 Ethoxyresorufin-O-Deethylase (EROD) Assay 

Supernatants were analyzed using a modified version of the EROD Assay method 

developed by Pohl and Fouts (1980). Briefly, the supernatant was reacted with a mixture 
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of 50 mM Tris-HCl, NADPH (Bioshop Canada NAD004), and 7-ethoxyresorufin ethyl 

ether (Sigma E3763). Production of the fluorescent compound 7-hydroxyresorufin was 

measured by a Perkin Elmer LS-45 fluorescence spectrometer equipped with a Perkin 

Elmer S10 auto-sampler, at an excitation wavelength of 550 nm and an emission 

wavelength of 585 nm. High and low activity positive controls prepared from fish liver 

were run concurrently with samples to ensure assay reliability. Activity was calculated 

using a standard curve prepared from 7-hydroxyresorufin dye (Sigma 424455) and 

standardized between samples using the Lowry protein assay (Hodson et al., 1991; Lowry 

et al., 1951; see below). The final units for EROD activity and standard error were 

pmol min-1 mg of protein-1. Pdu will be used in text. 

2.3.7.3 Lowry Protein Assay 

 Protein concentration was determined following the Lowry protein assay method 

(Lowry et al., 1951). To perform the assay, S9 supernatant samples were diluted by a 

factor of 10 to insure values fell within the range of the bovine serum albumin protein 

standard curve. Diluted samples were loaded into a 96 well microplate. The auto-injector 

system of the BMG Labtech FLUOstar Optima microplate reader was used to distribute 

the Lowry reagent and Folin-Ciocalteu reagent. Fish liver was run concurrently with 

samples to ensure reliability. Results were expressed in mg of protein ml-1. 

2.3.8 Statistical Analysis 

Normality and homogeneity of variance were confirmed for all statistical tests 

through quantile-quantile (Q-Q) plots and Levene’s test, respectively. One-way analysis 

of variance (ANOVA) was used to test for the presence of tank effects. In some instances, 
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the assumption of homogeneity of variance was not met and could not be corrected 

through data transformation, leading to the use of Welch’s ANOVA or the non-

parametric Kruskal-Wallis ANOVA on ranks. With one exception (detailed in the 

results), no significant tank effects were detected (Tables A1, A2) and this factor was thus 

omitted from further analyses. 

Using two-way ANOVAs (type III SS), all baseline (control) groups were 

analyzed for the influence of season (pre-spawning, spawning, post-spawning) and sex 

(male, female) on baseline enzymatic levels measured in the various tissues. Post-hoc 

analysis was performed using Games-Howell test. Similarly, a series of two-way 

ANOVAs were used to determine the effect that treatment, ULO concentration, season, 

sex, and depuration had on enzyme activity in the tissues of exposed groups, using the 

control group as the baseline. To determine if a confounding effect between sex and ULO 

WAF concentration existed both treatments (control and high ULO exposed) and ULO 

concentrations (0, 0.22, and 0.33 mL L-1) were analyzed independently for an interaction 

with sex. Analyzing them separately assessed whether a confounding variable was present 

and increased statistical power. When a significant interaction (p<0.05) between factors 

was detected, independent one-way ANOVAs followed by a pairwise comparison were 

conducted. All statistical analyses were performed in R (R Development Core Team, 

2015) using α = 0.05. 
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2.4 Results 

2.4.1 Water-Accommodated Fraction and Experimental Factors 

According to the test results, 16 PAHs were detected in the seawater-

accommodated fraction (WAF) sample (Table 2.1). The concentrations of naphthalene 

and its derivatives 1-methylnaphthalene and 2-methylnaphthalene were 2.3, 0.7, and 

1.6 μg L-1, respectively. Phenanthrene was 10-20 times less concentrated at 0.1 μg L-1. 

Low levels of acenaphthene, acenapthylene, anthracene, benzo(a)anthracene, 

benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, chrysene, fluoranthene, 

fluorine, indeno(1,2,3-cd)pyrene, and pyrene, were also detected (Table 2.1). Moreover, 

of the heavy metals detected in the WAF, only zinc was found to be above background 

seawater levels (63 μg L-1) (Table 2.2). 

In the control tanks, the majority of PAHs monitored showed no or negligible 

fluorescence (Fig. 2.1A). At the low exposure concentration within the tanks (Fig. 2.1B), 

the equivalents of naphthalene, phenanthrene, and total petroleum hydrocarbons were 

found to vary between 10 and 17 F.I. Pyrene, benzo(a)pyrene, and general hydrocarbons 

equivalents were also found to fluoresce to some extent. At the high exposure 

concentration (Fig. 2.1C) the equivalents of naphthalene, phenanthrene, and total 

petroleum hydrocarbons were found to vary between 10 and 30 F.I. Pyrene, 

benzo(a)pyrene and general hydrocarbons equivalents were also found to fluoresce. 

Dissolved oxygen (DO) varied between 9.4-8.3 mg L-1 O2 (95-84 % O2 saturation) 

in control tanks and 9.6-7.8 mg L-1 O2 (98-79 % O2 saturation) in exposed tanks. Values 

did not differ significantly between treatments in trial 1 (F1,14=3.23; p=0.094) nor trial 3 
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(F1,14=0.56; p=0.468). However, they were significantly higher in the control than 

exposed tanks in trial 2 (F1,14=6.79; p=0.021), with a mean difference of 0.3 mg L-1 O2. 

These concentrations were all well above the levels (1.22 mg L-1 O2) considered to be 

detrimental for echinoderms (Vaquer-Sunyer and Duarte, 2008).
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Table 2.1: Concentrations of 16 (out of 20 possible) poly-aromatic hydrocarbons 

present in seawater accommodated fraction (WAF) of used lubricating oil (ULO) 

measured by an external analytical chemistry laboratory, prepared at high 

experimental tank concentration (EPA method 8207D). 

Poly-aromatic Hydrocarbon (PAH) Measured Concentration (μg L-1) 

1-Methylnaphthalene 0.68 

2-Methylnaphthalene 1.6 

Acenaphthene 0.011 

Acenaphthylene 0.037 

Anthracene 0.036 

Benzo(a)anthracene 0.030 

Benzo(a)pyrene 0.017 

Benzo(b)fluoranthene 0.022 

Benzo(g,h,i)perylene 0.032 

Benzo(j)fluoranthene ND 

Benzo(k)fluoranthene ND 

Chrysene 0.023 

Dibenz(a,h)anthracene ND 

Fluoranthene 0.040 

Fluorene 0.034 

Indeno(1,2,3-cd)pyrene 0.015 

Naphthalene 2.3 

Perylene ND 

Phenanthrene 0.12 

Pyrene 0.062 

Total PAHs 5.059 

ND - None Detected  
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Table 2.2: Concentration of heavy metals in seawater accommodated fraction (WAF) 

of used lubricating oil (ULO) measured by an external laboratory. Prepared at high 

experimental tank concentrations (EPA method 6020A R1). 

 Metals (Total) 
Reportable Detection 

Limit 

WAF OF ULO        

(μg L-1) 

Aluminum (Al) 50 ND 

Antimony (Sb) 10 ND 

Arsenic (As) 10 ND 

Barium (Ba) 10 ND 

Beryllium (Be) 10 ND 

Bismuth (Bi) 20 ND 

Boron (B) 500 4300 

Cadmium (Cd) 0.10 ND 

Calcium (Ca) 1000 380000 

Chromium (Cr) 10 ND 

Cobalt (Co) 4.0 ND 

Copper (Cu) 20 ND 

Iron (Fe) 500 ND 

Lead (Pb) 5.0 ND 

Magnesium (Mg) 10000 1200000 

Manganese (Mn) 20 ND 

Molybdenum 

(Mo) 
20 ND 

Nickel (Ni) 20 ND 

Phosphorus (P) 1000 ND 

Potassium (K) 1000 340000 

Selenium (Se) 10 ND 

Silver (Ag) 1.0 ND 

Sodium (Na) 1000 9600000 

Strontium (Sr) 20 7000 

Thallium (Tl) 1.0 ND 

Tin (Sn) 20 ND 

Titanium (Ti) 20 ND 

Uranium (U) 1.0 3.2 

Vanadium (V) 20 ND 

Zinc (Zn) 50 63 

ND - None detected  
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2.4.2 Behavioural and Physiological Response  

 Behavioural responses were recorded during trial 2 (spawning period) and trial 3 

(post spawning period). In trial 2, full deployment of the sea cucumber tentacles (Fig. 

2.2A) occurred most frequently in the exposed treatment groups (F1,34=11.99; p=0.002), 

whereas feeding behaviour (introduction of tentacles in the mouth) was solely observed in 

control groups (F1,34=5.74; p=0.022). In trial 3, control groups exhibited (Fig. 2.2B) 

higher incidences of full tentacle deployment than the exposed groups (F1,42=11.01; 

p=0.002) and were the only ones to display feeding behaviour. Similar tentacle behaviour 

was recorded in both control and exposed groups during depuration (Fig. 2.2C). 

Moreover, after 48-h of depuration, 25 % of exposed sea cucumbers displayed blisters 

(Fig. 2.3). 

 During trials 2 and 3, instances of sea stars with arms stretched and inverted under 

the water surface were observed within both control and exposed tanks. During the 

depuration period in trial 3, nearly double the incidences of this behaviour were observed 

in exposed individuals relative to controls.
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Figure 2.1 (next page): Mean (± SE) fluorescence intensity of hydrocarbons monitored 

throughout the experimental trials within treatment group. A – Hydrocarbon fluorescence 

in baseline tanks during the pre-spawning season trial. B – Hydrocarbon fluorescence in 

spawning baseline tanks. C – Hydrocarbon fluorescence in post-spawning baseline tanks. 

D – Hydrocarbon fluorescence in pre-spawning exposed tanks. E – Hydrocarbon 

fluorescence in spawning exposed tanks. F – Hydrocarbon in post-spawning exposed 

tanks. 
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Figure 2.2: Sea cucumber (C. frondosa) tentacle deployment under high concentration of 

ULO WAF. A: Spawning season. B: Post-spawning season. C: Post-spawning depuration. 

Sample sizes are provided on the bars.  
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Figure 2.3: Blister along the left lateral side, directly above the tube feet of a sea 

cucumber (C. frondosa). (Credit: B. Gianasi) 

2.4.3 Fluctuations in Baseline Enzyme Activity 

 In this segment, control groups were used to determine baseline enzymatic activity 

across trials and assess any intrinsic influence of season and/or sex prior to examining the 

effect of ULO WAF exposure on the same enzymes (section 2.4.4).  

 During trial 3 in the post-spawning season, 50 % of control individuals (n=16 per 

species) were collected after the initial 96-h exposure, while the remaining 50 % were 

sampled after an additional 96-h corresponding to the depuration period in a flow-through 

system. Both control groups were statistically analyzed to determine if their baseline 

enzyme activity differed. In the absence of a statistical difference, they were pooled into a 
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single baseline (control) group for the post-spawning season to increase the sample size 

and statistical power of the baseline data. 

2.4.3.1 Glutathione Peroxidase (GPx) 

 Baseline GPx activity was detected in the gonads of all focal species as well as in 

the pyloric caeca of sea stars and the intestines of sea cucumbers (Table 2.3). Of the 

tissues tested, only respiratory trees of sea cucumbers did not exhibit any GPx activity, 

while sea urchin intestines yielded inconclusive results, i.e. they did not provide linear or 

logarithmic regressions of change in absorbance over time. These species/tissues were 

therefore omitted from the GPx analyses and not tested further for GPx activity. Overall, 

when activity levels were pooled across tissues for comparisons, baseline GPx activity in 

sea stars was higher than in all other species, which did not differ significantly from one 

another (Table A3). 

 Baseline GPx activity was not significantly affected by season nor sex in any of 

the sea star tissues (Table 2.4). Baseline GPx activity in the pyloric caeca was similar in 

the spawning (11.03 ± 1.59 pdu, n=8) and post-spawning seasons (8.38 ± 0.98 pdu, 

n=15). Stomach baseline activity during the spawning season was also similar between 

females (2.52 ± 0.57 pdu, n=3) and males (2.16 ± 0.77 pdu, n=5). Post-spawning baseline 

levels were similar to spawning levels, with no disparity between females 

(3.37 ± 0.39 pdu, n=11) and males (3.17 ± 1.43 pdu, n=4). An apparent (non-significant) 

sex disparity was observed in the baseline GPx activity of the gonads during the spawning 

season, with testes (3.05 ± 1.06 pdu, n=5) exhibiting more than double the GPx activity of 
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ovaries (1.30 ± 0.22 pdu, n=3). Baseline activity appeared higher in ovaries during the 

post-spawning season (2.46 ± 0.38 pdu, n=12) than during the spawning season. 

 Neither season nor sex significantly influenced the GPx activity in the intestines 

and gonads of sea cucumbers (Table 2.4). The GPx activity in the intestines of females 

varied from pre-spawning levels of 0.60 ± 0.30 pdu (n=3) to 1.15 ± 0.30 pdu (n=8) in the 

post-spawning season, whereas male baseline intestine activity varied from 

0.73 ± 0.22 pdu (n=5) in the pre-spawning season to 1.49 ± 0.22 pdu (n=8) in the post-

spawning season. Again, a slight seasonal trend was observed in female gonads, whereby 

baseline activity in the ovaries remained ≤0.09 (n=3) in the pre-spawning season and was 

1.01 ± 0.30 pdu (n=8) in the post-spawning season. During the same period, activity in 

the testes remained relatively constant from 0.47 ± 0.43 pdu (n=5) to 0.50 ± 0.15 pdu 

(n=8).  

GPx activity in brittle star gonads was not affected by season nor sex at a 

statistically significant level (Table 2.4). During the spawning season both ovaries 

(1.08 ± 0.07 pdu, n=3) and testes (1.24 ± 0.30 pdu, n=3) displayed similar levels. Baseline 

activity levels in the post-spawning season were also quite similar between ovaries 

(0.88 ± 0.10 pdu, n=8) and testes (0.87 ± 0.15 pdu, n=8), and only slightly lower than in 

the spawning season.  
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Table 2.3: General overview of results for GPx and EROD assays in all the tissues. 

Species Tissue GPx Activity EROD Activity 

Ophiopholis aculeata Gonad Low Moderate 

    

Cucumaria frondosa 

 
Gonad Low None 

Intestine Low None 

Respiratory tree None None 

    

Asterias rubens Gonad Moderate None 

Stomach Moderate None 

Pyloric caeca High Low 

    

Strongylocentrotus 

droebachiensis 
Gonad Moderate High 

Intestine N/A N/A 

GPx: None – No activity detected; Low – < 2 pdu; Moderate – 2 - 6 pdu; High – > 6 pdu; N/A – Inconclusive 

EROD: None – No activity detected; Low – > 0 , <0.2 pdu; Moderate – >0.2 – 0.4 pdu; High – > 0.4 pdu; N/A – 

Inconclusive 
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Table 2.4: Statistical analyses of baseline GPx activity. Independent variable/s indicated along with interactions (×) 

analyzed. Results of ANOVAs are given.  

Species Tissue GPx activity F df p 

Sea Star Pyloric Caeca Season × Sex    

  Spawning = Post-Spawning 3.05 1, 20 0.096 

  Females = Males 0.99 1, 20 0.331 

      

 Stomachs Season x Sex    

  Spawning = Post-Spawning 2.17 1, 20 0.157 

  Females = Males 0.17 1, 20 0.686 

      

 Gonads Season × Sex    

  Spawning = Post-Spawning 1.32 1, 17 0.267 

  Females = Males 2.35 1, 17 0.144 

      

Sea Cucumber Intestines Season × Sex    

  Pre-Spawning = Spawning = Post-Spawning 2.72 2, 27 0.084 

  Females = Males 1.85 1, 27 0.185 

      

 Gonads Season × Sex    

  Pre-Spawning = Spawning = Post-Spawning 0.93 2, 28 0.405 

  Females = Males 1.45 1, 28 0.239 

      

Sea Urchin Gonads Season × Sex    

  Pre-Spawning = Spawning = Post-Spawning 0.91 2, 28 0.414 

  Females = Males 3.53 1, 28 0.071 

      

Brittle Star Gonads Season × Sex    

  Spawning = Post-Spawning 2.38 1, 19 0.139 

  Females = Males 0.02 1, 19 0.887 
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2.4.3.2 Ethoxyresorufin-O-Deethylase (EROD)  

Prior to performing the EROD assay on experimental samples, tests were 

conducted to determine optimal assay conditions that would provide consistent 

measurements, using a minimum of reagents, while not limiting the enzyme activity. All 

of the species sampled during the trials were tested for EROD activity in various tissues 

(Table 2.3), and assessed for optimal supernatant (S9) volume and incubation period. It 

was determined that 50 µL of S9 and 15 min of incubation provided optimal conditions 

for brittle stars gonads and sea stars pyloric caeca. The gonads of sea urchins required 

25 µL of supernatant and an incubation period of 15 min. Of the focal species, only sea 

cucumbers did not exhibit any EROD activity in any of their tissues (Table 2.3).  

While a marginally significant (p=0.047) tank effect was detected among post-

spawning control depurated sea urchins, the post-hoc analysis using the Games-Howell 

test did not reveal any significant pairwise differences (Table A2). Additionally, 

depending on the software used to perform the Welch’s ANOVA, the results alternated 

between nonsignificant and significant. Finally, the post-spawning exposed depurated sea 

urchins did not display tank effects even though they were paired with the control 

depurated tanks within the lab environment, and no other tank effects were detected 

anywhere in the study. Therefore, it was decided to combine controls. A comparison 

among the other species determined that sea urchins displayed higher levels of EROD 

activity in their pooled tissues than sea stars and brittle stars, while the latter two did not 

differ significantly (Table A3). 
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A significant interaction between season and sex on the baseline activity of EROD 

was detected in the gonads of sea urchins (Table 2.5). In sex-specific analyses, activity in 

the ovaries of sea urchins was significantly affected by season (Fig. 2.4A). It was higher 

and less variable during the spawning season (0.69 ± 0.04 pdu, n=6) than in earlier 

(0.12 ± 0.12 pdu, n=4) and later seasons (0.28 ± 0.08 pdu, n=9). EROD activity in testes 

was not significantly affected by season (pre-spawning: 0.09 ± 0.04 pdu, n=3; spawning: 

0.10 ± 0.03 pdu, n=2; post-spawning: 0.04 ± 0.02 pdu, n=8). In season-specific analyses, 

EROD activity in ovaries was significantly higher than in testes during the spawning and 

the post-spawning seasons (Fig. 2.5). However, sex did not significantly affect EROD 

activity in the pre-spawning season (Table 2.5).  

In the gonads of brittle stars, baseline EROD activity significantly varied across 

seasons (Table 2.5). Activity was higher in the spawning season (0.20 ± 0.10 pdu, n=7) 

than the post-spawning season (0 pdu, n=16; Fig. 2.4B). Baseline EROD activity was not 

sex-dependent in gonads of brittle stars (Table 2.5). 

Baseline EROD activity in the pyloric caeca of sea stars was not significantly 

affected by season or sex, but a significant interaction between the two factors was 

detected (Table 2.5). However, independent tests at each level of each factor did not 

reveal any significant differences. Nevertheless, EROD activity was visibly maximal in 

the pyloric caeca of males during the spawning season (0.05 ± 0.03 pdu, n=5) relative to 

females in the same season (0.003 ± 0.003 pdu, n=3) and to both sexes in the post-

spawning season (Female: 0.002 ± 0.002 pdu, n=12; Male: 0.003 ± 0.003 pdu, n=4). 

 No EROD activity was detected in the stomachs of sea stars during the spawning 

or post-spawning seasons.   
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Figure 2.4 (next page): Significant seasonal variation in baseline EROD activity of 

various tissues/species combinations. A – EROD activity in the ovaries of sea urchins was 

higher in the spawning than in the pre-spawning and post-spawning seasons. B – EROD 

activity in the gonads of brittle stars was higher in the spawning season than in the post-

spawning season (no data for the pre-spawning season). Mean activity and standard error 

are shown. Dissimilar letters indicate statistical significance (ANOVA, p < 0.05, sample 

sizes provided on the bars).
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Table 2.5: Statistical analyses of EROD activity. Independent variable/s indicated along with interactions (×) analyzed. 

Results of ANOVAs are given. Significant (p ≤ 0.05) results are shown in bold. 

Species Tissue EROD activity F df p 

Sea Urchin Gonads Season × Sex 4.58 2, 25 0.020 

  Female: Pre-Spawning < Spawning   0.027 

  Female: Pre-Spawning = Post-Spawning   0.539 

  Female: Spawning > Post-Spawning   0.002 

  Male: Pre-Spawning = Spawning = Post-Spawning 1.02 2, 9 0.399 

  Pre-Spawning: Females = Males 0.05 1, 5 0.829 

  Spawning: Females > Males 106.0 1, 6 <0.0001* 

  Post-Spawning: Females > Males 8.20 1, 14 0.013* 

      

Brittle Star Gonads Season × Sex    

  Spawning > Post-Spawning 6.68 1, 20 0.018 

  Females = Males 0.26 1, 20 0.616^ 

      

Sea Star Pyloric Caeca Season × Sex 4.62 1, 20 0.044* 

  Female: Spawning = Post-Spawning 0.006 1, 13 0.938 

  Male: Spawning = Post-Spawning 2.07 1, 7 0.170 

  Spawning: Female = Male 1.75 1, 6 0.234 

  Post-Spawning: Female = Male 0.06 1, 14 0.809 

Symbols indicate that data were either (*) square root or (^) power transformed to obtain homogeneity of variance. 
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Figure 2.5: Significant season-specific influence of sex on baseline EROD activity in the 

gonads of sea urchins. EROD activity in male and female gonads was only similar in the 

pre-spawning season. Female gonads in the spawning season exhibited significantly 

greater activity than all other female or male gonads at any other time. Female gonads in 

the post-spawning season exhibited significantly greater activity than any male gonads. 

EROD activity in male gonads remained similar across seasons. Mean activity with 

standard error are shown. Dissimilar letters between sexes inside a season or across 

seasons within a sex indicate statistical differences (ANOVA, p < 0.05, sample sizes 

provided on the bars). 

  



  

 

 75 

2.4.4 Effect of Oil Exposure on Baseline Enzyme Activity  

2.4.4.1 Glutathione Peroxidase (GPx) Activity 

 To determine the effect that the water-accommodated fraction (WAF) of used 

lubricating oil (ULO) had on GPx activity, the activity in the various tissues of animals 

exposed to ULO WAF was compared to baseline levels during the same period. The 

significance of treatment (control, exposed), depuration after exposure, ULO WAF 

concentration (0, 0.22, 0.33 mL L-1), sex, and season was assessed.  

 The GPx activity in the pyloric caeca of sea stars did not differ significantly based 

on experimental treatment, season, sex, nor depuration (Table 2.6). No significant 

difference between spawning and post-spawning activity were measured. 

 A significant interaction between treatment and sex on the GPx activity in 

stomachs of sea stars was detected (Table 2.6). Within treatment-specific analyses, 

exposed males (5.68 ± 1.77 pdu, n=3) had significantly more GPx activity in their 

stomachs than exposed females (2.49 ± 0.30 pdu, n=13; Fig. 2.6A). In sex-specific 

analyses, GPx activity in stomachs was not significantly affected by season, nor did it 

differ significantly from baseline after depuration.  
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Table 2.6: Statistical analyses of the response to the ULO WAF exposure and depuration on GPx activity in the focal 

species. Independent variable/s indicated along with interactions analyzed. Results of ANOVAs are given. Significant (p ≤ 

0.05) results are shown in bold. 

Species Tissue GPx activity F df p 

Sea star Pyloric caeca Treatment × Sex    

  Control = Exposed 0.48 1, 36 0.495 

     Females = Males 2.33 1, 36 0.136 

  Treatment × Season    

  Control = Exposed 0.38 1, 36 0.540 

  Spawning = Post-Spawning 2.78 1, 36 0.104 

  Depuration × Sex    

  Control = Depurated 0.19 1, 20 0.665 

  Females = Males 0.18 1, 20 0.679 

      

 Stomachs Treatment × Sex 9.20 1, 35 0.005 

    Female: Control = Exposed 2.41 1, 25 0.133 

     Male: Control = Exposed 3.71 1, 10 0.083 

  Control: Female = Male  0.65 1, 21 0.428 

  Exposed: Females < Males  10.67 1, 14 0.006 

  Treatment × Season    

  Control = Exposed 0.20 1, 36 0.661 

  Spawning = Post-Spawning 2.15 1, 36 0.151 

  Depuration × Sex    

  Control = Depurated 0.18 1, 20 0.680 

  Females = Males 1.53 1, 20 0.231 

      

 Gonads Treatment × Sex    

  Control = Exposed 0.17 1, 33 0.685 

  Females < Males 7.31 1, 33 0.011 

  Treatment × Season    

  Control = Exposed 0.08 1, 33 0.786 
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  Spawning = Post-Spawning 0.70 1, 33 0.408 

  Depuration × Sex    

  Control = Depurated 0.83 1, 17 0.377 

  Females = Males 2.98 1, 17 0.103 

      

Sea Cucumber Intestines Treatment × Sex    

    Control = Exposed 0.27 1, 36 0.606 

     Females > Males 2.74 1, 36 0.107 

  Sex × ULO Concentration    

     Females = Males 2.60 1, 51 0.113 

     0 = 0.22 = 0.33 mL L-1 0.65 2, 51 0.527 

  Treatment × Season    

  Control = Exposed 0.02 1, 51 0.899 

  Pre-Spawning = Spawning   0.069 

  Pre-Spawning < Post-Spawning   0.019 

  Spawning = Post-Spawning   0.899 

      

  Depuration × Sex    

  Control = Depurated 0.004 1, 21 0.953 

  Females = Males 0.48 1, 21 0.496 

      

 Gonads Treatment × Sex    

    Control = Exposed 0.09 1, 37 0.762 

     Females > Males 6.09 1,37 0.018 

  Sex × ULO Concentration    

     Females > Males 5.17 1, 52 0.027 

     0 = 0.22 = 0.33 mL L-1 0.57 2, 52 0.569 

  Treatment × Season    

  Control = Exposed 0.009 1, 52 0.927 

  Pre-Spawning = Spawning = Post-Spawning 2.23 2, 52 0.118 

  Depuration × Sex    

  Control = Depurated 0.04 1, 21 0.852 

  Females = Males 3.00 1, 21 0.098 

      

Sea Urchin Gonads Treatment × Sex    

  Control = Exposed 0.05 1, 37 0.833 
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     Females < Males 5.24 1, 37 0.028 

  Sex × ULO Concentration    

     Females < Males 4.31 1, 52 0.043 

     0 = 0.22 = 0.33 mL L-1 0.87 2, 52 0.424 

  Sex within Season    

  Pre-Spawning: Females = Males 0.28 1, 14 0.604 

  Spawning: Females = Males 1.13 1, 14 0.306 

  Post-Spawning: Females = Males 3.58 1, 22 0.072^ 

  Treatment × Season    

  Control = Exposed 0.06 1, 52 0.814 

  Pre-Spawning = Spawning = Post-Spawning 1.23 2, 52 0.300 

  Depuration × Sex    

  Control = Depurated 0.03 1, 21 0.855 

  Females < Males 5.01 1, 21 0.036 

      

Brittle Star Gonads Treatment × Sex    

    Control = Exposed 0.04 1, 34 0.845# 

     Females = Males 1.23 1, 34 0.275# 

  Treatment × Season    

  Control = Exposed 0.10 1, 35 0.758 

  Spawning = Post-Spawning 0.45 1, 35 0.509 

  Depuration × Sex    

  Control = Depurated 0.67 1, 21 0.422 

  Females = Males 0.59 1, 21 0.451 

Symbols indicate that data were either (^) power or (#) log10 transformed to obtain homogeneity of variance. 
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Figure 2.6: Significant treatment-dependent and sex-dependent enzyme activity in the 

exposed groups. A – GPx activity in the stomachs of exposed sea stars was higher in 

males than females. B – EROD activity in the testes of sea urchins was higher in control 

than exposed individuals. Mean activity with standard error are shown. Dissimilar letters 

indicate statistical significance (ANOVA, p < 0.05, sample sizes provided on the bars).  
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 A significant effect of sex on the GPx activity in the gonads of sea stars was 

measured (Table 2.6).  Overall, when combining control and experimental data, activity 

was significantly higher in testes (3.57 ± 0.92 pdu, n=9) than in ovaries (2.10 ± 0.21 pdu, 

n=28; Fig. 2.8A). In contrast, no significant sex-based differences were observed within 

seasons. No significant effect on GPx activity in sea star gonads was detected based on 

season or treatment, nor did levels differ significantly from baseline after depuration 

(Table 2.6). 

The GPx activity in the intestines of sea cucumbers was significantly affected by 

season. Overall activity was significantly higher in the post-spawning (1.32 ± 0.18 pdu, 

n=16) than in the pre-spawning (0.73 ± 0.11 pdu, n=16) season (Fig. 2.7A). No difference 

between the pre-spawning and spawning season was measured. Activity was not 

significantly affected by treatment, sex, or concentration of WAF, and did not 

significantly differ from baseline after depuration (Table 2.6). Nonetheless, some trends 

were evidenced. During the pre-spawning and spawning seasons, intestine activity levels 

did not appear to differ between sexes. However, during the post-spawning season a 

disparity in the exposed treatment was observed, with females (0.80 ± 0.80 pdu, n=2) 

seeming to have nearly half the activity of males (1.28 ± 0.32 pdu, n=6). In contrast, the 

GPx activity in the intestines of depurated females (1.35 ± 0.40 pdu, n=5) and males 

(1.26 ± 0.18 pdu, n=3) were very similar. 
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Figure 2.7 (next page): Significant overall season-dependent activity [in combined control 

(baseline) and experimental (exposed) groups]. A – GPx activity in the intestines of sea 

cucumbers was higher in the post-spawning season than the pre-spawning season. B –

EROD activity in the ovaries of sea urchins was higher in the spawning season than the 

pre-spawning and post-spawning seasons. Mean activity with standard error are shown. 

Dissimilar letters indicate statistical significance (ANOVA, p < 0.05, sample sizes 

provided on the bars).
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Figure 2.8 (next page): Significant overall sex-dependent activity [in combined control 

(baseline) and experimental (exposed) groups]. A – GPx activity in the gonads of sea 

stars was higher in males than females.  B – GPx activity in the gonads of sea cucumbers 

was higher in females than males. C – GPx activity in the gonads of sea urchins was 

higher in males than females. D – GPx activity in the depurated gonads of sea urchins 

was higher in males than females. E – EROD activity in the gonads of sea urchins was 

higher in females than males. F – EROD activity in the depurated gonads of sea urchins 

was still higher in females than males. Mean activity with standard error are shown. 

Dissimilar letters indicate statistical significance (ANOVA, p < 0.05, sample sizes 

provided on the bars).
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The overall GPx activity in the gonads of sea cucumbers was significantly 

affected by sex; with the ovaries (0.90 ± 0.15 pdu, n=30) of sea cucumbers exhibiting 

more activity than testes (0.47 ± 0.14 pdu, n=26; Fig. 2.8B). The activity in gonads was 

not significantly affected by treatment, sex, concentration of WAF, season, nor differ 

significantly from baseline after depuration (Table 2.6). The activity in ovaries exposed to 

the low WAF concentration was 0.69 ± 0.37 pdu (n=6) in the pre-spawning season, while 

in the high concentration it ranged from 0.98 ± 0.26 pdu (n=4) in the spawning season to 

1.32 ± 1.01 pdu (n=2) in the post-spawning season. GPx activity in the testes after 

exposure to the low of concentration of WAF was 0.23 ± 0.23 pdu (n=2) in the pre-

spawning season. At the higher WAF concentration it ranged from 1.11 ± 0.58 pdu (n=4) 

in the spawning season to 0.19 ± 0.11 pdu (n=6) in the post-spawning season. Testes of 

male sea cucumbers exposed in the post-spawning season exhibited GPx activity that was 

seven times lower than ovaries of concurrently exposed females, mirroring the disparity 

observed between sexes in the post-spawning baseline (section 2.4.3.1). 

 The overall GPx activity in the gonads of sea urchins was significantly affected by 

sex; with the testes (2.58 ± 0.97 pdu, n=22) having significantly more activity than 

ovaries (0.99 ± 0.17 pdu, n=34; Fig. 2.8C). Similarly, levels in post-spawning baseline 

and depurated testes (4.55 ± 1.53 pdu, n=11) were significantly higher than in ovaries 

(1.30 ± 0.24 pdu, n=13; Fig. 2.8D). GPx activity was not significantly affected, at a 

statistical level, by exposure to WAF, concentration of WAF, the season in which they 

were exposed, nor differ significantly from baseline after depuration (Table 2.6). The 

most striking trends were those of the testes of sea urchins exposed during the spawning 

season, when GPx activity appeared highly up-regulated after exposure (3.45 ± 2.92 pdu, 
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n=5) relative to baseline levels (0.28 ± 0.28 pdu, n=2). With the low sample sizes for 

testes in the post-spawning season it was not possible to determine whether exposure to 

WAF had an effect in males. Activity in the ovaries of sea urchins exposed to low WAF 

concentration was 0.56 ± 0.34 pdu (n=4) in the pre-spawning season, while in the high 

concentration trials, activity in ovaries ranged from 0.53 ± 0.40 pdu (n=3) in the 

spawning season to 1.48 ± 0.45 pdu (n=7) in the post-spawning season. 

 The GPx activity in the gonads of brittle stars was not significantly affected by 

treatment, sex, season, nor differ significantly from baseline after depuration (Table 2.6). 

However, there did appear to be some effect of WAF on GPx activity in testes. During the 

post-spawning season, testes of exposed (1.35 ± 0.43 pdu, n=4) and depurated brittle stars 

(1.30 ± 0.53 pdu, n=4) appeared to have increased activity in comparison to concurrent 

baseline levels (0.87 ± 0.15 pdu, n=8). Meanwhile, testes of brittle stars exposed to WAF 

in the spawning season appeared to have activity (1.30 ± 0.87 pdu, n=4) very similar to 

spawning season baseline levels (1.24 ± 0.30 pdu, n=3). GPx activity in ovaries did not 

appear to be influenced by exposure to the high WAF concentration; it ranged from 

0.82 ± 0.15 pdu (n=4) in the spawning season to 0.75 ± 0.16 pdu (n=4) in the post-

spawning season.  

2.4.4.2 Ethoxyresorufin-O-Deethylase (EROD) Activity 

Overall EROD activity in the gonads of sea urchins was significantly affected by 

sex, being significantly higher in ovaries than in testes (Fig. 2.8E). In sex-specific 

analysis, exposed testes (0.02± 0.02 pdu, n=9) exhibited significantly lower activity than 

the baseline level (0.06 ± 0.02 pdu, n=12; Fig. 2.6B). The EROD activity in ovaries was 
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significantly influenced by season; activity was higher in the spawning than in either the 

pre-spawning or post-spawning seasons (Fig. 2.7C). Activity in the ovaries of exposed 

sea urchin was 0.35 ± 0.22 pdu (n=4) in the pre-spawning season (low WAF 

concentration), while results of the high WAF concentration trials varied from 

0.75 ± 0.10 pdu (n=3) in the spawning season, to 0.27 ± 0.10 pdu (n=7) in the post-

spawning season. In sex-specific analyses, the concentration of WAF did not significantly 

influence EROD activity in the ovaries or testes (Table 2.7). Within the gonads of 

depurated animals, sex significantly affected the overall activity (Fig. 2.8F), with females 

exhibiting more activity than males, based on the combined control and exposed groups. 

However, EROD activity was not significantly affected by treatment, or concentration of 

WAF for pooled sexes, nor did it differ significantly from baseline after depuration.  

EROD activity in the gonads of brittle stars was not significantly influenced by 

season, treatment, or sex, nor did it differ significantly from baseline after depuration 

(Table 2.7). EROD activity within the gonads did not differ significantly during the 

spawning (0.15 ± 0.06 pdu, n=15) and post-spawning (0 pdu, n=24) seasons. Ovaries of 

brittle stars exposed in the spawning season (0.22 ± 0.10 pdu, n=4) displayed levels 

similar to the baseline (0.21 ± 0.12 pdu, n=4), whereas activity in testes (0.00 pdu, n=4) 

appeared to be suppressed relative to baseline (0.20 ± 0.20 pdu, n=3). No activity was 

detected in the gonads of any exposed brittle stars in the post-spawning season; although 

depurated ovaries did express faint activity (0.03 ± 0.03 pdu, n=4).   

 EROD activity in the pyloric caeca of sea stars was not significantly affected by 

season, treatment, sex, concentration of WAF, and did not differ significantly from 

baseline after depuration (Table 2.7). 
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Table 2.7: Statistical analyses of the response to the ULO WAF exposure and depuration on EROD activity in the focal 

species. Independent variable/s indicated along with interactions analyzed. Results of ANOVAs are given. Significant (p ≤ 

0.05) results are shown in bold. 

 
Species Tissue EROD activity F df p 

Sea Urchin Gonads Treatment × Sex    

    Control = Exposed 1.55 1, 36 0.221* 

     Females > Males 27.67 1, 36 <0.0001* 

  Sex × ULO Concentration    

     Females > Males 19.35 1, 50 <0.0001* 

     0 = 0.22 = 0.33 mL L-1 0.27 2, 50 0.767* 

  Female: Treatment × Season    

  Control = Exposed 0.59 1, 29 0.448 

  Pre-Spawning < Spawning   0.014 

  Spawning > Post-Spawning   <0.0001 

  Pre-Spawning = Post-Spawning   0.95 

  Male: Treatment × Season    

  Control > Exposed 4.66 1, 17 0.045 

  Pre-Spawning = Spawning = Post-Spawning 1.81 2, 17 0.193 

  Depuration × Sex    

  Control = Depurated 0.77 1, 21 0.392 

  Females > Males 8.85 1, 21 0.007 

      

      

Brittle Star Gonads Treatment × Sex    

    Control = Exposed 0.02 1, 36 0.894 

     Females = Males 1.14 1, 36 0.294 

  Treatment × Season    

  Control = Exposed 1.60 1, 36 0.215^ 

  Spawning = Post-Spawning 3.06 1, 36 0.089^ 

  Depuration × Sex    

  Control = Depurated 2.10 1, 21 0.162 
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  Females = Males 1.05 1, 21 0.317 

      

      

Sea star Pyloric caeca Treatment × Sex    

  Control = Exposed 0.26 1, 37 0.614 

  Females = Males 1.02 1, 37 0.320 

  Treatment × Season    

  Control = Exposed 0.04 1, 37 0.844 

  Spawning = Post-Spawning 0.41 1, 37 0.524 

  Depuration × Sex    

  Control = Depurated 0.89 1, 21 0.357 

  Females = Males 0.06 1, 21 0.808 

Symbols indicate that data were either (*) square root or (^) power transformed to obtain homogeneity of variance. na = not performed 
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2.5 Discussion 

2.5.1 Natural Variations in Enzyme Baseline Activity 

 The prevalence of GPx activity in the majority of the species/tissues studied here 

suggests that it is universally present in echinoderms. In comparison, the presence of 

EROD activity, indicative of CYP450 1A, was found to vary markedly among 

species/tissues examined. This pattern followed initial predictions, based on the low 

specificity of GPx to operate on hydrogen peroxide/organic hydroperoxides (Doyotte et 

al., 1997) and the greater specificity of CYP450 1A to operate on exogenous compounds 

such as dioxins, furans, PCBs, and PAHs (Goksøyr, 1995; Sarkar et al., 2006). Previous 

research on CYP450 1A activity within different phyla has shown activity to be highest in 

tissue responsible for digestion and detoxification, e.g. liver, kidney, hepatopancreas, 

digestive gland (Goksøyr, 1991; Kirby et al., 1999; Livingstone, 1991; Martín-Díaz et al., 

2007; Pohl and Fouts, 1980). The detection of EROD activity in the pyloric caeca of sea 

stars therefore supports previous research, whereas the presence of EROD activity in the 

gonads of brittle stars and sea urchins is intriguing. Unlike digestive tissues, gonads are 

not involved in processing ingested material, which begs the question of its purpose. It 

can be proposed that due to the lack of any complex respiratory or circulatory system 

within echinoderms, gonad tissue, which is known to obtain oxygen from the coelomic 

fluid (Shick, 1983), may require detoxification from xenobiotics present in the coelomic 

fluid. Alternatively, some CYP450 enzymes are known to metabolize steroids that may 

vary from cholesterols to estradiols; this process can include the hydroxylation of 

steroids, which leads to their clearance from the organism (Spies and Rice Jr, 1988). The 
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metabolism of steroids may explain the EROD activity in the gonads of brittle stars and 

sea urchins. However, it remains very hypothetical given the lack of EROD activity in the 

gonadal tissues of sea cucumbers and sea stars. 

In the present study, season and/or sex influenced the baseline activities of the 

focal biomarkers. Specifically, an interaction between season and sex was detected in the 

EROD activity of sea urchin gonads, whereby seasonal fluctuations (significantly higher 

activity during the spawning than either pre-spawning or post-spawning periods) were 

restricted to females. Additionally, ovaries had significantly higher EROD activity than 

testes during some seasons (spawning and post-spawning). Season was also found to 

affect EROD activity in the gonads of brittle stars. When seasonal variation occurred, the 

highest activity was consistently measured during the spawning season, suggesting that 

reproductive activity could confound responses to a pollutant, and highlighting the need 

to identify, understand, and account for sources of seasonal variation, as previously 

recommended by Nahrgang et al. (2013).  

Natural variations in biomarker expression may be explained by a combination of 

biotic and abiotic factors. The former include sex, reproductive stage, trophic activity, and 

growth of the organism (Sheehan and Power, 1999), whereas the latter includes water 

temperature, photoperiod, and food availability (Viarengo et al., 1991). Abiotic factors 

have been shown to influence the activity and induction of CYP450 enzymes in fish. For 

instance, Sleiderink et al. (1995) observed that EROD activity was inversely proportional 

to water temperature in North Sea dab (Limanda limanda). In the current study, water 

temperature was kept constant during holding and experimental trials since previous 

studies have shown that it can affect EROD activity (Lange et al., 1998; Shaw et al., 
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2004; Sleiderink et al., 1995). Ambient photoperiod was used throughout since it is an 

important driver of reproductive activity. All individuals also had access to baseline food 

supplies over the study period; feeding of the grazers and carnivores was only withheld 

just before the trials to minimize interference with the measured biomarkers (Hodson et 

al., 1996; Vigano et al., 1993). Therefore, abiotic factors are less likely effectors than 

biotic processes, which are also known to elicit seasonal fluctuations in CYP450. 

Seasonal differences between sexes in the expression of CYP450 have been 

documented in striped mullet Mullus barbatus, whereby males displayed the highest 

levels of CYP450 and mixed function oxidase (MFO) activities in the liver, particularly 

during the reproductive season (Mathieu et al., 1991). Previous research on the pyloric 

caeca of sea star (A. rubens) have also shown CYP450 activity to be highest near the 

reproductive period, and greater in females than males (den Besten, 1998). Here, 

reproduction emerged as a source of seasonal variation in biomarker activity, with the 

peculiar exception of sea stars. Seasonal fluctuations in EROD activity occurred in the 

gonads of brittle stars, without sex-based differences. In contrast, sex-based differences 

were most apparent during the spawning season of sea urchins, when ovaries displayed 

the highest EROD activity. Finally, no sex-based differences nor seasonal fluctuations in 

EROD activity occurred here in sea star pyloric caeca. The CO-difference spectrum 

method described by den Besten (1998) differed from the methodology used in the 

present study, which could account for some of the disparities. Additionally, CYP450 1A 

(indicated by EROD activity) belongs to a broad CYP450 family, therefore it may express 

fluctuations that deviate from those observed in the broader CYP450 family. Raymond et 

al. (2007) had shown that differences existed between sexes in resource allocation pre- 
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and post-spawning in the sea star A. vulgaris (= rubens). The energetic content in the 

pyloric caeca decreased for both sexes after spawning occurred, with lipids accounting for 

the majority of decreased energy (Raymond et al., 2007). However, variances in 

methodology and species/tissues make it hard to tease out universal trends, stressing the 

need for species-specific and tissue-specific measurements across multiple seasons. 

The present study showed that, unlike sea stars, sex-based seasonal variation in 

EROD activity occurred in the gonads of green sea urchins (S. droebachiensis). Previous 

research on resource allocation in pre- and post-spawning purple sea urchin 

(Paracentrotus lividus) by Fernandez (1998) found the gonads to contain high levels of 

protein, relatively high lipid, and low carbohydrate content, with the primary difference 

between sexes being a higher lipid content in ovaries than testes. Protein, lipid, and 

carbohydrate levels initially increased in the gonads during early gametogenesis. As the 

gonads matured, lipid and carbohydrate levels decreased (Fernandez, 1998). The higher 

lipid content in ovaries relative to testes supports the greater EROD activity measured 

here in female sea urchins. However, there is a possibility that the increased levels of 

EROD activity near spawning may merely reflect its role during the maturation of gonads 

(Lange et al., 1998). Alternatively, a study by Cooreman et al. (1993) on flatfish 

(Limanda limanda) suggests that increased activity near spawning may be a coincidental 

response to the increased mobilization of lipids. A similar response may have occurred in 

the ovaries of sea urchins in the present study, while the lack of response in testes may be 

explained by their lower lipid content. 

In the current study, neither seasonal nor sex-based variation in GPx activity were 

observed in sea cucumber gonads and intestines. A study on biochemical storage in the 
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orange-footed sea cucumber (C. frondosa) by David and MacDonald (2002) found lipids 

to constitute the largest portion of gonads, followed by proteins and carbohydrates. They 

found higher levels of lipids in ovaries than testes with no seasonal variation, and no sex-

based differences in protein or carbohydrate content of gonads. Protein stores in gonads 

were found to decrease after spawning (David and MacDonald, 2002). Carbohydrate 

levels were highest in gonads during the feeding (March-September) period and 

decreased during the non-feeding (January-February and October-December) periods 

(David and MacDonald, 2002). The lack of seasonal variation in lipid content supports 

the lack of variation in GPx activity found here in sea cucumber gonads. Unfortunately, 

David and MacDonald (2002) did not study seasonal variation in resource allocation of 

sea cucumber intestine, making it impossible to compare it to the lack of seasonal 

variation in GPx observed in the present study. 

With respect to the brittle stars used here, seasonal variation in EROD activity was 

noted. Unfortunately, to the best of our knowledge no previous research on seasonal 

variation in resource allocation exists for this taxonomic group. However, it is highly 

probable that gametogenesis in brittle stars requires a net input of resources with variation 

in resource allocation occurring in a similar manner as that observed in sea star and sea 

urchin gonads by Raymond et al. (2007) and Fernandez (1998), respectively.  

Since lipid, protein, and carbohydrate resources of sea stars, sea urchins, and sea 

cucumbers are known to vary within sexes and seasons, their availability may play an 

integral part in the ability of these tissues to respond to environmental stressors. Enzymes 

such as CYP450 1A and GPx both require an input of resources in order to maintain 

activity levels, through both enzyme action (i.e. NADPH) (Michiels et al., 1994; Omura, 
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2010) and synthesis (ATP and protein) (Koehn, 1991). In the case of enzyme induction 

(i.e. increased synthesis), the energy and protein input may greatly exceed typical 

maintenance requirements (Koehn, 1991). Furthermore, enzymes may significantly 

impact the overall cost of an organism’s baseline metabolism when the host tissues 

constitute a large portion of the organism (Koehn, 1991). In the present study, all tissues 

analyzed represented large portions of the organisms, suggesting that the detected enzyme 

levels, especially those elevated in the spawning season, required a significant input of 

energy and resources in order to maintain activity. 

The increase in the synthesis of enzymes such as CYP450 1A (shown by 

enhanced EROD activity), resulting in an inflation of resource expenditure near the 

spawning season, may provide increased protection from exogenous compounds 

(pollutants), as well as an increased metabolism of endogenous compounds (steroids). 

Intriguingly, the increased EROD activity measured here in sea urchin ovaries and brittle 

star gonads appears to be the inverse of results obtained previously with boreal 

vertebrates. In polar cod (Boreogadus saida) EROD activity was negatively correlated 

with the reproductive period (Nahrgang et al., 2010), likely due to the production of 

estradiol-17β in female fish, which is known to inhibit CYP450 activity (Stegeman et al., 

1982). The suppression of EROD activity in brook trout (Salvelinus fontinalis), 

demonstrated by Stegeman et al. (1982), occurred after injecting estradiol-17β 

intramuscularly at concentrations 1000 times greater than those measured in echinoderms. 

While sea urchins and sea stars are known to produce estradiol-17β (Botticelli et al., 

1961; Schoenmakers and Voogt, 1981; Voogt and Dieleman, 1984), this compound did 

not appear to inhibit EROD activity. However, it is not certain that estradiol-17β did not 
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influence EROD activity at some level in the current study. It is important to note that the 

influence of biotic and abiotic factors may not necessarily be consistent within 

biomarkers or within species. Case in point, polar cod exhibited seasonal variation in 

EROD activity while Atlantic cod (Gadus morhua) did not (Nahrgang et al., 2013). Since 

even similar species (e.g. in Gadidae family) can have divergent activity induced by 

external factors, the use of multiple species and tissues when measuring biomarker 

activity may prove beneficial. 

It can be hypothesized that GPx activity near the spawning period may convey 

protection against oxyradicals to prevent damage to gametes. The orange-footed sea 

cucumber (C. frondosa) is a broadcast-spawner that releases yolky oocytes, which 

develop into lecithotrophic (non-feeding) larvae (Hamel and Mercier, 1996). Newly 

released gametes of some broadcast-spawners, like C. frondosa, float to the surface where 

they are exposed to ultra-violet radiation (UVR) (Lesser, 2006). Since exposure to UVR 

leads to the production of reactive oxygen species (ROS) within the mitochondria of cells 

(Lesser, 2006), protection by antioxidants such as GPx may be necessary. However, no 

relation between gamete maturity (season) and GPx activity was detected in the gonad of 

sea cucumbers; suggesting that either the basal GPx activity is sufficient or that GPx does 

not play a role in the protection of gametes from UVR. 

While year-round (monthly) spawning and protracted annual spawning (over 

several months) occurs in several tropical species of echinoderms around the equator 

(Hendler, 1991; Mercier and Hamel, 2009; Montero-Torreiro and Garcia-Martinez, 2003; 

Pearse, 1968; Pearse and Cameron, 1991; Smiley et al., 1991), cold-water species 

typically reproduce annually and may thus undergo more pronounced seasonal variations 
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in biomarkers. To compound this, the seasonal availability of food for adults and 

juveniles may be critically important in determining and maintaining seasonal 

reproductive periods (Hendler, 1991; Pearse and Cameron, 1991). Since, the present 

study used cold-water species that breed annually, it would be expected that they would 

place high priority on protecting their gametes so as to increase survival rates. Therefore, 

increased activity of enzymes would be expected near the spawning period, which is 

precisely what was measured in sea stars and sea urchins.  

Sea stars, sea urchins, sea cucumbers, and brittle stars exhibit different diets and 

occupy different trophic positions, which suggests they may express different levels of 

GPx and EROD activity based on energy availability and the need for enzyme activity. 

Sea stars, such as A. rubens, have a carnivorous diet that is sustained by active predations 

on mollusks, such as whelks and mussels. This strategy results in a greater assimilation 

efficiency, but requires a higher respiratory metabolism and causes a lower growth 

efficiency (Welch, 1968). A greater respiratory metabolism leads to the increased 

production of ROS (Nahrgang et al., 2013) leading to a requirement for antioxidants such 

as GPx. It has also been well documented that sea stars can draw energy stored in the 

pyloric caeca for use in gametogenesis (Barker and Nichols, 1983; Boivin et al., 1986). 

These energy stores could potentially be used, instead of or in addition to dietary energy, 

to help regulate detoxification enzyme synthesis during exposure to stressors. In 

comparison, sea urchins such as S. droebachiensis are omnivores known to actively 

forage for seaweeds and seagrasses, and to scavenge opportunistically on animal tissue 

(Briscoe and Sebens, 1988). Compared to carnivory, herbivory and occasional scavenging 

would provide sea urchins with lower resources for use in enzyme synthesis, since plants 
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provide a much lower quantity of energy per gram of tissue than meat (Boyd and 

Goodyear, 1971). Both sea cucumbers and brittle stars are suspension feeders that occupy 

similarly low trophic positions, mainly consuming phytoplankton and particulate organic 

matter (Hamel and Mercier, 1998; Roushdy and Hansen, 1960). Due to its size and 

posture, C. frondosa can extend its feeding tentacles much higher in the water column 

than O. aculeata, and potentially has access to fresher organic material. In the present 

study, sea stars and sea urchins were found to express significantly more GPx and EROD 

activity, respectively, than all other species, possibly because of their 

carnivorous/scavenging habits. However, the fact that neither species exhibited 

consistently higher levels of the two biomarkers shows that dietary lifestyle alone is not a 

good predictor of biomarker activity.  

Growth, which would result in a net re-allocation of resources away from enzyme 

production and gametogenesis, is unlikely to have influenced the baseline variation in 

GPx or EROD activity over the course of the present study, due to the use of fully grown 

adult specimens, which are known to exhibit little to no growth (Lawrence, 1987a; 

Lawrence and Lane, 1982). Echinoderms in the Northwest Atlantic typically experience 

slow sporadic growth. Moreover, growth is generally limited during winter when low 

food availability and water temperatures occur, and enhanced when warmer waters and 

higher food supplies prevail (Chia and Walker, 1991; Franz, 1986; Hamel and Mercier, 

1996; Lawrence and Lane, 1982).  
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2.5.2 Response to Used Lubricating Oil (ULO) 

Previous studies of the effect of ULO have found a linear increase in EROD 

activity within the liver and kidneys of rainbow trout (Oncorhynchus mykiss) three days 

after injection of ULO into the fish (Upshall et al., 1993). Additionally, exposure to ULO 

WAF was shown to decrease the rate of wound healing in polychaetes (Nusetti et al., 

2005) and induce lesions in the vascular systems of Atlantic silversides (Menidia 

menidia) and eastern oysters (Crassostrea virginica) (Gardner et al., 1975). 

 The occurrence of PAHs in the present study of ULO WAF is of particular interest 

since they are known to persist in the environment and accumulate in marine organisms 

(Bechmann et al., 2010; Galt et al., 1991). The low solubility in water and hydrophobicity 

makes these ring-based hydrocarbons difficult to breakdown in the environment 

(Martínez-Gómez et al., 2010b). A relation between ring number to turnover rate was 

found to exist, whereby the number of rings increased persistence in the environment 

(Meador et al., 1995). PAHs (high ring numbers) typically remain in the water column 

and attach to particles, slowly settling to the bottom (Lee and Page, 1997; Meador et al., 

1995). Particle-bound PAHs can take anywhere from days to years to degrade in aquatic 

environments (Meador et al., 1995). The benthic sedentary life style of echinoderms 

makes them particularly suitable to the detection of oil contamination long after the 

toxicant has been dispersed due to their direct contact with sediment that can contain 

particle-bound PAHs. 

Elevated concentrations of the heavy metal zinc were found in the WAF of ULO 

studied here, due to its use as an engine oil additive (Vazquez-Duhalt, 1989). The effect 
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of zinc on echinoderms has typically been tested on gametes and embryos since adults are 

known to have greater tolerance and are less suitable for short-term experiments and low 

test-volumes (Bay et al., 1993). Previous studies on the impact of zinc on larval 

echinoderms have yielded EC50 at zinc concentrations orders of magnitude greater than 

the ones measured here, as well as at concentrations similar (23 μg L-1) (King and Riddle, 

2001) to the WAF of ULO (prepared at the high concentration) of this study (60 μg L-1). 

Due to the greater tolerance of adults and EC50 generally being orders of magnitude 

greater than those in the current study, it is unlikely that zinc was the primary driver of 

the responses recorded here. 

Evidence of physical and behavioural pathology was documented in the high ULO 

WAF treatment groups, i.e. blistering on sea cucumbers that was particularly prevalent 

during the depuration period. Furthermore, differences in tentacle deployment behaviour 

were observed between control and exposed sea cucumbers. The feeding response was 

strictly observed in control individuals, suggesting its absence can be an indication of 

stress induced by exposure to oil. While full tentacle deployment was observed to differ 

between treatment groups, the dominance of this trait switched between trials 2 and 3, 

indicating it may not be a reliable response. Induction of the mixed function oxidase 

system (MFO), of which CYP450 1A is a part, is considered a primary response to a 

pollutant and therefore is expected to occur prior to more serious pathologies (Payne et 

al., 1987). Additionally, induction of the MFO system at colder temperatures may require 

a longer period of time due to decreased uptake and distribution of the pollutant (Payne et 

al., 1987). Since, physical pathologies were documented, it is believed that both the 

exposure period and experimental temperature were adequate to allow for induction of the 
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MFO system, if it were to occur. However, evidence of induction was not expressed in 

the EROD activity measured in the present study.  

2.5.3 Drivers of Enzyme Responses to ULO Exposure 

Intra-specifically, responses to ULO WAF exposure measured here were affected 

by the sex of the individual, season of measurement, and varied across tissue types. For 

instance, in sea stars stomachs, exposure to the high concentration ULO WAF elicited 

sex-differences in GPx activity, whereby females displayed significantly less activity than 

males. The fact that such a difference did not occur in the baseline study suggests a 

complex response to ULO exposure related to energy metabolism and gonad 

development. Similarly, the gonads of male sea urchins exposed to ULO WAF displayed 

seasonal variations in EROD activity that were not present in baseline (natural) levels. In 

particular, EROD activity was suppressed in testes following exposure to ULO WAF in 

comparison to baseline levels. This response is the opposite of what was expected since 

induction has previously been observed in fish in response to petroleum pollution (Aas et 

al., 2000; Gagnon and Holdway, 2000; Upshall et al., 1993). These responses suggest that 

reproductive status may mediate how enzymes respond to stressors. Again, these 

variations may reflect a disparity in energy reserves among tissues and between sexes.  

2.5.4 Applicability of Examined Biomarkers 

When determining the effect of a pollutant it is preferential to use ideal 

biomarkers, which can provide both high sensitivity and specificity (Livingstone, 1993). 

Biomarkers with high sensitivity will respond at very low thresholds while those with 

high specificity will only respond when the correct inducer is present. In the present 
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study, sensitivity to ULO WAF varied markedly across tissues and species. GPx activity 

measured in sea star gonads and stomachs emerges as a particularly promising tool for 

detecting low levels of water soluble hydrocarbons in cold-water environments.  

Over the course of the present study, GPx activity was found to occur in all tissues 

tested, which is a very positive attribute, since widespread activity increases applicability. 

Secondly, the lack of seasonal variation is very promising, indicating that the sampling 

period is not likely to affect the detection of the factor of interest (e.g. oil pollution). 

Notably, the response of GPx to the ULO WAF in the gonads and stomachs of sea stars 

was sex-specific; i.e. levels in exposed females were significantly lower than in males, 

which was not the case for baseline activity. While the sex-differences in a response are 

not necessarily optimal, they can easily be accounted for during field sampling or 

laboratory experiments. These attributes indicate that GPx activity in sea stars could be 

used in the measurement of oil exposure. However, further research is needed to 

determine induction rate and persistence of activity.  

The suitability of EROD as a biomarker of hydrocarbon pollution in cold-water 

organisms was much less conclusive. Seasonal variation in the baseline of EROD activity 

in sea urchin gonads and brittle star gonads was evidenced, which is not a desirable 

feature in a biomarker, since it introduces variation that may obscure the detection of the 

focal effect, i.e. pollutant exposure. This drawback can only be overcome if the sources of 

variations have been identified, are understood, and can be accounted for (Nahrgang et 

al., 2013). Lastly, the suppression of EROD activity in exposed testes is the opposite of 

what would be expected. While the sex-differences in a response are not necessarily 

optimal, they can easily be accounted for during field sampling or laboratory experiments.  
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2.6 Conclusion 

 While it would ideally be possible to choose the conditions under which 

organisms are exposed to petroleum products, so as to elucidate its effects, the reality is 

that conditions under which contact occurs can be highly variable and unpredictable. 

Therefore, prior to an incident (e.g. oil spill, ship sinking, marine accident) for which 

biomarkers could be used, it is vital to understand all of the factors that govern the 

activity of focal biomarkers. 

The current study outlined the importance of different sources of variation 

affecting baseline measurements of GPx and EROD biomarker activity in cold-water 

benthic organisms. In particular, interspecific differences combined with the influence of 

sex, tissue, and season of measurement were highlighted. Importantly, it confirmed that 

variability can exist within a single phylum (Echinodermata). It also determined that of 

the two biomarkers tested, GPx appeared to be the best suited based on its lack of 

seasonal variability and response to the presence of ULO WAF, particularly for the sea 

stars tested here.  
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 Petroleum pollution has led to unprecedented levels of hydrocarbons being 

released into marine environments. While legislation exists to minimize the extent of 

petroleum release (Farrington, 2013), it still occurs in massive volumes worldwide 

(Chukwu and Odunzeh, 2006; Ssempebwa and Carpenter, 2009). Visually dramatic (point 

source) oil spills are often highly publicized; for example, the 2010 Deepwater Horizon 

oil spill in the Gulf of Mexico and the 1987 spill of the Exxon Valdez off the coast of 

Alaska. Long-term low-volume releases are comparatively understudied and their effects 

still remain poorly known (Martínez-Gómez et al., 2010b). Marine pollution through 

extraction, transportation, and consumption annually releases an estimated 739 million 

litres of petroleum products into the world’s oceans (NRC, 2003), highlighting a need for 

the identification of biomonitors to detect its effects. As shown in the present study, 

echinoderms might serve a role in detection of petroleum exposure, due to their global 

distribution, occupation of ecological niches that are essential for marine ecosystems, and 

their benthic and sedentary lifestyle (Lawrence, 2001; Mah and Blake, 2012; Ruppert et 

al., 2004). 

 Chapter 2 investigated the response of two biomarkers, glutathione peroxidase 

(GPx) and ethoxyresorufin-O-deethylase (EROD), in the reproductive and digestive 

tissues of four species of echinoderms (A. rubens, C. frondosa, S. droebachiensis, and O. 

aculeata). Activity of the biomarkers were recorded over a series of seasons in control 

and exposed individuals. The exposure treatment involved the water accommodated 

fraction (WAF) of used lubricating oil (ULO). The GPx assay was used to measure 

antioxidant activity within the tissues (Ceballos-Picot et al., 1992; Forstrom et al., 1978; 
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Paglia and Valentine, 1967), while cytochrome P450 1A levels were measured within 

tissues using the EROD assay (Pohl and Fouts, 1980).  

GPx activity was found to be prevalent in the majority of species and tissues, 

while EROD activity was only expressed in a limited number of tissues and/or species. 

No natural variations in the activity of GPx were recorded, suggesting a lesser 

contribution of seasonal or biotic factors on its activity. On the other hand, natural 

variations in the baseline activity of EROD due to season and sex were measured. With 

respect to the group exposed to high concentrations of ULO WAF, responses were found 

to be dependent not only on sex, but season as well. Male sea stars displayed higher GPx 

activity than females after exposure, which was not found in the baseline study. 

Additionally, suppression of EROD activity was recorded within the exposed testes of sea 

urchins. In reference to the two primary sources of variations, the influence of sex can 

easily be accounted for at the time of sampling, whereas the seasonal variation highlights 

the need to measure biomarker activity during multiple times of the year. 

 Of the two biomarkers tested, GPx was found to have the most promising 

characteristics. (1) It was widely expressed in all species and the majority of tissues. (2) It 

did not exhibit seasonal variation in the baseline and the sex-based response to the 

pollutant could easily be controlled for at the time of sampling. Of the focal species, 

carnivorous sea stars emerged as the best candidates for monitoring cold-water 

environments, based on high baseline levels of enzyme markers (particularly GPx) and 

response to oil exposure. 
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3.1 Future Directions 

 The findings presented here indicate that future studies of biomarker activity 

should ideally consider biotic (age, sex, reproductive status) and abiotic 

(temperature and trophic activity) factors that have previously been observed to 

influence biomarker activity. 

 Based on the variability shown here around the reproductive activity between 

January and May, year-round monitoring of natural variations in biomarker 

activity could be extremely useful. Biotic and abiotic factors may interact in novel 

ways that may fluctuate over the year based on processes other than reproduction 

(e.g. cycles of feeding, growth, and prey-predator interactions). Since oil pollution 

can occur at any time without warning it is essential that we understand how 

baseline biomarker activity can vary over biologically relevant cycles. 

 Additional CYP450 assays, such as ethoxycoumarin-O-deethylase (ECOD) and 

benzyloxyresorufin-O-dealkylase (BROD) assays could be tested. These assays 

use different substrates than the EROD assay used in the present study while still 

requiring the action of CYP450 enzymes. The level of detected CYP450 activity 

within the different species could differ based on the substrate.   

 Now that candidate species and tissues have been identified as potential cold-

water bioindicators, the choice of biomarkers may be refined. Functional 

genomics tools and techniques (e.g. RNAseq, qPCR) could be used to identify and 

validate ULO-responsive transcripts (mRNAs) that could serve as molecular 

biomarkers and shed light on the mode of action. This would allow for the 
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detection of effects at the earliest stages of induction, instead of relying on the 

enzymes activity after it has been present in the cell for an unknown period of 

time. Similarly, testing for the formation of DNA adducts caused by the 

metabolites of some exogenous compounds would be useful. 

 Based on the results of this study, additional species to be tested should 

concentrate on asteroids (sea stars) and echinoids (sea urchins). Particularly 

species with wide global distributions, including the Arctic.  

 Other pathways of contamination, apart from water soluble oil fraction, could be 

explored. PAHs with higher ring numbers can attach to particles in the water 

column and eventually settle to the bottom (Lee and Page, 1997; Meador et al., 

1995). Therefore, they can take a very long time to degrade; anywhere from days 

to years (Meador et al., 1995). The presence of these contaminated particles in the 

sediment could have a longer lasting influence on the environment than transient 

soluble pollution. The benthic and sedentary nature of echinoderms makes them 

well suited to studying this type of sediment-based pollution. Therefore, the use of 

both field-collected and laboratory-prepared contaminated sediment is proposed. 

Ideally, sediment and pollutant should reproduce past and present sources of 

sediment-based pollution. 
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Table A1: Analysis of tank effects within treatment groups with respect to GPx activity. Symbols indicate which statistical test 

was performed depending on meeting test assumptions. (#) One-way ANOVA, (*) Welch’s ANOVA, (^) Kruskal-Wallis 

ANOVA on Ranks. 

 

Species Tissue Season and Treatment F or H df p 

Sea Star Pyloric Caeca Spawning Control * 0.26 3, 2.16 0.851 

 Spawning Exposed * 1.78 3, 2.07 0.374 

 Post-Spawning Control * 3.62 3, 2.14 0.212 

  Post-Spawning Depurated Control ^ 0.32 3 0.956 

  Post-Spawning Exposed * 0.49 3, 2.16 0.722 

  Post-Spawning Depurated * 0.43 3, 1.94 0.754 

Sea Star Stomachs Spawning Control * 17.83 3, 1.98 0.055 

  Spawning Exposed * 2.90 3, 1.95 0.271 

  Post-Spawning Control ^ 0.21 3 0.975 

  Post-Spawning Depurated Control * 0.75 3, 2.01 0.615 

  Post-Spawning Exposed * 0.65 3, 2.10 0.651 

  Post-Spawning Depurated # 0.05 3, 4 0.985 

Sea Star Gonads Spawning Control * 0.20 3, 2.11 0.891 

  Spawning Exposed * 3.95 3, 1.67 0.242 

  Post-Spawning Control ^ 0.86 3 0.836 

  Post-Spawning Depurated Control ^ 2.89 3 0.408 

  Post-Spawning Exposed * 1.03 3, 1.99 0.528 

  Post-Spawning Depurated * 2.08 3, 1.69 0.369 

Sea Cucumber Intestines Pre-spawning Control * 0.88 3, 1.69 0.586 

 Pre-spawning Exposed * 3.82 3, 1.74 0.240 

  Spawning Control ^ 5.04 3 0.169 

  Spawning Exposed * 1.41 3, 2.14 0.432 

  Post-Spawning Control * 2.51 3, 1.89 0.307 

  Post-Spawning Depurated Control * 0.37 3, 1.67 0.788 

  Post-Spawning Exposed * 0.77 3, 2.00 0.608 
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  Post-Spawning Depurated * 3.76 3, 1.74 0.243 

Sea Cucumber Gonads Pre-spawning Control ^ 1.33 3 0.721 

 Pre-spawning Exposed * 0.20 3, 2.04 0.886 

  Spawning Control * 0.51 3, 1.76 0.720 

  Spawning Exposed * 1.92 3, 2.07 0.355 

  Post-Spawning Control * 5.87 3, 2.01 0.148 

  Post-Spawning Depurated Control * 2.65 3, 1.67 0.318 

  Post-Spawning Exposed * 0.35 3, 1.89 0.799 

  Post-Spawning Depurated * 0.56 3, 2.02 0.691 

Sea Urchin Gonads Pre-spawning Control * 0.69 3, 2.06 0.637 

  Pre-spawning Exposed ^ 5.16 3 0.161 

  Spawning Control * 0.25 3, 1.68 0.856 

  Spawning Exposed * 0.45 3, 1.73 0.750 

  Post-Spawning Control * 0.69 3, 1.70 0.648 

  Post-Spawning Depurated Control * 0.35 3, 2.04 0.799 

  Post-Spawning Exposed * 0.60 3, 1.97 0.673 

  Post-Spawning Depurated * 0.297 3, 2.02 0.829 

Brittle Star Gonads Spawning Control * 1.15 2, 1.14 0.504 

  Spawning Exposed * 0.18 3, 1.97 0.901 

  Post-Spawning Control * 0.32 3, 1.92 0.818 

  Post-Spawning Depurated Control * 0.90 3, 2.13 0.558 

  Post-Spawning Exposed * 2.93 3, 1.67 0.297 

  Post-Spawning Depurated * 0.63 3, 1.68 0.672 
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Table A2: Analysis of tank effects within treatment groups on EROD activity. Symbols indicate which statistical test was 

performed depending on meeting test assumptions. (#) One-way ANOVA, (*) Welch’s ANOVA, (^) Kruskal-Wallis ANOVA on 

Ranks. Post-hoc analysis was performed using a Games-Howell test. 

 

Species Tissue Season and Treatment F or H df p 

Sea Urchin Gonads Pre-spawning Control ^ 3.12 3 0.374 

  Pre-spawning Exposed ^ 5.08 3 0.166 

  Spawning Control * 0.42 3, 2.04 0.762 

  Spawning Exposed ^ 5.91 3 0.418 

  Post-Spawning Control ^ 4.22 3 0.239 

  Post-Spawning Depurated Control * 22.65 3, 1.92 0.047 

  Tank 9 =11   0.995 

  Tank 9 = 13   0.130 

  Tank 9 = 15   0.876 

  Tank 11 = 13   0.067 

  Tank 11 = 15   0.850 

  Tank 13 = 15   0.816 

  Post-Spawning Exposed # 0.28 2, 4 0.839 

  Post-Spawning Depurated ^ 2.36 3 0.502 

Brittle Star Gonads Spawning Control ^ 1.76 3 0.623 

  Spawning Exposed ^ 1.53 3 0.675 

  Post-Spawning Control ^ 0.00 3 1.000 

  Post-Spawning Depurated Control ^ 0.00 3 1.000 

  Post-Spawning Exposed ^ 0.00 3 1.000 

  Post-Spawning Depurated ^ 3.00 3 0.392 
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Sea Star Pyloric Caeca Spawning Control * 0.67 3, 1.73 0.653 

  Spawning Exposed ^ 3.07 3 0.380 

  Post-Spawning Control ^ 0.00 3 1.000 

  Post-Spawning Depurated Control ^ 2.36 3 0.502 

  Post-Spawning Exposed ^ 5.91 3 0.116 

  Post-Spawning Depurated ^ 0.00 3 1.000 
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Table A3: Statistical analyses of GPx and EROD activity across species (combined tissues). Results of a Tukey’s test after an 

ANOVA are given with ordering based on significance. Significant results are shown in bold. 

 

Assay Species Compared p 

GPx   

 Sea Star > Sea Cucumber <0.001 

Sea Star > Brittle Star <0.001 

Sea Star > Sea Urchin <0.001 

Sea Urchin = Sea Cucumber 0.49 

Sea Urchin = Brittle Star 0.72 

Brittle Star = Sea Cucumber 1.00 

EROD   

 Sea Urchin > Sea Star <0.001 

 Sea Urchin > Brittle Star <0.001 

 Brittle Star = Sea Star 0.46 

 Sea Cucumber N.A. 

N.A. – Not applicable   

 

 


