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ABSTRACT 

Technological advances and changing climatic conditions provide commercial 

opportunities and some unique challenges for the Arctic region this century. Emerging 

trans-Arctic shipping routes in the Northwest Passage are a direct consequence of 

progressively receding sea ice in the Canadian Arctic archipelagic waters. This study 

conceptualized and developed a Computer-aided Arctic Route Optimization Model 

(CAROM) in the framework of a Geographical Information System (GIS) for ship voyage 

planning and tactical ice navigation. The model optimizes shipping routes in ice based on 

the charted depth of water, appropriate structural strengthening (Ice Class notation), and 

predicted and observed sea-ice conditions, with the latest available navigational and ice 

data in digital format. An incorporated ship transit-model provides speed-in-ice input to 

the route model essential to estimating the transit time critical for vessel scheduling and 

fuel cost estimation. The CAROM is operational, tactical in nature, and intended to act as 

a decision-making tool for the ice navigator. The presence of diminishing sea ice is an 

existential threat to surface navigation in the ecologically sensitive Arctic region, and 

ship-sourced oil pollution is a threat to Arctic marine ecology. Access to reliable satellite 

communication in the Arctic, the adoption of the Polar Code and the proposed e-

Navigation framework of the IMO has opened new doors to implement and operationalize 

tactical navigation tools that may help in decision-making and risk mitigation in ice 

navigation. A seamless integration of the route optimization tool in the e-Navigation 

architecture is the desired objective that evolving technology may be able to achieve in 
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future for the Mariners onboard. This research underscores the current limitations on the 

spatial resolution of ice data, electronic navigation chart coverage, and hydrographic 

surveys in the Canadian Arctic, to mention but a few. The transit time in ice predicted by 

the CAROM provides a comparative cost-benefit evaluation between a trans-Arctic route 

and the Panama Canal route for container ships of two different sizes trading between 

Rotterdam and Tokyo. The last few years have witnessed the arrival of mega container 

ships (Neo-Panamax type) primarily driven by economy of scale considerations, global 

trade dynamics, and expansion of the Panama Canal locks to accommodate such ships. 

The Cost Benefit Analysis reveals some interesting aspects of the container shipping 

business via the Northwest Passage and the difference a large container vessel of the Neo-

Panamax type may result in assessing the overall cost comparison.  
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Chapter 1: Introduction 

1.1 Rationale for Research 

The Arctic region braces itself for increased commercial activities this century as the 

progressive reduction in sea ice extent and thickness continues opening shipping lanes. A 

significant increase in maritime traffic evidenced in some parts of the Arctic, particularly 

the Northern Sea Route (Russian Arctic); projected to spread to the Canadian Arctic by 

the middle of this century (Smith and Stephenson, 2013). An interesting trend is also 

observed with increased trans-Arctic shipping traffic that uses the Arctic Ocean shipping 

lanes as a transit route between the Atlantic and Pacific Ocean (NSR-IO, 2016). Trans-

Arctic or transit shipping via the Canadian Arctic is the focus of this study because the 

trans-Arctic routes are shorter (37%-40%) than the existing Panama Canal transits and 

may result in a faster turnaround of goods between the production economies of Asia and 

the consuming centers of North America and Europe. This study investigates shipping 

routes in the Canadian Arctic by proposing a route optimization model that is utilized to 

evaluate the said routes from a navigational and economic viability perspective. 

The sea ice retreat evidenced in all parts of the Arctic and the likely consequences of 

emerging trans-Arctic shipping routes demands an in-depth study to establish if the 

Northwest Passage (NWP) is indeed an economically viable alternative to attract 

commercial shipping traffic from the popular southerly routes such as the Panama Canal. 

Under what conditions, it may be viable considering the limited summer navigation 

season even for ice class vessels; considering the costs involved and lack of credible 
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infrastructure in the region. Maritime transport is a service industry, works on derived 

demand (Stopford, 1997) in a globalized and competitive world but is also risk averse and 

rooted in tradition. The risk that ice-infested waters pose to shipping traffic will exist 

even though sea-ice is thinning and receding in the Arctic (Pachauri & Meyer, 2015) as 

evidence suggests that ship damages occur in low to moderate concentrations of ice due 

to excessive ship speed and poor or inadequate judgement ( (Enfotec Technical Services 

Inc., 1996) in relatively open waters. A collision with a single floe berg can lead to 

substantive pollution in the ecologically fragile Arctic region. Shipping companies may 

prefer to use the NWP route with ice navigation made safer through computer-aided 

voyage planning resulting in reduced risk, better scheduling and economic viability 

compared to the sub-Arctic route via Panama Canal. Ship-shore satellite connectivity 

ensures information transmission and sharing with the end user (the ship) almost 

instantly. There is an abject need for such solutions as shipping in the Northwest Passage 

increases and the perceived risk mitigated despite challenges in high latitude navigation 

and shortcomings in charting, hydrographical surveying among many others (Govt. of 

Canada-A, 2016). An optimized maritime routeing solution in ice may help in assessing 

the economic viability of the entire trans-Arctic route connecting ports in NE Asia and 

NW Europe; this study has set out to investigate. Commercial developments in the Arctic 

will require ships to move cargo and a pro-active risk mitigation tool as the one being 

discussed will enhance safety of shipping and reduce chances of pollution in the pristine 

region. 
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1.2 Research Objective 

The Arctic leg (NWP) of a future trans-Arctic shipping route requires an optimized 

maritime routeing solution that may provide the much desired ‘least cost’ path for 

commercial ships to navigate the area with due dispatch. An optimized route for the 

purpose of this research is the most temporally expedient maritime route selected from a 

set of alternative routes in the NWP.  It seeks the path of least resistance with sea-ice as 

impedance for ships appropriately classed and having a safe under keel clearance. 

Minimal ice interaction ensures better speed and lesser contact damage thereby reducing 

maintenance costs for ships in the long term and thus reduces cost of operation. 

Optimized routes also ensure better ship scheduling in sea-ice and enable ships to plan 

and execute the entire trans-Arctic voyage with greater certainty. Meaningful voyage 

planning in ice-infested waters can occur with a digital route optimization tool devised to 

predict the waypoints (geographical coordinates) a vessel must take with minimal sea-ice 

interaction during the passage. A simultaneous speed determination mechanism through 

the ice regimes will give a time of transit that the shipping companies require for ship 

scheduling and route planning between ports.  

Ice avoidance serves a multitude of purposes including reduced ship maintenance costs, 

better speed, and overall safety of navigation that may reduce insurance premium and 

ship capital costs. This study embarked upon the proposed maritime route model using an 

appropriate GIS computer system focussing on a path of least resistance through sea-ice. 

GIS has served as a highly useful tool in providing solutions to road and rail transport 

networking problems in the last few decades and this study proposes to apply those 
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concepts in the maritime domain. The route optimization model so conceived should give 

a good estimate of the transit time in the ice-bound segment that constitutes a critical 

element in predicting the economic viability of the entire trans-Arctic passage between 

Tokyo and Rotterdam for containerized shipping when compared with the Panama Canal 

transit between the two ports. The ‘Required Freight Rate’ per TEU1 should be able to 

provide a sound basis for decision-making to a ship operator whether to take the Arctic 

route and under what conditions should it be economically viable with an appropriate ice 

class vessel and an assumed four-month summer navigation season. A solution to the 

problem of route optimization in ice seems to envelop different disciplines of study. It is 

imperative to scour the available literature and find out similar studies that may have been 

conducted in past as proposed in the research overview (section 1.5). 

 

The objective is to investigate the economic viability of trans-Arctic shipping routes via 

the NWP by developing a GIS-based route optimization methodology and computer 

system that: 

a) Enables voyage planning and operational readiness in the NWP before the ship 

enters the ice edge. 

b) Improves transit economics in ice by predicting the “least cost”2 route based on 

safety and economic constraints, strategically useful to the ship. 

                                                 
1 TEU: Twenty foot equivalent units  
2 Least Cost Route: Safest maritime route of least resistance chosen to ensure minimum ice interaction. 
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c) Allows re-routing based on changing ice conditions during the transit through 

NWP and acts as an operational decision-making tool. 

d) Contribute to the economic analysis of transit shipping routes in the Arctic. 

1.3 Research Questions 

The following research questions are proposed in this study to achieve the stated 

objectives: 

1. The Geographic Information System (GIS) most suitable to provide a workable 

maritime route analysis model. 

2. Is the currently available ice and navigational data sufficient to devise a workable 

model in the identified GIS suite? 

3. Is it possible to predict the ship speed in ice with an appropriate Ship Transit-in–

ice Model for the NWP? 

4. Can the proposed Route Optimization Model provide the “least cost” routing for a 

ship transiting the NWP? 

5. Can this model be practically useful onboard? If so, how can a mariner benefit 

from the same? 

6. How does the comparative economic analysis help a liner shipping3 company in 

vessel deployment through the Northwest Passage? 

                                                 
3 Liner Shipping: Containerized shipping 
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1.4 Research Methodology 

The proposed research methodology is first to review the current state of the art in GI4 

systems and the data availability in the public domain from relevant sources to support 

the development of a routeing model for the Northwest Passage. The next step is to 

develop a GIS-based Arctic Shipping Routeing Model, using currently available tools, 

data, and information for specific routes identified and plotted on paper charts and ENCs 

of the NWP. The model will consider both transit safety and speed optimization based on 

hydrography and ice conditions. This model will then be tested for technical viability 

based on comparison with independent (non-assisted) ship transits to determine if the 

predictions of the routeing model are consistent with actual ship voyage. The final step is 

to implement the optimized route in sea-ice to develop a more detailed economic analysis 

of trans-Arctic ship transits in comparison with popular Pacific-Atlantic shipping routes 

through the Panama Canal.  A successful outcome of this research will demonstrate that a 

successful Route Optimization Model may provide an operational method of digital 

voyage planning in sea-ice. The accuracy of transit time predicted by the Model, will 

offer more realistic economic comparisons with the sub- Arctic routes such as the Panama 

Canal for ships engaged on inter-continental trade routes. 

 

1.5 Research Overview 

This section outlines (Figure 1) a complete overview of the intended research project. The 

study proposes three separate models to achieve the stated objectives namely: 

                                                 
4 GI: Geographic Information 
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1. Computer-aided Route Optimization Model to predict routes in the NWP 

2. Ship Transit-in-ice Model: Predict the average speed in ice. 

3.  Economic Route Model: Cost-Benefit Analysis- Comparative study of the trans-

Arctic route between Tokyo and Rotterdam with the Panama Canal route for 

containerized shipping. 

 

 

 

Figure 1: Schematic Overview: Proposed Research 
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Source: Author 

 

The flowchart as presented encapsulates a snapshot of the proposed research. 

 

1.6 Dissertation Outline 

 

Figure 2: Illustration-Dissertation Outline 

Source: Author 

 

The following chapters describe the dissertation in brief: 

Chapter-1

•INTRODUCTION

Chapter-2

•LITERATURE REVIEW

Chapter-3

•RESEARCH 
METHODOLOGY

Chapter-4

ANALYSIS AND RESULTS

Chapter-5

ECONOMICS-NWP 
ROUTES

Chapter-6

CONCLUSIONS

REFERENCES APPENDICES
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Chapter1: An introductory chapter that puts into perspective the rationale for the proposed 

research, its objectives, and the research questions formulated. The research overview 

presents a clear strategy on the way forward to achieve the research objectives. 

An outline of the research methodology is presented to achieve the following: 

a. Conduct voyage planning in ice and predict the transit time in ice. 

b.  Conduct a comparative economic analysis of a trans-Arctic route (via NWP) 

between two named ports (Tokyo and Rotterdam) with adequately designed (PC-

4) hypothetical container ships (two different sizes) and their non-ice class 

counterparts via the Panama Canal. 

 

Chapter 2: A comprehensive literature review of the three components to the research 

envisaged to understand the following: 

a. The appropriate GIS methodology adopted for a Computer-aided Maritime Route 

Model for the Northwest Passage. 

b.  A Ship Transit in-ice Model required incorporating ice data and requisite ship 

parameters. 

c. Cost Benefit Analysis (CBA) for trans-Arctic container shipping when compared 

to shipping through the Panama Canal for two ship classes (PC-4, OW) and two 

different ship sizes. 
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The chapter also delves into decision making aspect of GIS by considering literature on 

Multi-criteria Decision Analysis and rule based expert knowledge employed in creating a 

‘Safe Navigation Zone’. 

Chapter 3: The methodology adopted to construct and execute the proposed models is 

based on the previous chapter and includes the existing data resource available publicly to 

implement working models that may be useful in decision making for ships, shipping 

companies, and other stakeholders. Assumptions made in arriving at the ‘Safe Navigation 

Zone’ (SNZ) through Multi-criteria Decision Analysis (MCDA) are to be included in this 

chapter. 

Chapter 4: This chapter contains a comprehensive discussion and analysis of the results 

based on the optimized route model and Ship Transit-in-ice model outputs. The Route 

Optimization Model is subjected to validation and verification process with the help of 

two case studies for June and September transit months; a simulation study conducted to 

test all the three transit routes under various conditions of ice impedance. A validation of 

the NWP route model by reconstructing and comparing the actual route taken by MV 

‘Nunavik’ in September 2014 is also carried out. This chapter will give us the results of 

the validation and verification process, prove if the models as conceptualized are indeed 

workable, and justify the research questions as proposed. 

Chapter 5: This chapter will discuss the results of the Cost-Benefit comparison of a trans-

Arctic shipping route and Panama Canal route between the two ports as proposed. The 

Economic Cost Model depends on the outputs from the Route Optimization model for an 
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accurate cost comparison of the two shipping routes. The Economic Cost Model assesses 

the economic viability of the NWP route that may be useful  to a shipping company 

whether it prefers the Arctic route over the normal  Panama Canal route during the Arctic 

summer navigation season. 

Chapter 6: The chapter summarizes the entire study and reflect upon the success or failure 

of the proposed concepts. It is pertinent to discuss the limitations and challenges 

encountered in the development and execution of the three models that may result in 

further research leading to better modelling in the future. Computer-aided voyage 

planning can only have a bright future going forward as this chapter delves in future 

research applications of this project in the light of IMO’s ongoing e-Navigation Strategic 

Implementation Plan. 
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Chapter 2 Literature Review 

2.1 Introduction 

This research encapsulates an interdisciplinary investigation that integrates topics from 

nautical science to maritime economics with ice engineering and GIS to provide the 

requisite support. The literature review thus covers a range of subjects but seeks state of 

the art in each area on the practical level to address the overall research questions. 

2.2  Geographic Information Systems 

A Geographic Information System is an organized collection of computer hardware, 

software, people, data, and procedures (Burrough et al., 1998). Over the past four 

decades, considerable progress has been made in developing tools that are designed to 

capture efficiently, store, query, analyze, and display all forms of geographically 

referenced data (Goodchild, 2009). The arrival of the internet in the 1990’s has made it 

possible to share spatial data with multiple users in remote locations including transport 

vehicles on road and rail. Existing technologies for capturing such information include 

Global Positioning Systems (GPS) to determine positions on land, air, and sea; image 

acquisition through remote sensing techniques including satellites, aircraft and drones and 

the GIS architecture to assimilate all the above spatial data for analysis purposes. What 

sets GIS apart from other database management systems (DBMS) are the geo-

visualization capability and the inherent functional complexity of such regimes. The 

analytical capacities of the GIS make it much more than an automated cartographic 

application system while the DBMS features are incorporated to manage the spatial and 
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topological relationships between georeferenced entities (Goodchild, 2009).Visualization 

or mapping is only a small part of what makes GI systems different, it includes the 

analysis of geographically referenced data, the ability to integrate geo-spatial data from 

many different sources including dynamic spatial modelling that could be very useful in 

devising future maritime Network Models. 

Although, the transportation world was late in embracing GIS (Thill, 2000); 

transportation research has become increasingly interdisciplinary in the last thirty years 

reflecting the multi-faceted dimension of transportation infrastructure and cargo flows. 

GIS is computer –based and integrates multiple functionalities in one rather seamless 

environment that leads to efficiency benefits for the end user, a convincing case for 

organizations to adopt GI systems. Three kinds of GIS models are relevant in the 

transportation context (Goodchild, 1998) namely, Field Models, Discrete Models, and 

Network Models. The last named is pertinent to this area of study. Network Models 

represent topologically connected linear entities such as road and rail networks built 

around the concept of arcs and nodes on a continuous georeferenced surface. This study 

defines a topology for a maritime network and applies the GIS-Network Model concepts 

to conduct route optimization in the NWP. GIS software like many other software 

products comes in two different packages- Commercial Software and Open Source 

platforms. The popular commercial offerings that the study reviewed include ESRI’s5 

ArcGIS, GEOMEDIA and MAPINFO besides the Open Source software packages 

namely: MAP WINDOW, QGIS, qVSIG and OPEN JUMP (Selamat et al., 2012). Almost 

                                                 
5 ESRI: Environmental Systems Research Institute, Redlands, California 
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all the systems provide a desktop application as well as an online environment for 

cartography and spatial analysis. The proposed maritime route network analysis in GIS 

will use an electronic map layer (base layer) of the area under reference and information 

about sea ice of the area in a digital format compatible with an appropriate software suite.  

2.2.1 Digital Ice Charts-Arctic 

The Global Digital Sea Ice Data Bank (GDSIDB) provides digital ice charts of the Arctic 

and Antarctic in an archive format compatible with WMO standards (IICWG, 2013). The 

international ice centres most actively involved in providing information to the global ice 

data bank are the AARI, CIS, DMI, and NIC through the International Ice Chart Working 

Group (IICWG). The ice centres developed a vector format for archiving digital ice charts 

(SIGRID6) in 1981 as adopted by the WMO in 1989. The SIGRID-2 format adopted by 

the WMO in 1994 is a Raster data format that stores ice information on grids. The vector 

format (SIGRID-37) as passed in 2004, preserves all information in the original chart; 

charts can be re-projected without loss of information and easily converted to the Raster 

format if necessary. The ice centres prefer the SIGRID-3 format because many of the 

current production systems employ commercial GIS software. There are standard tools in 

many other GIS software platforms that can convert or directly use ‘Shapefiles’. For 

example, QGIS can use ‘Shapefiles’ and so can open source GIS software such as IDRISI 

and MAPINFO. ‘Shapefiles’ produced without commercial GIS software will require the 

                                                 
6 SIGRID: Sea Ice Grid format developed (1980) to incorporate paper charts to digital format. 
7 SIGRID-3: A vector archive format for sea ice charts as adopted by CIS. 
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development of custom software (JCOMM, 2004) hence commercial GIS software is a 

convenient choice. 

2.2.2 Digital Nautical Charts:  Canadian Arctic Waters 

Electronic maps of the Arctic waters are available in the form of Digital Nautical Charts 

(DNC) published by various national hydrography organizations. The Canadian 

Hydrographic Service (CHS) publishes nautical paper charts as well as digital nautical 

charts of the Canadian Arctic, relevant to this study. The CHS publishes digital nautical 

charts in two formats: Vector format (ENC) and Raster format (RNC). The ENCs are GIS 

compatible (Fisheries and Oceans Canada-A, 2016) and can be used as a base layer for 

spatial analysis. 

2.3 Projections: Decrease in Arctic Sea Ice 

The projected decrease in Arctic sea ice extent and the likelihood of a rise in maritime 

traffic leading to a shorter transit route through the Arctic Ocean provided the initial 

impetus for this research. Hence, it is pertinent to examine the literature that provides 

credence to the above assertion. The IPCC8 contends that the annual mean Arctic sea-ice 

extent decreased over the period 1979 to 2012, with a rate in the range 3.5 % to 4.1% per 

decade (Pachauri & Meyer, 2015). The IPCC report also concluded that Arctic sea-ice 

extent has decreased in every season and in every successive decade since 1979 

(Maslanik et al., 2007; Comiso, Parkinson, Gersten and Stock, 2008; Kwok et al., 2009; 

Stroeve et al., 2012) with the most rapid decrease in decadal mean extent in summer (high 

                                                 
8 IPCC: Intergovernmental Panel on Climate Change 
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confidence)9. Anthropogenic influences is understood to be the likely cause of Arctic sea-

ice diminishing since 1979 and may also have contributed to an increase in the global 

mean sea level rise and the global upper ocean heat content observed since the 1970s 

(Kay, Holland and Jahn, 2011; Day, Hargreaves, Annan and Abe-Ouchi, 2012). Smith 

and Stephenson (2013) demonstrated increased access to vessels including non-ice class 

ships (OW) for all Representative Concentration Pathway (RCP) scenarios (Appendix 1) 

this century including the NWP. The RCP’s are four greenhouse gas concentration 

trajectories adopted by the IPCC in its Fifth Assessment Report (Pachauri & Meyer, 

2015) used for climate modelling and research. The IPCC describes four possible climate 

futures for the earth depending on how much greenhouse gases are emitted in years to 

come this century. The four RCPs, RCP2.6, RCP4.5, RCP6, RCP8.5 (Appendix 1) 

essentially describe mitigation scenarios related to climate change. RCP2.6 represents the 

most stringent mitigation scenario followed by two intermediate scenarios (RCP4.5, 

RCP6) and one scenario with a high GHG emission in RCP8.5. The last named equates to 

the maximum projected loss of sea-ice in the Arctic and predicts a longer navigation 

season for ships of all types in the NWP as discussed in Chapter 5.2.1. 

GCM simulation studies provide enough scientific evidence on the spatial extent of sea-

ice receding across the Arctic region, though some studies may differ on the pace of 

temporal changes (Wang and Overland 2012; Vavrus, Holland, Jahn, Bailey and Blazey, 

2012) in various parts of the Arctic this century. In fact, one of the main consequences of 

climate change for maritime commerce in the Arctic region is contained in a key finding 

                                                 
9 High confidence:8 out of 10 chance 
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of the Arctic Climate Impact Assessment which states- “Reduced sea ice is very likely to 

increase maritime transport and access to resources in the Arctic” (ACIA, 2004, #6, 

pp.11). 

2.4 Sea Ice Data Collection and Ice Charts 

Remote sensing is one of the best methods of capturing the sea ice extent and thickness 

currently available (Johannessen, Alexandrov and Frolov, 2007) from space and air using 

satellites and reconnaissance aircraft respectively. The presence of sea-ice is the largest 

single differentiator for ship navigation in the Arctic Ocean compared to any other ocean 

and hence the most important hydrometeorological factor which, needs to be determined 

with precision. Besides imposing a physical barrier, the ice also keeps moving and 

undergoes deformation (shape and size) due to changes in other environmental variables 

such as ambient temperature, wind direction, and magnitude, ocean current direction and 

rate (Appendix 2) among others. Forecasting sea-ice is thus a complex mathematical 

modelling task at the best of times. The sea-ice data set is a critical, if not the most 

important component of the proposed route optimization process. The US National Ice 

Centre (NIC) in close cooperation with the NSIDC10 has been producing Ice Climatology 

charts for the Arctic since 1972 (NSIDC-A, 2016). Ice chart production and presentation 

has greatly improved since 1972; the NIC started producing Regional Ice Analysis Charts 

with Synthetic Aperture Radar (SAR) imagery by 1996 (Bertoia, Falkingham and 

Fetterer, 1998) that made detailed analysis possible. The NIC introduced the use of 

                                                 
10 NSIDC: National Snow and Ice Data Center, Boulder, Colorado 
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ESRI’s ArcGIS software in 1996 as the production shifted to the digital environment in 

the late 1990’s (Fetterer and Fowler, 2006). 

 The accuracy and image resolution provided by remote sensing is widely dependent on 

the satellite data capture technology in use and may be sensitive to weather or light 

(optical and infrared range). SAR telemetry, however, uses the microwave range of data 

capture and improves the data quality significantly, unaffected by weather or light 

interference (NSIDC-A, 2016). Microwave radiation is of two types: Active and Passive 

microwave. Active microwave implies radiation emitted from the surface of the object 

when interrogated by satellite transponders such as SAR. Microwave radiation naturally 

emitted by the Earth is termed Passive radiation, and the sensors can detect sea ice 

through clouds in day and night over a large area due to low radiation properties. These 

sensors have been used aboard NASA satellites for Arctic sea ice mapping since 1972 and 

form the bulk of the historical sea ice data mapping available today. Improved technology 

equipment is used in mapping ranging from ESMR 11(1972) to AMSR-E12 launched in 

the year 2002 aboard the Aqua satellite (NSIDC-B, 2016). The low energy levels emitted 

in the process, however, is a drawback of this method. Active Radiation Sensors of the 

SAR type have excellent resolution and can detect even small leads in ice. The Canadian 

Ice Service uses SAR imagery through the RADARSAT mission of the Canadian Space 

Agency (NSIDC-C, 2016). The bounce back technology in Radar systems is a very useful 

tool in detecting thick ice from thin ice and ice concentration data on charts is, therefore, 

more accurate with Active Radiation Sensors. 

                                                 
11 EMSR: Electrically Scanning Microwave Radiometer (used in 1972) 
12 AMSR-E: Advanced Microwave Scanning Radiometer-Earth Observing System 
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The Canadian Ice Service (CIS) produces ice charts for the Canadian waters; the datasets 

cover the Northern (Eastern and Western Arctic, Hudson Bay) and Southern Canadian 

Waters (Great Lakes and East Coast). This study used datasets (select charts) for the year 

2014, although any of the datasets from the year 2006 onwards may be employed. The 

information depicted on the ice charts follows the World Meteorological Organization 

(WMO) terminology (NSIDC-D, 2016). The regional sea ice data is available in the 

SIGRID-3 format and fully compatible with ESRI’s ArcGIS. The dataset comprises of 

several files including an attribute file that describes the total ice concentration, partial 

concentration, stage of development (ice thickness) and ice form that are essential for 

mapping the ice regime. Each ice chart contains up to 72 hours of input data as noted in 

each attribute data file (NSIDC-D, 2016). CIS contends that the “reliability and accuracy 

of the data set is directly related to the availability, resolution, and effects of atmospheric 

(cloud, daylight, etc.) and ground (snow, rain, sea state, etc.) conditions on the source of 

information” (NSIDC-D, 2016). CIS has implemented a schema for the SIGRID-3 Vector 

archive format and has allocated codes to interpret the attribute data tables that 

correspond with the MANICE13 description and the WMO Egg Code14 (Appendix 3). 

Environment Canada publishes the SIGRID-3 schema for sea-ice thickness (Appendix 4), 

total ice concentration (Appendix 5) and floe size (Appendix 6) that is used in calculation 

of Ice Numerals and sea-ice thickness in this paper (Environment Canada). Temporal 

coverage of the ice charts is available from the year 2006 onwards as part of the CIS 

SIGRID-3 dataset and issued once a week in the summer and bi-weekly in the winter for 

                                                 
13 MANICE: CIS-Manual of Standard Procedures for Observing and Reporting Ice Conditions 
14 Egg Code: Depiction of ice data in an ice chart 
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northern Canadian waters. The CIS ice charts constitute the cornerstone of the Route 

Optimization Model since the ice polygons15contribute in calculating the speed for the 

ship transit-in-ice model besides the Ice Numeral/RIO determination. 

2.4.1 Limitations- Ice Data Charts 

Ice concentration data collected from passive microwave radiation techniques may not be 

as reliable as SAR (active microwave) telemetry data. Passive microwave radiation data 

is known to underestimate sea ice concentration (Fetterer and Untersteiner, 1998; Comiso 

and Kwok, 1996) and NIC charts preceding the mid-1990s do have passive microwave 

data content. The melt ponding16 on the sea surface during the summer season is the 

likely reason. Canadian Ice Service charts do not, however, rely on Passive microwave 

data alone and tend to show substantial differences when compared with Active 

microwave data (Agnew and Howell, 2003). NIC analysts avoid using Passive microwave 

methods if ice concentration data from other sources is available (Fequet, Ballagh, 

Chagnon and Fetterer, 2009). The SIGRID ice charts contain vector data (points, lines, 

and polygons) with no native resolution (Fequet et al., 2009) when compared to gridded 

data that leads to a loss of information when converting chart information to a grid with 

fixed points. SIGRID-3 Vector archive format adopted by CIS since the year 2006 is 

devoid of this deficiency. The climatology products from NIC are presently available in 

the standard EASE- Grid17 data binary (.bin) format and ArcGIS database (.mdb) files. 

The US National Ice Centre intends to issue climatology products for various other GIS 

                                                 
15 Ice Polygons: Shape form depictions on Vector Charts 
16 Melt ponding: Pools of open water that form on sea ice in summer/spring season 
17 EASE-Grid Data: Equal Area Scalable (25km) Earth Grid (.bin) files 
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software in the future. The majority of the inconsistencies in ice chart data production and 

conversion date back to the archived data files (1972-1994) and the Canadian Ice Service 

publishes the errors observed in their ice datasets for users to exercise caution. It is 

pertinent to note that the ice charts may have inherit errors like any other map product 

related to classification and location accuracy based on scale factors and how the data was 

vectored if the source of information was a raster satellite image (e.g. sea-ice 

information). If the resolution of the image data was 100m the locational accuracy of the 

boundary for different ice class will be approximately ½ pixel width or 50 metres. It 

suffices to assume that no map is 100% accurate because of the processing used to create 

the information. CIS does not produce iceberg charts for waters north of 60°N 

(Environment and Climate Change Canada-A, 2016) but  the ice charts do indicate the 

polygons (areas) where icebergs may be present. It is prudent to navigate with safe speed 

in such areas that may have minimal ice concentration but infested with bergy bits, floe 

bergs and icebergs. Reduced daylight hours, fog in the high latitudes particularly in the 

summer navigation season and prolonged periods of darkness make navigation 

challenging in open waters of the Arctic. 

2.4.1.1 Limitations- Ice Chart Attribute Data 

The ice chart attribute data from 29 September 2014 (Table 1) shows a representative 

sample of  information related to total ice concentration (CT), partial ice concentration 

(CA, CB, CC), stage of development (SA, SB, SC ) and the form of ice (FC) depicted in 

SIGRID-3 codes. Ice data inconsistency is observed in rows with Object ID 1 and 3 and 

various other places in the table. The CT numbers in both polygons show complete ice 



22 
 

coverage (9/10 to 10/10 ice), but the partial concentration in the first row (-9) indicates a 

missing value (dummy variable) that makes it difficult to analyse the ice regime 

accurately. 

Table 1 
Ice Chart Data –Sept 29, 2014 

 

Note:  Adapted from CIS ice chart dataset September 29, 2014, Retrieved March 23, 2016, from 

ftp://sidads.colorado.edu/pub/DATASETS/NOAA/G02171/Western_Arctic/ 

The Stage of Development (SA, SB, SC), Partial Concentration (CA, CB, CC), and Ice 

Form (FC) column codes exhibit data inconsistency as evident from the table. It is hard to 

estimate the average sea-ice thickness with a ‘dummy variable’ (-9) present in the mix 

that introduces an uncertainty in averaging ice thickness. Information on floe size that is 

critical to voyage planning becomes unreliable with missing values and ‘unknown 

parameters’ (99). An accurate estimation of ice concentration is also not precise with so 

many missing variables. This study has done an estimation of average ice thickness for 

OBJECTID * Shape * CT CA SA CB SB CC FC

Total Conc Partial Conc Stage Of Dev Partial Conc Stage Of Dev Partial Conc Ice Form

1 Polygon 92 -9 95 -9 -9 -9 -9

3 Polygon 91 90 95 10 84 -9 -9

4 Polygon 91 90 95 10 93 -9 -9

10 Polygon 1 -9 99 -9 -9 -9 3

66 Polygon 60 20 95 40 81 -9 99

95 Polygon 2 -9 98 -9 -9 -9 -9

96 Polygon 91 -9 84 -9 -9 -9 8

102 Polygon 90 70 95 10 93 10 4

103 Polygon 80 -9 81 -9 -9 -9 8

120 Polygon 92 -9 93 -9 -9 -9 4

173 Polygon 91 10 95 10 93 10 4

178 Polygon 1 -9 99 -9 -9 -9 4

180 Polygon 20 -9 81 -9 -9 -9 4

263 Polygon 60 10 95 50 81 -9 8

SELECTED SEA ICE CHART DATA-29th SEPT'14
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each partial concentration (CA, CB, CC) category based upon the ice thickness (SA, SB, 

SC) data populated in adjacent polygons to arrive at an average value for the columns 

where the data depicts a missing variable (-9) or an unknown parameter (99). A visual 

assessment from the bridge of an icebreaker/ship by the Ice Service Specialist (ISS) or the 

ice Pilot/Shipmaster is the only other way to estimate those numbers with better accuracy. 

The average ice thickness values arrived due to the above estimation introduces an 

additional error or uncertainty to the Model parameters. This is an inherent limitation in 

the sea-ice attribute data tables used for calculating the composition of the ice regimes to 

conduct voyage planning. The resultant uncertainty introduced in sea-ice thickness 

averaging has not been accounted for in the Model. 

2.4.2 Canadian Ice Service (CIS) 

The Canadian Ice Service (CIS) provides fairly timely and accurate information of ice 

climatology in Canada's southern waters (south of 60°N) despite limitations in spatial 

resolution and data quality issues. Ships have direct access to ice and iceberg information 

via satellite link as well as through coastal weather stations via the facsimile receiver. 

Satellite communication technology enables ships to access the CIS website that contains 

a substantial amount of information on ice and iceberg conditions and access to 

the Canadian Ice Service archives. The daily ice charts represent the best estimate of ice 

conditions at the time of image acquisition (4 hours before transmission), based on an 

integration of data from a variety of sources, such as satellite observation, ship, and 

aircraft-based visual observations. The charts describe ice concentration in tenths, ice 

types or stage of development and the form of ice. The charts depict ice information in 
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the Egg Code format and colour coded using the WMO18 Standard. The Egg Code 

displays basic data concerning concentrations, stages of development (age) and forms 

(floe size) of ice contained in an oval. A maximum of three ice types are described within 

the oval; the coding associated with it conforms to international standards, and the entire 

ice chart may be interpreted from the codes and associated symbols and abbreviations 

contained therein. 

Regional ice charts for the Eastern and Western Arctic are issued weekly, year-round 

from CIS (Environment and Climate Change Canada-A, 2016) and covers all the routes in 

the NWP (Appendix 7).The Ice Manual (Environment and Climate Change Canada-D, 

2016) published by CIS contains the standard procedures for observing and reporting ice 

conditions in the Canadian Arctic. CIS uses SAR satellite imagery for ice data mapping 

and analysis. The standard width of the satellite data collection for ice information is 

about 500 kilometres with a resolution of 100 meters. The geometric accuracy of an ice 

edge19 is within 630 meters with 100 meters’ pixel resolution (Image Analysis Chart, 

2016). This is a locational error in the ice charts since vector data is derived from satellite 

imagery and the locational accuracy of the vector ice polygons are no better than the 

source. This error has not been accounted for in the modelling process. 

The Northern Canada, Vessel Traffic Services Zone Regulations, has established the 

Northern Canada Vessel Traffic Services (NORDREG) Zone (Appendix 8). It 

implements the requirements for vessels to report information before entering, while 

                                                 
18 WMO: World Meteorological Organization 
19 Ice edge: Demarcation boundary between open water and sea-ice 
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operating within and upon exiting Canada’s northern waters. The Regulations enhance the 

safety of ships, crew, and passengers, and are expected to safeguard the unique and 

fragile Arctic marine environment. These Regulations ensure that the most efficient 

services be made available to accommodate current and future levels of marine traffic in 

the Canadian Arctic. Vessels of 300 GT20 or more are required to report to NORDREG, 

consisting of a sailing plan, position report, final report, and a deviation report, if 

applicable. Ship reports to NORDREG, originally implemented in 1977, as a voluntary 

scheme were made mandatory since July 1, 2010. Contravention of the mandatory 

reporting guidelines may result in heavy fines imposed under the Canada Shipping Act 

(Canada Shipping Act, 2001).  

  

                                                 
20 GT: Gross Tonnage: measurement of ship’s internal volume expressed in Tons 
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2.5 Maritime Charting: Digital Data and e-Navigation 

How could one conduct route modelling in the maritime domain given the fact that there 

are few instance of research papers available in GIS literature? Moreover, this study is 

attempting to provide a solution that is operational and practically useful onboard a ship 

prior to and during ice navigation. For an ice navigator, the ideal approach to voyage 

planning would be the determination of waypoints (path of least resistance) well in 

advance of the intended passage to plan for contingencies such as an icebreaker escort or 

any other exigencies on the optimized route. A tactical voyage in sea-ice involving 

change of route and or speed during the passage with the latest ice charts will provide the 

ultimate decision making tool that a Shipmaster can hope for. An out of the box approach 

is necessary to provide solutions as ship transport embraces the digital data concept and 

transforms from hardcopy nautical products (books and charts) to electronic navigational 

products using ‘Geodatabase’ storage, data transfer protocols and geoprocessing tools. 

The Electronic Chart Display and Information System (ECDIS) uses electronic navigation 

charts for real-time navigation (SOLAS-Amendments 2010 and 2011) since the year 

2002. The Electronic Navigation Chart (ENC), a digitized version (Vector format) of the 

nautical paper charts has essentially brought the maritime map from the chart-table to 

electronic display screens on the ship’s bridge. The ECDIS21 equipment not only displays 

the electronic navigation chart but also by its versatility and interfacing capability with 

shipboard navigation equipment has transformed the ‘art’ of navigation into a robust 

scientific decision-making tool for the mariner. Interfacing with onboard Radars, depth 

                                                 
21 ECDIS: Electronic Chart Display and Information System-shipboard equipment 
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sounding equipment, Gyro compass22 and the DGPS23 makes advanced navigation much 

more integrated with the ECDIS as the ice navigator can monitor the passage plan and 

collision avoidance on a single screen with radar images ‘on the fly.' Gyro stabilization 

capability adds more functionality to the ECDIS as the display could be oriented in a 

north-up or head-up configuration as preferred by the observer. The ECDIS forms an 

integral component of IMO’s global e-navigation Strategic Implementation Plan (SIP) 

and architecture (Appendix 9) as approved by the Maritime Safety Committee (MSC 94) 

in the year 2014. IMO defines e-navigation as “the harmonized collection, integration, 

exchange, presentation and analysis of marine information on board and ashore by 

electronic means to ensure berth to berth navigation and related services for safety and 

security at sea and protection of the marine environment” (IMO, 2016). The principal 

objective of the SIP is to provide e-navigation solutions in five key priority areas that 

encapsulate the following: 

a. User-friendly bridge design 

b.  Integrity and reliability of bridge equipment  

c. Presentation of information in graphical displays received via communication 

equipment 

d. Standardized and automated reporting 

e. Improved ‘Vessel Traffic Service’ communication portfolio 

                                                 
22 Gyro Compass: Primary compass used for shipboard direction finding  
23 DGPS: Differential Global Positioning System, a variant of GPS shipboard equipment 
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The above tasks are mandated (IMO-A, 2014) to be completed during the period 2015-

2019. The SIP will provide the industry with harmonized information to implement better 

product design in the future. A strategic framework has been adopted at the IMO to 

achieve the deliverables within the targeted period (IMO-C, 2014). The US NOAA24 

publishes ENC data that is downloadable in a variety of GIS/CAD25 formats using the 

IHO S-57 format. The data can be analysed in ESRI’s ArcGIS (NOAA, 2016) that 

includes coastal topography, bathymetry, landmarks, and maritime boundaries familiar to 

the mariner. ArcGIS for Maritime Charting provides an entire suite of products well 

suited to maximize the value the Electronic Navigation Chart (ESRI, 2016) in the GIS 

domain. The same platform is utilized by the CIS to produce and analyse ice charts; 

ArcGIS also support the Canadian Hydrographic Service ENC dataset (.00026) file. 

(Fisheries and Oceans Canada-A, 2016).Electronic Navigation Charts provide the base 

layer for the spatial data query and analysis of the hydrography details and object 

information required in ArcMap. ENCs can be imported into the ‘ArcMap’27 by a 

standard protocol S-57 developed by IHO in a strictly non-navigation28 environment. 

IMO and IHO29 have set international standards for ENC production, ECDIS equipment 

as well as the electronic data transfer standard (S-57). IHO’s S-57 protocol enables the 

import of ENC files into a GIS system such as ESRI’s ArcGIS platform used in this 

study. CHS digital charts are available as Raster Navigational Chart (RNC) either in the 

                                                 
24 NOAA: National Oceanic and Atmospheric Administration (USA) 
25 CAD: Computer-Aided Design 
26 .000 file: chart installation data files 
27 ArcMap: An ArcGIS workspace used to edit and analyse data 
28 Non-navigation: Not to be used for on-board ship navigation 
29 IHO: International Hydrographic Organization 
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BSB format or as Electronic Navigational Chart (ENC) in the S-57 vector format. The 

RNC is a scanned, geo-referenced production of the paper chart, and the ENC contains 

vector spatial data of the nautical chart features. The RNC’s (BSBv4) produced by CHS 

are not compatible in GIS (Fisheries and Oceans Canada-A, 2016); hence the study has 

adopted the ENC for route modelling convenience. 

2.5.1 Electronic Navigation Charts (ENCs) 

The ENCs by their data content including object attributes and metadata are ‘smart 

charts’ that go beyond nautical paper charts or RNC’s. They not only depict the maps but 

a wealth of geospatial information that is easily stored, queried, analyzed and shared in a 

GIS environment. This gives a powerful platform to the digital format of nautical paper 

charts that is suitable for position fixing and route planning purposes. ‘ArcMap’ displays 

electronic navigation chart data presented in several layers (IHO object classes) and the 

operator can switch the layers ‘off’ and ‘on’ for querying and spatial analysis. One can 

imagine an updated nautical paper chart superimposed with the information from Sailing 

Directions, Tide Tables, List of Lights and other navigational publications combined. The 

CHS does not provide complete ENC coverage (Fisheries and Oceans Canada, 2013) in 

the Northwest Passage currently (Appendix 10), hence paper charts have been used to fill 

out the route network on a considerable stretch of the M’Clure Strait route, parts of the 

Prince of Wales Strait route and the Peel Sound route, the three routes identified in the 

NWP. Complete ENC coverage of the NWP is necessary as the region gears up for 

commercial shipping triggered by the progressive depletion of sea-ice. 
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2.5.2 IHO-S-57 Protocol 

The S-57 protocol for data transfer set out by the IHO enables transfer of (.000) files that 

contains ENC data into ArcGIS, a non-navigational environment. The ArcMap itself 

should not be used for navigation at sea but the results (waypoints, speed etc.) are to be 

transferred to electronic navigation charts or hard copy paper charts for navigation 

purposes. 

 ArcGIS users thus have vector data sets of the Electronic Navigation Charts 

appropriately geo-referenced for data query and spatial analysis. It is worthwhile to 

underscore that all mapped vector data has some degree of error depending on map scale 

and source of information used for mapping. The ArcGIS environment is strictly non-

navigational30, meant for research and analysis purposes such as a desktop or a mobile 

digital device. The ‘ESRI S-57 viewer’31 allows users to view S-57 data in compliance 

with S-52 standards. IHO special publications S-52, S-57, and S-63 are technical 

standards developed for digital data exchange as specified in the IMO performance 

standards for ECDIS. IHO S-57 is the current IHO Transfer Standard for Digital 

Hydrographic Data. In addition to the main part there are two appendices to S-57: 

Appendix -A (IHO-'A', 2000) is the object catalogue and data schema set to describe real-

world entities on ENCs while Appendix-B (IHO-'B', 2000) contains product 

specifications adopted by IHO. Currently S-57 edition 3.1 is in use and supported by 

ESRI but has several limitations notably in inflexible maintenance standards and cannot 

                                                 
30 Non-navigational: ArcMap is not being used for ship navigation-only meant for data analysis on 
PC/mobile devices. 
31 S-57 Viewer: An add-on that allows ArcGIS users to view S-57 data 
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support future requirements such as gridded bathymetry or time-varying information 

among others (IHO-'C', 2009). A major revision of the S-57 was conducted by an IHO 

committee in November 2000 resulting in the development and introduction of S-100 that 

includes a new exchange data format. The Universal Hydrographic Data Model, as it is 

now called was adopted by the IHO on 1 January 2010, thereby becoming an active 

international standard. 

2.5.2.1 Universal Hydrographic Data Model (S-100) 

 S-100 standard is the new name for Edition 4.0 of the S-57 developed by IHO in 2005. It 

supports a wide variety of hydrographic digital data sources, includes new spatial models 

to support imagery and gridded data, 3-D and time varying data and new applications that 

go beyond the scope of traditional hydrography, most notably marine GIS. S-100 also 

includes new terminology that have been redefined or modified from the current Edition 

3.1 of S-57. The S-100 comprises multiple components that are aligned with ISO 19100 

series of geospatial standards that enables hydrographic data to be included in many more 

general geospatial applications than before. The S-100 Geospatial Information Registry 

supports several features not available with the S-57 standard that includes Feature 

Catalogues, Flexible version Control, Metadata, Spatial Geometry, Imagery and Gridded 

Data, Multiple Encoding and most notably Continuous Maintenance ( (IHO-'C', 2009). 

2.5.3 S-100 and e-Navigation 

In early 2011, The IMO Correspondence Group on e-Navigation  reported to the IMO 

that S-100 be considered as a baseline and an important element in the development of 

the on-going e-Navigation architecture. Work is already underway to develop an S-100 
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based ENC product specification known as S-101 that is expected to enable updating of 

symbology, data and software enhancements. The S-101 development is being undertaken 

over several years and will involve active participation of various stakeholders, including 

hydrographic offices, ENC software producers, ECDIS manufacturers, mariners, and 

other maritime users. It is expected that any ECDIS equipment software that is upgraded 

or reconfigured to use S-101 Electronic Navigation Charts will continue to be able to use 

the current S-57 Edition 3.1 during the migration. Conformance with ISO/TC21132 

standards allows S-100 to leverage the power of GIS for the hydrographic community by 

maximizing interoperability with other geospatial data type and platforms. As an industry 

partner for the design of the S-101 standard, ESRI in partnership with NOAA has 

developed an IHO S-57 to S-101 converter to support the S-100 Test Strategy Working 

Group in testing and validating the S-101 standard before it becomes published for the 

international hydrographic community. This augurs well for a smooth migration from S-

57 to S-100 in the future and dovetails with IMO’s e-Navigation Strategic 

Implementation Plan. The SIGRID-3 vector archive format for sea-ice charts is 

compatible with IHO’s S-100 standard. 

2.5.4 Limitations: Maritime Charting- Northwest Passage 

Navigation in the high latitudes such as the Arctic is a tough job at the best of times. This 

section will specifically deal with limitations encountered in respect of route modelling in 

the NWP. Hydrography may be the oldest science of the sea but Arctic waters lack 

hydrography as well as electronic chart coverage. A comprehensive report from the 

                                                 
32 ISO/TC211: Geographic Information Standards 
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Auditor General, Canada (Govt. of Canada-A, 2016) concluded that Canadian Arctic 

waters remain inadequately charted to accommodate the projected increase in shipping 

traffic over the coming years. Canadian Hydrographic Survey reports indicate only 10% 

(Govt. of Canada-A, 2016) of the Canadian Arctic Waters have been surveyed to modern 

standards (Appendix 11) that includes the main shipping corridors in the NWP identified 

in this study. The quality and accuracy of navigational charts depends upon the 

hydrographic data and methods used to compile them (Appendix 12). The CHS chart 

catalogue of the Canadian Arctic does contain a few old nautical charts with respect to 

their publication dates and horizontal datum standards. Some of the charts have depth 

soundings in fathoms and hydrographic surveys are unreliable at places. The frequency 

and quality of depth information in the shipping lanes require a lot of improvement for 

commercial shipping to transit the area. The audit report (Govt. of Canada-A, 2016) 

observed that 10% of the nautical charts date back to the 1970 or before and only 25 % of 

the paper charts appear to be of high quality with respect to reference datum to establish 

position data. This study found gaps in the electronic chart coverage provided by CHS in 

vast areas of the western Arctic and select areas along the principal shipping lanes 

(Appendix 13).  

2.6 Choice of GIS software and Data format  

Spatial Analysis and maritime route network modelling in GIS requires the selection of 

appropriate GIS software suite among a host of commercial and open source software 

available in the market. The US National Ice Centre moved towards a GIS production 

(GRASS software) environment for ice charts in 1996 and subsequently opted for ESRI’s 
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‘ArcInfo’ suite in the late 1990’s (Fequet et al., 2009). The Canadian Ice Service adopted 

the ArcGIS suite for ice analysis in 2006. The SIGRID-3 files used by CIS contain 

coastline features derived from the DCW33 data sets originally created by ESRI in 1993 

(Fequet et al., 2009). The US National Snow and Ice Data Centre make use of various 

GIS software suites including ESRI’s ArcGIS in many of their product offerings. This 

study finds the ESRI’s ArcGIS software to be the most popular among researchers and 

national ice centres in North America and elsewhere. Having reviewed the available 

literature and the elements required for route modelling, the study finds ESRI’s ArcGIS 

commercial software to be the platform most convenient to attempt the model. The two 

principal pillars needed for mapping the route network namely, the electronic navigation 

charts, and the sea-ice datasets are available from CHS and CIS respectively in the 

desired format. The ArcGIS suite supports both the navigational and ice datasets as 

reviewed.  

2.7 Multi-criteria Decision Analysis in GIS 

Spatial decision analysis problems involve a large set of feasible alternatives and multiple 

evaluation criteria. Most of the time, these are conflicting. Many spatial decision 

problems such as the maritime route network problem we are addressing gives rise to a 

GIS based MCDA that aids in the decision-making process. The field of GIS-MCDA has 

grown considerably in recent years to help decision support capabilities of GIS and 

related technologies. The integration of GIS and MCDA for decision making in network 

problems is a unique example of how linking concepts and methods from two distinct 

                                                 
33 DCW: Digital Charts of the World 
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fields can yield solutions to tackling decision problems (Malczewski and Rinner, 2015). 

As per Faiz and Krichen, (2013); Tong and Murray, (2012), spatial optimization models 

are best suited to finding a solution to a well-defined spatial problem. The concept of 

Spatial Decision Support System (SDSS) has been one of the central elements of GIS 

since the 1990’s (Armstrong, Dey and Densham, 1991; Jankowski, Nyerges, Tuthill and 

Ramsay, 2006; Nyerges and Jankowski, 2010; Sugumaran and DeGroote, 2011). This 

study has utilized the SDSS concept to determine the layer of ‘SNZ’ from a number of 

navigational constraints built around the original layer of S-57 ENC vector data sets. The 

primary aim of adopting the SDSS is to incorporate the knowledge and experience of 

experts34 in ice navigation into computer-aided procedures not only to increase the 

efficiency of data-processing operations but more importantly to achieve the optimal 

criterion layer for navigation from data available on the navigation charts. The ability of 

GIS to handle preferences and judgements (Malczewski et al., 2015) in the planning 

process is of critical importance and incorporating the rule based expert knowledge 

technique is one way of conveying information in a computer-aided decision support 

system such as the CAROM. There are three key elements in any multi-criteria decision 

problem: decision maker (s), alternatives and criteria (Zarghami and Szidarovszkyet, 

2011) and the three core concepts for tackling the GIS-MCDA problems are value 

scaling, criterion weighting and decision rule (Thill, 1999; Malczewski, 1999). 

                                                 
34 Experts: Shipmasters experienced in ice navigation/ Ice Pilots 
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2.8  Speed Determination in Ice 

Determination of speed is one of the most critical elements in ice navigation because sea-

ice presents a physical obstacle of varying magnitudes to a ship in motion. Ice avoidance 

not only enhances safety of the vessel and better speed but also prevents ship maintenance 

(buckling and hull deformation) and grey water pollution (paint flaking and abrasion) 

leading to lesser downtime and overall ship productivity. Mulherin, Eppler and Sodhi 

(1999), while carrying out a sensitivity analysis of environment variables that affect 

transit speed in the NSR, observed that ice conditions account for two-thirds of the 

resultant speed. The ice field is usually composed of several ice types varying in 

concentration and thickness. The thickness of ice, even in the same ice type, exhibits 

intra-annual seasonal variations and the logged speed tends to be non-uniform and non-

linear (Kotovirta, Jalonen, Axell, Riska and Bergelund, 2008) with ice resistance. 

Furthermore, Maslanik et.al, (2007) and Kwok et.al, (2009) have demonstrated marked 

seasonal variability in median ice thickness values per ice class (Table 2) in their 

findings. 

Table 2 
Median Ice thickness per age Class-Arctic region 
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Note: Adapted from “Projected 21st-century changes to Arctic marine access” by   
 Scott R. Stephenson, Laurence C. Smith, Lawson W. Brigham, John A. Agnew, 2013, pp38 

 

Furthermore, sea-ice could also be ridged35 or decayed36 that may have an additional 

impact on the speed than in level ice37. Ship performance in ice can be judged by the 

resisting forces provided by sea ice and the propulsive forces generated by the ship’s 

propulsion machinery. The positive net thrust developed subsequently translates into 

velocity or resultant speed over the ground. The ice climatology charts predict certain sea 

ice parameters including the Stage of Development of ice, a proxy for ice thickness in an 

ice regime. This research considered various methods available for predicting ship speed 

in level ice. The ship’s power output and associated parameters provide the propulsive 

forces required, and the ice parameters provide the resistive forces necessary to compute 

the velocity required. It is important to understand the physical and mechanical properties 

of sea ice to predict the resistive forces a certain ice type will offer to a ship in motion. 

The mechanical properties of ice are vastly different from other substances. Aptly termed 

                                                 
35 Ridged Ice: A line or wall of broken ice forced up by pressure. 
36 Decayed Ice: Decayed Ice: Ice that has become honeycombed and in an advanced stage of disintegration 
37 Level Ice: Sea-ice unaffected by deformation. 

ICE THICKNESS(Cms)

Year Feb/Mar Oct/Nov Feb/Mar Oct/Nov Feb/Mar Oct/Nov

2003 NA 127.6 NA 183.5 NA 225.5

2004 157 117.5 206.1 180 271.7 254.3

2005 169.1 118 215.4 139.6 244.9 204.7

2006 163.6 126.4 178.7 131.6 209.9 164.4

2007 181.9 136.6 187.1 174.1 198.3 183.1

2008 159.7 NA 199.2 NA 187.2 NA

5-Year 

mean 166.3 125.2 197.3 161.8 222.4 206.4

First Year Second Year Third Year
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a viscoelastic solid, sea-ice can maintain its strength and brittle behaviour at relatively 

high temperatures; it is brittle when loaded quickly and ductile when loaded slowly 

(Daley, 2001). The various factors that influence the measured strength of ice include 

strain rate, temperature, and grain size. Understanding how sea-ice is acting on a ship 

forms the basis of the design of ships for ice. The design elements in an ice-capable ship 

include adequate hull strengthening, sufficient engine power, and ability to withstand 

operations in extreme weather conditions prevailing in the Arctic (Riska, Tan and Moan, 

2013). Good performance is synonymous with better manoeuvrability since no amount of 

additional hull reinforcements is enough if the vessel cannot manoeuvre in ice. The 

strength of sea-ice and the compressive power it wields is enormous, and navigation in 

ice with an ice class vessel is more about tactful and strategic manoeuvring with due 

respect to the forces of nature. The hull design, propeller design, and thrust are a critical 

component to minimize propeller-ice interaction (Riska, 2013) and smoother contact with 

ice rather than a forced entry is, therefore, advisable. The International Code for Ships 

Operating in Polar Waters (POLAR CODE) provides a mandatory framework for ships 

navigating in IMO delineated waters of the Arctic (Appendix 14) and Antarctic and is 

expected to come into force on January 1, 2017. The Polar Code stipulations go beyond 

the existing requirements of the International Convention for the Safety of Life at Sea 

(SOLAS), 1974, as amended ("the Convention"), and other relevant binding IMO 

instruments such as the MARPOL and STCW conventions. 

 A ship constructed as per IMO Polar Code stipulations is likely to have adequate strength 

for the approved Polar Class category because the class type is associated with the 
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operative environment of the ship. The ship-owner may specify additional requirements 

beyond the minimum requirements in some instances, but the shipbuilding yard usually 

has a free hand in the appropriate design in close cooperation with the ship’s 

classification representative and owner’s requirements.  

2.8.1 Icebreaking Resistance and Powering Requirements 

The general arrangement plan of icebreakers as well as ice-class ships has changed little 

since the 1970’s, the hull and machinery design based on experiences gained from similar 

ships built earlier. The classification society plays a key role in formulating the structural 

specifications and maintains a strong oversight of inspections and quality control in the 

shipyards. The hull shape of icebreakers is characterized by small buttock line angle (φ 

<20°), rounded buttock lines and waterlines and sides inclined to make β> 0. The 

principle of hull lines designs has been to make the flare angle ψ as small as possible 

(Appendix 15). The ship’s overall performance in sea-ice is measured by its ability to 

negotiate various ice regimes with due dispatch, preclude damage to the hull and prevent 

besetting. Sea- ice resistance depends on the ice properties; the shape of the hull and the 

thrust furnished by main engine propulsion and can be mathematically calculated and 

quantified. The manoeuvring performance is determined by transverse forces provided by 

the rudder(s)/ azipods38 and the resistance mainly provided by ice, the wind and current to 

a lesser extent. 

A ship breaks the ice by forcing it downwards to break in flexure but tends to slow down 

as ice gets thicker and the engine load increases. If no action is taken to speed up with 

                                                 
38 Azipods: Azimuth thrusters (electric podded) 
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additional RPM39 (if available), the ship is brought to a stop and must change to a mode 

of operation called “backing and ramming” (Daley, 2001). A ship while navigating 

through ice experiences two kinds of forces, namely the resistance offered by water and 

sea-ice. Ships cannot operate effectively at very low speeds because the rudder 

performance suffers and manoeuvring gets sluggish as the rate of advance reduces. 

Increased ice resistance forces a vessel to lose steerage, manoeuvre effectively, and risk 

besetting. The rudder responds efficiently only when a reasonable amount of water flows 

over it, and ships tend to lose steerage as the speed reduces. The process of “backing and 

ramming” prevents the ice from solidifying around the ship and provides the mechanism 

to free itself from getting trapped and beset in ice. The Shipmaster must realize this 

situation early on to avoid being ‘choked’ by ice and should the vessel lose complete 

momentum, the process to freedom from the ice will get harder and eventually 

impossible. External help in the form of an icebreaker or the assistance of a passing ship 

to cut a channel may be necessary which may not be forthcoming very soon in an ice field 

where open water is at a premium, and the icebreaker may be days away from rendering 

assistance. Most specialists recommend the use of the model and full-scale data, as well 

as analytical methods (Colbourne and Daley, 2013) to help estimate the true capabilities 

of a ship. The analytical methods reviewed in this study include Lindqvist, (1989), 

Valanto (2009); Su, Riska and Moan, (2011) and Zhou, Peng and Wei (2015). Hanninen 

(2003) investigated ice load measurements on board ice class tankers while Madsen 

(2010) investigated results of DNV’s Ice Load Monitoring (ILM) project on board the 

KV ‘Svalbard’. Numerical methods were preferred as the empirical relationships between 

                                                 
39 RPM: Engine revolutions per minute 
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ship characteristics and ice data are programmable on a computer. This study has adopted 

the Riska- Lindqvist concept of equating total ship ice resistance to calculate the average 

speed of the ship in each ice regime as available from CIS SIGRID-3 vector ice datasets. 

There are numerous predictive models to calculate speed in ice, and further research is 

required to establish a cogent relationship between speed and ice resistance. Comparison 

of estimated speed with AIS40 data from the Baltic Sea (Kotovirta et al., 2008) is a recent 

phenomenon, and a bigger sample of empirical data is required to study the relationship 

between ship speed and ice resistance due to the complexities involved in mathematical 

modelling. 

2.8.2 Limitations: Ship-Transit Model  

The modified Riska model used in the calculation excludes the ridged ice component in 

the first Riska methodology devised primarily for Baltic Sea ice where vessels move in a 

convoy and distances are not as large as the Arctic Ocean. The CIS ice datasets in the 

current format do not give any ridged ice data for the Canadian Arctic and assumption of 

a linear relationship between ship speed, and ice concentration may be an 

oversimplification from the actual and requires further study. The net thrust calculation 

and the resultant ship velocity derivation ignores other environmental factors that 

influence ship speed namely current and wind speed and direction. The actual ship speed 

over the ground is a resultant of all factors that affect speed. The ice thickness calculation 

from the attribute data tables can be further improved with better consistency and 

                                                 
40 AIS: Equipment for ‘Automatic ship identification’ on board ships 
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description since the missing variable (-9) does not tell much about the stage of 

development, partial ice concentration, and floe size. 
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2.9 Economic Viability Model: Cost-Benefit Analysis 

Liner Shipping or containerized transport is one of the most efficient modes of 

transporting goods by sea and has become the global economic engine of transport 

connecting countries, markets and people this century (World Shipping Council, 2016). 

The industry has undergone a paradigm shift in the last decade that has witnessed mega 

containerships flooding the market despite the global economic downturn seen in the 

same period resulting in excess shipping tonnage. Currently a prolonged global trade 

slowdown and excess slot41 capacity are the likely cause of a weak freight market, and 

volatile shipping rates. 

Sea-ice decrease across the Arctic region is a reality, and maritime transport is a logical 

consequence projected to grow this century. Nevertheless, what are the risks involved in 

ice navigation and how could this be mitigated given the fact that ship-sourced pollution 

is of utmost concern and ship traffic is projected to increase with diminishing sea-ice? 

Are the ship and the shipboard management/ice-navigator well equipped to conduct a safe 

and efficient passage through the Arctic, given all the challenges of infrastructure, 

international regulatory framework, training, and technology? The above concerns 

formed the cornerstone of the research proposal submitted by the author to carry out a 

study seeking to develop a Computer -aided Arctic Route Optimization Model (CAROM) 

that may serve as a tactical and operational response tool to conduct voyage planning 

during ice navigation. The model may also be able to predict a time of transit useful to a 

Cost-Benefit Analysis of the route in comparison to the Panama Canal route for a 

                                                 
41 Slot capacity: Container (TEU) carrying capacity 
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container ship trading between ports in NE Asia and NW Europe. The word ‘operational’ 

signifies practically useful on board during navigation and ‘tactical’ refers to voyage 

planning with due regard to changing ice conditions during the transit through the ice. 

There have been some simulation studies conducted in the last 20 years on topics ranging 

from economic viability aspect of Arctic Shipping Routes (NSR, NWP, and TPR) to 

increased access for ship navigation including a 3D GIS mapping of the NSR (Chang, 

Hey, Chou, Kao, & Chiou, 2015) with widely divergent conclusions (Pruyn, 2016; 

Lasserre, 2014). Almost all the studies reviewed in this paper (1996-2015) focus on the 

economic viability aspect of the NSR (Mulherin et al., 1996; Srinath, 2010; Wergeland, 

Ostreng, Eger, Mejlander-Larsen, Floistad and Lothe, 2013; Chang, Hey, Chou, Kao and 

Chiou, 2015). One of the papers reviewed (Choi, Chung, Yamaguchi, & Nagakawa, 

2014) used a novel approach to the economic viability aspect in both the NSR and the 

NWP by Arctic sea route path planning based on an uncertain ice prediction model. A 

few devote their efforts to simulations in the NWP (Somanathan, Flynn and Szymanski, 

2008; Wergeland et al., 2013) with an empirical derivation based on a comparison of 

distance between ports in NE Asia and NW Europe/ECNA42. The associated assumptions 

and metrics (technical and economic) calculate and compare Voyage Costs, Capital 

Costs, and Operating Costs set up against the distance traversed via the Arctic 

(NSR/NWP) and the two Canals (Suez and Panama). Some of the parameters namely, 

average speed in the Arctic segment, the load factor (container shipping) and the 

insurance premiums differ widely in their assumptions which are expected to some degree 

due to lack of credible commercial shipping in the Arctic in general and NWP in 

                                                 
42 ECNA: East Coast America 
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particular. Due to lack of a methodical speed calculation approach in the ice-bound 

segment, the time estimation in the Arctic leg of the route is approximate at best. 

 The Peel Sound passage in the southern portion of the NWP is the longest route; shallow 

in some areas for large ships but relatively easier on sea ice impedance when compared to 

the more northerly M’Clure Strait and the Prince of Wales Strait routes. The northern 

portion of the NWP has a challenge with Multi-Year Ice (MYI) drifting in from the 

Central Arctic that the southern route does not to have. Which route should the vessel 

follow in ice given the three alternatives provided the ship had a safe UKC43 to proceed in 

either one of them but had the sea-ice barrier to overcome? A path of least resistance 

unique to the vessel may give an answer to the above. How should a ship plan for an 

icebreaker escort if expected to encounter negative Ice Numerals based upon the 

AIRSS/POLARIS (section 3.3.2/3.3.4) decision support approach? The CAROM outputs 

result in preparation for contingency well in advance of the vessel arriving in the area 

with negative Ice Numerals. The NWP segment requires being meticulously managed to 

assess the economic viability of the entire trans-Arctic route that includes voyage 

calculation for the open water ocean routes in the Atlantic and Pacific segment (Figure 3). 

 Somanathan et al., (2008) have modelled container-shipping routes through NWP using 

historical ice data (1999-2003) from CIS archives. Would the model be more realistic if 

route optimization is conducted with the latest available ice datasets such as weekly or 

daily ice charts, if available? Technological advances in satellite communication such as 

large bandwidth and affordable satellite data costs make this a reality in the Arctic like 

                                                 
43 UKC: Under keel clearance (charted depth in relation to draft of ship) 
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any other ocean region. CIS does publish ice datasets on a weekly basis for the Canadian 

Arctic that underpins this research. Is it more practical to develop the model with the 

actual Electronic Navigation Charts as a base layer for spatial analysis and route 

modelling albeit on a personal computer in a non-navigational environment? The ships 

are already using the Electronic Navigation Charts on the ECDIS and the ice analysis 

charts provided by CIS is received via facsimile receiver onboard. Some research papers 

have analysed ship transits in the NWP (Judson,1997; Mudge, Fissel, Alvarez and Marko, 

2009) while others have analysed Global Climatic Models (GCMs) to predict 

spatiotemporal sea ice ablation and maritime access in the Arctic this century 

(Stephenson, Smith, Brigham and Agnew, 2013; Smith and Stephenson, 2013; Wang and 

Overland, 2012). The two most prominent GCMs used for studying the Arctic ice 

climatology being the CCSM444 and the CMIP545. A computer based route optimization 

system ‘View Ice’ tested in the Baltic Sea and validated with AIS data (2005-2007) had 

its challenges to contend with due to short route segments (50 NM to 350 NM) and 

icebreaker assisted convoy operations. 

Arctic ice navigation involves independent navigation and voyage planning for 

considerable distances that could include a passage up to 2400 NM (Lancaster Sound to 

Bering Strait via Peel Sound passage). The entire passage may last more than ten days 

depending on ice conditions and season of transit (Lasserre, 2014). A computer based 

route planning simulation in public 3D GIS (Chang et. al, 2015) using Google Earth was 

                                                 
44 CCSM4: Community Climate System Model version 4 
45 CMIP5: Coupled Model Intercomparison Project, Phase 5 
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employed to conduct a cost efficiency of using the NSR as compared to the Suez Canal 

between major ports in Asia and Europe. This research paper is proposing GIS-based 

route optimization using ENCs and CIS ice charts followed by a Cost Benefit Analysis of 

the NWP vs. Panama route. The goal of both the studies may be similar but the 

approaches differ. 

 

 

 

 

Figure 3: Schematic view: Trans-Arctic shipping route (via NWP) 

Source: Author 

The study will conduct a Cost-Benefit Analysis and cost comparison of operating 

containerships via the Panama Canal and the Northwest Passage (seasonal) between 
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Tokyo and Rotterdam. Such an approach has been used (Lasserre, 2014) by a few other 

researchers with different methods to calculate the ice-bound segment (NWP) of the 

route. Bunker fuel costs alone account for the largest share among the Voyage Costs ( 

(Stopford, 1997) a ship owner should budget for as prices depend on the supply and 

demand situation and mirror the crude oil price swings in the global market. Somanathan 

et al., (2008) for instance, have taken historical ice data and year-round transit instead of a 

seasonal transit in the NWP to arrive at the ‘Required Freight Rate’ (RFR). The seasonal 

transit method would use the current sea ice data and as such may predict a much better 

transit time in the NWP than historical ice data. The Cost Benefit Analysis as proposed in 

this study makes the overall cost calculation much more practical for trans-Arctic 

container ships trading between ports in NE Asia and NW Europe. A comparison between 

a low bunker price scenario and a high bunker price scenario is carried out for the two 

ship sizes and the two routes (Panama Canal and NWP) to test for any significant 

variation in the Required Freight Rate. 

 

2.9.1 Limitations: Cost-Benefit Model 

The proposed Cost-Benefit Model involves various assumptions based upon the current 

commercial trends in the Container shipping trade. The independent variables include 

average load factor, fuel consumption and bunker fuel price for a hypothetical Panamax 

and a Neo-Panamax vessel. The average load factor is extremely sensitive to the overall 

cost estimation and remains an unknown quantity for the NWP route due to a two-port 

rotation. There are no trans-shipment ports factored for the NWP route. Insurance costs 
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for the NWP segment are estimated due to lack of shipping data on this passage. The 

assumption that the ships will use a uniform grade of fuel while transiting both routes 

may not be the case for the Arctic segment as some researchers have noted (Lasserre, 

2014). The load factor on the Panama Canal route assumed at 80% as the best estimate 

average, although there may be seasonality swings and container imbalance factors that 

may change with supply and demand dynamics. The introduction of the hypothetical 

Neo-Panamax container ship through the NWP is a novel concept that the study considers 

due to the recently widened third set of locks in the Panama Canal. The speed over 

ground achieved by a ship (PC-4) in open water steaming is the net result of engine power 

(forward thrust) and meteorological forces such as current, swell and wind. The same ship 

must surmount level ice resistance in addition to the forces of wind and current (assuming 

same as open water) to log a similar ground speed in ice covered waters. Higher fuel 

consumption is anticipated for the ice bound segment, other things being equal. 

Moreover, the fuel consumption in case of the ice classed (PC-4) ship may add an 

additional factor of uncertainty in the fuel consumption when compared to the non-ice 

classed container ship of the same size. The fuel consumption is assumed to be uniform 

across both vessel classes irrespective of open water or ice navigation resulting in an 

approximation in the Cost Benefit Analysis. 

 

2.10 Voyage Planning in NWP: Proposed Solution in GIS 

While every study contributes towards dissemination of knowledge, the Computer-aided 

Arctic Route Optimization Model (CAROM) may fill up the desired gap as a practical 
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and operational solution to route planning and decision making in ice covered waters 

(Figure 4). The data input used to construct the model is familiar to ship navigators who 

use the hard copy paper format on board ships as a routine. The proposed computer-aided 

route analysis aims to ensure the end output is an optimized route in a digital format 

easily shared with multiple users (shipping company, charterers etc.) and communicated 

on board to the end user via satellite link. The waypoints so obtained not only prepare in 

voyage planning, but contingency plans involving icebreaker support may be determined 

well in advance since the system uses the AIRSS/POLARIS (section 3.3.2/3.3.4) 

evaluation criteria to calculate the Ice Numerals based on the latest available CIS ice 

charts.  
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Figure 4: Computer-aided Arctic Route Optimization Model (CAROM) 

Source: Author 

Speed-in-ice plays a vital role in establishing a hierarchical approach to the path of least 

resistance along the route and a methodology to estimate the same from the ice datasets is 

necessary. The study envisages the determination of a ‘Safe Navigation Zone’ in the 

NWP by applying expert knowledge techniques to predict optimized shipping routes 



52 
 

among a set of alternative routes. The ice charts overlain on the ‘SNZ’ layer are used to 

find the path of least resistance in ice covered waters with speed inputs from the Ship-

Transit Model. The tools used to construct the CAROM include the relevant ENCs, the 

three shipping routes in the NWP, the CIS ice charts and the ArcGIS suite for spatial 

analysis, digital cartography and route prediction. 

2.11 Summary of Research Literature and Gaps 

The chapter reviewed existing literature on currently available navigational and ice data 

and the digital platform to conduct spatial analysis and route modelling in GIS. The study 

found only one instance (Chang et. al, 2015) of literature that specifically addresses a 

maritime route optimization model using GIS, although Google Earth is used for 

navigation and a high -geometry maze router with weighted regions implemented to 

conduct route optimization in the Northern Sea Route.  

The proposed research objectives are unique due to the sheer breadth of related literature 

needed to conduct an interdisciplinary study of this nature. A creative thought process to 

interface the various branches of science is necessary to develop the proposed models. 

Digital maritime chart data is required to conduct spatial analysis besides the ice datasets 

of the Canadian Arctic provided by CIS. ESRI’s ArcGIS suite is the software of choice 

for the reasons outlined in this chapter. The Northwest Passage has significant gaps in 

charting and hydrographic surveying that affects the quality of chart content on the 

electronic navigation charts. The economic analysis model literature reviewed for the last 

two decades does not provide a robust way to calculate the transit time in the NWP 

segment. A simple distance calculation and an assumed average speed in ice may not give 
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an accurate time of passage through the ice. The ‘Required Freight Rate’ computation 

methods reviewed is a ratio of the estimated costs in the open water segment (Atlantic 

and Pacific Oceans) and the ice segment (NWP) to the total number of containers (TEU) 

transported per year. The calculation of transit time in ice covered waters, although 

mentioned in some studies does not provide any insights into solving the ice route 

segment separately. The proposed Route Model will determine the actual distance sailed 

in the NWP besides the time of transit and use the Riska method for Ship-Transit 

Modelling. The Riska method as explained earlier, in Baltic Sea ice transits is a practical 

approach and requires minimal assumptions to calculate ice resistance. Almost all the 

data needed in the formulae is available from shipyard plans of the ship in questions 

besides the known constants. The ‘RFR’ approach for the CBA focuses on the ‘cost’ side 

of cash flow analysis and does not depend on volatile freight rates to estimate profitability 

margins. The next chapter delves in the methodology required to assemble the ‘tool box’ 

necessary to develop the route model.  
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Chapter 3: Research Methodology 

 

3.1 Introduction 

It is evident from the literature review that an interdisciplinary approach is required to 

achieve the stated research objectives. The relevant data might not be full of the desired 

quality but is currently healthy enough to devise a prototype route model using the 

existing software tool ArcGIS. The navigational and ice datasets are available in vector 

format; a workable method is at this moment required to bring all the elements on a 

common platform to conduct spatial analysis in ArcGIS. The CAROM requires the ship 

transit-in-ice model for the speed input to compute the waypoints for the optimized route 

determination. The two models may provide the desired ‘least cost’ route and a solution 

to the transit time in ice that will enable a comparative economic analysis of the trans-

Arctic shipping route as envisaged. A robust methodology is required to achieve the 

stated research objectives. Re-routing based on changing ice conditions require the 

frequency of ice data transmissions to go up significantly in the future. Evolving 

technology and availability of appropriate satellites with the spotlight on the Canadian 

Arctic is necessary to conduct effective voyage planning in ice. 
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3.2 Shipping Corridors and Navigable Routes-Arctic Region 

For this study, a Shipping Corridor is a passage connecting the two extremities of the 

Arctic Ocean that join the Atlantic and the Pacific Ocean. The three distinct passages 

(Smith and Stephenson, 2013) identified in the Arctic region (Appendix 16) are the 

Northern Sea Route (NSR), the NWP and the route through the Central Arctic, popularly 

called the Trans-Polar Route (TPR). 

The NSR is the name given to a set of shipping routes in the Russian Arctic joining the 

Bering Strait and Kara Gate. The NWP joins the Bering Strait to the eastern seaboard of 

Newfoundland via the Canadian Arctic Archipelagic (CAA) territory. The TPR connects 

the Bering Strait with the shipping lanes on the north- western coast of Norway via the 

Central Arctic. Both the NSR and the NWP shipping corridors have a number of 

navigable shipping routes (Wergeland et al., 2013) that leaves an alternative passage for 

icebound ships in the Arctic Ocean frequented by adverse weather conditions, short 

daylight and above all sea ice and icebergs to negotiate. Climate-induced change in sea 

ice concentration and thickness is vastly changing the technical feasibility of Arctic ship 

navigation for the better. The GCMs project longer summer season and gradually 

diminishing ice across the Arctic by the middle of this century (Smith and Stephenson, 

2013). The Arctic Transportation Accessibility Model (ATAM) projects commercial 

shipping to commence between 2040 and 2059 in the NWP (Appendix 16). The ATAM 

projects September navigation in the NWP by ‘PC-3’, ‘PC-6’, and ‘OW’ vessels 

assuming various climate-forcing scenarios. This study has identified three navigable 
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routes in the Canadian Arctic (Figure 5) that ships of various draft and disposition may be 

able to use.  

The three routes identified in the NWP are: 

• The M’Clure Strait (MS) route  

• The Prince of Wales Strait (POWS) route  

• The Peel Sound (PS) route  

The ‘MS’ route is the widest among all three routes as it exits the NWP (north of Banks 

Island) and a bit longer (948 NM) than the ‘POWS’ route (941 NM). One cannot predict 

the quantum of ice drift (dependent on current and wind direction) and the ensuing ice 

accumulation in parts of the M’Clure Strait with precision that introduces an element of 

uncertainty regarding a convenient and fruitful transit through the NWP. Liner shipping 

companies (container shipping) do not prefer delays due to commercial reasons and prior 

scheduling commitments. Even though the ‘MS’ route is considerably shorter than the 

‘PS’ route (1282 NM), the presence of MYI adds to the uncertainty and the overall cost of 

the transit. The ‘POWS’ route provides the shortest route alternative, but the vessel does 

have to pass closer to the coast (Victoria Island) in restricted waters, unlike the expansive 

‘MS’ route. The ice regime is generally more favourable in the ‘POWS’ and thus offers a 

good alternative of a safe passage short of an icebreaker escort, should the M’Clure Strait 

be blocked with MYI. 
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The Canadian Arctic Archipelagic area provides a somewhat more diverse routeing 

scenario with alternative routes and complex sea-ice climatology. The Northwest Passage 

is thus, seen as a more challenging region to model, but offers a series of route 

alternatives for ships. This study has thus concentrated on developing a prototype model 

for the NWP with the expectation that a model that worked for this area would be more 

easily adaptable to other ice prone shipping regions including the NSR or the Trans-Polar 

Route. 

 

Figure 5: Shipping Routes-Northwest Passage 

Source: Author 

A Neo-Panamax Container vessel (draft 15 meters) may navigate with a safe under keel 

clearance on both the ‘MS’ and ‘POWS’ routes as per nautical charts published by CHS 

(Fisheries and Oceans Canada-C, 2016). The ‘PS’ route passes through a number of 

narrow passages particularly in the Victoria Strait and the Coronation Gulf before 

meeting the Amundsen Gulf but is deep enough for a Panamax container vessel (draft 12 
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meters). The ice regime along this route is generally more favourable and currently the 

most popular route for intra-Arctic traffic and resupply ships in the Canadian Arctic. 

Extreme caution is warranted due to the presence of ice in narrow and relatively shallow 

areas. A close-up analysis of all the three routes indicates that the ‘POWS’ route may be 

the best alternative for trans-Arctic vessels of all sizes and ice types mentioned in this 

study. 

 

3.3 Route Selection and Optimization 

Evaluating and selecting the most suitable navigable route is of tactical and strategic 

importance in navigation and existence of alternative passages provide the much-needed 

flexibility that the Canadian Arctic Archipelagic area presents. Strategic and tactical 

navigation is referred to voyage planning in open water and ice-infested waters 

respectively as explained in section 3.5.2. 

Proper route selection and speed of advance in ice-infested waters may be one of the most 

critical decisions an ice navigator must make during the entire voyage that can result in 

success or failure with catastrophic consequences at times. Improper route selection in ice 

may cause lengthy delays, costly ship-repair, and even abandonment in an area where 

appropriate maritime infrastructure such as proper docking and repair facilities are 

inadequate for commercial shipping. Appropriate route selection holds true for vessels 

navigating in almost all regions of the Arctic, and a proper assessment of the ice regime 
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and an underpinning knowledge of sea ice data, analysis, and voyage management is 

critical. 

This study investigates and analyses the three identified routes in the NWP shipping 

corridor using the concepts of Multi-criteria Decision Analysis to determine the ‘SNZ’ 

layer with the exclusion or ‘no-go’ areas built in the model. The parameters for exclusion 

zones (buffers) depend on the risk profile preferred by the Shipmaster/navigating officer 

for the vessel in question. A ‘Route’ analysis is subsequently conducted in ArcGIS with 

the sea ice data acting as an impedance of varying magnitude to surface navigation. The 

scale of the ice impedance is a function of the total ice concentration, partial ice 

concentration, the stage of development, and the form of ice. The ‘Route’ solver 

application is a distance analysis tool in ArcGIS ‘Network Analyst’ extension that 

determines the ‘least cost’ path between a geo-referenced source and destination.  

 

3.3.1 ‘Zone/Date’ System 

Shipping Safety Control Zones that make use of a ‘Zone/Date’ matrix that specifies entry 

and exit dates for various ship types and classes regulate navigation in the Canadian 

Arctic. The waters are divided into 16 zones where Zone1 has the most severe ice 

conditions (Appendix 17) and Zone 16 the easiest ice regime to negotiate. It is a rigid 

system based on the premise that nature follows a regular pattern year after year. This 

premise does not seem to hold in the current climate change scenario witnessed in the 

Arctic. 
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The ‘Zone/Date’ Control table specifies the date of entry and exit; a ship type may use 

while navigating in a Zone. The input and output matrix is tabulated with respect to the 

ship category (‘Arctic Class’ and ‘Type’) from Arctic class 10 to Arctic Class 1 (9 

classes) plus five categories of ‘Type’ vessels from Type A to Type E. The Arctic Class 

has since been replaced by four categories (Canadian Coast Guard-B, 2013) termed 

Canadian Arctic Class (CAC) vessels ranging from CAC1 to CAC4. The CAC4 is 

equivalent to Arctic Class 3 (Transport Canada-B, 2010) that implies a PC4 vessel in the 

IMO Polar Code nomenclature. The ‘Zone/Date’ System has one major drawback – since 

ice conditions vary significantly from year to year, therefore, in a severe year, an amateur 

operator might attempt a voyage well beyond the capabilities of the ship. In a light ice 

year, the rigidity of the regulatory system may prevent ships from transiting areas that 

could be entirely free of ice ( (Transport Canada-A, 2010). An example of a 

PC4/CAC4/Arctic Class3 vessel explains the above point if the ‘Zone/Date’ matrix is 

followed strictly: In the context of the Northwest Passage, the ‘MS’ route passes through 

Zones 13, 6, 2, 1 and 4 from Lancaster Sound to M’Clure Strait irrespective of the year. A 

PC4 ship intending to take a voyage that starts on June 30 is able to enter the Lancaster 

Sound (Zone 13) but not permitted in Zone 6 (Parry Channel) before August 1 and cannot 

enter Zone 2 and Zone 1 (M’Clure Strait) before August 20 (Appendix 18) without regard 

to the actual ice conditions on that day. The matrix puts a severe restriction on the 

commercial transit of ships even though they may comply with strength criteria and if one 

considers, the entire route to resemble Zone1 for a moment, the navigation window is 

only available between August 20 and September 15, a mere 25 days per year. The 
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navigation window for a Type ‘C’ vessel shows that the ship cannot proceed through the 

‘MS’ or the ‘POWS’ route at all, irrespective of the season since a major part of the route 

lies in Zones 1 and 2. Some portions of the ‘PS’ route lie in Zone 6 that implies a one-

month navigation window (August 25-September 25) for a part of the NWP. The 

assumption of fixed schedules irrespective of current ice conditions in the ‘Zone/Date’ 

may hold an advantage for some shipping operators, but this does not seem to be a 

practical solution for commercial transit shipping as the above examples prove. 

 The Canadian Arctic Ice Regime Shipping System (AIRSS) developed through the joint 

work of government and industry and introduced in 1996, is a more flexible and safe 

system (Transport Canada, 1997) intended to replace the ‘Zone/Date’ system shortly. The 

new ships built to CAC standards have the advantage of using both the ‘Zone/Date’ and 

the AIRSS in the transition period. 

3.3.2 Arctic Ice Regime Shipping System (AIRSS) 

The AIRSS emphasizes the responsibility of the Shipmaster for the safety of the ship and 

provides a more flexible framework to assist in decision-making. It requires a higher level 

of experience for ice navigators, and full use of available ice information. By using the 

system, the operator has broad discretion in the planning and execution of Arctic voyages. 

A transitional phase is currently in operation where the ‘Zone/Date’ system and the 

AIRSS are in use. Once the transitional phase is completed, the Shipmaster as an ice 

navigator or with the assistance of one (ice advisor), will be responsible for interpreting 

the existing and forecast ice conditions for safe navigation and passage planning 

(TP12259E, 1996). Outside the Zone Dates, ships using the Arctic Ice Regime Shipping 
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System may only enter an ice regime when the Ice Numeral46 is equal to or greater than 

zero. The AIRSS regulations require that the decision to get into an ice regime be 

dependent on the Shipmaster’s assessment that the ship can navigate safely through the 

ice regime. The gradual phasing out of the ‘Zone/Date’ system would put additional 

responsibility on the Shipmaster/ice navigator in the safe conduct of the passage while in 

the Canadian Arctic. The micro-management of the route to follow would involve 

calculation of Ice Numerals for each ice regime along the passage. Sea-ice is also 

subjected to spatial and temporal physical change as the ambient conditions of 

temperature, wind velocity, and direction changes. The physical characteristics of an ice 

regime such as Thin First-Year Ice may be different at -1ºC when the voyage started than 

at -30ºC a couple of hours later in the same ice regime.  

The Shipmaster may have to frequently adjust course and speed at short distances to 

reduce engine load and hull stresses brought about by dynamic ice loads in changing ice 

regimes due to extreme temperature variations. The determination of estimated speed in 

each ice regime is of utmost importance to achieve a balance between the safety of the 

ship and delay caused by reduced speed. The shortest passage may not be the optimal 

route to follow if the ship gets buckling hull damages or even beset while in ice. The ice 

regime happens to be the most critical factor in charting a course besides adequate depth 

of water and charted dangers.  

 

                                                 
46 Ice Numeral: A derived number based upon ship’s ice class and stage of development of ice. If IN<0, 
ship may not enter unescorted. 
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3.3.3 Ice Numerals-Decision Making in Ice 

The AIRSS architecture compares the actual ice conditions along a route to the structural 

capability of the ship. The basic definition of ice regime as per AIRSS is “an ice regime is 

composed of any mix or combination of ice types, including open water. An ice regime 

occurs as a region in navigable waters covered with generally consistent ice conditions; 

i.e. the distribution of ice types and concentrations does not change very much from point 

to point in this region.” (Transport Canada, 2015). Every ice type (including Open Water) 

has a numerical value that is dependent on the ice category (ice-class or Type) of the 

vessel. This number is the Ice Numeral (IN). The value of the ‘IN’ reflects the level of 

danger that the ice type poses to the category of ship. A vessel may not enter an ice 

regime if the ‘IN’ is negative without an escort or as advised by the authorities. The ‘IN’ 

for an ice regime is the sum of the products of ice concentration, in tenths, of each ice 

type and the Ice Multiplier. The Ice Multiplier table is prepared by AIRSS for seven ship 

classes (CAC)47 and nine ice types ranging from ‘Open Water’ (OW) to Multi-Year Ice. 

The Polar Class equivalence for the ships as determined by the Transport Canada 

(Transport Canada, 2013) is given in the modified ice multiplier table. Transport Canada 

introduced AIRSS whereby vessels could navigate in ice-infested waters based upon a 

mathematically derived ‘IN’ that is a function of the ship’s ice classification, the 

thickness of ice and ice concentration. Vessels are advised not to proceed unescorted in 

areas with negative ice numerals (IN<0). The Ice Numeral is derived from the formula: 

IN= (Ca*IMa) + (Cb*IMb) + (Cc*IMc) +……………. + (Cn*IMn) 

                                                 
47 CAC: Canadian Arctic Class 
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Where: 

 Ca = ice concentration in tenths of type ‘a.' 

IMa= ice multiplier of ice type ‘a.' 

Cn= ice concentration in tenths of type ‘n.' 

IMn= ‘Ice Multiplier’ of ice type ‘n.' 

The ‘Ice Multiplier’ is a numeral between + 2 and - 4 across eight ice categories (Grey 

Ice-MYI) plus open water (OW) and seven ship categories (CAC ice classification) as per 

the AIRSS ‘Ice Multiplier’ table (Table 3) with the Polar Class equivalence and SIGRID-

3 codes added. The Ice Numeral is, therefore, unique to the specific ice regime and a 

decision-making tool for route selection in the NWP. The route optimization model has 

utilized the AIRSS concept in the NWP for two categories of vessels namely the Polar 

‘Type A’ (PC4) that corresponds to the ‘CAC-4’ and Polar ‘Type C’ (1C) vessel 

equivalent to Canadian ‘Type C’ ship (Appendix 19). 
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Table 3 
Ice Multiplier Table (AIRSS) 

 

Note. Adapted from Canadian Hydraulics Centre report, “Scientific Analysis of the ASPPR Hybrid 

System for Type B Vessels,” by Timco, Collins and Kubat, 2009, pp10 

 Negative ‘IN’ regimes are considered ‘no-go’ areas and programmed as ‘restrictions’ and 

the positive Ice Numerals considered as ‘barriers,' the degree of impedance being 

inversely proportional to the speed in ice. CIS ice charts do not model pressure ridging 

and decayed ice in the current suite of products, hence excluded from the ambit of 

resistance calculations in the ship transit model signifying a weakness in the model. 

The AIRSS system does have its operational limitations, however, on several factors 

including ice concentration, ice type, and quantification of ice thickness among certain ice 

types (Thick First Year- Multi-Year Ice) among others. The concept of icebreaker 

escorted operations and how should the escorted ship adjust its Ice Numeral in assisted 

I I II III IV V VI VII VIII IX X XI

SHIP 

CATEGORY

Ice 

Description

Open 

Water

Grey Ice Grey-White Thin First 

Year-Stage1

Thin First 

Year-

Stage2

Medium 

First

Thick First Second 

Year

Multi-Year

Ice Thick(m) 0 0.10~0.15 0.15~0.30 0.3~0.5 0.5~0.7 0.7~1.2 >1.2 2.0~2.5 >3.0

OW G GW FY FY MFY TFY SY MY

0 84 85 88 89 91 93 96 97

Canadian Arctic 

Class (CAC)

CAC 3 PC3 Category A SHIP 2 2 2 2 2 2 2 1 -1

CAC 4 PC4 Category A Nunavik 2 2 2 2 2 2 1 -2 -3

Type A PC6 Category B 2 2 2 2 2 1 -1 -3 -4

Type B PC7 Category B 2 2 1 1 1 -1 -2 -4 -4

Type C 1C Category C B.Atlantic 2 2 1 1 -1 -2 -3 -4 -4

Type D 2 2 1 -1 -1 -2 -3 -4 -4

Type E 2 1 -1 -1 -1 -2 -3 -4 -4

SIGRID-3 Codes

Polar Class Equivalence (PC)

SHIP CATEGORY

ICE MULTIPLIERS
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convoys are some of the tactical and operational dimensions that a novel operational risk 

assessment tool called POLARIS48 is expected to usher in. 

3.3.4 Polar Limit Assessment Risk Indexing System (POLARIS) 

The draft Polar Code as adopted on 21 November 2014 (IMO- Draft Polar Code, 2014) 

stipulates additional guidance (Part I-B) in the form of limitations for operating in ice. 

Shipping companies and other maritime stakeholders have long felt the need to have a 

link between the ice classification of the vessel (Table 4) and the various ice regimes it 

may be operating during the year. An IMO constituted technical group led by the IACS 

has proposed a Risk Indexing System (POLARIS, 2014) with a goal to develop a 

decision-making system that can be used for voyage planning or in ‘real-time’ navigation 

from the ship’s bridge. The risk assessment philisophy for ‘real-time’ navigation implies 

actual ice conditions by visual observation, ice class, and operational mode (independent 

operation or icebreaker escort). The basis of POLARIS is an evaluation of the risks posed 

to the ship by ice conditions using ice descriptions consistent with WMO nomenclature 

and the ship's assigned ice class consistent with the ice classes referenced in the draft 

Code. 

 

 

 

 

 

                                                 
48 POLARIS: Polar Operational Limit Assessment Risk Indexing System 
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Table 4 
IMO- Polar Classification of Ships 

 

Note: Adapted from IACS “Requirements concerning Polar Class,” retrieved May 10, 2016, from 

http://www.iacs.org.uk/document/public/Publications/Unified_requirements/PDF/UR_I_pdf410.pdf 

POLARIS uses a Risk Index of Risk Values (RVs) which are assigned to a ship based on 

the ice class. The RVs may be used to evaluate the limitations of the ship operating in an 

ice regime using input either from historic or current ice charts or in real time from the 

bridge of the ship. The POLARIS uses the partial ice concentration approach to predict 

Winter Risk Values (WRV) for winter navigation (Table 5) based on ice classification 

and thickness. The POLARIS architecture makes an important distinction between 

voyage planning and real-time navigation for an escorted ship as far as the risk-value 

(RV) calculation methodology is concerned. The escorted vessel must add ten (+10) to its 

RV during voyage planning to cater for icebreaker assistance. For real-time bridge 

navigation, the escorted ship visually assesses the ice regime made by the icebreaker track 

Polar Class Ice Description*
PC1 Year -round operation in all Polar waters

PC2 Year -round operation in moderate multi-year ice conditions

PC3 Year -round operation in second -year ice which may include multi-year ice inclusions

PC4 Year -round operation in thick first-year ice which may include old ice inclusions

PC5 Year -round operation in medium first-year ice which may include old ice inclusions

PC6 Summer/autumn operation in medium first-year ice which may include old ice inclusions

PC7 Summer/autumn operation in thin-first year ice which may include old ice inclusions

* Based on WMO sea ice nomenclature
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with POLARIS and calculates the RIO49 based on its ice class that requires the 

Shipmasters of both the icebreaker and the escorted ship to be in close cooperation. 

Table 5 
Winter Risk Values 

 

Note: Adapted from IMO-Maritime Safety Committee, 94th session, “Technical Background to 

POLARIS” Retrieved May 10, 2016, from 

http://www.iacs.org.uk/document/public/Publications/Submissions_to_imo/pdf/consideration_and_

adoption_of_amendments_to_mandatory_instruments_pdf2417.pdf 

A table of Summer Risk Values (SRV) is arrived at by adjusting the WRV for some 

vessel classes and ice types in the summer season (Appendix 20). The SRV only applies 

if decayed ice is reported during the summer navigation season. Winter Risk values are 

applicable even in summer season if no decayed ice is reported (POLARIS, 2014) on the 

ice charts or by visual observations. 

A Risk Index Outcome (RIO) in the POLARIS is derived similarly to the AIRSS Ice 

Numerals as follows: 

                                                 
49 RIO: Risk Index Outcome 

WINTER RISK VALUES(WRV)

Polar Ship Ice Class Ship Ice Free New Ice Grey Ice G-W Ice T-FY(St-1) T-FY(St2) M-FY(st1) M-FY(st2) Thick-FY 2nd Year Light MY MY

Category - 0-10 cm 10 -15 cm 15-30 cm 30-50 cm 50-70 cm 70-95 cm 95-120 cm 120-200cm 200-250cm 250-300cm 300+cm

PC1 3 3 3 3 2 2 2 2 2 2 1 1

PC2 3 3 3 3 2 2 2 2 2 1 1 0

PC3 3 3 3 3 2 2 2 2 2 1 0 -1

PC4 Nunavik 3 3 3 3 2 2 2 2 1 0 -1 -2

PC5 3 3 3 3 2 2 2 1 0 -1 -2 -2

PC6 3 2 2 2 2 1 1 0 -1 -2 -3 -3

PC7 3 2 2 2 1 1 0 -1 -2 -3 -3 -3

1A Super 3 2 2 2 2 1 0 -1 -2 -3 -4 -4

1A 3 2 2 2 1 0 -1 -2 -3 -4 -4 -4

1B 3 2 2 1 0 -1 -2 -3 -3 -4 -5 -5

1C B.Atlantic 3 2 1 0 -1 -2 -2 -3 -4 -4 -5 -6

Ice Free 3 1 0 -1 -2 -2 -3 -3 -4 -5 -6 -6

Escorted Operations Add +10

Category-A

Category-B

Category-C
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RIO= (Ca*RVa) + (Cb*RVb) + (Cc*RVc) +……………. + (Cn*RVn) 

Where: 

 Ca = ice concentration in tenths of type ‘a.' 

RVa= risk value of ice type ‘a.' 

Cn= ice concentration in tenths of type ‘n.' 

RVn= risk value of ice type ‘n.' 

The POLARIS also gives out evaluation criteria for independent operations (Table 6) and 

icebreaker assisted operations (Table 7) and may serve as a good risk assessment tool for 

a Shipmaster both in the voyage planning stage as well as in ‘real time’50navigation 

during the course of the voyage.   

Table 6 
Criteria for Independent Operations 

 

Note: Adapted from IMO-Maritime Safety Committee, 94th session, POLARIS – proposed system 

for determining operational limitations in ice. Retrieved from 

http://www.iacs.org.uk/document/public/Publications/Submissions_to_imo/pdf/consideration_and_

adoption_of_amendments_to_mandatory_instruments_pdf2417.pdf 

                                                 
50 ‘Real Time’: Actual bridge navigation 

Independent Operations

RIO(ship) Category (A & B) Category-C

PC1-PC7 PC below 7

RIO≥0 Operation Permitted Operation Permitted

-10≤RIO<0

Limited Speed Operation 

Permitted Not Permitted

RIO<-10 Not Permitted Not Permitted
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Table 7 Criteria for Icebreaker assisted Operations 

 

Source: From IMO-Maritime Safety Committee, 94th session, POLARIS – proposed system for 

determining operational limitations in ice. Retrieved from 

http://www.iacs.org.uk/document/public/Publications/Submissions_to_imo/pdf/consideration_and_

adoption_of_amendments_to_mandatory_instruments_pdf2417.pdf 

This study has also used the POLARIS evaluation criteria (besides AIRSS) in the Route 

Optimization tool for decision-making in ice navigation. The POLARIS also gives out the 

thickness ranges of ice types between Thick First Year (TFI) and MYI, unlike the AIRSS. 

Calculation of average ice thickness is critical to the derivation of ship speed in various 

ice regimes that the author has utilized in the Route Optimization Model elucidated in this 

study. The Risk Index Outcome evaluation criteria stipulates marginal speed limitations 

for vessels of certain ice class should the RIO values satisfy the criteria -10≤ RIO < 0 for 

ships of certain ice categories (Table 8). The table indicates that a category ‘A’ ship (PC-

3 to PC-5) is advised to proceed at a maximum speed of 5 knots if operating 

independently and should not exceed a speed of 5 knots when escorted by an icebreaker. 
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A category ‘C’(1ASuper-1A) vessel, on the other hand is not recommended to proceed 

independently in the same ice regime but may proceed at a maximum speed of 3 knots, if 

escorted. 

Table 8 
Marginal Capability Speed Limitations in Ice 

 

Note: From IMO-Maritime Safety Committee, 94th session, POLARIS – proposed system for 

determining operational limitations in ice. Retrieved from 

http://www.iacs.org.uk/document/public/Publications/Submissions_to_imo/pdf/consideration_and_

adoption_of_amendments_to_mandatory_instruments_pdf2417.pdf 

The quantification of speed limitation in the POLARIS architecture acts as a useful risk 

assessment tool in decision making since speed is so critical to safe and efficient 

navigation in ice and particularly so in reduced visibility and during night navigation. 

Marginal Capability Speed Limitations

Ship Category

Independent Ship 

Operation (knots)

Escorted Ship 

Operation (knots)

A(PC1-PC2) NA NA

A(PC3-PC5) 5 5

B(PC6-PC7) 3 3

C(IASuper-IA) NA 3

C(Below IA) NA NA
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3.4 Prototype- Computer-Aided Route Optimization Model 

The study has conceptualized a methodology of solving maritime transportation route 

problems in ArcGIS using the available data in the NWP. The model developed (Figure 

6) is explicitly spatial and temporal in nature to facilitate its use in voyage planning and 

route optimization in ice. The model has utilized the existing concepts in the calculation 

of ice regime from the AIRSS methodology as well as the POLARIS concept wherever 

applicable. The proposed model is digital in scope and application and relies on a digital 

database of ice charts and electronic navigational charts. It does have shortcomings 

regarding the extent of ENC coverage and ice data quality currently experienced, but 

those areas will see a gradual improvement with advancing communication and satellite 

mapping technology by the middle of this century. Sea-ice would also have receded 

considerably as the ATAM projections allude to and the model will get better with 

evolving technology. 
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Figure 6: Flow-Chart: Prototype Route Model (GIS) 

Source: Author 
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3.5 Maritime Routes: Network Modelling in GIS 

The route optimization problem in ice navigation is essentially a spatial analysis problem 

that required an interdisciplinary solution in Geographic Information Systems (GIS). This 

study has integrated the world of Maritime Charting and GIS through MCDA to provide a 

solution to the route optimization problem. The GIS environment caters for spatial 

analysis on both Raster and Vector data sets. This study has performed the analysis in a 

Vector data environment that represents real world objects as Points, Lines or Polygons 

and stores information in ‘Shapefiles’ or a ‘Geodatabase’ (Kennedy, 2013). A ‘File 

Geodatabase’ (1TB) created for the purpose can store, query, and manage both spatial and 

non-spatial data, shared by several users simultaneously (ESRI, 2016). The goal is to 

share the optimized route output (waypoints) with the ship through ship-shore satellite 

communication or interfacing with existing navigation equipment such as the ECDIS. 

The Model concept is structured as follows: 

Goal: Evaluating a set of 3 identified sea routes in the Northwest Passage 

Objectives: a) Route Safety and b) Route economy                     

Attributes:  

Safety of the route would involve: 

i. Navigational constraints with respect to ship size e.g. draft and charted depth of 

water 

ii. Navigational hazards 
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iii. Resistance provided by sea-ice  

iv. Meteorological factors: Current, Wind and swell 

Economic cost path would involve- 

i. Length of passage- The longest route may not be the most expensive. 

ii.  Speed-in-ice: Sea-ice impedance will vary with ice concentration, stage of 

development, floe size 

iii.  Cost of fuel- assumed the same on all routes considering HFO/Diesel propulsion 

engines 

iv. Depreciation/maintenance- Thicker ice navigation, heavier ice pressure –paint 

flaking, hull scrubbing, frame buckling, likelihood of cracks /general weakening 

of ship structure due to external loads. 

v.  Insurance premium- Depend on vessel age, Ice class type, Ship type  

vi. Canal Fees/ Tariffs 

vii. Crew wages and administration charges 

viii. Capital cost of vessel. 

The above involves three models namely, a) Route Optimization Model (CAROM), b) 

The Ship-Transit-in-ice Model and the Economic Cost Model. This study has not factored 

the current/wind/swell but has used only sea-ice data that was available. Criterion map 

layers are built in ArcMap based on the above. Geoprocessing is carried out in ArcGIS 

and the Network Analyst Extension is used to compute optimized routes.  
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ESRI’s ArcGIS suite is the most convenient software among the various GI Systems 

available for reasons explained in section 2.6. The Canadian Ice Service and the NIC also 

use ArcGIS for producing ice analysis charts. The flowchart (Figure 7) displays route 

optimization process sequentially programmed in ArcGIS for spatial analysis and route 

solving. The three identified routes in the Northwest Passage are digitally scanned 

(geoprocessing) and tagged  for charted depth soundings (≤ 20 meters) in the ArcMap that 

is deemed safe for most of the global container fleet, Post-Panamax51 bulk carriers 

(WorldYards, 2016) and cruise ships comprising more than 80% of the global vessel fleet 

(Equasis, 2014) . This study conducts a validation process with the MV ‘Nunavik’ that 

made a voyage in September 2014 through the Northwest Passage to verify the CAROM 

derived optimized routes. 

 

                                                 
51 Post-Panamax: Denotes deep draft bulk carriers that did not fit the original Panama Canal lock gates.  
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Figure 7:  Route Optimization in Ice -ArcGIS  

Source: Author 

The study has also compared and simulated scenarios with two ship types 52 and two 

different months of transit (summer season) besides a route validation with the MV 

‘Nunavik’ to test the Route Optimization Model as mentioned above. The route 

optimization methodology as depicted in Figure 7 is explained in the following sections: 

3.5.1 Safe Navigation Zone (SNZ) 

The principal idea behind the ‘SNZ’ is the creation of a zone of safe water from the 

various S-57 ENC vector charts merged in the base layer. The base layer is created by 

selecting the relevant ENCs that the ship will use for passage planning in the NWP. A 

Spatial Decision Support System in the form of rule-based expert knowledge is applied to 

create an area of ‘safe’ water that incorporates all the charted dangers and cautionary 

areas where the ship must not venture and navigate at a safe distance with due regard to 

meteorological (wind, current etc.) and environmental variables (sea-ice, ice drift, ice 

pressure etc.) that can frequently change at sea. This study has modelled sea-ice 

resistance but other variables can be incorporated with data availability. Incidence of fog, 

reduced daylight and navigation in prolonged darkness in high latitudes may also be 

factored in the SDSS. The combined ice charts of the Eastern and Western Arctic will be 

overlain on the ‘SNZ’ layer and the ‘Route’ Solver applied in the Network Analyst. This 

process assimilates nautical data as available on the Electronic Navigation Charts and 

                                                 
52 Ship types: Polar class PC-4 and 1C  
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identifies all the dangers, cautionary areas and ‘rules of the road’53 that ships must follow 

to conduct safe navigation. ‘Rules of the road’ refers to the International Regulations for 

Preventing Collisions at Sea (1972) and essentially defines the conduct of vessels at sea. 

The recognition given to Traffic Separation Schemes (TSS) is a case in point that gives 

guidance in determining safe speed, risk of collision and conduct of ships when operating 

near a TSS (Rule 10). The Route Model will include the TSS as a constraint if the same is 

charted. Currently, the NWP does not have a TSS hence it is not modelled.  

The Mariner carries out a voyage planning before the start of a sea passage as stipulated 

under IMO guidelines (IMO, 2000) that include appraisal, planning, and execution and 

monitoring during the voyage. The underlying objective is to ensure the safety of 

navigation and protection of the marine environment, which, is the core philosophy of the 

IMO. A complete chapter on voyage planning and its functional requirements are 

included (chapter 11-3) in the draft Polar Code (IMO- Draft Polar Code, 2014) relevant in 

the context of this study. The demarcation of safe areas in relation to the ship’s draft and 

manoeuvring characteristics is essential to route plotting and voyage management, more 

so in the NWP where absence of hydrographic surveys, incomplete ENC coverage and 

lack of aids to navigation poses serious challenges that are well known and documented 

(Govt. of Canada-A, 2016). The S-57 Vector datasets contain multiple features aptly 

referred to as Geo-Object Classes (IHO object catalogue, 2000) and abbreviated as per the 

IHO nomenclature. Each chart contains hundreds of thousands of data points spatially 

separated but connected in a network of junctions and nodes. Computer-aided digital 

                                                 
53 Rules of the Road: International Regulations for Preventing Collisions at Sea (1972) 
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cartography is the fastest way of spatial analysis and decision support system currently 

available (Malczewski et al., 2015) for networks. ENCs of the NWP are used as the base 

layer for spatial analysis (vector charts) in ESRI’s ArcGIS suite. The relevant set of S-57 

Electronic Navigation Charts is merged to create a single base layer; before allocating a 

datum and projection to the map. Defining the projection for a dataset is a very important 

part of working in ArcGIS because every dataset has a coordinate system, which is used 

to integrate it with other geographic data layers within a common coordinate framework 

such as a map. Coordinate systems enable users to integrate datasets within maps as well 

as to perform various integrated analytical operations such as overlaying data layers from 

disparate sources and other coordinate systems. The geographic coordinate system and 

projected coordinate system of the ENCs as loaded in the ArcMap is found to be ‘WGS 

84’ and ‘World Mercator’ respectively. To overlay and integrate the sea-ice data, the 

projected coordinate systems of both the data layers must match. The original projection 

system of the CIS datasets for example is Lambert Conformal. It is converted to a 

Mercator projection after the sea-ice datasets are loaded in the ArcMap to prevent any 

conflict sing a geoprocessing tool. A ‘File Geodatabase’ is created in ‘ArcCatalog’54 and 

the map saved in ‘ArcMap’ for spatial analysis. A spatial query is performed to identify 

all charted depth data points less than 20-meter depth (depth ≤20 meter) and tagged. The 

identified data points are also marked with a guard zone/buffer based on the user’s safety 

preferences. The list of geo object classes (Table 9) identified may increase as per depth 

of information contained in the charts. The buffer limits can be easily adjusted as per the 

user’s preference, a distinct advantage of modelling. The navigational constraints and the 

                                                 
54 ArcCatalog: Interface to manage Geodatabase in ArcGIS 
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geo object classes selected have been arrived at from author’s experience as well as 

discussions with several Ice Pilots and Icebreaker Captains having expertise in Arctic 

navigation. 

Table 9 
Geo Object Classes and Buffers for ‘SNZ.' 

 

Source: Author 

Based upon the ship’s draft a judicious balance between route safety and route economy 

is essential. The list may get longer on charts that have more geo-object classes identified 

as safety parameters e.g. North Sea charts with oil exploration activities. The ‘SNZ’ layer 

incorporates all the limitations imposed (Figure 8), and the navigable area polygon is 

much smaller than the charted sea-area for the specific vessel under consideration. Large 

buffer values may increase safety at the cost of limiting the navigable area without any 

tangible benefits. The meta-object class ‘Coverage’ in ArcMap represents the entire sea 

area of the NWP. To achieve the ‘SNZ’ layer, the buffered area for each object class is 

algebraically subtracted from the ‘Sea Area’ polygon (Coverage) in a sequential manner 

as under: 

Geo-Object Class Buffer

SN NM

1 Coast Line & Islands 2

2 Charted Depth Soundings≤20 M 0.1

3 Obstruction Areas 1

4 Obstruction Points 1

5 Wreck 1

6 Un-surveyed Areas 0.1
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(‘SNZ’) Layer = (Coverage)-(Landarea_buffer) - (ObstructionP_buffer) - 

(ObstructionA_buffer) - (Wrecks_buffer) - (Unsurveyed-areas_buffer) - (Soundings 

≤20meter_buffer). The ‘Erase’ geoprocessing tool is used in successive steps to arrive at 

the final ‘SNZ’ layer. A schematic representation of the process is illustrated: 

 

 

 

Figure 8: Schematic diagram –Safe Navigation Zone (SNZ) 

Source: Author 

The three shipping routes as plotted on the paper charts are subsequently overlaid on the 

‘SNZ’ layer after the requisite horizontal datum allocation and map projection settings as 

explained earlier in this section. 
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3.5.2 Voyage Planning-Northwest Passage 

Voyage planning is an integral part of the vessel sailing plan and is executed from berth 

to berth (port of departure to the arrival port) in two phases namely a) the strategic phase 

while in open waters and b) the tactical phase during navigation in ice. IMO has put out 

guidelines (IMO, 2000) for the same and this forms a part of safety checklist during the 

ISM Code compliance audits55. The ‘monitoring’ and ‘execution’ aspect ensures that the 

routes as planned may change along the way, should the conditions related to safety 

change. Voyage planning took an added safety dimension in the Arctic waters as referred 

to in the IMO Polar Code (chapter 2) with the introduction of the Polar Water Operational 

Manual (PWOM) and recognized as a critical risk mitigation tool for Polar Navigation 

(American Bureau of Shipping, 2016). 

This study has conducted a voyage plan between two geo-referenced points, the ‘origin’  

being a point in Lancaster Sound (74° N,80° W), the ‘destination’ a point west of Banks 

Island (71.5°N, 128.566°W) on the nautical paper charts of the area and plotted three 

separate routes between the ‘origin’ and ‘destination’ (Appendix 21). The waypoints for 

all the routes plotted on the paper charts are subsequently transferred to the ‘SNZ’ layer 

in ArcGIS obtained in the previous section. The ‘Safe Navigation Zone’ layer acts as a 

base layer upon which the three routes are overlain from the waypoints obtained 

previously. The voyage planning and the subsequent route plotting is done for open water 

navigation (strategic) at this stage without considering any other environment variables 

such as current, wind and sea-ice. The route optimization algorithm is appropriately set 

                                                 
55 Audits: Carried out annually by approved surveyors 
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up to provide a solution once the route network is properly set up and defined in the 

‘Network Analyst.' Inadequate surveying and electronic chart coverage in the Canadian 

Arctic (Govt. of Canada-A, 2016) lead this study to merge S-57 ENCs and nautical paper 

charts with geoprocessing techniques to design a workable digital route network in the 

Northwest Passage. The study notes the entire area in the Dolphin and Union Straits and 

western parts of the Coronation Gulf is largely not surveyed (Figure 9), the only passage 

for ships transiting in and out of the Amundsen Gulf.  

 

Figure 9: Unsurveyed Areas-Peel Sound Route  

Source: Adapted from CHS charts 
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The Peel Sound passage is by far the most popular route (Figure 10) for destination traffic 

and resupply ships in the Canadian Arctic (Northwest Territories, 2015) with Coronation 

Gulf at the western end. 

 

Figure 10: NORDREG Shipping Traffic Data (2014) 

Source: (Northwest Territories, 2015). Retrieved May 10, 2016, from 
http://www.enr.gov.nt.ca/state-environment/73-trends-shipping-northwest-passage-and-beaufort-
sea.  

The shipping routes plotted on the S-57 ENC base layer pass through shallow water areas 

and narrow passages in parts of Victoria Strait, Coronation Gulf, and the Prince of Wales 

Strait. The western portion of the Parry Channel stretching from Viscount Melville Sound 

to the M’Clure Strait does not have S-57 ENC coverage, and neither do the southern part 

of Prince of Wales Strait and the northern part of the Peel Sound channel. Safety buffers 

of varying magnitudes are established along all the three routes wherever necessary to 
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complete the network with the existing electronic navigation charts. The ‘Union’ 

geoprocessing tool that preserves the attributes and features of all layers in the output is 

employed to join the additional features thereby creating the final ‘SNZ’ layer with the 

route layer overlain. The ‘Union’ function ensures that all information is preserved in the 

output. 

3.5.3 Random Route Network 

A route network is required between the ‘origin’ and ‘destination’ to provide the ‘Route’ 

Solver a choice of multiple nodes and junctions to compute the best route (optimized) 

solution. Random data points resembling a mesh is generated with the help of 

geoprocessing tools enables creation of the maritime network to traverse between the 

‘origin’ and ‘destination.’ The random route network for a portion of the Peel Sound 

Route is depicted (Figure 11) here: 

 

Figure 11: Random Route Geometry Network (GIS)-Peel Sound Route 
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Source: GIS mapping -Author 

 The shallow areas and buffer zones around the outlying islands can also be seen. This 

research has attempted route simulations generating random data points in the network. 

All the data points are triangulated into a triangulated irregular network (TIN) that meets 

the Delaunay criterion. The perpendicular bisectors for each triangle edge are generated, 

forming the edges of a Thiessen Polygon.  

The study conducted Route Modelling between 105 to 7*105 proximal polygons, the 

density of the route network limited only by the computer processing power. Thiessen 

Polygons are used for mathematical analysis in network modules. The polygon 

boundaries define the area closest to each point about all other points. The lower data 

point option (105 polygons) is favoured for the intended purpose after multiple iterations 

in a restricted space such as the ‘NWP-SNZ’56 to maintain a trade-off between computer 

processing speed and route network density. The next step is the introduction of a 

‘Feature Dataset’ in the ‘File Geodatabase’ to integrate the related feature classes57 

spatially and thematically with the objective of building a ‘Network Dataset’ and bring in 

the environment variables such as sea-ice data to integrate with the existing feature 

classes. This is done through a sequence of commands in the Network Analyst. The 

‘ArcCatalog’ tree is thus arranged (Figure 12) with all the ‘Feature classes’ under one 

‘Feature Dataset’ having the same projected coordinate (World Mercator) that had been 

set up earlier. The shipping route ‘Network Dataset’ also requires establishing 

                                                 
56 NWP-SNZ: Northwest Passage-Safe Navigation Zone 
57 Feature Class: A homogenous collection of common features-points, lines and polygons to represent real 
world objects on Vector charts having same spatial representation and common attributes. 
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connectivity and assigning values to defined attributes besides creating the network 

elements. A prerequisite of the ‘Network Dataset’ is the extraction of the ‘Feature Class’ 

(‘SNZ’) into the ‘Feature Dataset’ for the subsequent network assembly to be 

accomplished. 

 

Figure 12: Arc Catalog Tree- Network Dataset 

Source: Author 

A simple maritime transport network dataset is created using the ‘Network Dataset’ 

wizard as illustrated above; the connectivity tested for continuity and validity. 

Environmental variables can now be loaded into the network. The network can model any 

other environmental /meteorological variable that influences a maritime route network in 

ice namely, ice pressure, ice drift, current and wind data among others, although this 

study has dealt with the sea ice environmental variable only. 
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3.5.4 Analysis –Ice Charts 

Sea ice is the only environment variable that distinguishes Arctic navigation from open 

water ocean passages. A ship deals with the rest of the weather elements that affect the 

speed (swell, the wind, current and fog) and safe passage as a standard sailing routine in 

any part of the world, hence the navigational risk management in ice takes a stellar 

dimension. Information about ice thus becomes indispensable in the Arctic in general and 

more so in the NWP that will encounter tougher ice climatology than the rest of the Arctic 

as forecasted (Smith and Stephenson, 2013). A multitude of data sources including 

satellite and aerial reconnaissance (drones, helicopters, aircraft) and ship-sourced 

observations are increasingly becoming available that contain high-resolution digital 

imagery and better ice forecasts. This study has used sea-ice climatology data available 

on the CIS charts in the SIGRID-3 format. The spatial coverage of the CIS data includes 

both the Eastern and Western Arctic that covers the entire NWP, the focus area of this 

study. The temporal resolution for the Northern Canadian waters is weekly (summer), and 

bi-weekly (winter), and the digital charts are ArcGIS compatible (NSIDC-D, 2016). Sea-

ice data from the year 2014 for select dates from the months of June and September is 

utilized in modelling two scenarios with two ship types (Category ‘A’ and ‘C’) to conduct 

route analysis and optimized route prediction while navigating independently in ice. Ice 

datasets from 29th September’14 are used for the September modelling (Scenario-2) with 

the vessel MV ‘Nunavik,' a Category ‘A’ (PC4 class) ship. The other ship used in the 

study is the MV ‘Berge Atlantic’, a Polar Category ‘C’ vessel. The SIGRID-3 Vector 

datasets map the ice fields as polygons that include ice climatology parameters contained 
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in the attribute data tables. Three hundred seventy-five (375) ice polygons were analysed 

from the September ice dataset by segregating them into eight categories based on the 

total ice concentration (CT) numbers. The Partial Ice Concentration (CA, CB, and CC) 

and the Stage of Development (SA, SB, and SC) data for each of the categories are 

subsequently analysed. The average ice thickness for each partial concentration category 

is thereby calculated from the CIS datasets. The average ice thickness per ice regime 

category is thus, utilized to compute the Ice Numeral from the AIRSS ‘Ice Multiplier’ 

table. The Risk Index Outcome (RIO) as proposed by the POLARIS methodology closely 

resembles the AIRSS concept, and the RIO values are also calculated simultaneously to 

compare the two (Table 10) methods. 

Table 10 
Computation of Ice Numerals/Ice thickness 

 

Note: Adapted from CIS ice datasets September 29, 2014. Numbers in red indicate areas not 

recommended for navigation without icebreaker escort. 

The above table may act as an important voyage-planning tool for the Shipmaster/ice-

navigator as the data is acquired before the vessel enters the ice edge and at every chart 

update during the voyage, if available. The negative numbers in the table indicate areas 

September 29, 2014

Ice polygons Total Ice NUNAVIK B.ATLANTIC Av.Thickness NUNAVIK B.ATLANTIC

Concentration(CT) IN IN Meters RIO RIO

50 CT≤ 20% 20 12 0.25 20 10

20 20<CT≤40 20 20 0.04 30 22

13 40<CT≤50 20 12 0.2 29 13

11 50<CT≤60 14 1 0.5 24 4

2 60<CT≤70 15 -12 1 20 -9

25 70<CT≤80 20 16 0.3 26 10

55 80<CT≤90 20 -4 0.7 21 -17

199 CT>90% 13 -34 1.4 13 -34

375

Table-Ice Numerals/RIO/Ice Thickness
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where the vessel may not proceed without an icebreaker escort as per AIRSS guidelines, 

an excellent planning tool for the shipboard management to notify the relevant authorities 

and prepare for the contingency well in advance. The ice attribute table also contains 

predicted ice thickness per ice concentration (CT) category that is made use of in the ship 

Ship-Transit Model for computing the net resistive force offered by sea-ice to a ship in 

motion.  
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3.5.5 Ship Transit-In-Ice Model 

Various quantitative models have been put forward to predict ship resistance in level ice 

that includes both empirical and numerical (Valanto, 2009) derivations. While both 

approaches have their strength and weaknesses, Gustav Lindqvist (1989) presented a 

semi-empirical model of calculating ship resistance that is representative of standard 

methods without resorting to full-scale model tests. Riska, Wilhelmson, Englund and 

Leiviska, (1997) presented a modified version of the Lindqvist methodology assuming 

level ice resistance (Ri) to be linear with speed (v) where: 

Ri = C1+C2*v  (1) 

C1 and C2 being constant terms represented by the equation:  

C1= ��× �
�×�

�	�
×
×���  ×ℎ� + �1 + 0.021�����×
×ℎ�� + �� ×���� ×ℎ�� + ��  ×
×���� ×ℎ�� (2) 

C2= �1 + 0.063���!� ×ℎ��." + !�×
×ℎ�� + !� ×ℎ�  #1 + 1.2×�
�$ × %�

√' (3) 

The values of the constants f1, f2, f3, f4 and g1, g2, g3 and the symbol nomenclature used in 

the formulae are as described (Appendix 22). 

A distinct advantage of using the Riska method is that the rest of the parameters required 

to solve the terms C1 and C2 are known from the ship data calculations (Table 11). 

Having calculated the resistance in level ice (Ri), it is imperative to determine the net 

thrust available (Tnet) to the ship in ice regimes of various thicknesses. Riska et al., (1997) 

calculated the net thrust and the bollard pull using the formula: 
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Tnet(V)= (1 − �
� × *

*+,
 − �

�  - *
*+,

.�  / × 0�122 (4), 

Tpull= 34#56 ×7�$
�
8 (5) 

TNET (vlevel ice) = R i (6) 

The net thrust would be the algebraic difference of the available power (4) in that ice 

regime and the level ice resistance calculated in (1) assuming the resistance is linear with 

speed. A vessel performance table is thus, computed by plugging the ship’s parameters in 

the formula for incremental speeds and incremental ice thicknesses (Kotovirta et al., 

2008). The table shows that a ship would exhaust (equation 6) all its available engine 

power to move ahead in the ice of certain thickness beyond a certain speed as calculated 

by the formula. Performance tables thus constructed for both the Category ‘A’ and 

Category ‘C’ ship that used in the models. The extent of ice concentration also varies in 

ice regimes affecting the ship’s speed. The ship performance table is devised (Kotovirta et 

al., 2008) for speed between ice concentrations ranging from 5/10th to 10/10th ice 

coverage as per equation (7). The average ice thickness calculated from the ice chart 

datasets corresponding to the ice regimes as categorized provides the input to calculate 

the speed (Vlevel ice) in equation (6) that solves equation (9). Open water speed (vow) is 

assumed in ice concentrations ranging from 5/10th or less coverage (8) and is widely 

borne out of Shipmaster / Ice Pilot’s experience in ice-infested waters. A safe speed has 

more to do with a safe speed of operation considering visibility, operations in darkness 

and likelihood of icebergs/growlers in the area. The speed estimates may vary with the 

length of operator’s experience in ice and ship manoeuvring characteristics. The speed 
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estimation (vow) for ice concentration (CT≤ 50%) in the Ship-Transit Model is based on 

the author’s experience in ice infested waters with due regard to the likelihood of icebergs 

/growlers encountered in open waters, reduced visibility due to fog and operations in 

darkness. 

ΰ = 9�:;<=:�∗*+,?�:=:@<�∗ABCDCE FGC
�:;<=:@<� ∶ I60 J I J I90 (7) 

L��: I N I60 (8) 

O PQLQP RSQT U I V I90 (9) 

The speed calculated in the ship performance table is eventually used in the ‘Network 

Dataset’ built to model ice impedance as a function of the ship’s estimated speed in ice 

through the variable ice regimes. 

Table 11 
Ship Data: Resistance In-Ice Calculations 

 

Note: Calculations from Ship Parameters-Author 
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3.6 Electronic Navigation Charts-Interface with ArcGIS 

The digital route model as conceived has combined elements of cartography, ENCs, sea-

ice charts (vector) and integrated in them using Geographic Information Systems (GIS). 

The Canadian Hydrographic Survey publishes the Electronic Navigation Charts (.000) on 

CD’s for the Arctic in the volume ‘Nor-A’ and is available with distributing agents 

throughout the world. The ENC coverage of the Canadian Arctic is still incomplete as 

mentioned earlier and CHS nautical paper charts used in the route plotting to build the 

route network after digitization. A schematic view of the interface process between 

Electronic Navigation Charts and nautical paper charts in ArcGIS (Figure 13) follows: 

 

 

Figure 13: Schematic View-Voyage Planning in ArcGIS 

Source: Author 
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Electronic Navigation Charts like their paper-based counterparts are produced in different 

scales depending on the areas they portray. Charts of ocean areas, for instance, are in 

small scale (large area coverage) whereas; the coastal and harbour charts have greater 

detail ascribed to them (large-scale charts). The Northwest Passage comprises of multiple 

charts of different scales, and a complete route mapping requires merging separate charts 

to create a common base layer. A common cartographic projection and the appropriate 

coordinate system are allocated to all the map layers’ prior analysis in ArcGIS. IHO has 

specified an Object catalogue (Appendix 23), a data schema for the S-57 transfer 

protocol, the primary function being to provide a means of depicting real world entities 

(lighthouses, beacons, buoys, wrecks, etc.) on the charts. These entity types are referred 

to as feature object classes and ascribed attributes; called meta-data. The horizontal datum 

is set to WGS-8458, positions referred to in decimals of latitude and longitude, heights and 

depths set in meters (IHO object catalogue S-57, Appendix-A and Appendix-B). A 

navigable area of water safe enough for the vessel size is eventually achieved after spatial 

analysis incorporating all the safety buffers into account. CIS initiated sea ice charts in 

conjunction with Multi-criteria Decision Analysis is utilized to arrive at an ‘SNZ’ layer 

that serves as the principal foundation layer for network building and eventual route 

optimization. No other environment variables that affect ship speed is considered in the 

route modelling. The author has utilized his experience as well as inputs from several Ice 

Pilots and Ice-breaker captains to set up the parameters for the navigational constraints 

termed ‘buffers’ in the model. It is possible to adjust the buffer values based upon the 

draft and manoeuvring characteristics of the vessel and user preferences. A reasonable 

                                                 
58 WGS-84: Reference coordinate system used by GPS; established in 1984, revised 2004. 
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balance between route safety and route economy is thereby, achieved through the creation 

of the ‘SNZ’ layer. 

3.7 Random Route Geometry-NWP 

The ‘route’-solving algorithm in the model solves the least cost path between a fixed 

‘origin’ and ‘destination’ along the ‘SNZ’ determined earlier by MCDA-SDSS 

techniques. The route that the vessel would take between the two points involves a multi-

path network within the confines of the ‘SNZ.' The network consists of multiple nodes 

and junctions resembling polygons that the vessel may traverse to get an optimized 

routeing solution with the ice chart overlain. This study has conducted simulations within 

a range of 105 to 7*105 random points to generate random route geometry in the NWP. 

The accuracy does increase with polygon density but gets impractical for navigation due 

to the sheer number of vertices (waypoints) in a very confined area beside a marked 

slowdown in computer graphics display performance.  

 

3.8 Network Analysis with Hierarchy 

The Route Optimization model uses the ‘Route’ Solver with a hierarchical route network 

dataset created within the ArcGIS Network Analyst extension. The ‘origin’ and 

‘destination’ coordinates can be reversed for the model to travel in either direction 

between two fixed points along a random network of polygons (nodes and junctions) 

generated for this purpose. The ‘Route’ Solver in ArcGIS conforms to the well-known 

Dijkstra algorithm to solve shortest path route problems (ESRI, 2016). A hierarchical 
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network created to model ice impedance as a function of the ship’s estimated speed in ice 

through the variable ice regimes. The ratio of open water speed to the calculated speed in 

ice is termed ‘scaled cost’ within ‘Network Analyst.' The degree of difficulty to negotiate 

a certain ice regime is inversely proportional to the ‘scaled cost.' The ship clocks a higher 

speed in sea-ice with reducing ‘scaled cost’ and higher positive Ice Numerals. A zero 

speed or negative Ice Numerals are allocated ‘restriction’ in the ‘Network Analyst’ to 

enable the ‘Route’ solver avoid such areas and find a route of least resistance through sea-

ice. The ‘restrictions’ readily changed to ‘scaled costs’ if the ice regime becomes a 

positive numeral area in a subsequent ice prediction. 

3.9 Route Optimization (computer based)-NWP 

The ‘Route’ Solver in the Network Analyst is a distance analysis tool within ArcGIS that 

can calculate the most cost-effective route between a source and destination. The solver 

generates a series of intermediate vertices along the route, that are used as waypoints 

along the intended track after suitable smoothening (simplification) to make it useful for 

efficient navigation in ice. Ice impedance programmed as a time-based attribute in the 

network is a ratio of the ship’s speed in open water to the estimated speed in the ice of a 

tabulated ice concentration as noted earlier. The speed table (Appendix 24) is ship 

specific, and a function of the engine power and the total resistance offered in the level 

ice that may change with the ice regime. This study has categorized ice concentration into 

7 or 8 separate categories (depending on ice polygons) based upon the percentage 

coverage and calculated the estimated speed in each category to determine the ‘scaled 

cost’ of the barrier imposed by ice. Since the time of transit depends on the magnitude of 
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impedance through each category of ice, the optimized routeing solution is akin to 

practical navigation in ice. Furthermore, using hierarchy in a network analysis makes use 

of a heuristic that reduces the computation time by limiting the search mostly to the 

higher levels of the hierarchy ( (ESRI, 2016). 

3.10 Verification and Validation 

The Network Analyst extension uses Dijkstra’s algorithm to determine the shortest path 

between two fixed georeferenced positions in the ArcGIS suite. In the absence of a full-

scale verification on board a ship, the study has created the under mentioned methods to 

verify and validate the Route Model: 

I. Transit Case Study: Build 2 scenarios (Scenario 1 and 2) based upon season of 

transit with two types of vessels (Category ‘A’ and ‘C’) as defined in the draft 

Polar Code.  

II. ‘Nunavik’ Route Validation: Create a model to map the voyage of the MV 

‘Nunavik’ through the NWP with the ice datasets from 29 September 2014.  

III. Route Simulation: Apply simulation techniques to remove or add barriers or 

incrementally change impedance factors and analyse predicted outcomes. 

A Category ‘A’ ship is “designed to operate in Polar waters in at least medium first-year 

ice which may include old ice inclusion” (IMO- Draft Polar Code, 2014). The draft Polar 

Code defines a Category ‘C’ ship as one “designed to operate in open water or in ice 

conditions less severe than those included in Category ‘A’ or ‘B.'” For the Polar Code, 

Open Water “means a large area of freely navigable water in which sea ice is present in 



99 
 

concentrations less than 1/10.” The underlying reason for selecting the two categories of 

ships is a) ship data for both ship types was readily available; b) The two classes (‘A’ and 

‘C’) represent two extremities of ice classification and sea-ice extent for calculation of Ice 

Numerals. Months of transit (June and September) represent the beginning and peak of 

summer navigation season in the NWP. 

Table 12 
CAROM Validation methods 

 

Source: Author. 

The two scenarios for the Transit Case Study (Table 12) is developed as follows: Analysis 

of CIS ice data for the months of June and September to calculate the Ice Numerals for 

the ice regimes as explain in section 2.4.4.1. The SIGRID-3 datasets will also be analyzed 

to determine the average thickness of ice in each ice concentration (CT) category to 

calculate the resistance in ice (W�) and eventually the estimated speed. 

The ice class (PC4) cargo vessel MV “Nunavik” made a westbound voyage through the 

NWP in September 2014. This study has reconstructed the voyage in the Model for 

MV 'Nunavik' NWP-Voyage 23/09/2014 28/09/2014

A C

Scenarios PC4 1C

1 June June 2014 30/06/2014

2 September September 2014 29/09/2014

NWP Voyage Route Date

MV 'Nunavik' June POWS 30/06/2014

September M'Clure Strait 29/09/2014

September Peel Sound 29/09/2014

Route simulation

CAROM- VALIDATION METHODS

Transit Case Study

MV'Berge Atlantic

Year Date

Transit Category/ Class/Month

Route validation
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validation purposes with route data available on FEDNAV’s59 website. Although the ice 

charts were not obtainable for the exact days of the passage, the ice chart for September 

29, 2014 was used instead. The vessel had transited the NWP between 23 September and 

28 September 2014 (Nunavik Logbook, 2014) and a comparative route validation 

modelled to verify the ‘Nunavik’ route with the CAROM. 

A simulation study will also be conducted as a third method of verifying the CAROM by 

simulating additional barriers incrementally and test all the three routes in the NWP. The 

ice datasets will be the same used in the Transit Case Study. 

3.11 Economic Viability: Cost-Benefit Route Model 

For ocean transport solutions, a common measure of performance is the ‘Required Freight 

Rate’ (Stopford, 1997). Actual shipping rates depend on supply and demand, and can be 

above or below the ‘Required Freight Rate.' Shipping rates also reflect the commodity 

being carried i.e. value of goods (high value finished goods vs. low-value raw goods). 

The ‘RFR’ is a function of the following variables about the container ship under study: 

I. Annual cargo capacity of the ship via Northwest Passage/Panama Canal 

a. Number of round-trips/year 

• Speed 

• Distance 

• Port turnaround time 

• Canal waiting time 

• Downtime for maintenance/year 

                                                 
59 FEDNAV:  Canadian Shipping company, owner of the MV ‘Nunavik’ 
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b. Ship’s capacity/tonnage 

II. Operating cost 

III. Capital recovery of vessel 

The theoretical round trips/year is first calculated assuming the following: 

• Ship capacity utilization  

• No port delays assumed. 

• No downtime due to lack of demand or extreme weather/beset in ice is considered. 

• Sailing productivity factor –assumed 93% as per the industry norms. 

The ‘RFR’ thus calculated is exclusive of port charges and customs duties. 

In the current freight rate scenario, freight rates are extremely low, as the ‘Neo 

Panamax’60 container ships have flooded the market with not enough cargo to ship around 

the world. The shipping rates as witnessed in the Shanghai Containerized Freight Index 

(Figure 14) prove that no ocean carrier will be able to return cost of capital at these rates 

irrespective of the shipping route.  

                                                 
60 Neo Panamax: Container ships up to 49-meter beam that can carry more than 10000 TEUs through the 
expanded Panama Canal locks. 
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Figure 14: Shanghai Container Freight Index  

Source: Adapted from Shanghai Shipping Exchange (2016). Retrieved June 27, 2016, from 
http://www1.chineseshipping.com.cn/en/indices/scfinew.jsp 

 

3.12 Summary- Research Methodology 

Creation of the ‘Safe Navigation Zone’ by applying MCDA techniques is the building 

block of the Computer-aided Arctic Route Model (CAROM). The application of Spatial 

Decision Support System (SDSS) in the maritime domain requires navigational expertise 

in ice to allocate attributes to the several criteria contributing to the MCDA. The ‘SNZ’ 

acts as the bedrock of support for the subsequent random route geometry, ice chart 

overlay and the eventual route optimization process conceived in the study. The three 

models discussed in this chapter should collectively give us an answer to the economic 

viability of the NWP as a viable trans-Arctic route alternative to the Panama Canal. Sea-

ice seems to be the single biggest contributor to the uncertainty prevailing around ship 

scheduling and risk perception in the NWP. The chapter has provided a robust 
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methodology for the proposed models to provide a solution to the research questions 

despite challenges in charting, hydrography, quality, and consistency of ice data in an 

area where commercial shipping has not even begun, and many have perished in the past! 

The models had to make assumptions and rely on forecasts due to the ex-ante nature of 

the study. The study anticipates CAROM to predict the best (least cost) route amongst the 

three route alternatives based on the ice and navigation data provided. The study stresses 

the importance of quality of input data to expect a quality output. A workable computer –

aided model starts at a distinct advantage in route planning due to the constantly evolving 

technology aspect. The model will get better data inputs with a much higher resolution 

satellite imagery in the coming years as the use of drones to map ice fields increases. 

Charting, multi-beam depth mapping, and better infrastructure will also help in high-

quality ENC production at least in the identified shipping routes to design accurate 

models. Validation and verification process for the CAROM planned with case studies, 

route validation and ice data simulations should show encouraging results. A full-scale 

test on board a ship would have been the ideal verification to accomplish in the future 

with the cooperation of stakeholders. If the CAROM can predict the optimized route as 

planned, the economic model of the trans-Arctic route will be that much definitive with 

the proposed Cost-Benefit analysis. It is time to test the CAROM having set up the 

models as outlined in this chapter.  
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Chapter 4: Results and Discussion 

4.1 Introduction 

Having outlined the methodology, the Route Model is designed and created with the 

‘SNZ’ base layer and the ice information for the select dates from the CIS datasets. This 

chapter outlines the procedure to build the models for the two scenarios created for testing 

the CAROM. The models involving the two ships are tested for two different months in 

the summer navigation season (June and September) as explained in the two scenarios. 

Speed data from the Ship Transit-in-ice Model is tabulated in a ship performance table 

and a speed graph obtained for each ship. The input parameters for the CAROM is 

recorded with Ice Numerals calculated for each ice regime categorized from the ice 

datasets.  

 

4.2 Network Dataset- Inputs 

A ‘Network Dataset’ in the Network Analyst (NA) extension created to build the route 

network and the transportation model is the building block for the ‘Route’ solver. Of the 

five separate network analysis classes in the Network Analyst, this study has chosen the 

‘ROUTE’ analysis class for the optimization model. The ‘Network Dataset’ created for 

the two ships ‘Berge Atlantic’ and ‘Nunavik’ is loaded with the SIGRID-3 ice datasets for 

June 30, 2014 (Scenario-1), and September 29, 2014 (Scenario-2) in a ‘File Geodatabase’ 

(Can_Arc_2016.gdb) created earlier. The feature dataset (Atlantic_Net_100K) in the 

‘Geodatabase’ contains the feature class; the route analysis is conducted on the network 
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built around the feature class. The ‘SNZ’ arrived at through the MCDA-SDSS process 

(Safe_water_20m_Multi_Poly2Line_net)/ (Nunavik_Net) is the feature class imported in 

the dataset for building the network. Elements that control navigation in the network is set 

up as part of the Network attributes, the ‘length’ of each ice regime (a function of speed) 

allocated the ‘cost’ attribute. As the Network dataset name implies (Figure 15), the 

Nunavik’s route is analyzed on ‘Nunavik_JuneND’ and Berge Atlantic’s performance 

tested on ‘Atlanic_Net_100K_ND’ network dataset. 

 

Figure 15: Arc Catalog-Network Datasets- ‘B. Atlantic’ and ‘Nunavik.' 

Source: Author 

The ice impedance, mapped with the feature layer ‘Polygon Barriers’ in the Network 

Analyst is a function of ship speed in ice. “Barriers are part of the Network analysis layer 

and not of the Network Dataset” (ESRI, 2016) but can be edited in the Network Dataset 
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without access to any editing privileges. The ability to alter the barrier impedance has a 

distinct advantage in voyage planning since the resistance offered by ice is a variable 

phenomenon and may change during the voyage. The analyst is thus able to alter the 

impedance ratio with the changing ice conditions on the ‘fly’ if required. 

4.2.1 Scenario-1 

The ice dataset from 30 June 2014 is loaded as ‘Polygon Barriers’ (‘Restriction and 

‘Scaled Cost’) arranged in seven categories based upon ice coverage (CT) numbers. The 

barriers represent impedance along the route, the magnitude of which is a function of the 

level ice resistance in each ice regime. ‘Restriction’ barriers are non-traversable and have 

a default value of Zero (0). ‘Scaled Cost’ barriers are traversable and have a default value 

of one (1). The combined chart of the Eastern and Western Arctic yielded six hundred 

forty-seven (647) ice polygons that were analyzed to produce inputs for the Network 

Dataset (Table 13). The performance of each ship compared in each scenario and the two 

scenarios analyzed as they represent two distinct ice datasets. 

 

 

 

 

 

 

 

 



107 
 

Table 13 
Network Dataset-Input Parameters- ‘Berge Atlantic’ (June) 

 

Source: Author 

Two tables are thus generated per scenario, one for each ship that includes the Ice 

Numerals/RIO, average ice thickness, and estimated speed per ice coverage category. The 

IN’s are calculated as per the AIRSS methodology and the RIO’s as per the POLARIS, 

but the IN numbers are shown here for the sake of conciseness and brevity. The 

appropriate Ice Multiplier is chosen from the Ice Multiplier table and the Ice Numeral 

calculated for each vessel class. The stage of development data (SA, SB, SC) is converted 

for each partial concentration (CA, CB, CC) attribute by replacing the SIGRID-3 schema 

codes with ice thickness numbers and then averaged to get the size of ice per ice coverage 

(CT) class. The average ice thickness is required not only to calculate the IN numbers but 

remains a critical parameter for Ship-transit model in level ice. The modified Riska 

methodology is applied subsequently to estimate the ship speed in each ice concentration 

(CT) category. The Ice thickness Vs speed graph as calculated by the Ship-transit Model 

Berge Atlantic Ice+ Speed Data 30th June 2014

ID Ice_Poly Ice_Poly(CT) Ice_Num Av.Ice T Speed Scaled Costs N.Analyst

% IM*Ct mtrs Kts Model

1 130 <20% 10 0.25 9.91 1.27 Scaled cost

2 8 20-40% -1 0.56 9.72 1.30 Scaled cost

3 26 40-60% -5 0.6 8.46 1.49 Scaled cost

4 16 60-70% -15 0.84 1.94 6.51 Scaled cost

5 19 70-80% -26 1.44 1.17 10.79 Scaled cost

6 24 80-90% -22 1 0.58 21.76 Scaled cost

7 424 90+% -27 1.4 0 0 Restriction

Total 647 Open Water Speed 12.62

Av.Speed in Ice 5.55
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Of ‘Berge Atlantic’ (Figure 16) shows the predicted speed (ΰ) in various ice thicknesses, 

a function of the net thrust (engine capacity) and the resistance in level ice. 

 

Figure 16: Ice thickness Vs Speed graph- ‘Berge Atlantic’ (June) 

Source: Author 

The reduction in speed due to the resistance offered by sea-ice in the various ice regimes/ 

ice polygons is modelled as a ratio in the Network Analyst and acts as a hierarchy 

attribute. The ratio of open water speed to the calculated speed in each ice concentration 

shows the magnitude of resistance termed ‘scaled cost’ in the model for areas with 

aggregate positive speed. The ‘Berge Atlantic’ is modelled to go into all the ice regimes 

except where coverage exceeds 9/10th ice (CT> 90%); the speed has dropped to zero and 

modelled as ‘Restriction’ as higher ratios denote heavier impedance and reduced speed 

(Table 14). As per AIRSS, vessels are advised not to proceed without icebreaker escort in 

areas of negative Ice Numerals (IN<0). For the ‘Berge Atlantic,' a Category ‘C’ ship, all 
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areas except one (CT<20%) shows negative IN. If modelled as ‘Restriction,' the CAROM 

will not offer any optimized route solution since the ice regime was too unsafe for the 

vessel to proceed even though it had positive speed in most of the ice regimes. The study 

has placed a ‘scaled cost’ exactly for the above reason to test out the model whereas the 

ship required an icebreaker escort to complete the passage in a real operational situation. 

The CAROM should predict an optimized solution with the network activated, and the 

results analyzed. 

 The calculations for the MV ‘Nunavik’, a Category ‘A’ ship look entirely different for 

the same ice chart of 30 June 2014: 

Table 14 
Network Dataset-Input Parameters- ‘Nunavik’ (June) 

 

Source: Author 

The fact that only one ice regime (70% <CT ≤ 80%) could be found on a negative IN 

explains the ice classification, being a ‘PC4’ class it can navigate independently in much 

thicker ice regimes. The rest of the ice regimes bear high positive IN’s and the ‘Polygon 

Barriers’ feature layer is modelled as ‘scaled cost’ in all but the one with negative IN 

Nunavik Ice + Speed Data 30th June 2014

ID Ice_Poly Ice_Poly(CT) Ice_Num Av.Ice T Speed Scaled Costs N.Analyst

% IM*Ct mtrs Kts Model

1 130 <20% 18 0.25 9.91 1.31 Scaled cost

2 8 20-40% 13 0.56 10.50 1.24 Scaled cost

3 26 40-60% 15 0.6 10.24 1.27 Scaled cost

4 16 60-70% 13 0.84 8.75 1.49 Scaled cost

5 19 70-80% -6 1.44 4.08 3.18 Restriction

6 24 80-90% 14 1 6.61 1.97 Scaled cost

7 424 90+% 13 1.4 3.89 3.34 Scaled cost

Total 647 Open Water Speed 13

Av.Speed in Ice 8.23
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(IN= -6). It is interesting to note that the Ship-transit Model predicted a positive speed 

over the ground but recommended an unsafe area as per AIRSS for autonomous 

navigation. The ship performance can only be judged with the CAROM activated and 

results analyzed. 

A quick check with POLARIS methodology, on the other hand, considers this area to be a  

navigable zone (RIO= +6). The AIRSS and POLARIS tables show a subtle difference 

between the TFY-MYI range as far as the IM/RV values are concerned.  The Ship-Transit 

speed model has predicted the following graph: 

 

Figure 17: Ice thickness Vs Speed graph- ‘Nunavik’ (June) 

Source: Author 

The underlying assumption in the graphs is that the level ice resistance varies linearly                        

(Kotovirta et al., 2008) with speed. Although ice by far is the more predominant factor 

that affects speed (Mulherin et al., 2009) among all environment variables, the 
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assumption needs further full-scale model tests and empirical analysis (Riska et al., 2013) 

to establish a cogent relationship. The impedance factor is the ratio of open water speed to 

the calculated speed in the ice regime and establishes the hierarchy attributes for the 

algorithm in the eventual mapping of the route of least impedance. A closer inspection of 

the speed graph for both ships indicates relatively slower speed in the least ice 

concentration category (CT<20). A prudent ice-navigator would navigate with extreme 

caution in such waters due to the presence of numerous icebergs61and possibility of 

contact with floe-bergs and growlers remain high. The visibility in higher Arctic latitudes 

may be restricted severely due to fog and navigation during reduced daylight and 

darkness poses additional challenges requiring constant use of aids to navigation such as 

Radars. The ice datasets also indicate the presence of ice floes in certain ice polygons. Ice 

floes (different sizes) are identified and modelled as ‘Restriction’ in the feature layer 

‘Polygon Barriers’ as the ship would avoid such areas. In the absence of an iceberg chart 

of the Canadian Arctic, the icebergs are modelled as ‘Polygon Barrier’ feature layer 

instead. CIS does not produce Iceberg Charts north of 60° N (Environment and Climate 

Change Canada-A, 2016), neither is information provided on growlers and bergy bits. 

Increased shipping activity in the Canadian Arctic may result in the issuance of Iceberg 

Charts north of 60°N that will certainly make navigation much safer. 

 

  

                                                 
61 Icebergs-June data-set: 21 icebergs reported as per the ice chart in ice regime (CT<20%) 
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4.2.2 Scenario-2 

SIGRID-3 ice dataset from 29 September 2014 is made use of in this scenario (Table 15) 

having the same ships with the ice polygons arranged in eight separate categories. 

Table 15 
Network Dataset-Input Parameters- ‘Berge Atlantic’ (September) 

 

Source: Author 

The ice conditions indicate a much better ice regime since the ‘Berge Atlantic’ must 

contend with three ice regimes with negative Ice Numerals compared to six regimes in the 

June chart. The average ice thickness is considerably better, besides the speed through the 

ice regimes. The September month is historically the best month (NSIDC-A, 2016) for 

reduced ice coverage and thickness and the charts indicate as much for 2014.The number 

of ice polygons is far less in September (375) than June (647). The ‘Berge Atlantic,' a 

Category ‘C’ ship may require reduced icebreaker assistance than the month of June as 

per the IN values. The ‘safe speed’ practice (Enfotec Technical Services Inc., 1996) 

adopted in relatively open waters (CT<20%) is also observed in the September month due 

Berge Atlantic Ice+Speed Data 29th Sept 2014

ID Ice_Poly Ice_Poly(CT) Ice_Num Av.Ice T Speed Scaled Costs N.Analyst

% IM*Ct mtrs Kts Model

1 50 <20% 12 0.25 9.91 1.27 Scaled cost

2 20 20-40% 20 0.04 9.91 1.27 Scaled cost

3 13 40-50% 12 0.2 9.91 1.27 Scaled cost

4 11 50-60% 1 0.5 7.97 1.58 Scaled cost

5 2 60-70% -12 1 1.75 7.21 Scaled cost

6 25 70-80% 16 0.3 8.55 1.48 Scaled cost

7 55 80-90% -4 0.7 3.50 3.61 Scaled cost

8 199 90+% -34 1.4 0 0 Restriction

Total 375 Open Water Speed 12.62

Av.Speed in Ice 7.13
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to reported presence of icebergs62and likelihood of floe-bergs and growlers in such waters 

that are not mapped on the charts; extreme caution is warranted as a consequence. Ice 

floes (medium and vast size) are mapped and marked as ‘Restricted’ on the ‘Polygon 

Barrier’ feature layer and expected to contribute to the route optimization calculation in 

the CAROM model. The results will prove how the ship performs with the CAROM 

activated and the algorithm tested. 

The speed graph for the ‘Berge Atlantic’ in Scenario-2 (September voyage) shows a 

speed reduction of about 20% in ice infested open waters (CT< 20%), a decision to be 

taken by the Shipmaster from expert knowledge and may vary with experience in ice and 

ship type. The estimated speed for the rest of voyage follows the speed calculation 

formulae as discussed earlier. The vessel attained zero speed with 9/10+ ice coverage and 

predicted to have a high negative Ice Numeral (-34). The voyage plan could cater for 

planning an icebreaker well in advance of negotiating the heavy ice regimes. Voyage 

planning with optimized routeing will allow the NORDREG authorities in asset 

mobilization, planning, and deployment of icebreaker (Canadian Coast Guard-A, 2013) 

well in advance as resources may be thinly stretched in the Northwest Passage. 

 

                                                 
62 Icebergs-September data-set: 23 icebergs reported in CT<20% 
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Figure 18: Ice thickness Vs. Speed graph- ‘Berge Atlantic’ (September) 

Source: Author 

Increased shipping traffic in the future will put additional pressure on the authorities 

unless assets such as icebreakers increased in number (Parsons, 2010) and deployed 

strategically. 

MV ‘Nunavik’ fares much better in the September voyage (Table 16) when compared 

with the June voyage. The vessel has recorded high positive Ice Numerals in seven of the 

eight categories and ensured a navigable Ice Numeral (IN=0) in the remaining ice regime. 
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Table 16 
Network Dataset-Input Parameters- ‘Nunavik’ (September) 

 

 

Source: Author 

The average speed in ice has registered an increase (ΰ=9.5 Knots), and it remains to be 

seen which, of three route alternatives the CAROM would predict under the given 

conditions. The speed graph for September (Figure 19) registers a marked improvement 

over the June voyage although the reduction in speed in ice infested open waters 

(CT<20%) is due to the presence of icebergs and the likelihood of encountering floe bergs 

and growlers. The speed inputs for low ice coverage areas (<50%) is taken from the 

actual speed registered by the ship as reported to NORDREG during the voyage and the 

remainder is calculated from the formula.  

 

 

Nunavik Ice + Speed Data 29th Sept. 2014

ID Ice_Poly Ice_Poly(CT) Ice_Num Av.Ice T Speed Scaled Costs N.Analyst

% IM*Ct mtrs Kts Model

1 50 <20% 20 0.25 12.05 1.08 Scaled cost

2 20 20-40% 20 0.04 10.50 1.24 Scaled cost

3 13 40-50% 20 0.2 12.05 1.08 Scaled cost

4 11 50-60% 14 0.5 10.34 1.26 Scaled cost

5 2 60-70% 0 1 7.19 1.81 Scaled cost

6 25 70-80% 20 0.3 11.45 1.14 Scaled cost

7 55 80-90% 20 0.7 8.55 1.52 Scaled cost

8 199 90+% 13 1.4 3.89 3.34 Scaled cost

Total 375 Open Water Speed 13.00
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Figure 19: Ice thickness Vs. Speed graph- ‘Nunavik’ (September) 

Source: Author 

The intra-annual variability in ice thickness (Stephenson et al., 2013; Maslanik et al., 

2007) is excluded from these calculations, and uniform thickness is assumed between 

June and September 2014 for ice regimes beyond First-year Ice (FYI) indicating an 

apparent weakness in the model. 

4.3 Findings 

4.3.1 Validation: Results 

 

The study has reconstructed the ‘Nunavik’ voyage with the help of waypoints available 

from Nunavik’s Log Book (Fednav, 2014) and NORDREG reports.The actual voyage is 

compared with the optimized route generated by CAROM based upon the ice datasets of 
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29 June 2014. The Network Dataset input parameters for the model remain the same as 

the one conducted in the Scenario-2 analysis (section 4.2.2). 

The ‘Nunavik’ had transited the NWP between 23rd September 2014 (72.15 N, 070.38W) 

and 28th September 2014 (71.00 N, 133.00 W) on a trans-Arctic voyage from Deception 

Bay (Quebec, Canada) to Bayuquan (China) with a cargo of Nickel concentrate (The 

Northern Miner, 2014). 

The route network optimization model (CAROM) returned the following data output; 

results that corroborate the research objectives namely: 

a. Predicted the best route (POWS route) allowing for the navigational constraints 

and available ice conditions. 

b. Minimized interaction with sea ice, ice floes, and icebergs to the best possible 

extent. 

c. Calculated the estimated speed through ice resulting in better voyage planning and 

route economy. 

d. Predicted Ice Numerals, thus resulting in better planning and resource 

mobilization. 

A comparative assessment of the actual voyage and the CAROM results is presented 

hereunder: 
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Table 17 
Results: ‘Nunavik’ Voyage Vs. CAROM output 

 

Source: Author 

4.3.1.1 Limitations and assumptions 

There are several limitations in the validation study related to data availability and model 

input: 

a. The ice datasets should ideally have been analyzed for each day (23rd to 28th 

September) of the ‘Nunavik’ passage for best accuracy. The SIGRID-3 ice 

datasets are currently available once a week and the closest ice dataset available 

was on 29 September 2014. 

b. Assumed that the ice regimes during the original passage would not have been 

drastically different from modelled. 

c. The daily position report (1600 Z) NORDREG also includes the speed of the ship 

with the assumption that the reported speed in ice is averaged over the last 24 

hours. 

d. Lack of substantive empirical data from vessels engaged in ice navigation is a 

major problem that the route model must contend with in the study, more so in the 

Objective Nunavik Voyage Model Output

Choice of Route POWS Route Optimized-POWS Route

Ice Interaction Visual & Ice Charts Voyage planned with Ice datasets

Estimated Speed(Kts) 11.5 9.5

IN/RIO On board Calculation Calculated in advance

Distance(NM) 1345 1375

Transit Duration(Days) 4.9 6.0

VALIDATION 
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NWP. Nunavik is reported to be the first commercial cargo vessel to have 

transited the ‘POWS’ since the S.S. Manhattan in 1969 (Fednav, 2014) One 

should stick to an ex-ante approach for the time being until shipping traffic 

improves gradually as projected this century. 

The optimized route shows (Figure 20) the interaction with various ice regimes along 

the way that includes avoiding areas of heavy ice floe concentration (hatched brick 

red) in the Parry Channel east of the Prince of Wales Strait. 

 

Figure 20: ‘Nunavik’ Route vs. Optimized Route. 

Source: Author 

Both the ‘Nunavik’ route and the CAROM route follow the ‘POWS’ that affirms that the 

ice chart used for route optimization did not differ substantially from the actual ice 

conditions a few days earlier. The optimized route is computer generated and seen to 

avoid thicker ice areas along the way as it charts the route over the safe layer of water. 
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The computer-generated route is not as smooth as a manually plotted ‘Nunavik’ course 

line since it generates multiple waypoints with electronic precision while considering all 

the constraints. The course line is smoothened by the ‘Simplify Line’ geoprocessing tool 

to render it practically useful for navigation at sea. The tool removes the extraneous 

bends, the intrusions, and extrusions but maintains the shape of the course line. The new 

course line is inspected thoroughly to check if the Douglas-Peucker63 algorithm used for 

route simplification has not strayed into unsafe areas. The geoprocessing tool allows the 

user to vary the degree of simplification, editing vertices to maintain a balance between 

route safety and course line smoothening. A complete manual inspection of the route is 

carried out with each ‘Simplify Line’ operation for this purpose. 

 

Figure 21: Prince of Wales Strait: ‘Nunavik Route’ Vs. ‘Simplified Route.' 

Source: Author 

A snapshot of the routes in the ‘POWS’ (Figure 21) shows the respective position and 

shape of the optimized (Pink) and ‘simplified’ route (Green line) with the ‘Nunavik’ route 

                                                 
63 Douglas-Peucker Algorithm: used for ‘Line Simplification’ in ArcGIS 
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overlain. The S-57 ENC depicts charted area covered with more than 9/10th ice, charted 

depths, shallow water soundings, and the Princess Royale Island. The ‘simplified’ course 

line has breached the 2NM safety buffer near the eastern extremity of the island. The 

smoothened course line could be further adjusted by creating an additional vertex, and the 

line shifted, but with the current draft (11.8 meters) of the ‘Nunavik, it is considered 

relatively safe for navigation. The ‘Simplify Line’ algorithm does have shortcomings, and 

a thorough inspection of the route is necessary to ensure the best trade-off between route 

optimization and efficient navigation. The optimized distance is slightly longer 

(1375NM) than the actual voyage (Table 17) and the calculated speed in ice estimated at 

9.5 Knots. The optimized voyage puts the transit time for CAROM at six days, a day 

longer than the ‘Nunavik.' The distance and speed determination in ice are the most 

critical element that guides voyage economics since it is easier to estimate fuel economics 

besides the planned scheduling of the vessel, paramount to the shipping company. 

4.3.2 Transit Case Study: Results 

The ‘origin’ (74N, 80W) and ‘destination’ (71.5 N, 128.57 W) points for the case study in 

the NWP is kept the same for both ships and the CAROM. 

The CAROM undergoes a rigorous test (four times) with two ice datasets simultaneously 

for each ship with the following results: 
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Table 18 
Results: Transit Case Study: Scenario outputs 

 

Source: Author 

Each ship has a separate ‘Network Dataset’ of its own with the June and September ice 

data sets loaded and saved in two separate ‘ArcMap’ files for ease of spatial analysis and 

route mapping. The Route Optimization Model (CAROM) predicts the ‘POWS’ route for 

the ‘Nunavik’ in June and September but fails to give any route solution for the ‘Berge 

Atlantic’ (Table 18). A closer investigation of the ice concentration categories in June 

(section 4.2.1) reveals that 65% of the total ice polygons had more than 9/10th sea 

coverage with ice thickness averaging 1.4 meters and an Ice Numeral value of -27. The 

vessel being a Category ‘C’ ship is also underpowered to negotiate this ice regime and 

shows an effective speed of zero. The ‘Route’ solver investigates options on all three 

route alternatives but fails to find a favourable ice regime to predict an optimized route 

(Figure 22).  

Date of Transit Scenarios Optimized Route Ship CAROM Transit Time

Plotted Optimized

Av.Speed

(Knots) Days

No Solution B.Atlantic 941 NA 5.55 NA

30/06/2014 POWS Nunavik 941 1013 8.23 5.1

No Solution B.Atlantic 941 NA 7.13 NA

29/09/2014 POWS Nunavik 941 1037 9.5 4.5

1

2

Distance(NM)

Transit Case Study-Results
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Figure 22: ‘Berge Atlantic’ June Voyage- Routes blocked due ice 

Source: Author 

 

In fact, all but one category returns a positive IN that indicates a Category ‘C’ vessel 

would not have completed the voyage without an icebreaker escort on June 30, 2014.The 

conditions in September seem comparatively better as far as ice impedance is concerned 

but still not good enough (Figure 23) for the Category ‘C’ vessel to negotiate any of the 

routes in the NWP. More than 9/10th ice coverage could be seen in 53% of the ice 

polygons (section 4.2.2) having a negative Ice Numeral (IN= -34) with an effective speed 

of zero. 
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Figure 23: ‘Berge Atlantic’-September Voyage- Routes blocked due Ice 

Source: Author 

The Category ‘A’ ship, the ‘Nunavik’ can complete the passage successfully as the 

CAROM data indicates. The POWS passage being is the shortest among all the routes 

remains the passage of choice; the actual distance sailed (‘simplified’ route) is much 

longer, though, since the optimized route predicts the journey along the ‘SNZ’ through 

areas of least ice resistance generating multiple waypoints in the process. The September 

ice data and the estimated average speed (9.5 Knots) are better than the June statistics as 

is reflected in the Ice Numeral numbers. The month of September being the month of 

least ice extent historically (NSIDC-A, 2016), is reflected in the ship’s voyage 

performance as well. Consequently, the transit time calculated is 4.5 days. An obvious 

advantage of the CAROM is that the Shipmaster is aware of the predicted optimized route 

and the ice regime situation before entering the ice edge. The predicted route assists in the 

ship planning for icebreaker assistance as deemed fit in conjunction with NORDREG. 
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The difference in distance (POWS route) observed in the Validation Study (section 4.3.1) 

and the Transit Case Study (section 4.3.2) is due to different ‘origin’ and ‘destination’ 

coordinates. The Validation study applied the same coordinates in the NWP as the MV 

‘Nunavik’ to ensure parity. 

4.3.3 Simulation: Results 

The CAROM model did not offer a route solution for the Category ‘C’ ship due to the 

presence of thick ice completely covering the ‘Safe Navigation Zone’ in the NWP. The 

voyages can, however, be simulated and the veracity of the algorithm checked by 

incrementally reducing the impedance (‘Restriction’ to ‘Scaled Costs’) and shifting them 

around to check all the three routes. Changes in ‘Scaled Costs’ values in the ‘Network 

Dataset’ can have a significant impact on the route selection as well as coordinates within 

a route. Simulations carried out with ‘Line Barrier,’ and ‘Point Barrier’ feature layers 

yield interesting results. The shape of the feature layer chosen depends on the shape and 

spatial extent of the features involved. A flotilla of growlers or presence of an iceberg 

reported on the routes is modelled as ‘Line Barrier’ and ‘Point Barrier’ respectively. 

Thus, a Category ‘C’ ship is simulated for an all-weather passage through the NWP 

where a Category ‘A’ vessel may have difficulty negotiating icebergs in the summer. 

Such iterative simulations could come in very handy to train future Arctic ice-navigators 

on ship simulators. 
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Figure 24: Simulated Vs. Optimized Route- ‘Nunavik.’ 

Source: Author 

The simulated route (Figure 24) deviates around an area of growlers (Line Barriers) and 

an iceberg in Lancaster Sound from the optimized route of the ‘Nunavik’ as marked on 

the chart. The manually plotted course line (blue) as plotted on the ‘Safe Navigation 

Zone’ is drawn assuming open water for comparison purposes. 

Route simulation is also conducted with the September ice datasets and the Category ‘C’ 

vessel ‘Berge Atlantic.' The vessel failed to make the passage due to a tough ice regime in 

the Transit Case Study observed earlier. A two-step simulation is performed as follows: 

a. In this stage the ice polygons that aborted the passage (CT> 90%) are removed 

from the ‘Network Dataset’ since this category comprised about 53%, a 

significant area that contributed to heavy ice resistance. The ‘Route’ solver 

activated to recalculate the voyage predicts an optimized route through the 

M’Clure Strait (Figure 25). 
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Figure 25: Route Simulation M’Clure Strait – ‘Berge Atlantic.’ 

Source: Author 

b. In this stage, a restriction ‘Line Barrier’ placed across the ‘MS’ route in the Parry 

Channel and the route is recalculated again. The optimized route shows a solution 

through the ‘PS’ Route (Figure 26) that proves the decision-making ability of the 

CAROM with simulated impedances. 
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Figure 26: Route Simulation Peel Sound Route – ‘Berge Atlantic.’ 

Source: Author 

The results of the simulation study (Table 19) compare all the three routes, the simulated 

distances and average speed as calculated for each route. 

Table 19 
Results: CAROM Route Simulation 

 

Source: Author 

The simulated transit time also shows the route alternatives, as predicted by the model 

based on the simulated impedances in the Network Analyst. 

Date of Transit Optimized Route Ship Sim-Transit

Plotted Optimized Simulated

Av.Speed

(Knots) Days

30/06/2014 POWS-Route Nunavik 941 1013 1032 8.23 5.2

MS-Route B.Atlantic 949 NA 1012 7.36 5.7

PS-Route 1282 NA 1420 7.36 8.0

Distance(NM)

Simulation-Results

CAROM

29/09/2014
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4.4 Risk Mitigation and CAROM 

The Arctic region occupies an iconic status in the global geography, known more for its 

remoteness, ecological biodiversity, and frozen seas. It is also extremely rich in natural 

resources that remain largely untapped as climate change and technological progress have 

brought the commercial importance of Arctic firmly in focus (Lloyd’s, 2012). The 

diminishing sea-ice remains an existential threat to navigation as ship traffic in the Arctic 

increases progressively this century. The Arctic environment is highly sensitive to 

damage and is prone to suffer long-term impacts of events such as oil pollution. There can 

be many types of pollution including ship-sourced oil pollution due to contact damage 

with ice, ship grounding, and even ship sinking. Significant knowledge gaps exist in 

cleaning up oil from the cold and the enclosed Arctic Ocean, the long-term effects of such 

an eventuality even less understood. Ice avoidance and prevention of pollution is the key 

to risk mitigation in the fragile Arctic ecosystem. There are many enhanced risks that 

ships may face in the NWP over and above the normal risks encountered in sub-Arctic 

waters. They may include inter-alia ice contact, poor hydrography, and surveys, lack of 

ENC coverage, poor satellite communication, and lack of maritime infrastructure (repair 

facilities, Port of Refuge). The last few years witnessed substantive progress achieved in 

addressing the international regulatory framework governing the Arctic with the adoption 

of the safety and environmental parts of the IMO Polar Code. A broad spectrum of areas 

covered includes ship design, construction, training needs of seafarers, ship operations, 

and pollution prevention while considering the existing provisions of MARPOL and 

SOLAS. The implementation of the Polar Code will enhance safety and environmental 
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protection for remote operations in routine and extreme conditions. Development of a 

decision-making system meant for voyage planning in the form of POLARIS championed 

by the IACS is underway. The POLARIS presents a risk assessment tool for assessing 

operational limitations during ice navigation and provides a framework for further 

enhancements (IMO MSC.94/3/7). The CAROM tabled in this study takes another step in 

the domain of risk assessment and mitigation by developing a route optimization system 

taking on board all the concepts enumerated in the Polar Code and the POLARIS 

framework. 
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Chapter 5: Economics- Northwest Passage 

5.1 Introduction 

Commercial shipping is demand driven and goes wherever water flows. The case of 

maritime transport in the Northwest Passage is an apt example of ships venturing into 

waters where so many perished as the area had been frozen with ice and regarded as the 

‘Holy Grail’ by explorers. Diminishing sea ice has triggered diverse economic activities 

within the resource-rich Arctic that in turn provides the opportunity for transportation of 

goods. The fluvial mode is the cheapest and most environment-friendly transport among 

all forms of transport including Air, Road, and Rail (Stopford, 1997). The central focus of 

this study is facilitating shipping in the NWP because this segment remains the untested 

link between the Atlantic and the Pacific Ocean for a ship on a transit route between NW 

Europe (Rotterdam) and NE Asia (Tokyo). For this chapter, the study considers the NWP 

segment to include the ice-infested waters of Lancaster Sound (72.25 N, 70.66 W) to 

Bering Strait (66.07 N, 169.15 W) about 2400 NM. The ‘POWS’ is the preferred route of 

transit for distance calculation purposes as demonstrated earlier with the CAROM. This 

route constitutes about 31% of the total distance (7850 NM) between Rotterdam and 

Tokyo, the two ports identified for analysis. The speed and hence the time of transit in the 

open water segment of the two oceans is well documented and can be estimated if the 

distance between the ports (AXS Marine,2016) is known. The Route Optimization 

process and speed determination with ship transit-in-ice model have provided the answer 

to the time of transit in the NWP. The author assumes, the CAROM to extend beyond the 
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boundaries of the Canadian Archipelagic Area to include the Beaufort Sea and Bering 

Straits for the sake of brevity and ease of economic analysis. 

 

Figure 27: Trans-Arctic Shipping Route (Rotterdam-Tokyo) 

Source: Author 

 

 

 

 



133 
 

5.2 Cost-Benefit Analysis: NWP Vs. Panama Route 

Since the beginning of the 20th century, the principal commercial maritime routes have 

changed little, and the two trans-oceanic passages use the Panama and Suez Canal. 

Exponential growth in world trade has led to an even higher rate of increase in ship 

numbers causing congestion and longer waiting times for ships awaiting convoy passage. 

The economy of scale considerations has resulted in ship sizes, particularly container 

ships getting much larger in size that the Panama Canal could not handle due to width 

limitations (32.2 meters) in the locks. The formal opening of a wider third set of locks in 

June 2016 has facilitated ships up to 49 meters’ width gaining access to the Canal 

(Panama Canal Authority, 2016). The third pair of locks can accommodate container 

ships with loads up to 13000/14000 TEUs64 when compared to 5000 TEUs in the existing 

locks and doubles the capacity of the Panama Canal overall (Panama Canal Authority, 

2016). The expansion of the Panama Canal addresses the problem of congestion and size 

limitation only in the short-medium term, however, and an alternate route is required not 

only to accommodate bigger ships but more importantly to offer some competition to the 

existing entities. Ships have already begun using the Northern Sea Route in the last 

decade (Northern Sea Route Information Office, 2016) and the NWP is projected to be 

substantially ice free (summer season) by the middle of this century (Smith et al., 2013) 

to commercial ship transit traffic. This chapter conducts a Cost-Benefit analysis to 

evaluate the utility of the CAROM in improving such economic modelling and to assess 

the relative economics of shipping containers through the NWP and the Panama Canal on 

board ice classed and non-ice class vessels respectively. The methodology adopted is to 

                                                 
64 TEU: Twenty-foot equivalent units – the standard size of a shipping container. 
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calculate the overall costs of operating two sizes of container ships on the Rotterdam to 

Tokyo route (Figure 27) and determine the ‘RFR’ per TEU for the two routes. The ‘RFR’ 

computation methodology is a variant on the annual cash flow analysis that focuses 

exclusively on the cost side of the equation and balances with the revenue required to 

cover the costs (Stopford, 1997). Two Case Studies, one using a hypothetical Panamax 

size (5000 TEUs) container vessel and the other using a hypothetical Neo-Panamax 

(10000 TEUs) is conducted. The ice class ship (PC4) selected to transit the NWP is 

scheduled to be deployed via Panama Canal during the rest of the year and the non-ice 

class vessel takes the Panama Canal route for the entire year. 

5.2.1 Cost Comparison: NWP Vs. Panama Route 

The CBA involves a comparison of estimated costs involved in operating a Panamax (PC-

4 and OW class) and a Neo-Panamax container vessel (PC-4 and OW class) on the 

Rotterdam to Tokyo route via the Panama Canal and the Northwest Passage (NWP) 

simultaneously. The Panamax and Neo-Panamax container ships selected for this purpose 

include an ice-classed (PC-4) Category ‘A’ ship and a non-ice (OW) class container ship 

that transits the Panama Canal between the two ports for the entire year. The ice class 

container ship is required to transit the NWP in the summer navigation season (4 months) 

only. Container shipping may prefer the southerly route during the winter months to avoid 

scheduling uncertainties in the high north. Smith and Stephenson (2013) demonstrated 

estimates of Arctic marine accessibility (Table 20) this century under various RCP 

climate forcing scenarios for three separate ship types during the summer navigation 

season.  
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This study has assumed four months steaming (120 days) during the Arctic summer for 

the ice class (PC4) vessel via the NWP and the rest eight months through the Panama 

Canal. The ‘Required Freight Rate’ so obtained is compared for two different sizes of 

ships: Panamax and the Neo Panamax with two separate load factors (60% and 80%) 

ceteris paribus. 

Table 20 
Navigation season length-NWP –Spatial averages 

 

Note: Note: Adapted from “Projected 21st-century changes to Arctic marine access” by   
 Scott R. Stephenson, Laurence C. Smith, Lawson W. Brigham, John A. Agnew, 2013, pp37 
 

 The third set of Panama Canal locks can accommodate the Neo Panamax and so can the 

Northwest Passage. These vessels may become the new normal for ocean shipping in the 

NORTH WEST PASSAGE

RCP4.5

Days SD Days SD Days SD

2011-2030 89 19 79 19 69 19

2045-2065 109 13 96 18 83 18

2080-2099 114 17 94 18 84 17

RCP6.0

2011-2030 86 15 76 16 67 15

2045-2065 96 16 85 17 74 15

2080-2099 116 10 107 15 95 16

RCP8.5

2011-2030 84 16 75 15 66 13

2045-2065 121 4 115 8 105 12

2080-2099 122 1 120 4 116 6

RCP Representative Concentration Pathway- Climate forcing scenario

SD Standard Deviation

PC3 Polar Class 3

PC6 Polar Class 6

OW Open Water

Navigable Days /SD

PROJECTED-NAVIGATION DAYS-SUMMER (JULY-OCTOBER)

PC3 PC6 Non-Ice Class/OW
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future, if one goes by the current trend of mega container ship induction (Rodrigues et al., 

2013) to the global container fleet and prudent to investigate as such. 

The principal purpose is to test the economy of scale advantage on both routes assuming 

the NWP transit to be free of charge for the moment, unlike the NSR administration that 

imposes a significant ice-breaking fee for the passage. The container trade between Asia 

and Europe suffers from a trade imbalance (UNCTAD, 2015) that affects vessel 

utilization (load factor) in the various shipping strings (routes) among other factors. Ships 

with cargo from NE Asia to the West have a much higher utilization rate than the 

backhaul passage that mostly carries high-value goods and empties from NW Europe. 

The study has assumed an average 60 % load factor for the NWP route and an 80% 

average load factor for the Panama Canal route. The vessel utility assumption with 

respect to the NWP is solely for transit purposes (no intermediate ports to service) and the 

ship services Tokyo and Rotterdam for the entire year. In the liner-shipping model, the 

trans-shipment port (intermediate ports to offload containers) is a popular option than the 

two-port concept assumed in the study. The Arctic region does not have trans-shipment 

ports currently, hence the assumption. Lack of trans-shipment ports is partly the reason 

for a reduced load factor compared to the southerly route. 

A comprehensive cost analysis is conducted to calculate the Voyage costs, Operation 

costs and Capital costs based on current data for variables such as bunker fuel, Panama 

Canal transit charges, and LIBOR65 rates. The ships used (Table 21) in the CBA are of 

standard dimensions, and the fuel consumption is interpolated from a Speed-Fuel 

                                                 
65 LIBOR: London Interbank Offered Rate 
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consumption graph for containerships. The average bunker fuel prices (IFO 380 cst66) 

during the last ten years have varied within a US$ 200/MT to US$ 600/MT range in 

Rotterdam (Appendix 25). The study has used the current bunker prices (US$ 225/MT) 

and a higher range (US$ 550/MT) to compare the effect on the ‘RFR.' 

Table 21 
Ship Data- Control Table 

 

Note: Data for Neo Panamax container vessel from Argo Engineering and Design “Design of a 
Dual-Fueled, New-Panamax Containership” by Max Caballero, David Carrier, Jack Hamel, and 
Lexie Ludewig. 

 

The hypothetical Neo-Panamax ship has a full load draft of 15 meters and can safely 

transit the NWP as well as the new set of locks in the Panama Canal.  

5.2.2.1 CBA-1: Panamax Container Ship 

We calculate the annual cost accrued in operating an ice class Panamax vessel with an 

assumed load factor of 60% (4 months) and 80% (8 months) to a non-ice class ship 

                                                 
66 IFO 380cst: Grade of fuel most commonly used on ships 

Dimensions Panamax NeoPanamax

Length 294 Mtrs 360

Breadth 32 Mtrs 46

Draft 12 Mtrs 15

Engine Rating 40 KW 93

Max rated speed 24 Kts 24

Economical Spd 21 Kts 21

Average Speed -Ice 11 Kts 11

Fuel Cons 80 MT/day 200

Fuel Price 225 MT/Ton 225

Total TEU Capacity 5000 TEU 10000

Av.Load factor(60%) 3000 TEU 6000

Panama Canal Toll 60 US$/TEU 50

NWP-Ice Transit Fees 0 US$ 0
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making all the voyages through the Panama Canal with a standard load factor of 80%. 

The load factor is increased to 80% subsequently for the ice class ship to gain parity with 

the non-ice class ship and the economic viability ascertained. The freight rate (US$/TEU) 

that equalizes the cost/TEU is the ‘RFR’ that a ship owner must aim for to achieve 

economic parity. The trade imbalance is accounted for in the load factor for both the east 

bound and west bound trips. 

Table 22 
Comparison: ‘Required Freight Rate’-Panamax Vessel Load Factors 

 

Source: Author 

The Voyage Cost category primarily accounts for the bunker fuel costs and the Panama 

Canal tariffs. Bunker fuel costs account for 45% to 50% (Rodrigues et al., 2013) of the 

expenditure budget, by far the largest share. The fuel prices are highly volatile, not 

controlled by the ship-owner and vary worldwide even daily. The study has incorporated 

the current bunker prices (Athenian Shipbrokers, 2016) prevailing at Rotterdam 

($225/MT), the rates being cheaper than a Tokyo bunker stem. The Panama Canal tariff is 

dictated by the Panama Canal Authority (Appendix 26) and outside the ship owner’s 

Route Load Fuel Price Route Load Fuel Price

NWP 60% $225/MT NWP 80% $225/MT

Panama 80% Panama 80%

Annual Performance Annual Performance 

Via Panama Via Panama

12 M 12M

Voyage Cost $9,431,630 $8,471,612 Voyage Cost $9,431,630 $8,471,612

Operating Cost $2,232,000 $2,943,600 Operating Cost $2,232,000 $2,943,600

Capital Cost $5,415,696 $6,974,946 Capital Cost $5,415,696 $6,974,696

TEU's 51320 52200 TEU's 51320 58520

Annual Cost (US$) $17,079,326 $18,390,158 Annual Cost (US$) $17,079,326 $18,389,908

RFR TEU/US$ $333 $352 RFR TEU/US$ $333 $314

Panamax(5000 TEU's)

NWP+Panama

Panamax(5000 TEU's)

NWP+Panama
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remit as well. The NWP transit fees are assumed to be nil for the Canadian Arctic. The 

Operating Costs account for crew wages, insurance (H&M67, P& I68), regular repair and 

maintenance and the administration costs. The Hull and Machinery premium for the NWP 

segment is unknown since there is no empirical data available for the icebound route but 

assumed 80% higher than the Panama Canal route; the P&I premium is estimated to be 

30% dearer for the NWP passage. The rates reflect the risk perceived by the Marine 

Insurance industry on a largely uncharted route with no ports or ship repair facilities to 

resort to in case of contingencies. The perception and the premium may normalize as 

more ships transit the NWP in tandem with a gradual improvement in infrastructure in the 

coming decades and adequate risk mitigation measures in ship operation. The Capital 

costs account for the financing cost of the ships. The debt to equity ratio assumed 70% to 

30% with a seven-year term and the prevailing LIBOR rates (12 monthly) at 1.25%. The 

loan profile is built with a lending margin of 2% and a balloon payout in the end. The 

shipbuilding costs for both the Panamax and the Neo-Panamax ship reflect the latest price 

trend (Appendix 27) in East Asian shipyards. The Panamax estimated to cost US$ 47 

million and the Neo-Panamax valued at US$ 90 million with the ice class variants billed 

30% higher respectively, a modest assumption for the ice class variant and could be 

higher. The shipbuilding rates have been depressed considerably in recent times following 

vessel overcapacity primarily in the container ship segment (Clarkson, 2016) and the 

vessels used in the CBA reflect those statistics. 

                                                 
67 H&M: Hull and Machinery 
68 P&I: Protection and Indemnity 
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The total number of containers (dry type) transported for the year on each route is 

converted in TEUs for ease of calculation since there can be a mix of at least two 

different standard box sizes (20 feet and 40 feet length) if not more. The numbers arrived 

from the average load factor per trip is added for all the trips to get at the total volume 

transported (TEUs) per ship. The ‘RFR’ is the revenue/TEU that the vessel needs to earn 

to cover the costs and is the ratio of the consolidated costs and the annual volume 

transported. The Panamax RFR (Table 22) indicates the extreme sensitivity that the load 

factor can cause to the economic viability of the Northwest Passage. The NWP seems 

marginally preferable to the Panama route if the load factor is increased to 80% as it turns 

out a lower ‘RFR’ ($314/TEU) in the backdrop of a fixed period of transit assumed to be 

four months. Economic viability improves further if the length of transit exceeds beyond 

four months and that would depend on the rate and extent of receding ice. With a 60% 

load factor and a 4-month NWP transit, the route is clearly unviable, an 80% load factor 

does indicate mathematical viability but may be in the margin of error as far as 

assumptions go and hence not a clinching commercial argument. 
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5.2.2.2 CBA-2: Neo Panamax Vessel Comparison of ‘RFR’ 

The Neo-Panamax vessel is tested the same way, the difference being this is equivalent to 

two Panamax vessels carrying a consolidated load on one ship. The study wishes to test if 

large container ships will bring a tangible economy of scale advantage to the NWP. A 

Neo-Panamax ship may cost almost the same crew staffing and administration costs as a 

single Panamax ship transporting twice the load, but the new-building and fuel 

consumption budget with the current empirical data does not result in any significant 

savings. 

Table 23 
Comparison: ‘Required Freight Rate’: Neo-Panamax Load Factors  

 

Source: Author 

The Neo-Panamax RFR is marginally better ($ 304/TEU) than the Panamax estimates at 

80% load factor (Table 23) but not a convincing case considering the high capital costs in 

building and operating such a ship on a two-port rotation. Moreover, an 80% load factor 

equates to a huge volume of containers without trans-shipment possibilities. 

Route Load

NWP 60%

Panama 80%

Annual Performance 

Via Panama

12 M

Voyage Cost $20,606,040 $19,120,775

Operating Cost $2,232,000 $3,228,000

Capital Cost $10,204,821 $13,211,946

TEU's 102640 104400

Annual Cost (US$) $33,042,861 $35,560,721

RFR TEU/US$ $322 $341

Neo-Panamax(10000 TEU's)

NWP+Panama

Route Load

NWP 80%

Panama 80%

Annual Performance 

Via Panama

12 M

Voyage Cost $20,606,040 $19,120,775

Operating Cost $2,232,000 $3,228,000

Capital Cost $10,204,821 $13,211,946

TEU's 102640 117040

Annual Cost (US$) $33,042,861 $35,560,721

RFR TEU/US$ $322 $304

Neo-Panamax(10000 TEU's)

NWP+Panama
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A comparative analysis of the two ship sizes and types indicate the annual costs for the 

Neo-Panamax vessel equate to about 96% of the cost of operating two Panamax vessels 

independently. New generation Dual fuel (Diesel and LNG powered) large container 

vessels may result in more fuel-saving engine technology in the future that could reduce 

the costs further. The increase in the load factor to 80% does make the NWP more 

suitable for the Neo-Panamax size as well. The fuel consumption at an average speed of 

21 knots interpolated from the consumption Vs. Speed graph (Figure 28) is 2.5 times 

higher for a vessel twice the size. The costs will further amplify as the bunker fuel prices 

increase from the current low prices incorporated in the CBA (section 5.2). It may be 

interesting to assess the economic viability when the fuel prices are high (US$ 550/MT). 

 

Figure 28: Fuel consumption Vs. Container ship speed 
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Source: Adapted from Rodrigue, J-P, et al., (2013) 

Bunker fuel prices, a highly elastic factor but an inelastic commodity in maritime 

transport mirrors the global crude price fluctuations and forms the largest share of the 

operating costs. The study has considered the sensitivity of the bunker fuel costs on the 

NWP transit keeping the load factor at 80% (Table 24). A low fuel price (US$225/MT), 

translates into an ‘RFR’ share of 94% for the NWP compared to the Panama Canal rate. 

A high fuel price (US$ 550M/T), returns a 93% ‘RFR’ for the NWP signifying it is 

preferable to consider the NWP as fuel prices move higher. 

Table 24 
Economic Viability-NWP Route: Fuel Prices Vs. Vessel Size 

 

Source: Author 

The situation in favour of an NWP transit gets better with increasing vessel size and 

higher bunker fuel prices as the lower ‘RFR’ percentages demonstrate. No transit fee is 

applied in the calculations for the NWP, but an imposition of a transit levy on similar 

lines as the Northern Sea Route Administration in future may negate the slender cost 

Load Factor Fuel Price RFR %age

$/Ton PC NWP

80% 225 333 314 94%

550 503 466 93%

Load Factor Fuel Price RFR %age

$/Ton PC NWP

80% 225 322 304 94%

550 535 493 92%

Transit

PC Panama Canal All Year

NWP NWP(4M) Canal 8M

Panamax Size

RFR ($/Teu)

Neo-Panamax Size

RFR ($/Teu)



144 
 

differential in favour of the NWP, making it unviable. One may have to wait for an 

extended navigation season beyond the assumed four months to reap the benefits of the 

NWP, and that depends on how fast the sea ice recedes in future. 
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Chapter 6:  Conclusions 

6.1 Summary 

The interdisciplinary approach of research pursued in this study allowed synthesis of 

ideas and expertise from nautical science, engineering, and economics to connect via 

Geographic Information Systems. A maritime route transportation model in ArcGIS was 

developed with currently available datasets (nautical and ice climatology) and several 

limitations including charting, hydrography, spatial resolution and sea-ice thickness 

measurements among others. A rapid decline in Arctic sea ice and reports of emerging 

transport routes through the erstwhile frozen seas provided the impetus for this study. 

Emerging shipping routes in the NWP provided the challenge to marshal all the resources 

available to develop a workable maritime route model using GI systems. The study has 

addressed six fundamental research questions to achieve its stated objectives. The 

preparatory work was done that lead to the proposal identified an interdisciplinary 

approach in GIS to conduct maritime route network modelling. Several instances of route 

optimization in other modes of transport involving spatial planning and route 

determination already exist in the ArcGIS suite. The two pillars essential for digital 

mapping, spatial analysis and route optimization in the maritime domain are the nautical 

and sea-ice datasets in vector format. A literature review of CIS and NIC sea-ice charts 

identified ESRI’s ArcGIS as the GI system of convenience that the prototype model 

‘CAROM’ could use because of its analytical and network solution capabilities. ESRI’s 

software is also associated with the production of digital charts including the DCW since 
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1993 and as such draw upon a long experience in sea-ice chart production and analysis. 

Electronic Navigation Charts (vector format) produced by CHS is well supported in 

ArcGIS through the S-57 ESRI Viewer add-on that answered the first research question. 

CHS publishes Electronic Navigation Charts of the Northwest Passage compatible with 

ArcGIS. The digital data standard of the IHO (S-57) is the data protocol required to 

transfer Electronic Navigation Charts to the non-navigational ‘ArcMap’ environment for 

spatial analysis. The S-57 ENCs form the base layer for route plotting and route network 

creation. ESRI’s ‘S-57 Viewer’ facilitates the ENC transfer process. CIS publishes ice 

datasets for the Canadian Arctic in the SIGRID-3 (vector) format compatible with 

ArcGIS. CIS also uses the same software to produce their ice analysis charts. Thus, the 

two most essential elements required to build the model are available in a compatible 

format (vector) and supported by the ArcGIS suite. A complete digital maritime route 

network is a prerequisite to conducting spatial analysis and geoprocessing. Currently, 

CHS does not provide full ENC coverage of the NWP but they do publish paper-based 

charts. The routes plotted on the paper charts (non-ENC areas) were buffered on either 

side to check for safe water in relation to draft and other charted dangers and transferred 

to ArcMap. A feature class was created to join the transferred routes to the existing 

network on the ENCs thereby completing the digital maritime network in the NWP. The 

CIS ice datasets, although available on a weekly basis imported in ‘ArcMap’ thereby 

completing the requirements of the “Network Analyst’ to devise a workable model. The 

speed in sea-ice is essential to estimate a transit time in ice-bound routes such as the NWP 

that the Ship Transit-in-ice Model can predict in various ice regimes. The attribute tables 



147 
 

in the CIS ice datasets enable calculation of ice thickness necessary for the purpose with a 

certain degree of approximation due to the ‘missing’ or indeterminate values which, 

introduces an uncertainty in ice thickness averaging that the model has not accounted for. 

While the navigational data provides the ‘Safe Navigation Zone’ as a base layer 

contributing to route safety, the Ship-Transit Model contributes with speed through 

various ice regimes essential to model the hierarchy network with sea-ice impedance. The 

two together complete the elements that the CAROM requires to calculate the ‘least cost’ 

path for a certain ice dataset. The validation and simulation case studies in chapter 4 have 

proved the utility of the CAROM in predicting the waypoints a ship should follow to 

navigate the path of least resistance. 

The study demonstrated that the proposed model must be able to contribute operationally 

and tactically to the end user, the navigator on board. The ice navigator needs the 

waypoints when confronted with sea ice and all the challenges, the Northwest Passage 

embodies. The route model output is essentially a set of waypoints depicting the ‘least 

cost’ path for the vessel to traverse. The waypoints are a set of geographical coordinates 

can be plotted instantly either on the ECDIS or the nautical paper charts for voyage 

planning purposes while the vessel is underway. Distance and speed-in-ice are the two 

other parameters required to predict the transit time in the NWP segment that contributes 

in computing the entire trans-Arctic route for the final economic analysis. While the 

Mariner on board may be the biggest beneficiary of the CAROM tool, other stakeholders 

such as ship operators, port authorities, insurance companies, and Govt. agencies may 

benefit from the information provided. The CAROM is a good first step towards risk 
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mitigation and decision making in ice. It is, however, not intended to replace the 

judgment of the Shipmaster.  

 The comparative economic analysis may help shipping companies in vessel deployment, 

planning, and positioning of containers. The liner shipping trade (containerized cargo) is 

geared towards the provision of regular services between specified ports, as per fixed 

timetables and prices advertised well in advance (Haralambides, 2007). A major cost 

element that liner shipping companies deal with is the global positioning of empty 

containers to be stuffed and loaded onboard their ships while calling ports. The 

positioning of containers will be a good logistical exercise for a shipping company 

deciding to opt for trans-shipment along the NWP route and can only happen with 

container port infrastructure in place along the Arctic route. Until such time, an end-end 

two-port option is the only practical solution as assumed in the Cost-Benefit analysis. 

Chapter 5 has dealt extensively with the economic viability aspect analyzing the various 

scenarios with a 4-month navigation period through the NWP using ice class (PC-4) 

hypothetical container ships of the Panamax (5000 TEUs) and Neo-Panamax (10000 

TEUs) capacity. Calculations point to the economic unviability of a trans-Arctic route in 

comparison to the Panama Canal. Due to lack of empirical data, several assumptions were 

made pertaining to load factor, fuel consumption (open water and ice covered passage) 

and a no tariff scenario (NWP). Economy of scale considerations were also tested by 

doubling the number of container carried (Neo-Panamax vessel) and subjecting the 

economic model to two different fuel price bands (low and high fuel scenario). The RFR 

(USD/TEU) is marginally better with an 80% load factor, high fuel price and bigger ship 
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size in favour of the NWP but not good enough for a commercial ship operator to divert a 

vessel from the Panama Canal. A navigation season longer than 4-months is required 

coupled with trans-shipment ports for trans-Arctic shipping to be a commercial reality. 

This study applied a practical approach to maritime route modelling in GIS using data 

sources (sea-ice charts) and ENCs that the ships use for navigation, helped by the 

interdisciplinary convergence of thoughts and expertise as enlisted (Table 25): 

 

Table 25 
New concepts applied in route modelling 

 

Source: Author 

Concept Utility

MCDA-SDSS

Create Safe Navigation Zone relative to 

ship's draft

Safe Water Zone (SNZ)-Chart 

Layer

Create a safe zone of water relative to 

depth, ship's draft and charted dangers, 

cautionary areas

Ice Concentration Categories

Parsing ice polygons to calculate Ice 

Numerals/Risk Index Outcomes

Ice thickness - Partial 

concentration Categories Input- Ship transit-in-ice model

Ship Speed in Ice Regimes-

Concentration and Thickness

Input- Network Analyst. Ice impedance 

hierarchy table

Voyage planning and tactical navigation in 

ice

Distance traversed,time of transit in ice

Cost-Benefit Analysis CAROM outputs

Neo-Panamax container vessel Comparative cost evaluation

Computer-Aided Arctic Route 

Optimization Model (CAROM)
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6.2 Limitations/Challenges 

Maritime transportation in the Arctic could only begin with a sustained reduction in 

Arctic Sea-ice thickness and extent over the last few decades. It had been a frozen sea for 

centuries and thus deficient in maritime infrastructure besides the unique challenges of 

high latitude navigation. The receding sea-ice presents unique opportunities for 

commercial activities that trigger the need for increased shipping activities. Although 

shipping activities in the Canadian Arctic is low compared to the southern waters and the 

Russian Arctic, it is estimated that mining projects in the eastern Arctic alone will double 

the traffic by 2020 (Govt. of Canada-A, 2016). Population growth in northern 

communities, an increase in Arctic cruise tourism and the receding ice will bring in more 

ships to an area that is not adequately charted and surveyed. The current state of 

infrastructure such as ports, ship repair facilities, ports of refuge and aids to navigation in 

the Canadian Arctic is clearly inadequate to the impending rise in commercial ship traffic. 

Lack of icebreaking capacity and challenges in sea- ice data acquisition due to lack of 

satellites will directly affect the safety of ships that is projected to double and carries a 

perceived risk of ship-sourced pollution. The absence of Ice Service Specialists on board 

the Canadian Coast Guard ships as of 2014 is another limitation in the provision of ice 

services at a time when shipping activities are on the rise. Satellite surveillance in 

detecting oil spills due to increased shipping activity is a priority that goes hand in hand 

alongside sea-ice data acquisition with SAR imagery. The current shortage of satellite 

surveillance capabilities has resulted in reduced sea-ice detection capability. Spatial 

resolution and sea-ice thickness can be suitably incorporated in a geospatial model but the 
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available datasets have limitations currently that affect quality of source data inputs in the 

CAROM as well as the Ship-Transit-in-ice Model. 

Evolving technology will certainly improve this aspect with the provision of adequate 

space assets such as satellites focused on the Canadian Arctic and used for sea-ice data 

acquisition purposes only. Reporting of ridged ice data will certainly help in calculating 

resistive forces even better and data on ice pressure, and drift would add to the better 

speed predictions in ice. Sea and swell data overlay would have made modelling and 

speed predictions that much better. The Route Optimization Model presented in the study 

is a preliminary first step and bears testimony to the limitations experienced in the 

development phase, but we did manage to sail through the sea-ice. This interdisciplinary 

study required informed assumptions be made drawing upon author’s experience, inputs 

from Arctic experts, sea-ice and navigational data available in the public domain. 

6.3 Future Research Opportunities 

The model developed and exhibited has an extremely powerful aspect that lies in its 

digital scope with enormous expansion possibilities in future research work. CAROM in 

its present configuration is not constrained by volume of data inputs to include several 

environmental and ice climatology parameters added in ArcGIS, or any other compatible 

GIS suite provided the data be usable and readily available. Environment variables such 

as current, wind, ice- pressure, and drift may subsequently be included for spatial analysis 

to achieve better optimization results. High-quality ice climatological data and advanced 

versions of the uniform coding format (SIGRID-3) expected in the future may include 

data on ridged ice and, eliminate missing variables and undetermined sea-ice parameters 
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leading to better ice impedance factors. The CAROM is adaptable to any part of the 

world, even in open oceans, rivers, and lakes. Evolving technology and acquisition of sea-

ice data in ‘real time’ may transform the voyage plan from a static to dynamic mode but 

further research is required to test the practical usage of data streaming on a slow moving 

entity such as a ship. Several IMO initiatives including the e-navigation Strategic 

Implementation Plan (2015-2019) point towards the tremendous advantage the digital 

platform occupies in the global maritime strategy. The proposed route model may serve 

as a useful element in IMO’s e-navigation vision. The CAROM embedded in shipboard 

navigation equipment such as an ECDIS to assist in instant decision-making is a 

possibility requiring further research.  
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Appendix 1: September Sea Ice Extent-Northern Hemisphere 

 

 

Source: From (Pachauri & Meyer, 2015), retrieved February 14, 2016 from      

https://www.ipcc.ch/report/ar5/syr/  
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Appendix 2: Arctic Ocean Currents and circulation 

 

 

Source: Polar Data Maps. Retrieved July 1, 2016, from http://90-north.com/resources/polar-data-

maps/  
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Appendix 3: WMO Sea Ice: Egg Code and Terminology 

 

 

 

Source: From (Environment and Climate Change Canada-D, 2016), retrieved from 

https://ec.gc.ca/glaces-ice/default.asp?lang=En&n=2CE448E2-1. March 23, 2016. 
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Appendix 4: SIGRID-3 Schema: Development Codes 

 

 

Source: Environment Canada: Canadian Ice Service SIGRID-3 Implementation 2006, Stage of 

Development codes for SIGRID-3, pp.8. 
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Appendix 5: SIGRID-3 Codes: Ice Concentration 

 

Source: Environment Canada: Canadian Ice Service SIGRID-3 Implementation 2006, 

Concentration codes for SIGRID-3, pp.7. 
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Appendix 6: SIGRID-3 Codes: Floe Size 

 

 

Source: Environment Canada: Canadian Ice Service SIGRID-3 Implementation 2006, Floe –size 

codes for SIGRID-3, pp.9. 
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Appendix 7: Ice Chart Coverage Regions: Canadian Ice Service 

 

 

 

Source: From (Environment and Climate Change Canada-B, 2016), retrieved July 7, 2016, from 

https://www.ec.gc.ca/glaces-ice/,  
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Appendix 8: Northern Canada Vessel Traffic Services Zone 

 

Source: “Ice Navigation in Canadian Waters” published by Icebreaking Program, 
Maritime Services, Canadian Coast Guard, Fisheries, and Oceans Canada, Ottawa, Ontario, 
revised August 2012. 
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Appendix 9: IMO; Proposed e-navigation Architecture (2015-2019) 

 

 

Source: IMO- Draft e-navigation Strategy Implementation Plan, Annex 7, PP.19; NSCR 1/28 
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Appendix 10: Non-ENC Coverage Areas: Northwest Passage 

 

Source: Adapted from (Govt. of Canada-A, 2016), 2014 Fall Report of the Commissioner of the 

Environment and Sustainable Development, Retrieved 03 23 2016, from http://www.oag-

bvg.gc.ca/internet/English/parl_cesd_201410_03_e_39850.html. 
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Appendix 11: Extent of Hydrographic Survey: Canadian Arctic 

 

 

 

Source: Adapted from (Govt. of Canada-A, 2016), 2014 Fall Report of the Commissioner of the 

Environment and Sustainable Development, Retrieved 03 23 2016, from http://www.oag-

bvg.gc.ca/internet/English/parl_cesd_201410_03_e_39850.html. 
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Appendix 12: Canadian Arctic- Charting and Surveys 

 

 

 

Source: From (Fisheries and Oceans Canada-D, 2016) retrieved August 01, 2016 from         
http://www.charts.gc.ca/arctic-arctique/index-eng.asp 
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Appendix 13: ENC coverage of the Canadian Arctic:  

 

 

Source: From (Fisheries and Oceans Canada-B, 2016), retrieved March 23, 2016, from 

http://www.charts.gc.ca/charts-cartes/digital-electronique/preview/vector/NOR-A-eng.asp 
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Appendix 14: IMO delineated boundary: Spatial extent of Arctic 

Waters 

 

 

Source: From (IMO- Draft Polar Code, 2014), pp.3 
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Appendix 15: Definition of hull angles –Ice class 

vessels/Icebreakers 

 

 

Source: From “Design of Icebreaking Ships” by Kaj Riska, 2010 
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Appendix 16: Projected Navigation Routes (September) in the 

Arctic (2040-2059) 

 

 

 

 

Source: From (Smith & Stephenson, 2013). Retrieved January 4, 2016, from    

http://www.sscnet.ucla.edu/geog/downloads/297/554.pdf  
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Appendix 17: Shipping control safety zones-Canadian Arctic 

 

Source: From (Transport Canada, 2012). Retrieved February 14, 2016, from 

https://www.tc.gc.ca/eng/marinesafety/tp-tp12259-appendicies-2872.htm
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Appendix 18: Zone/Date Matrix- Canadian Arctic 
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Appendix 19: Approximate Equivalence Table: Ice Classification of 

Ships 

 

Source: From “Simulations of shipping along Arctic routes: comparison, 

Analysis and economic perspectives “by Lasserre F., 2014, Polar Record 51 (258): 239–259 

(2015).   
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Appendix 10: Table of Summer Risk Values: POLARIS 

 

 

 

Source: Adapted from IMO-Maritime Safety Committee, 94th session, “Technical Background to 

POLARIS” Retrieved May 10, 2016 from 

http://www.iacs.org.uk/document/public/Publications/Submissions_to_imo/pdf/consideration_and_

adoption_of_amendments_to_mandatory_instruments_pdf2417.pdf 

 

 

  

SUMMER RISK VALUES(SRV)

Polar Ship Ice Class Ship Ice Free New Ice Grey Ice G-W Ice T-FY(St-1) T-FY(St2) M-FY(st1) M-FY(st2) Thick-FY 2nd Year Light MY MY

Category - 0-10 cm 10 -15 cm 15-30 cm 30-50 cm 50-70 cm 70-95 cm 95-120 cm 120-200cm 200-250cm 250-300cm 300+cm

PC1 3 3 3 3 2 2 2 2 2 2 1 1

PC2 3 3 3 3 2 2 2 2 2 1 1 0

PC3 3 3 3 3 2 2 2 2 2 1 0 -1

PC4 Nunavik 3 3 3 3 2 2 2 2 1 0 -1 -2

PC5 3 3 3 3 2 2 2 2 1 -1 -2 -2

PC6 3 2 2 2 2 1 2 1 0 -2 -3 -3

PC7 3 2 2 2 1 1 1 0 -1 -3 -3 -3

1A Super 3 2 2 2 2 1 1 0 -1 -3 -4 -4

1A 3 2 2 2 1 0 0 -1 -2 -4 -4 -4

1B 3 2 2 1 0 -1 -1 -2 -2 -4 -5 -5

1C B.Atlantic 3 2 1 0 -1 -2 -1 -2 -3 -4 -5 -6

Ice Free 3 1 0 -1 -2 -2 -2 -2 -3 -5 -6 -6

Category-A

Category-B

Category-C

Escorted Operations Add +10

Decayed Ice PC-5 Add+1 MFY(2)-TFY

(Add +1 to WRV) PC6-Ice FreeAdd+1 MFY(1)-TFY
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Appendix 21: Table of Routes and Distances- Northwest Passage 

Prince of Wales Straits Route: 

 

 

 

 

 

 

 

 

ID LAT(degrees) LONG(degrees) Course(Degrees) Distance(NM)

1 74.00 80.000

2 74.00 89.000 270 149

3 74.17 90.000 300 19

4 74.25 94.000 274 66

5 74.17 95.500 259 25

6 74.17 98.000 270 41

7 74.10 100.000 263 33

8 74.10 112.000 270 197

9 73.25 116.000 233 85

10 73.00 117.167 234 25

11 73.00 117.410 270 4.4

12 72.73 117.960 211 19

13 72.70 118.300 254 6.4

14 72.38 119.000 213 23

15 71.00 121.000 204 91

16 71.00 126.264 270 103

17 71.50 128.566 304 54

Total Distance POWS-Route 941
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M’Clure Strait Route: 
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Peel Sound Route: 

 

Source: From nautical paper charts of the Northwest Passage, calculations by Author, March 

2016 

ID LAT(degrees) LONG(degrees) Course(Degrees) Distance(NM)

1 74.000 80.000

2 74.000 89.000 270 149.0

3 74.167 90.000 300 19.0

4 74.250 94.000 274 66.0

5 74.167 95.500 259 25.0

6 73.500 96.000 192 41.0

7 72.000 96.000 180 90.0

8 69.290 100.270 208 183.0

9 69.290 100.510 270 5.1

10 69.180 100.960 236 11.7

11 68.970 101.400 217 16.0

12 68.790 101.310 170 11.0

13 68.433 101.633 198 22.5

14 68.817 105.000 287 77.0

15 68.950 105.683 298 17.0

16 68.940 105.880 262 4.4

17 69.000 106.050 315 5.1

18 69.050 106.330 299 6.8

19 68.983 106.633 239 7.7

20 68.770 108.000 247 32.3

21 68.470 110.470 252 57.0

22 68.420 110.710 241 6.1

23 68.433 110.767 303 1.5

24 68.467 111.067 287 7.0

25 68.367 112.567 260 34.0

26 68.384 113.048 276 11.0

27 68.417 113.342 287 7.0

28 68.458 113.351 356 2.5

29 68.476 113.368 340 1.1

30 68.496 113.397 330 1.4

31 68.536 113.403 358 2.4

32 68.583 113.433 347 2.9

33 68.628 113.466 346 2.7

34 68.640 113.553 292 2.0

35 68.870 114.700 299 28.5

36 68.940 114.880 317 6.0

37 68.960 115.200 281 6.9

38 69.100 115.917 298 17.5

39 71.000 126.266 298 241.0

40 71.500 128.566 304 54.0

Total Distance PS-Route 1282
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Appendix 22: Constants and Symbols- Ship-Transit Model 

 

 

 

Source: From “A system for route optimization in ice-covered waters,” by Ville Kotovirta, Risto 

Jalonen Lars Axell, Kaj Riska, Robin Berglund, 2008, Cold Regions Science and Technology 55 

(2009) 52–62 © Elsevier B.V. 

Symbol Value Meaning

hi level ice thickness

φ bow angle

g acceleration due to gravity

L Ship Length

Lbow length of ship bow

Lpar length of parallel body

B ship maximum breadth

T ship draught

Vow open water speed

ὗ estimated ship speed

P5 Propulsion Power

Dp Propeller Diameter

V Average ship speed

Ke Quality Coefficient-Bollard Pull

Ke Single Screw 0.78

Ke Twin screw 0.98



199 
 

Appendix 23: IHO-List of Geo-objects and Meta-objects-ENC-S57 

Charts 

 

Source: Adapted from: IHO object catalogue: S-57 Appendix B Product specifications, edition 2.0, 

November 2000.  

OBJECT 

METAOBJECTS 

M_COVR 

M_QUAL 

GEOMETRIC 

PRIMITIVES 

P: POINT 

A: AREA 

L: LINE 

CODE  MEANING 

LNDARE  LANDAREA 

M_COVR  METAOBJECT: Must cover any part 

of the cell that        does not have geographical data 

SOUNDG  DEPTH SOUNDING 

OBSTN  OBSTRUCTION 

UNSARE  UNSURVEYED AREA 
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Appendix 24: Speed Performance Table- ‘Berge Atlantic’ 

 

Source: Author 

 

 

 

 

 

 

 

 

MV 'Berge Atlantic'-Speed Table (Knots)

0.5 0.6 0.7 0.8 0.9 1

Concentration 5/10 6/10 7/10 8/10 9/10 10/10

Ice Thick (m)

0.25 9.91 9.68 9.45 9.21 8.98 8.75

0.04 9.91 10.26 10.61 10.96 11.31 11.66

0.2 9.91 9.78 9.64 9.51 9.37 9.23

0.5 8.75 7.97 7.19 6.41 5.64 4.86

1 2.92 2.33 1.75 1.17 0.58 0.00

0.3 9.72 9.33 8.94 8.55 8.16 7.78

0.7 7.78 6.71 5.64 4.57 3.50 2.43

1.4 2.92 2.33 1.75 1.17 0.58 0.00

29th Sept'14



201 
 

Appendix 25: Bunker Fuel –Historical Prices 

 

Source: (Athenian Shipbrokers, 2016), retrieved July 10, 2016, from 

http://www.hellenicshippingnews.com/athenian-shipbrokers-s-a-monthly-report-june-2016/  
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Appendix 26: Panama Canal Tariff (2016) 

 

Source: (Panama Canal Authority, 2016), retrieved July 05, 2016, from 

https://www.pancanal.com/eng/op/tolls.html,  
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Appendix 27: Newbuilding Prices-2016 

 

 

Source: Adapted from, Clarkson Research, World Fleet Monitor Vol. 7, No. 6, June 2016, ISSN: 

2042-0633, retrieved 30/6/2016 00:11:46 9165, from  www.clarkson.net/wfr  


