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A B S T R A C T

In this thesis we update the theoretical framework for the QCD calculations of γ∗γ→ η and
γ∗γ→η′ transition form factors at large photon virtualities. This includes a full next-to-leading
order analysis of perturbative corrections as well as charm quark contributions, while also tak-
ing into account SU(3)-flavor breaking effects and axial anomaly contributions to the power-
suppressed twist-four distribution amplitudes. The related numerical analysis of the existing
experimental data is performed with these improvements.
Moreover, we present an improved light-cone sum rule analysis of the D,Ds→ η/η′lνl transi-
tion form factors. In this context we argue, that these decays offer a very promising possibility
to determine the leading Fock-state gluonic contribution of the η′ meson in future experimen-
tal facilities, such as FAIR or Super-KEKB. We also provide a calculation for the corresponding
branching ratios for B decays.
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1I N T R O D U C T I O N

“Thinking must never submit itself,
neither to a dogma,

nor to a party,
nor to a passion,

nor to an interest,
nor to a preconceived idea,

nor to anything whatsoever,
except to the facts themselves,

because for it to submit to anything else would be the end of its existence.”

— Henri Poincaré (1854 – 1912)

For many years light pseudoscalar η and η′ mesons were subject of numerous theoretical and
experimental studies. Since they exhibit η− η′ mixing, driven by the famous U (1)A anomaly,
these mesons play a key-role in the understanding of non-perturbative QCD. In particular, the
confirmation of a large gluonic component in the η and η′ wave functions would confirm our
present understanding concerning the topological properties of QCD . Furthermore, a sound
knowledge of the η(′) meson is important for several semileptonic weak decays that include
charmed and beauty hadrons, e. g., D(s) → η(′)lνl. The latter are relevant for the determination
of SM parameters.1 It is, therefore, crucial for the search for physics beyond the SM in processes
with η mesons in the final state.

As a very important source of information about the η − η′ system serves the “gold-plated”
η(′) → γ∗γ(∗) form factor (FF). The analogue process for the pion has been in the focus of
theorists and experimentalists alike for over two decades and belongs to the most thoroughly
investigated applications of QCD. Nevertheless, the (2009) BABAR [5] measurement of the pion
photon TFF exhibited an unexpected scaling violation at large momentum transfer, known as the
“BABAR-puzzle”, posing the question whether hard exclusive hadron reactions are under theo-
retical control. This challenge led to a flurry of discussions about the applicability of collinear
factorization in QCD and the non-perturbative structure of the meson itself. The (2012) Belle [6]
measurement, where the scaling violation is less severe, took the pressure of theorists strug-
gling to invent new non-perturbative mechanisms to resolve the puzzle. Also, recent ab initio
calculations of the pion DA (cf. [11]) have become a viable method to help explaining the phe-
nomenological findings. However, lattice QCD’s attempt to establish theoretical control over the
η− η′ mixing and D+

(s)
→ η(′)l+νl weak decays are still in their infancy, since they are tech-

nically very challenging [12] and expensive to calculate. Especially the photon-meson TFFs can
hardly be implemented in nowadays lattice studies. On the other hand, the same problems con-
cerning the non-perturbative meson-mixing and the impact of the axial anomaly are also present
in the analytical sector. To sort out all the relevant problems is very non-trivial and takes a lot
of effort. In principle, the same program as carried out in the past for the pion case has to be
adapted and extended for the η(′) mesons.

In contrast to the pion and kaons, the progress in the η(′)-sector has been rather modest. No-

1 With SM we always refer to the Standard Model of particle physics.
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table contributions concerning the η−η′ mixing for the corresponding decay constants have been
made on the theoretical side using chiral perturbation theory (ChPT) calculations (cf. [13, 14]). The
latter have been adapted and refined for phenomenological applications leading to the widely
recognized Feldmann-Kroll-Stech (FKS) scheme [9, 15].
Apart from the mixing schemes, the work on the meson-photon TFF based on the collinear fac-
torization assumption2 culminated in the paper [20] of Kroll et al. which provides a NLO per-
turbative quantum chromodynamics (pQCD) calculation of the leading-twist contributions for
vanishing quark-masses. Moreover, it includes a leading-order (LO) evolution of the involved
DAs based on [21–27]. The related fit [28] to the BABAR [7] and CLEO [8] data belongs to the
first attempts in finding a reliable model for the η and η′ DAs which are represented by values
for the first non-trivial moments of their Gegenbauer expansion. However, the corresponding
findings for the pion DA in the same approach contradict several LCSR calculations and the lat-
est available lattice results. As stated by the authors, the quoted Gegenbauer coefficients have
to be seen as effective parameters which are perturbed by neglected possible mass and higher
twist corrections. Therefore, a LCSRs approach would be helpful to test and extend these studies
further. Such an approach includes the extension to higher twist effects as well as meson and
quark-mass corrections. The former is more complicated compared to the pion because of the
anomaly contributions and needs to be developed from scratch. Furthermore, NLO LCSRs for the
gluonic DAs have to be calculated and the impact of heavy flavors in NLO pQCD corrections have
to be analyzed. Apart from that, a NLO QCD renormalization adapted to the existing formalism
has to be developed. Last but not least the SU(3)F breaking and the η− η′ mixing effects have
to be included with, e. g., the help of a phenomenological approach. Similar to the pion case, the
weak heavy-to-light decays are important for this complex of problems and have to be included
into the considerations. In particular, the Ds system is an important item of the experimental
program of current and planned hadron facilities, such as FAIR [29]. High precision experiments
for semileptonic decay modes, including B+,D+,D+

s → η(′)l+νl are expected to become avail-
able in the near future. These will provide complementary and reliable information on η− η′

mixing as well as on the involved DAs.

As discussed in [30], the same mechanism responsible for the enhanced η′ production exhibited
by the weak decay3 Ds → ρ+η′ should also be present in Okubo-Zweig-Iizuka (OZI) suppressed
diagrams where the η′ is produced via gluons. Even though, a full treatment of the gluonic DA

is beyond the scope of this Shifman-Vainshtein-Zakharov (SVZ) sum rules treatment, the effects
have been estimated via phenomenological fits. A non-vanishing gluonic contribution seems
very likely, and on these grounds the importance of the gluon fusion mechanisms for η′ produc-
tion has been emphasized. Another work devoted to the Ds → η(′) transition was carried out
in the LCSR formalism at LO accuracy for chiral currents (see [31]). Unfortunately, the interesting
gluonic DA will only enter at NLO accuracy. Therefore, an analogous analysis as for the B decays
(see [32]) is needed.

This is where our work begins, which is organized as follows: For the convenience of the reader,
we start with a general introduction concerning quantum chromodynamics and weak interac-
tion (cf. Chapter 2). In doing so, we lay the general foundations for the following chapters which
focus on specific aspects of conformal symmetry (see Section 3.2) and QCD sum rules (e. g., Sec-
tion 4.2, along with Section 5.1.1). Let us now mention some of the highlights of this work. As

2 There are two completely different approaches from D. Melikhov et al. (see [16–18]), a dispersion approach based on the
constituent quark picture, and the work of O. Teryaev et al. (see [19]), who use an anomaly sum rule (developed for the
octet channel). However, these methods lack the ability to extract information of the non-perturbative behavior of the
η(′) DAs.

3 This decay is interesting for its unusual deviation between experiment and theory.
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one bigger project, we will extend the studies of Kroll et al. [20, 28] which are based on the
collinear factorization approach [33] (see Chapter 3 and Chapter 5). In view of the discussion
given above, it is reasonable to go for a full and consistent NLO treatment of the η and η′ DAs. To
this end, we implement a complete NLO treatment of the scale dependence for η(′) DAs, includ-
ing quark-gluon mixing (see Section 3.1, Section 3.3). Correspondingly, we calculate all relevant
gluonic NLO QCD corrections contributing to the LCSRs for meson transition form factors. Here,
we also take into account perturbative charm-quark contributions to the coefficient functions of
the underlying two-gluon DAs (see Chapter 4 for details). Additionally, we provide a consistent
treatment of strange quark mass and higher twist corrections4 up to O(ms) accuracy including
an update of the SU(3)F-breaking effects within twist-four DAs (cf. Section 3.4). In addition, we
partially take into account contributions from the U(1)A anomaly and implement η− η′ mixing
schemes in the twist-three, along with twist-four DAs (see Chapter 3). This is complemented by a
verification of the applied QCD factorization approach at LO in the strong coupling constant (see
Section 4.1.1). We further use these improvements for a numerical analysis of the current space-
like and time-like TFF data, including a careful statistical analysis of the uncertainties, and the
prospects to constrain the two-gluon η(′) DAs if more precise data on the FFs become available.
In this sense, we were able to formulate a model for the η and η′ mesons which is consistent
with the available data. Moreover, we generalize the existing D+

s → η(′)l+νl analysis to NLO,
including mass-corrections and two-gluon DA contributions. Furthermore, we extend the phe-
nomenological evaluation to the D and B channel, providing results for the branching fractions
obtained from the new DA models (see Chapter 5). Last but not least we identify a set of observ-
ables that is extremely sensitive to gluonic DAs (cf. Chapter 5).

Finally, in Chapter 6 we summarize the results of this work and give a brief outlook.

4 Here, we were able to restore collinear factorization.





2Q U A N T U M C H R O M O D Y N A M I C S

“It is the last lesson of modern science,
that the highest simplicity of structure is produced,

not by few elements,
but by the highest complexity.”

— Ralph Waldo Emerson (1803 – 1882)

The following chapter introduces the basics needed for this thesis. Apart from introducing
QCD as the underlying theory of strong interaction, important technical and theoretical features,
such as the operator product expansion (OPE) and axial anomaly are discussed in detail. Besides
these topics, some background information concerning global symmetries of the QCD Lagrangian
and implications on possible particle formation are mentioned. Furthermore, the most important
features of the standard model are considered, including a short review concerning form factors
and interpolating currents. In the subsequent chapters the mentioned aspects of strong and weak
interaction are essential for approaching the η, along with η′ mesons on a phenomenological and
theoretical basis. Thus, they are particularly useful for an understanding of corresponding DA

which are in the focus of this work.

2.1 towards qcd

Since the 1950s experimental high energy physics discovered a large and ever-growing number
of strongly interacting particles, so-called “hadrons”. Such a large number of particles seemed
unlikely to be fundamental. The first attempts to understand the fundamental dynamics of the
involved physical systems and (internal) symmetries have been deduced via group-theoretical
considerations. In general, such symmetries are related to conserved quantum numbers and
corresponding conservation laws which manifest themselves by the absence of certain processes,
e. g., hydrogen does not decay into two photons due to the conservation of the baryon number
“B”. When realizing that the strong force is approximately independent of the electric charge
carried by the hadron, the isospin has been introduced [34]. This is an internal SU(2) symmetry
in analogy to the (atomic) spin, where, e. g., the proton and the neutron form a (isospin) doublet
like the spin “up” and “down” projections of a spin-12 particle. By extending the concept to
other hadrons not only isospin doublets, but also triplets and isosinglets can be identified. In
this way hadrons can be arranged according to their quantum numbers, such as the 3rd of
the isospin Iz or hypercharge1 Y, implying characteristic multiplets (see Figure 1). After the
discovery of the Λ baryons and the K mesons (their decays proceed with an unexpected lifetime
[35]), the additive quantum number “strangeness” has been introduced which is conserved in
strong interaction. Another important step has been done, when realizing, that the pseudoscalar
meson octet (involving the lightest eight (π,K,η) mesons) can be related to weight diagrams
implied by specific representations of the SU(3) group. This led to the proposal of the “Eightfold
Way” [38] which successfully predicted theΩ− [39], but the fundamental representation of SU(3)
(which also would give triplet and sextet representations) cannot be identified with any known
hadrons. Hence, the proposal of the quark model has been made in which all hadrons are built

1 Which at this point is the sum of the baryon number (for baryons 1 and for mesons 0) and the strangeness of the particle.
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Figure 1: Meson supermultiplet (created with WolframMathematica®
8 [36]), where each particle is arranged

based on its quantum numbers, such as charm (C), hypercharge (Y) and the 3rd component of
the isospin (Iz). According to the quark-model (i. e., on the valence quark level) corresponding
positions in the (Iz, Y,C) space are given by π+ ∼

(
ud̄
)
, π0 ∼ 1√

2

(
uū− dd̄

)
, K+ ∼ (us̄), K0 ∼ (ds̄),

η∼ 1√
6

(
uū+ dd̄− 2ss̄

)
, η′ ∼ 1√

3

(
uū+ dd̄+ ss̄

)
, ηc ∼(cc̄), D+ ∼

(
cd̄
)
, D0 ∼(cū), D+

s ∼(cs̄), etc. [37].

out of massive spin-12 quarks2 which transform (restricted to three different quark species) as
members of the fundamental representation of SU(3)F. The quark model has several problems,
restricting its status to a mere model rather than a full theory. First of all, the quarks “q” in
the quark model are free fermions in contradiction to experiment where they have never been
measured directly [42, 43]. Moreover, the hadrons are built out of q̄q (mesons) and qqq (baryons)
states (and conjugates), while no evidence for possible qq, qqqq , etc., (not excluded by the quark
model) bound states have been found. The third and most serious problem regards the decouplet
baryon3 with spin 3

2 . Here, particles like the Ω− or ∆++ consist of three (valence) quarks of the
same flavor with their spins aligned. Being a ground state the total angular momentum has
to be zero and the spatial wave function will, therefore, be symmetric. Also the flavor and spin
wave functions are totally symmetric leading to a violation of the Fermi-Dirac statistics and Pauli
exclusion principle. Nevertheless, these theoretical shortcomings and paradoxes can be overcome
by using another internal symmetry. A posteriori, quarks exhibit an intrinsic degree of freedom,
usually referred to as color. Here, every quark flavor qa comes in a color triplet (a = 1, 2, 3,
i. e., “red, blue, green”) producing, e. g., an antisymmetric part in the total wave function of the
|Ω−〉 ∼ |uaubuc〉εabc and the other baryons in question. In fact, studies of electron-positron

2 Quarks have been (indirectly) measured for the first time at the Stanford Linear Accelerator Center at 1967 (see [40]
and references therein).

3 Those have total angular momentum 3
2

(
later on called JP=

[
3
2

]+
state

)
.
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Figure 2: Measurements of the hadron-muon branching ratio (cf. Equation 1) as a function of the e+e−

center-of-mass energy
√
s (from [41, 42]).

annihilation to hadrons reveal, that the Drell-ratio [41, 42, 44, 45] (the ellipses denote neglected
quantum and mass corrections, cf. Section 2.4)

R(s) =
σ (e+e− → hadrons)
σ (e+e− → µ+µ−)

= Nc
∑
q

e2q + . . . , (1)

depends on the quark specific fractions eq of the proton electric charge e as well as the num-
ber of colors4 Nc. Besides, the sum runs over all active flavors which can be produced at a
given center-of-mass energy

√
s (cf. Figure 2). The postulated value Nc = 3 is perfectly consis-

tent with experiment (see5 Figure 2 and Figure 3). However, the ratio of Equation 1 has to be
seen as an approximation which does not yet include further quantum corrections in addition
to the asymptotic ones. Nevertheless, besides e+e− annihilations there is another well-known
process, relevant for this work, which bears indirect evidence for the color degree of freedom:
the π0 → 2γ decay. In particular, the neutral pion decay into two photons is driven by anomalous
contributions to the divergence of corresponding axial-vector currents (see Figure 4). Hence, the
lowest order calculation6 results in the decay rate (cf. [45, 51, 52])

Γ
(
π0→2γ

)
= N2c

(
e2u − e2d

)2 α2QEDm
3
π

32π3f2π
, (2)

where mπ refers to the neutral pion mass, αQED = e2

4π is the fine-structure constant and “fπ”
corresponds to the pion decay constant, as extracted from the process π → µν (fπ≈130.4 MeV).

4 For the representation of color charges, we conveniently use red, green and blue, which implies the anti-colors cyan
(anti-red), magenta (anti-green), as well as yellow (anti-blue) (see, e. g., Figure 11).

5 Apart from the resonances, the measured ratio R is almost flat, in agreement with Equation 1 for a given set of active
flavors.

6 In the limit of vanishing quark masses and external momenta prediction from this Adler-Bell-Jackiw anomaly are rather
precise, because higher-loop diagrams do not contribute (cf. [49, 50]).
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Figure 3: Measurements of the QCD color factors CA=Nc and Cf (cf. Section A.1), see also [46, 47].

According to this input, combined with eu = 2
3 , ed = −13 and Nc = 3, the implied theoretical

prediction (see also [45]))

Γ
(
π0 → 2γ

)
≈ 7.6 eV (3)

is in very good agreement with experimental data [42, 45]

Γ
(
π0 → 2γ

)∣∣∣
exp

= (7.48± 0.33) eV . (4)

Consequently, we may assume, that each quark flavor exists in three different colors. However,
it must be emphasized that this new degree of freedom comes with the following phenomeno-
logical characteristics:

• only color singlet states are physically observable,

• quarks can only exist inside hadrons and can never be free.

These features of the strong interaction are known as color confinement. Hence, the color-
symmetry is supposed to be exact. Furthermore, not only the Eightfold Way can be reproduced,
but also the confinement restricts the physically observable states to products 3⊗ 3̄ and 3⊗ 3⊗ 3
(mesons and baryons are singlet states of the group). Therefore, bound states, such as “qq̄” or
“qqq” and their combinations may exist, while others are ruled out.

2.2 symmetries and dynamics

Quantum chromodynamics represents a remarkable synthesis of the various ideas developed
about hadron physics. That means it does not only reproduce elder developments, e. g., the
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π0

γ

γ

axial-vector
current

vector
current

quark
propagator

Figure 4: Feynman diagram relevant for the axial-anomaly, associated with the decay process π0 → 2γ.
Solid, wave and double-dashed lines represent quarks, photons and external currents, respectively.
Besides, the black dot corresponds to a vertex of the pion interpolating field. (Note that the
Feynman diagrams shown in this work were created with JaxoDraw [48].)

Eightfold Way or current algebras, but reveals the origin of strong interaction in the correspond-
ing energy realm7.

One crucial step towards the theory of strong interaction has been done with the deep inelas-
tic scattering (DIS) experiments of lepton-proton scattering. Here, a lepton8 exchanges a highly
virtual photon with a proton to probe its internal structure. These experiments also led to the
discovery of Bjorken scaling [57, 58], the validation of the quark model and the confirmation of
asymptotic freedom in QCD (see discussion below). The latter is connected with the strength of
the strong interaction at different energy scales. Probed at asymptotically high energies, the ob-
served strongly interacting particles behave as a collection of point-like, quasi-free constituents
(cf. [59]). Therefore, such a property is called “asymptotic freedom”, i. e., the coupling strength
of the theory has to decrease at short distances. Theories with this property are called asymptot-
ically free. This is a significant difference to the familiar quantum electrodynamics (QED) where
the coupling strength decreases with distance due to dielectric screening by the cloud of virtual
electron-positron pairs. That restricts the candidates for a possible quantum field theory (QFT) to
theories with an anti-screening effect. In fact, no renormalizable field theory can be asymptoti-
cally free without non-abelian gauge fields [44, 60, 61], which are called “Yang-Mills theories”.
Therefore, the most distinctive feature of the strong interaction leads to a special class of QFT,
because Yang-Mills theories are the only asymptotically free theory in four dimensions.

It has already been pointed out, that the source of the strong interaction is the color-charge.
In analogy to (spinor) QED, QCD is formulated as a QFT with massive spin-12 fermions (quarks)
interacting via vector bosons (spin-1), called the “gluons”. Like the quarks also the gluons have
been observed indirectly (see, e. g., [62] and references therein) with the properties discussed in
the following section.

Let us start in the asymptotically free realm of the theory to construct the full QCD step by

7 According to the renormalization group (RG) ansatz (see, e. g., [53, 54] and references therein) one may regard (nearly)
every quantum field theory with a cut-off scale as an effective field theory. That means it is futile to demand or expect
that the theory will continue working at arbitrary short distances (high energies). At some point it will break down and
has to be replaced by a more fundamental description (cf., e. g., [55, 56]).

8 A well established method of getting information on the structure of a particle is to use a structureless particle as a
projectile which scatters off the particle in question.
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step. In this way, the discussed features can be introduced systematically. As a starting point,
there are six different quark species [63] (called “flavors”) denoted by ψ=u, d, s, c, b, t (see Sec-
tion 2.6.1) and carrying the three-fold intrinsic degree of freedom color (color index a=1, 2, 3) as
well as spin-12 (Dirac-index α,β=1, . . . , 4 – see Section A.2 ). Therefore, each flavor is expressed
by a Dirac-spinor ψaβ with (bare) mass mψ satisfying the free Dirac equation (see, e. g., [45, 64])

[
i (γµ)αβ ∂

µ −mψδαβ

]
ψaβ(x) = 0 (5)

in the asymptotically free regime. In order to make symmetries of the theory more obvious,
we work with Lagrangian densities for the following considerations. So we start with the free
Lagrangian9

L
(0)
F =

∑
ψ

ψ̄aαδ
ab
[
i (γµ)αβ ∂

µ −mψδαβ

]
ψbβ (6)

and iteratively derive the full Lagrangian. In short, the form of this QCD Lagrangian density will
be dictated by (gauge) symmetries and renormalizability (see Section A.4). Both requirements
impose strong constraints on the form of a possible QCD Lagrangian.
Gauging the color symmetry formally is done by the hypothesis that the local transformation10

ψaα(x) 7−→
[
exp
{
−iθA(x)TA

}]ab
ψbα(x) , (7)

with rotation angles θA(x) and generators
{
TA
}
A=1,...,8 of SU(Nc = 3)≡ SU(3)c, which leaves

the physics invariant, i. e., this symmetry generates the underlying gauge interaction. The pro-
totype for a gauge theory is QED with an inherent U(1) symmetry, while Yang-Mills theories
are based on non-abelian groups like SU(Nc). This non-abelian nature of the gauge fields is re-
sponsible for the asymptotic freedom of the strong interaction. However, invariance under gauge
transformation for dynamical quark fields is only possible after replacing ∂µ in Equation 6 with
the gauge covariant derivative in the fundamental representation (cf., e. g., [45, 64])

[Dµ(x)]
ab = δab ∂µ|x − igA

A
µ (x)

[
TA
]ab

. (8)

Analogously, the covariant derivative in the adjoint representation can be defined:

[Dµ(x)]
AB = δAB ∂µ|x − igA

C
µ (x)

[
TC
]
AB

, (9)

where TA are the generators in the adjoint representation (see Section A.1). It should be em-
phasized that the gauge fields

{
AAµ
}
A=1,...,8 are representing the eight different gluon species,

while the parameter “g” denotes the coupling strength. The latter is the analogon to the electrical
charge “e” of QED. Apart from renormalizability (see [45], Section A.4) gauge invariance can be
ensured by the minimal coupling ansatz

[Dµ(x)]
abψbα(x)

gauge7−→
[
e−iθ

A(x)TA
]ab

[Dµ(x)]
bcψcα(x) , (10)

implying, that the gluons
(
Aµ(x)≡AAµ (x)T

A
)

Aµ(x)
gauge7−→ U(x)

[
AAµ (x)T

A −
i

g
U†(x) (∂µU(x))

]
U†(x) , U(x) := exp

{
−iθA(x)TA

}
(11)

9 Which implies the (classical) Euler-Lagrange Equation 5.
10 In other words, quarks transform as the fundamental representation of the color group SU(3)c (see Equation 7).
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transform according to the adjoint representation of this gauge group. For infinitesimal angles11,
Equation 11 involves the structure constants fABC of the underlying gauge group SU(3)c (Sec-
tion A.1):

AAµ
gauge7−→ AA,θ

µ ≡ AAµ −
1

g
∂µθ

A + fABCθBACµ = AAµ −
1

g
[Dµ]

AB θB . (12)

Thus, the quark-gluon interaction can be described by

LF=
∑
ψ

ψ̄aα

[
i
(
/D
)ab
αβ

−mψδαβδ
ab
]
ψbβ , (13)

which leads us to the gauge-fields. Similar to QED, the gluodynamics can be described via a
corresponding gluon field strength tensor12 [45, 64]

Gµν(x) := GAµν(x)T
A=

i

g
[Dµ,Dν]⇒ GAµν(x) = ∂µA

A
ν (x) − ∂νA

A
µ (x) + gf

ABCABµ(x)A
C
ν (x), (14)

which, in contrast to its electromagnetic counterpart, is itself not gauge invariant
(
|θB|�1

)
:

Gµν(x)
gauge7−→ U(x)Gµν(x)U†(x) ≈ GAµν + iθB

[
TB
]AC

GCµν . (15)

This is a consequence of the non-abelian self-interaction (see Equation 14). Consequently, the
related classical Lagrangian may incorporate terms proportional to Tr

{
GµνG̃

µν
}

which apart
from their covariance, represent SU(3)c invariant combinations of gauge fields. Incidentally, the
dual field strength tensor is introduced for this purpose:

G̃µν =
1

2
εµνλρGλρ . (16)

Regardless of this difference to QED the gluonic interaction can be taken into account in a similar
way with the same conventional prefactor to get13

L
(cl.)
QCD=

∑
ψ

ψ̄aα

[
i
(
/D
)ab
αβ

−mψδαβδ
ab
]
ψbβ−

1

2
Tr {GµνGµν} . (17)

It is important to note that the gluons are massless14, because a term proportional to AAµA
A,µ

is not invariant under color symmetry, which is supposed to be exact. Furthermore, the min-
imal coupling of the gluons to the matter field has been constructed from the transformation
properties of the gauge field. This is usually referred to as “universality”. Other gauge invariant
couplings such as, e. g., ψ̄σµνGµνψ are ruled out by the requirement of renormalizability (see
discussion in Section A.4). In order to point out the key features of QCD it is expedient to write
the Lagrangian density Equation 17 in terms of the gauge fields. The interaction of gauge bosons
with the elementary fermions of the theory is realized via (extracted from Equation 13)

LInt = gA
A
µ J
A,µ ⇔ LF = L

(0)
F +LInt , (18)

11 Equation 12 can be used in the subsequent quantization procedure.
12 Analogous to the electromagnetic interaction, we could define chromo-electric EAi :=GA0i as well as chromo-magnetic
BAi := 12εijkG

A
jk fields (see, e. g., [65]), which include the Levi-Civita symbol εijk (i, j,k=1,2,3).

13 In this context, the superscript (cl.) in Equation 17 refers to its classical nature, i. e., the Lagrangian does not yet describe
quantum interactions.

14 As discussed in [44], the symmetry in an asymptotically free theory is not broken spontaneously.
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where JA,µ represents the color current of quarks. The latter is conserved due to the underlying
exact color symmetry

JAµ (x) =
∑
ψ

ψ̄aα(x) (γµ)αβ

[
TA
]ab

ψbβ(x) ⇒ ∂µJAµ (x) = 0 . (19)

Similarly, the (conserved) electromagnetic current15

Jem
µ =

∑
ψ

eψ ψ̄
a
α (γµ)αβψ

a
β ⇒ ∂µJem

µ = 0 (20)

can be defined, dictating the admitted form of quark-photon interactions. Most importantly,
the non-linear three- and four-gluon couplings within LQCD generate the essential elements of
asymptotic freedom:

LG = −
1

4
GAµνG

A,µν = −
1

4

(
∂µA

A
ν − ∂νA

A
µ

)(
∂µAA,ν − ∂νAA,µ

)

−
g

2
fABC

(
∂µA

A
ν − ∂νA

A
µ

)
AB,µAC,ν

−
g2

4
fABEfCDEAAµA

B
νA

C,µAD,ν . (21)

Again, those selfinteractions arise due to the color-charge carried by gluons. So far, this is a clas-
sical Lagrangian. Thus, in order to quantize the theory, we have to somehow replace the classical
fields with their quantum versions16. For a given Lagrangian gauge theory, this is done by choos-
ing a gauge (usually referred to as gauge fixing). The latter is essential to remove ambiguities in
defining the gauge fields. Let us exemplify this topic with the classical equation of motion for
the (free) gluon field17

L
(0)
G = −

1

4

(
∂µA

A
ν − ∂νA

A
µ

)(
∂µAA,ν − ∂νAA,µ

)

= −
1

2
AA,νδAB

[
−∂2gµν + ∂µ∂ν

]
AB,µ

≡ −
1

2
AA,νK̃ABµνA

B,µ . (22)

Here, the projection operator K̃ABµν is not invertible (cf., e. g., [44]). The physical reason is that
at this point all fields related by a gauge-transformation also propagate. Therefore, we have to
make sure that only physical degrees of freedom propagate. In the classical electromagnetic case
this can, e. g., be done by imposing the condition

∂µA
photon
µ = 0 , (23)

which is sufficient to ensure that (unphysical) longitudinal degrees of freedom do not interact
with the (physical) transversal ones. For (classical) QCD, this ansatz would give rise to more
complicated equations, similar to [66]:

∂2
[
∂ρAAρ

]
+ gfABCABµ∂

µ
[
∂ρACρ

]
= 0 , (24)

15 When quantum fields are involved, the classical electromagnetic current of Equation 20 has to be replaced by its quantum
version, i. e., Jem

µ →
∑
ψ eψ:ψ̄

a
α (γµ)αβψ

a
β:. Nevertheless, as long as their quantum nature is evident, we will not

explicitly show the normal ordered form of involved fields and operators, i. e., corresponding symbols will be omitted.
16 We will not change the formal representation of the fields or Lagrangian density in this context (e. g., with operators).
17 Surface terms in the Lagrangian, which may arise after an integration by parts, are consequently omitted.
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which include non-abelian terms, connecting longitudinal with transversal modes. While on the
classical level these procedures may be sufficient to uniquely determine the involved gauge-
fields, the situation is more complicated for quantum fields (see, e. g., [64, 67]). For instance, the
full QCD Lagrangian can be derived from Equation 17 with the functional-integral formalism (see
discussion in Section A.5). This approach canonically entails the gauge fixing conditions since
the latter are necessary to avoid inherent divergences within the Feynman path integrals (cf. Sec-
tion A.5). However, quantization is not at all a unique procedure, i. e., a multitude of equivalent
methods18 are known, e. g., stochastic formalism [45, 68], functional-integral formalism [45, 69]
or the canonical operator formalism19 [45, 70, 71]. This being said, let us start with the quan-
tum Lagrangian of QCD as implied by the Faddeev-Popov method [45, 72]. This full quantum
Lagrangian now includes unphysical auxiliary fields20 and is invariant under a new extended
local gauge transformation, the so-called Becchi-Rouet-Stora-Tyutin (BRST) symmetry (see, e. g.,
[44, 45]). Owing to the presence of these Faddeev-Popov ghosts, not only in the Lagrangian, but
also in the BRST transformation, this symmetry may be regraded as a quantum version of the
classical gauge transformation. In fact, the classical QCD Lagrangian is not invariant under BRST

transformations, while the quantum Lagrangian is not invariant under local gauge transforma-
tions. Consequently, the BRST symmetry is the actual basis for developing the canonical operator
formalism21 (see, e. g., [45, Chapter 2.3]).

Let us list the components of the full QCD Lagrangian for a linear gauge fixing condition (with
an auxiliary field BA)

GµAAµ (x) = BA(x) ⇒ GµAA,θ
µ (x) = BA(x) , (25)

which yields a unique solution for every θA, for a given AAµ . On the Lagrangian level the gauge
fixing condition can, e. g., be introduced by using the method of Lagrangian multipliers (defined
as λ=− 1

2ξ )

LGF = −
1

2ξ

[
GµAAµ

]2
. (26)

This modification of the action implies (for a derivation see Section A.5) the Faddeev-Popov
ghost term

LFP = −χA∗
[
δABGµ∂µ − gfABCGµACµ

]
χB

= −χA∗Gµ [Dµ]
AB χB (27)

including the Faddeev-Popov ghost fields χA, χA∗ (see discussion in Section A.5) transform
according to the adjoint representation of the color group. These unphysical fields have scalar
propagators and obey the Fermi-Dirac statistics. As a matter of fact, they do not correspond to
real particles, but are preserving unitarity. Ultimately they are responsible for the cancellation
of unphysical polarizations of the gauge-bosons. Before coming back to this point, let us first
collect the results of this discussion. At this point we are able to write down the full quantum
Lagrangian density:

LQCD = LF +LG +LGF +LFP , (28)

18 Here, we mean, that all these methods entail an equivalent description of nature.
19 This ansatz is somewhat tricky because a simple-minded replacement of the fields in Equation 17, while following

the standard procedure (i. e., establish canonical commutation relations between the field operators and the conjugate
canonical momenta) may produce contradictions (see discussion in [45, Chapter 2.2.1]).

20 Those are (complex) scalar fields obeying Fermi-Dirac statistics.
21 When starting with BRST symmetry, the full quantum Lagrangian can be derived from the corresponding transformations

(see [45]).
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which forms the basis of QCD.

The desired perturbative formulation of the theory will be achieved when the Feynman rules
are at hand (see Section A.6). For this purpose it is useful to split up the full Lagrangian in Equa-
tion 28 into a part with non-interactive fields L

(0)
QCD and the separated interactive part L(1)

QCD:

LQCD = L
(0)
QCD +L

(1)
QCD . (29)

While the former will provide the needed propagators of the different fields, the latter gives the
vertices of the theory which specifies its structure. Moreover, it should be emphasized that L(1)

QCD
only includes terms at least of oder O(g). Let us only highlight a few features of this procedure
needed in this work and refer to Section A.6 for the complete formulas. Two fundamentally
different situations arise from Equation 29 depending on the choice of Equation 25:

• For covariant gauges, such as the Lorentz gauge
(
Gµ → ∂µ

)
Equation 29 produces gluon

propagators (see Equation 1144) with unphysical gluon polarizations εµ(k, λ = 0):

dµν(k, ξ) =
∑

λ=0,±1
ε∗µ(k, λ) εν(k, λ) , (30)

where dµν(k, ξ) represents the involved tensor structure, while kµ is the gluon four-mo-
mentum. Those contributions will be canceled by ghost-gluon interactions related to

LFP = ∂µχA∗ [Dµ]
AB χB . (31)

In passing, we recognize that according to Equation 31 the Faddeev-Popov ghosts also
obey the same Equation 24, as the scalar fields

[
∂ρAAρ

]
. Unfortunately, in a perturbative

approach each gluonic diagram may require an adequate ghost-correction which cancels
the longitudinal part of the corresponding gluon contributions. When restricted to the dia-
grams of this work, no ghost-corrections are needed. For this specific situation the simple
structure of the gluon propagator (using preferably the Feynman gauge ξ= 1) makes this
gauge fixing the ideal choice.

• A completely different situation arises for non-covariant conditions Gµ→nµ, e. g.,

nµAAµ = 0
(
n2 = 0

)
, (32)

where the ghost Lagrangian becomes independent of ghost-gluon interactions:

LFP = −χA∗nµ∂µχA . (33)

That means for this gauge fixing condition only physical gluon polarizations εµkµ=0 and
εµn

µ=0 exist. In this work we will also make use of Equation 32 via the Fock-Schwinger
gauge22:

(x− x0)
µAAµ(x) = 0 . (34)

This specific choice is especially useful for the applied background field method, since this
approach exploits the fact that the potential is directly expressible in terms of the gluon
field strength tensor (cf. [64, 73–76]):

AAµ(x) =

∫1
0

dααxνGAνµ(αx) . (35)

22 We will use x2=0 for ξ=0. Note, that x0 is an arbitrary point playing the role of a gauge parameter.
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We can now conclude this introductory discussion of the strong interaction. Combined with the
named appendices the structure of QCD in terms of a perturbative formulation is at hand. In a
next step the applicability of this formulation is discussed.

2.3 asymptotic freedom and perturbative qcd

In the previous part, we have pointed out one crucial property of QCD which is asymptotic
freedom. This section is dedicated to derive this characteristic from the QCD Lagrangian and
motivate its applicability in form of pQCD.

In order to calculate observables within QCD, a consistent technique has to be found which
allows a systematic treatment of quantum corrections. Inspired by QED a canonical choice seems
to be perturbation theory. The latter is in general applicable to theories, where the correspond-
ing Lagrangian can be split up into an exactly solvable part and a perturbative part. In general,
the theory might not possess an analytic solution, but the perturbative part exhibits a “small”
parameter “α” which allows to approximate predictions of the theory in terms of a formal series.
This perturbation series is an expansion in powers of the parameter α and constitutes usually
only an asymptotic series (see Section A.13). In contrast to QED, where the fine structure constant
is normally used as a fairly good expansion parameter αQED = e2

4π ≈ 1
137 , one has to justify if

and when its analogon, the strong coupling constant αS=
g2

4π fulfills the same requirements. The
latter seems to be the physically most reasonable choice when looking at the structure of the
Lagrangian in Equation 29 and anticipating that αS is sufficiently small for adequate conditions.
Therefore, when assuming αS to be small, we make for a physical observable P the ansatz23

(following [73]):

P ≈
∑
n

Cn(R) [αS(R)]n , (36)

which will be truncated in practice at some order24 of N ∈ R0. In Equation 36 we introduced
foresightfully a scheme-dependence R, because for finite N, both, αS and Cn, depend on the
“renormalization” scheme25 in which they are calculated in. The latter, renormalization, is the
actual key tool which is not only needed throughout this work, but in the context of QFTs in gen-
eral. Most of the perturbatively calculable corrections, based on the Lagrangian in Equation 28,
imply ultraviolet (UV) divergent loop integrals (see [45]). In order to get finite loop integrals, one
has to regularize them, e. g., by introducing a UV cut-off |k| 6 Λ for the involved loop momenta
kµ. When performing the resulting momentum integration there will be a divergent function
of Λ (for the limit Λ→∞) and an additional finite part, which is cut-off independent in the
limit Λ→∞. It is advantageous, if the regularization procedure is chosen in such a way that it
respects Lorentz invariance and the symmetry of the problem26. Let us list at least two widely
used schemes. The first is the covariant Pauli-Villars regularization which introduces a modified
propagator with a sufficient number of internal momenta in the denominator to get a conver-
gent loop integral [44]. Another method, applicable to the class of problems, we will face in
this work is dimensional regularization. The basic idea of this scheme is to cure the UV diver-

23 In general, there is no rigorous non-perturbative definition of P in QCD available (cf. [77, 78]), i. e., it is unknown,
whether the given divergent series expansion ∼

∑
nCnα

n
S and the exact function P(αS) are identical or not. Thus, it

seems reasonable to interpret Equation 36 as an asymptotic series [77, 79], which approximates P(αS) accordingly. See
Section 2.4 for an extended discussion of this working assumption.

24 The dependence on R will vanish for the observable as well as for infinite N.
25 In fact, two different schemes will give two different solutions for finiteN. That means the Cn are not well-defined and

the expansion Equation 36 is not unique, unless it is already the exact solution.
26 In fact, the cut-off procedure mentioned above would in certain circumstances break translation invariance [80, 81].
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A, µ B, νp

p− q
q q

Figure 5: One-loop vacuum polarization Feynman diagram, with four-momenta “q”, “p”, as well as corre-
sponding Lorentz indices “µ”, “ν”. Throughout this work, green curly lines represent gluons.

gences by changing the dimensionality of the space-time using analytical continuation (see [81]).
In this way, the Feynman integrals become analytic functions of the new space-time dimension
D, while divergences will be present as logarithms or inverse powers of (4−D). This specific
regularization preserves algebraic relations among Green’s functions that do not depend on the
space-time dimension. In particular, relations implied by the symmetries of the underlying the-
ory, e. g., Ward identities [44] are preserved. To roughly sketch this method, let us have a look
at the one-loop diagram shown in Figure 5 which is a correction to the gluon self energy. The
ansatz for this diagram and a specific flavor ψ is27 (see Section A.6):

iΠABµν (q) = g
2

∫
d4p

(2π)4
Tr

{
γµT

A i

/p−mψ
γνT

B i(
/p− /q

)
−mψ

}
, (37)

which gives a divergent loop integral. With dimensional regularization the so-called “renormal-
ization scale” µ has to be introduced∫

d4p

(2π)4
→
∫

dDp

(2π)D
and g→ gµ2−

D
2 (38)

to get the right dimension for the coupling. The introduction of an arbitrary mass scale is in-
evitable when subtracting divergences and can, therefore, be seen as a general feature of all reg-
ularization procedures. Its arbitrariness is caused by the corresponding regularization procedure,
which can be haphazardly chosen. After evaluating the traces and solving the loop integral, only
the Feynman parameter integral survives. With Lorentz invariance and the symmetry preserved
the generalized Ward-Takahashi identities imply

iΠABµν (q) = δ
AB
(
qµqν − q2gµν

)
Π
(
q2
)

, (39)

with
(
define x̄ :=1− x for x ∈ [0, 1]

)

Π
(
q2
)
=
g2

4π2
Γ
(
4−D
2

)

[4π]
D−4
2

[µ]4−D
∫1
0

dx
xx̄

[
m2ψ − xx̄q2

] 4−D
2

. (40)

27 The complete result includes a summation over all involved flavors.
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For D= 4− 2ε and in the limit ε→ 0 the divergent part comes from the gamma function
(
with

the Euler-Mascheroni constant γE
)

Γ(ε)

(4π)−ε
=

(
1

ε
− γE + ln 4π

)
+O(ε) (41)

to get the desired form

Π
(
q2
)
=

[gµε]2

24π2

[(
1

ε
− γE + ln 4π

)
− 6

∫1
0

dx xx̄ ln
(
m2ψ−xx̄q

2

µ2

)
+O(ε)

]
. (42)

When using the canonical choice of the renormalization scale given in Equation 38, the pole will
always be accompanied by finite, transcendental terms “−γE”, “ln 4π” like in Equation 41. In the
case of pQCD the standard choice is the so-called “modified minimal subtraction” (MS) scheme.
In contrast to the “minimal subtraction scheme”, realized in Equation 42 when simply removing
the ε-pole, one also has to choose a different renormalization scale [82]:

µ = µMS
(
eγE

4π

)1
2

(43)

in order to avoid the mentioned finite terms. Keeping them would produce (artificially) large
coefficients in the perturbative expansion (see [82]). This example shows that there are not only
different regularization schemes, but that a change in the auxiliary defined renormalization scale
can be interpreted as a change of the underlying scheme28.

At this point we have to dig deeper, because the following is vital for the theory of meson
DAs and an understanding of QCD in general. First of all, it is possible to eliminate the divergent
parts of the loop integrals from the very beginning by a redefinition of the fields and parameters
of the Lagrangian. This so-called renormalization procedure can be constructed after choosing
an adequate regularization scheme. For QCD this is realized when choosing dimensional regular-
ization and by replacing the bare quantities with their renormalized counterparts [45] (use the
abbreviation Z(R)=Z when in the scheme R):

AA,µ = Z
1/2
3 A

A,µ
R , ψ = Z

1/2
2 ψR , χA = Z̃

1/2
3 χAR ,

g = ZggR , ξ = Z3ξR , m = ZmmR .

}
(44)

Here, we assume a covariant gauge (e. g., Lorentz gauge, with the gauge parameter ξ) to also
include possible ghost fields into our considerations. Applying Equation 44 to the original La-
grangian L results in a renormalized Lagrangian

L = LR +LC , (45)

where LR has the same structure like L, but with the fields replaced by their renormalized equiv-
alents. Moreover, the counter-term Lagrangian LC will be cast in such a way that it includes all
the renormalization constants. The Feynman rules for LR alone would have the same structure
like those of L except for the replacements of the bare with the corresponding renormalized
quantities. However, the Lagrangian density LC gives an overall modification of the complete
Feynman rules of the renormalized Lagrangian. According to the loop order, the renormaliza-
tion constants will be adequately chosen to absorb the divergences. This means, in accordance
with the renormalization program, all the divergences of the Green’s functions are subtracted
systematically order by order in perturbation theory. Let us illustrate the full one-loop self energy

28 Obviously, one has to work consistently in a chosen scheme order by order. At the end of the day different schemes give
the same results up to a fixed order in Equation 36.
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Z1F = 1− g2R
(4π)2

[CA + CF ]
1
ε +O

(
g2R

)

Z2 = 1− g2R
(4π)

2CF
1
ε
+O

(
g2R

)

Z3 = 1− g2R
(4π)2

[
4
3TFNf − 5

3CA

]
1
ε +O

(
g2R

)

Figure 6: One-loop diagrams and renormalization constants (using Feynman gauge) for the QCD β-function
[45, 82]. The dashed line represents a ghost.

of the gluon (see Figure 6 for Z3). The result for Feynman gauge (in the MS scheme) reads

Π(full)
(
q2
)
=

g2R

(4π)2

[
4

3
TFNf −CA

5

3

]
1

ε
+Z3 − 1+ . . . , (46)

where the ellipses stand for finite terms and neglected higher order corrections in the coupling
constant. Note, that Equation 46 has still the same tensorial structure as found in Equation 39

which does not allow for a mass term. Hence, gluons remain massless under radiative corrections
as required. The extracted (one-loop) renormalization constants are listed in Figure 6. They have
been chosen such that the corresponding poles of the summed diagrams cancel. Obviously, a dif-
ferent choice of the renormalization procedure would produce a distinct set of renormalization
constants (distinguished from the former by attaching a prime). The set of all possible renormal-
ization constants could be used to generate the so-called RG which describes the (abelian) group
of transformations responsible for the change between renormalization schemes (see Section A.7).
For example, we may write for a finite renormalization of the coupling constant:

gR = zg
(
R,R′

)
gR′ , with zg

(
R,R′

)
=

Zg(R)

Zg(R′)
, (47)
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which can be written as a formal series [45, 73]

zg
(
R,R′

)
=

∞∑
n=0

z
(n)
g

(
R,R′

) [
αS,R

]n . (48)

This leaves the question how much the physical predictions of the theory depend on the men-
tioned arbitrariness in subtracting the divergences. In other words, the renormalized theory has
to be warranted by some underlying mechanism to give unique physical predictions indepen-
dent of the renormalization scale µ. Let us assume, that the physical quantity P ≡ P(p,gR,mR,µ)
(p represents an aggregate of external momenta) of Equation 36 is given for a fixed scheme R.
Since obtained from a unique Lagrangian, it should be invariant under finite renormalizations:

P(p,gR,mR,µ) = P′
(
p,gR′ ,mR′ ,µ

′) , (49)

where gR′ and mR′ are the renormalized coupling constant and mass in the scheme R′ different
from gR and mR. Because of this connection, the coupling constant and mass in one scheme can
be expressed as an implicit function of the corresponding quantities in another scheme [45]:

gR′ = gR′(gR,mR) ,

mR′ = mR′(gR,mR) .

}
(50)

When comparing the measured observable with the corresponding quantity P(′), the values of
g
(′)
R and m(′)

R can be determined by an adequate fitting procedure. The resulting values of g(′)R

andm(′)
R must satisfy Equation 50. In this way P and P′ describe the same physics. Unfortunately,

knowing only the first “N” orders of the perturbation expansion Equation 36 prohibits a direct
confirmation of this strategy. In fact, when choosing the scheme with the smaller value of gR as
expansion parameter the two predictions differ

P(p,gR,mR,µ) − P′
(
p,gR′ ,mR′ ,µ

′) = O
(
gN+2
R

)
(51)

in a finite higher-order correction. This motivates the renormalization scheme-dependence of
perturbative predictions of physical quantities. Particularly, for QCD this causes a non-negligible
difference and one has practically no means for estimating the size of the neglected orders a
priori. However, there are several ways to reduce the scheme-dependence of the result by choos-
ing an adequate scheme for each problem29. For instance, the MS scheme shows a very good
convergence for e+e−-annihilations and γγ-scattering [45]. Fortunately, not only the asymptotic
freedom of QCD, but also the assumed one-loop accuracy will tame the scheme-dependence for
the processes investigated in this work. In fact, Equation 48 (after equating coefficients) implies
a scheme independence of the LO and NLO results of perturbative calculations, i. e., in terms of
Equation 36 and Equation 48 [45, 73]:

C0(R) = C0(R
′) ,

C1(R) = C1(R
′) ,

C2(R) = C2(R
′) + 2z(0)g (R,R′)C1(R′) .

 (52)

This is a general statement for perturbative results, however, not all higher order coefficients
Cn>2(R) are necessarily scheme-dependent, as shown for the QCD “beta function” (see below).

29 For an advanced discussion of, e. g., the Stevenson criterion see [45].
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In the following step we recall the scale dependence of the renormalized coupling constant
and renormalized operators in general. The latter is essential for the theory of DAs which we
want to study later on. Restricted to infinitesimal changes of the mass scale Equation 47 reduces
to a differential equation (DE)30, expressing the response of the Green’s functions and parameters
to the change of the renormalization scale µ. Such DEs are called renormalization group equa-
tion (RGE)s. One should note, that those RGEs are in principle independent of perturbation theory,
therefore, they can be used to supplement perturbative results. Moreover, the RGEs are mere rep-
resentations of the fact that the bare parameters are scale-independent unique constants (see [45]
for further details). Thus, the RGEs guarantee that the theory is based on a unique Lagrangian
although the renormalized theory appears to possess an arbitrariness due to the possible change
of the renormalization scale [45]. In other words, the renormalized theory is warranted by these
RGEs to give unique physical predictions independent of the renormalization scale µ. Beginning
with the coupling constant gR the corresponding RGE is (cf. [44, 45] )

∂g

∂µ
= 0 ⇒ µ

∂gR
∂µ

= β(ε,gR) , (53)

with the QCD beta or Gell-Mann-Low function [45]
(
ε→0

)

β(ε,gR) = −εgR −
1

Zg

(
µ
∂Zg

∂µ

)
gR (54)

controlling the RG flow of gR(µ). Analogously, the ansatz of scale independence for the bare
mass in dimensional regularization

∂m

∂µ
= 0 ⇒ µ

∂mR

∂µ
= −mRγm(ε,gR) (55)

implies the RGE of the quark-masses. In this context the renormalization group function γm (for
a definition see, e. g., [45, 82]):

γm(gR, ξR) =
µ

Z
1/2
m

∂Z
1/2
m

∂µ
= −

µ

mR

∂mR

∂µ
(56)

is called the anomalous dimension of the mass m (flavor not specified at this point). The renor-
malization functions are finite because the divergences cancel in the limit ε→ 0. This also holds
for the involved anomalous dimensions (for fixed m, g, ξ)

δ(gR, ξR) = µ
∂ξR
∂µ

= −2ξRγG(gR, ξR) (57)

γG(gR, ξR) =
µ

2Z3

∂Z3
∂µ

(58)

γF(gR, ξR) =
µ

2Z2

∂Z2
∂µ

(59)

in the RGE [45, 82]
[
µ
∂

∂µ
+β(gR, ξR)

∂

∂gR
− γm(gR, ξR)mR

∂

∂mR

+δ(gR, ξR)
∂

∂ξR
−nGγG(gR, ξR) −nFγF(gR, ξR)

]
FnGnF = 0 (60)

30 This corresponds to the Lie DEs of Lie groups [83].
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of the truncated connected Green’s function31 FnGnF(p,gR,mR, ξR,µ) with nG external gluon
and nF quark legs in momentum space32. Equation 60 is the so-called ’t Hooft-Weinberg equa-
tion which is an important tool to derive fundamental properties of QCD. In general, the RGE

has a specific form, corresponding to the chosen renormalization scheme. Therefore, instead of
the ’t Hooft-Weinberg equation also the Callan-Symanzik, Greorgi-Politzer and Gell-Mann-Low
equations are mentioned in the literature (see [45] for a detailed discussion). Actually, it is pos-
sible to show that in the asymptotic regime or in the massless limit all of them will provide the
same solution [45]. However, this leads to another advantage of our choice. While in the named
limits the solutions can be straightforwardly obtained, the general situation is somewhat dire.
The Gell-Mann-Low equation is based on a scheme that uses physical on-shell quark masses33

and an off-shell subtraction scheme for the fields and coupling which leads to a simpler appear-
ance of the RGE, because of the implied absence of γm. On the other hand, it is impossible to
give a general expression for the solution [45]. This is not the case for the ’t Hooft-Weinberg
equation, where a general solution can be easily obtained. In this context, a special feature of the
chosen MS (and MS) scheme is the decoupling of mR and gR, i. e., the RGE can be solved inde-
pendently [45]. This results from the structure of the corresponding renormalization constants
which in the MS (and MS) scheme only depend on the renormalized gauge coupling. Moreover,
this scheme has the remarkable property that the β function and γm are gauge-independent (see
also [45]). In general, the renormalization group functions depend on the gauge ξ and, hence,
they are no physical quantities. It is, however, possible to extract useful physical consequences
by observing the (analytic) behavior of these functions. Here, the β-function is of primary impor-
tance for the asymptotic freedom of QCD due to its control of the scale dependence of the strong
coupling. It should be noticed, that besides the quark-gluon interaction, the strong coupling can
also be defined via the three three-gluon vertex. However, when imposing Slavnov-Taylor iden-
tities [45, 84, 85] it is possible to show that both quantities coincide. Based on Figure 6, we may,
therefore, introduce

gψ̄6AATAψ = Z1FgRψ̄R 6AARTAψR , (61)

with the renormalization factors

Z1F = ZgZ2Z
1/2
3 ⇔ Zg = Z1FZ

−1
2 Z

−1/2
3 . (62)

A formal expansion in the renormalized34 αS,R gives for Zg (Nf: number of active flavors):

Zg = 1−
αS,R

4π

1

ε

11CA − TRNf
6

+O
(
α2S,R

)
(63)

at one loop accuracy35. Inserting Equation 63 into Equation 54 [45]

β(ε,gR) = −εgR +
11CA − 4TRNf

3

g2R

(4π)2
1

ε
β(ε,gR) +O

(
g5R

)

= −
1

(4π)2
11CA − 4TRNf

3
g3R +O

(
g5R, ε

)
(64)

31 That is constructed from a connected Green’s function by amputating the propagators from all external lines. Here, a
connected Green’s function is one without disjoint pieces, i. e., any part of it is joint to the remaining part by at least one
propagator.

32 It is futile to consider external ghost-lines.
33 Quarks in QCD are most unlikely to be observed in isolation due to the confinement mechanism. Therefore, it is ambigu-

ous to talk about quark masses on their mass shell.
34 Here, we use the MS-scheme to shorten the expressions.
35 Note that the dependence on the gauge-parameter in Zg would cancel anyway. Therefore, the expressions in Figure 6

have been abbreviated using Feynman gauge.
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gives the first coefficient of the perturbative expansion of the QCD beta function. The expressions
in Equation 64 include three different color factors [43, 45] (see Section A.1 for details):

Cf =
N2c − 1

2Nc
, CA = Nc , TR =

1

2
, (65)

which can be associated with a gluon emission from quarks, a gluon emission from gluons, or a
gluon that splits into a quark-antiquark pair, respectively. For this work we rewrite Equation 64

according to (omitting the subscript “R”)

µ2
∂αS
∂µ2

= −αS

[
β0
αS
4π

+β1

(αS
4π

)2
+O

(
α3S

)]
≡ β(αS) , (66)

αS

(
µ2
)
=
g(µ)2

4π
(67)

and expand it up to NLO. In this context, αS is an equivalent of the fine structure constant. Most
importantly, the first two coefficients of the QCD beta function (restricted to SU(3)c)

β0 = 11−
2

3
Nf , β1 = 102−

38

3
Nf (68)

are scheme independent [45] and indicate the asymptotic freedom. The latter occurs for β(g)<0
which requires, e. g., for the leading order terms of Equation 66 11CA − 4TRNf > 0, or equiv-
alently 2 Nf < 33 . Since QCD involves at most six (active) quark flavors, this requirement is
certainly fulfilled. Furthermore, the origin of the asymptotic freedom at this level can be traced
back to the three-gluon coupling. This is in contrast to QED where the coupling would grow(
β(e) > 0

)
with the renormalization scale. In fact, the natural choice for the renormalization

procedure in QED is an on-shell scheme, where the parameters of the theory can be replaced by,
e. g., the electrical charge or the fine structure constant. Unfortunately, there is no comparable
method for QCD. On the other hand, the validity of QCD perturbation theory is an a posteriori
result of the RGE applied to the case of a large momentum scales. This brings us to the concept
of the running coupling36. Here, the typical momentum scale of the process under consideration
qµ is introduced, by choosing a new parameter

(
taken for space-like momenta −q2>0

)

1

λ
= et ≡

√
−
q2

µ2
. (69)

The running coupling ḡ(t) (analogously the running mass, etc.) can be introduced via a new
renormalization scale µ/λ instead of µ which will then be held constant. This implies the modi-
fied Equation 53:

µ

λ

d ḡ
d
(µ
λ

) = β(ḡ) ⇔ d ḡ
d t

= β(ḡ) , (70)

with the formal solution
(
β̄0≡ β0

(4π)2
, β̄1≡ β1

(4π)4
, etc.

)

(t− t0) =

∫ ḡ(t)
ḡ(t0)

dg′
1

β(g′)
=
1

2

∫ ḡ2(t)
ḡ2(t0)

dλ
λ2

−1

β̄0 + β̄1λ+O
(
λ2
) . (71)

36 For consistency reasons, this concept is not elaborated with αS, but an equivalent auxiliary function ḡ instead.
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Here, the standard choice is t0 = 0 with ḡ(0)=g at the fixed reference scale µ. The latter can be
chosen arbitrarily, e. g., µ→µ0=1 GeV. For this work we will truncate the expansion of the beta
function37 at NLO accuracy to get (cf. Equation 71)

1

ḡ2
+
β̄1

β̄0
log
(

β̄0ḡ
2

1+ β̄1ḡ2/β̄0

)
= β̄0 log

(
−q2

Λ2QCD

)
, (72)

with the QCD scale parameter [45]

ΛQCD = µe
−

1
2β̄0g

2

(
1+ β̄1g

2/β̄0

β̄0g2

) β̄1
2β̄20 . (73)

The parameter g has been effectively replaced by ΛQCD. This is an example of the so-called di-
mensional transmutation, where a dimensionless parameter, on which physical quantities can
depend in a non-trivial way, is traded for a dimensional one (see [44, 86] and references therein).
The physical mechanism providing this connection is given by quantum corrections of the un-
derlying QFT. Consequently, the two-loop result for αS

(
Q2
) (
Q2 =−q2

)
can be extracted from

Equation 72 when assuming −q2 � Λ2QCD, i. e.,

ḡ2 =
1

β̄0 log
(
− q2

Λ2QCD

)


1−

β̄1

β̄20

log
(

log
(
− q2

Λ2QCD

))

log
(
− q2

Λ2QCD

)


 . (74)

We see that the celebrated property of asymptotic freedom can be deduced from Equation 74

accordingly:

lim
Q2→+∞αS

(
Q2
)
= 0 . (75)

Thus, for sufficiently large space-like Q2, a perturbative expansion in αS can be justified. Fur-
thermore, let us consider the observable P to be a dimensionless quantity depending on a single
large scale Q2�ΛQCD (assume the massless limit)

µ2
d

dµ2
P
(
Q2

µ2
,αS

)
=

[
µ2

∂

∂µ2
+β(αS)

∂

∂αS

]
P
(
Q2

µ2
,αS

)
= 0 , (76)

with αS=αS
(
µ2
)
. The choice µ2=Q2 minimizes the dependence on an arbitrary scale at a fixed

order in perturbation theory [87]. Moreover, it reveals that all the scale dependence comes from
the running coupling:

P
(
Q2

µ2
,αS

)
= P

(
1,αS

(
Q2
))

. (77)

For quantitative calculations a value for ΛQCD has to be found, e. g., extracted from experimental
data [46, 73, 87] (cf. Figure 7). One has to note, that ΛQCD is an effective parameter which has
to be chosen according to the used loop order and active flavors. This is due to the decoupling
theorem which states that flavors with m2ψ � Q2 are not relevant in this energy realm. This can
be seen for the mentioned example Equation 42

(
Q2=−q2

)

∫1
0

d x xx̄ ln
(
m2ψ−xx̄q

2

µ2

)
=


1
6 log

(
Q2

µ2

)
+O

(
m2ψ
µ2

,
m2ψ
Q2

)
, Q2,µ2 � m2ψ

1
6 log

(
m2ψ
µ2

)
+ 1
30
Q2

m2ψ
+O

(
µ2

m2ψ
, Q

2

m2ψ

)
, m2ψ � Q2,µ2

. (78)

37 The QCD β-function is known up to four loop accuracy [45].
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Figure 7: Measurements of αS(Q) as a function of the respective energy scaleQ (picture taken from [46, 87]).
Open symbols indicate (resummed) NLO, and filled symbols NNLO QCD calculations used in the
respective analysis. The curves are the QCD predictions for the combined world average value of
αS(mZ0), in 4-loop approximation and using 3-loop threshold matching at the heavy quark pole
masses mc=1.5 GeV and mb=4.7 GeV (for details, see [46, 87]).

In general, the neglected terms can also include O
((
Q2/m2ψ

)m logn
(
Q2/m2ψ

))
corrections (cf. [73];

n,m ∈ N0). A simple solution for the problem of taking this into account is the introduction of
an effective number of (active) flavors:

Nf

(
Q2
)
=

∑
ψ=u,d,...

θ
(
Q2 −m2ψ

)
(79)

and adapt the QCD scale parameter to this approach

ΛQCD → ΛQCD(Nf) . (80)

For this work we will use

ΛQCD(Nf=4) = 326 MeV , (81)

while values of ΛQCD for different numbers of active flavors can be found via a matching of
the different expressions of the running coupling (cf. [73]). Last but not least a closer look at
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Equation 72 reveals a divergence for the limit Q2→Λ2QCD which is present already at leading-
order (β1 → 0). In fact, this Landau pole38 reveals a breakdown of perturbation theory at a
momentum scale close to the QCD scaling parameter. Due to the confinement mechanism and
the immanent hadronization this energy realm has to be studied with a different approach,
which can access the non-perturbative regime.

2.4 qcd vacuum and operator product expansion

This section is dedicated to a heuristic description of the OPE and selected QCD vacuum effects, as
required for Chapter 4 and Chapter 5. Furthermore, all NLO anomalous dimensions, which are
necessary for the development, i. e., normalization of η(′) DAs (see Chapter 3) will be introduced
below.

The previous subsection has been concluded with a dedicated discussion concerning anti-screen-
ing effects and their impact on the (perturbative) QCD coupling constant. In this context, the QCD

scale parameter has been obtained which can be used to roughly separate the perturbatively
accessible sector from non-perturbative field configurations39. Accordingly, apart from possible
special cases, the framework given by a perturbative ansatz that only covers asymptotically free
parton interactions (see Section 2.3), is not applicable beyond energy scales of relative order
∼ΛQCD, i. e., at distances, where quarks and gluons are either confined inside hadrons or QCD

vacuum fluctuations become relevant. Fortunately, a consistent method to separate and system-
atically take into account those large as well as short distance contributions is given by the
Wilson-Zimmermann OPE (cf. [89–94]), along with its generalizations.

In fact, there exist a multitude of conceivable situations where this technique can be imple-
mented, e. g., short distance or hard exclusive processes (see [95–97]). For instance, the total an-
nihilation cross section40 (as encountered in Equation 1) at leading order in the electromagnetic
interaction41 [98, 99]

8π2α2QED

q6
LµνWµν(q) =

16π2α2QED

q6
Lµν Im {Πµν(q)}

=
16π2α2QED

q2
Im
{
Π
(
q2
)}
≡ σ

(
e+e−→hadrons

)
(82)

has been widely studied and belongs to this important class of problems. Therefore, this is an
ideal example to illustrate the involved methods and explain, why the OPE can be seen as an
extension of a pure perturbative ansatz (cf. Equation 36). However, at this level of accuracy
Equation 82 can be factorized into an unpolarized leptonic (u and v are related lepton spinors,
see Section A.2)

Lµν = −
1

4

∑
s,s′

[
ū
(
k′, s′

)
γµv(k, s)

][
v̄(k, s)γνu

(
k′, s′

)]

=
(
k·k′

)
gµν − kµk

′
ν − k′µkν +O(ml) , (83)

38 The Landau pole beyond perturbation theory has been studied for QED in the context of a lattice approach [88].
39 In other words, at distances ∼ 1/Λ2QCD the confinement mechanism becomes dominant which cannot be described by

Feynman diagrams of any order.
40 In Equation 82 the unpolarized case has been assumed, corresponding to a forward scattering amplitude, where initial

and final spins as well as momenta are equal. Besides, all possible lepton mass corrections have been neglected.
41 Here, the optical theorem has been applied (cf. [64, 98]).
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+2·

Figure 8: Two simple “bubble” diagrams contributing to the Adler function. By inserting any number of
fermion loops into a single gluon line, the corresponding set of bubble-chain diagrams can be
generated (see [77, 95, 105] for details).

as well as a hadronic tensor

Wµν(q) =

∫
d4x eiq·x〈0|

[
Jem
µ (x) , Jem

ν (0)
]
|0〉 , (84)

with the virtual photon four-momentum qµ=kµ−k′µ. Thus, it is more common to consider the
associated vacuum-polarization tensor, i. e., two-point correlation function (see, e. g., [95, 97])

Πµν(q) = i

∫
d4x eiq·x〈0|T

{
Jem
µ (x) Jem

ν (0)
}
|0〉 =

(
qµqν − q2gµν

)
Π
(
q2
)

, (85)

which entails the
(
Q2 :=−q2

)
Adler function42 [101]

D
(
Q2
)
:= −4π2q2

d
dq2

Π
(
q2
)

. (86)

Consequently, all dynamical effects are encoded in a single amplitude. Besides, for kinematical
configurations that imply a large Euclidean photon virtuality Q2�Λ2QCD (see Section A.15) the
vacuum polarization Π

(
q2
)
, along with D

(
Q2
)

turn out to be genuine short distance objects43

(e. g., [97]).

Therefore, one could expect a sufficient suppression of long distance effects which would at
first glance justify an approach similar to Equation 36. Unfortunately, even if the interaction be-
tween elementary degrees of freedom is weak, soft corrections cannot be completely avoided.
For instance, among the possible multiloop corrections to D

(
Q2
)
, the so-called bubble-chain di-

agrams (see Figure 8) play a special role (cf. [102–104]). In this context a corresponding exact
solution for fixed loop momenta was found by Neubert [105]. For illustrative purposes (follow-
ing [78]), however, it is more expedient to analyze a simple interpolating expression [78, 106],
collecting all bubble insertions into the gluon lines44

(
C1 ∈ C

)

D
(
Q2
)∣∣∣

bubble
= C1Q

2

∫∞
0

dk2
k2αS

(
k2
)

(
k2 +Q2

)3 . (87)

42 The given tensor structure of Equation 85 results from Ward identities similar to qµΠµν = 0, i. e., as dictated by the
conservation of the electromagnetic current (see [100]).

43 In general, this may refer to a set of graphs where all internal lines have momenta |k| ∼ |Q|, i. e., that are off-shell by
order ∼Q2 (see [100]).

44 Based on a perturbative (LO) description of αS
(
Q2
)
=αS

(
k2
)(
1−

β0αS(Q2)
4π log

(
Q2

k2

))
, the integration over k2 in

Equation 87 is problematic, since its integrand exhibits a Landau pole at k2 =Λ2QCD. As discussed below, the related

integral ∼
∫Λ2QCD
0 dk2

k2αS(k2)

(Q2+k2)
3 implies a factorial divergence (cf. Equation 88).
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Similar to the actual solution (cf. [105]), this toy model possesses a factorially divergent pertur-
bative series45, e. g., as presented within the limits k2�Q2 and k2�Q2

(
y :=2 log(Q2/k2)=:−ỹ,

while Q2 is fixed and αS≡αS
(
Q2
))

[
D
(
Q2
)∣∣∣

bubble

]
IR

= C1
αS
4

∞∑
n=0

∞∑
m=1

(−1)m+1m (m+ 1)

(
β0αS
8π

)n∫∞
0

dyyne−
y
2 (m+1)

= C1
αS
2

∞∑
n=0

(
β0αS
8π

)n
n! + . . . , (88)

[
D
(
Q2
)∣∣∣

bubble

]
UV

= C1
αS
4

∞∑
n=0

∞∑
m=1

(−1)m+n+1m (m+ 1)

(
β0αS
8π

)n∫∞
0

dỹ ỹne−
ỹ
2m

= C1αS

∞∑
n=0

(−1)n
(
β0αS
4π

)n
n! + . . . . (89)

According to their position in momentum space [77, 78], the related divergences are called IR or
UV renormalons, respectively. Focusing on the infrared domain, Equation 88 leads to the emer-
gence of what we later on may identify as a gluon condensate (see [78, 107]). More precisely,
for the discussed Adler function, the leading IR renormalon corresponds to a “soft” operator
OG=αSG

A
µνG

A,µν (see [77, 108]) which will be absorbed46 by the associated47 vacuum expecta-
tion value (VEV) 〈αSG2〉. In a nutshell, this may be explained as follows (cf. [77, 78, 95, 96]):

• The coefficients of Equation 88 contain integrals48 which are saturated by values close to [78]

y ∼ n⇔ k2 ∼ Q2e−
n
2 . (90)

Consequently, at sufficiently large n>N∗=2 log
(
Q2/Λ2QCD

)
[78] the factorial divergence is of

purely formal nature, since all related Feynman diagrams cease to properly represent the
underlying non-abelian dynamics within this strongly coupled infrared domain [77, 78].

45 In fact, Equation 87 can be written as

D
(
Q2
)∣∣∣

bubble
=
[
D
(
Q2
)∣∣∣

bubble

]
IR
+
[
D
(
Q2
)∣∣∣

bubble

]
UV

,

with the formal expansions

[
D
(
Q2
)∣∣∣

bubble

]
IR

= C1
αS
2Q2

∞∑
n=0

∞∑
m=1

(−1)m+1m (m+ 1)

(
β0αS
4π

)n ∫Q2
0

dk2
(
k2

Q2

)m(
log
(
Q2

k2

))n
,

[
D
(
Q2
)∣∣∣

bubble

]
UV

= C1
αS
2Q2

∞∑
n=0

∞∑
m=1

(−1)m+1m (m+ 1)

(
β0αS
4π

)n ∫∞
Q2

dk2
(
Q2

k2

)m+1(
log
(
Q2

k2

))n
.

46 In general, the actual uncertainty due to infrared renormalons is numerically smaller than the corresponding gluon
condensate contribution (cf. [107, 109]). This could be caused by distortion effects of the Green’s function within the IR
domain (see discussion in [107]).

47 In order to justify this statement, let us illustrate some arguments, as given by [77, 108]:

• A posteriori (see discussion below), the only hard momentum scale ∼ |Q| can be factored out which leaves only
soft field configurations. Therefore, the given IR parameter should be related to a (soft) local operator.

• Since there are no external hadrons involved, this boils down to a vacuum matrix element of that operator.

• The leading IR renormalon singularities in question are caused by a single gluon line. Thus, the required operator
has to be bilinear in the gluon fields. However, the lowest dimensional operator allowed by Lorentz and gauge
invariance is proportional to GAµνG

A,µν.

Consequently, the leading infrared contribution to the Adler function is given by 〈0|αSGAµνGA,µν|0〉. In general, IR
renormalons are related to properties of higher-dimensional operators which in the present case are embedded within
condensates (see, e. g., [77] for an extended discussion).

48 For m ∈N and Re (n)>−1 one has
∫∞
0 dyyn exp

(
−y
2m

)
=
(
2
m

)n+1
Γ(n+ 1).
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• As discussed in [77, 78, 110], N∗ should, therefore, be interpreted as the optimal truncation
point (cf. Section A.13) (ellipses represent the truncated tail of this series, cf. [110, 111])

[
D
(
Q2
)∣∣∣

bubble

]
IR
7→ C1

αS
2

dN∗e∑
n=0

(
β0αS
8π

)n
n ! + . . . , (91)

yielding an exponentially small ambiguity for the definition of this asymptotic expansion
which scales as49 (see Section A.13)

[
∆D

(
Q2
)∣∣∣

bubble

]
IR

∼ exp

(
−

8π

β0αS
(
Q2
)
)

∼
Λ4QCD

Q4
. (92)

• Most importantly, the tail of this asymptotic expansion does not have to be ignored. Instead, it
gives rise to non-perturbative contributions of O(Λ4QCD/Q4) after introducing the following
ansatz. Similar to renormalization itself, which requires an UV cut-off to define an associ-
ated renormalizable field theory, the concept of infrared factorization is crucial in QCD (cf.
[77, 112]). This (as roughly mentioned before) can, therefore, also be found in the OPE [90]
and comparable approaches, such as perturbative factorization [113], which are both based
on a systematic separation of IR and UV contributions. In practical terms, this is done by
introducing an auxiliary momentum scale µ (normalization point) that formally separates
all fluctuations with frequencies higher (hard) or lower (soft) than µ (see [78, 95, 111]).

With regard to the Adler function and related loop integrals, we realize, that by excluding any
integration over the IR domain, a modified NLO pQCD result is implied50 [107]:

D
(
Q2
)∣∣∣
{k2>µ2}

= 1+
αS
(
Q2
)

π
+
π

3
g2αS

(
µ2
) µ4
Q4

+ . . . . (93)

Thus, this rigid-cut-off scheme entails an additional term proportional to µ4, as we may an-
ticipate from Equation 92. We note, that analogous to the discussed renormalization scheme-
dependence (cf. Section 2.3), all physical quantities are independent of the normalization point,
i. e., corresponding counter terms should emerge from neglected soft corrections. Since the latter
are affected by QCD vacuum effects, the standard Feynman rules (cf. Section A.6) have to be
extended accordingly (see discussion below and [95, 107, 114]), e. g., by including contributions
resulting from VEVs of local operators (see Equation 99):

D
(
Q2
)∣∣∣
{k2<µ2}

= −
π

3Q4
〈αSG2〉 . (94)

A posteriori, those modifications are sufficient to characterize the involved soft modes which in
the present case are represented by [107] (g1,g2 ∈ R)

〈αSG2〉 ≈ g1Λ4QCD + g2µ
4αS

(
µ2
)

. (95)

Thus, together with Equation 95 the dependence on µ cancels. In this context two basic require-
ments for µ arise [95, 107]:

49 As mentioned in [77] (see also [78, 95, 96]), the physics of power corrections is unrelated to αS and lies within the
small-momentum behavior of associated skeleton diagrams (i. e., primitive one-particle irreducible graphs). Therefore,
for qualitative purposes Equation 92 remains valid (cf. [77, 78]), even though the infrared dynamics are not accessible.

50 Here, we apply the physically more intuitive rigid-cut-off factorization, while later on the dimensional regularization
will be used.
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a) Since we intent to calculate hard contributions (as far as possible) perturbatively, µ must
be sufficiently large to ensure αS

(
µ2
)
�1.

b) On the other hand, only if µ is small enough possible soft/hard admixtures within hard/-
soft corrections are numerically insignificant (cf. Equation 95, Equation 93).

Provided, that point a) and b) are fulfilled simultaneously
(
e. g., Λ2QCD � µ2 � Q2

)
, there is

actually no need to explicitly introduce µ, i. e., as done above, via a cut-off (cf. [77, 93, 107]).
Instead, it is more convenient to implement factorization by using dimensional regularization
(see [77, 115, 116]). In particular, within the latter case Feynman integrals contributing to hard
corrections are integrated over all possible loop momenta, while the normalization point depen-
dence of involved VEVs can be determined by RG equations.

This prompts us to generally expect contributions of the form ∼Ci(Q
2/µ2) 〈0|Oi(µ)|0〉, with hard

coefficient functions Ci and soft operators Oi (i ∈N). Most remarkably, the perturbative analysis
necessitates51 the presence of certain non-perturbative “condensates” in QCD (see [77, 78, 96] for
an extended discussion). Nevertheless, not all condensates can be found in this way. For instance,
operators, which do not occur at any finite order in pQCD, such as the chiral condensate are in-
visible to this method (see also [77, 78]). Consequently, one is led to introduce a more formal
approach, such as the OPE. Originally, this method has been developed for the analysis of prod-
ucts of composite operators (cf. [89–94, 109]). According to [89–92, 98], each operator product
and corresponding singularities are expressed as a sum of well-defined non-singular operators,
along with singular complex functions. The latter are usually called Wilson coefficients [44, 90].

In the context of this work, two distinct versions of the OPE have to be discussed. However,
instead of a cumbersome general proof, we only explain the underlying coarse structure using
suitable examples.

• short distance operator product expansion : Let us start with the short distance
case, formulated for the product of two local operators A(x) and B(x) , e. g., representing
some problem specific interpolating currents. At small distances52 a product of two local
operators should itself resemble a local operator. This is the original motivation behind this
bookkeeping device [44]. Formally we may write (see, e. g., [44, 73, 98])

lim
|x−y|→0

{
A(x) B(y)

}
≈
∑
n

Cn (x − y , µF ) Qn
(
1
2 (x + y) , µF

)
, (96)

with the perturbatively calculable Wilson coefficients Cn and a complete set of local reg-
ular operators {Qn }n∈N0

. In fact, for renormalizable theories it has been proven, that the
expansion in Equation 96 is valid within the limit x→ y to any finite order of perturbation
theory (see, e. g., [44, 45] and references therein). Besides, the given local operators have the
same quantum numbers as

{
A(x) B(y)

}
. Furthermore, we have the normalization point

µF separating hard from soft fluctuations. Thus, the short distance behavior of the Wilson
coefficients can be deduced from corresponding RGEs (see [98] for details), implying53

lim
|x|→0

Cn(x,µF) ∼ |x|dQn−dA−dB log
(
1

|x|

) cA+cB−cQn
2

. (97)

51 As discussed above, without introducing specific condensates, the perturbative series cannot be defined unambiguously.
52 That means compared to the characteristic length of the system.
53 For simplicity, we assume the massless case. A generalization, including operator mixing can be found in [98]. Roughly

speaking, for |x| � m−1 (m is a generic mass parameter) we would encounter terms similar to [44] log (|x|) →
log(|x|m) (1+O(|x|m)).



30 quantum chromodynamics
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Figure 9: Selected diagrams contributing to Equation 85, including gluon and quark condensate corrections,
as illustrated by figure (c) and (d), respectively. Crosses represent vacuum condensates.

Here, dQn , dA and dB are the canonical mass dimensions of the operator Qn, A as well as B,
respectively. Similarly, the coefficients cX

(
X=Qn,A,B

)
are associated to the anomalous di-

mensions γX(g)=cXg2 +O
(
g3
)

(see [45, 98]). This reveals the ordering of the singularities:
the higher the dimension of Qn the less singular are the coefficients Cn. Hence, operators
with the smallest dimension dominate the short distance expansion.

In a broader context, the OPE, therefore, serves as a tool to handle composite operators which are
in general not always well-defined mathematical objects (see, e. g., discussion in [45, Chapter 4].
On a phenomenological level, the mentioned perturbative framework is only applicable if at
least some of the involved partons have sufficiently high virtualities to guarantee a small strong
coupling constant (see also Section A.15). However, even for such specifically chosen processes
a pure perturbative calculation would be insufficient, since the mentioned quarks and gluons
are still affected by the QCD vacuum, along with the confinement mechanism. Accordingly, the
initial and final state in Equation 85 represents the real (not perturbative) QCD vacuum state
(cf. [64, 73–76, 95, 97, 109, 114, 117]. Correspondingly, the calculation of Equation 85 has to
include effects due to soft quarks and gluons populating the QCD vacuum (cf. Figure 9). For
instance, Equation 85 gives rise to54 (cf. [64, 73–76]; the ellipses represent neglected higher order
corrections)

Πµν(q) = i

∫
d4x eiq·x

∑
ψ

e2ψ

[
〈0|ψ̄(x)γµψ(x)ψ̄(0)γνψ(0)|0〉

+ 〈0|ψ̄(x)γµψ(x)ψ̄(0)γνψ(0)|0〉+ 〈0|ψ̄(x)γµψ(x)ψ̄(0)γνψ(0)|0〉
]
+ . . .

= i

∫
d4x eiq·x

∑
ψ

e2ψ

[
−
2xµxν − gµνx

2

x8
Nc

π

−
2xµxν + gµνx

2

x4

(
〈αSπ GAµνG

A,µν〉
96π2

+
Ncmψ〈ψ̄ψ〉

12π2

)]
+ . . .

=
(
qµqν − gµνq

2
)
Π
(
q2
)

, (98)

54 In Equation 99, a pure perturbative ansatz would only be exact up to O(1/q4) accuracy.
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together with the amplitude

Π
(
q2
)
=
∑
ψ

e2ψ

[
Nc

12π2
log
(
µ2

−q2

)
+

1

12q4
〈αSπ GAµνG

A,µν〉+ 2Nc

3q4
mψ〈ψ̄ψ〉

]
+ . . . . (99)

The latter includes55 the associated vacuum expectation values [74, 97, 118]

〈0|ψ̄aα(x)ψbβ(0)|0〉 = 〈ψ̄ψ〉
[
δabδβα

12
−
mψ

48i
δab [/x]βα

]
+O

(
x2
)

, (100)

〈0|GAαβ(0)GBρσ(0)|0〉 =
〈GAµνGA,µν〉

96
δAB

(
gαρgβσ − gασgβρ

)
, (101)

of occurring local operators (see discussion below). Here, we can only mention selected aspects
of the QCD vacuum related to the used approach, as the ultimate solution of QCD and the resulting
complete picture concerning vacuum fields are unknown (see, e. g., [119]). From a phenomeno-
logical point of view, these soft fields fluctuate with a typical long-distance scale Λvac ∼ ΛQCD
[97]. A quark-antiquark pair, created by an external current at some point and absorbed at an-
other point has to interact with these soft fields, according to the specific problem studied.

For Equation 85 (vacuum-to-vacuum) and the set-up Q2 � Λ2QCD the average distance between
the quark-antiquark emission and absorption is essentially smaller than the characteristic scale of
the vacuum fluctuations. Therefore, the fast oscillating quark-antiquark fields perceive the slow
vacuum fluctuations as an almost static average of a soft background field [97]. At the same time
this short distance probe of the long-distance fields does not significantly disturb the vacuum
state. Therefore, an explicit ansatz for the interaction of, e. g., quarks with momenta ∼

√
Q2 and

the vacuum can be expressed as a scattering process. This means, the highly energetic quarks
and gluons are scattered by external static fields composed of soft quarks and gluons. Again (cf.
[74, 97]), one has to keep in mind the specific flavor structure of this interaction:

• light quarks :

◦ vacuum gluons are emitted and absorbed by virtual gluons;

◦ quarks/antiquarks are interchanged with their vacuum counterparts;

◦ combined (soft) quark-gluon interaction;

• heavy quarks :

◦ here only the interaction with the vacuum gluons is important.

This means, that heavy and light corrections effectively have a quite different structure (cf. [97]).
While in loop corrections of light flavors masses can be safely neglected, heavy quark masses
have to be included without exception. Also, due to their large mass mc ,b ,t�ΛQCD the heavy
flavors are far off-shell even at the momentum scale Λvac. Therefore, their interaction with the
soft fields of the vacuum proceeds mainly via gluon interaction. In terms of the OPE Equation 85

takes the form56 (modulo the tensor structure)

Π
(
q2
)
= C0

(
Q2
)
+
∑
n>0

Cn

(
Q2,µ

)
〈0|On(µ)|0〉 , (102)

55 While the mentioned first contraction in Equation 99 leads to LO perturbation theory (PT) and gluon condensate contri-
butions, the second and third term correspond (at this accuracy) to quark condensate corrections. Besides, the ellipses
stand for higher order admixtures, including additional condensates and mass corrections.

56 Sometimes, the short hand notation 〈0|On(µ)|0〉 = 〈On(µ)〉 is used.
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with the local gauge invariant operators57 On, composed of soft fields
(
for instance O3 = ψ̄ψ,

O4 =
αS
π GAµνG

A,µν, O5 = gψ̄σµνGµνψ, etc.
)

that form non-vanishing vacuum condensates. The
latter parametrize the averaged vacuum characteristics, i. e., the concrete structure of the vacuum
fields is irrelevant at this point. Thus, the vacuum fields are treated as external fields [74]. The
vacuum condensates are an example of (almost purely) non-perturbative parameters. Therefore,
numerical values for the condensate densities can only be calculated from first principle58, i. e.,
one has to use methods like lattice59 QCD (see, e. g., [122]). At present the most common method
(see [109]) is to fit the corresponding QCD sum rule to experimental data and extract the values
for the condensates. We need several of these condensates throughout this work. Starting with
the quark condensate [123, 124] (ψ = u, d and for SU(3)F symmetry also including ψ = s [97])

〈ψ̄ψ〉(µ = 2 GeV) =
[
−0.246 −0.019

+0.028

]3
GeV3 , (103)

which is the order-parameter of (spontaneous) chiral-symmetry breaking in QCD and was already
known before the development of QCD sum rules. Also, we will need the gluon condensate
(related to the QCD vacuum energy-density [95])

〈αSπ GAµνG
A,µν〉(µ=2 GeV) =

[
0.012 −0.012

+0.006

]
GeV4 (104)

and the parametrization for mixed (quark-gluon) condensates [125]

m20(µ=1 GeV) =
〈gψ̄σµνGµνψ〉

〈ψ̄ψ〉 = (0.8± 0.2) GeV2 . (105)

Admittedly, the accuracy of the numerical values for the condensate densities is not very high60

and ranges between five to thirty percent. In particular, when using less conservative estimates
as we did in this work (see [97] and references therein). Fortunately, uncertainties caused by
condensate contributions for the quantities calculated in this work is less than four percent (see
Chapter 5). As mentioned above, the heavy flavors do not form condensates, but interact with
the soft fluctuations of the vacuum via gluons. Therefore, the interaction of heavy quarks with
condensates of gluons or light quarks will appear only in higher orders61 of αS. Moreover, di-
mensional counting reveals, that 〈0|On|0〉 ∼ Λdnvac (cf. [74]), which means that the nth term of the

series in Equation 102 ∼
√
Λ2vac/Q

2
dn is suppressed for Q2 � Λ2QCD, as assumed. Therefore, al-

ready at intermediate Q2 ∼ 1 GeV2 the expansion given in Equation 102 can be safely truncated
after a few terms. In fact, condensates with canonical dimensions larger than six usually play a
minor role in the existing calculations (see [97]). In addition to the condensates there exist other
vacuum fluctuations at short distances ∼ 1/

√
Q2 which are able to absorb the whole momentum

of the external quark current (cf. [97]). These effects are known as direct instantons (cf. [127])
and for the vector currents under consideration they may become important only for operators
with dimension larger than ten (see discussion in [97]). Therefore, they will not play any role
in the truncated OPE we were discussing. Another possible issue concerns the key point of the
OPE which is the separation of hard and soft scales. In this context it is possible to get a certain
amount of double counting, e. g., due to the soft tails of the perturbative contributions overlap-
ping with the long-distance parametrizations. For some cases a rearrangement of the OPE into

57 According to Equation 102 C0
(
Q2
)

corresponds to the coefficient of the unit operator O0=1.
58 Also, attempts exist to calculate the condensates with models of the instanton vacuum [120, 121].
59 Still, very little is known about higher dimensional condensates and lattice studies mainly focus on the chiral condensate.
60 Despite the technical and experimental challenges considerable improvements are possible (cf. [94]).
61 This is a reason, why correlation functions of heavy quark currents can be used to study, e. g., the gluon condensate

[97, 126]. The latter then is the dominant condensate term in the OPE.
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a practical version [95] can reduce this overlap, but for the discussed cases the double counting
will be numerically insignificant [97].

Since our work mainly deals with light-cone dominated processes, we have to extend the discus-
sion to this specific setting. Thus, it is mandatory to introduce the light-cone62 OPE:

• light-cone operator product expansion : It has the generic form [44]

lim
x2→0

A
(
x
2

)
B
(
− x2

)
≈
∑
i

Ci (x) Oi
(
x
2 , − x2

)
, (106)

with singular complex functions Ci (x) and the regular bilocal operators Oi (x , y), which
in our case will turn out to be the so-called QCD string operators (see Chapter 3 and [75]).
The Taylor expansion of such a non-local operator can be expressed as [44]

Oi
(
x
2 , − x2

)
=
∑
j

xµ1 · · · xµjO(j ,i)
µ1 ...µj (0) , (107)

so that Equation 106 can also be written in terms of local operators

lim
x2→0

A
(
x
2

)
B
(
− x2

)
≈
∑
i ,j

C
(j)
i

(
x2
)
xµ1 · · · xµjO(j ,i)

µ1 ...µj (0) . (108)

When choosing a basis63
{
O

(j ,i)
µ1 ...µj

}
i

consisting of symmetric traceless tensors with j

Lorentz indices, the (Lorentz-) spin64 j can be assigned to each operator [44, 98]. In fact, a
naive dimensional analysis reveals for the light-cone behavior of the Wilson coefficients

lim
x2→0

C
(j)
i

(
x2
)
∼
[√

x2
]di ,j−j−dA−dB

[
ln
(
x2m2

)]p
, (109)

where dj ,i is the mass-dimension of O
(j ,i)
µ1 ...µj . Besides, m is a generic mass parameter

and p a corresponding real number, see [44]. Hence, the leading term of Equation 108

corresponds to the lowest value of
(
di ,j − j

)
. This combination is in general called the

twist (cf. Section 3.2) of a given light-cone operator, i. e.,

“(geometrical) twist = (canonical) dimension − (Lorentz) spin ′′ .

Accordingly, the operators with the lowest twist dominate the involved light-cone expan-
sion. Here, we did not yet include possible RG effects (see [64, 98]), which are discussed
below.

62 More precisely, we use a specific version of the light-cone OPE which is usually referred to as conformal OPE [128].
63 This operator basis may include an infinite number of terms, contributing to the given operator product.
64 Strictly speaking, the related spin characterizes the corresponding representation of the homogenous Lorentz group (see,

e. g., [44, 98]).
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Furthermore, for the investigation of pseudoscalar singlet mesons we need the anomalous di-
mensions of related twist-two operators. For this purpose, one may study the product of two
electromagnetic currents65 [129–131] (ellipses represent neglected higher order corrections):

lim
x2→0

Jem
µ (x) Jem

ν (0) ≈
(
−gµν∂

2+∂µ∂ν

) 1

x2

∞∑
m=0

∑
i

Cmi,1

(
x2,µ2,g

)
xµ1· · · xµmO

µ1...µm
i (0)

−
(
gµµ1gνµ2∂

2 − gµµ1∂ν∂µ2 − gνµ2∂µ∂µ1 + gµν∂µ1∂µ2

)
×

×
∞∑
m=2

∑
i

Cmi,2

(
x2,µ2,g

)
xµ3· · · xµmO

µ1...µm
i (0)

− iεµνλµ1∂
λ 1

x2

∞∑
m=1

∑
i

Emi,1

(
x2,µ2,g

)
xµ2· · · xµmR

µ1...µm
i (0) + . . . , (110)

where we deal with renormalized quantities, denoted by the renormalization scale µ2. In Equa-
tion 110 we only consider contributions of twist-two operators. The index i of O

µ1...µm
i and

R
µ1...µm
i stands for the representation of the flavor SU(Nf)F group which is used to model

the flavor structure of the non-singlet (NS) contributions “Rµ1...µm
(NS,A);q” in the OPE. Therefore, TA

stand for the generators of the SU(Nf) group in an adequate matrix representation, i. e., when
restricted to Nf=3 the standard Gell-Mann matrices will be used to define TA= 12λ

A. Also there
will be flavor singlet (S) contributions “Rµ1...µmS;q ” which are important in the context of this
work that is devoted to study eta mesons. The latter have to be described theoretically by contri-
butions of flavor singlet admixtures and parity-odd operators. As can be seen in the following,
the singlet sector receives contributions from quark R

µ1...µm
S;q and gluon operators R

µ1...µm
S;g be-

cause both have the same quantum numbers. This implies, that they mix under renormalization.
For the parity-odd sector, in QCD there are three classes of gauge-invariant twist-two operators(
near x2 ≈ 0

)
:

R
µ1...µm
(NS,A);q= i

mŜ
{
Ψγ5γ

µ1Dµ2 · · ·DµmTAΨ−(traces)
}

,

R
µ1...µm
S;q = imŜ

{
Ψγ5γ

µ1Dµ2 · · ·DµmΨ−(traces)
}

,

R
µ1...µm
S;g = imŜ

{
Tr
{
G̃µ1αDµ2 · · ·Dµm−1G

µm
α

}
−(traces)

}
,

 (111)

with Ψ(x) = (u(x) ,d(x) , s(x) , . . .)T, the vector of the first 16N6Nf quark-spinors. Those oper-
ators are irreducible representations of the Lorentz group, i. e., they are traceless and symmetric
in the Lorentz indices µ1, . . . ,µm. Therefore, the operator Ŝ in front of the curly brackets of Equa-
tion 111 implies the symmetrization of all involved indices, while the term “(traces)” represents
the adequate subtractions in order to produce a traceless operator. Furthermore, the operators
O
µ1...µm
i correspond to the parity-even case (e. g., for the description of vector mesons) and the

corresponding anomalous dimensions have been calculated in [129, 132–139]. For the renormal-
ization the flavor structure has to be specified. Actually, the singlet and the non-singlet cases
decouple. To sketch the ansatz (for a full treatment see [129]) for deriving the anomalous dimen-
sions, one starts with a formal definition of the partonic operator matrix element [129]

〈j,p, s|Rµ1...µnk;i |j,p, s〉 = A(n)
k;ij
(
p2,µ2,g, ξ

)
Ŝ {(sµ1pµ2 · · ·pµn)−(traces)} , (112)

65 For the correct pole structure in Equation 110 one has to replace x2→x2− iεx0 [129].
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with spin s and indices k = NS, S and i, j = q,g. The coefficients A(n)
k;ij are derived from the

Fourier transform into momentum space of the connected Green’s functions [129] (i. e., one
where external lines are amputated)

〈0|T
{
ϕ̄j(x)R

µ1...µn
k;i (0)ϕj(y)

}
|0〉
∣∣∣
connected

. (113)

Here, ϕi(x) stands either for the quark ψ(x), or gluon fields AAµ (x). Therefore, the corresponding
Callan-Symanzik equation can be written as (for details see [129])

[
µ
∂

∂µ
+β(g)

∂

∂g
+ δ(ξ,g)

∂

∂ξ
+ γ

(m)
NS;qq

]
A

(m)
NS;qq

(
p2,µ2,g, ξ

)
= 0 (114)

[(
µ
∂

∂µ
+β(g)

∂

∂g
+ δ(ξ,g)

∂

∂ξ

)
δij + γ

(m)
S;ij

]
A

(m)
S;jk

(
p2,µ2,g, ξ

)
= 0 . (115)

In [129] the renormalization constants ZNS;qq and ZS;ij ≡ (ZS)ij have been calculated up to α2S
accuracy, leading to the desired result

γ
(m)
NS;qq = β(g, ε)Z−1

NS;qq
d

dg
ZNS;qq (116)

γ
(m)
S;ij = β(g, ε)

(
Z−1

S

)
ik

d
dg

ZS;kj . (117)

The anomalous dimensions arise from the perturbative series

γ
(m)
k;ij = γ

(0),(m)
k;ij

αS
4π

+ γ
(1),(m)
k;ij

(αS
4π

)2
+O

(
α3S

)
. (118)

Accordingly, they have been adapted to the rest of the formalism and can be found in Section C.2.
In fact, the discussed anomalous dimensions are essential for the intended renormalization of
η(′) DAs (see Chapter 3).

Let us come back to the question, whether it makes sense to describe a light-cone dominated
process with a tower of condensates or not. For an illustration we consider the pion electromag-
netic form factor at leading-twist accuracy and LO in αS, as discussed in [140]. This process (see
Figure 10) can be described with the correlation function

Tµν(p,q) = i
∫

d4x eiq·x〈0|T
{
J5µ(0) J

em
ν (x)

}
|π+(p)〉 , (119)

with the pion interpolation current J5µ = d̄γµγ5u, the electromagnetic current Jem
µ as well as

the pion momentum p (p2 = m2π) and the photon virtuality Q2 = −q2 (which is fixed). The
contribution of the pion intermediate state also depends on the invariant variable s = (p− q)2

which implies the parametrization

Tµν(p,q) =
2ifπ (p− q)µ pν

m2π − (p− q)2
Fπ

(
Q2
)

, (120)

where Fπ is the pion electromagnetic form factor, containing all the process specific information,
e. g., on the electromagnetic pion structure. Besides, this form factor can be calculated in full
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µ,5

ν

π+
p

q

(p−q)

up

(1−u)p

Figure 10: A generic tree-level contribution to the correlation function in Equation 119. Within this “hand-
bag” diagram the blob represents non-perturbative effects related to the pion DA, while the
interpolating axial-vector current J5ν is depicted by a dashed double line.

analogy to the π0γ(?)γ∗ transition form factor which makes it an interesting testing ground for
us. The tree-level leading-twist correction for massless (u, d) quarks reads:

Tµν(p,q) = i
∫

d4x eiq·x
{
eu〈0|d̄(0)γµγ5u(0)ū(x)γνu(x)|π+(p)〉

− ed〈0|d̄(x)γνd(x)d̄(0)γµγ5u(0)|π+(p)〉
}

=

∫
d4x

eiq·x

2π2x4
xαSµναβ

{
eu〈0|d̄(0)γβγ5u(x)|π+(p)〉

− ed〈0|d̄(x)γβγ5u(0)|π+(p)〉
}

, (121)

with the tensor structure

Sµναβ = gµαgνβ + gναgµβ − gµνgαβ . (122)

At this point it should be emphasized, that Equation 121 is written with an abbreviation for the
matrix elements (cf.[64, 73–76])

〈0|ψ̄(x)γµγ5ϕ(y)|M(p)〉≡〈0|ψ̄cl(x)γµγ5 [x,y]clϕcl(y)|M(p)〉 , (123)

where ψ, ϕ are specific (light) quark flavors, M is the meson under consideration and [x,y]
represents the path-ordered exponent (cf. Equation 1153) to ensure gauge-invariance of this non-
local object. In Equation 123 soft field configurations66 are assumed, denoted by the subscript
“cl”. This factorized form of the correlation function can be seen as a consequence of the light-
cone OPE (cf. Equation 106), where Equation 123 denote corresponding soft contributions. Let us
try to describe the soft corrections with a formal expansion into a Taylor series of the matrix-

66 In other words, the fields are assumed to be slowly varying.
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elements in Equation 121. For a symmetric interval67 the operators of this expansion are given
by [140]

Ō
(n)
µµ1···µn = d̄(0)γµγ5i

↔
Dµ1 · · · i

↔
Dµn u(0) , (124)

〈0|d̄(x)γµγ5u(−x)|π+(p)〉 =
∑
n

(−i)n

n! xµ1 · · · xµn〈0|Ō(n)
µµ1···µn |π

+(p)〉 , (125)

with the covariant derivative68
↔
Dµ=

←
Dµ −

→
Dµ (see Section 3.4.3). When choosing the expan-

sion point accordingly, the operators Equation 124 can be expressed as a linear combination of
R
µµ1...µn
(NS,1);q and R

µµ1...µn
(NS,2);q , plus higher twist corrections. Therefore, similar to Equation 112, the

matrix elements of the local operators can be parametrized according to
(
x2 ≈ 0

)

xµ1 · · ·xµn〈0|Ō(n)
µµ1···µn |π

+(p)〉 = ifπpµ (p · x)n 〈〈O(n)
π 〉〉+ . . . , (126)

where the ellipses stand for other Lorentz-structures (i. e., contributions of higher twist). When

inserting Equation 126 in Equation 121, one gets69

(
using x= Q2

s+Q2
, s=(p− q)2

)
[140]

Tµν(p,q) = ifπ
pµpν

Q2
2x

ξx

{
1+
2x

ξx

∞∑
n=1

〈〈O(2n)
π 〉〉

(
x+ x̄

x− x̄

)2n−1}
+ . . . , (127)

with the useful definitions70
(
x ∈

[
0, 1
])

ξx = x− x̄ , x̄ = 1− x . (128)

A sensible evaluation of Fπ requires the application of a Borel transformation (see Section B.3)
which entails an additional variableM2, i. e., the so-called Borel parameter [140] (omitting higher
twist and continuum subtractions, see Section 4.2):

Fπ

(
Q2
)
=e

−
Q2

M2

{
1+

∞∑
n=1

〈〈O(2n)
π 〉〉

2n∑
k=1

(
2n− 1

k− 1

)
1

Γ(k+ 1)

(
−2Q2

M2

)k}
. (129)

A major motivational reason for this step is given by an implicit suppression of all except low-
lying resonances and higher order OPE contributions (for an elaborate discussion see Section 4.2).
This has been further studied in the context of QCD sum rules (cf. Chapter 4, Chapter 5), which
represent a well-known analytic technique (inter alia) devised for the calculation of QCD observ-
ables, as named above. Indeed, the SVZ sum rules (see Section 5.1.1) have been widely used for
this purpose. The representation Equation 129, however, turns out to be inadequate for light-
cone dominated problems, because the two required conditions are contradictory unless Q2 is
sufficiently small [140]. Indeed, for a sufficient suppression of higher resonances (e. g., a1 meson
intermediate state, etc.) the Borel parameter has to be held within the predetermined window
(see also Section B.3) 1 GeV26M262 GeV2. On the other hand, Equation 129 enhances the OPE’s
higher order terms by factors of

[
Q2
]k and for Q2 >M2 the entire expansion breaks down. A

solution to this problem has been worked out in [140–143]. In a nutshell, one may escape those

67 Due to translation invariance, this may be chosen without loss of generality.

68 Here,
←
Dµ and

→
Dµ only acts on fields on the left, or the right-hand side of the derivative, respectively.

69 Only operators with even numbers of derivatives, i. e., n contribute due to G-parity.
70 In the next chapters, we will restrict the use of Equation 128 to the case x ∈ [0,1]. Then, “x” may be interpreted as a

longitudinal (anti-) quark momentum fraction, while “pξx” is playing the role of a quark-antiquark relative longitudinal
momentum (cf. Section 3.1.4).
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calamities, by abandoning the (formal) short distance OPE and instead write all results directly
in a factorized form, with coefficient functions and so-called DAs:

〈〈O(n)
π (µ)〉〉 =

∫1
0
duξnuφπ(u,µ) , (130)

which themselves parametrize non-local matrix elements71, such as (up to twist-two)

〈0|d̄(x)γνγ5u(−x)|π+(p)〉
∣∣
x2≈0 = ifπpµ

∫1
0
dueiξup·xφπ(u,µ∼1/

√
x2) . (131)

Correspondingly, the related leading-twist LO QCD corrections can then be conflated to

Tµν(p,q) = 2ifπpµpν
∫1
0
du

uφπ(u)

ūQ2 − us
+ . . . (132)

implying a rather compact LCSR [144] (omitting continuum subtractions)

Fπ

(
Q2
)
=

∫1
0
duφπ(u) exp

(
− ūQ

2

uM2

)
. (133)

This ansatz works perfectly well, especially within the limitQ2 →∞. In fact, one can consistently
perform every stage of the underlying calculation within this non-local approach [75]. Hence,
light-cone dominated processes, such as the hard exclusive processes considered within this
work, favor a description in terms of light-cone DAs. In particular, the latter also allow a deeper
insight into the examined meson’s non-perturbative structure and will be subject of a detailed
discussion in Chapter 3.

2.5 from symmetry currents to mesons

Before being able to investigate hadron properties, the apparent gap between a formal descrip-
tion in terms of quarks and gluons and the observables of the hadronic world has to be bridged.
Due to the absence of a rigorous analytic solution of QCD, relating the fundamental degrees
of freedom to the measurable particle spectrum, an effective description has to be employed.
This inevitably will be problem dependent, i. e., when assigning a specific flavor structure to a
hadron72 for its classification, the characteristic parameters (e. g., involved quantum numbers of
the particle under consideration) have to be kept obvious throughout the analysis. Nevertheless,
in this subsection, the basics needed for a process independent approach will be introduced,
allowing nontrivial statements about the hadrons parton structure.

Let us start with the global symmetries of the QCD Lagrangian. In general conservation laws
lead to conserved currents and charges. Those and the implied commutation relations are useful
to classify the possible particle spectrum. To clarify this issue, one has to study the invariance of
the underlying Lagrangian73

L(φi(x),∂µφi(x)) , (134)

such as L ≡ LQCD, under the global transformations

φi 7→ exp
{
iΓAθA

}
ij
φj , (135)

71 A dedicated discussion may be found in Chapter 3.
72 For instance, when probing its flavor structure with a specific quark current.
73 With the generic fields φi standing for the fundamental fields of the theory.



2.5 from symmetry currents to mesons 39

with the generators ΓA (e. g., of SU(N) or U(N)) and the global (space-time independent) angles
θA. For QCD both indices i, j may refer to a given flavor. Because of Noether’s theorem [145,
146], any continuous symmetry transformation similar to Equation 135, which leaves the action
invariant, implies the existence of a conserved current [44]

JAµ = −i
δL

δ(∂µφi)

[
ΓA
]
ij
φj ⇒ ∂µJAµ = 0 , (136)

with the associated conserved charge74

QA(x0) =

∫
d3x JA0 (x) ⇒ d

d x0
QA = 0 . (137)

The underlying symmetry together with the canonical commutation relation (at equal time) im-
plicate the charge algebra [44]

[
QA(x0) ,QB(x0)

]
= ifABCQC(x0) , (138)

with the structure constants fABC of the corresponding symmetry group. Similar extensions
to symmetry currents are called current algebra which have been a powerful tool in the devel-
opment of QCD [147, 148] and beyond. As a matter of fact, QCD can be described with two or
three dynamical light quark flavors at low energies. To a good approximation, one may consider
them as massless mψ ≈ 0 (ψ= u, d, s), even though we will see that mass corrections become
important for further theoretical considerations. Therefore, this digression into a hypothetical
world of Nf massless flavors75 has to be seen as a useful gedankenexperiment, giving us better
insight into the (non-perturbative) QCD dynamics. Later on the results can be retrofitted with
the corresponding mass corrections. For instance, the quark mass corrections can be treated
perturbatively when the scales under consideration are much larger than the light masses mψ.
To exemplify this case, we may consider the quark propagator Equation 1142, while assuming
mψ
ΛQCD

� 1:

iSψ(x, 0) = i
Γ
(
D
2

)
/x

2π
D
2
[
−x2

]D
2

+mψ
Γ
(
D−2
2

)
14

4π
D
2
[
−x2

]D−2
2

−m2ψi
Γ
(
D−2
2

)
/x

8π
D
2
[
−x2

]D−2
2

+O
(
m3ψ

)
. (139)

Moreover, the massless (classical) QCD Lagrangian with Nf active (light) flavors

L
(cl.)
QCD = −

1

4
GAµνG

A,µν +

Nf∑
f=1

Ψfi /DΨf , (140)

with “f” being its flavor index that numbers the elements of the Nf-tuples76

Ψ = (u,d, . . .)T , Ψ =
(
ū, d̄, . . .

)
, (141)

has the following symmetries [44, 55, 76, 146]

U(1)V×U(1)A×SU(Nf)L×SU(Nf)R (142)

as listed in Table 1. In the context of massless particles it is convenient to define the frame

74 Provided that surface terms at infinity are negligibly small.
75 The remaining “heavy flavors” are assumed to be non-dynamical which is accomplished by setting their masses to

infinitely large values.
76 We choose a configuration of the components in Ψ=

(
. . . ,Ψi, . . . ,Ψj, . . .

)T such that mi<mj ∀i, j is fulfilled.
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symmetry transformation current quantum level

U(1)V Ψf 7→eiαΨf (α ∈ R) J
(B)
µ = 13

∑
fΨfγµΨf

baryon number

conservation

U(1)A Ψf 7→eiαγ5Ψf (α ∈ R) J
(A)
µ5 =

∑
fΨfγµγ5Ψf anomalous

SU(Nf)L×SU(Nf)R
Ψf,L 7→ [UL]fgΨg,L

Ψf,R 7→ [UR]fgΨg,R

JAµL=Ψf,Lγµ
[
TA
]
fg
Ψg,L

JAµR=Ψf,Rγµ
[
TA
]
fg
Ψg,R

spontaneously

broken

Table 1: Symmetries of the classical QCD Lagrangian (see Equation 140). Here, TA denote the generators of
SU(Nf), UR=exp

[
iγ5θ

A
R T
A
]

and UL=exp
[
iθAL T

A
]

for θAR , θAL ∈ R (cf. [55, 146]).

independent decomposition of the Dirac spinor (see Section A.2)

Ψf,X = PXΨf (X = L, R) , (143)

with the chiral projection operators
(
specified in D = 4

)

PR =
1

2
(14 + γ5) , PL =

1

2
(14 − γ5) (144)

into left- and right-handed spinors

Ψf = Ψf,R +Ψf,L . (145)

Then the dynamics of the left- and right-handed quarks decouples (for the limit mu,d,s→0 and
mc,b,t→∞)

L
(cl.)
QCD =

Nf∑
f=1

[
Ψf,Ri /DΨf,R +Ψf,Li /DΨf,L

]
−
1

4
GAµνG

A,µν (146)

on the Lagrangian level77. Additionally, the corresponding action of Equation 140 exhibits an
invariance under a global scale transformation (see discussion in Chapter 3), but we first will
focus on the axial U(1)A and the chiral SU(3) flavor symmetries.
In fact, exact symmetries give rise to exact conservation laws, i. e., in this case both the La-
grangian and the related vacuum are invariant under the specific symmetry [149]. Nevertheless,
not all symmetries of the classical Lagrangian are preserved at quantum level78, i. e., QCD pos-
sesses quantum anomalies. An anomaly free symmetry is the U(1)V vector symmetry which is
responsible for the baryon number conservation within QCD processes [55]. However, the U(1)A
axial symmetry which can be also written as the following rotations of the left- and right-handed
fields in opposite directions (cf. Equation 1090)

eiαΨf,R + e−iαΨf,L = eiαγ5Ψf (147)

is anomalous at the quantum level. The related axial79 (or Adler-Bell-Jackiw, or triangle) anomaly
can be seen in the divergence of the (external) axial vector current J(A)

5µ and is of major impor-
tance when studying η(′) mesons. There are several ways to calculate the axial anomaly, e. g.,

77 Here, one uses ψ̄R,Li /DψR,L = 1
2

[
ψ̄i /Dψ± ψ̄iγµγ5Dµψ

]
for every active flavor ψ.

78 That means, when quantum corrections are included.
79 Due to Equation 147, it is self-evident to call the corresponding axial anomaly also chiral anomaly.
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by evaluating the corresponding triangle diagram similar to Figure 4 (cf. [52]). In particular, it
is wise to use the so-called Schwinger or point splitting renormalization (ε-splitting) [150, 151].
This scheme [55, 66, 150] introduces a gauge-invariant UV regularization prescription for the axial
vector currents, by replacing the original current J(A)

5µ (x) with their regularized counterparts

J
(A),reg.
µ5 (x) = lim

|εµ|→0

∑
f

Ψf(x+ ε)γµγ5 [x+ ε, x− ε]Ψf(x− ε) . (148)

Consequently, the generic form of the chiral anomaly (for a calculation see Section A.8) in terms
of the axial current (see Equation 148) with Nf light flavors is

∂µJ
(A),reg.
µ5 (x) = Nf

αS
4π

GAµν(0) G̃
A,µν(0) + 2Ψfiγ5 [m̂]fgΨg , (149)

with the Nf ×Nf mass matrix [152]

m̂ = diag(mu,md, . . .) . (150)

It is important to outline the connection of the axial anomaly with the complex non-perturbative
structure of QCD. We can only do this in passing and, therefore, have to focus on the major
highlights relevant for this work. First, let us consider a world without quarks. In contrast to
other QFTs, the field theoretical degrees of freedom in QCD are not only oscillator like80, but
exhibit a direction in the (infinite dimensional) space of (gauge) fields along which the Yang-Mills
system can tunnel [44]. For instance, the zero-energy states may be connected with each other
by (quantum mechanical) tunneling transitions. Consider the so-called Chern-Simons current
which plays an important role in the description of the QCD vacuum via instanton81 calculus:

Kµ =
αS
4π
εµνρσAAν

[(
∂ρA

A
σ

)
−
g

3
fABCABρA

C
σ

]
. (151)

The corresponding Chern-Simons charge

K(x0) =

∫
d3xK0(x) (152)

can be related to the Pontryagin-index (or winding number) which classifies the different topo-
logical sectors of QCD [55, 152]. An analysis82 of K reveals a (quasi) periodic Bloch boundary
condition of the vacuum “fields” φvac (cf. [55])

φvac(K+ 1) = eiθφvac(K) , (153)

with θ ∈ [0, 2π], a hidden parameter, called the vacuum angle. The latter would be a global
fundamental constant, characterizing the boundary conditions of the θ-vacuum

|θ〉 =
∑
n∈Z

einθ|n〉 , (154)

with |n〉 the nth zero energy state corresponding to K = n (cf. [55]). According to the genuine
form of the θ-vacuum and the given topological structure of Yang-Mills theories, the vacuum
transition |θ〉 → |θ′〉 (with θ 6= θ′) can be taken into account with the additional term

Lθ =
θ

2

(αS
4π

GAµνG̃
A,µν

)
(155)

80 That means, having a single ground state.
81 In a manner of speaking, a field configuration AAµ continuously interpolating between the states (cf. Equation 152)

K(x0→ −∞) = n ∈ Z and K(x0→ +∞) = n+ 1 (with minimal action) in Euclidean time, i. e., the least action
tunneling trajectory, is called the Belavin-Polyakov-Schwartz-Tyupkin (BPST) instanton [55].

82 According to [55] a Hamiltonian formulation of the Yang-Mills theory can be developed, allowing a separation of an
associated potential energy term V(K). The latter exhibits a periodicity in the variable K, i. e., along the K-direction.
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in the effective QCD Lagrangian density (for a construction cf. [44]). Equation 155 includes the
only gauge-invariant Lorentz scalar operator (in D=4) that can be constructed from AAµ , violat-
ing parity and time-reversal symmetry83. On the other hand, the operator GG̃ can be expressed
as a total derivative of the gauge-dependent Chern-Simons current

∂µK
µ=

αS
8π

GAµνG̃
A,µν , (156)

and, therefore, one could believe that Equation 155 can have no impact on the action after all.84

However, due to the instanton field this is not the case [44]. Being aware of that, the seemingly
unavoidable inclusion of Lθ into the QCD Lagrangian would introduce (for θ 6= 0,π cf. [55]) a
measurable P (parity), and (therefore) CP (combination of both charge conjugation and parity)
breaking of strong interaction. Nevertheless, it is known experimentally that both, P and CP, are
conserved symmetries for strong interaction to a very high degree of accuracy. In fact, estimates
(see [55] and references therein) for the vacuum angle give values very close to zero θ 6 10−9

[153]. This gives rise to the strong CP problem (cf. [55, 154, 155]). On phenomenological grounds,
one could simply assume θ≡ 0, but in the presence of (nearly) massless quarks the mentioned
axial anomaly will purge those theoretical tensions. In order to get to this deeper insight, a
different gauge-independent operator, based on the Chern-Simons charge can be defined

Q = K(x0 → +∞) −K(x0 → −∞) ≡ ∆K . (157)

This so-called topological charge Q has the local representation

Q =
αS
8π

∫
d4xGAµνG̃

A,µν , (158)

which can be related to Chern-Simons current

Q =

∫
d4x ∂µKµ =

∫+∞
−∞dx0

∫
d3x ∂0K0 = lim

α→∞
∫

d3xK0(x0,~x)
∣∣∣∣
x0=+α

x0=−α

= ∆K (159)

via the Gauss formula [55]
(
i = 1, 2, 3

)

∫
Ω

d4x ∂iKi =
∫
∂Ω

dSi Ki → 0 . (160)

Again, for the theory of instantons and QCD vacuum structure Equation 158 is an important
quantity, labeling distinct topologies of the vacuum (cf. [44, 55]). Furthermore, when coming
back to a formulation of QCD with Nf light quark flavors, the following relations are implied by
the immanent axial anomaly (cf. Equation 137):∫

d4x ∂µJ(A)
µ5 (x) =

∫+∞
−∞dx0

∫
d3x ∂0J

(A)
05 (x) = lim

x0→∞ {Q5(x0) −Q5(−x0)}

= 2NfQ = 2Nf∆K (161)

83 Before the discovery of instantons it was believed that QCD naturally conserves P and CP [55].
84 Equation 156 can be easily verified, e. g., via a short calculation

∂µK
µ ∼

αS
8π
εµνρσ Tr {4 [∂µAν][∂ρAσ] + 4ig [∂µAν] [Aρ,Aσ]}

=
αS
8π
εµνρσ Tr {(2 [∂µAν]+ig [Aµ,Aν])(2 [∂ρAσ]+ig [Aρ,Aσ])}

=
αS
8π
εµνρσ Tr {GµνGρσ} .
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relating the change of the chiral charge with the topological charge of the gauge field. The latter
is better known in the context of the Atiyah-Singer index theorem (see [156] and references
therein). This famous theorem may be interpreted as follows [55]: the number of fermion zero
modes

(
i. e., /Dψ = 0, with ψ normalizable

)
is related to the topological charge of the gauge

fields via

Q = nR −nL , (162)

where “nR,L” is the number of (normalizable) zero modes of positive/negative (or right-/left-
handed) chirality. Therefore, on quantum level left- and right-handed zero modes are not con-
served separately. Moreover, in the presence of massless fermions the possible θ-term in the
Lagrangian becomes unobservable, even for finite θ. This is a consequence of the axial anomaly
which allows us to rewrite Lθ as a total derivative of the gauge-invariant quantity J

(A)
µ5

Lθ ∼ ∂µJ
(A)
µ5 (163)

and, therefore, Lθ will drop out of the effective action85. In conclusion we will treat P and CP as
conserved within QCD modulo small perturbations.
The other class of chiral transformations affects the flavor structure of the possible particles.
According to the SU(Nf)R×SU(Nf)L symmetry of the (classical) Lagrangian Equation 146

Ψf,X 7→ exp
[
iTAθAX

]
fg
Ψg,X , X = R, L (164)

with the symmetry currents (now omitting the flavor index of ΨX)

JAµX = ΨXγµT
AΨX (165)

implying the charge algebra [44]
[
QAX (x0) ,QBX(x0)

]
= ifABCQCX(x0) (166)

[
QAR (x0) ,QAL (x0)

]
= 0 . (167)

Equivalently, the invariance under the SU(Nf) transformations

Ψf 7→ exp
[
iTAθA

]
fg
Ψg (168)

Ψf 7→ exp
[
iTAγ5θ

A
]
fg
Ψg (169)

can be considered, which lead to the more convenient (rescaled86) Noether currents
(
later on

generalized to A=0, 1, . . . ,N2f − 1
)

JAµ = ψγµ
√
2TAψ =

√
2
(
JAµR + JAµL

)
(170)

JAµ5 = ψγ5γµ
√
2TAψ =

√
2
(
JAµR − JAµL

)
(171)

and corresponding conserved axial “QA5 ” as well as vector “QAV” charges

QAV = QAR +QAL , (172)

QA5 = QAR −QAL . (173)

85 More generally, in a theory with light quarks (mquark ≈ 0) all θ dependent effects must be proportional to the corre-
sponding quark masses (cf. [157]).

86 For convenience, we have rescaled the standard currents by a factor of “
√
2”.
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The latter are important for the low energy realm of QCD. For instance, the related charge alge-
bra87 of Equation 173 will be of use in the following:

[
QA5 (x0) ,QB5 (x0)

]
= ifABCQCV(x0) . (174)

On classical level, the divergences of the involved Noether currents
(
A=1, . . . ,N2f − 1

)

∂µ
(
JAµR ∓ JAµL

)
= ψ

[
TA, m̂

]
±
iγ5ψ = ±

∑
f,f′

(mf ±mf′)ψfiγ5
[
TA
]
ff′
ψf′ (175)

are quasi conserved88 (see [152] and Section A.1 for an extended discussion). In contrast to the
classical Lagrangian density (see Equation 146), the physical vacuum |0〉 will not respect the
continuous global symmetry as induced by Equation 164, i. e., the chiral symmetry appears to
be spontaneously broken. The anatomy of the latter

SU(Nf)R × SU(Nf)L → SU(Nf)V (176)

can only be depicted together with the chiral (or quark) condensate

〈ψψ〉 = 〈ψRψL +ψLψR〉 6= 0 , (177)

which turns out to be the relevant order parameter89 of the spontaneously broken chiral symme-
try. Furthermore, the remaining vector symmetry is only realized approximately in nature, due
to finite quark-masses. Even though the chiral symmetry is spontaneously broken, Equation 175

also holds on the quantum level, implying the general identity for local axial-vector currents

∂µJAµ5 = ψ
[√
2TA, m̂

]
+
iγ5ψ+ δ0A2

√
3ω

=
∑
f,f′

(mf +mf′)ψfiγ5

[√
2TA

]
ff′
ψf′ + δ

0A2
√
3ω , (178)

where “ω” is the topological charge density (see also [152])

ω =
αS
8π

GAµνG̃
A,µν . (179)

This being said, let us also approach the symmetry breaking from a phenomenological perspec-
tive90. Therefore, the realization of the chiral symmetry has to be questioned again. From a
spectroscopical point of view a Wigner-Weyl realization [158]

QAV |0〉 = 0 = QA5 |0〉 , (180)

i. e., a total symmetry between positive and negative parity states is excluded due to the ob-
served particle spectrum. In fact, no parity doublets91 can be seen in nature, e. g., for pseu-
doscalar mesons, or the nucleon no chirality partner can be seen. Instead the Nambu-Goldstone
realization of the chiral symmetry can be found in nature:

QAV |0〉 = 0 6= QA5 |0〉 (181)

87 This is just a reformulation of Equation 166 and Equation 167. Therefore, it would be redundant to provide the corre-
sponding charge algebra of QAV and QA5 .

88 For non-vanishing quark masses the chiral symmetry is also explicitly broken, which is caused by mass terms similar to
Lmass =

∑Nf
f=1mf

[
Ψf,RΨf,L+Ψf,LΨf,R

]
.

89 It is the analogon of, e. g., the magnetization, which is the order parameter of the spontaneousO(3) symmetry breaking
of a ferromagnet.

90 The outcome will be equivalent to the abstract statement of Equation 177, but in this way the interesting components of
the particle spectrum can be related to the involved operators heuristically.

91 Such a doublet would consist out of states of positive and negative parity, with equal masses.
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implying that the axial symmetry is spontaneously broken (cf. [44, 55, 76] ). The latter leads to
the famous Goldstone theorem [159–161], which states (cf. [149]):

• goldstone theorem : When an exact continuous global symmetry (of a manifestly Lorentz
invariant theory) is spontaneously broken, the theory contains one massless (or light, if
the symmetry is not exact) scalar particle in the spectrum of possible excitations for each
broken generator of the original symmetry group.

This means, for each generator failing to annihilate the vacuum QA5 |0〉 6= 0, there must exist a
massless boson with the quantum numbers of the generator QA5 (cf. [73]). Hence, this theorem
may serve us as a guiding light towards the desired formalism which is connecting the abstract
QCD operators and particles of the Hilbert space. Let us first investigate the properties of the
Goldstone bosons with the aid of the (classical) energy-momentum tensor (where the summation
runs over all fields of the QCD Lagrangian)

Θµν =
∑
i

∂L

∂ (∂µφi)
∂νφi − g

µνL , (182)

which is generated by (infinitesimal) space-time translations (cf. [73, 128]). Even though its form
on classical level is fixed by Noether’s theorem, the quantum version is not unique due to pos-
sible ambiguities in the definition of L. Moreover, the intended gauge-independence92 has to be
introduced by modifying Θµν appropriately (for a thorough discussion see [73, 98] and refer-
ences therein). According to the supposed properties of Equation 181, combined with the QCD

Hamiltonian density [73]

H(x0,~x) = Θ00(x0,~x) , (183)

a conserved charge QJ of a (quasi) conserved symmetry current Jµ entails the commutation
relation93

[QJ(x0) ,H(x0,~x)] = 0 . (184)

Therefore, with the definition of the N2f − 1 states via the axial charges (the ellipses stand for
heavier excitations with the same quantum numbers)

QA5 |0〉 = |φA〉+ . . . (185)

and the assumed form of the Schrödinger equation [76]

H|0〉 = E0|0〉 (186)

Equation 184 immediately implies

H|φA〉 = E0|φ
A〉 , ∀A = 1, . . . ,N2f − 1 , (187)

i. e., the |φA〉 are energetically degenerate (with the vacuum state) and thus represent mass-
less particles. Moreover, applying Equation 174 to the vacuum state reveals the bosonic nature
of |φA〉, while the transformation properties of the

{
QA5
}
A=1,...,N2f−1

identifies them as pseu-
doscalar particles. In fact, for Nf 6 3 the lightest pseudoscalar mesons can be identified as
(quasi) Goldstone bosons94 (cf. Table 2) which can be better understood when approaching the

92 A direct application of Equation 182 does not necessarily yield a gauge-invariant energy-momentum tensor [73].
93 When including finite mass terms Hm =

∑Nf
f=1mfψfψf in the H, the l.h.s. of Equation 184 will be proportional to

the total derivative of Jµ [73].
94 Note, that according to the representation of the generators, the fields in Equation 185 do not have to embody the actual

meson states, but can, e. g., be a superposition of them.
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symmetry group representation particle multiplet singlet particle

SU(2)F 2⊗ 2̄ = 3⊕ 1
(
π+,π0,π−

)
σ∼ 1√

2

(
uū+ dd̄

)

SU(3)F 3⊗ 3̄ = 8⊕ 1
(
π+,π0,π−,K+,K0,K0,K−,η

)
η′

Table 2: Ordering pattern of light pseudoscalar meson states, including the hypothetical state σ.

problem again from a spectroscopical point of view. Light-quark meson spectroscopy epony-
mously studies [162–169] mesons with a valence content made out of up, down and strange
quarks. Therefore, the simplest and preferred classification scheme in this context is the quark
model95 [41], i. e., the meson is modeled as a positronium-like [170] quark-antiquark system
of quasi free constituents96. When focusing on QCD processes, the meson can be expressed in
terms of conserved quantum numbers, like parity (P), charge conjugation (C), G-parity (G), total
angular momentum (J), or isospin (I), which in their entirety can be written as

(
IG
)
JPC, e. g.,

pseudoscalar mesons have 0−+ (cf. [169]). Accordingly, along with their masses, (decay) width
as well as decay modes, etc., it is the explicit flavor structure which allows us to uniquely iden-
tify a particular meson. In QFT one can connect hadron properties with the internal quark-gluon
structure by applying an operator “OX” with the right quantum numbers and transformation
properties to the vacuum state (see Goldstone theorem) and project the desired meson state “M”
(with momentum Pµ and mass m2M = P2) out of the generated tower of states. This procedure
leads to matrix elements with the generic form “〈0|OX|M(P)〉” which obviously fulfill the desired
purpose to connect the parton content with the meson under consideration. Consequently, the
simplest operator OX to build a meson state (flavor, color and Dirac-indices not contracted) can
be constructed from (cf. Equation 1095, Equation 1096)

ψ
a
f′,α′ψ

b
f,α=

1

4

{
(1)αα′

[
ψ
a
f′ψ

b
f

]
− (iγ5)αα′

[
ψ
a
f′iγ5ψ

b
f

]
+ (γµ)αα′

[
ψ
a
f′γ
µψbf

]

−(γµγ5)αα′
[
ψ
a
f′γ
µγ5ψ

b
f

]
+
1

2
(σµνγ5)αα′

[
ψ
a
f′σ
µνγ5ψ

b
f

]}
. (188)

According to the given quantum numbers of the meson “M”, Equation 188 additionally has to
be retrofitted with the adequate color and flavor structures, e. g., by a gauge link [x, 0]ab (for

gauge-invariance) and a combination97 such as
∑N2f−1
A=0 cA

[
TA
]
f′f (cf. Section A.1). In this way

all possible flavor structures can be generated. For example, the neutral pion π0 can be modeled,
by using the operator

ψ
a
f′,α′(x) [x, 0]ab

[√
2T3

]
f′f
ψbf,α(0) . (189)

After taking the matrix element

〈0|ψaf′,α′(x) [x, 0]ab
[√
2T3

]
f′f
ψbf,α(0)|π

0(P)〉 (190)

the only allowed Lorentz structures are proportional to iγ5, γµγ5, σµνγ5 due to the supposed
parity conservation in QCD. All other structures have to vanish when taking into account the
pseudoscalar nature (transformation properties) of the pion. For the η and η′ the situation is more

95 This choice makes it easier to connect the quantum numbers of the meson with the observed particle properties.
96 In fact, this is just a toy model to represent specific spectroscopic parameters of non-exotic mesons (cf. [41]). It cannot be

used to fully describe the underlying meson structure.
97 Consequently, the matrix elements can be expressed in terms of (non-local) Noether currents.
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complicated, because they actually are a superposition of the flavor octet and singlet currents.
The latter implies additional pure gluonic admixtures and, therefore, a priori, the existence of
non-vanishing matrix elements of the type98

〈0|GAµν(x) [x, 0] G̃Aρω(0)|η(′)(P)〉 . (191)

Analogously, matrix elements of multi-particle states can be derived, by further combining addi-
tional quark and gluon fields. Fortunately, for the problems addressed in this work, only com-
posite operators consisting out of the fewest possible number of fields will contribute.

One should again emphasize that the non-vanishing matrix elements are caused by the non-
perturbative effects related to the physical vacuum99. That this is the case for the quark-antiquark
type, expressed with Equation 190, is a consequence of the immanent chiral symmetry breaking.
However, can we expect non-vanishing gluonic matrix elements like Equation 191? For a general
argumentation we have to briefly raise the topic of the η− η′ mass splitting. As discussed the
Goldstone theorem for “Nf=3” predicts eight bosons which appear to be massless in the limit of
vanishing quark masses. The latter results from Gell-Mann-Oakes-Renner (GMOR) relations (see,
e. g., [73] ), such as100 (cf. [171] and references therein)

mq〈ψ̄ψ〉 = −
f2π
2
m2π

(
1+O

(
m2π

))
, (192)

(mq +ms)
(
〈s̄s〉+ 〈ψ̄ψ〉

)
= −2f2Km

2
K

(
1+O

(
m2K

))
, (193)

mq =
1

2
(mu +md) , (194)

which are a result of the spontaneous chiral symmetry breaking. Here, mP is the meson mass(
P = π,K

)
, while fP is its corresponding decay constant. In contrast, the U(1)A symmetry give

rise neither to another Goldstone boson, nor a conserved quantum number [152]. Instead, the
η′ emerges, which is much heavier than all other mesons of the pseudoscalar octet, actually
too massive to be identified as a Goldstone boson at all. A possible explanation might be the
presence of the chiral anomaly, i. e., the η′ mass does not have to vanish in the massless limit
m̂ → 0. However, for this to be true on theoretical level and in order to reproduce the observed
η − η′ mass splitting the (anomalous) Ward identity (cf. Equation 178) alone is not sufficient.
That means (for the chosen approach), one additionally needs to ask for non-vanishing matrix
elements of the topological charge density which represent a coupling of the nontrivial vacuum
effects to the η′ meson (see [152, 172] and references therein). Since “ω” (cf. Equation 179) is a
total divergence (of a gauge independent current), it will vanish to any finite order of pertur-
bation theory [64]. The latter implies that the U(1)A problem cannot be solved by perturbative
gluons alone. That the needed solution really lies in the non-perturbative sector of QCD, which
inevitably is connected to the nontrivial topological features of the theory, has been suggested
by several authors. For instance, [173, 174] pointed out, that infrared enhanced gluons may be
the source of the large η′ mass. Moreover, they have argued that the non-perturbative phenom-
ena responsible for the confinement mechanism are also preventing the η′ from being realized
as another Goldstone boson. This approach has been refined by [175], suggesting the described

98 The operator Equation 191 obviously also generates the local gluonic operators of Equation 111. The latter will mix with
the corresponding flavor singlet operators via renormalization.

99 Due to the fact that QA5 as well as the currents JAµ5 are Wick-ordered products of field operators, they give no finite
contribution when applied to the perturbative vacuum (|∅〉) QA5 |∅〉=0=JAµ5|∅〉. This is true to all orders of perturbation
theory [64].

100 The quark masses and the condensate acquire opposite renormalization, therefore, we do not have to distinguish between
bare and renormalized quantities when focusing on their products mq〈q̄q〉=mq,R〈q̄q〉R.
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instanton calculus as a solution, including the non-conservation of the axial vector current as
a source for non-zero η′ mass in the chiral limit [173, 175–177]. However, there also exists an
alternative approach initiated by [178, 179] and [180], who proposed an expansion of QCD in
(powers of) NfN−1

c . It turns out that in the formal limit101 Nc → ∞, the η′ mass should be
of order O

(
N−1
c

)
. Additionally, a realization of the general N−1

c counting rules, as imposed by
[178, 179] can be introduced into the theory via a ghost state (cf. [180]). The latter corresponds
to a massless unphysical pole of the correlation function [152]

qµqν〈KµKν〉 6= 0 , τ0 =

∫
d4x 〈0|T {ω(x)ω(0)}|0〉 6= 0 , (195)

which generates a finite topological susceptibility102 (τ0). The term “unphysical” in this context
means, that the ghost pole does not correspond to an (experimentally) observable glueball state
[152], since Kµ is gauge-dependent.
Finally, Equation 195 is essential for a finite [152] matrix element

〈0|ω|η′〉 6= 0 . (196)

Recent lattice studies (see [183, 184]) also support Equation 196, including a significant correla-
tion with the topological susceptibility.

Consequently, this justifies the intended thorough phenomenological investigation of involved
(non-local) matrix-elements, in particular those involving gluonic operators similar to GAµνG̃

A
ρω.

Most importantly, based on the latest high precision measurements, a subsequent numerical eval-
uation can extract quantitative information on the mentioned non-perturbative quantities from
the related data.

2.6 qcd and the standard model

Although we mainly deal with effects related to QCD phenomena in this work, specific aspects
of the electroweak theory cannot be completely avoided. Therefore, in the following section, we
will roughly record some basic facts about the weak interaction. An appropriate presentation of
this topic may, e. g., be found in the standard literature [64, 98, 146, 149, 185–188].

2.6.1 Aspects of weak interactions

The SM103 successfully describes three of the four known fundamental forces in the universe, i. e.,
the electromagnetic, weak and strong interaction, while excluding gravity.104 That includes a
classification of all known elementary particles which can be arranged into three generations of
fermionic matter (cf. Table 3), a set of corresponding gauge bosons and the scalar Higgs boson
(see Figure 11). According to their inherent charges, the different fermions participate in all
possible interactions which are mediated by the corresponding gauge bosons. Some of the latter,
are charged themselves and may, therefore, exchange related force carriers with other particles.
An overview is provided by Figure 12. On a theoretical level, the following milestones during

101 A similar ansatz for describing the η−η′ mixing has been used by Leutwyler [13, 14, 181, 182] (cf. Section 3.1).
102 Another possible interpretation of τ0 is the mean square winding number per unit volume [152].
103 Here, we always refer to the SM of particle physics.
104 Concerning its predictive power, which is expected to fail at Planck scales [189, 190], the SM has to be seen as an effective

field theory. This statement is further supported by the apparent deficiencies of the SM, such as the hierarchy problem or
the exclusion of gravitation (for a more complete list see, e. g., [189, 191, 192] and references therein). Accordingly, there
are a variety of theories beyond the SM trying to solve these shortcomings, e. g., models with warped extra dimensions
or by applying a completely different framework, such as supersymmetry or string theory (cf. [193–196]).
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Figure 11: Schematic illustration [4] of all SM particles, including three generations of fermions, force car-
rying gauge bosons and the massive scalar Higgs boson. In this context, the light quark masses
mu, md and ms are estimates of so-called “current quark masses” within the mass-independent
MS scheme at a scale µ≈2 GeV (cf. [37]). Similarly, mc as well as mb are the “running” masses
in the same scheme. The top quark mass, on the other hand, results from “direct measurements”
(see [42, 197]).

the development of a self-consistent SM have been achieved:

• Proof of asymptotic freedom (see previous discussion) [181, 199, 200],

• Unification of weak and electromagnetic interaction [201, 202],

• Proof of renormalizability [203–205] via the Higgs mechanism [206–209].

These achievements have to be seen in the context of a similarly rapid development in experimen-
tal physics (see, e. g., [149]). For instance, the Gorter-Rose method (in low-temperature physics)
[210, 211] made it possible to perform the famous Wu experiment [212], which confirmed the
hypothesis, that parity is broken in the electroweak interactions [213]. Moreover, weak kaon de-
cays [214] showed clear evidence for a violation of CP-symmetry.105

105 Hence, in contrast to QED, along with QCD, which are vectorial (see, e. g., [119, 215]) and preserve P and C separately,
the electroweak theory is chiral, i. e., violating both P as well asC. In other words, by construction left- and right-handed
fields have to be treated differently (see Section A.2).
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Figure 12: Compilation of possible electroweak interactions within the SM which are mediated by gauge
bosons (see, e. g., [198]). Here, “f” stands for any (SM) fermion, while “x” is restricted to elec-
trically charged particles. Furthermore, u′ (d′) only includes up (down)-type quarks and “l”
represents a (charged) SM lepton with a corresponding neutrino νl. In this context, wave lines
represent electroweak gauge bosons, while black squares depict related vertices. Accordingly,
“G” is either a photon γ, or a Z0 boson. The quartic gauge interactions are such that charge
conservation for the involved X1,2

(
i. e., X1,2=Z

0,W±,γ
)

holds.

In order to find an effective Lagrangian of nature’s electroweak interactions, the following in-
gredients must be specified:

i) gauge group : The required gauge group which is a direct product “SU(2)L×U(1)Y” of an
abelian U(1)Y and a non-abelian SU(2)L group. Both imply (local) transformations in the
flavor space (see, e. g., [186]), similar to (Y being the field’s hypercharge – see Table 4)

DiL(x) 7−→ ei
Y
2 θY(x) exp

(
iσa2 θ

a
L(x)

)
DiL(x) ≡ ei

Y
2 θY(x)UL(x)DiL(x) , (197)

siR(x) 7−→ ei
Y
2 θY(x)siR(x) , (198)

with DiL∈
{

QiL, LiL
}

and siR∈
{

uiR, diR, eiR,νiR
}

(i=1, 2, 3). Here, the fundamental representa-
tion of SU(2)L involves the standard Pauli matrices {σ1,σ2,σ3} (cf. Section A.1). Moreover,
when requiring the free Lagrangian density (omitting the sterile right-handed neutrinos)

L
(weak)
free = LiLi/∂LiL + QiLi/∂QiL + ūiRi/∂uiR + d̄iRi/∂diR + ēiRi/∂eiR , (199)

to be invariant under the named local gauge transformations, the standard derivatives “∂µ”
have to be replaced by covariant ones106 (see, e. g., [186])

DµDiL(x) =
[
∂µ12 + ig

′ Y
2
Bµ(x) 12 + ig

σa

2
Waµ(x)

]
DiL(x) , (200)

DµsiR(x) =
[
∂µ + ig′

Y

2
Bµ(x)

]
siR(x) . (201)

106 When demandingDµDiL(x)
(
orDµsiR(x)

)
to transform in exactly the same way as DiL(x)

(
or siR(x)

)
, one gets for the

transformation properties of the gauge-fields (cf. [186]):

Bµ(x) 7→ Bµ(x)− 1
g′ ∂µθY(x) , Wa

µ(x)
σa
2 7→UL(x)Wa

µ(x)
σa
2 U

†
L(x)+

i
g (∂µUL(x))U

†
L(x) .
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Leptons Quarks

left-handed right-handed left-handed right-handed

1st generation

(
νe

e−

)

L

=: L1L
e−R =: e1R
νeR=: ν

1
R

(
u

d

)

L

=: Q1L
uR =: u1R
dR =: d1R

2nd generation

(
νµ

µ−

)

L

=: L2L
µ−R =: e2R
νµR=: ν

2
R

(
c

s

)

L

=: Q2L
cR =: u2R
sR =: d2R

3rd generation

(
ντ

τ−

)

L

=: L3L
τ−R =: e3R
ντR=: ν

3
R

(
t

b

)

L

=: Q3L
tR =: u3R
bR =: d3R

Table 3: According to the canonical matter representation, each generation of left-handed fermions is col-
lected in doublets, while right-handed particles form singlets (see, e. g., [188]).

The emerging new Lagrangian is invariant under Equation 197 and Equation 198, but
exhibits four new gauge fields, i. e., one for each generator107 of the underlying symmetry
groups. In particular, it now contains interactions of the fermion fields with the gauge
bosons:

Lweak
CC = −gQiLγ

µWaµ
σa

2
QiL − gLiLγ

µWaµ
σa

2
LiL , (202)

which is almost, what we need. Most importantly, the gauge symmetry forbids mass terms
that explicitly break gauge invariance108. Massive gauge fields, on the other hand, would
by design imply the phenomenologically required short range of weak interactions. Un-
fortunately, as discussed above, the symmetry group SU(2)L×U(1)Y is only capable to de-
scribe an interacting system of massless fermions and gauge bosons. Consequently, more
is needed to describe electroweak phenomena.

ii) matter representations : As already anticipated, the representation of all required fields
under this gauge group has to be chosen (cf. Table 3 or [149, 215] for a detailed discussion).
That “choice”, however, is necessary for the consistency of this theory. In fact, the cancella-
tion of gauge anomalies within this Glashow-Weinberg-Salam theory [203, 216, 217] is only
possible if quarks and leptons appear in equal numbers and by organizing themselves into
successive generations, as listed in109 Table 3 (cf. [64]).

iii) spontaneous symmetry breaking : The pattern of SSB, i. e., “SU(2)L×U(1)Y → U(1)EM”
has to be determined. As mentioned before, this boils down to an adaption of the Higgs
mechanism, which on the one hand preserves renormalizability, while on the other hand al-
lows an inclusion of mass terms [203–209]. In fact, due to their short range, the physicalW±

and Z0 bosons should be quite heavy particles. In order to generate masses [185, 186, 203],

107 Their transformation properties and field strength tensors exhibit similarities to photon and gluon-fields:

Bµν = ∂µBν−∂νBµ , Wa
µν = ∂µW

a
ν −∂νW

a
µ −gεabcW

b
µW

c
ν ,

which imply the kinetic Lagrangian (cf. also [186])

L
(weak)
kin = −

1

4
BµνB

µν−
1

4
Wa
µνW

a,µν .

108 For a chiral theory fermion mass terms are problematic, since they would additionally mix right- and left-handed fermion
components: ψ̄ψ=ψ̄RψL+ ψ̄LψR.

109 The mentioned quantum numbers within Table 3 refer to states before the spontaneous symmetry breaking (SSB).
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one may consider a SU(2)L doublet of complex scalar fields “φ”
(
Yφ=1, T3=−1/2

)
and its

C-conjugate φC= iσ2φ
∗:

φ(x) :=

(
φ(+)(x)

φ(0)(x)

)
⇒ φC(x) =

(
φ(0)(x)∗

−φ(−)(x)

)
, (203)

combined with a gauged Lagrangian, that includes Goldstone’s sombrero potential [159]:

LH = (Dµφ)
†Dµφ− µ2φ†φ− h

[
φ†φ

]2
,
(
µ2 < 0 < h

)
, (204)

Dµφ(x) =

[
∂µ12 + ig

′ Yφ
2
Bµ(x) 12 + ig

σa

2
Waµ(x)

]
φ(x) . (205)

Being invariant under local SU(2)L×U(1)Y transformations, LH together with the corre-
sponding Yukawa-type110 [64, 98, 218] density

(
c
(k)
ij are Yukawa couplings

)

LY = −c
(d)
ij

(
QiLφ

)
djR − c

(u)
ij

(
QiLφ

C
)

ujR − c
(e)
ij

(
LiLφ

)
ejR + h.c. (206)

can be incorporated into the total effective Lagrangian. Furthermore, the classical ground
state of Equation 204 may be associated with the vacuum

∣∣∣〈0|φ(0)|0〉
∣∣∣ =

√
−µ2

2h
=:

v√
2

, (207)

allowing us to canonically reformulate Equation 203, i. e.,

φ(x) = exp
(
iθa(x)

σa

2

) 1√
2

(
0

v+H(x)

)
(208)

via the four real fieldsH(x) and θa(x) (a=1, 2, 3). In other words, according to Equation 204

there is an infinite set of degenerate states with minimal energy (cf. Equation 207) which
transform under SU(2)L rotations as the members of a doublet. If one of those states is
selected arbitrarily as this system’s ground state, the given symmetry is spontaneously
broken. Using the (local) SU(2)L invariance, any dependence on the θa(x) can be removed.
Hence, due to this local gauge symmetry the otherwise generated three massless Goldstone
bosons can be removed (see [219] for a more elaborate discussion of this topic). Therefore,
when taking the physical (unitary) gauge θa(x)≡0, with111 [185, 186]

Wµ :=
1√
2

(
W1µ + iW2µ

)
⇔ W†µ =

1√
2

(
W1µ − iW2µ

)
, (209)

Zµ := cos(θW)W3µ − sin(θW)Bµ , (210)

Aµ := sin(θW)W3µ + cos(θW)Bµ , (211)

cos(θW) :=
g√

g2 + g′2
⇔ sin(θW) =

g′√
g2 + g′2

, (212)

the kinetic part of Equation 204 gives rise to (see, e. g., [185, 186])

(Dµφ)
†Dµφ −→ 1

2
(∂µH)∂

µH+ (v+H)2
{
g2

4
W†µW

µ +
g2

8 cos2(θW)
ZµZ

µ

}
. (213)

110 This is a gauge-invariant fermion-scalar coupling (see, e. g., [64]).
111 The parameter θW is usually referred to as Weinberg angle.
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doublet/singlet el. charge Q weak hypercharge Y T3 of weak isospin

QiL =:

(
uiL
diL

) (
2
3

−13

) (
1
3
1
3

) (
1
2

−12

)

LiL =:

(
νiL

eiL

) (
0

−1

) (
−1

−1

) (
1
2

−12

)

(
eiR, uiR, diR

) (
−1, 23 ,−13

) (
−2, 43 ,−23

)
(0, 0, 0)

Table 4: Listed are (cf. [188]) the weak hypercharge (Y), electromagnetic charge (Q) and third component
(T3) of the weak isospin (T ) for each (i = 1, 2, 3) left-chiral fermion doublet

(
T = 1

2

)
as well as

right-chiral fermion singlets (T=0). The definitions satisfy Y=2(Q− T3).

This means, that the gauge fields representing W± and Z0 have acquired masses:

MZ cos(θW) =MW :=
1

2
vg . (214)

When demanding Y = 2(Q− T3) (cf. Table 4) and g sin(θW) = g′ cos(θW)≡ e, QED can be
recovered from the effective Lagrangian after introducing SSB (see, e. g., [185, 186, 220]). As
expected, U(1)EM is an unbroken symmetry and Aµ describes a massless photon field.

With these puzzle pieces the most general renormalizable Lagrangian describing electroweak
interactions can be formulated. Since the Glashow-Iliopoulos-Maiani mechanism (cf. [221, 222])
leads to a strong suppression of flavor-changing neutral currents within the SM, we may focus
on the Yukawa sector and Equation 202. In the unitary gauge Equation 206 can be written as
[186, 215] (i, j=1, 2, 3)

LY = −

(
1+

H

v

){
d̄′iLM

(d)
ij d′jR + ū′iLM

(u)
ij u′jR + ē′iLM

(e)
ij e′jR + h.c.

}
, (215)

with corresponding complex mass matrices
(
a∈ {u,d, e}

)
:

M
(a)
ij =

v√
2
c
(a)
ij . (216)

Those are in general not diagonal and may contain unphysical parameters. Fortunately, by mov-
ing to the mass basis, i. e., when applying a bi-unitary transformation, such as

M̂
(a)
ij =

[
V
(a)
L

]
ik
M

(a)
kl

[
V
†(a)
R

]
lj

=


diag(md,ms,mb) , a = d,

diag(mu,mc,mt) , a = u,

diag(me,mµ,mτ) , a = e,

(217)

those parameters can be absorbed into the unitary matrices V(a)
L,R

(
V
(a)
L,RV

†(a)
L,R =13

)
, which rotate

left-chiral and right-chiral fields accordingly (cf. [186, 215]; a = d, u, e), i. e.,

aiL,R =
[
V
(a)
L,R

]
ij

a′jL,R . (218)
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Let us now assume the mass basis. Besides a simpler representation of the Yukawa Lagrangian
and an unchanged neutral-current part, we see an important modification in the charged current
component (cf. Equation 202). Here, off-diagonal terms arise112:

LCC ⊃ −
g√
2
W†µū′iLγ

µd′iL + h.c. −→ −
g√
2
W†µūiLγ

µ
[
V
(u)
L V

(d)†
L

]
ij︸ ︷︷ ︸

=:[VCKM]ij

djL + h.c. , (219)

which exhibit the famous Cabibbo-Kobayashi-Maskawa (CKM) matrix113 [223, 224]:

LCCW = −
g

2
√
2

{
W†µ

[
ūiγµ (1 − γ5) [VCKM]ij dj + ν̄iγµ (1 − γ5) ei

]
+ h.c.

}
. (220)

This unitary matrix has four physical parameters (i. e., always three mixing “angles” and a com-
plex phase) [215, 225, 226], which are encoded in

VCKM =



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 . (221)

Accordingly, one canonically parametrizes (cf. [225]) Equation 221 via three (real) Euler angles
θij (i < j; i, j = 1, 2, 3), which can be chosen to lie in the first quadrant (i. e., sij := sin

(
θij
)
6 1,

cij :=cos
(
θij
)
61). Along with a phase parameter “δ”, that is responsible for all CP violations114

within the SM, one gets [225, 229]:

⇒ V
(std.)
CKM =




c12c13 s12c13 s13e
iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 . (222)

For numerical values and other parametrizations (such as the Wolfenstein parametrization) see,
e. g., [225]. Moreover, the underlying hierarchy115 [42, 225] s13� s23� s12� 1 exhibits a domi-
nance of the diagonal components which translates into a higher transition probability for the re-
lated flavors. Consequently, CP violation mainly occurs in interactions between the first and third
generation116. In fact, a phase-convention-independent quantity, which measures the amount of
CP violation in the SM, is given by (adapted to Equation 222; see, e. g., [215, 225, 226])

J = c12c23c2

13
s12s23s12 sin(δ) . (223)

112 A complete discussion of the effective Lagrangian which cover gauge fixing contributions can, e. g., be found in [188, 198].

113 In this context we may use

(
u1 u2 u3
d1 d2 d3

)
=

(
u c t

d s b

)
as well as

(
ν1 ν2 ν3

e1 e2 e3

)
=

(
νe νµ ντ

e µ τ

)
.

114 As mentioned before, the electroweak theory is by construction parity violating. Furthermore, applying the charge
conjugation operator to a left-handed field transforms it into a right-handed one, i. e., this theory also violates C parity.
A detailed analysis concerning CP violation may be found in [215, 227, 228]. The implication of this discussion can be
summarized as follows (from [215]): “a physical complex parameter that is measured to be nontrivial implies CP violation.”

115 Besides, for phenomenological applications (see [226]), one may also set c13 = c23 and use s12 = |Vus|, s13 = |Vub|,
s23 = |Vcb|, along with δ as the four independent parameters.

116 I. e., the matrix element [VCKM]ij indicates the probability of a transition from one quark flavor “i” into another one
“j”

(
or analogously “j→ i”

)
. According to the experimentally confirmed pattern, one may interpret these transition

probabilities as follows (see, e. g., [230]):

• The heavier two neighboring families are, the less likely transitions between their quarks will occur.

• Transitions between families, that are not adjacent, are the least likely.
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W+

νl

l+
a) b)

dj

νl

l+

ui [VCKM ]ij

dj

ui [VCKM ]ij

Figure 13: Semileptonic tree-level decay of a free ui quark within the full a) and an effective b) theory (e. g.,
[226]). The latter includes an effective vertex (cross in a circle) that couples quarks to leptons,
with a sufficiently small momentum transfer

∣∣k2
∣∣�M2W .

This so-called Jarlskog invariant “J” [231] depends on each physical mixing angle, i. e., for its
existence at least three fermion generations are necessary. In other words, not less than three
generations are needed to have CP violation within the SM.

For an extended and more comprehensive review, which is beyond this brief introduction of
the required basic concepts, we again refer to117 [64, 98, 146, 149, 185–188]. Besides, the semilep-
tonic decays, which are particularly important for this work, will be further elaborated in the
next subsection.

2.6.2 Hadronic matrix elements, form factors and branching fractions

In this subsection, we introduce the spectator model and some of the basics concerning hadronic
matrix elements, form factors as well as branching fractions needed for Chapter 5.

Among other things, flavor changing weak decays, such as “H→ H′ l− ν̄l” or “H′ → Hl+ νl”(
H,H′ being two adequate hadrons118, cf. [186]

)
, are in general studied to improve our knowl-

edge on CKM parameters, because those processes can be associated with the corresponding
quark transitions “dj→uil−ν̄l” and “ui→djl+νl” (see Figure 13). In this context heavy to light
transitions, such as B→π or D→K and the related form factors become relevant. Accordingly, a
proper theoretical description of these processes and observables has to be found.

The typical momentum transfer k2 in hadronic weak decays, which involve a heavy-to-light
quark transition, should be on the same order as the associated large parton mass (e. g., [230]).
Therefore, it is not unreasonable to expect that the semileptonic features of these heavy flavor

117 Here, also the omitted discussion concerning the unitary triangle can be found.
118 Flavor changing weak decays may, e. g., involve charged pions, kaons or charmed (D) and Bmesons. Possible exceptions

are given by flavored neutral mesons, i. e., with a vanishing total flavor quantum number. They usually exhibit an
additional electromagnetic decay mode, such as the γ∗γ(∗)→P

(
P=π0,η,η′, . . .

)
transitions.



56 quantum chromodynamics

transitions are mainly reflected by short distance dynamics. For instance, the “free” quark case,
as depicted in Figure 13, boils down to

(
GF=

√
2g2/8M2W is the Fermi coupling constant

)

i
g

2
√
2

(
ūiγα (1 − γ5) dj

) −igαβ

k2 −M2W + i0+
i
g

2
√
2

(
l̄γβ (1 − γ5)νl

)
Vuidj

≈ −i
GF√
2

[
ūiγµ (1 − γ5) dj

] [
l̄γµ (1 − γ5)νl

]
Vuidj

(
|k2|�M2W

)
. (224)

However, in contrast to the involved leptons, quarks are affected by the confinement mechanism
and only their hadronized “reaction products” can be observed as free particles. In other words,
the fundamental fields of flavor physics (and its effective Lagrangian) are not necessarily the
experimentally measured particles. Thus, similar to the strong interaction, one may separate long
and short distance interactions via a factorization ansatz. This means, all long distance effects
are absorbed in hadron matrix elements, while short distance interactions are associated with
the corresponding effective weak Hamiltonian119 (e. g., [226, 230, 232]). A possible manifestation
of such an approximation is given by the spectator model120 [235, 236], relying on the following
assumptions and restrictions (see also [230]):

• The initial hadron is replaced by its valence quark configuration, i. e., higher Fock states
are neglected.

• Possible soft gluon interactions121 that accompany the weak process are omitted.

• The sum of all possible hadron states is replaced with final states of free quarks which have
been emitted by the decay.

In the context of a heavy quark expansion122 (cf. [233, 240–243]), this model would be repre-

sented by the corresponding leading term, while all O
(
m−2
Q

)
corrections were neglected. For

our purpose, we may employ this approach in a modified way. As a conceptual model let us
consider the process123 π−→µ−ν̄µ at tree-level (see Figure 14), which is described by

〈π−|[ūγα (1 − γ5)d] [ν̄µγ
α (1 − γ5)µ]|µ

−ν̄µ〉
= 〈π−|ūγα (1 − γ5)d|0〉 [v̄νγα (1 − γ5) uµ] , (225)

where “u” and “v” are the usual Dirac spinors (e. g., [64, 146]). That leaves the matrix element

〈π−|ūγµ (1 − γ5)d|0〉 = 〈π−|(ūd)V−A|0〉 = 2〈π−|ūLγµdL|0〉 . (226)

While the (V − A) structure of weak interaction (cf. [226]) is still present in Equation 226, only
its parity-odd component124

〈π−(P) |ū(x)γµγ5d(x)|0〉 = −iPµfπe
iP·x (227)

119 In Equation 224, we have already encountered an example, i. e., H(β)
eff ∼

GF√
2

[
ūiγµ (1 −γ5) dj

] [
l̄γµ (1 −γ5)νl

]
of an

effective Hamiltonian (see, e. g., [226]).
120 The spectator model predicts equal total decay rates and lifetimes for pseudoscalar D or B mesons, such as(

D+,D0,D+
s

)
or
(
B+,B0,B+

s

)
, respectively. In reality, however, especiallyD meson lifetimes can considerably deviate

from these predictions, possibly due to neglected O
(
m−2
c

)
corrections (cf. [37, 233, 234]).

121 When including soft gluon corrections, one may face a multitude of related non-perturbative phenomena (see, e. g.,
[234, 237] and references therein). In principle, a finite heavy quark massmQ may cause additional non-spectator effects
(cf [234]), which are (fortunately) suppressed by extra powers of m−1

Q . Therefore, the spectator model works well for B
decays, but seems in general less adequate for applications to charmed mesons. Such contributions, however, are beyond
the present analysis. For a review, which describes spectator as well as non-spectator effects in the framework of an
heavy-quark effective theory (cf. [238]) see, e. g., [239].

122 This is roughly speaking an expansion in inverse powers of the given generic heavy flavor mQ.
123 This is the primary decay mode of a pion which has a branching ratio of about 99.99% (cf. [37]). Hence, it is a standard

example and has been considered many times before (see, e. g., [64, 244, 245]).
124 More precisely, the pseudoscalar pion is created via a left-handed current out of the parity-even vacuum. Due to parity

conservation in QCD, only the parity-odd component of ūLγµdL can contribute.
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a) b)

π−
d

ū

W−

µ−

ν̄µ
D−

d

c̄

W−

µ−

ν̄µ

Figure 14: Based on the spectator model, figure a) shows the weak annihilation process π−→µ−ν̄µ, while
the analogous leptonic decay D−→µ−ν̄µ of a charmed meson is depicted in figure b).

can contribute
(
P2 = m2π

)
. The latter encodes all relevant non-perturbative information which

are contained in the pion decay constant fπ. For Chapter 5, we have to consider the more com-
plicated D−

(s)
→ η(′)l−ν̄l as well as analogous B+ → η(′)l+ν̄l decays. When focusing on the

pseudoscalar charmed D− meson125, similar matrix elements as for the pion case can be intro-
duced (see Figure 14). For instance, we may define (see also Section 5.1.1)

〈D−(P) |c̄(x)γµγ5d(x)|0〉 = −iPµfDe
iP·x , (228)

which includes the (charmed) axial vector current

jD
−

µ := c̄γµγ5d , ⇒ ∂µjD
−

µ = (mc +md) c̄iγ5d =: jD
−

5 . (229)

In the current QCD sum rule literature, however, neither Equation 228 nor Equation 229 are
common. Instead, it is customary to consider the divergence of jD

−

µ , implying

(mc +md) 〈D−(P) |c̄(x) iγ5d(x)|0〉 = m2DfDeiP·x (230)

as well as (when neglecting md�mc) the renormalization group invariant operator

jD− :=mcc̄iγ5d . (231)

As a result, this canonical interpolation current for the D− meson assures RG invariance, when
it is used within certain products, such as126 (cf. [246])

OD−(x, 0) := T
{
d̄(x)γµc(x) , jD−(0)

}
. (232)

For correlation functions based on Equation 232 (cf. Chapter 5) this has the important conse-
quence, that UV-renormalized hard amplitudes “T (r)

hard” can be obtained from their unrenormal-
ized counterparts “Thard”, simply by replacing the unrenormalized heavy quark mass in Thard
with the corresponding renormalized one (see [246]). This allows an uncomplicated handling of
(charm quark) mass terms within the corresponding pQCD calculations (cf. Chapter 5).

125 After replacing c̄↔ b̄, d↔u and D−↔B+, the named definitions do also apply for B mesons. This is also true for
D−↔D−

s , which additionally requires d↔s.
126 In [246] unrenormalized quark currents analogous to jD− , VD

−

µ = d̄γµc and the bare quark mass mc have been con-

sidered. The corresponding renormalized quantities emerge after defining jD−→Z5 [jD− ](r), VD
−

µ →ZV
[
VD

−

µ

](r)

as well as mc→Zm [mc]
(r), together with the renormalization constants [246]

(
in the MS-scheme

)
:

ZV = 1, Z5 =
(
1+ 3

ε
αSCF
4π

)
and Zm =

(
1− 3

ε
αSCF
4π

)
. This means, that the overall renormalization factor ZO of

OD−(x,0) is ZO≡Z5ZVZm=1+O
(
α2S
)
.
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π0

W+

D+

e+

νe

c d

d̄

Figure 15: A typical application of the spectator model: the semileptonic weak decay D+→π0e+νe.

Moreover, in the context of H→H′lν̄l transitions several new hadronic form factors arise. Based
on the spectator model, weak decays of charmed mesons are driven by the underlying heavy
quark dynamics, whereas the involved light flavor is a mere spectator (see Figure 15). Therefore,
the associated decay amplitude (cf. Equation 225) can be written as (see also [186])

A
(
H→H′lν̄l

)
≈ GF√

2
Vuidj

[
ū(pl)γµ (1 − γ5) v

(
pνl
)]
〈H′|ūiγµ (1 − γ5) dj|H〉 . (233)

For H and H′ being two (on-shell) pseudoscalar mesons, parity conservation excludes the axial
vector contribution given by ūiγµγ5dj. Combined with Lorentz invariance the a priori unknown
strong dynamics of Equation 233 can be parametrized via [186, 247]

(
qµ :=(p− p′)µ; t=q2

)

〈H′
(
p′
)
|ūiγµdj|H(p)〉 = CHH′

{(
p+ p′

)µ
f+HH′(t) + q

µ f−HH′(t)
}

, (234)

which introduces127 the Clebsch-Gordan coefficient CHH′ and two form factors f±
HH′ . Alterna-

tively, we may perform a Lorentz decomposition according to
(
Σµ :=(p+ p′)µ

)

C−1
HH′〈H

′(p′
)
|ūiγµdj|H(p)〉=

[
Σµ −

m2H −m2H′

q2
qµ

]
f+HH′(t) +

m2H −m2H′

q2
qµ f0HH′(t) , (235)

with the scalar form factor128

f0HH′(t) = f
+
HH′(t) +

q2

m2H −m2
H′
f−HH′(t) . (236)

The mentioned coefficients CHH′ arise due to certain symmetries (cf. [248]) which are present
in the named meson transitions and ultimately reduce the number of independent form factors
(see, e. g., [248–257] for a dedicated discussion). As a heuristic example, one may consider the
two weak decays K+→π+ν̄ν and K+→π0e+νe which can be related with each other by using
an approximate isospin symmetry129 (e. g., [226]):

〈π+|s̄γµ (1 − γ5)d|K
+〉 =

√
2〈π0|s̄γµ (1 − γ5)u|K

+〉 . (237)

127 As discussed in [215], the operator ūiγµdj is in general acting on the isospin space, similar to the usual SU(2)I ladder
operators. This, however, may relate different processes and particles via Clebsch-Gordan factors.

128 When contracting Equation 234 with qµ

(mH−mH′)(mH+mH′)
, Equation 236 can be derived.

129 Based on Section 2.6.1, the rare kaon decay K+ → π+ν̄ν requires at least one loop to occur, because there are no
flavor-changing neutral currents at tree level within the SM. For instance, it can be realized via a corresponding penguin
diagram.
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Consequently, both processes could be described via one set of form factors and the named
Clebsch-Gordan coefficient “

√
2”. We can circumvent a general discussion based on heavy quark

symmetries and heavy-to-light form factors (cf. [248, 249, 256, 257]) when focusing on f+
HH′ ,

which turns out to be the main hadronic input for the intended phenomenological study of de-
cay rates and branching fractions in Chapter 5.

In fact, the contribution of f−
HH′ is kinematically suppressed within the electron and muon de-

cay modes (see, e. g., [146, 186] or [215]). Qualitatively, may be seen, when reconsidering Equa-
tion 233, which implies

(
q=pl + pνl ; /plu(pl)=mlu(pl), /pνlv

(
pνl
)
=0
)

f−HH′(t)
[
ū(pl) /q (1 − γ5) v

(
pνl
)]

∼ ml . (238)

Thus, f−
HH′ is subdominant compared to f+

HH′ . This becomes even more evident, when studying
partial decay rates, such as [37]

(
k1 :=pl, m1 :=ml, k2 :=pνl , m2 :=0, k3 :=p

′, m3 :=mH′ ;
)
:130

d Γ
(
H→H′lν̄l

)
=

1

2mH

∣∣A
(
H→H′lν̄l

)∣∣2 (2π)4 δ(4)(q− k1 − k2)
3∏
i=1

d3 ki
(2π)3 2Eki

, (239)

which are given in terms of the Lorentz-invariant matrix element A (cf. Equation 233):

∣∣A
(
H→H′lν̄l

)∣∣2 =
G2F
2

|Vuidj |
2C2HH′H

µν
(
p,p′

)
Lµν(k1,k2) . (240)

The latter implies a hadronic

Hµν
(
p,p′

)
=
(
f+HH′(t)Σ

µ + f−HH′(t)q
µ
)(
f+HH′(t)

∗Σν + f−HH′(t)
∗qν

)
(241)

as well as a leptonic tensor131 (s, s′ are indicating the otherwise suppressed spin state)

Lµν(k1,k2) =
∑
s,s′

[
ūs(k1)γµ (1 − γ5) vs

′
(k2)

][
v̄s
′
(k2)γν (1 − γ5) us(k1)

]

= 2 [Tr{/k1γµ/k2γν}− Tr{/k1γµ/k2γνγ5}]

= 8
(
gαµgβν + gανgβµ − gαβgµν −���

�XXXXiεµναβ
)
kα1 k

β
2 =: T

(aux)
µν;αβk

α
1 k
β
2 . (242)

According to Equation 240 all terms containing f−
HH′ (similarly for µ↔ν), i. e.,

Lµν(k1,k2)qµ = 8m2lk
ν
2 , Lµν(k1,k2)qµqν = 4m2l

(
q2 −m2l

)
, (243)

are accompanied by extra powers of the quadratic lepton mass. Hence, after solving the phase
space integrals, the mentioned kinematical suppression of these terms becomes obvious. This
can be done in two stages (see, e. g., [64, 146, 257–260]):

i) By employing the auxiliary integral for massless leptons

Iµν(q) =

∫
d3k1

∫
d3k2 δ(4)(q− k1 − k2)

k
µ
1k
ν
2

Ek1Ek2
=
π

6

(
q2gµν + 2qµqν

)
, (244)

130 In Equation 239, one uses the rest frame of particle H
(
Ep=

√
m2
H+ ~p2

)
.

131 Since Lµν is contracted with Hµν, the totally antisymmetric tensor within Equation 242 will not contribute to the given
amplitude. Moreover, in Equation 242 we sum over the (final) lepton polarizations (see, e. g., [146]). Hence, completeness
relations, such as Equation 1088 and Equation 1089 can be used.
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one may obtain the following partial result
(
omitting O

(
m2l
)

contributions
)
:

(2π)4
2∏
i=1

∫
d3ki

(2π)3 2Eki
Lµν(k1,k2)Hµν

(
p,p′

)
δ(4)(q− k1 − k2)

=
1

16π2
Iαβ(q) T

(aux)
µν;αβH

µν
(
p,p′

)
=
λ
(
t,m2H,m2H′

)

3π

∣∣f+HH′(t)
∣∣2 . (245)

Here, we make use of the triangle function, as defined in Equation 1310.

ii) When modifying the phase space integration by inserting the condition qµ≡ (p− p′)µ via
an associated delta distribution, one gets

∫
d3 k3

(2π)3 2Ek3
δ
(
q2 − (p− k3)

2
)
=

√
λ
(
t,m2H,m2

H′
)

16π2m2H
, (246)

which is the missing puzzle piece.

After these steps, it is straightforward to derive the following (master) formula:

d Γ(H→H′lν̄l)
dq2

=
G2F|Vuidj |

2

192π3m3H
λ
3/2
(
t,m2H,m2H′

) ∣∣f+HH′(t)
∣∣2 +O

(
m2l

)
. (247)

As can be seen from Equation 247, all terms proportional m2l are additionally suppressed by
meson mass corrections. Consequently, for l=e,µ admixtures of f−

HH′ can be safely neglected.

Together with Equation 247, this subsection, therefore, provides the basis for a phenomenological
investigation of corresponding form factors and branching fractions, as set out in Chapter 5.
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“Mixing one’s wines may be a mistake,
but old and new wisdom mix admirably.”

— Bertolt Brecht (1898 – 1956)

In this chapter, we study η and η′ light-cone DAs via the approximate conformal symmetry in
QCD. The theoretical updates provided with this part are as follows:

i) For the mentioned η(′) DAs, we present a complete NLO treatment of the corresponding
scale dependence (see Section 3.3.3).

ii) Moreover, we consider a consistent treatment of quark mass corrections up to O(ms) ac-
curacy. This includes an update of the SU(3)F-breaking effects in the twist-four DAs (see
Section 3.4.3, along with Section C.9).

iii) Most importantly, we partially take into account the anomalous contributions and imple-
ment η−η′ mixing schemes into the twist-four DAs (see Section 3.1 as well as Section 3.4.3).

With these improvements, it is possible to study hard exclusive processes, that include η(′)

mesons, with a previously unknown level of accuracy (cf. [3] for more details).

3.1 mixing schemes and the η − η′ system

In this subsection, we will discuss selected mixing schemes which are needed for a sound de-
scription of the η−η′ system.
Hence, we start with a short review of the FKS scheme and an illustration of its previous im-
plementation into hard exclusive processes. Most importantly, we then present our own ansatz,
developed for an application to higher twist effects at a wide range of momentum transfer (see
Chapter 4, along with Chapter 5).

3.1.1 Mixing effects and the η − η′ system

To begin with, the flavor structure of the neutral η and η′ mesons have to be determined. In
an ideal world with three massless light and three infinitely heavy quark species the η′ meson
would be a pure flavor singlet [152, 225, 261], while the η would have a flavor octet structure.
In the real world, however, the effects of finite quark masses as well as the impact of the ax-
ial anomaly have to be taken into account. Both phenomenons lead to a mixing of the neutral
mesons among each other (see [152] and references therein). Therefore, the η−η′ system1 has to
be fenced off from possible admixtures of, e. g., the π0 and the heavy ηc or ηb mesons.
Starting with the light part of the spectrum, isospin violating mixing effects of π0 with η(′) may
be relevant, when O(mu−md) corrections are not negligible anymore. For the processes in ques-
tion the mass difference of up and down quarks is sufficiently smaller than the generic energy
scale

(
µ0≈1 GeV

)
and can therefore be safely discarded. In general, the isospin limit mu=md

1 A priori, one may assume a non-negligible mixing of the η and η′ mesons due to the perceptible breaking of SU(3)F
symmetry in nature.
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is a very good approximation to the real world, therefore, π0 is an almost pure isotriplet. On the
other hand, the mixing effects of the η or η′ with heavier neutral pseudoscalar mesons (like ηc or
ηb) induced by the U(1)A anomaly are, however, less important, when compared to the effects
within the η− η′ system. The reason for the latter lies in the general anomalous Ward-identity
(similar to Equation 178) since the non-anomalous terms dominate in this case [152].
For the sake of clarity, we therefore assume exact isospin symmetry, including the distinction
mu=md�ms, while disregarding heavy quark mass contributions (mQ→∞, for Q=c,b, t) to
the low-energy mixing phenomenology (cf. [9, 15, 152, 225, 261]). Furthermore, in this limit the
π0 actually resembles a pure isotriplet and is, therefore, also an ideal testing ground for theoret-
ical considerations, which later on can be extended to more complex pseudoscalar mesons.

In order to quantify the mixing in the η−η′ system, one has to define appropriate mixing2

parameters which can be related to the physical observables. Inspired by the quark-model3 ap-
proach for the η−η′-mixing [44, 225], one could try to extend the concept of state mixing to the
QFT level. Therefore, let us first consider a toy model ansatz based on the (local) operators

jA5 = ψ
√
2TAiγ5ψ (A = 0, 1, . . . , 8) , (248)

where we may assume that j05 as well as j85 will both couple to the physical states |η〉 and |η′〉.
The latter would imply

(
for A = 0, 8

)

jA5 |0〉 = αAη |η〉+αAη′ |η′〉+ . . . , (249)

with the complex numbers αAη and αAη′ . Note, that for the sake of a better consistency, we also
include T0, which is proportional to the unity matrix (see Section A.1). Based on the physical
spectrum of Equation 249 we could further define the hypothetical states:

|η8〉 =
[
cos ϑ0|η〉 + sin ϑ0|η′〉

]
cosγ + sinγ |r〉 , (250)

|η0〉 =
[
cos ϑ8|η′〉− sin ϑ8|η〉

]
cosγ′ + sinγ′|r〉 , (251)

which ideally either couple to j85 or j05. In fact, both states4 decouple with respect to the current
densities (cf. Section 3.1.2)

〈0|JAµ5|ηB(P)〉 ∼ iδABPµ (A,B = 0, 8) . (252)

Moreover, |r〉 is a residual state, i. e., collecting contributions of higher excitations, and so forth.
When assuming orthonormal states, such as 〈η|η〉=1=〈η′|η′〉, 〈η|η′〉=0, etc. we would get5

〈η8|η8〉 = cos2γ
[
cos2ϑ0 + sin2ϑ0

]
+ sin2γ = 1 = 〈η0|η0〉 , (253)

along with the projection

〈η8|η0〉 = sinγ sinγ′ + cosγ cosγ′ sin(ϑ0 − ϑ8) . (254)

Here, a finite overlap may, e. g., be caused by non-trivial admixtures of gluonic contributions
into the hypothetical states {|ηA〉}A=8,0. Nevertheless, the standard approach (cf. [152, 225] for

2 In this context, mixing does not mean some sort of meson oscillation (e. g., B−B oscillations [262]), but rather a formal
superposition of states.

3 Within the quark-model, it is possible to construct pure, i. e., orthogonal singlet and octet states, while mixing-effects
correspond to mere rotations.

4 The definitions of Equation 250 and Equation 251 are compatible with Equation 257, when rescaled |ηA〉 =
cos(ϑ0−ϑ8) |ηA〉, together with ϑA→θA (A=0,8).

5 Usually, one uses γ=0=γ′ along with the state mixing ansatz ϑ0=θ=ϑ8 (cf. [15]).
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a review) favors a single mixing angle “θ”, relating the mesonic states via an orthogonal trans-
formation (cf. Section 3.1.2, Section 3.1.3) to a predefined basis. Therefore, densities, such as
“〈0|JAµ5|ηB(P)〉” (A,B = 0, 8), a priori do no longer follow the corresponding (single angle) state
mixing, but exhibit a more complicated mixing scheme (cf. Section 3.1.2, Section 3.1.3). Conse-
quently, in general Equation 252 will not be valid anymore, depending on the chosen basis.

Accordingly, there exist several approaches in the literature (see, e. g., [152, Chapter 3] and refer-
ences therein) claiming to provide a proper description of the η− η′ mixing parameters. Let us
pick the two most popular and sophisticated concepts available which form the basis for further
developments on the DA level later on.
The first approach is based on ChPT [13, 14, 182] which favors a description in terms of the SO

parameters6 [182]. However, the second approach elaborates the mixing parameters in terms of
the QF basis by using well-defined operator identities (e. g., the anomalous Ward-identity) and
sandwiches them between a physical meson and the vacuum state7. Yet, both approaches can be
formulated in a similar way (as done by [152, 261]) when combining the language of ChPT with
that of local matrix elements.
In a nutshell, the low-energy physics of light pseudoscalar mesons can (successfully) be de-
scribed by an effective Lagrangian [14] for QCD. The latter reflects a systematic expansion in
powers of small momenta and masses of the (almost) Goldstone bosons “π, K, η”. Since the η′

meson cannot be classified as an additional Goldstone boson (due to its large mass) it is not
straight forward to include it as an additional degree of freedom in the effective Lagrangian.
Nevertheless, Leutwyler and Kaiser have worked out a strategy to include the η′, based on the
formal limit Nc→∞. Here, the anomaly term Equation 178 vanishes and the η′ (formally) be-
comes a 9th Goldstone boson. As discussed in [152, 263], a consistent effective Lagrangian for
the dynamics of the (light) pseudoscalar nonet can be constructed, including SU(3)F-breaking
effects

(
introduced with the matrix χ̂∼m̂ – see [152] and references therein

)
as well as chiral con-

densate and anomaly contributions, combined with finite quark- and meson mass-corrections8.
Moreover, the Lagrangian has been retrofitted with OZI-violating corrections, which come into
play via the parameters Λ1 and Λ2, while the anomalous coupling to the photon field is realized
with the Wess-Zumino-Witten term (cf. [152] and [13]). In other words the complete low-energy
behavior of QCD has been modeled with this effective Lagrangian which allows a thorough an-
alytical treatment of the mixing parameters. We will list the needed results of this approach in
the following.

3.1.2 Singlet-octet basis

It is more convenient to describe the mixing phenomenology via decay constants rather than
formal states of the Hilbert space. Those decay constants are defined by the matrix elements of
axial vector currents9 (cf. Equation 171)

〈0|JAµ5|M(P)〉 = ifAMPµ , (255)

6 By knowing the low-energy physics of QCD in the pseudoscalar sector, one would be able to predict the mixing parame-
ters of a chosen scheme. The latter ultimately encode information on how the particles of the system are interwoven.

7 This approach has been refined by [9, 15, 152, 261], who also rewrote it in the language of ChPT.
8 Finite quark-masses combined with corrections of the chiral condensate give rise to GMOR-relations. The latter may be

used for the introduction of meson-mass corrections.
9 This parametrization (cf. Equation 255) is justified by the assumed Lorentz invariance.
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implying four independent decay constants fAM (M = η,η′; A = 0, 8) for the η−η′ system.
Moreover, for each pair of decay constants to a given current, a mixing angle can be defined
[13, 152, 182, 263]:

f8η

f8
η′

= cot θ8 ,
f0η

f0
η′

= − tan θ0 . (256)

The latter can be used to define two basic decay constants f8, f0 by [13, 182]

FSO =

(
f8η f0η

f8η′ f0η′

)
= U(θ8, θ0)diag(f8, f0) , (257)

with the mixing matrix

U(θ8, θ0) =

(
cos θ8 − sin θ0
sin θ8 cos θ0

)
, (258)

which again leaves four independent parameters θ8, θ0 and f8, f0. Especially, the definitions
leading to Equation 258 are chosen in such a way that the case of vanishing mixing angles
resembles a SU(3)F symmetric world. This may be illustrated with the state mixing ansatz10

(
|η〉
|η′〉

)
= U(θ, θ)

(
|η8〉
|η0〉

)
θ→0−−−→

(
|η8〉
|η0〉

)
. (259)

Most important, let us list the non-trivial features and relations among the SO mixing parameters
brought up by the ChPT approach (see, e. g., [152, 263] ), describing the low-energy QCD dynamics
[13, 152, 182].

• singlet decay constant : The ChPT ansatz (up to NLO) reveals that OZI-violating effects
are related to the singlet decay constants [152]∑

M=η ,η′
f0Mf

0
M = f20 =

2

3

(
f2K + f2π

)
+ Λ1f

2
π , (260)

where Λ1 can, e. g., be determined phenomenologically. Moreover, as pointed out by [13,
152, 184] the singlet decay constants are scale dependent11:

[
µ

d
dµ

− γA

]
f0M = 0 , (261)

with the anomalous dimension12

γA(αS) =

∞∑
m=1

(αS
2π

)m
γ
(m−1)
A = −4Nf

(αS
2π

)2
+O

(
α3S

)
. (262)

Numerically the scale dependence of f0M (for moderate scales) should be relatively small
because it is a sub-leading effect. However, we will work out a full NLO (in αS) approach of
the photon-transition form factor where the scale dependence of the singlet decay constant
may proof its phenomenological relevance for high energies (see Section 4.3).

10 Additionally, the ansatz given by Equation 259 does not reproduce the canonical definition [44]
(

including |ηA〉= |φA〉
for A = 8,0

)
〈0|JAµ5(0)|φB(P)〉= iδABfBPµ, but implies [261] 〈0|J0µ5(0)|η8(P)〉= if0 sin(θ−θ0)Pµ along with

〈0|J8µ5(0)|η0(P)〉=if8 sin(θ8−θ)Pµ.
11 The RGE of Equation 261 will be solved in Section 3.3.
12 According to Equation 261, Λ1 has to be replaced by a scale dependent parameter Λ1

(
µ2
)

(cf. [152]).
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• scale independent quantities : Up to the assumed order of accuracy the combinations∑
M=η ,η′

f8Mf
8
M = f28 =

4

3

(
f2K − f2π

)
, (263)

∑
M=η ,η′

f8Mf
0
M = f8f0 sin(θ8 − θ0 ) = −

2
√
2

3

(
f2K − f2π

)
, (264)

are not affected by OZI rule violating effects (i. e., they are independent of Λi) [13, 152, 182,
263]. This means, when taking into account flavor symmetry breaking effects, a universal
mixing angle

(
e. g., θP≡θ8,0

)
is no longer justified. Due to the impact of the axial anomaly

(cf. discussion in [152, Chapter 3.1]), the mixing angles θ8 and θ0 are “small” quantities,
however, their difference cannot be neglected:

0�
∣∣∣∣
θ8 − θ0
θ8 + θ0

∣∣∣∣ . 1 . (265)

Therefore, when working in the SO basis θ8 6=θ0 has to be used. Moreover, it is important
to note that θ0 is not scale dependent (similar to θ8), because the renormalization factors
in Equation 256 actually cancel [152].

Let us come back to the basis of physical states M1,2 = η,η′. When constructing the matrix [152]

 ∑
A=8,0

fAM1
fAM2



M1,M2=η,η′

?
= diag

(
f2η, f2η′

)
(266)

in the physical basis, it will only be diagonal for special cases, like the SU(3)F symmetric limit.
Otherwise, i. e., as long as mixing effects are incorporated, the η−η′ system cannot be adequately
described by individual decay constants fη, fη′ (cf. [152] for a detailed discussion).

3.1.3 Quark-flavor basis

A different parametrization of the η − η′ system is using a change of basis in the subspace13

spanned by

(
λq

λs

)
=



√
2
3

√
1
3√

1
3 −

√
2
3




︸ ︷︷ ︸
≡U

(
λ0

λ8

)
, (267)

with the involutory matrix U
(
i. e., U2 = 12

)
and the definitions

λq= diag(1, 1, 0) , λs= diag
(
0, 0,
√
2
)

. (268)

In terms of independent axial vector currents Equation 267 implies the change J8µ5 = 1√
6

[
ūγµγ5u+ d̄γµγ5d− 2s̄γµγ5s

]

J0µ5 = 1√
3

[
ūγµγ5u+ d̄γµγ5d+ s̄γµγ5s

]

⇔
 J

q
µ5 = 1√

2

[
ūγµγ5u+ d̄γµγ5d

]

Jsµ5 = s̄γµγ5s

 , (269)

13 Strictly speaking, this refers to the linear hull “span
({
λ8,λ0

})
C

” and “span({λq,λs})C”.
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i. e., instead of SU(3)F singlet and octet currents, the set of quark-flavor currents is used, epony-
mously for the corresponding QF-basis. The related decay constants are defined (analogously to
Equation 255) via the matrix elements

(
R=q, s

)

〈0|JRµ5|M(P)〉 = ifRMPµ . (270)

As discussed in [152], the choice of Equation 267 will also entail new bare fields ϕq and ϕs

(instead of ϕ8 and ϕ0 – cf. [152, 263] ) in the effective Lagrangian of low energy QCD. Within the
QF-basis the matrix χ̂ [152, 263], which induces (as discussed above) SU(3)F symmetry breaking
into the effective Lagrangian, is diagonal14 [152]. Therefore, the physical states would be close
to ϕq and ϕs if it was not about the U(1)A anomaly.
The impact of the axial anomaly on the particle spectrum in this context may be seen, when con-
sidering the φ and ω mesons, which are the analogue of the η− η′ system in the vector meson
sector. While the U(1)A anomaly induces a significant mixing in the pseudoscalar sector, there
is only a small deviation from the ideal mixing-angle for the φ−ω system15. Therefore, from a
phenomenological point of view, the QF-basis seems to be a more natural choice than the SO-basis.

However, the construction of the QF-mixing scheme is similar to the SO-basis [152, 261] (again
making use of Equation 258):

FQF =

(
f
q
η fsη

f
q
η′ fsη′

)
= U(φq,φs)diag(fq, fs) , (271)

with the mixing angles

f
q
η

f
q
η′

= cotφq ,
fsη

fs
η′

= − tanφs . (272)

Yet, there are several decisive differences between these two schemes.

• scale dependent quantities : ChPT calculations implicate the following relations [14, 152]:∑
M=η ,η′

f
q
Mf

q
M = f2q = f2π +

2

3
f2πΛ1 (273)

∑
M=η ,η′

f
q
Mf

s
M = fqfs sin(φq − φs ) =

√
2

3
f2πΛ1 (274)

∑
M=η ,η′

fsMf
s
M = f2s = 2f2K − f2π +

1

3
f2πΛ1 . (275)

At first glance, according to the obvious scale dependence16 of, e. g., fq and fs, a consistent
description within the QF-basis seems to be more complicated than in the SO-scheme (there
only f0 has to be renormalized).

• differences between the schemes : Before jumping to a conclusion, the following char-
acteristics have to be taken into account:

14 For χ̂=diag(χ1,χ2,χ3), the expression in the QF-basis looks like: χ̂= χ1+χ2
2 λq+ χ1−χ2

2 λ3+ χ3√
2
λs.

15 The latter is also consistent with the OZI-rule (cf. [152]).
16 As discussed, the parameterΛ1

(
µ2
)
= 1
f2π

(
f20
(
µ2
)
− 2
3

[
f2K+ f2π

])
indirectly comes with a scale dependence (cf. Equa-

tion 260).
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i) The difference φq 6=φs is caused by an OZI-rule violating (Λ1 6= 0) effect and not by
SU(3)F flavor breaking (fK 6= fπ) contributions.

ii) Unlike the SO case (cf. Equation 265), both mixing angles within the QF scheme them-
selves are not small quantities [152], but with the addition that their difference is
relatively small:

∣∣∣∣
φq − φs
φq + φs

∣∣∣∣ � 1 . (276)

According to Equation 276, the difference between these parameters is considered as a sub-
leading correction

(
|φq −φs|<5

◦, cf. [9, 152]
)
, i. e., up to O(Λ1) the assumption φq≈φ≈φs is

justified. Therefore, Equation 271 can be rewritten in terms of one mixing angle φ [152]
(
f
q
η fsη

f
q
η′ fsη′

)
= U(φ)diag(fq, fs) +O(Λ1) , (277)

with the (modified) rotation matrix17

U(φ) =

(
cosφ − sinφ

sinφ cosφ

)
. (278)

Obviously, in this approach the SU(3)F amounts to the ideal angle ϕ0=arctan
(√
2
)
≈54.7◦. As

discussed in the following (also cf. [152]), this simplified parametrization in the QF-basis will
(necessarily) lead to a more complicated set of constants in another basis.

Undoubtedly, the assumption of an exact common mixing angle can only be uphold when as-
suming the strict OZI-rule to be true. The latter becomes rigorous in the formal limit Nc→∞
or (also) for a vanishing strong coupling (i. e., at asymptotically large energies). Therefore, pro-
cess independent mixing parameters can only be determined and at the same time valid up to
O
(
N−1
c

)
corrections18.

A consequent use of the OZI-rule leads to the so-called FKS-scheme. That means, all OZI violating
parameters will be neglected, while topological effects, e. g., due to τ0, will be kept. Moreover,
possible scale dependencies (of the mixing parameters) and all other amplitudes involving quark-
antiquark annihilations will also be discarded. We will use the term “strict FKS-scheme” for this
rigorous ansatz.

Furthermore, the following parameters are the outcome of a thorough phenomenological analy-
sis (see Figure 16) based on the strict FKS-scheme of a better part of the existing data [9, 152]:

f8 =
(
1.26± 0.04

)
fπ , θ8 = −21.2◦± 1.6◦ ,

f0 =
(
1.17± 0.03

)
fπ , θ0 = −9.2◦ ± 1.7◦ ,

(279)

⇔ fq =
(
1.07± 0.02

)
fπ , φ = 39.3◦± 1.0◦ ,

fs =
(
1.34± 0.06

)
fπ ,

(
Λ1= 0

)
.

(280)

17 Equation 278 is related to Equation 258 via U(φ) ≡U(φ,φ).
18 In this context the parameters Λ1,2 are of order N−1

c (cf. [152]).
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Averaged value of mixing angle �

J= ! �(�

0

)� 39:9

�

� 2:9

�

D

s

! �(�

0

)`� 41:3

�

� 5:3

�

�

0

! �, �! � 35:3

�

� 5:5

�

a

2

! �(�

0

)� 43:1

�

� 3:0

�

� �

�

p! �(�

0

)n

(

36:5

�

� 1:4

�

39:3

�

� 1:2

�

�� p�p! �(�

0

)�(�; !) 37:4

�

� 1:8

�

J= ! �(�

0

) 39:0

�

� 1:6

�

average 39:3

�

� 1:0

�

� all experiments consistent with each other

� small experimental uncertainty

� only by 7% o� the theoretical estimate (42

�

)

� doubled errors

�� not used in average

18 Thorsten Feldmann: �-�

0

Mischung

Figure 16: Based on [9, 152] and references therein, the mixing angle φ has been determined from several
experimental processes. The picture is borrowed from [264].

Here, the error bars correspond to the experimental uncertainties, while the systematic errors
(e. g., from neglecting OZI-rule violating effects) have not been included. Other analysis, such as
[10], are exploiting more recent data, but use only a subset of the processes investigated in [15].
This yields the following results [3, 10]:

fq =
(
1.09± 0.03

)
fπ , φ = 40.7◦±1.4◦

fs =
(
1.66± 0.06

)
fπ .

(281)

Accordingly, the difference between Equation 280 and Equation 281 may be viewed as an intrinsic
uncertainty of the FKS approximation (cf. discussion in [3]). For the sake of consistency with
previous studies, e. g., [20, 265], we adopt the numbers shown in Equation 280 as default values
when implementing our numerical evaluations (cf. Section 4.3).

3.1.4 Adaption to the language of distribution amplitudes

The primary goal of this subsection is to formulate an adequate description of the η− η′ system
on the level of DAs. Therefore, the discussed mixing schemes have to be implemented into the
standard framework for DA.

A legitimate way to introduce the language of DAs is to start with the concept of light-front
wave function (LFWF). The latter arises from the solutions of a corresponding Hamiltonian eigen-
value problem, similar to [266]

HLC |Ψ〉 =M2|Ψ〉 , (282)
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that includes a given particle state |Ψ〉 with invariant mass M2. Besides, the involved light-cone
Hamiltonian19

HLC = PµP
µ = P−P+ − ~P2⊥ (283)

is usually defined within an “intrinsic frame”, i. e., ~P⊥ = ~0 (see [266] for details). Here, the
conventions of [128] are used, i. e., corresponding “+” and “−” components can be defined
P+≡Pµnµ, P−≡Pµn̄µ via two independent light-like four vectors n2= 0= n̄2

(
n·n̄= 1

)
, while

possible orthogonal projections ~P⊥ related to Pµ⊥≡gµαPβg⊥αβ (see Section A.9 or Section 3.2 for
details) additionally require

g⊥µν = gµν −nµn̄ν −nνn̄µ . (284)

The underlying light-cone quantization20 can then be formulated independently of the Lorentz
frame [266], implicating a very simple vacuum structure. In fact, there is no spontaneous cre-
ation of massive fermions in the light-cone quantized vacuum (cf. [266] and references therein).
Consequently, for the eigenvectors of Equation 282, the Fock expansion turns out to be extremely
useful, because all constituents in a physical eigenstate are directly related to the state and not
to disconnected vacuum fluctuations [266]. Thus, it is reasonable for a given eigenstate of Equa-
tion 282

|Ψ〉 ≡ |Ψ;M,P+,~P⊥,S2,S3,h〉 (285)

to be calculated in terms of a complete set of (eigen-) functions {|µn〉}n [266]∑
n

∫
d[µn] |µn〉〈µn| = 1 , (286)

with the projections [266] on the basis21 states

Ψ
n/h(M,P+,~P⊥,S2,S3)

(µ) = 〈µn|Ψ〉 , (287)

which are usually referred to as wave functions.
Here, the associated quantum numbers of the particular hadron “h” (cf. Equation 285, Equa-
tion 287), such as the generalized spin-squared S2, or the longitudinal projection S3, along with
its charge, parity, etc., including the kinematical set-up are supposed to be obvious in the context
of a given case. Therefore, it is convenient to omit any further reference after their introduction.
As discussed in Section 2.5, a reasonable choice of basis should connect the quark content with
the hadron state under consideration. Therefore, one can construct the complete basis of Fock
states, by applying products of (free) field creation operators to the vacuum state (numbered
withn =0) [266]:

n = 1 : |qq̄;k+i ,~k⊥i, λi〉 ,
n = 2 : |qq̄g;k+i ,~k⊥i, λi〉 ,
n = 3 : |gg;k+i ,~k⊥i, λi〉 ,

...
...

...

(288)

19 The Hamilton (cf. Equation 283) has been written in generic light-cone coordinates.
20 Unlike the equal-time Hamiltonian formalism, this technique uses a quantization on a null plane, i. e., a plane tangential

to the light-cone (cf. [266] and references therein).
21 The choice is also denoted by “µ” which is additionally referring to specific sets of arguments characteristic for the basis.
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with the momenta k+i , ~k⊥i and helicities λi of the ith constituent22 (of one of the Nn partons
corresponding to the nth Fock state). It is noteworthy that each Fock state |µn〉 ≡ |n;k+i ,~k⊥i, λi〉
is an eigenstate of the operators P+, ~P⊥, with the eigenvalues23 [266]

~P⊥ =

Nn∑
i=1

~k⊥i , P+ =

Nn∑
i=1

k+i
(
k+i > 0

)
. (289)

Moreover, along with the transverse parton momenta ~k⊥i (relative to the direction of the meson)
it is convenient to define the (boost invariant) longitudinal momentum fraction [266]

xi =
k+i
P+

with xi ∈ (0, 1) . (290)

The latter is a consequence of Equation 289 which also gives

Nn∑
i=1

xi = 1 as well as
Nn∑
i=1

~k⊥i = ~0 (291)

when working within the intrinsic frame ~P⊥ = ~0. Unfortunately, the involved quantities may
become ill-defined in the case ~k2⊥i→∞ (“UV singularities”) or for longitudinal momenta close
to the end points24, i. e., xi → 0 or xi → 1 (“end-point singularities”). As a solution, one may
introduce a cut-off or similar regularization procedures [266]. Being aware of this subtlety, a
meson state “|M〉” can be written as a sum over all Fock space sectors (cf. [266])

|M(P)〉 =
∞∑
n=1

∫
[dµn] |n; xiP+,~k⊥i+xi~P⊥, λi〉Ψn/M

(
xi,~k⊥i, λi

)
, (292)

with the phase-space integration

∫
[dµn] =

∑
λi

∫Nn∏
i=1

d xi
Nn∏
j=1

d2k⊥j δ

(
1−

Nn∑
k=1

xk

)
δ(2)

(
Nn∑
l=1

~k⊥l

)
. (293)

The coefficient functions Ψn/M of Equation 292 are then called LFWF (cf. [267]). This represen-
tation allows a phenomenological study of the hadrons anatomy, due to the obvious relation of
the Fock states |µn〉 to the probability (cf. [268])

Pn =

∫
[dµn]

∣∣∣Ψn/M
(
xi,~k⊥i, λi

)∣∣∣
2

(294)

of being measured. In this context the process and gauge-independent distribution amplitude (cf.
[268]) can be defined as an integral over transverse momenta of the meson’s Bethe-Salpeter wave
function. Exemplified for the pion (via the n=1 Fock state coefficient) the DA may be written as
(cf. [268])

Φπ

(
x,Q2

)
=

∫Q2
0

d2~k⊥
16π3

Ψq̄q/π

(
x,~k⊥

)
, (295)

22 The running index “i” obviously depends on the involved other constituents of the specific Fock state. Equation 288 lists
the genuine examples without specifying a nongeneric flavor structure. All other Fock states can be constructed from
them by adding additional gluons and quark-antiquark pairs.

23 Note, that for the vacuum we would get ~P⊥|0〉=~0⊥ and P+|0〉=0 [266].
24 In this case one of the partons carries almost the full meson momentum, while the others become soft.
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which then evidently is the probability amplitude for finding the pion as a quark-antiquark pair
with momentum fractions xq= x and xq̄= x̄ (cf. Equation 291). Similar arguments hold for me-
son DAs of higher Fock states or different flavor structure.

One main advantage of the presented light-cone formalism and DAs (cf. [142, 269–275]) in par-
ticular results from their versatile applicability to hard exclusive reactions. In this context it is
possible to formally calculate and extract many related hadronic properties without an explicit
knowledge of the underlying non-perturbative mechanisms, such as meson mixing effects or
confinement itself. Explicitly, this can be done by means of a formalism developed especially for
that purpose which is based (inter alia) on the collinear factorization approach (see Chapter 4).
Accordingly, for a better compatibility with the latter, it is advantageous to define DAs via corre-
sponding matrix elements.

Following the previous approach [20, 152, 268], all DAs involved in this work can be defined
as the Fourier transform of adequate matrix elements similar to25 (by default we may for exam-
ple set M=η,η′ and A=0, 8)

iΦAM

(
x,µ2

)
=

∫
dz−

2π
eiξxP·z〈0|Ψ(−z)

[
TA
]γ+γ5√

Nc
Ψ(z)|M(P)〉

∣∣∣∣
z2=0;µ2

, (296)

Φ
g
M

(
x,µ2

)
=

∫
dz−

2π
eiξxP·z

2

P+
√
N2c − 1

〈0|G+ζ(−z) G̃ζ+(z)|M(P)〉
∣∣∣∣∣
z2=0;µ2

. (297)

The mentioned constraints refer to:

i) The implied assumption of the constituents’ (e. g., the quark-antiquark pair) light-like sepa-
ration is expressed by zµ = z−nµ, using the vector nµ, which defines the plus components
(cf. Equation 1172 in Section A.9) of arbitrary four-vectors.

ii) Moreover, an UV cut-off (similar to Equation 295) for the implicitly assumed ~k⊥-integra-
tion has been introduced which is also present in the definitions Equation 296 as well
as Equation 297. Thus, only Fock states with (kinetic) invariant mass squared M2 6 µ2

contribute (see, e. g., [20, 266, 271]).

For later use we will rescale the definitions Equation 296 and Equation 297 to get
(
Nf≡3

)

φAM

(
x,µ2

)
=
2
√
2Nc

fAM
ΦAM

(
x,µ2

)
(298)

φ
g
M

(
x,µ2

)
= σ

2
√
2Nc

f0M
Φ
g
M

(
x,µ2

)
, (299)

with σ =
√
Nf
Cf

(cf. [20, 32]). The definitions given in Equation 296, Equation 297 can then be
inverted [20] and generalized to get (cf. [3])

〈0|Ψ(z2n) /nγ5TAΨ(z1n)|M(P)〉
∣∣∣
n2=0;µ2

= i (P ·n) f
A
M√
2

∫1
0
dx e−iz

x
21(P·n)φAM

(
x,µ2

)
, (300)

〈0|Gnξ(z2n) G̃nξ(z1n)|M(P)〉
∣∣∣
n2=0;µ2

, = (P ·n)2 Cff
0
M

2
√
3

∫1
0
dx e−iz

x
21(P·n)φgM

(
x,µ2

)
, (301)

25 In order to abbreviate the expressions, we omit the obvious Wilson lines.
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where we employ the abbreviation Gnξ=n
µGµξ as well as

zx21 = x̄z2 + xz1 , z21 = z2 − z1 . (302)

While Equation 301 is very effective when working with the so called background field method
(cf. Section 4.1.3), an alternative parametrization, such as26

〈0|AAα (z2n)ABβ(z1n)|M(P)〉
∣∣∣
n2=0;µ2

=εαβρσ
nρPσ

(P ·n)
Cff

0
M

32
√
3
δAB

∫1
0
dx e−iz

x
21(P·n)φ

g
M

(
x,µ2

)

xx̄
(303)

seems more efficient if choosing a perturbative approach (see, e. g., Chapter 4). Yet, both ap-
proaches are equivalent, because Equation 303 results from the conversion of Equation 301 (cf.
[20, 276, 277]), after applying27 [276]

AAµ (z; x) = x
ν

∫∞
0

dσGAµν(z+ σx) , xµAAµ (z; x) = 0 . (304)

Furthermore, the internal symmetries of the η and η′ dictate28 that the DAs of Equation 298,
Equation 299 satisfy the symmetry relations

φAM

(
x,µ2

)
= φAM

(
x̄,µ2

)
(305)

φ
g
M

(
x,µ2

)
= −φgM

(
x̄,µ2

)
. (306)

Exemplified for Equation 305, the explanation is very intuitive. Here, the momentum fraction
of the quark

(
xq = x

)
will be exchanged with the one of the antiquark

(
xq̄ = x̄

)
which has no

impact on the system due to the meson’s positive C-parity29. Consequently, Equation 305 will
hold. Similar arguments may be found for Equation 306, but we have to postpone a dedicated
analysis to Section 3.2 and Section 3.3 where the internal structure of DAs is unfolded.

According to the discussion in Section 2.5, the named matrix elements may be used to interpo-
late flavorless neutral mesons like30 the π0 (A=3) or η and η′ (e. g., choose A=8, 0), particularly
when including the particle mixing. Therefore, we have to come back to the pivotal issue of this
chapter which is the adaption of the FKS scheme to the language of DAs. Ideally, the latter should
also reduce the total number of required parameters.

To realize the need for such a program, it is useful to outline the overall concept and the avail-
able information. In principle, it would be a formidable task to investigate the six different quark-
φAM

(
x,µ2

)
and related two independent gluon-amplitudes φgM

(
x,µ2

)
, since such a study offers

the opportunity to extract (non-perturbative) information about the η− η′ system (including the
mixing mechanism) at the level of DAs (see also [20]). Due to the simple transition between differ-
ent bases, e. g.,31

(
when combining Equation 267 with Equation 300, assuming ϕ0= arctan(

√
2)

and M=η,η′
)

f8Mφ
8
M =

√
1
3f
q
Mφ

q
M −

√
2
3f
s
Mφ

s
M ,

f0Mφ
0
M =

√
2
3f
q
Mφ

q
M +

√
1
3f
s
Mφ

s
M ,

(307)

26 One prominent reason for this are the standard Feynman rules themselves which rather involve vector potentials Aµ
than field-strength tensors Gµν.

27 Equation 304 corresponds to the light-cone gauge.
28 The relation Equation 305 would also hold for the π0 when choosing A=3 (assuming no mixing with the η).
29 For a charged pseudoscalar meson like the π± an additional SU(2)I rotation in flavor space would be needed to recreate

the original set-up. Therefore, the full G-parity has to be assumed in this case.
30 This means, that for charged particles like the π± replacements in Equation 296 according to

√
2TA→

[
T1∓ iT2

]
have

to be made.
31 Equation 307 is exact for strictly light-like separation of the partons.
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or equivalently (while omitting any scale dependence in the notation)
(
f8Mφ

8
M

f0Mφ
0
M

)
= U(ϕ0)

(
f
q
Mφ

q
M

fsMφ
s
M

)
(308)

a simultaneous study of different phenomena, such as the rather nontrivial SU(3)F-breaking
effects in the η− η′ system as well as the interplay of OZI-rule violation and the U(1)A anomaly
in the pseudoscalar channel would then be a possible scenario. Unfortunately, the quality of the
present data is insufficient to fix that many parameters at an acceptable level of accuracy. Thus,
the limited fidelity of the experimental data on the one hand has to be accompanied by a sensible
strategy to reduce the number of theoretical parameters on the other hand. In order to overcome
this calamity the following strategy [20, 32] has become quite popular:

i) It has been suggested [20] to assume that there are only small deviations of the quark DAs
from their asymptotic form φas:

φAM

(
x,µ2

)
≈ φas(x) . (309)

The latter has the universal structure (cf. Section 3.2)

φas(x) = 6xx̄ . (310)

Instead of assuming an exact relation for Equation 309, where particle independence would
hold trivially, the following ansatz has been made (M = η,η′):

φAM

(
x,µ2

)
= φA

(
x,µ2

)
, A = 0, 8,g . (311)

ii) A posteriori (see discussion below), the choices made in Equation 311 lead to OZI-rule
violating admixtures in the supposedly pure states {|ηR〉}R=q,s if no additional assumptions
are employed. Fortunately, the OZI-rule may be restored when choosing, e. g.,

φ8

(
x,µ2

)
= φ0

(
x,µ2

)
= φq

(
x,µ2

)
= φs

(
x,µ2

)
(312)

at some fixed scale µ2. Admittedly [20, 32], Equation 312 can only hold approximately, e. g.,
when φA≈φas is valid, and for a limited range of the factorization scale32 where φ8≈φ0
is justified. Therefore, and in order to guarantee the approximate validity of the OZI-rule,
Equation 312 has been replaced with the assumption

∣∣∣∣∣
φopp

(
x,µ2

)

φas(x)

∣∣∣∣∣� 1 , ∀x ∈ [0, 1] . (313)

Here, the “wrong-flavor” DA [32] is defined via33

φopp

(
x,µ2

)
=

√
2

3

(
φ0

(
x,µ2

)
−φ8

(
x,µ2

))
. (314)

Acknowledging this ansatz, but being aware of its limitations, a refined approach should be
consistent within a chosen basis and additionally allow for an applicability to a wide range of
renormalization scales. Thus, the key strategy lies in the combination of the FKS-scheme with

32 Due to evolution effects, Equation 312 cannot hold for all scales (cf. Section 3.3).
33 The DA of Equation 314 is obviously generated by OZI-rule violating interactions.
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the reinstated particle independence of certain DAs. Given that the small spatial separation of
the parton pairs dominates the behavior of hard processes, it has been further suggested by
[9, 15, 20, 278] to embed the particle dependence and the mixing behavior of the valence Fock
components solely into the decay constants34. Therefore, and in order to reduce the number of
unconstrained parameters it seems natural to assume that the physical states are related to the
flavor states by an orthogonal rotation35:

(
|η〉
|η′〉

)
= U(φ)

(
|ηq〉
|ηs〉

)
. (315)

This state mixing36 assumption implies that the same mixing pattern valid for the decay con-
stants (cf. Equation 271) also applies to the flavor DAs

(
f
q
η φ

q
η fsηφ

s
η

f
q
η′φ

q
η′ fsη′φ

s
η′

)
= U(φ)diag(fqφq, fsφs) (316)

including the same mixing angle “φ” of the FKS scheme. In fact, this is a far reaching conjecture
that allows one to reduce the total number of needed (twist-two) DAs by assigning the particle
dependence to the corresponding mixing scheme. Therefore, instead of four quark DAs implied
by the physical states there remain two DAs φq and φs suggested by the flavor states, i. e., we
effectively have the relations

φRM

(
x,µ2

)
≡ φR

(
x,µ2

)
, ∀M = η,η′ : R = q, s . (317)

Furthermore, for the sake of consistency with the state mixing, we assume for the gluonic matrix
elements that (see also Section A.14)

〈0|Gnξ(z2n) G̃nξ(z1n)|ηq〉 = 〈0|Gnξ(z2n) G̃nξ(z1n)|ηs〉 , (318)

which is compatible with the ansatz (see calculation in Section A.14)

φ
g
M

(
x,µ2

)
= φg

(
x,µ2

)
, ∀M = η,η′ (319)

of one remaining gluonic DA for the whole η− η′ system.

At this point the number of unconstrained parameters has been successfully reduced by 50%
together with a self-consistent choice of the basis (cf. Section A.14).

We can now develop a strategy for handling the scale dependence of involved DAs. In a nut-
shell it is possible to extend the approximations given by Equation 317, along with Equation 319

via a combination of Equation 308 and Equation 316, resulting in the corresponding scheme
specific expression for the (twist-two) SO DAs (at a fixed37 scale µ0=1 GeV):

(
f8ηφ

8
η f0ηφ

0
η

f8η′φ
8
η′ f0η′φ

0
η′

)
= U(φ)diag(fqφq, fsφs)UT (ϕ0) . (320)

34 According to Equation 300, the decay constants play the role of wave functions at the origin (also cf. [20]).
35 For a phenomenological discussion of the state mixing approach see Section 4.3.
36 Commonly, this term is only used, when there is only one mixing angle.
37 In fact, it is natural to assume that the FKS scheme refers to a low renormalization scale, due to its low energy nature (cf.

Chapter 5).
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Since the flavor octet and singlet DAs have a different scale dependence [3], Equation 320 cannot
hold to all scales. Consequently, one has to consider Equation 320 as an instruction how to
translate the (now) reduced number of parameters in the QF basis, which is assumed to be valid
for a low renormalization scale µ20= 1 GeV2, where the (strict) FKS scheme is supposed to hold
into the SO scheme, where results for higher scales are obtainable by QCD evolution. In this way
we solve two problems at the same time:

i) We preserve the particle dependence within the SO scheme and accordingly it is possible
to (consistently) take into account SU(3)F corrections38.

ii) Moreover, within the SO basis a proper renormalization scheme can be developed (cf. Sec-
tion 3.3) in order to extend Equation 320 to arbitrary scales µ ∈ R+

0 (sufficiently high).
Thus, OZI-rule violating effects can be taken into account without restricting the choices of
the DA parameters (cf. Equation 313), enabling an advanced phenomenological study (cf.
Section 4.3).

However, there are more non-vanishing matrix elements that can be considered (see Section 2.5).
In fact, for an overall consistent treatment of the associated DAs also deviations from the light-
cone have to be taken into account 39. Therefore, Equation 300 has to be rewritten in terms of a se-
ries expansion around the light-cone

(
n2≈0

)
. Fortunately, only the first few powers of the almost

light-like distances between the constituents are relevant for the kinematical set-up as provided
by hard exclusive processes. Hence, Equation 300 may be extended to40

(
A=0, . . . ,N2f − 1

)
:

〈0|Ψ(z2n)γµγ5TAΨ(z1n)|M(P)〉
∣∣∣
n2≈0;µ2

= i
fAM√
2

∫1
0
dx e−iz

x
21(P·n)

{
Pµ

[
φAM

(
x,µ2

)
+ z221n

2φ̃A4M

(
x,µ2

)
+O

(
n4
)]

+ z221

(
nµ(n · P) − Pµn2

)[∫x
0
du ψ̃A4M

(
u,µ2

)
+O

(
n2
)]}

, (321)

where φ̃A4M and ψ̃A4M are higher twist DAs which may be redefined (cf. [3, 257]) via41

φA4M

(
x,µ2

)
= 16

[
φ̃A4M

(
x,µ2

)
−

∫x
0
du ψ̃A4M

(
u,µ2

)]
, (322)

ψA4M

(
x,µ2

)
= −2

d
d x
ψ̃A4M

(
x,µ2

)
. (323)

The latter are generated via integration by parts of the original DAs, i. e., by using identities
similar to

−i

∫1
0
dx e−iz

x
21(P·n)

[∫x
0
duφ(u)

]
=

∫1
0
dx
e−iz

x
21(P·n)

z21(P ·n)
φ(x) −

e−iz1(P·n)

z21(P ·n)

∫1
0
dxφ(x) , (324)

38 An assumption like Equation 311 would clearly complicate this agenda (cf. Section 4.3).
39 Here, both, the DAs belonging to matrix elements with the Lorentz structures ∼σµνγ5, iγ5 and the terms of O

(
z221n

2
)

are of higher twist (cf. Section 3.4).
40 In contrast to other attempts (cf. [279]) Equation 321 is the standard expansion, which reveals up to this order two distinct

Lorentz structures, implying an equal number of different higher twist DAs. Moreover, we use the abbreviation n2≈0
instead of z221n

2≈0 to emphasize the underlying light-cone expansion.
41 For the pion case (cf. [280]) also the notation g1

(
x,µ2

)
= φ̃34π

(
x,µ2

)
and g2

(
x,µ2

)
= ψ̃34π

(
x,µ2

)
is in use.
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which are in general valid for an adequate (e. g., continuously differentiable) function φ(x). This
leads to the standard representation (cf. [1, 3, 281]) of Equation 321:

〈0|Ψ(z2n)γµγ5TAΨ(z1n)|M(P)〉
∣∣∣
n2≈0;µ2

= i
fAM√
2

∫1
0
dx e−iz

x
21(P·n)

{
Pµ

[
φAM

(
x,µ2

)
+z221n

2φ̃A4M

(
x,µ2

)]

+ i z21

(
nµ−Pµ

n2

P·n

)
ψ̃A4M

(
x,µ2

)
+O

(
z421n

4
)}

= iPµ
fAM√
2

∫1
0
dx e−iz

x
21(P·n)

[
φAM

(
x,µ2

)
+
z221n

2

16
φA4M

(
x,µ2

)]

+
i

2

nµ

P·n
fAM√
2

∫1
0
dx e−iz

x
21(P·n)ψA4M

(
x,µ2

)
+O

(
z421n

4
)

. (325)

For the involved higher twist DAs all possible surface terms vanish (see also Section 3.4). Further-
more, up to the intended order of accuracy, Equation 325 allows a consistent parametrization of
all the two-particle matrix elements42 for pseudoscalar mesons (omitting Wilson lines)

〈0|ψaf′,α′(z2n)ψbf,α(z1n) |M(P)〉

=
δab

12

N2f−1∑
A=0

(√
2TA

)
ff′

{
−(iγ5)αα′〈0|ψ(z2n)

√
2TAiγ5ψ(z1n) |M(P)〉

−(γµγ5)αα′〈0|ψ(z2n)
√
2TAγµγ5ψ(z1n) |M(P)〉

+
1

2
(σµνγ5)αα′〈0|ψ(z2n)

√
2TAσµνγ5ψ(z1n) |M(P)〉

}
(326)

via higher twist DAs. In general, the corresponding amplitudes can be defined by43

〈0|ψ(z2n) iγ5TAψ(z1n) |M(P)〉
∣∣∣
n2=0;µ2

=
fAM√
2
hA3M

∫1
0
dx e−iz

x
21(P·n)φA;p

3M

(
x,µ2

)
, (327)

〈0|ψ(z2n)σµνγ5TAψ(z1n) |M(P)〉
∣∣∣
n2=0;µ2

= −
iz21
6

fAM√
2
hA3M (Pµnν − Pνnµ)

∫1
0
dx e−iz

x
21(P·n)φA;σ

3M

(
x,µ2

)
, (328)

with the auxiliary parameter “hA3M” as specified in Section 3.4. Analogously, the three particle
DAs can be found and defined when parametrizing the non-vanishing matrix elements implied
by ψaf′,α′(x)gGAµν(y)ψ

b
f,α(z). In contrast to the pure quark-antiquark structure, the field-strength

tensor can also be replaced by its dual form which allows other non-vanishing Lorentz structures.

42 This is similar to Equation 188, but has been retrofitted with possible flavor and the predetermined color structures.
43 Possible normalization conditions will be specified in the following subsections.
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For instance, the latter entails a contribution ∼ εαβµν (γλ)αα′ , effectively generating the dual
field-strength tensor “attached” to a vector-current. Therefore, the associated DAs are given by44

〈0|ψ(z2n)TAσµνγ5gGαβ(z3n)ψ(z1n) |M(P)〉
∣∣∣
n2≈0;µ2

= i
fA3M√
2

(
pαpµg

⊥
νβ− pαpνg

⊥
µβ−(α↔β)

)
ΦA3M(z ,p·n)+. . . , (329)

〈0|ψ(z2n)TAγµγ5gGαβ(z3n)ψ(z1n) |M(P)〉
∣∣∣
n2≈0;µ2

=
fAM√
2
pµ
(
pαnβ− pβnα

) 1
p·nΦ

A
4M(z ,p·n) + fAM√

2

(
pβg

⊥
αµ− pαg

⊥
βµ

)
ΨA4M(z ,p·n)+. . . , (330)

〈0|ψ(z2n)TAγµigG̃αβ(z3n)ψ(z1n) |M(P)〉
∣∣∣
n2≈0;µ2

=
fAM√
2
pµ
(
pαnβ− pβnα

) 1
p·nΦ̃

A
4M(z ,p·n) + fAM√

2

(
pβg

⊥
αµ− pαg

⊥
βµ

)
Ψ̃A4M(z ,p·n)+. . . , (331)

where “pµ” represents another light-cone vector45 (see Section A.10 for details):

pµ = Pµ −
nµm

2
M

2 (n · P) +O
(
n2
)

. (332)

Besides, the ellipses stand for higher twist contributions, beyond the accuracy of this work.
Moreover, the shorthand notation

(
m∈N according to the number of involved partons

)

F(z ,p·n) =
∫
Dαe−i[α1z1+α2z2+...+αmzm](p·n)F(α) (333)

implied by Equation 292 and Equation 293 using the corresponding integration measure∫
Dαφ(α) =

[
m∏
i=1

∫1
0

dαi

]
δ

(
1−

m∑
j=1

αj

)
φ(α) , (334)

with the auxiliary test function “φ(α)≡φ(α1, . . . ,αm)”.

Apparently, such a large number of additional DAs would undermine our intended strategy to
reduce the redundancies if it would entail an equal number of new, unconstrained parameters.
However, in the following subsections the internal structure of the given non-perturbative ampli-
tudes is studied, revealing the interconnectedness of the named DAs with each other. Therefore,
this interrelation, given by the very nature of QCD itself prevents the emergence of such spurious
“new” parameters. As a result, the discussed approach will not be compromised when including
higher twist corrections.

3.2 conformal symmetry and twist-expansion

In Chapter 2 the self-consistency of QCD has been discussed with the result that this theory in-
deed has no internal, but only external anomalies (cf. [55]). Apart from the already reviewed
axial anomaly, QCD in the chiral limit also possesses the so-called conformal or scale anomaly.

44 It is still very common to use the abbreviation z=(z1, . . . ,zn) for a n-tuple of numbers.
45 With the given kinematics, pµ defines the minus-direction n̄µ =pµ/p·n, complementary to the corresponding plus-

direction nµ (cf. Section A.9, Section A.10).
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Although the conformal symmetry of QCD is broken by the scale anomaly and finite quark
masses, its study provides powerful tools for practical applications and puts strong constraints
on the structure of DAs. Therefore, the following review46 is essential for the subsequent investi-
gation of meson DAs (see Section 3.4.2, along with Section 3.4.3).

3.2.1 General aspects of conformal symmetry

By definition, the conformal group is formed via those coordinate transformations in four-
dimensional Minkowski space which preserve angles and leave the light-cone invariant. This
means, the intended transformations only change the scale of the metric

g′µν(x) = ω(x)gµν(x) (335)

and conserve the space-time interval

ds2 = gµν(x)dxµ dxν . (336)

More precisely, the conformal group proves to be an extension of the Pointcaré group [128, 282–
286] which may be understood on the level of Lie algebras (cf. Section A.11). Here, the ten
familiar generators of the Pointcaré group

Pµ → (4 translations)

Mµν → (6 Lorentz rotations)
(337)

are generalized with five more operators

D → (1 dilatation)

Kµ → (4 special conformal transformations) .
(338)

The latter manifest themselves not only in the obvious (global) scale transformation (called
dilatation), or inversions

xµ −−−→
(dil.)

λxµ (λ ∈ R\ {0}) , xµ −−−→
(inv.)

xµ

x2
, (339)

but also in the class of so-called special conformal transformations47

xµ −−−→
(inv.)

xµ

x2
−−−−→
(tran.)

xµ + aµx2

x2
−−−→
(inv.)

xµ + aµx2

1+ 2a·x+ a2x2 . (340)

Besides, the group theoretical properties of conformal symmetry one also has to address its field-
theoretical aspects.

When starting at classical level, the question of the necessary and sufficient conditions under
which the theory is conformally invariant has to be answered. Accordingly, the follow-up ques-
tion would then concern the interplay of these requirements with possible quantum anomalies.
Therefore, commencing with the conformal symmetry at classical level, the Noether’s theorem
applied to the QCD Lagrangian Equation 17 in the chiral limit implies the existence of fifteen

46 The study of conformal symmetry constitutes an important contribution to physics in general. However, we have to
restrict ourselves to the needed aspects, thereby, closely following [128].

47 The transformation Equation 340 is obviously a combination of inversions and translations: xµ → aµ+ xµ (with “aµ”
a constant four-vector).
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conserved currents with the corresponding conserved charges Pµ, Mµν, D and Kµ that are
nothing else, but the named generators (cf. Equation 337, Equation 338) of the conformal group.
Remarkably, the symmetry currents can be expressed in terms of the so-called improved energy-
momentum tensor θµν (cf. [128] and references therein) which is traceless, symmetric, and di-
vergenceless,

gµνθµν(x)|class.=0 , θµν(x)=θνµ(x) , ∂µθµν(x)=0 , (341)

when assuming a classical set-up. Furthermore, the tensor θµν allows a very compact represen-
tation of the symmetry currents associated with the dilatation and special conformal transforma-
tions [128]:

J
µ
D = xνθ

µν , J
µ
K,α =

(
2xνxα − x2gνα

)
θµν . (342)

Correspondingly, Equation 342 entails the necessary and sufficient condition for a theory to be
conformally invariant48 which is fulfilled if and only if θµν is divergenceless and traceless. On
quantum level49, however, the improved energy-momentum tensor remains divergenceless and
symmetric, while its trace will exhibit the famous conformal anomaly (cf. [128, 287–289])

∂µJ
µ
D(x) =

β(g)

2g
GAµν(x)G

A,µν(x) . (343)

As discussed in Chapter 2, the related effects may be taken care of within a suitable renormaliza-
tion procedure.50 In the following, the inclusion of conformal symmetry breaking and quantum
effects will be formulated separately. Therefore, the development of a customized renormaliza-
tion procedure will later on (cf. Section 3.3) supplement the results of this chapter.

Infinitesimal symmetry transformations, such as

xµ → xµ + εµ, φ(x)→
[
1+ εµδ

µ
P

]
φ(x) (344)

are related to the generators, that in general act on generic fundamental fields φ. According to
[128, 284, 290] those are given by

δ
µ
Pφ(x) = i[P

µ,φ(x)] = ∂µφ(x) , (345)

δ
µν
Mφ(x) = i[Mµν,φ(x)] = (xµ∂ν − xν∂µ −Σµν)φ(x) , (346)

δDφ(x) = i[D,φ(x)] = (x·∂+ l)φ(x) , (347)

δ
µ
Kφ(x) = i[K

µ,φ(x)]=
(
2xµx·∂− x2∂µ + 2lxµ − 2xνΣ

µν
)
φ(x) , (348)

where “l” denotes the related scaling dimension of φ. At the classical level l coincides with the
field’s canonical dimension lcan, while quantum corrections entail a difference l− lcan, which is
usually referred to as anomalous dimension (see, e. g., [128] for a detailed discussion). Moreover,
Σµν represents the spin generator. For quark ψ or gluon fields Aµ, this operator may be written
as [128, 290]

Σµνψ =
i

2
σµνψ , ΣµνAα = gναAµ − gµαAν , (349)

48 In other words, this is the case, when the currents Equation 342 are conserved.
49 The underlying regularization procedure introduces an intrinsic mass-scale with the related dimensionful UV cut-off

which inevitably breaks the scale invariance.
50 Obviously, there are subtleties, e. g., those related to the gauge-fixing, which may break the conformal invariance. See

[128] for details.
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component G+⊥ (G+− , G⊥⊥ ) G−⊥ ψ+ ψ−

spin-projection “s” +1 0 −1 + 12 − 12
conformal spin “j” 3

2 1 1
2 1 1

2

collinear twist “t” 1 2 3 1 2

Table 5: Relevant components of the fundamental fields (cf. also [128, 290]).

while gluonic field-strength tensors Gαβ require [290]

ΣµνGαβ = gµαGβν + gβνGαµ − (α↔ β) . (350)

Similar to the (quantization) axis of the atomic spin, the Lorentz spin of a fundamental field
can be projected along a distinguished direction. Referring to the assumed phenomenological
set-up of partons, that are collinearly propagating along the same direction n̄µ (n̄2 = 0), one
may consider the corresponding quantum fields φ as living on the light-cone (n2= 0)

φ(x)→ φ(αn) (α ∈ R) . (351)

Here, the shorthand notation φ(αn) ≡ φ(α) is commonly used [128, 290]. In this context, one
may assume a fixed spin projection “s” of those fields on, e. g., the “+”-direction (cf. Section A.9):

Σ+−φ(α) = sφ(α) . (352)

In fact, for the gluon field one may, therefore, formulate

Σ+−A+ = s+A+ , Σ+−A− = s−A+ , Σ+−A⊥ = s⊥A⊥ , (353)

an eigenvalue problem similar to Equation 352, i. e., with the spin projections s±=±1 and s⊥=0.
Analogously, for Gαβ the indices may be combined to components with definite spin projections
(cf. Table 5). Thus, in the context of conformal symmetry, the standard quark spinors are not the
fundamental fields. Correspondingly, the different spin projections have to be separated, e. g.,
with the standard projection operators (cf. Section A.9)

Π± =
1

2
γ∓γ± (354)

leading to the plus or minus components of the underlying quark fields

ψ± = Π±ψ . (355)

The latter have definite spin projections (cf. Equation 349, Equation 352)

Σ+−ψ± = ±1
2
ψ± (356)

and are, therefore, the actual fundamental fields of conformal symmetry (cf. Table 5). Besides,
when restricted to this collinear setting (along n̄µ), all relevant conformal transformations can
be mapped onto the light-cone. In other words, the special conformal transformation of Equa-
tion 340

(
set aµ=an̄µ, a ∈ R

)
boils down to

x− →
x−

1+ 2ax−
. (357)
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This also applies to the translation and dilatation
(
c ∈ R

)

x− → x− + c , x− → λx− . (358)

Consequently, the four-dimensional conformal group can be reduced to its collinear subgroup
SL(2, R), generating Möbius transformations51 (ad− bc=1):

α→ aα+ b

cα+ d
, (359)

that ultimately imply the correspondence [128]

φ(α)→ (cα+ d)−2jφ

(
aα+ b

cα+ d

)
. (360)

Here, “j” is the so-called conformal spin (see discussion below), which is composed of the spin
projection s and the scaling dimension l of the field φ

(
such as lψ=3/2, lA=1, etc. for D=4

)

j =
1

2
(l+ s) . (361)

Similar to the quantum mechanical angular momentum, the needed analogon of the spherical
harmonics52 may be found when studying the collinear subalgebra of the (full) conformal alge-
bra (cf. Section A.11). The latter is formed by the projections P+, M−+, D and K−, which can
be either combined to [292, 293]

L0 =
i

2
(D+M−+) , L1 =

i

4
(K− − 2P+) , L2 = −

1

4
(K− + 2P+) , (362)

or more commonly to the ladder operators

L± = L1 ± iL2 . (363)

It is easy to check (by applying Equation 1191-Equation 1197), that these operators fulfill the
commutation relations

[L0,L±] = ±L± , [L+,L−] = 2L0 . (364)

The latter also give rise to a set of corresponding differential operators53

[La,φ(α)] ≡ Laφ(α) (a = +,−, 0) , (365)

that are fully compatible with the described formalism (cf. Equation 361)

[L−,φ(α)] =
(
α2∂+ +α (l+ s)

)
φ(α) ≡ L−φ(α)

⇒ j ≡ 1
2 (l+ s) .

(366)

Moreover, the local field operator φ with fixed spin projection turns out to be an eigenstate∑
a=0,1,2

[La, [La,φ(α)]] = j (j− 1)φ(α) ≡ L2φ(α) (367)

51 Under the right conditions (cf. Equation 359), the Möbius transformation reproduces the transformation of Equation 357

and Equation 358.
52 These ultraspherical polynomials [291] form the basis for a quantitative description of DAs.
53 As discussed in [128], these operators satisfy SL(2) commutation relations analogous to those of Equation 364, however,

with an extra minus sign.
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of the quadratic Casimir operator (i = 0, 1, 2)

L2 = L20 + L21 + L22 = L20 − L0 + L−L+ ,
[
L2, Li

]
= 0 . (368)

One remaining operator is given by [128]

E =
i

2
(D−M−+) . (369)

It commutes with all operators {Li}i=0,1,2. In fact, E is counting the collinear twist “t” of the
field “φ”:

[E,φ(α)] = tφ(α) , t = l− s . (370)

This means instead of the “geometric” twist54, which refers to the full conformal group (cf.
[128, 294]), “t” is restricted to the collinear subgroup.

3.2.2 Conformal towers

In order to build the basic machinery needed to describe the genuine non-perturbative structures
of DAs, the concept of conformal towers55 is essential.

The simplest case of a conformal tower can be constructed with the eigenvalue equations [128]

[L−,φ(α)]|α=0 = 0 , [L0,φ(α)]|α=0 = jφ(0) , (371)

where L− acts as an annihilation operator, and φ(0) is an eigenstate of L0 with eigenvalue j.
Furthermore, by iteratively applying the raising operator L+ we get:

Ok = [L+, . . . , [L+, [L+,φ(α)]] . . .]
∣∣
α=0

=

[(
−

d
dα

)k
φ(α)

]∣∣∣∣∣
α=0

. (372)

Consequently, the commutation relations given in Equation 364 lead to the corresponding char-
acteristic properties of Ok [128]:

[
L+,Ok

]
= Ok+1 , (373)[

L0 ,Ok
]
= (k+ j)Ok , (374)

[
L−,Ok

]
=

k∑
l=1

−2 (k− l+ j)Ok = −k (k+ 2j− 1)Ok . (375)

As a result, Equation 372 can be used in the context of a Taylor expansion

φ(α) =

∞∑
k=0

αk

k!

(
dk

dkα
φ(α)

)∣∣∣∣∣
α=0

=

∞∑
k=0

(−α)k

k!
Ok , (376)

allowing us to express light-cone fields in terms of local operators and their derivatives. In other
words, the key ingredients of this construction are:

54 Beyond that, the term “dynamical twist” (τ) can be found in the literature [294, 295] which counts powers Q2−τ of
the process specific energy-momentum transfer “Q”. Due to its lack of universality and Lorentz covariance, we are not
using this concept within this work.

55 They are a result of the attempt to construct a complete set of states (i. e., a basis), built of fundamental fields and their
derivatives.
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i) Finding the highest weight vector on the SL(2, R) representation space (cf. [128], i. e., those
operators that fulfill Equation 374.

ii) The latter then procreates higher operators56 Ok via the raising operator L+ (cf. Equa-
tion 372).

Most importantly, the rather cumbersome structure of composite operators can be expressed via
specific polynomials. For instance, the tower of local operators can be rewritten as

Ok =
[
Pk

(
d

dα

)
φ(α)

]∣∣∣
α=0

, Pk(u) = [−u]k . (377)

Therefore, the algebra of generators acting on each operator Ok can be replaced by an equivalent
algebra of differential operators acting on the space of characteristic polynomials.57 Accordingly,
this approach either requires adequate operators L̃0, L̃±

[
L̃0Pk

(
d

dα

)
φ(α)

]∣∣∣∣
α=0

≡ Pk

(
d

dα

)
[L0φ(α)]|α=0 (378)

[
L̃±Pk

(
d

dα

)
φ(α)

]∣∣∣∣
α=0

≡ Pk

(
d

dα

)
[L∓φ(α)]|α=0 (379)

acting on the (vector) space of polynomials58 via [128]

L̃−P(u) = [−u]P(u) , (380)

L̃0P(u) =
[
u

d
du

+ j

]
P(u) , (381)

L̃+P(u) =

[
u

d2

du2
+ 2j

d
du

]
P(u) , (382)

or a substitution similar to [128, 292, 293]
(
i. e., ∂κ ≡ d

dκ

)

κn → [−u]n

Γ(n+ 2j)
⇒ P̃n(κ)→ Pn(u) . (383)

The latter allows us to use the original operator structures, implying59:

L−P̃n(κ) = −∂κP̃n(κ) ,

L0P̃n(κ) = (κ∂κ + j) P̃n(κ) ,

L+P̃n(κ) =
(
κ2∂κ + 2jκ

)
P̃n(κ) .

(384)

In a nutshell, the techniques that apply to the one particle case can be generalized to products
of several fundamental fields φj1 , . . . ,φjn

O(α1, . . . ,αn) = φj1(α1) · · ·φjn(αn) (n ∈N) , (385)

with given collinear spins j1, . . . , jn. Here, the involved fields live on the light-cone
(
n2 = 0,

φjk(αk)≡φjk(αkn)
)

and we assume αi 6= αj (for i 6= j). Besides, the cases n= 2 and n= 3 of

56 These operators have a larger eigenvalue (see Equation 374) of the conformal spin projection on the zero axis, than the
corresponding highest weight vector Ok = φ(0).

57 In this context, the relevant structure of Ok is encoded in associated characteristic polynomials.
58 Here, P(u) may be formed with the monomials from Equation 377: P(u)=

∑m
k=0αkPk(u) (αk∈R).

59 At this point it should be emphasized that even though the operator structure of Equation 384 may coincide with that
in Equation 365, the operators L± acting on the characteristic polynomials is the adjoint to L∓ (related to the operators).
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particular interest for us, and we will discuss the former example in detail. When analyzing the
generic short distance expansion [128]

lim
|α1−α2|→0

O(α1,α2) = φj1(α1)φj2(α2) , (386)

one encounters a set of local operators similar to [128, 296]

On(0) = Pn
(
∂α1 ,∂α2

)
φj1(α1)φj2(α2) . (387)

In this context, the homogenous polynomials Pn(u1,u2) of degree n arise (cf. Section A.12).
Apparently, the On in Equation 387 do not have simple properties under conformal transfor-
mations. Hence, a complete basis of local operators has to be constructed, forming a conformal
tower. As it turns out (cf. [128]), the collinear transformation of two-particle operators (such as
Equation 386) corresponds to independent transformations of the underlying fields60. Therefore,
the group generators can be constructed from the one-particle case61 (cf. Equation 362)

La = L1,a + L2,a (a = 0, 1, 2) , (388)

with the corresponding quadratic Casimir operator

L2 =

2∑
a=0

(
L1,a + L2,a

)2 . (389)

Consequently, for the definition of an adequate local (conformal) operator62 On the same trans-
formation properties that apply to a fundamental field under the collinear conformal group have
to be imposed:

[
L2, On

]
= j (j− 1)On ,[

L0, On
]
= (j1 + j2 +n)On ,[

L−, On
]
= 0 .

(390)

Owing to the representation

L2 = L20 − L0 + L+L− (391)

of the Casimir operator Equation 390 entails

j = j1 + j2 +n . (392)

Thus, as long as j1, j2 and n are given, the label j is redundant. Furthermore, when knowing the
conformal operator On, it is convenient to construct63 the related complete basis in terms of a
conformal tower of operators (k,n ∈N0)

On,n+k = [L+, . . . , [L+, [L+︸ ︷︷ ︸
k−times

, On]] . . .] = (−∂+)
k

On . (393)

In fact, for the given set-up, the explicit structure of the conformal operator may be most easily
found, when using the adjoint representation of the ladder operators (cf. Section A.11), which

60 This is analogous to the quantum mechanical problem of spin summation, yet with another symmetry group.
61 For a definition of the remaining ladder operators Equation 363 may be applied to Equation 388.
62 Again, those shall consist of the two fundamental fields and their derivatives.
63 In full analogy to the one-particle case.
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is similar to Equation 384. According to Equation 390, the desired characteristic polynomial64

P̃
j1j2
n (κ1, κ2), fulfills the partial DE (cf. Equation 1199)

L−P̃
j1j2
n (κ1, κ2) ≡

(
−∂κ1 − ∂κ2

)
P̃
j1j2
n (κ1, κ2) = 0 , (394)

which has the solution65 (modulo an arbitrary constant)

P̃
j1j2
n (κ1, κ2) ∼ (κ2 − κ1)

n =
∑

n1+n2=n

(
n

n1

)
(−κ1)

n1 κ
n2
2 . (395)

In order to define the differential operator O
j1,j2
n one may perform a change of variables

(−κ1)
n1 κ

n2
2 →

(−u1)
n1 u

n2
2

Γ(n1 + 2j1) Γ(n2 + 2j2)
, (396)

which implies the final form of the desired characteristic polynomials [128]

P
j1j2
n (u1,u2) =

∑
n1+n2=n

(
n

n1

)
[−u1]

n1 u
n2
2

Γ(n1 + 2j1) Γ(n2 + 2j2)

= (u1 + u2)
n P(2j1−1,2j2−1)

n

(
u2−u1
u1+u2

)
. (397)

Those are given in terms of the Jacobi polynomials P(a,b)
n (x) [291]. According to the replace-

ments66 u1→
←−
∂ +, u2→

−→
∂ + we, therefore, get the corresponding set of local conformal opera-

tors:

O
j1,j2
n (x)=∂n+

[
φj1(x)P(2j1−1,2j2−1)

n

(→
∂+−

←
∂+

→
∂++

←
∂+

)
φj2(x)

]
. (398)

The latter may be used as a blueprint for the conformal expansion of leading twist two-particle
meson DAs (see below). Besides, this procedure can be generalized to products of more than two
fundamental fields (see [128] for details). However, there exist several solutions for the actual
construction of the characteristic polynomials which is a consequence of possible ambiguities in
summing up the different conformal spins (of fundamental fields) to an overall spin [128]. In
particular, for the product of three fields the required characteristic polynomials have to fulfill
[128]

L−P̃n(κ1, κ2, κ3) ≡ −

3∑
i=1

∂κiP̃n(κ1, κ2, κ3) = 0 , (399)

which can be solved via polynomials similar to (modulo a constant) [128]

P̃n(κ1, κ2, κ3) ∼ (κ3 − κ2)
n1(κ2 − κ1)

n2 (n = n1 +n2) . (400)

In particular, a possible solution is given by the so-called Appell polynomials [142], but also other
bases may be used67. Another point, which is crucial for the handling of DAs, concerns possible

64 The notation has to be retrofitted with superscripts j1, j2, which explicitly show the collinear spin of the involved
fundamental fields.

65 Here, we apply the multinomial theorem (cf. Section A.12).

66 The total derivative may be written as ∂+ =
←
∂+ +

→
∂+.

67 To avoid ambiguities, we do not attribute to a specific basis, but show the truncated expansions explicitly. We will resume
this discussion in Section 3.4.2.
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orthogonality relations among the characteristic polynomials and the associated interplay of
the corresponding conformal operators with the “conformal scalar product”, e. g., for the two-
particle conformal operators [128]:

〈0|T
{

O
j1j2
n (x)O

j1j2
m (0)

}
|0〉 ∼ δnm . (401)

The latter is an important consequence of conformal symmetry in general, i. e., for a conformally
invariant theory the correlation function of two conformal operators vanishes, unless they have
the same conformal spin [128]. In terms of characteristic polynomials, Equation 401 is equivalent
to the orthogonality relation

∫1
0

du1

∫1
0

du2 δ

(
1−

2∑
i=1

ui

)
u
2j1−1
1 u

2j2−1
2 P

j1j2
n (u1,u2)P

j1j2
m (u1,u2) = N δnm , (402)

with68 an appropriate weight function and an adequate normalization constant “N”. The named
Appell polynomials, however, are not mutually orthogonal, suggesting the use of orthogonal
polynomials instead69 (cf. [128, 142, 297]).

3.2.3 Conformal operators in QCD

According to the previous discussion, it is now evident how to decompose the relevant two-
and three-particle states into towers of conformal operators. For instance, the standard quark-
antiquark operators such as (Γ= iγ5, γµγ5, etc.)

OAΓ (z2n, z1n) = Ψ(z2n) [z2n, z1n] TAΓ Ψ(z1n) (403)

formally give rise to states with definite spin projections (omitting the given flavor and color
structures)

Ψ Γ Ψ = Ψ+ Γ Ψ+︸ ︷︷ ︸
twist-2

+Ψ+ Γ Ψ− +Ψ− Γ Ψ+︸ ︷︷ ︸
twist-3

+Ψ− Γ Ψ−︸ ︷︷ ︸
twist-4

(404)

and consequently also well-defined (collinear) twist. Therefore, the different Lorentz structures
“Γ” are implying DAs of a specific twist, while the resulting knowledge of the collinear spin
structure determines the underlying conformal operators and the correlated infinite dimensional
representation of the conformal group.

Focusing on the two-particle components70 one finds:

i) For the operator given in Equation 403 (with Γ=γµγ5), one may extract the leading twist-two
contribution

Ψγ+γ5Ψ = Ψ+ γ+γ5Ψ+ (405)

68 As discussed in [128] the underlying conformal Ward identities not only put strong constrain on possible Green’s
functions, but also imply Equation 401. Therefore, an ansatz purely based on conformal Ward identities can be worked
out (cf. [128]) which also reveals the structure of the characteristic polynomials as well as Equation 402.

69 Contributions of three-particle DAs in this work are embedded in other higher twist (two-particle) DAs which, in prin-
ciple, allows the use of Equation 402 and makes specific choices of a base in the three-particle case at first glance
unnecessary. The clean separation of contributions with different conformal spin, however, is facilitated with a suitable
choice of basis.

70 The related higher twist DAs will be derived in Section 3.4.
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via an associated projection, with the conformal spin jΨ=1= jΨ. The latter implies71 a set
of (rescaled) conformal operators [128]

Õ
1,1
n (x)= (i∂+)

n

[
Ψ(x)γ+γ5 P(1,1)

n

(→
D+−

←
D+

→
D++

←
D+

)
Ψ(x)

]

∼ (i∂+)
n

[
Ψ(x)γ+γ5 C(3/2)

n

(↔
D+
↔
∂+

)
Ψ(x)

]
, (406)

where C(α)
n (x) are the so-called Gegenbauer polynomials (cf. Section A.12), which are a

special case of the Jacobi polynomials72 [291]

C(α)
n (x) =

(2α)n(
α+ 1

2

)
n

P(α−1/2,α−1/2)
n (x) . (407)

Moreover, the standard short hand notation

∂µ=
→
∂µ +

←
∂µ=

→
Dµ +

←
Dµ , (408)

↔
Dµ=

→
Dµ −

←
Dµ , (409)

is commonly used in the context of an interacting theory (cf. Equation 406).

ii) For, the two gluon case73 (cf. Equation 301 or equivalently Equation 303) one obtains the
local twist-two operators [128]

G
3/2,3/2
n (x) = (i∂+)

n

[
GA+⊥(x)C(5/2)

n

(↔
D+
↔
∂+

)
GA+⊥(x)

]
. (410)

After the decomposition into generic fields with fixed Lorentz spin projections on the light-cone,
an explicit expansion of the DAs in terms of an (irreducible) representation of SL(2, R) can be
constructed. For example, the general contribution to an m-particle74 DA (m ∈N)

〈0|φj1(α1) · · ·φjm(αm)|M(P)〉 ∼
∫
[du] eiP·n(

∑m
i=1αiui)φ(u) , (411)

with the lowest possible conformal spin (projection) j =
∑m
i=1 ji is given by the “asymptotic

distribution amplitude” [128, 269]

φAS(u1, . . . ,um) =
Γ
(
2
∑m
l=1 jl

)∏m
i=1 Γ(2ji)

m∏
k=1

u
2jk−1
k , (412)

which is chosen such that∫
[du] φAS(u) = 1 . (413)

When applied to Equation 406 and Equation 410, whilst using the phase space condition in
Equation 291, Equation 412 not only allows us to recover Equation 310, but we also obtain (what
we want to call) the canonical form of the asymptotic twist-two gluon DA:

φ
g
as(u) = 30u

2ū2 . (414)

71 For the interacting theory the common derivatives in Equation 398 are replaced by their covariant counterparts.
72 Here, (x)n=x (x+ 1) · · · (x+n− 1) is the rising factorial.
73 Analogous to the quark-antiquark case Equation 301 is also accompanied by higher twist DAs (cf. Section 3.4), which

corresponds to two gluon states with different helicities than shown in Equation 410 (cf. [128]).
74 Here, the definition of Equation 334 is extended to (cf. [128]) the measure

∫
[du]=

∫1
0du1 . . .

∫1
0dumδ

(
1−
∑m
i=1ui

)
.
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Higher states in conformal spin will enter the DAs as a product of the asymptotic form with
adequate polynomials [128, 291, 298], e. g., those that are mutually orthogonal with the weight
function (proportional to) φas (cf. Equation 402).

For instance, (similar to the standard approach in [128]), the plus-projection of Equation 300

stretched over the symmetric light-like (n2 = 0) interval z2 = 1 = −z1 implies the well-known
local expansion (cf. Section 2.4)

〈0|Ψ(0) TAγ+γ5
(
i
↔
D+

)n
Ψ(0)|M(P)〉

∣∣∣
µ2

= iPn+1+

fAM√
2

∫1
0
dx ξnxφ

A
M

(
x,µ2

)
, (415)

with the relevant operators [128]

OAn−k,k = (i∂+)
k
[
Ψ(0) TAγ+γ5

(
i
↔
D+

)n
Ψ(0)

]
. (416)

The related conformal operators are substantially given by Equation 406, retrofitted with the
explicit flavor structure (labeled with “A”)

O
1,1
n,A(x)= (i∂+)

n

[
Ψ(x) TA γ+γ5 C(3/2)

n

(↔
D+
↔
∂+

)
Ψ(x)

]
. (417)

According to Equation 415, one finds the corresponding generalization75 with regard to the
reduced matrix elements of Equation 417:∫1

0
dxC(3/2)

n (x)φAM

(
x,µ2

)
= 〈〈O1,1

n,A

(
µ2
)
〉〉 , (418)

ifAMP
n+1
+ 〈〈O1,1

n,A

(
µ2
)
〉〉 = 〈0|O1,1

n,A(0)|M(P)〉
∣∣∣
µ2

. (419)

As a result of conformal symmetry, Equation 418 suggests an expansion of the two-particle DAs
in terms of Gegenbauer polynomials (cf. orthogonality relations and normalization constants
N

(3/2)
n Section A.12):

φAM

(
x,µ2

)
= 6xx̄

∞∑
n=0

c
(A)
n,M

(
µ2
)

C(3/2)
n (ξx) , (420)

c
(A)
n,M

(
µ2
)
=
〈〈O1,1

n,A
(
µ2
)
〉〉

6N
(3/2)
n

, (421)

with the non-perturbative Gegenbauer coefficients c(A)
n,M

(
µ2
)
. Only the zeroth coefficient of

φAM
(
x,µ2

)
is fixed by the standard choice for the otherwise arbitrary normalization condition∫1

0
dxφAM

(
x,µ2

)
= 1 ⇔ c

(A)
0,M

(
µ2
)
= 1 . (422)

As discussed in Section 3.3, the anomalous dimensions76 of the conformal operators rise loga-
rithmically with the conformal spin (cf. also [128]). Therefore, the operators with higher spin are
strongly suppressed77 at large scales µ2, leading to the exact limit

lim
µ2→∞φAM

(
x,µ2

)
= φas(x) , (423)

75 To make it more obvious, Equation 415 exhibits a projection
∫1
0dxξnxφAM

(
x,µ2

)
=2
∫1
−1dξξnφAM

(
1
2 (1+ξ) ,µ2

)
on

monomials.
76 Those also determine the scale dependence of the Gegenbauer coefficients.
77 According to [1, 281, 299] this is not the case for hadronic scales.
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which has to be fulfilled78. Thus, the definition in Equation 422 ensures compatibility with the
rest of all findings. Analogously, the assumed transformation properties79 and structure of the
underlying conformal operators provided in Equation 410 lead to the (canonical) ansatz80

φ
(g)
M

(
x,µ2

)
= 30x2x̄2

∞∑
n=1

c
(g)
2n,M

(
µ2
)

C(5/2)
2n−1 (ξx) (424)

for the twist-two gluon DA defined in Equation 301. However, in contrast to Equation 420, φ(g)
M

has no finite scale-independent asymptotic form, i. e., for asymptotically large scales one gets (cf.
also [22, 23, 300])

lim
µ2→∞φgM

(
x,µ2

)
= 0 . (425)

Furthermore, the lack of normalizability∫1
0

dxφgM
(
x,µ2

)
= 0 (426)

allows also non-canonical choices φgM → αφ
g
M (α ∈ R\ {0}), which leads to alternative def-

initions81

(
c
(g)
n,M → 1

αc
(g)
n,M

)
of the Gegenbauer coefficients (cf. [20, 28]). In other words, the

definition in Equation 424 ensures that the gluonic
(
c
(g)
n,M

)
and quark

(
cAn,M

)
Gegenbauer co-

efficients are of the same magnitude (cf. Section 4.3).

Before we proceed, let us emphasize the following points:

i) The conformal expansion is formal, in the sense, that its convergence (a priori) cannot be
concluded from symmetry considerations alone [128]. However, in the context of QCD fac-
torization (cf. Chapter 4) or phenomenological applications (cf. Section 4.3) one implicitly
assumes and uses convergent expansions (for further discussion cf. [128]).

ii) The validity of the (renormalized) Gegenbauer expansion is not compromised when includ-
ing finite quark masses [128, 271]; although the latter will break the conformal symmetry
(already at classical level). This is a consequence of the RG approach (cf. Chapter 2), where
the UV divergent contributions to the corresponding matrix elements (cf., e. g., [20]) are
canceled by mass-independent counter-terms [128].

iii) Moreover, the mentioned expansion (cf. Equation 420)

φM

(
x,µ2

)
= 6xx̄

[
1+
∑
n>0

cn,M

(
µ2
)

C(3/2)
n (ξx)

]
(427)

is generic for all leading twist quark-antiquark meson DAs. According to the flavor struc-
ture and transformation properties, they only differ in the expansion coefficients and in-
volved anomalous dimensions. For instance, in the case of π0 and η(′) the odd coefficients
have to vanish (cf. Equation 305), while for the kaon they also encode non-vanishing SUF(3)
breaking effects (cf. [271]).

78 Equation 423 is among the most important and most rigorously proven results of QCD (cf. [144]).
79 These are a consequence of, e. g.Equation 303 when interchanging the partons.
80 The validity of Equation 424 becomes clear in the context of the RG approach (cf. Section 3.3).
81 Earlier approaches [20, 28, 32] have been using the factor α=1/30.
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In general, the conformal partial wave expansion (cf. Section 3.3) provides a sensible approach
for the consistent inclusion of higher twist DAs. In fact, the latter are related with each other in a
non-trivial way which puts further constraints on the underlying parameters. Such a discussion
has to be postponed to Section 3.4. In the next step, the two-loop evolution of the quark singlet
and gluon DAs has to be constructed.

3.3 renormalization of the η(′) distribution amplitudes

In the previous Section 3.2 the structure of leading twist two-particle DAs, based on conformal
symmetry, has been analyzed. As a result, the Gegenbauer expansion has been imposed, which
dictates the DA’s general anatomy, while the non-perturbative information and scale dependence
is encoded in the Gegenbauer coefficients.

Correspondingly, this section is dedicated to formulate the required NLO evolution of the η and
η′ twist-two meson DAs. For this purpose, we will reformulate the existing work of [20, 26, 129]
and adapt it to our needs. The latter results in a new self-consistent representation of the η(′)

DAs scale dependence.

3.3.1 General remarks

According to the discussion of Chapter 2 a reasonable inclusion of quantum corrections into our
considerations requires a proper renormalization procedure.

Correspondingly, the UV divergent contributions, characterizing the asymptotic behavior of the
non-local operator products (such as in Equation 300 or Equation 301), may be collected within
an adequate normalization factor Z, which then connects the unrenormalized DA φur

M with its
renormalized counterpart φM [20]:

φur
M(x) =

∫1
0

dx′Z
(
x, x′;αS

(
µ2F

))
φM

(
x′,µ2F

)
. (428)

Furthermore, the acquired renormalization scale dependence82 is thus governed by the so-called
Efremov-Radyushkin-Brodsky-Lepage (ER-BL) evolution equation83 [301–303]

µ2
∂

∂µ2
φM

(
x,µ2

)
=

∫1
0

dyV
(
x,y;αS

(
µ2
))
φM

(
y,µ2

)
, (429)

which itself is defined by the purely perturbative kernels V(k)(x,y) [20, 27, 304], that are belong-
ing to the expansion (in αS) [20]

−

∫1
0

dx′Z−1
(
x, x′;αS

(
µ2
))[

µ2
∂

∂µ2
Z−1

(
x′,y;αS

(
µ2
))]

= V
(
x,y;αS

(
µ2
))

=

∞∑
k=1

[
αS
(
µ2
)

4π

]k
V(k)(x,y) . (430)

Obviously, an overall consistent solution to a physical problem requires a set of kernels and, con-
sequently, a renormalization procedure of an adequate loop order (cf. Section 2.3). In particular,

82 In this context, the factorization point “µ2F” also represents the scale, at which the separation between soft and hard con-
tributions takes place (cf. Chapter 2). Accordingly, the DAs not only get scale, but also (subtraction) scheme-dependent.

83 Equation 429 results from Equation 428 when applying the operator “µ2 ∂
∂µ2

”.
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a full NLO (cf. [3, 281]) treatment of, e. g., a transition form factor depends on a renormaliza-
tion approach, with a two-loop order accuracy. For a solution of Equation 429, however, one
should start at LO in the strong coupling, while interpreting the ER-BL equation as an eigenvalue
problem84. The advantage of this approach is immanent because at LO, the operator renormal-
ization is driven by tree-level counter terms [128], i. e., up to this level of accuracy all symmetry
properties of the classical theory are retained. This implies, that (at LO) operators with different
conformal spin cannot mix (cf. Equation 433) and the Callan-Symanzik equation, that governs
the renormalization scale dependence, is the Ward identity of the dilatation operator (cf. [128]).
In other words, the eigenfunctions of Equation 429 are nothing else, but the Gegenbauer poly-
nomials multiplied with their associated weight-functions (cf. Section C.3). Alternatively, these
arguments may be confirmed by a brute force calculation based on the analytical composition
of the evolution kernels (cf. Section C.3), which encode the very structure of QCD interaction at
asymptotic energies.

Accordingly, one may surmise a deeper truth behind these findings, underlining the relevance
of our favored ansatz, i. e., to reconstruct the DAs order by order from their conformal moments.
The latter, on the other hand, are related (e. g., after rearranging Equation 417) to the leading
twist forward matrix elements of Equation 111 via operators like OAn,0 (cf. Equation 416), which
arise from a local expansion of the corresponding matrix elements, such as Equation 300 or
Equation 301. In the case of DAs, however, there is no restriction to the forward case alone,
but one also has to include the mixing (cf. [128]) with operators containing total derivatives
(cf. Equation 416, Equation 417). Therefore, it is not possible to simply take the OPE’s (cf. Equa-
tion 112 with Equation 118) anomalous dimensions, but in general has to modify them first85

(cf. Section C.2). Knowing both: the forward anomalous dimensions (cf. Equation 118) as well as
the corresponding modification procedure (cf. Section C.2) completes the search for the needed
eigenvalues of Equation 429 and allows a reformulation of the eigenvalue problem. In a nutshell,
conformal symmetry leads to a separation of longitudinal and transversal degrees of freedom,
which may be exemplified for the LO octet renormalization86 (cf. Section C.2, Section C.3):

µ2
∂

∂µ2
φ
(8)
M

(
x,µ2

)
=−

αs
(
µ2
)

4π

∫1
0

dy
[
V
(1)
NS (x,y)φ(8)

M

(
y,µ2

)]
(431)

⇒ µ2
∂

∂µ2
c
(8)
n,M

(
µ2
)
=−

αs
(
µ2
)

4π
γ
(0)
n c

(8)
n,M

(
µ2
)

, (432)

with the solution and LO RG factor “ELO
n ” (n > 0):

c
(8)
n,M

(
µ2
)
= c

(8)
n,M

(
µ20

)[
αs(µ2)
αs(µ20)

]γ(0)
n
β0 ≡ c(8)n,M

(
µ20

)
ELO
n

(
µ2,µ20

)
. (433)

This forms a close analogy to non-relativistic quantum mechanics [128] in a spherically symmet-
ric potential (cf. Table 6), justifying the name: partial conformal wave expansion (cf. Section 4.3).

84 Other solutions, such as contour or numerical integration [26] would also be possible, but are leading astray from our
preferred Gegenbauer ansatz.

85 This means, the formalism, that is taking care of the mixing effects, uses specific conventions to which the forward
anomalous dimensions have to be adapted.

86 This corresponds to Equation 429, when replacingφM→φ8M and V→−αs
4π
qqV

(1)
D .
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aspects quantum mechanics quantum chromodyn.

symmetry O(3) SL(2, R)

separation radial & angular (d.o.f) transversal & longitudinal

differential equation 1-dim. Schrödinger eqn. 1-dim. RG eqn.

irreducible representation spherical harmonics ultraspherical harmonics

Table 6: The corresponding symmetry leads to a separation of variables: one (angular/longitudinal com-
ponent) denoted by an irreducible representation of the symmetry group; the other one (radial/-
transversal coordinate) governed by a DE.

3.3.2 Leading-order evolution

According to Section 3.1.1, the η and η′ meson DAs exhibit flavor octet as well as singlet com-
ponents, which in principle evolve independently from each other. In practice, however, the (LO)
non-singlet evolution may be interpreted as a special case of the (one-loop) singlet renormaliza-
tion, when focusing on its pure structure87.

Therefore, it is possible to harmonize both cases, permitting us to use the existing octet evo-
lution88 as a role model and adjust the singlet case to it. This strategy ensures that both classes
of quark-antiquark DAs may be treated on an equal footing (cf. Section 4.3), i. e., their Gegen-
bauer coefficients do not exhibit extra scaling factors due to non-canonical choices within the
renormalization procedure.
For instance, the LO octet evolution kernel coincides with qqV(1)

D (cf. Section C.3) of the singlet
ER-BL equation89 [20, 26]

µ2
d

dµ2

(
φ

(0)
M (x,µ2)

φ
(g)
M (x,µ2)

)
=
αS
(
µ2
)

4π

∫1
0

dyV(1)(x,y)
(
φ

(0)
M (x,µ2)

φ
(g)
M (x,µ2)

)
, (434)

which is defined by
(
σ=
√
Cf/Nf

)

V(1)(x,y) = −

(
qqV

(1)
D (x,y) qgV

(1)
D (x,y)σ−1

gqV
(1)
D (x,y)σ ggV

(1)
D (x,y)

)
. (435)

Furthermore, Equation 434 implies a RG equation for the corresponding Gegenbauer coefficients

µ2
d

dµ2

(
c
(0)
n,M(µ

2)

c
(g)
n,M(µ

2)

)
= −

αS
(
µ2
)

4π

[
T−1n γ

D(0)
n Tn

](
c
(0)
n,M(µ

2)

c
(g)
n,M(µ

2)

)
(n > 0) , (436)

that includes the transformation matrix (cf. discussion in Section A.12 and Section C.5)

Tn = diag
(
6N

(3/2)
n , 30N(5/2)

n−1

)
. (437)

87 In the NLO case, a similar connection may be found on the level of anomalous dimensions (cf. Section C.2).
88 The octet case matches the π0 evolution which is known up to NLO accuracy [1].
89 The evolution of the singlet decay constant is a NLO effect (cf. Equation 261). Therefore, up to LO accuracy, it may be

treated as a constant.
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The latter compensates differences in the definitions of quark and gluon Gegenbauer coefficients
which lead to distinct off-diagonal elements in the (diagonal) anomalous dimension matrix (cf.
Section C.2)

γ
D(m)
n =

(
qqγ

D(m)
n

qgγ
D(m)
n

gqγ
D(m)
n

ggγ
D(m)
n

)
(m > 0) . (438)

In order to solve Equation 436, however, it is convenient to diagonalize the related anomalous
dimension matrix, by defining the ±-modes

~cn,M

(
µ2
)
=

(
c
(0)
n,M

(
µ2
)

c
(g)
n,M

(
µ2
)
)

= Dn

(
c
(+)
n,M

(
µ2
)

c
(−)
n,M

(
µ2
)
)

, (439)

with the change of basis matrix90

Dn =




gqγ
(0)
n

γ
(+)
n −qqγ

(0)
n

5Nf
Cf

1

1
qgγ

(0)
n

γ
(−)
n −ggγ

(0)
n

Cf
5Nf


 (440)

and the special case “n=0”:

~c0,M(µ0) = (1, 0)T . (441)

Consequently, Equation 440 entails a decoupling

µ2
d

dµ2
D−1
n ~cn,M

(
µ2
)
= −

αS
(
µ2
)

4π

(
D−1
n

[
T−1n γ

D(0)
n Tn

]
Dn

)
D−1
n ~cn,M

(
µ2
)

= −
αS
(
µ2
)

4π
diag

(
γ
(+)
n ,γ(−)

n

)
D−1
n ~cn,M

(
µ2
)

(442)

of the RG equations corresponding to c(±)n,M, such that each has a structure analogous to Equa-
tion 432. Therefore, the evolution of the±-Gegenbauer coefficients is given by Equation 433 when
simultaneously interchanging c(8)n,M↔c

(±)
n,M and γ(0)n ↔γ(±)n with the eigenvalues of γD(0)

n :

γ
(±)
n =

qqγ
(0)
n +ggγ

(0)
n ±

√(
qqγ

(0)
n −ggγ

(0)
n

)2
+4gqγ

(0)
n
qgγ

(0)
n

2
. (443)

Fortunately, this rather cumbersome procedure may be automatized by introducing the projec-
tion operators (cf. Section C.4)

P±n =
±1

γ
(+)
n − γ

(−)
n

(
γ

D(0)
n − γ

(∓)
n 12

)
, (444)

which allow a closed form of the singlet evolution. This means, the LO scale dependence of c(a)n,M
(a = 0,g) may be described order by order in conformal spin via

~cn,M

(
µ2
)
= T−1n ELO

n

(
µ2,µ20

)
Tn~cn,M

(
µ20

)
, (445)

where the LO evolution operator is given by

ELO
n

(
µ2,µ20

)
=
∑
a=±

[
αS
(
µ2
)

αS
(
µ20
)
]γ(a)

n
β0

Pan . (446)

90 A similar concept has been used in [20].
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3.3.3 Next-to-leading order evolution

When turning to the NLO evolution of the η(′) DAs, the very general formalism of [26, 27, 304]
as well as the parity-odd anomalous dimensions have to be combined and adapted to our needs.
We will only highlight the crucial steps of this rather technical procedure in order to introduce
the necessary abbreviations (cf. Section C.2, Section C.6). It should be emphasized, however, that
this revisited evolution procedure allows a broad phenomenological application and at the same
time a simple numerical implementation. Both points are vital for this work.

As a guideline, we start with the NLO scale dependence of the Gegenbauer coefficients belonging
to the flavor-octet contributions. The latter is given by [3, 305–311]

c
(8)
n,M(µ) = c

(8)
n,M(µ0)E

NLO
n (µ,µ0) +

αS(µ)

2π

n−2∑
k=0

c
(8)
k,M(µ0)E

LO
k (µ,µ0)dkn(µ,µ0) , (447)

with the NLO RG factor ENLO
n and the off-diagonal mixing coefficients dkn (cf. Section C.2). In a

nutshell, the dkn describe the mixing of Gegenbauer coefficients with those of smaller conformal
spin, i. e., (conformal) operators with less total derivatives only mix with counterparts, that con-
tain more total derivatives (cf. [128]). A similar set-up applies to the singlet case91, when the NLO

evolution kernels acquire an additional off-diagonal contribution [27]

V(m)(x,y) = VD(m)(x,y) +VND(m)(x,y) (m > 2) (448)

implying an isomorphic structure for the corresponding anomalous dimensions92 [26] (cf. Sec-
tion C.3)∫1

0
dxCν(a)j (ξx)

ab
[
V
(
x,y;αS

(
µ2
))]

= −
1

2

j∑
k=0

ab
[
γjk

(
αS

(
µ2
))]

Cν(b)k (ξy) . (449)

This means, the (general) coefficients

γ
(m)
jk = δjkγ

D(m)
j + γ

ND(m)
jk (450)

of the asymptotic expansion [3, 26]

γjk

(
αS

(
µ2
))

=

∞∑
m=1

(
αS
(
µ2
)

2π

)m
γ
(m)
jk (451)

is not only possessing the already mentioned diagonal anomalous dimensions (cf. Equation 438),
but (for m > 2) also exhibits finite non-diagonal contributions93 (cf. Section C.2):

γ
ND(m)
jk =



qqγ

ND(m)
jk

qgγ
ND(m)
jk

gqγ
ND(m)
jk

ggγ
ND(m)
jk


⇒ γ

ND(1)
jk ≡Mk

j . (452)

This rather complicated structure of the NLO kernel has to be taken into account when trying to
derive the analogon for Equation 447 within the singlet sector. Fortunately, the general solution

91 For the singlet case, the analogon of dkn will be a matrix-operator Dk
n.

92 The different channels are labeled by ν(a) =

{
3/2 , for a = q

5/2 , for a = g
(cf. Section C.3).

93 Note, that Mk
j is the analog of Equation 1399.
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of the ER-BL Equation 429 is known [26, 27] to be given in terms of a partial conformal wave
expansion94 (cf. Section C.6 for a detailed discussion) such as95

φM

(
x,µ2

)
=

(
f
(0)
M (µ2)φ(0)

M (x,µ2)

f
(0)
M (µ2)φ(g)

M (x,µ2)

)
=

∞∑
n=0

f
(0)
M

(
µ2
)
Ψn(x)~cn,M

(
µ2
)

, (453)

with the (modified) LO partial conformal wave matrix

Ψn(x) = diag
(
6xx̄C(3/2)

n (ξx) , 30 [xx̄]2 C(5/2)
n−1 (ξx)

)
. (454)

At an arbitrary scale µ with respect to a reference scale µ0, where the Gegenbauer coefficients
are defined, Equation 453 may be written as

φM

(
x,µ2

)
=

∞∑
n=0

Ψn(x)L
(1)
n

(
µ2,µ20

)
φn,M

(
µ20

)

+

∞∑
n=0

∞∑
k=n

Ψk(x)L
(2)
kn

(
µ2,µ20

)
φn,M

(
µ20

)
. (455)

In Equation 455 the auxiliary matrix operators (cf. Section C.6)

L
(1)
n

(
µ2,µ20

)
= T−1n ENLO

n

(
µ2,µ20

)
Tn (456)

L
(2)
kn

(
µ2,µ20

)
=
αS
(
µ2
)

2π

[
T−1k Dnk

(
µ2,µ20

)
ELO
n

(
µ2,µ20

)
Tn

]
(457)

and the moments

φn,M

(
µ20

)
= f

(0)
M

(
µ20

)
~cn,M

(
µ20

)
(458)

have been introduced. The applicability of Equation 455 in its present form, however, seems to
be limited. Due to its double series, the intended numerical implementation of model DAs (cf.
Section 4.3) could get aggravated Fortunately, the formal structure of Mk

j allows for a decisive
simplification of Equation 455, when employing Equation 457. The latter implicates (n,k ∈N0)

∞∑
n=0

∞∑
k=n

ΨkL
(2)
knφn,M =

∞∑
n=0

∞∑
k=0

ΨkL
(2)
knφn,M−

∞∑
n=0

n−1∑
k=0

ΨkL
(2)
knφn,M

=

∞∑
n=0

Ψn

∞∑
k=0

L
(2)
nkφk,M−

∞∑
n=0

n−1∑
k=0

ΨkL
(2)
knφn,M

=

∞∑
n=0

Ψn

n−2∑
k=0

L
(2)
nkφk,M , (459)

because Equation 457 a priori fulfills
(
given that µ 6=µ0

)

L
(2)
kn 6= 0 ⇔ k > 2+n . (460)

94 In this context, we do not refer to the convergence of any involved DA, i. e., every series will be treated as a (formal)
power series.

95 The formalism has been constructed in such a way that at the reference scale “µ20” there are no radiative corrections (cf.
Section C.6).
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Therefore, the evolution of moments may be expressed via (n > 0)

φn,M(µ) = L
(1)
n (µ,µ0)φn,M(µ0) +

n−2∑
k=0

L
(2)
nk(µ,µ0)φk,M(µ0) , (461)

which is almost the intended result. Nevertheless, when aiming for a phenomenological evalua-
tion (with a close analogy between the singlet and octet case) Equation 461 has to be modified.
Accordingly, the present simultaneous evolution of Gegenbauer moments and the singlet de-
cay constant should be separated. In order to recognize this connection, we may compare the
solution of Equation 261 with Equation 461 at n=0:

i) When assuming αS(Q) � 1 (Q=µ,µ0), we find for the related singlet decay constant (cf.
Section C.1):

f0M(µ) = f0M(µ0)

[
1+

2Nf
πβ0

(αS(µ) −αS(µ0))

]
. (462)

ii) Owing to the structure of Equation 458 and Equation 1463 within the limit

lim
n→0

φn,M(µ) = lim
n→0

{
L
(1)
n (µ,µ0)φn,M(µ0)

}
= f0M(µ0)

[
1+

αS(µ) −αS(µ0)

2πβ0
(4Nf)

]
~c0,M(µ0) (463)

Equation 462 can be reproduced.

In general, however, it is quite tricky assigning each contribution to its related source. For the
study of η(′) mesons it is, therefore, useful to separate both cases from each other from the
start. Consequently, the NLO kernels (cf. Equation 448), or at least the corresponding anomalous
dimensions have to be adapted. According to the chain rule, a modified evolution kernel, only
evolves the singlet DAs

µ2
d

dµ2

(
φ

(0)
M (x,µ2)

φ
(g)
M (x,µ2)

)
=

∫1
0

dy Ṽ
(
x,y;αS

(
µ2
))(

φ
(0)
M (x,µ2)

φ
(g)
M (x,µ2)

)
, (464)

has the structure (cf. Equation 262, Equation 430)

Ṽ
(
x,y;αS

(
µ2
))

= V
(
x,y;αS

(
µ2
))

−
1

2
δ(4)(x−y)γA

(
αS

(
µ2
))

. (465)

Strictly speaking, only the diagonal contributions of Equation 430 are affected, leading to the

shift
(
m > 1; γD(0)

n ≡γ(0)n
)

γ
D(m)
n → γ

D(m)
n + γ

(m)
A 12 ≡ γ(m)

n , (466)

which also entail adjusted eigenvalues (cf. Equation 449). Therefore, after replacing γD(1)
n with

γ
(1)
n and modifying the NLO evolution operator ENLO

j (cf. Section C.6), we get the desired analo-
gon of Equation 447 for the flavor singlet sector96 (n > 2):

~cn,M

(
µ2
)
= T−1n ENLO

n

(
µ2,µ20

)
Tn~cn,M

(
µ20

)

+
αS
(
µ2
)

2π

n−2∑
k=0

T−1n Dkn

(
µ2,µ20

)
ELO
k

(
µ2,µ20

)
Tk~ck,M

(
µ20

)
. (467)

In conclusion, Equation 462 combined with Equation 467 determine the NLO evolution of the
η(′) meson twist-two DAs. Fortunately, the latter can also be incorporated in the study of higher
twist effects, as discussed in the following subsection.

96 Due to G-parity, only those ~cn,M with an even index “n” are non-vanishing.
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3.4 higher twist η(′) distribution amplitudes

According to Section 2.4 higher twist corrections can be related to OPE contributions that are in
general suppressed by extra powers of the assumed large momentum transfer and may, there-
fore, be considered negligible for many processes. For the intended investigation of hard exclu-
sive processes, however, QCD predictions sometimes rely rather heavily on soft and higher twist
corrections, in particular, when studying regions of moderate momentum transfer97 [1, 281].

Consequently, we are obliged to carry out a systematic study of higher twist η and η′ DAs, which
takes into account the relevant meson mass and O(ms) corrections as well as SU(3)F-breaking
effects related to the anomalous Ward identities, such as Equation 178.

3.4.1 General remarks

Towards a consistent description of higher twist effects two important questions emerge (cf. [128]
for an extended discussion):

i) Can the QCD factorization ansatz be extended to the corresponding power suppressed
corrections?

ii) Is it possible to incorporate all the relevant hadronic quantities, without causing an uncon-
trollable number of independent non-perturbative parameters?

While point i) has to be answered anew for each process individually (cf. Chapter 4), the second
issue ii) can be solved on general grounds by an approximation of the higher twist DAs via a
sensible extension of the partial conformal wave expansion approach.

In a nutshell, a central component of this technique (cf. [128, 143, 269, 274, 313–316]) is pro-
vided by exact non-local operator identities, known as equations of motion (EOM) (e. g., [313]).
The latter allow to constrain superfluous degrees of freedom within the higher twist operators98,
such as the minus projections of Equation 404, and, correspondingly, entail recurrence relations
between the involved DAs. Since these relations of moments have to be fulfilled identically, they
also give rise to the desired solutions of higher twist DAs.

More specifically, the following steps are essential in setting up and solving the named recur-
rence relations:

1) In order to constrain all involved DAs, one has to derive a sufficient number of EOM (cf.
Section C.7) first.

2) Corresponding definitions of the former are applicable when taking the EOM at (quasi)
light-like separations and sandwiching them between adequate particle states.

3) After a possibly needed shift of coordinates, all resulting equations can be rewritten in
terms of recurrence relations of moments. The latter are related to the reduced matrix

97 When focusing on the η(′) TFF, rather numerous measurements of this region exist (e. g., [312]), making it a valuable
source of information on the corresponding DAs.

98 It has been shown that in the context of light-cone quantization [277] not all field components represent independent
degrees of freedom. Instead, only the “+”-projections of the spinor fields and selected components of the four-potentials
may be considered as free variables.
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elements of Equation 418, because the nth moment (n ∈ N0) of an arbitrary test function
φ (on [0, 1]) is given by:

Mφn =

∫1
0

dx ξnxφ(x) . (468)

4) As a final step, one may transform the relations of moments into (ordinary) DEs, and make
use of the leading twist DA’s conformal expansions.

In particular, the conformal expansion ansatz in point 4) is crucial for the systematic calculation
of higher twist distributions. This results from the fact that standard EOM (cf. Section C.7) do not
contain any quantum corrections, i. e., they exhibit all symmetries of the classical theory. There-
fore, only operators with the same transformation properties are related, implying, that this
technique exclusively connects contributions with the same conformal spin. Consequently, the
higher twist DAs may be solved order by order in conformal spin, suggesting a formal expansion
in terms of orthogonal polynomials. This new series, however, will (in general) not qualify as a
conformal expansion anymore because its coefficients may contain contributions with different
conformal spin, depending on the leading twist input99.

Thus, for this approach to be consistent the specific order of accuracy has to be stated explic-
itly. According to the present state of the art [128, 142, 143, 274, 313–315], we restrict ourselves
to a calculation of higher twist DAs up to NLO in conformal spin. There are two main reasons for
this (apparent) limitation: one is phenomenological (cf. Section 4.3), the other theoretical. When
focusing on the second aspect, it has to be emphasized, that higher twist DAs are in general
numerous and not only interconnected by EOM alone. For instance, a proper calculation of twist
four distributions has to include operators containing total derivatives in a systematic way (cf.
[128]). A key issue in this context [314, 315] is to take into account contributions such as

∂2O
α1...αn
n (469)

as well as (with the Lorentz indices α1, . . . ,αn explicitly shown)

∂α1O
α1...αn
n (470)

of specific (leading twist) conformal operators O
α1...αn
n . Notably, the class of contributions be-

longing to Equation 470 has to be treated order by order in conformal spin [315], providing
nontrivial relations between the corresponding parameters [143]. Along these lines, a prolifera-
tion of new parameters100 may be averted to some extend. However, the basic problem, which
weakens the descriptive power of this approach, would remain. That is the inevitable appearance
of additional non-perturbative parameters101 which come along with an increasing order of con-
formal spin. Therefore, it is pivotal for this work to start with as few parameters as possible and
extend the ansatz to the phenomenologically possible limits.

3.4.2 Twist-three distribution amplitudes

As a matter of fact, twist-three pseudoscalar meson DAs have been the object of several theoretical
[271, 275, 317, 318] and phenomenological investigations, such as B,D(s)→π,K (see [2, 319–322]

99 As discussed in the next subsection, one reason for that may, e. g., be found in the conventional definition of some higher
twist DAs.

100 For instance, in the form of redundancies.
101 Which are at this point unconstrained.



3.4 higher twist η(′) distribution amplitudes 99

and references therein), where they are belonging to the dominant contributions.
Nevertheless, the bulk part of this previous work is focusing on pions and kaons, while a reliable
and consistent treatment of higher twist DAs for the η− η′ system is still missing.
Hence, with this subsection we attempt to further improve the aforementioned general survey
by adding η(′) twist-three DAs, which (formally) include mass terms, anomaly contributions, as
well as mixing effects. Moreover, we will partially discuss the choice of basis and the resulting
impact on the (theoretical) applicability.

When considering the general remarks of Section 3.4.1 it seems reasonable to first identify the
relevant higher twist DAs, before proceeding with the steps 1) to 4). Let us start with the two
particle case. According to102 Section 3.2.3, the only possible twist-three quark antiquark oper-
ators are featuring states with definite spin projections sΨ =±12 and sΨ =∓12 . Therefore, it is
convenient to define the pseudoscalar densities:

Ψ(z2n) iγ±γ∓γ5
√
2TAΨ(z1n) = 2Ψ±(z2n) iγ5

√
2TAΨ∓(z1n) , (471)

with jΨ = 1
(
jΨ= 12

)
and jΨ = 1

2 (jΨ=1), respectively. Subsequently, the associated (auxiliary)
twist-three DAs (cf. [128])

〈0|ψ(z2n) iγ+γ−γ5TAψ(z1n) |M(P)〉
∣∣∣
n2=0;µ

=
fAM√
2
hA3M

∫1
0
dx e−iz

x
21(P·n)φA;M

↑↓ (x,µ) , (472)

〈0|ψ(z2n) iγ−γ+γ5TAψ(z1n) |M(P)〉
∣∣∣
n2=0;µ

=
fAM√
2
hA3M

∫1
0
dx e−iz

x
21(P·n)φA;M

↓↑ (x,µ) , (473)

may be defined. According to Equation 398 for the interacting theory, and Equation 412, the
underlying conformal operator structure implies the expansions (cf. [128] and Section A.12):

φA;M
↑↓

(
x,µ2

)
= 2x̄

∞∑
n=0

κA;M
n

(
µ2
)

P(1,0)
n (ξx) , (474)

φA;M
↓↑

(
x,µ2

)
= 2x

∞∑
n=0

κA;M
n

(
µ2
)

P(0,1)
n (ξx) . (475)

Fortunately, (as mentioned in Section 3.4.1) all expansion coefficients can be related to other
involved non-perturbative parameters103 when using adequate EOM (cf. Section C.7). The lat-
ter, however, are usually formulated in terms of the pseudoscalar (cf. Equation 327) and tensor
(see Equation 328) twist-three distributions, whose Lorentz structures resemble the generally ac-
cepted standard choices [45, 64, 323–326]. In fact, the set of DAs

{
φA;M
↑↓ ,φA;M

↓↑
}

can be converted

into (cf. [128])
{
φ
A;p
3M ,φA;σ

3M

}
and vice versa, by using the transformations104:

φ
A;p
3M

(
x,µ2

)
=
1

2

(
φA;M
↑↓

(
x,µ2

)
+φA;M
↓↑

(
x,µ2

))
, (476)

d
d x
φA;σ
3M

(
x,µ2

)
= 3

(
φA;M
↑↓

(
x,µ2

)
−φA;M
↓↑

(
x,µ2

))
, (477)

which results from Equation 1075 and integration by parts105. Therefore, without loss of general-
ity, we may use Equation 327 and Equation 328 instead of Equation 472 as well as Equation 473.
For this purpose, the formal structure of φA;σ

3M along with φA;p
3M has to be deduced from the given

102 At this point we want to resume the discussion of Section 3.2.3, with emphasize on the blueprint of Equation 404.
103 As shown below, this will reduce the total number of relevant input parameters.
104 The obvious counterparts to Equation 477 and Equation 476 are Equation 1518 along with Equation 1519.
105 A posteriori, all surface terms of the tensor twist-three quark-antiquark DAs vanish.
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conformal expansions Equation 472, Equation 473, and their coefficients. Apparently, an explicit
calculation (cf. Equation 1520) as carried out below will reveal for the first view expansion coef-
ficients (0 6 n 6 3)

κA;M
n = (−1)n κA;M

n . (478)

This is completely analogous to the pion case [142] which inspires us to (formally) extend Equa-
tion 478 to an additional n=4, while still truncating all coefficients with n > 5. When including
Equation 478 into our considerations, we get106 (cf. Section A.12)

φ
A;p
3M(x) = κA;M

0 +
(
κA;M
2 − κA;M

1

)
C(1/2)
2 (ξx)

+
(
κA;M
4 − κA;M

3

)
C(1/2)
4 (ξx) +

κA;M
log

2
log xx̄+ . . . , (479)

φA;σ
3M(x) = 6xx̄


κA;M

0 − κA;M
1 −

κA;M
log

2
+
κA;M
2 − κA;M

3

6
C(3/2)
2 (ξx) +

κA;M
4

15
C(3/2)
4 (ξx)




+ 3xx̄ κA;M
log log xx̄+ . . . . (480)

In Equation 479 and Equation 480 the occurrence of logarithmic contributions has been antici-
pated which also give finite admixtures to the constant polynomial’s prefactor107. The remaining
polynomial contributions, however, are a natural consequence of Equation 478 and Equation 1221

– Equation 1223. In other words, the conformal expansions Equation 474 and Equation 475 imply
a power series representation of φA;p

3M and φA;σ
3M in terms of Gegenbauer polynomials C(1/2)

n and

C(3/2)
n , respectively (cf. [128, 142]). As addressed in Section 3.4.1, the resulting expressions (i. e.,

Equation 479 along with Equation 480) cannot be classified as conformal expansions anymore,
because the involved polynomial’s prefactors are differences of coefficients with neighboring
conformal spins (cf. [128]).

Other possible twist-three DAs may arise from the quark-antiquark-gluon (light-cone) operators

ψ+σµνγ5G+⊥
√
2TAψ+ , (481)

with jΨ = 1 = jΨ and jG = 3/2. Evidently Equation 481 has the non-vanishing component
ψσ+⊥γ5G+⊥

√
2TAψ which corresponds to the leading twist projection of Equation 329 (cf.

also [128, 142]). Therefore, the asymptotic form of ΦA3M(α) (cf. Equation 412) is proportional
to ∼ 360α1α2α

2
3, while contributions with conformal spin j > 7/2 can be absorbed into the full

conformal expansion108 [271]:

ΦA3M(α) = 360α1α2α
2
3

[
1+λA3M(α1−α2)+ω

A
3M

1
2 (7α3−3)+. . .

]
, (482)

which implies the corresponding non-perturbative coefficients [271]

〈0|ψ TAσ ζ
+ γ5 [iD+,gG+ζ]ψ− i37∂+ψ T

Aσ ζ
+ γ5gG+ζψ|M(P)〉 =

√
2i
[
fA3Mω

A
3M

]
3
28P

3
+ , (483)

106 When inserting κA;M
log =0, κA;M

0 =R, κA;M
1 =0, κA;M

2 =30ω7/2, κA;M
3 =3ω9/2 and κA;M

4 = 3
2

[
4ω

11/2
1 −ω

11/2
2

]
the

results of [142] are reproduced (see also [128]).
107 The latter arise when integrating the logarithmic contributions of Equation 477.
108 For the derivation of Equation 482, we adapt all relevant standard definitions of [271] to our needs, by retrofitting the

involved matrix elements with adequate flavor structures.
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as well as

〈0|ψ TAi
←
D+σ

ζ
+ γ5gG+ζψ−ψ TAσ ζ

+ γ5gG+ζi
→
D+ψ|M(P)〉 =

√
2i
[
fA3Mλ

A
3M

]
1
14P

3
+ , (484)

and (cf. Equation 329, [271])

〈0|ψ TAσ ζ
+ γ5gG+ζψ|M(P)〉 =

√
2ifA3MP

2
+ . (485)

While for π0 and η(′) mesons the structure proportional to109 Y(12)3
9/2,3(α) (cf. Equation 1227) is pro-

hibited, due to G-parity, it will be present in the context of kaons (cf. Section C.9). Furthermore,
the associated LO evolution is given by110 (cf. [75, 327–329]):

fA3M

(
µ2
)
=

[
αS
(
µ2
)

αS
(
µ20
)
] 55
9β0

fA3M

(
µ20

)
+ . . . , (486)

[
fA3Mω

A
3M

](
µ2
)
=

[
αS
(
µ2
)

αS
(
µ20
)
] 104
9β0 [

fA3Mω
A
3M

](
µ20

)
+ . . . , (487)

[
fA3Mλ

A
3M

](
µ2
)
=

[
αS
(
µ2
)

αS
(
µ20
)
] 139
18β0 [

fA3Mλ
A
3M

](
µ20

)
+ . . . . (488)

Besides discarded higher order corrections, the ellipses also represent possible admixtures of
“fAMc

(A)
n,M” (n 6 2) multiplied by a quark mass of appropriate flavor. When included into the

mentioned higher twist DAs, those mixing effects are of O
(
m2ψ

)
. Hence, they are beyond the

phenomenological scope of this work and will be neglected in our numerical evaluations.

Additional mixing effects may occur when incorporating contributions of higher conformal spin
into Equation 482. In fact, the three-particle representations of the collinear conformal group
are degenerate (see [128] and references therein), i. e., there may exist several different operators
with the same conformal spin111. Consequently, one would face RG effects of similar complexity
as described in Section 3.3 (cf. [142]). For the discussed reasons, however, we begin with contri-
butions up to NLO in conformal spin.

Let us now derive the general relations among the named η(′) DAs, followed by a discussion
of the resulting constraints on the former.
For this purpose we implement the aforementioned EOM (cf. Section C.7), which have been
adapted to our specific needs, such as the essential incorporation of the η−η′ mixing, or the
straightforward applicability of different bases. When combining the former with Equation 327–

109 Using the given input j1, j2=1 and j3=3/2.
110 In fact, these mixing effects arise from the light-ray-operator technique (cf. [75]). Owing to this formalism, valid combi-

nations of fA3M, λA3M, and ωA3M are restricted to the cases Equation 483 as well as Equation 484.
111 As explicitly shown by [142], for j = 11/2 (cf. Equation 482) there exist two distinct structures with unequal non-

perturbative coefficients. The latter already mix at LO.
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Equation 329, a system of integral equations between the two- and three particle DAs can be
devised112

(
n2=0

)
:

P+

∫1
0
dx eiξxP+φA;σ

3M(x) = −3i

∫1
0
dx eiξxP+ξxφ

A;p
3M(x) − 6RA3MP+

∫1
−1

dvΦA3M(z ,P+)

+ 3i
∑
B∈I

[
ρM−

]AB ∫1
0
dx eiξxP+φBM(x) , (489)

∫1
0
dx eiξxP+φA;p

3M(x) =

∫1
0
dx eiξxP+

[
1+

i

3
ξxP+

]
φA;σ
3M(x)

− 2iRA3MP+

∫1
−1

dv vΦA3M(z ,P+)

+
∑
B∈I

[
ρM+

]AB ∫1
0
dx eiξxP+φBM(x) , (490)

which include the definitions113 (cf. Equation 1070, Equation 1071)

RA3M =
fA3M

fAMh
A
3M

,
[
ρM+

]AB
=
αAB f

B
M

fAMh
A
3M

,
[
ρM−

]AB
=
βAB f

B
M

fAMh
A
3M

. (491)

As an intermediate step
(
n 6= 0, z = (−1, 1, v)

)
, it is convenient [313] to introduce recurrence

relations114:

nM
φA;σ
3M
n−1 = 3M

φ
A;p
3M
n+1 − 3

∑
B∈I

[
ρM−

]AB
M
φBM
n

− 6nRA3M

∫1
−1

dv�(α1−α2−vα3)
n−1� , (492)

(3+n) M
φA;σ
3M
n = 3M

φ
A;p
3M
n − 3

∑
B∈I

[
ρM+

]AB
M
φBM
n

+ 6nRA3M

∫1
−1

dv v�(α1−α2−vα3)
n−1� , (493)

for the involved moments (cf. Equation 468) as well as [142, 313]

(−i)n
∂n

∂τn
ΦA3M(z , τ)

∣∣∣∣
τ=0

=

∫
Dα [−z ·α]nΦA3M(α) ≡�(−z ·α)n� , (494)

112 When focusing on the SO and QF basis, the index “I” is restricted to I={0,1, . . . ,8} and I={q,s,1, . . . ,7}, respectively
(cf. Section C.7).

113 In Section A.1 the abbreviations αAB and βAB have been introduced which arise canonically in the context of EOM (cf.
Table 21, Equation 1072).

114 Here, we are using the standard choice z=(−1,1,v), which includes a dependence on v.
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by expanding Equation 489 and Equation 490 in powers of “P+”. In this context, the self-evident
transformation of the measure115

∫1
0
dx ξnxϕ

A;(1)
3M (x)≡

∫1
0
dx ξnx



∫x
0
dα1

∫ x̄
0
dα2

2ΦA3M(α)

α3

∣∣∣∣∣
α3=1−α1−α2




=

∫1
−1

dv�(α1−α2−vα3)
n� , (495)

∫1
0
dx ξnxϕ

A;(2)
3M (x)≡

∫1
0
dx ξnx



∫x
0
dα1

∫ x̄
0
dα2

2 (α1 −α2 − ξx)Φ
A
3M(α)

α23

∣∣∣∣∣
α3=1−α1−α2




=

∫1
−1

dv v� (α1−α2−vα3)
n � , (496)

not only enables an overall harmonized notation, but simultaneously induces the useful auxiliary
functions116 ϕ

A;(1)
3M and ϕA;(2)

3M . When further following the canonical approach (cf. [142, 330]),
the two-particle twist-three DAs φA;p

3M and φA;σ
3M have to be expressed via the related leading twist

DAs. Accordingly, Equation 492 and Equation 493 may be combined to

M
φ
A;p
3M
n =

n− 1

n+ 1
M
φ
A;p
3M
n−2 + 2 (n− 1)RA3M

[
M
ϕ
A;(1)
3M

n−2 +
n− 2

n+ 1
M
ϕ
A;(2)
3M

n−3

]

+
∑
B∈I

[
ρM−

]AB
M
φBM
n−1 −

n− 1

n+ 1

∑
B∈I

[
ρM+

]AB
M
φBM
n−2 +Nδn0 , (497)

M
φA;σ
3M
n =

n− 1

n+ 3
M
φA;σ
3M
n−2 +

6

n+ 3
RA3M

[
nM

ϕ
A;(2)
3M

n−1 + (n− 1)M
ϕ
A;(1)
3M

n−2

]

−
3

n+ 3

[∑
B∈I

[
ρM+

]AB
M
φBM
n −

∑
B∈I

[
ρM−

]AB
M
φBM
n−1

]
+Nδn0 , (498)

which includes an arbitrary normalization condition, expressed by the associated constant “N”.
The latter will give rise to initial conditions when transforming Equation 497 and Equation 498

into (ordinary) DE. For instance, Equation 497 implies the first order equation (cf. Section C.8)

4xx̄
d

d x
φ
A;p
3M(x) = L

A;p
3M(x) , (499)

together with (cf. Section C.8)

L
A;p
3M(x) = RA3M

[
ξx

d2ϕA;(1)
3M (x)

d x2
−2

dϕA;(1)
3M (x)

d x
+

d2ϕA;(2)
3M (x)

d x2

]

+
∑
B∈I

[
ρM+

]ABdφBM(x)

d x
+
∑
B∈I

[
ρM−

]AB
[
2φBM(x)−ξx

dφBM(x)

d x

]
, (500)

which allows a separation according to the specific input and prefactors. Therefore, a general
solution of Equation 499

(
“CL
0 ” is the corresponding constant of integration

)

φ
A;p
3M(x) =

1

4

∫x
0
dv
1

v̄
L
A;p
3M(v) −

1

4

∫1
x
dv
1

v
L
A;p
3M(v) +CL

0 (501)

115 Equation 495 and Equation 496 provide the transition between the formalism of [142] and [271].
116 Up to the assumed accuracy,ϕA;(1)

3M andϕA;(2)
3M are proportional to x2x̄2, while their first derivatives are ∼xx̄. Therefore,

the appearing surface terms vanish.
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may be written as
(
N

!
=1
)

φ
A;p
3M(x) = 1+ RA3Mφ

A;(g)
3M (x) +

∑
B∈I

[
ρM+

]AB
φ
B;(+)
3M (x) +

∑
B∈I

[
ρM−

]AB
φ
B;(−)
3M (x) , (502)

with the partial solutions (cf. Section C.8)

φ
A;(g)
3M (x) =

1

4

∫x
0
dv
1

v̄

[
ξv

d2ϕA;(1)
3M (v)

d v2
− 2

dϕA;(1)
3M (v)

d v
+

d2ϕA;(2)
3M (v)

d v2

]

−
1

4

∫1
x
dv
1

v

[
ξv

d2ϕA;(1)
3M (v)

d v2
− 2

dϕA;(1)
3M (v)

d v
+

d2ϕA;(2)
3M (v)

d v2

]
, (503)

φ
A;(+)
3M (x) =

1

4

∫x
0
dv
1

v̄

[
d

d v
φAM(v)

]
−
1

4

∫1
x
dv
1

v

[
d

d v
φAM(v)

]
, (504)

φ
A;(−)
3M (x) =

1

4

∫x
0
dv
1

v̄

[
2φAM(v) −

d
d v
φAM(v)

]
−
1

4

∫1
x
dv
1

v

[
2φAM(v) +

d
d v
φAM(v)

]
, (505)

as implied by the related normalization condition∫1
0
dxφA;p

3M(x)
!
= 1 . (506)

Hence, the expressions up to NLO in conformal spin are given by

φ
A;(g)
3M (x) = 30C(1/2)

2 (ξx)+10λ
A
3MC(1/2)

3 (ξx)−3ω
A
3MC(1/2)

4 (ξx) , (507)

φ
A;(+)
3M (x) = 3+18c

(A)
2,M+

27

2
c
(A)
1,MC(1/2)

1 (ξx)+15c
(A)
2,MC(1/2)

2 (ξx)

+
3

2

(
1+3c

(A)
1,M+6c

(A)
2,M

)
log x̄+

3

2

(
1−3c

(A)
1,M+6c

(A)
2,M

)
log x, (508)

φ
A;(−)
3M (x) = −9c

(A)
1,M−

(
3

2
+27c

(A)
2,M

)
C(1/2)
1 (ξx)−3c

(A)
1,MC(1/2)

2 (ξx)

−
9

2
c
(A)
2,MC(1/2)

3 (ξx)−
3

2

(
1+3c

(A)
1,M+6c

(A)
2,M

)
log x̄

−
3

2

(
1−3c

(A)
1,M+6c

(A)
2,M

)
log x . (509)

Analogously, for Equation 498 we get the first order DE (cf. Section C.8)

4ξxφ
A;σ
3M(x) + 4xx̄

d
d x
φA;σ
3M(x) = L

A;σ
3M(x) , (510)

with the general solution117 (“CL
0 ” is a constant)

φA;σ
3M(x) =

xx̄

4

[∫x
0
dv
(
1

v̄2
+
2

v̄

)
L
A;σ
3M(v)−

∫1
x
dv
(
1

v2
+
2

v

)
L
A;σ
3M(v)

]
+ xx̄ C

L
0 , (511)

including (cf. Section C.8):

L
A;σ
3M(x) = −6RA3M

(
ξx

dϕA;(2)
3M (x)

d x
+

dϕA;(1)
3M (x)

d x

)

− 6
∑
B∈I

[
ρM+

]AB
ξxφ

B
M(x) + 6

∑
B∈I

[
ρM−

]AB
φBM(x) . (512)

117 Here, we use 1
v2v̄2

=
(
1
v2

+ 2
v

)
+
(
1
v̄2

+ 2
v̄

)
.
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pion µ0 kaon µ0

f3π 0 .0045(15) GeV2 f3K 0 .0045(15) GeV2

ω3π −1 .5(7) ω3K −1 .2(7)

λ3π 0 λ3K 1 .6(4)

Table 7: Hadronic twist-three parameters for the pion and kaon case, taken from [271, 331] (at the reference
scale µ0=1 GeV).

In particular, Equation 511 can be written as:

φA;σ
3M(x) = 6 xx̄+ RA3Mφ̃

A;(g)
3M (x) +

∑
B∈I

[
ρM+

]AB
φ̃
B;(+)
3M (x) +

∑
B∈I

[
ρM−

]AB
φ̃
B;(−)
3M (x) , (513)

together with118

φ̃
A;(g)
3M (x) = −

3

2
xx̄

[∫x
0
dv
(
1

v̄2
+
2

v̄

)[
ξv

dϕA;(2)
3M (v)

d v
+

dϕA;(1)
3M (v)

d v

]

−

∫1
x
dv
(
1

v2
+
2

v

)[
ξv

dϕA;(2)
3M (v)

d v
+

dϕA;(1)
3M (v)

d v

]]
, (514)

φ̃
A;(+)
3M (x) = −

3

2
xx̄

[∫x
0
dv

1

v̄2
φAM(v) +

∫1
x
dv

1

v2
φAM(v)

]
, (515)

φ̃
A;(−)
3M (x) =

3

2
xx̄

[∫x
0
dv
2v̄+ 1

v̄2
φAM(v) −

∫1
x
dv
2v+ 1

v2
φAM(v)

]
. (516)

Thus, the resulting NLO expressions are:

φ̃
A;(g)
3M (x) = 6xx̄

[
5

(
1−

ωA3M
10

)
C(3/2)
2 (ξx) + λ

A
3MC(3/2)

3 (ξx)

]
, (517)

φ̃
A;(+)
3M (x) = 6xx̄

[
3

2
+15c

(A)
2,M+3c

(A)
1,MC(3/2)

1 (ξx)+
3

2
c
(A)
2,MC(3/2)

2 (ξx)

]

+ 9xx̄
(
1−3c

(A)
1,M+6c

(A)
2,M

)
log x+ 9xx̄

(
1+3c

(A)
1,M+6c

(A)
2,M

)
log x̄ , (518)

φ̃
A;(−)
3M (x) = −6xx̄

[
15

2
c
(A)
1,M+

15

2
c
(A)
2,MC(3/2)

1 (ξx)

]

+ 9xx̄
(
1−3c

(A)
1,M+6c

(A)
2,M

)
log x− 9xx̄

(
1+3c

(A)
1,M+6c

(A)
2,M

)
log x̄ . (519)

Together with adequate rules of replacement (cf. Section C.9) our results also reproduce the
findings of [271, 332]. This means, we not only confirm the general structures Equation 502 and
Equation 513, but also replicate Equation 503-Equation 505 as well as Equation 514-Equation 516.
Another important point is that LA;p

3M and L
A;σ
3M receive contributions of different source terms

which in general split up into three categories (cf. also [313]):

• Contributions of genuine twist-three, i. e., those related to the corresponding three particle
DAs.

118 In essence, the identities
(
1
v2

+ 2
v

)
ξv=4−

1
v2

and
(
1
v̄2

+ 2
v̄

)
ξv=

1
v̄2

−4 imply additional corrections ∼6xx̄ to Equa-
tion 515. The latter, however, may be canceled via adequate constants of integration (cf. Equation 511).
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• Terms affiliated to quark mass corrections.

• Wandzura-Wilczek type contributions [295, 313, 333] of twist-two operators.

While the latter are present in the pion and kaon case, their η(′) meson’s counterpart is altered by
effects related to the axial anomaly. This presents a substantial problem when trying to estimate
the named twist-three (NLO) parameters due to a lack of information about the corresponding
flavor singlet contribution. In fact, no SVZ sum rule or lattice calculation for, e. g., fR3M or ωR3M
(R=q, s) were available until recently (see discussion in [334]). The latter, however, are vital for
a meaningful definition of φA;p

3M and φA;σ
3M , forcing us to adopt, e. g., pion or kaon parameters

(cf. Table 7) as possible crude estimates. This may be done via the state mixing assumption (cf.
Section 3.1.1), i. e., Equation 485 gives rise to a particle independent constant f3R (R=q, s):

〈0|ψ TRσ ζ
+ γ5gG+ζψ|ηR(P)〉 =

√
2if3RP

2
+ , (520)

which then may be identified with (at the scale µ0=1 GeV)

f3s ≈ f3K , f3q ≈ f3π . (521)

Analogously, the parameters (cf. also [335])

ω3s ≈ ω3K , ω3q ≈ ω3π (522)

can be estimated (cf. Table 7). As shown below, the NLO (and beyond) conformal contributions
are suppressed by extra factors of quark masses, while the leading corrections are proportional
to (cf. Section C.8 for the SO analogon)

fRMh
R
3M =:

hRM
2mR

(R=q, s) (523)

and do, therefore, not suffer from such effects. Fortunately, all parameters
{
hRM
}
R,M are accessi-

ble via the Ward identities of Equation 178, which imply119

m2Mf
A
M =

∑
B∈ISO

αABf
B
Mh

B
3M +

√
3aMδ

A0

=
∑
B∈IQF

αABf
B
Mh

B
3M +

√
2aMδ

Aq + aMδ
As , (524)

when using the densities (cf. partially conserved axial current (PCAC) relations for Equation 171,
Equation 179 and Equation 248)

〈0|∂µJAµ5|M(P)〉 = m2MfAM , (525)

〈0|jA5 |M(P)〉 = fAMhA3M , (526)

〈0|2ω|M(P)〉 = aM . (527)

Besides, we will also use
(
R=q, s

)

aR = 〈0|2ω|ηR(P)〉 . (528)

In the assumed SU(2)I limit Equation 524 boils down to (cf. Table 21)

HAM = m2MF
A
M − aM , (529)

119 Again, we make use of the abbreviations ISO={0,1, . . . ,8} and IQF={q,s,1, . . . ,7}.
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parameter for [9] for [10]

hq 0.0017± 0.0038 −0.0135± 0.0043
hs 0.0876± 0.0057 0.1116± 0.0063
aη 0.0221± 0.0021 0.0302± 0.0024
aη′ 0.0568± 0.0018 0.0666± 0.0021

f
q
η 108.47± 2.55 108.25± 3.75
fsη −111.18± 5.51 −141.80± 6.52
f
q
η′ 88.78± 2.52 93.11± 3.68
fsη′ 135.84± 6.38 164.86± 6.89

h
q
η 0.0013± 0.0029 −0.0102± 0.0033
hsη −0.0547± 0.0034 −0.0728± 0.0034
h
q
η′ 0.0011± 0.0024 −0.0088± 0.0027
hsη′ 0.0678± 0.0048 0.0846± 0.0059

Table 8: Comparison of decay constants (in [MeV]) as well as pseudoscalar densities along with anomaly
matrix elements

(
both in [GeV]3

)
for different input values Equation 280 and Equation 281, i. e.,

[9, 10].

with the abbreviations (M=η,η′)

HAM =

 hsM, A=s
h
q
M√
2

, A=q
, FAM =

 fsM, A=s
f
q
M√
2

, A=q
, (530)

which additionally allow a simplified definition120 of the involved DAs (cf. discussion in [3, 281]).
Furthermore, when imposing the state mixing ansatz (cf. Equation 278, Equation 315)

(
h
q
η hsη

h
q
η′ hsη′

)
= U(φ)diag(hq,hs) (531)

the particle independent densities121

hq := 2mq〈0|jq5 |ηq(P)〉 , hs := 2ms〈0|js5|ηs(P)〉 , (532)

arise. In practice, however, hq and hs have to be used with caution because Equation 532 im-
plies122

hq

mq
∼
hs

ms
. (533)

Therefore, a consistent treatment of twist-three effects requires an appropriate implementation

120 Due to an effective decoupling of light and strange flavors within the QF basis, the η(′) DAs may be defined analogously
to the π0 case (cf. [3, 281]).

121 In this context, all OZI rule violating contributions, such as “〈0|js5|ηq〉”, are neglected.
122 For instance, when assuming mq→ 0 along with hq→ 0, inconsistencies with hq/mq may arise. This is particularly

relevant for twist-six corrections.
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of quark-mass corrections. The latter has also been pointed out by [265] who suggested the
following parametrization of Equation 532:

Hq = Fs sinφ cosφ
(
m2η−m

2
η′

)
+ Fq

(
m2η cos2φ+m2η′ sin2φ

)
, (534)

Hs = Fq sinφ cosφ
(
m2η−m

2
η′

)
+ Fs

(
m2η sin2φ+m2η′ cos2φ

)
, (535)

written in our notation. Evidently, Equation 534 and Equation 535 emerge from Equation 529

after eliminating aη along with aη′ . Conversely, when eliminating Equation 532 within the four
resulting equations of Equation 529, one gets (cf. also [265]):

aη =
(
m2η−m

2
η′

)
sinφ cosφ (Fq sinφ− Fs cosφ) , (536)

aη′=
(
m2η′−m

2
η

)
sinφ cosφ (Fq cosφ+ Fs sinφ) . (537)

Nevertheless, these parametrization have to be taken with a grain of salt because Equation 534-
Equation 537 are includingmη as well asmη′ , which themselves can be expressed via the mixing
angle “φ” (cf. [152, 265]). Thus, replacing mη(′) with their physical values [42]

mη = 547.862(18) MeV , mη′ = 957.78(6) MeV (538)

may lead to inconsistencies that imply large cancellations and errors for hq. In particular, this
can be seen when comparing Equation 534-Equation 537 for different input values of (fq, fs,φ)
(cf. Table 8). Notably, with Table 8 we not only reproduce the results of [265], but additionally
provide a similar error analysis for [10]. Most strikingly, the different set-up of [10] implies a
significant decrease in all error estimates related to hq. An alternative approach is given by
(LO) ChPT [14, 182, 265], suggesting a positive, albeit small numerical value for the pseudoscalar
densities123 (cf. Chapter 5 for applications):

hq = fqm
2
π ≈ 0.0025 GeV3 , (539)

hs = fs

(
2m2K −m2π

)
≈ 0.086 GeV3 . (540)

The latter are actually linked to the Gell-Mann-Okubo (GMO) mass formulas (cf. [9, 44])

m2qq ≈ m2π , m2ss ≈ 2m2K −m2π , (541)

for the corresponding (hypothetical) states |ηq〉 and |ηs〉 (cf. Equation 315). In general, a possible
mass shift due to admixtures of the axial anomaly has to be included. Hence, we get the generic
(SU(2)I limit) expressions:

hq = fqm
2
qq , hs = fsm

2
ss . (542)

In fact, Equation 542 enables an additional cross-check with previous studies. For instance, Equa-
tion 270 and Equation 271 imply

M2FQF diag
(
1
fq

, 1fs

)
=




1
fq
〈0|∂µJqµ5|η〉 1

fs
〈0|∂µJsµ5|η〉

1
fq
〈0|∂µJqµ5|η′〉 1

fs
〈0|∂µJsµ5|η′〉


 , (543)

with the mass matrix

M2 = diag
(
m2η,m2η′

)
. (544)

123 In this strict limit, one would also have to assume fq=fπ, fs=
√
2f2K− f2π.
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Furthermore, a multiplication with the inverse rotation matrix Equation 278 leads to a decompo-
sition of all physical into ideal states [9]:

U†(φ)M2U(φ) = M2qs , (545)

with the unitary matrix (cf. [9, 152])

M2qs =




Hq+aq
Fq

aq
Fs

as
Fq

Hs+as
Fs


 . (546)

As a result, one obtains
(
using M2qs=

[
M2qs

]†) the symmetry breaking parameter [9, 152, 261]

y =
fq

fs
=
√
2
as

aq
. (547)

Moreover, due to the single mixing angle, M2 and M2qs are related by a similarity transformation,
justifying an interpretation of Equation 546 as a mass matrix. After evaluating the trace and
determinant of Equation 545 we get

m2η′ =
2m2ss

(
m2η −m

2
ss

)
+ y2m2qq

(
m2η −m

2
qq

)
(
2+ y2

)
m2η − y

2m2qq − 2m2ss
, (548)

which reproduces the improved Schwinger mass formula124 [152]

m2η′ = m
2
π +

4
(
m2K −m2π

) (
2m2K −m2η −m

2
π

)

4m2K −
(
2+ y2

)
m2η −

(
2− y2

)
m2π

, (549)

when inserting Equation 541 into Equation 548. The gain of these equations is twofold:

i) while Equation 548 may be used for a consistency check of the parameters in Table 8,

ii) Equation 549 gives an opportunity to roughly cross-check experimental values of mη′ (cf.
Equation 538) with the symmetry breaking parameters Equation 547.

As an illustration, let us compare the three relevant data sets of Equation 280, Equation 281 as
well as LO ChPT with Equation 538. Evidently, Equation 548 acquires a rather large error, but the
corresponding mean values almost perfectly coincide with Equation 538:

mη′
∣∣
Equation 280

≈ 957.78 , mη′
∣∣
Equation 281

≈ 957.69 , (550)

indicating a good consistency of the associated parameters in Table 8. At the same time, Equa-
tion 549 favors the FKS parameters (y=0.80) as well as LO ChPT predictions (y=0.71), while [10]
in this context seems less applicable (y=0.66). That is a reasonable result because the named LO

ChPT predictions are nothing else, but an implementation of the strict FKS scheme for twist-three
parameters (cf. Equation 531, Equation 539, Equation 540 and [152])

(
h
q
η hsη

h
q
η′ hsη′

)
= U(φ)diag

(
fqm

2
π, fs

(
2m2K −m2π

))
. (551)

However, the validity of this approach has to be tested against phenomenology (cf. [152]), de-
pending on the physical context (see, e. g., Section 4.3 or Chapter 5). Before proceeding, let us

124 The original version of Schwinger’s mass formula [152, 336] will be recovered for y→1. Besides, [42] and Equation 549

would imply the phenomenological value y≈0.77.
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note, that the numerically small values of hRM (R=q, s; M= η,η′) in their present arrangement
within Equation 502 and Equation 513, e. g.,

[
ρ
η
+

]qq
=
4m2qf

q
η

h
q
η

, R
q
3η =

2mqf
q
3η

h
q
η

, (552)

may lead to (numerical) instabilities. Therefore, it seems self-evident to absorb all hRM-factors
into the DAs:

hRMφ
R;σ
3M(x) =: φ

R;σ
3M(x) , hRMφ

R;p
3M(x) =: φ

R;p
3M(x) , (553)

implicating the NLO result125:

φ
R;p
3M(x) = hRM + 12m2Rf

R
M

(
1+ 6c

(R)
2,M

)
+ 60

(
mRf

R
3M +m2Rf

R
Mc

(R)
2,M

)
C(1/2)
2 (ξx)

− 6mRf
R
3Mω

R
3MC(1/2)

4 (ξx) + 6m
2
Rf
R
M

(
1+ 6c

(R)
2,M

)
log xx̄ , (554)

φ
R;σ
3M(x) = 6xx̄

[
hRM + 6m2Rf

R
M

(
1+ 10c

(R)
2,M

)

+
(
10mRf

R
3M −mRf

R
3Mω

R
3M + 6m2Rf

R
Mc

(R)
2,M

)
C(3/2)
2 (ξx)

]

+ 36xx̄m2Rf
R
M

(
1+ 6c

(R)
2,M

)
log xx̄ . (555)

Correspondingly, the normalization conditions are given by126

∫1
0
dxφR;p

3M(x) = hRM , (556)∫1
0
dxφR;σ

3M(x) = hRM − 4m2Rf
R
M . (557)

Due to different SU(3)F corrections127 within the corresponding Ward identities and EOM, one
cannot simply convert these findings for the SO basis. Accordingly, the associated SO twist-three
DAs (cf. Equation 1514 and Equation 1515) exhibit a more elaborate formal structure, compared
to the QF case. As a matter of fact, both cases only, coincide exactly in the strict SU(3)F limit (cf.
for instance Equation 1516, Equation 1517 and Equation 554, Equation 555). Disregarding their
mere formal structure, all involved higher order parameters are crucial for the actual definition
of φA;p

3M and φA;σ
3M . As discussed before, at the moment non-perturbative quantities, such as fA3M,

etc. can only be roughly estimated. Within the QF basis, one may hope that all corresponding
ambiguities are sufficiently suppressed [3] (when compared to the leading contribution)

2msf3s
hs

∼ 0.01 . (558)

125 Owing to their equivalent structure in the SU(2)I limit, the corresponding EOM (cf. Section C.7) for R= q,s imply
analogous DAs. Hypothetical G-parity breaking contributions have been excluded.

126 Notably, φR;p
3M and φR;σ

3M are interconnected via Equation 476 as well as Equation 477. Therefore, the normalization of
Equation 556 cannot be altered without affecting Equation 557 and vice versa.

127 For instance, in the assumed SU(2)I limit, the singlet and octet currents not only couple with each other via the axial
anomaly, but also by (quark) mass terms.
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parameter for [9] for [10]

h8η 0.0443± 0.0313 −0.0696± 0.0358
h0η −0.0009± 0.0233 −0.0969± 0.0266
h8η′ −0.0257± 0.0260 −0.1417± 0.0295
h0η′ 0.0228± 0.0193 −0.0532± 0.0218

Table 9: Estimates for the SO twist-three pseudoscalar densities (in [GeV]3) of Equation 559 and Equa-
tion 560, as implied by Table 8, i. e., [9, 10].

It is yet unclear, how to translate this strategy for the SO basis. As a matter of fact, according to
Table 8 already our best numerical estimates for the leading factors

h8M = hqM

(
1

3
√
3
+

2

3
√
3

ms

mq

)
− hsM

(
2
√
2

3
√
3
+

√
2

3
√
3

mq

ms

)
, (559)

h0M = hqM

(
2
√
2

3
√
3
+

√
2

3
√
3

ms

mq

)
+ hsM

(
1

3
√
3
+

2

3
√
3

mq

ms

)
, (560)

are prone to large uncertainties, cf. Table 9. Here, the experimental value [42, 225]

ms

mq
= 27.5± 1.0 (561)

has been used (for masses at µ0 ≈ 2 GeV). Moreover, Equation 559 along with Equation 560

effectively exclude our preferred ansatz with mq → 0 and ms 6= 0. Another important phe-
nomenological reason to abandon the SO basis in the context of higher twist DAs concerns the
applicability of the state mixing ansatz128. When used for twist-three DAs (similar for “σ↔p”):

(
φ
q;σ
3η (x,µ) φ

s;σ
3η (x,µ)

φ
q;σ
3η′ (x,µ) φ

s;σ
3η′(x,µ)

)
=U(φ)diag

(
φ
σ
3q(x,µ) ,φσ3s(x,µ)

)
, (562)

all particle dependencies are consequently shifted into the underlying mixing scheme, while
(four) universal DAs absorb the remaining non-perturbative information (R=q, s):

φ
p
3R(x) = hR + 60mRf3RC(1/2)

2 (ξx) + . . . , (563)

φ
σ
3R(x) = 6xx̄

[
hR + 10mRf3RC(3/2)

2 (ξx) + . . .
]

. (564)

Here, we introduce truncated DAs, neglecting the numerically small O
(
m2R
)

and O(mRf3R) cor-
rections (R= q, s). Those will also be omitted for consistency with the calculation of twist-four
corrections (cf. Section 3.4.3).

3.4.3 Twist-four distribution amplitudes

This subsection completes our theoretical investigations concerning higher twist distributions by
a detailed discussion and an update of twist-four light pseudoscalar meson DAs. Those also play
an important role in the intended investigation of the η(′) photon TFF (cf. Chapter 4, Section 4.3),

128 Given that this is true (cf. Section 4.3), the total number of twist-three two-particle DAs can be halved.
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urging us to develop a phenomenologically applicable formalism. Hence, we focus on a descrip-
tion within the QF basis.
In order to derive models for the two- and three-particle DAs up to NLO in conformal spin, we
follow the classifications and notations in [271, 314] adapted to our case. Contrary to previous
studies (e. g., [269, 271, 314]), we will take into account quark mass corrections as well as anoma-
lous contributions to the twist-four DAs. While the former may also be used for the flavor octet
sector, the latter represent an entirely new subject. In fact, we are not aware of any related study
beyond twist-two accuracy.
The presentation is, therefore, divided into two distinct segments. In the first part, we ignore any
anomalous contributions, while within the second all corresponding results are retrofitted via a
simple substitution rule.

Let us begin with a general classification of the four possible (cf. Equation 330, Equation 331)
three-particle twist-four DAs and their NLO parameters. Note, that all these DAs for light flavors
are defined by the same expressions with the generic substitution of corresponding quark fields
and superscripts “s→ q”. Therefore, without loss of generality we may in our notation focus
on the strange case. According to G-parity129, the DAs ΦR4M and ΨR4M (R= q, s) are symmetric
under the interchange of the quark momenta, i. e., α1↔α2, whereas Φ̃R4M and Ψ̃R4M are symmet-
ric. This puts further constraints on the allowed conformal expansion, resulting from the spin
structure of the underlying light-cone operators, such as

s̄(z2n)γµγ5gGαβ(z3n) s(z1n) , (565)

s̄(z2n)γµigG̃αβ(z3n) s(z1n) . (566)

For instance, the projection “(µ,α,β) = (+,+,−)” is uniquely related to jΨ = 1= jΨ, along with
jG=1. Consequently, both DAs

〈0|s̄(z2n)γ+γ5gG+−(z3n) s(z1n)|M(P)〉 = P+F(s)M Φ
(s)
4M(z ,P+) , (567)

〈0|s̄(z2n)γ+igG̃+−(z3n) s(z1n)|M(P)〉 = P+F(s)M Φ̃
(s)
4M(z ,P+) , (568)

exhibit the conformal NLO expansion (similar for Φ̃R4M(z ,P+))

Φ
(s)
4M(z ,P+) = 120α1α2α3

[
φ
(s)
0,MY(12)3

3,2 (α) −
1

2
φ
(s)
2,MY(12)3

4,2 (α) −
1

2
φ
(s)
1,MY(12)3

4,3 (α)

]
, (569)

which due to the named symmetry properties reduces to (cf. Equation 1227)

Φ
(s)
4M(z ,P+) = 120α1α2α3

[
φ
(s)
1,M (α1 −α2)

]
, (570)

Φ̃
(s)
4M(z ,P+) = 120α1α2α3

[
φ̃
(s)
0,M + φ̃

(s)
2,M (3α3 − 1)

]
. (571)

A more complicated situation arises for “(µ,α,β) = (⊥,⊥,+)”, where the projection (cf. Sec-
tion A.9)

γ⊥µ = γµ −nµγ− − n̄µγ+ (572)

129 As stated before, for the assumed flavorless meson,G-parity boils down to C-parity. Nevertheless, in the context of light
pseudoscalar mesons, we instead keep the most general term.
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produces a mixture of different quark-spin states sΨ =±12 together with sΨ =∓12 , while G+⊥
corresponds to sG=1. Therefore, for a clean separation of the different spin projections, one has
to introduce adequate auxiliary DAs, being (e. g., [271], Section A.11)

〈0|s̄(z2n) igG̃αβ(z3n)γ+γµγ−s(z1n)|M(P)〉 = F(s)M
(
pβg

⊥
αµ − pαg

⊥
βµ

)
Ψ
↑↓
M,s(z ,P+) , (573)

〈0|s̄(z2n) igG̃αβ(z3n)γ−γµγ+s(z1n)|M(P)〉 = F(s)M
(
pβg

⊥
αµ − pαg

⊥
βµ

)
Ψ
↓↑
M,s(z ,P+) , (574)

which are related to Ψ(s)
4M and Ψ̃(s)

4M via (cf. [271])

Ψ̃
(s)
4M(α) = −

1

2

[
Ψ
↑↓
M,s(α) +Ψ

↓↑
M,s(α)

]
, (575)

Ψ
(s)
4M(α) = +

1

2

[
Ψ
↑↓
M,s(α) −Ψ

↓↑
M,s(α)

]
, (576)

due to the matrix identities Equation 1181 and Equation 1182. The definitions Equation 573 and
Equation 574 are immediately implying

(
jΨ=1= j1, jΨ= 12 = j2, jG= 32 = j3

)

Ψ
↑↓
M,s(α) = 60α2α

2
3


ψ(s)

0,MY(1,2)3
3,3/2 (α) −

ψ
(s)
1,M +ψ

(s)
2,M

3
Y(1,2)3
4,3/2 (α)

+
ψ
(s)
2,M − 2ψ

(s)
1,M

2
Y(1,2)3
4,5/2 (α)




= 60α2α
2
3

[
ψ
(s)
0,M+ψ

(s)
1,M(α3−3α1)+ψ

(s)
2,M

(
α3−

3
2α2

)]
, (577)

along with
(
jΨ= 12 , jΨ=1, jG= 32

)

Ψ
↓↑
M,s(α) = 60α1α

2
3


ψ(s)

0,MY(1,2)3
3,3/2 (α) −

ψ
(s)
1,M +ψ

(s)
2,M

3
Y(1,2)3
4,3/2 (α)

−
ψ
(s)
2,M − 2ψ

(s)
1,M

2
Y(1,2)3
4,5/2 (α)




= 60α1α
2
3

[
ψ
(s)
0,M+ψ

(s)
1,M(α3−3α2)+ψ

(s)
2,M

(
α3−

3
2α1

)]
, (578)

when neglecting contributions of conformal spin J > 5 (see Equation 1227). In Equation 577

and Equation 578 we have chosen all coefficients accordingly to reproduce the notation of [271].
Evidently, we get the G-parity relation (cf. [271, 314])

Ψ
↑↓
M,s(α1,α2,α3) = Ψ

↓↑
M,s(α2,α1,α3) ⇒ ψ

(s)
k,M = ψ

(s)
k,M (k 6 2) , (579)

which allows us to formulate the NLO expansions

Ψ
(s)
4M(α) = −30(α1−α2)α

2
3

[
ψ
(s)
0,M+ψ

(s)
1,Mα3+

1

2
ψ
(s)
2,M(5α3−3)

]
, (580)

Ψ̃
(s)
4M(α) = −30α23

[
ψ
(s)
0,M(1−α3)+ψ

(s)
1,M(α3(1−α3)−6α1α2)

+ ψ
(s)
2,M

(
α3(1−α3)−

3

2

(
α21+α

2
2

))]
, (581)
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with a reduced set of non-perturbative parameters (cf. also [2, 271]). Still, this general parametriza-
tion of three-particle twist-four DAs up to NLO in conformal spin, a priori, involves 6×2×2= 24
new non-perturbative quantities for the η−η′ system in the QF basis. Fortunately, these coeffi-
cients are related by QCD equations of motion [269].

The actual determination of such operator relations is, therefore, an important part of this project.
Hence, we show the essential steps towards the needed results.
One of these relations is rather non-trivial and involves the divergence (in the mathematical
sense) of the spin-three conformal operator

O
(s̄s)
µαβ =

[
s̄
↔

Dα
↔

Dβγµγ5s−
1

5
∂α∂βs̄γµγ5s

]

sym
− traces . (582)

Here, the symmetrization in all Lorentz indices and subtraction of traces is necessary to get an
irreducible representation of the Lorentz group. When ignoring possible anomalous contribu-
tions, the needed calculation is similar to that for a pion-like system. For instance, the expansion
of “ū(−x)γµγ5d(x)” includes local operators, such as

O
(ūd)
µαβ =

[
ū
↔

Dα
↔

Dβγµγ5d
]

sym
− traces , (583)

which resembles one component of Equation 582, after replacing “u,d” with “s”. Explicitly,
Equation 583 takes the form

1

6

[
S
α1α2α3
µαβ −

1

3
Tαβµα4Tα1α2α3α4

]
Õ
(ūd)
α1α2α3 = O

(ūd)
µαβ , (584)

when using the abbreviations

Õ
(ūd)
α1α2α3 = ū R̃α1α2α3γ5d , R̃α1α2α3 =

↔

Dα1
↔

Dα2γα3 , (585)

along with (Sα1α2α3µαβ ≡Sµαβ;µ1µ2µ3g
µ1α1gµ2α2gµ2α2 )

Sµ1µ2µ3;α1α2α3 = gµ1α1
(
gµ2α2gµ3α3 + gµ3α2gµ2α3

)

+ gµ2α1
(
gµ1α2gµ3α3 + gµ3α2gµ1α3

)

+ gµ3α1
(
gµ2α2gµ1α3 + gµ1α2gµ2α3

)
, (586)

Tα1α2α3α4 =
1

2
gµ1µ2gµ3α4S

α1α2α3
µ1µ2µ3

= gα1α2gα3α4 + gα1α3gα2α4 + gα1α4gα2α3 . (587)

Those may find general application, such as (when acting on pion momenta)

Xµαβ =
1

6

[
S
α1α2α3
µαβ −

1

3
Tαβµα4Tα1α2α3α4

]
Pα1Pα2Pα3

= PµPαPβ−
1

6
m2π
(
Pµgαβ+Pαgµβ+Pβgµα

)
, (588)

Xαβ =
3

32

[
S
α1α2α3
µαβ −

1

3
Tαβµα4Tα1α2α3α4

]
Pα1Pα2g

µ
α3

= PαPβ−
1

4
m2πgαβ . (589)

Due to their length, we have to omit the complete expressions for all occurring traces and will
instead discuss only the vital components, e. g.,

Tα1α2α3µ R̃
α1α2α3 = γµ

↔

D2 +
↔

D/
↔

Dµ +
↔

Dµ
↔

D/ =: Rµ . (590)
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The actual calculation makes intensified use of operator and matrix identities as listed in Sec-
tion A.2 and Section A.3. For example, the latter allow us to rewrite an operator

ū
[
γµ
↔

D/
←

D/ −
→

D/
↔

D/γµ
]
γ5d = ∂ρū

[
γµ
↔

D/γρ − γρ
↔

D/γµ
]
γ5d− ū

[
imdγµ

↔

D/ − imu
↔

D/γµ
]
γ5d , (591)

in terms of a divergence and mass terms. Accordingly, after some algebra, we get

ūRµγ5d = ū
[
4gG̃µργ

ργ5 + 2i(md−mu)
↔

Dµ − γµ∂
ρ∂ρ

]
γ5d , (592)

modulo omitted corrections of O
(
m2q
)

and O(mu−md). The (mathematical) four divergence of
Equation 583 then requires130

∂αRβ = ∂α

[
4ūgG̃βργ

ρd−∂2ūγβγ5d+2(md−mu) ū
↔

Dβiγ5d
]

, (593)

∂µRµ = 4∂µūgG̃µργ
ρd−(mu+md)∂

2ūiγ5d+ . . . , (594)

as well as

∂µū
{↔
Dα,

↔

Dβ

}
γµγ5d = −4igūγργ5

[
Gρβ

→

Dα−
←

DαGρβ+(α↔β)
]
d+ 2mqūiγ5

{↔
Dα,

↔

Dβ

}
d , (595)

along with (again discarding not required corrections)

∂µū
{↔
Dµ,

↔

Dβ

}
γαγ5d = 4igūγργ5

[
Gαρ

→

Dβ−
←

DβGαρ+(α↔β)
]
d

− 4g∂ρūγσ
[
gαβG̃ρσ+gρβG̃σα+gσβG̃αρ

]
d− 8imqūσαξγ5gG

ξ
βd. (596)

Here, only symmetric contributions in “(α,β)” have been kept, while also considering the rela-
tion

2imqūgG
ξ
ασξβγ5d = igūγργ5

[
Gρα

→

Dβ−
←

DβGρα

]
d− igūγβγ5

[
Gρα

→

D
ρ
−
←

D
ρ
Gρα

]
d

+ ∂ρūγσg
[
gαβG̃ρσ+gαρG̃σβ+gασG̃βρ

]
d− ūγσDαgG̃σβd . (597)

In Equation 597 a special covariant derivative “Dρ” has been introduced which solely acts on
the involved field strength tensor, i. e.,

[
Dρ,Gαβ

]
≡ DρGαβ . (598)

Besides, Equation 597 gives rise to the operator relation

2imqQ
αβ
3 = V

αβ
1 −V

αβ
2 +V

αβ
3 − i∂αUβ + ∂ρūγαgG̃βρd−���

���:
(surface term)

igαβ∂ρUρ − traces , (599)

which relies on the definitions131
(
n2=0, nµGµν≡G+ν

)

U+ = iūγρgG̃ρ+d , (600)

Q++
3 = ūσρ+γ5G

ρ
+d , (601)

V++
1 = iūγργ5

[
gG
ρ
+

→

D+−
←

D+gG
ρ
+

]
d , (602)

V++
2 = iūγ+γ5

[
gGρ+

→

D
ρ
−
←

D
ρ
gGρ+

]
d , (603)

V++
3 = ūγρ

[
iD+, igG̃ρ+

]
d . (604)

130 Here, we only mention the relevant contributions, while neglecting other O
(
m2
q

)
corrections (e. g., denoted by ellipses).

131 Those are given in a contracted form, in order to erase all traces.
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Together with the pion matrix elements (k=1, 2, 3)

〈0|Uµ|π−(P)〉 = Pµfπδ2π , (605)

⇔ 〈0|iūγαgG̃βρd|π−(P)〉 = −
1

3
fπδ

2
π

[
Pβgαρ − Pρgαβ

]
,

〈0|Qαβ3 |π−(P)〉 = 2if3π
[
PαPβ −

1

4
m2πg

αβ

]
, (606)

〈0|Vαβk |π−(P)〉 = fπδ2πλπk
[
PαPβ −

1

4
m2πg

αβ

]
, (607)

Equation 599 further implies
(
δ2π=(0.18± 0.06) GeV [271]

)

λπ2 = λπ1 + λπ3 −
2

3
+ 4mq

f3π
fπδ2π

, (608)

which may be seen as a showcase for our search of possible associations between local operators,
such as Equation 600–Equation 604. Correspondingly, the resulting divergence

6 ∂µO
(ūd)
µαβ = −12iūγργ5

[
gGρβ

→

Dα−
←

DαgGρβ

]
d− 4∂ρūγβgG̃αρd

− 8imqūσαργ5gG
ρ
βd−

8

3
∂βūγ

σgG̃σαd

+
1

3
∂β∂

2ūγαγ5d+ 2mqūiγ5
↔

Dα
↔

Dβd

−
2

3
(md−mu)∂βūiγ5

↔

Dαd+ (α↔β) − traces (609)

of Equation 583 represents an indispensable source of further operator relations, while in this
context the actual structure of occurring traces, e. g., terms proportional to gαβ∂ρūγσgG̃ρσd,
gαβ∂

µūγρgG̃µρd, gαβmq∂2ūiγ5d, etc., becomes unimportant. Owing to Equation 609, the di-
vergence of Equation 582 may now be deduced (modulo anomaly terms) by simply adding

∆αβ = −
1

5
∂µ
{[

S
α1α2α3
µαβ −

1

3
Tαβµα4Tα1α2α3α4

]
Mα1α2α3

}
, (610)

Mµνρ = ∂µ∂νūγργ5d . (611)

Again, it is sufficient to analyze132

Sµ = γµ∂
2 + 2∂/∂µ , (612)

S
α1α2α3
µαβ Mα1α2α3 = ū

[
2γβ∂α∂µ+2γα∂µ∂β+2γµ∂α∂β

]
γ5d , (613)

which gives us

∆αβ =

[
−
2

15
mq∂α∂βūiγ5d−

1

3
∂β∂

2ūγαγ5d+(α↔β)
]
−traces, (614)

132 For this setting, ūSµγ5d=gξζ
(
Mξζµ+Mζµξ+Mµξζ

)
represents a basic building block of the traces.
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while ignoring all traces ∼gαβmq∂2ūiγ5d. Ultimately, we obtain the result (Equation 582 written
for two different flavors)

6 ∂µO
(ūd)
µαβ = −12iūγργ5

[
gGρβ

→

Dα−
←

DαgGρβ

]
d− 4∂ρūγβgG̃αρd

− 8imqūσαργ5gG
ρ
βd−

8

3
∂βūγ

σgG̃σαd

−
2

15
mq∂α∂βūiγ5d+ 2mqūiγ5

↔

Dα
↔

Dβd

−
2

3
(md−mu)∂βūiγ5

↔

Dαd+ (α↔β) − traces . (615)

As addressed before, the quark mass corrections ∼O
(
mψ

)
are a new result, extending our knowl-

edge of the light pseudoscalar meson sector (e. g., [271]), see Section C.9. This is the case, since
Equation 615 may be used to relate the NLO three-particle parameters of Equation 570, Equa-
tion 571, Equation 580 and Equation 581 with each other. For this purpose we start with the
two-particle (pion) DAs

〈0|ū(−x)γµγ5d(x)|π−(P)〉 = ifπPµ
∫1
0
due−iξu(P·x)φπ(u) , (616)

2mq〈0|ū(−x) iγ5d(x)|π−(P)〉 = fπm2π
∫1
0
due−iξu(P·x)φp3π(u) , (617)∫1

0
duφπ(u) = 1 =

∫1
0
duφp3π(u) , (618)

and expand it around “|xρ|→ 0”. The expansion up to “O
(
ξ2u
)
” ensures, to receive nontrivial

relations between the NLO parameters of

φπ(u) = 6uū
[
1+ aπ2 C(3/2)

2 (ξu)
]

, (619)

φ
p
3π(u) = 1+ 30 η3π C(1/2)

2 (ξu) , (620)

η3π =
2mqf3π

fπm2π
, (621)

and Equation 605–Equation 607. Accordingly, on the one hand we have (cf. Equation 588)

xµxαxβ〈0|
[
ū
↔

Dα
↔

Dβγµγ5d−
1

5
∂α∂βūγµγ5d

]

sym
|π−(P)〉

= ifπx
µxαxβXµαβ

∫1
0
duφπ(u)

[
ξ2u−

1

5

]
, (622)

which entails (cf. Equation 589)

〈0|∂µO
(ūd)
µαβ |π

−(P)〉 = −
2

3
fπm

2
π Xαβ

∫1
0
duφπ(u)

[
ξ2u−1

]
. (623)

Again, the local expansions

〈0|ūiγ5d|π−(P)〉=
fπm

2
π

2mq
, (624)

xαxβ〈0|ū
↔

Dα
↔

Dβiγ5d|π
−(P)〉= fπm

2
π

2mq
xαxβXαβ

∫1
0
duξ2uφ

p
3π(u) , (625)
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produce another conditional equation for 〈0|∂µO
(ūd)
µαβ |π

−(P)〉 when inserted in Equation 615.
After combining both approaches, we get the solutions:

λπ1 =
1

9
−
1

45

m2π
δ2π

(
1−

18

7
aπ2

)
− 2mq

f3π
fπδ2π

, (626)

λπ2 = −
5

9
+ λπ3 −

1

45

m2π
δ2π

(
1−

18

7
aπ2

)
+ 2mq

f3π
fπδ2π

. (627)

A similar technique may be applied to the three-particle DAs, i. e., exploiting their local expan-
sions

(
up to O

(
z2
))

, such as

〈0|ū(z)γµγ5gGαβ(vz)d(−z)|π−(P)〉
= 〈0|ūγµγ5gGαβd|π−(P)〉+ zρ〈0|ūγµγ5

[←
DρgGαβ+vDρgGαβ−gGαβ

→

Dρ

]
d|π−(P)〉, (628)

〈0|ū(z)γµigG̃αβ(vz)d(−z)|π−(P)〉
= 〈0|ūγµigG̃αβd|π−(P)〉+ zρ〈0|ūγµi

[←
DρgG̃αβ+vDρgG̃αβ−gG̃αβ

→

Dρ

]
d|π−(P)〉, (629)

in combination with
(
cf. Equation 330, Equation 331 and133 Equation 333 up to134 O

(
(p·z)2

))

〈0|ū(z)γµγ5gGαβ(vz)d(−z)|π−(P)〉

= pµ
(
pαzβ− pβzα

) 1
p·zfπ

[
i(p·z) 221φπ1

]

+
(
pβg

⊥
αµ− pαg

⊥
βµ

)
fπ
[
i(p·z) 114

(
ψπ2−ψ

π
1−

7
3ψ
π
0

)]
, (630)

〈0|ū(z)γµigG̃αβ(vz)d(−z)|π−(P)〉

= pµ
(
pαzβ− pβzα

) 1
p·zfπ

[
φ̃π0 − i(p·z)v3

(
φ̃π0 + 2

7 φ̃
π
2

)]

−
(
pβg

⊥
αµ− pαg

⊥
βµ

)
fπ
[
ψπ0 − i(p·z) v14 (7ψπ0+ψπ1+ψπ2 )

]
. (631)

Already the local limit of Equation 631, i. e.,

lim
|z|→0

〈0|ū(z)γµigG̃αβ(vz)d(−z)|π−(P)〉 = −
(
pβgαµ− pαgβµ

)
fπψ

π
0

+
pµ

p·z
(
pαzβ− pβzα

)
fπ
[
φ̃π0−ψ

π
0

]
+. . . (632)

reveals the necessary condition

φ̃π0 = ψπ0 , (633)

needed for the cancellation of a (formal) singularity at “p·z→0”. The remaining components of
Equation 632 can be related to “Uµ” (cf. Equation 605) via a contraction with “gαµ”, implicating

ψπ0 = −
1

3
δ2π . (634)

Furthermore, Equation 628 effectively reduces to135

zρ〈0|ūγµγ5
[←
DρgGαβ+���

��vDρgGαβ−gGαβ
→

Dρ

]
d|π−(P)〉

= ipµ
(
pαzβ− pβzα

)
fπ

2
21φ

π
1 + ip·z

(
pβg

⊥
αµ− pαg

⊥
βµ

)
fπ
[
1
14ψ

π
2−

1
14ψ

π
1−

1
6ψ
π
0

]
(635)

133 The pion case may be deduced from Equation 570, Equation 571 and Equation 580, Equation 581 via the replacement
(k ∈N0) φ(s)

k,M→φπk , φ̃(s)
k,M→φ̃πk and ψ(s)

k,M→ψπk .
134 In this expansion, we neglect all contributions of O

(
(p·z)2

)
to match the accuracy of Equation 628 and Equation 629.

135 There are no terms proportional to “v” on the r. h. s., hence corresponding terms on the l. h. s. may be dropped.
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at NLO in conformal spin, which is related to V
αβ
1 (cf. Equation 607) after a contraction with

“zβgµα”:

λπ1δ
2
π = − 2

21φ
π
1 − 1

3ψ
π
0 − 1

7ψ
π
1 + 1

7ψ
π
2 . (636)

Similarly, when considering the general parametrization

〈0|ūγµγ5
[←
DρgGαβ−gGαβ

→

Dρ

]
d|π−(P)〉

= Pρ
(
Pβgαµ − Pαgβµ

)
A+ Pµ

(
Pβgαρ − Pαgβρ

)
B

+
(
gαµgβρ − gαρgβµ

)
C+ iερµαβD , (637)

a contraction with “zβzρgµα” and “zβzµgρα” not only entails

ifπδ
2
πλ
π
1 = 3A+B , (638)

ifπδ
2
πλ
π
2 = 3B+A , (639)

but also implies

A = ifπ
[
1
14ψ

π
2 − 1

14ψ
π
1 − 1

6ψ
π
0

]
, (640)

B = ifπ
[
1
6ψ
π
0 + 1

14ψ
π
1 − 1

14ψ
π
2 − 2

21φ
π
1

]
, (641)

after equating coefficients with Equation 635. As a result, we get another useful relation:

(λπ1 + λπ2 ) δ
2
π = − 8

21φ
π
1 . (642)

Equivalently, the contributions proportional to “v”, i. e.,

〈0|ūγµi
[
DρgG̃αβ

]
d|π−(P)〉

= −ipµ
(
pαzβ− pβzα

)
fπ
[
1
3 φ̃
π
0 + 2

21 φ̃
π
2

]

+ip·z
(
pβg

⊥
αµ− pαg

⊥
βµ

)
fπ
[
1
2ψ
π
0 + 1

14ψ
π
1 + 1

14ψ
π
2

]
+. . . , (643)

are connected to “Vαβ3 ” (cf. Equation 607) via

〈0|ūγµi
[
DρgG̃αβ

]
d|π−(P)〉

= Pρ
(
Pβgαµ − Pαgβµ

)
Ã+ Pµ

(
Pβgαρ − Pαgβρ

)
B̃

+
(
gαµgβρ − gαρgβµ

)
C̃+ iερµαβD̃ , (644)

when contracting Equation 644 with “zρzβgµα” and “zβzµgρβ”, resulting in

Ã = −
3

8
ifπδ

2
πλ
π
3 , (645)

B̃ = +
1

8
ifπδ

2
πλ
π
3 . (646)

After equating coefficients with Equation 631, Equation 644 implies

δ2πλ
π
3 = −43 φ̃

π
0 − 8

21 φ̃
π
2 , (647)

0 = φ̃π0 + 2
7 φ̃
π
2 −ψπ0 − 1

7ψ
π
1 − 1

7ψ
π
2 . (648)
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Hence, we get

δ2π
(
λπ1 − 1

9

)
= − 2

21φ
π
1 − 1

7ψ
π
1 + 1

7ψ
π
2 , (649)

δ2π (λ
π
1 + λπ2 ) = − 8

21φ
π
1 , (650)

δ2π
(
λπ3 − 4

9

)
= − 8

21 φ̃
π
2 , (651)

0 = 2φ̃π2 −ψπ1 −ψπ2 , (652)

implying the equivalence between the parameter sets
{
λπ1 , λπ2 , λπ3

}
⇔
{
φπ1 ,ψπ1 ,ψπ2

}
. Due to the

structure of Equation 600 and Equation 604, λπ3 is linked to:

〈0|ū
[
iDµ, igG̃νξ

]
γξd− 49 i∂µūigG̃νξγ

ξd|π−(P)〉

= fπδ
2
πω4π

[
PµPν −

1

4
m2πgµν

]
+ “ twist 5

′′ , (653)

via (e.g., [271, 281])

ω4π =
4

9
− λπ3 . (654)

Analogously, the QF (NLO) parameters can be related to [3]

〈0|s̄
[
iDµ, igG̃νξ

]
γξs− 49 i∂µs̄igG̃νξγ

ξs|M(P)〉

= f
(s)
M δ

2(s)
M ω

(s)
4M

[
PµPν −

1

4
m2Mgµν

]
+ “ twist 5

′′ (655)

as well as [3]

〈0|s̄γρigG̃ρµs|M(P)〉 = Pµf(s)M δ
2(s)
M . (656)

This allows us to rephrase Equation 634 and Equation 649–Equation 652 into the result [3]

φ̃
(s)
0,M = ψ

(s)
0,M = −

1

3
δ
2(s)
M , (657)

φ̃
(s)
2,M =

21

8
δ
2(s)
M ω

(s)
4M , (658)

φ
(s)
1,M =

21

8

[
δ
2(s)
M ω

(s)
4M +

2

45
m2M

(
1−

18

7
c
(s)
2,M

)]
, (659)

ψ
(s)
1,M =

7

4

[
δ
2(s)
M ω

(s)
4M +

1

45
m2M

(
1−

18

7
c
(s)
2,M

)
+ 4ms

f
(s)
3M

f
(s)
M

]
, (660)

ψ
(s)
2,M =

7

4

[
2δ
2(s)
M ω

(s)
4M −

1

45
m2M

(
1−

18

7
c
(s)
2,M

)
− 4ms

f
(s)
3M

f
(s)
M

]
, (661)

modulo anomaly terms. In consequence, the number of anticipated new twist-four parameters
has been reduced to 2×2×2 = 8 in general and dwindles even more when assuming the state
mixing ansatz (cf. Equation 315). After employing the latter, we would be left with only four
extra parameters136 (cf. Equation 315, Table 10)

δ24q ≈ δ24π , δ24s ≈ δ24K , ω4q ≈ ω4π , ω4s ≈ ω4K , (662)

136 This is analogous to Equation 277, when replacing the decay constants either with f(s)M ↔f
(s)
M δ

2(s)
M (similar for “q↔s”)

or f(s)M ↔f
(s)
M δ

2(s)
M ω

(s)
4M.
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pion µ0 kaon µ0

δ2π 0 .18(6) GeV2 δ2K 0 .20(6) GeV2

κ4π 0 κ4K −0 .09(2)

ω4π 0 .2(1) ω4K 0 .2(1)

Table 10: Hadronic twist-four parameters for the pion and kaon case, taken from [269, 271, 337]
(
at the

reference scale µ0=1 GeV
)
.

which are renormalized at LO via [271] (analogously for “q↔s”)
[
δ
2(s)
M

](
µ2
)
≈L(µ,µ0)

[
δ
2(s)
M

](
µ20

)
+
1

8
m2M(1−L(µ,µ0)) , (663)

[
ω

(s)
4Mδ

2(s)
M

](
µ2
)
≈L(µ,µ0)

45
16

[
ω

(s)
4Mδ

2(s)
M

](
µ20

)
, (664)

with the factor L(µ,µ0)≡
[
αS
(
µ2
)
/αS

(
µ20
)] 329β0 . While this takes care of all needed three particle

DAs, there are still the corresponding two-particle twist-four distributions ψ(s)
4M and φ̃

(s)
4M (cf.

Equation 325). Due to strategic reasons, such as the explicit calculation of updated twist-four
octet meson DAs (cf. Section C.9), we will start with the pion case, as a generic example, followed
by the anticipated extension to the singlet case. Similar to the mentioned twist-three case, all
two-particle twist-four DAs may be calculated on the basis of non-local operator identities, e. g.,
Equation 1487 and Equation 1488. For ψ4π, we, therefore, get

(
n2=0, nµPµ=P+

)

∫1
0
dx eiξxP+ψ4π(x) =

∫1
0
dx eiξxP+2m2π

[
φ
p
3π(x)−φπ(x)

]

+

∫1
−1

dv 2 (iP+)[2Ψ4π(v,P+)−Φ4π(v,P+)] , (665)

which implies the relation137

M
ψ4π
n = 2m2π

[
M
φ
p
3π
n −Mφπn

]
+nM

ϕ
(3)
4π

n−1 , (666)

formulated with the auxiliary DA (cf. Equation 1522, Equation 1523)

ϕ
(3)
4π (x) =

∫x
0
dα1

∫ x̄
0
dα2

4[2Ψ4π(α)−Φ4π(α)]

α3

∣∣∣∣
α3=1−α1−α2

. (667)

The corresponding solution is then given by (cf. Equation 1494)

ψ4π(x) = 2m
2
π

[
φ
p
3π(x) −φπ(x)

]
−
1

2

d
d x
ϕ

(3)
4π (x) . (668)

Analogously, Equation 1482 entails the equation

iP+

∫1
0
dx eiξxP+φ4π(x) =

∫1
0
dx eiξxP+

[(
ξx+

3

iP+

)
ψ4π(x)

+2m2π

(
ξxφπ(x)+

mu−md
mu+md

φ
p
3π(x)

)]

+2iP+

∫1
−1
dv v[2Ψ4π(v,P+)−Φ4π(v,P+)] , (669)

137 Similar to the twist-three two particle DAs, ψ(s)
4M and φ̃(s)

4M, can be calculated in terms of three-particle (twist-four)
distributions as well as the named DAs of lower twist.
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which evokes a (formal) recursion relation

nM
φ4π
n−1 =

n+ 4

n+ 1
M
ψ4π
n+1 + 2nM

ϕ
(4)
4π

n−1 + 2m
2
π

(
M
φπ
n+1 +

mu−md
mu+md

M
φ
p
3π
n

)
, (670)

for φ4π. In other words, when using (α3=1−α1 −α2)

ϕ
(4)
4π (x) =

∫x
0
dα1

∫ x̄
0
dα2

2 [α1−α2−ξx]

α23
[2Ψ4π(α)−Φ4π(α)] , (671)

Equation 670 gives rise to the ordinary DE

d2

d x
φ4π(x) = 12ψ4π(x) − 2

d
d x
ξx

(
ψ4π(x)+2m

2
πφπ(x)

)

− 4m2π
mu−md
mu+md

d
d x
φ
p
3π(x) + 2

d2

d x2
ϕ

(4)
4π (x) , (672)

that exhibits a substantial difference to [271, Equation 4.28]. A literature search supports this
finding: in [319] the needed correction has been formulated as follows (based on [271])

[271]ψ4π(x)→ [271]ψ4π(x) +m
2
πφπ(x) . (673)

The latter is in agreement with Equation 672. Thus, the full solution is given by

φ4π(x) = −x

∫1
0
dv
∫v
0
dwφ′′4π(w) +

∫x
0
dv
∫v
0

dwφ′′4π(w) . (674)

On these grounds, we may obtain the required two-particle DAs ψ(s)
4M and ψ(s)

4M (likewise “q↔s”)
without anomalous contributions. The corresponding expressions can conveniently be separated
in genuine twist-four contributions and meson mass corrections (for a numerical evaluation see
Section 4.3):

ψ
(s)
4M(x) = ψ

(s) twist
4M (x) +m2Mψ

(s)mass
4M (x) , (675)

together with

ψ
(s) twist
4M (x) =

20

3
δ
2(s)
M C(1/2)

2 (ξx) + 30ms
f
(s)
3M

f
(s)
M

(
1

2
− 10xx̄+ 35x2x̄2

)
, (676)

ψ
(s)mass
4M (x) =

17

12
− 19xx̄+

105

2
x2x̄2 + c

(s)
2,M

(
3

2
− 54xx̄+ 225x2x̄2

)
. (677)

Similarly for

φ
(s)
4M(x) = φ

(s) twist
4M (x) +m2Mφ

(s)mass
4M (x) , (678)

we get

φ
(s) twist
4M (x) =

200

3
δ
2(s)
M x2x̄2 + 21δ

2(s)
M ω

(s)
4M

{
xx̄ (2+ 13xx̄)

+ 2
[
x3
(
10− 15x+ 6x2

)
log x+ (x↔ x̄)

]}
+ 20ms

f
(s)
3M

f
(s)
M

xx̄
[
12− 63xx̄+ 14x2x̄2

]
, (679)
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along with

φ
(s)mass
4M (x) = xx̄

[
88

15
+
39

5
xx̄+ 14x2x̄2

]
− c

(s)
2,Mxx̄

[
24

5
−
54

5
xx̄+ 180x2x̄2

]

+

(
28

15
−
24

5
c
(s)
2,M

)[
x3
(
10− 15x+ 6x2

)
log x+ (x↔ x̄)

]
. (680)

Notably, Equation 675–Equation 680 are a new result and supersede the corresponding expres-
sions in [271] and [319] (cf. Section C.9 for the updated kaon case).

Let us now include the anomalous contributions into our considerations. In general, the operator
identities Equation 615, Equation 1482 and Equation 1483, are only valid in their present form
when considering unrenormalized operators. Hence, an extended full NLO analysis would have
to include O(αS) renormalization factors138 (cf. [82, 338]) for the involved light-cone operators
(cf. discussion in [3]). Those RG corrections, however, have to match the problem specific OPE’s
accuracy. For instance, twist-four corrections of the latter have to be of a similar order in “αS”,
as the renormalization factors. Given that, only LO twist-four effects are included, all O(αS) cor-
rections created by the corresponding operator renormalization should be neglected. Hence, we
have to separate all relevant “LO” contributions of the axial anomaly from actual (multi-particle)
NLO RG corrections.
On the other hand, we have to avoid possible ill-defined contributions, that are conceivable in
the context of axial-vector currents (cf. [3]). E. g., by their nature, both involved EOM (analogously
for “q↔s”; see Section C.7)

∂

∂xµ
s̄(x)γµγ5s(−x) = −i

∫1
−1

dv s̄(x) vxρgGρµ(vx)γµγ5s(−x) , (681)

∂µ {s̄(x)γµγ5s(−x)} = −i

∫1
−1

dv s̄(x) xρgGρµ(vx)γµγ5s(−x) + 2mss̄(x) iγ5s(−x) , (682)

are exact for |xρ| 6= 0, while the limit xρ→ 0 has to be taken with great caution (cf. Section A.8).
Particularly, light-ray operators that enter the definitions of DAs (e. g., Equation 682) are generat-
ing functions of renormalized local operators which themselves may give rise to identities such
as Equation 149.

In analogy to Schwinger’s split point regularization (cf. Section A.8) we may, therefore, apply a
regularized version of the light-ray operators, refined by shifting all compatible operators slightly
off the light-cone (n2=0), i. e.,

s̄ (z1n) [z1n, z2n]γµγ5s(z2n) 7→ s̄ (x1) [x1, x2]γµγ5s(x2) , (683)

with the notation
(
setting x2 6=0

)

x
µ
2
:= z2n

µ − xµ , x
µ
1
:= z1n

µ + xµ , ∆µ := xµ1 − xµ2 , (684)

∆2 = (x1 − x2)
2 = (z12n+ 2x)2 = x2 , (x ·n) = 0 . (685)

138 It should be mentioned, that such an endeavor would be considerable and has only been partially attempted (mostly
leading twist effects) during the last decades of development within this sector of QCD (e. g., [311, 338]). Moreover, a
similar complex of problems has been discussed in the context of three-particle pion DAs (cf. [332]), whose evolution is
largely unknown (e. g., [339] and references therein). Indeed, the evolution of two- and three-particle twist-four operators
is significantly more complicated, than the twist-two counterpart, due to mixing effects with all other multi-particle
operators that have proper quantum numbers (cf. [3]).
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Hence, Equation 682 (cf. Equation 1484) transforms into

∂µ {s̄(z1n+x)γµγ5s(z2n−x)} = −i

∫1
0
dv s̄(z1n+x)∆ρgGρµ(zv21n+ξvx)γµγ5s(z2n−x)

+ 2mss̄(z1n+x) iγ5s(z2n−x) , (686)

whose three-particle components are a source of anomalous contributions. For instance, when
using139 [75]

ψ(x2) ψ̄(x1) = −i
∆/

2πD/2
Γ
(
D
2

)
[
−∆2

]D/2
[
x2, x1

]

−
∆ρ

8πD/2
Γ
(
D
2 −1

)
[
−∆2

]D/2−1
∫1
0
du
[
igG̃ρσ(ux2+ūx1)γ

σγ5

− uū (∆·D)Gρσ(ux2+ūx1)γ
σ

]
, (687)

Equation 686 engenders the new anomaly term140

Oχ(z1n+x, z2n−x)

:= i

∫1
0
dv ψ̄(z1n+x)∆αgGαµ(zv21n+ξvx)γµγ5ψ(z2n−x)

= i

∫1
0
dv∆α Tr

{
γµγ5iSψ(z2n−x, z1n+x)gGαµ(zv21n+ξvx)

}
=
αS
4π

∫1
0
dv
∫1
0
du

∆α∆ρ

∆2
GAαξ(z

v
21n+ξvx) G̃

A,ξ
ρ (zu12n−ξux) . (688)

Indeed, Equation 688 procreates a plethora of different contributions, e. g., by using the proper
light-cone expansions

(
modulo O

(
x2
))

Gαβ(z
v
21n+ξvx) = Gαβ(z

v
21n) + ξvx

ξ
[
DξGαβ

]
(zv21n) + . . . , (689)

G̃αβ(z
u
12n−ξux) = G̃αβ(z

u
12n) − ξux

ξ
[
DξG̃αβ

]
(zu12n) + . . . , (690)

along with

Gρα(x1) G̃
ρ
µ(x2) + G̃ρµ(x1)Gρα(x2) =

1

2
gαµG̃ρξ(x1)G

ρξ(x2) , (691)

⇒ Gρξ(x1) G̃
ρξ(x2) = G̃ρξ(x1)G

ρξ(x2) . (692)

Certainly, the Equation 691 enables a decisive simplification of several contributions, e. g.,

[
DαGAnµ

]
(zv21n) G̃

A,µ
α (zu12n) =

1

2
(n·D)G̃Aαµ(z

v
21n)G

A,αµ(zu12n) , (693)

GAαµ(z
v
21n)

[
DαG̃A,µ

n

]
(zu12n) =

1

2
G̃Aαµ(z

v
21n) (n·D)GA,αµ(zu12n)

− G̃Anµ(z
v
21n)

[
DαGA,µ

α

]
(zu12n) . (694)

139 The ellipses in Equation 687 correspond to O
(
logx2

)
, not contributing in the relevant limit xρ→0.

140 The mass terms of O
(
mψ

)
cannot contribute to Oχ (cf. Equation 139).
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After a further simplifications, we get up to O
(
x2
)

Oχ(x1, x2) =
αS
4π

∫1
0
dv
∫1
0
duGAµν(z

v
21n) G̃

A,µν(zu12n)

+
αS
8π
z12

∫1
0
dv
∫1
0
du
[
ξuG̃

A
nµ(z

v
21n)

[
DαGA,µ

α

]
(zu12n)

+ ξv

[
DαGAαµ

]
(zv21n) G̃

A,µ
n (zu12n) +

1

2
ξv (n·D) G̃Aαµ(z

v
21n)G

A,αµ(zu12n)

−
1

2
ξuG̃

A
αµ(z

v
21n) (n·D)GA,αµ(zu12n)

−
1

2
z212ξuξv

[
DαGAnµ

]
(zv21n)

[
DαG̃

A,µ
n

]
(zu12n)

]
+ . . . , (695)

where we omit all terms, that do not survive the symmetric limit

xαxβ

x2
−→ 1

4
gαβ . (696)

As a result, terms similar to

z12 (n·D)GAαµ(z
u
12n) = −∂uG

A
αµ(z

u
12n) , (697)

z12 (n·D) G̃Aαµ(z
v
21n) = +∂vG̃

A
αµ(z

v
21n) , (698)

within Equation 695 vanish. However, a multitude of finite O(αS) corrections to the three-particle
DAs, such as

[
DαGAαµ

]
(zv21n) G̃

A,µ
n (zu12n) = i

∑
ψ

ψ̄(zv21n)γ
µigG̃nµ(z

u
12n)ψ(z

v
21n) , (699)

G̃Anµ(z
v
21n)

[
DαGA,µ

α

]
(zu12n) = i

∑
ψ

ψ̄(zu12n)γ
µigG̃nµ(z

v
21n)ψ(z

u
12n) , (700)

along with

D2Gnµ = 2i
[
Gnα,Gαµ

]
+ (n·D)DαGαµ −DµD

αGαn . (701)

remain. Those produce the anticipated NLO corrections to quark-antiquark-gluon and three-
gluon terms. Consequently, an extended EOM result for higher twist corrections is given by

∂µ
{
ψ̄(z1n)γµγ5ψ(z2n)

}
= −i

∫1
0
dv ψ̄(z1n) z12nρgGρµ(zv21n)γ

µγ5ψ(z2n)

+
αS
4π

∫1
0
dv
∫1
0
duGAµν(z

v
21n) G̃

A,µν(zu12n)

+ 2mψψ̄(z1n) iγ5ψ(z2n) , (702)

where we have taken the “|xρ|→0” limit, while using

αS
4π

∫1
0
dv
∫1
0
duGAµν(z

v
21n) G̃

A,µν(zu12n) =
αS
16π

∫1
−1

dα
∫1
−1

dβGAµν(αn) G̃
A,µν(βn) . (703)

Compared to the pion case, this modification only affects ψ(s)
4M (as well as “q ↔ s”) directly,

represented by admixtures of a new twist-four gluonic DA (n2=0)

〈0|αS4πGAµν(z2n) G̃A,µν(z1n)|M (P)〉 = aM
∫1
0
dx e−iz

x
21P·nφ(g)

4M(x) . (704)
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Figure 17: The anomalous contribution Equation 726 to the twist-four DA “ψ(s)
4M(u)” (continuous line) com-

pared to the asymptotic (leading-twist) DA “6uū” (dashed line).

Naively, the associated leading twist components, e. g., (j1 = 1 = j2) those corresponding to
GA+−G̃

A
−⊥∼G

A
+−G

A
⊥⊥ would imply a conformal expansion similar to141

φ
(g)
4M

(
x,µ2

)
= 6xx̄

∞∑
n=0

a
(g)
n,M

(
µ2
)

C(3/2)
n (ξx) , (705)

with a necessarily non-vanishing asymptotic form142 (cf. Equation 527)

φ
(g)
4M(x) −→ 6xx̄ ⇔ a

(g)
0,M = 1 . (706)

Specifically, Equation 706 presupposes the normalization condition∫1
0
dxφ(g)

4M(x) = 1 , (707)

while Equation 692 implies

φ
(g)
4M(x) = φ

(g)
4M(x̄) , (708)

i. e., an expansion with only even Gegenbauer moments “a(g)n,M” (cf. Equation 706). This newly
found DA is intrinsically connected to effects of the axial anomaly and may, therefore, shed light
on the topological structure of QCD in general (cf. Section 2.5). Thus, any information on its
shape might be valuable for further studies. On the other hand, a calculation of the correlation
function

Π(p) = i

∫
d4y e−ip·y〈0|Gµν(z1n) G̃µν(z2n)Gαβ(y) G̃αβ(y)|0〉

=

∫1
0
dx e−z

x
21p·nφ(g)

4M(x)N
(
p2
)

, (709)

141 In this context Equation 705 has to be regarded as a (formal) toy model.
142 Due to the definition Equation 527, Equation 706 is the only possible choice.
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in a free theory (cf. Section B.7 for details) suggests143 a constant asymptotic DA

N
(
p2
)
= −D

24−D

πD/2
Γ
(
−D2

) [
−p2

]D
2 , (710)

φ
(g)
4M(x)

∣∣∣
as

= 1 . (711)

Being the only substantial evidence of its shape, we should express Equation 711 via the toy
model Equation 705 (at, e. g., µ20=1 GeV2), by using the Gegenbauer coefficients [281]

a
(g)
n,M

(
µ20

)
=

2 (2n+ 3)

3 (n+ 1) (n+ 2)
. (712)

Let us, therefore, study the impact of a flat (asymptotic) DA Equation 711 on the other higher
twist two-particle distributions in more detail. In this context Equation 702 implies144 (cf. Equa-
tion 665)∫1

0
dx eiξxP+

[
ψ
(s)
4M(x)−2

H
(s)
M

F
(s)
M

φ
(s);p
3M (x)+2m2Mφ

(s)
M (x)

]

=
aM

2F
(s)
M

∫1
0
dx
∫1
−1

dα
∫1
−1

dβe−i(x̄α+xβ)P+φ(g)
4M(x) + . . .

=
aM

2F
(s)
M

1

(iP+)
2

∫1
0
dx
[
eiP++e−iP+−2eiξxP+

]
φ
(g)
4M(x)

xx̄
+ . . . , (713)

which may be transformed into∫1
0
dx eiξxP+δψ(s)

4M(x) =
aM

F
(s)
M

∫1
0
dx
eiξxP+

iP+
ϕ

(g)
4M(x) , (714)

when using the relation∫1
u
dv eiξvP+ −

∫u
0

dv eiξvP+ =
1

2

1

iP+

[
eiP++e−iP+−2eiξuP+

]
(715)

as well as145
(
for a test function φ(x) on x ∈ [0, 1]

)

∫1
0
du

[∫1
u
dv eiξvP+

]
φ(u) =

∫1
0
dueiξuP+

[∫u
0

dvφ(v)
]

, (716)

∫1
0
du

[∫u
0

dv eiξvP+
]
φ(u) =

∫1
0
dueiξuP+

[∫1
u
dvφ(v)

]
, (717)

143 This estimate is relevant for sufficiently large reference scales, and should be taken as a qualitative lead for an extended
analysis.

144 Here, the ellipses represent omitted three-particle DAs.
145 Equation 716 and Equation 717 are written in such a way that all surface terms (for a general function φ) vanish.
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along with the auxiliary146 DAs (α3 = 1−α1 −α2)

δψ
(s)
4M(x) = ψ

(s)
4M(x)−2

H
(s)
M

F
(s)
M

φ
(s);p
3M (x)+2m2Mφ

(s)
M (x)

−
d

d x

∫x
0
dα1

∫ x̄
0
dα2

2
[
Φ

(s)
4M(α) − 2Ψ

(s)
4M(α)

]

α3
, (718)

δψ
(s)
4M(x) = 2

aM

F
(s)
M

δψ
(s)
4M(x) , (719)

ϕ
(g)
4M(x) =

∫x
0
du

φ
(g)
4M(u)

uū
−

∫1
x
du

φ
(g)
4M(u)

uū
. (720)

The latter cannot be normalized∫1
0
dxϕ(g)

4M(x) = 0 , (721)

but naturally gives rise to (cf. Equation 714)

(n+ 1)M
δψ

(s)
4M

n =
aM

F
(s)
M

M
ϕ

(g)
4M

n+1 (722)

⇒ d
d x
δψ

(s)
4M(x) = [δ(x̄) − δ(x)] δψ

(s)
4M(x) −ϕ

(g)
4M(x) , (723)

with the formal solution
(
assuming147 x ∈ (0, 1)

)

δψ
(s)
4M(x) = −

∫x
0
duϕ(g)

4M(u) . (724)

According to Equation 724, the gluonic DA φ
(g)
4M (cf. Equation 705) with arbitrary Gegenbauer

coefficients implies a truncated expansion

δψ
(s)
4M(x) = 6xx̄

[
1+
1

6
a
(g)
2,MC(3/2)

2 (ξx) +
1

15
a
(g)
4,MC(3/2)

4 (ξx)

+
1

28
a
(g)
6,MC(3/2)

6 (ξx) +
1

45
a
(g)
8,MC(3/2)

8 (ξx) +
1

66
a
(g)
10,MC(3/2)

10 (ξx) + . . .

]
, (725)

which exhibits a strong suppression of higher order terms. Thus, when assuming an approxi-
mately flat DA φ

(g)
4M (see Equation 705), we get for the corresponding exact solution148 (cf. Equa-

tion 724)

δψ
(s)
4M(x) = − lim

ε→0+

∫x
0
dv
[∫v
ε
du

1

uū
−

∫ ε̄
v
du

1

uū

]
= −2 [x log x+ x̄ log x̄] , (726)

which yields the asymptotic form

δψ
(s)
4M(x) −→ 6xx̄ . (727)

146 In fact, Equation 718 is a mere reformulation of Equation 702.
147 The assumption x∈

[
0,1

)
eradicates all extra factors related to the integrand in Equation 724, such as ∼eθ(−x̄)−θ(x), or

∼eθ(u)−θ(−ū).
148 A different approach towards the exact solution has been discussed in [3].



3.4 higher twist η(′) distribution amplitudes 129

The numerical difference between these two expressions is indeed very small, see Figure 17.
Nevertheless, the modified relation (see Equation 718) in its present form would lead to inconsis-
tencies, with regard to the normalization of ψ(s)

4M(x). Owing to the numerically small deviations
(cf. Figure 17)

−2m2MF
(s)
M φ

(s)
M (x) + 2aMδψ

(s)
4M(x) ≈ −2

(
m2MF

(s)
M − aM

)
φ
(s)
M (x) = −2H

(s)
M φ

(s)
M (x) , (728)

however, all effects of anomalous contributions may be collected within a proper redefinition of
those meson mass corrections, which are related to twist-two DAs. In other words, when applying
the substitution (analogously for “q↔s”)

m2MF
(s)
M 7−→ H

(s)
M (729)

to all occurring higher twist terms, we not only restore the condition∫1
0
dxψ(s)

4M(x) = 0 , (730)

but also guarantee the FKS mixing scheme to hold within higher twist effects, e. g., of the η(′)

TFF at low momentum transfer (cf. Chapter 4). Furthermore, as demonstrated in Section 4.3, this
assumption does not contradict the existing data.





4M E S O N P H O T O N T R A N S I T I O N F O R M FA C T O R S

“The study of light has resulted in achievements of insight,
imagination and ingenuity unsurpassed in any field of mental activity;

it illustrates, too, better than any other branch of physics,
the vicissitudes of theories.”

— Sir J. J. Thomson (1856 – 1940)

Due to its well-known quantum electrodynamical properties1, the photon may be considered
as an ideal probe to study more complicated particles, such as hadrons (e. g., [340, 341]). No-
tably, among the plethora of possible processes to carry out such an analysis, the (high energy)
photon-photon collisions play an important role. The latter are mainly studied at e+e− colliders
(e. g., [342–347]) and provide a remarkable laboratory for testing the SM (e. g., [346]) and QCD

phenomena in particular, such as resonances (see, e. g., [348, 349]), heavy quarkonia, exclusive
two-photon reactions, (time-like) Compton scattering, hard QCD Jets, photon structure functions,
etc., to name only a small selection of popular topics.
In this chapter, we focus on the photon-meson TFFs, which represent an ideal testing ground
for models of involved DAs. For this purpose a rather wide range of photon virtualities have to
be measured, ideally including large momentum transfers (cf. Section 4.3). Only recently, these
requirements have been fulfilled in the context of η and η′ TFFs (see discussion in Section 4.3),
allowing a broad phenomenological insight into the η−η′ system. Hence, unlike the well-studied
pion case, only a rather limited number of theoretical publications are available for the η(′) FF.
As mentioned before, one of the most recent and substantial contributions came from [20, 28],
featuring (among other things):

a) A reexamination of the formalism for treating twist-two η(′) DAs, including a LO evolution.

b) An updated O(αS) calculation of the η(′)-photon TFF in the real photon limit, at leading
twist accuracy.

c) An estimate for the lowest Gegenbauer coefficient of φAM (A= 0, 8,g; M= η,η′) based on
[8, 350] as well as [7, 351].

While point a) has been discussed in Chapter 3, we now turn to subitem b) and examine c)
within Section 4.3. In the following, we extend earlier approaches via several improvements,
especially:

• We consistently take into account strange-quark mass contributions up to O(ms) accuracy,
including SU(3)F-breaking corrections in twist-four DAs.

• In this context, we explicitly prove the cancellation of possible end-point divergences
within the higher twist LO corrections, for generally shaped twist-three DAs.

• We also extend and test the result of [20, Equation B7, B8] by performing all corresponding
calculations with two instead of one non-vanishing photon virtualities.

1 In contrast to QED, the photon within QCD can interact both as a point-like particle as well as a collection of partons (cf.
Equation 20). Thus, more complicated theoretical methods are involved Section 4.2.
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• Moreover, we include charm-quark (NLO) contributions to the twist-two two-gluon DA’s
coefficient function.

Combined with the methods developed in Section 3.3.3, these new results provide a consistent
NLO treatment of the η(′) FF. Additionally, in this context, the photon’s long distance behavior
(real photon limit) needs to be taken into account. For this reason, we also implement the first
NLO LCSR analysis of the η(′) meson-photon TFF.

Equipped with these tools, we can carry out a phenomenological analysis (see Section 4.3), which
further reveals the non-perturbative effects within the η−η′ system, in particular their DAs.

4.1 pqcd approach

Corresponding to Section 2.4, the OPE represents an initial point for our analytical investigations
of hard exclusive processes (e. g., [352, 353]). Accordingly, after judiciously choosing a normal-
ization point “µ2” we may assume a consistent separation of long and short distances. Thus,
the Wilson coefficients, or at least their analogue (see, e. g., Equation 737) are mostly determined
by pQCD, while all soft functions become (approximate) genuine non-perturbative quantities.
Nevertheless, it is evidently impossible to fully calculate the infinite αS-series for all coefficient
functions, let alone the infinitely many higher twist contributions, belonging to the underlying
light-cone OPE. Therefore, in the next subsection, we will discuss the schematic realization of
such a truncated (light-cone) OPE in the context of hard exclusive processes, while focusing on
meson transition FFs.

4.1.1 Collinear factorization in QCD

In this subsection the theoretical basis for the subsequent calculation of hard exclusive processes
are discussed in some detail. For consistency reasons2, the main ideas will first be illustrated for
the well studied π0-case and later on adapted to our needs. Additionally, a better part of the
required formalism and definitions will be summarized.

A key issue to use and understand pQCD is the idea of factorization (e. g., [33, 265, 301, 302, 354–
358]). This is the property that some amplitudes or cross-sections may be expressed as a product3

of two or more factors which themselves only depend on physics taking place on a single mo-
mentum scale4. Furthermore, the process under consideration is supposed to involve a large
momentum transfer “Q”, and corrections to the factorized form are then suppressed by inverse
powers of Q.

In particular, the FF “Fγ∗γ∗→M
(
q21,q22

)
”, which relates two virtual photons “γ∗(q1)γ∗(q2)” with

a (light) pseudoscalar meson “M(P)”, plays a crucial role in the studies of hard exclusive pro-
cesses. This arises from its simple structure which involves only one hadron and the intrinsic
relation to the axial anomaly. Hence, especially the γ∗γ(∗)π0 TFF has been an object of intensive
research (e. g., [1, 281, 302] and references therein) and may serve us as a guide for the η(′) TFF.
As an important result of [33, 301], a kinematical set-up that includes (two) large photon virtual-
ities would allow a reasonable comparison of pQCD predictions with possible experimental data
(e. g., [8, 359]) and, therefore, could provide important information on the shape of the involved
meson DAs. Experimentally, however, a setting with only one highly virtual and another (almost)

2 No comparable studies exist for the η(′)-case.
3 In general, this product is given by a matrix product or a convolution.
4 Synonymously, “distance scale” could be used in this context.
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M(P )

e−

e+

γ∗(q1)

γ(q2)

b)

M(P )

e∓(p)
e∓tag(p

′)

e± e±

γ∗(q1)

γ(∗)(q2)

a)

Figure 18: Diagram a) depicts the two-photon fusion reaction e+e− → e+e−M (M = π0,η,η′). For this
process the corresponding differential cross section can be measured in the single tag mode (cf. [5,
6, 8, 359]), i. e., one of the outgoing electrons/positrons (tagged) is detected

(
Q2=−(p−p′)2�0

)
,

whereas its untagged counterpart is scattered at a small angle
(
q2 ≈ 0

)
. Besides, the meson is

fully reconstructed. Diagram b) illustrates the corresponding e+e−→γ∗→Mγ transition. Most
importantly, this annihilation process can be measured at very high center-of-mass energies of
the e+e− system (cf. [351]).

real photon “γ(∗)(q2)” is favorable, see Figure 18. In this situation5, we also need reliable es-
timates of possible “soft” corrections to the (lowest order) handbag diagram a) in Figure 20,
which are usually caused by gluon radiation or higher twist effects (cf. b), c), d) of Figure 20).
Hence, a more elaborate picture for the factorization of Fγ∗γ∗→M emerges, see Figure 19. Let us
first introduce the required notation. Since the latter describes a meson transition into two (in
general virtual) photons, it is defined by a matrix element of two electromagnetic currents (cf.
Equation 20), such as∫

d4x e−iq1·x〈M(P)|T
{
Jem
µ (x) Jem

ν (0)
}
|0〉 = ie2εµναβqα1 qβ2 Fγ∗γ∗→M

(
q21,q22

)
, (731)

with Pµ=qµ1+q
µ
2 and P2=m2M. When considering space-like FFs, both virtualities are negative,

implying positive values for

Q2 := −q21 , q2 := −q22 , (732)

while the experimentally relevant situation corresponds to the assumption

0 . q2 � Q2 . (733)

Moreover, seeing that most of the equations are written for q2=0, we introduce the abbreviation:

Fγ∗γ→M
(
Q2
)
= Fγ∗γ∗→M

(
q21=−Q2,q22=0

)
. (734)

On these grounds, let us now briefly examine the general behavior of Equation 734 by means of
the well studied π0-case (e. g., [362] and references therein). Given, that the experimentally pre-
ferred set-up, with sufficiently large Q2 to apply pQCD is realized, then Equation 731 resembles

5 Here, the missing mass in an event of this measured meson-electron system is close to zero (cf. [360, 361]). Moreover,
being part of a specific decay chain, the meson is usually observed via its decay products. If the latter are fully detected,
the corresponding meson (decay) is said to be “fully reconstructed” [361].
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a)

TH

M

γ∗

γ(∗)

b)

TW

M

γ∗

γ(∗)

c)

S

M

γ∗

γ(∗)

Figure 19: Schematic structure of the QCD factorization for the Fγ∗γ→M
(
Q2
)

FF at largeQ2 (e. g., [281, 362]).

a light-cone dominated object (cf. Section A.16 for details). This well defined setting, allows a
consistent decomposition into light-ray operators (e. g., [75]), i. e., the OPE can be constructed in
a systematic way. Most importantly, in that case a power-like behavior of Fγ∗γ→M

(
Q2
)

can be
assumed. The latter may be generated by three basic regimes, as shown in Figure 19:

• region a) : Notably, the dominant contributions are provided by this regime, which corre-
sponds to a large virtuality flow through a (perturbatively calculable) hard subgraph “TH”,
containing both photon vertices.6 According to power counting estimates, the large-Q2 be-
havior of such configurations is given by (e. g., [362–364])

F
regiona)
γ∗γ→M

(
Q2
)
= O

(
1

Q2

)
. (735)

In fact, the leading twist corrections for M=π0 can be written
(
see Section 4.1.2 for M=

η(′)
)

in terms of a hard scattering formula7 [3, 281, 365–367] (cf. Section 4.1.3)

Fγ∗γ→π0
(
Q2
)
=

√
2fπ

3

∫1
0
dx T (3)H

(
x,Q2;µ,αS(µ)

)
φπ(x,µ) , (736)

T
(3)
H

(
x,Q2;µ,αS(µ)

)
=

1

xQ2

{
1+Cf

αS(µ)

2π

[
1

2
log2x−

1

2

x

x̄
log x−

9

2

+

(
3

2
+ log x

)
log

Q2

µ2

]}
+O

(
α2S

)
, (737)

which may be seen as a prototype for the general factorized form. As an illustration, the
generic structure of this region is given by an expression similar to (e. g., [332])

Fγ∗γ→M
(
Q2
)
=
∑
n

∏
i

∫1
0
duiwn(u) T

(n)
H

(
u ,Q2;µ,αS(µ)

)
φn,M(u ,µ) , (738)

n : (collinear) twist,

wn : adequate weight function,

T
(n)
H : process specific “hard” amplitude,

φn,M : universal “soft” DA,

6 By construction, the contributions of region a) involve a time ordered product of two electromagnetic currents at small
light-like separations [3, 281]. Hence, they can be studied by Wilson’s OPE.

7 Besides the MS scheme, where TH is known up to NLO, for the pion-case it is available up to NNLO in a conformal
scheme, see [311]. For Equation 737 we applied the symmetry properties of Equation 305 (e. g., with A=3).
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γ(∗)
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M
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c)

M
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γ(∗)

b)

M

γ∗

γ(∗)

a)

M

γ∗

γ(∗)

Figure 20: An example of leading (e. g., a)) and higher twist diagrams (such as b), c), along with d)),
contributing to the meson TFF. This includes three-particle twist four corrections, as implied by
diagram b).

M

γ∗

γ(∗)
M

γ∗

γ(∗)

Figure 21: Typical contribution to region b). These diagrams represent a convolution of the involved hard
scattering kernel with the (soft) twist-two photon and twist-three pion DAs (cf. Equation 740).

due to the underlying light-cone OPE. Nonetheless, in general the actual realization of
collinear factorization may not be presumed, but must be proven for each contribution
individually. E. g., an explicit calculation reveals for the8 π0TFF [281]

(
at O

(
α0S
)

and up to
NLO in conformal spin

)

Fγ∗γ→π0
(
Q2
)
=

√
2fπ

3Q2

∫1
0
dx
[
φπ(x)

x
−
1

Q2
Fπ(x)

x2

]
=

√
2fπ

Q2

[
1+ aπ2 −

80

27

δ2π
Q2

]
+ . . . . (739)

Here, Fπ(x) serves as a collection of the higher twist corrections up to twist-four. Besides,
Equation 739 provides an estimate for higher twist corrections. Those seem to be sizable
for Q2∼1 GeV2 − 5 GeV2, while they may be safely neglected in the large-Q2 limit.

• region b) : Since at least one photon virtuality is small, we have to take into account a long
distance photon propagation in the q2-channel as well. This regime involves large mo-
menta flowing through a central subgraph “TW” (cf. Figure 19), which contains the virtual
photon vertices, see Figure 21. At lowest order, this subgraph corresponds to a hard gluon
exchange, similar to the leading pQCD contribution of the (pion) electromagnetic FF (e. g.,
[33, 301]). Hence, we may expect [281] corrections such as

Fγ∗γ→π0
(
Q2
)
=

√
2fπ

3Q4
16παsχ〈ψ̄ψ〉2

9f2π

∫1
0
dx
φ
p
3π(x)

x

∫1
0
dy
φγ(y)

ȳ
. (740)

Here, we use the quark condensate’s magnetic susceptibility (e. g., [274, 281])

χ ≈ 2

m2ρ
≈ 3.3 GeV−2 , (741)

8 In this context, we use the abbreviation c2,π≡aπ2 .
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along with φγ(x)≈6xx̄, being the leading twist (asymptotic) photon DA [274]. In particular,
both integrals over the quark momentum fractions are logarithmically divergent at the end-
points, i. e., for x→0 and y→1. This signals an overlap with the soft region c) (e. g., [281]).
Moreover, the contributions of this region [362, 364] (cf. Equation 740)

F
regionb)
γ∗γ→M

(
Q2
)
= O

(
1

Q4

)
, (742)

may be significant for Q2≈5 GeV2, i. e., sufficiently soft momentum transfer. For instance,
the regularized (asymptotic) version of Equation 740

(
e. g., assuming Q2≈µ2IR=1 GeV2

)

16παsχ〈ψ̄ψ〉2
27f2πQ

4

∫1
0
dx
φ
p
3π(x)

x

∫1
0
dy
φγ(y)

ȳ

≈ 0.2 GeV2

Q4

[
log2

(
µ2IR +Q2

µ2IR

)
−

Q2

µ2IR +Q2
log

(
µ2IR +Q2

µ2IR

)]
, (743)

with an ad hoc IR cut-off scale µIR, is only relevant in a region of relatively small momenta
Q2

(
i. e., Q2&µ2IR

)
.

• region c) : This region belongs to the Feynman mechanism, which constitutes a highly asym-
metric momentum distribution, where a passive (observer) quark becomes soft. Similar to
region b), this sector is subleading [362]:

F
regionc)
γ∗γ→M

(
Q2
)
= O

(
1

Q4

)
. (744)

In terms of the standard terminology, Fγ∗γ→M
(
Q2
)

within this regime is given by an
overlap of non-perturbative wave functions, describing the involved initial and final states.
Based on the Brodsky-Lepage formula [301, 362], that may be illustrated for the related
quark-antiquark contribution9

(~ε⊥× ~q⊥) F
q̄q

γ∗γ→π0
(
Q2
)
=

fπ

4π3
√
3

∫1
0

dx
∫

d2k⊥
(~ε⊥×(x~q⊥+~k⊥))

(x~q⊥+~k⊥)
2
−i0+

Ψq̄q/π

(
x,~k⊥

)
, (745)

where ~q⊥
(
~q2⊥ = Q2

)
and ~ε⊥ are two orthogonal vectors in the transverse plane. In the

absence of any further knowledge, a convenient model for Ψq̄q/π [362, 368–370] is given
by the Gaussian ansatz

Ψq̄q/π

(
x,~k⊥

)
=
4π2

σ
√
6

φπ(x)

xx̄
exp

(
−

~k2⊥
2σxx̄

)
, (746)

which includes an additional width parameter “σ”.10 Given that
∑∞
n=0 a

π
2n is convergent

we may use (e. g., [362])

σ =
4π2f2π
3

∫1
0
dx
φπ(x)

x
. (747)

9 In this context “×” denotes the standard vector-product (e. g., Section A.9 and [128, 362]).
10 In general, specific normalization conditions for the wave function Ψq̄q/π may be chosen, e. g., such implied by an

adequate integration via
∫1
0 dx or

∫1
0 dx
∫

d2k⊥. Particularly, Equation 747 is a result of such constraints (cf. [362]). Other
approaches exist, which also define reasonable conditional equations for σ, including cases, where

∑∞
n=0 a

π
2n is not

convergent (see [362] and references therein).
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Based on Equation 746, one may carry out the k2⊥-integration within Equation 745, which
results [362] in the Musatov-Radyushkin model:

F
q̄q

γ∗γ→π0
(
Q2
)
=

√
2fπ

3Q2

∫1
0
dx
φπ(x)

x

[
1− e−

xQ2

2x̄σ

]
. (748)

While the first term in Equation 748 corresponds to a LO pQCD contribution, the second
term is exponentially small in Q2 and can, therefore, not be seen in any (finite) order of
the OPE (e. g., [281, 362]). Hence, it may be associated to the (entirely) soft contribution of
region c).

According to the previous discussion, two important issues in the subsequent calculations may
arise:

i) Can higher order or mass corrections to the correlation function be factorized?

ii) Is it possible to consistently include soft contributions from region b) and c)?

Therefore, the following subsections are devoted to the explicit proof of collinear factorization
at the intended accuracy. Throughout this proof we keep two non-vanishing photon virtualities.
This strategy results from the anticipated application of the LCSR method. The latter allows a
systematical inclusion of soft effects related to region b) and c) (see Section 4.2), in an (almost)
model-independent way.

4.1.2 Leading order calculations

In this subsection we introduce all necessary leading order results for the η(′)-TFF, including
some details concerning their calculation. Being mostly the result of standard methods, we omit
lengthy intermediate steps and only focus on corner posts such as the corresponding ansatz
along with several necessary tools.

Reconsidering the introductory example of Equation 121, we most conveniently get the required
tree-level contributions, by performing all possible contractions within Equation 731 up to O

(
α0S
)

accuracy. On these grounds, the desired LO corrections result from

〈M(P)|T
{
Jem
µ (x) Jem

ν (0)
}
|0〉
∣∣
LO

=
∑
ψ

e2ψ
(
〈M(P)|ψ̄(x)γµiSψ(x, 0)γνψ(0) |0〉+ 〈M(P)|ψ̄(0)γνiSψ(0, x)γµψ(x) |0〉

)
, (749)

which is at this point formally similar to the π0 TFF [281]. Evidently, in contrast to the pion
case, with one predetermined flavor structure, a more elaborate situation emerges for the η−η′

system. Based on our ansatz for the inclusion of mixing effects (see Section 3.1), we in general
have to decompose all occurring light-ray operators into currents with definite flavor content,
depending on the chosen basis. While we were able to establish an analogy between the pion
and the QF case due to a decoupling of light and strange contributions (cf. [3]), we would face
a different situation, when choosing the SO basis.11 Here, both, light and strange corrections
may belong to a singlet or an octet state at the same time. Therefore, we have to use at least
once a completeness relation, such as Equation 1066 which implies the closed form solution for

11 Note, that all OZI rule violations are neglected within the QF basis.
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this decomposition procedure. In order to exemplify that issue, let us consider a generic quark-
antiquark contribution (cf. Equation 749) with the flavor structure Fem = diag

(
e2u, e2d, e2s

)
. As a

result, we get (cf. Equation 188)

ψ
a
αFemψ

b
β =

8∑
A=0

√
2Tr
{
FemT

A
}
ψ
a
α

√
2TAψbβ

=
2√
3

[
e2u + e2d + e2s

]
ψ
a
α

√
2T0ψbβ +

√
2

3

[
e2u + e2d − 2e2s

]
ψ
a
α

√
2T8ψbβ

+
√
2
[
e2u − e2d

]
ψ
a
α

√
2T3ψbβ

= 2e2sψ
a
α

√
2Tsψbβ +

√
2
[
e2u + e2d

]
ψ
a
α

√
2Tqψbβ +

√
2
[
e2u − e2d

]
ψ
a
α

√
2T3ψbβ , (750)

which resembles a recurring pattern within the following calculation. For instance, when applied
to the real photon limit, we get

Fγ∗γ→M
(
Q2
)
=
f
(8)
M

3
√
6

∫1
0
duT (8)H

(
u,Q2;µ,αS(µ)

)
φ
(8)
M (u,µ)

+
2f

(0)
M

3
√
3

∫1
0
duT (0)H

(
u,Q2;µ,αS(µ)

)
φ
(0)
M (u,µ)

+
2f

(0)
M

3
√
3

∫1
0
duT (g)H

(
u,Q2;µ,αS(µ)

)
φ
(g)
M (u,µ) , (751)

together with (cf. [3, 20] and Equation 737)

T
(0)
H

(
u,Q2;µ,αS(µ)

)
= T

(8)
H

(
u,Q2;µ,αS(µ)

)
≡ 2T (3)H

(
u,Q2;µ,αS(µ)

)
, (752)

T
(g)
H

(
u,Q2;µ,αS(µ)

)∣∣∣
light

= −Cf
αS(µ)

2π

{
2 log(u)
ū2Q2

log
(
Q2

µ2

)

+
2 log(u)
uūQ2

[
3−

2

ū
+
u

2ū
log(u)

]}
+O

(
α2S

)
, (753)

in analogy to Equation 736 and Equation 737. Another substantial difference to the π0-case con-
cerns finite quark and meson mass corrections. Unlike earlier approaches (e. g., [20, 281]) we
also have to consistently include those contributions which are generated by the hard scatter-
ing kernels. Hence, we can, a priori, not neglect any terms that potentially produce O

(
mψ

)
or

O(mM) admixtures within TH. Accordingly, Equation 731 has to be calculated via the massive
quark-propagator12 (e. g., [75, 371, 372] and Equation 1142)

〈0|T
{
ψ(x) ψ̄(0)

}
|0〉

= iSψ(x) − ig

∫
d4k

(2π)4
e−ik·x

∫1
0
du

[
1

2

/k+mψ

(m2ψ − k2)2
Gµν(ux)σµν +

uxµ

m2ψ − k2
Gµν(ux)γν

]
, (754)

effectively producing the anticipated light-cone OPE. Consequently, the latter exhibits contribu-
tions of less singular terms ∼1/x2, log x2, etc., as compared to the leading contribution ∼1/x4 (e. g.,
[3] and Equation 139), which in effect can be related to higher twist DAs. Hence, they may be re-
ferred to as higher twist corrections. Essentially, those subleading expressions are one source of

12 Equation 754 corresponds to the light-cone expansion of a massive quark propagator in the QCD background field
[74, 75, 371].
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power corrections proportional to 1/[Q2]k (k∈N, k>2) to the η(′) TFF (cf. Section 4.1.1). Indeed,
the leading twist-two corrections arise from (modulo higher order terms)

T
{
Jem
µ (x) Jem

ν (0)
}
=


∑
ψ

e2ψ

∫
d4k

(2π)4i

e−ik·(x−0)

m2ψ − k2
ψ̄(x)γµ/kγνψ(0)


+

[
x↔0
µ↔ν

]
+ . . . , (755)

as implied by the most singular part of Equation 1142. Together with adequate matrix relations
(cf. Section A.1), e. g.,

ψ̄(x)γµ/kγνψ(0) = iεµναβk
αψ̄(x)γβγ5ψ(0) + . . . , (756)

the characteristic tensor structure may then be separated from the actual QCD amplitude13

iεµναβq
α
1 q
β
2 F

QCD;(tw2)
γ∗γ∗→M

(
Q2,q2

)

= 2
∑
ψ

e2ψ

∫
d4x
∫

d4k

(2π)4i

e−ix·(k+q1)

m2ψ − k2
〈M(P) |ψ̄(x)γµ/kγνψ(0)|0〉

= 2εµναβP
β
∑
ψ

e2ψF
(ψ)
M

∫1
0
duφ(ψ)

M (u)

∫
d4x
∫

d4k

(2π)4i
kα
eix·[uP−k−q1]

m2ψ − k2

= 2iεµναβq
α
1 q
β
2

∑
ψ

e2ψF
(ψ)
M

∫1
0
du

φ
(ψ)
M (u)

m2ψ − [uP− q1]
2

. (757)

Besides, the safely negligible O
(
m2ψ

)
terms, Equation 757 additionally gives rise to specific

meson mass corrections, that are basically also present in higher twist contributions. Generally
speaking, we face hard scattering kernels proportional to (k ∈N)

[
m2ψ − [uP− q1]

2
]−k

=
[
ūQ2 + uq2 + uūm2M +m2ψ

]−k

=

[
1

[
ūQ2 + uq2

]k −
kuūm2M[

ūQ2 + uq2
]k+1 +O

(
m2M

[Q2]
2+k

)]
+O

(
m2ψ

)
, (758)

which (after omitting quark-mass terms) can be expanded into a formal power series in the
variable “m2M/Q2”. This approach ensures a better compatibility with the given definition of
twist (cf. Chapter 3). Therefore, unlike the π0-case, specific amplitudes may feature modified
convolution integrals such as

F
QCD;(tw2)
γ∗γ∗→M

(
Q2,q2

)
= 2
∑
ψ

e2ψF
(ψ)
M

∫1
0
du

[
1

ūQ2 + uq2
−

uūm2M[
ūQ2 + uq2

]2

]
φ
(ψ)
M (u) , (759)

13 For convenient reference the amplitude in Equation 757 carries a superscript “tw2”, because it is related to a twist-two
DA.
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that should be included at the intended level of accuracy. Similarly, the corresponding twist-three
two-particle corrections, i. e.,

iεµναβq
α
1 q
β
2 F

QCD;(tw3)
γ∗γ∗→M

(
Q2,q2

)

= 2
∑
ψ

e2ψ

∫
d4x
∫

d4k

(2π)4i

mψe
−ix·(k+q1)

m2ψ − k2
〈M(P) |ψ̄(x)γµγνψ(0)|0〉

= iεµναβ
∑
ψ

e2ψ

∫
d4x
∫

d4k

(2π)4
mψe

−ix·(k+q1)

m2ψ − k2
〈M(P) |ψ̄(x)σαβγ5ψ(0)|0〉

= iεµναβq
α
1 q
β
2

[
2e2s
6

∫1
0
du

φ
(s);σ
3M (u)

[
ūQ2 + uq2

]2 +

√
2
(
e2u + e2d

)

6

∫1
0
du

φ
(q);σ
3M (u)

[
ūQ2 + uq2

]2

]
, (760)

have been beyond the scope of earlier approaches (e. g., [20, 281]). Correspondingly, we have
to pay special attention to their behavior. Yet, another possible twist-three contribution could
originate from mass corrections related to the three-particle DA ΦA3M(α) (cf. Equation 329). As
a matter of convenience, we may check this lead by expanding the gluonic part of Equation 754

up to O
(
mψ

)
:

〈0|T
{
ψ(x) ψ̄(0)

}
|0〉
∣∣

gluons

= g

∫
d4k

(2π)4i
e−ik·x

∫1
0

du
[(
1

2

/k

k4
σµν −

uxµ

k2
γν

)
Gµν(ux) +

1

2

mψ

k4
σµνG

µν(ux)

]
+O

(
m2ψ

)

=
igµ2−

D/2

16πD/2
Γ
(
D
2 −1

)
[
−x2

]D/2−1
∫1
0

du (/xσµν − 4iuxµγν)G
µν(ux)

+mψ
gµ2−

D/2

32πD/2
Γ
(
D
2 −2

)
[
−x2

]D/2−2
∫1
0

duσµνGµν(ux) +O
(
m2ψ

)
(761)

and analyze their possible contribution to FQCD
γ∗γ∗→M via

γµσαβγνG
αβ = 2iGµν − 2γ5G̃µν + 2σµξG

ξ
ν + 2σνξG

ξ
µ + gµνσαβG

αβ . (762)

By reformulating Equation 329

〈M(P) |ψ(z2n)
√
2TAσµνgGαβ(z3n)ψ(z1n) |0〉

= fA3M
(
εµνξαpβ − εµνξβpα

)
pξ
[
ΦA3M(z ,p·n)

]∗
+ . . . , (763)

it becomes evident that Equation 762 does not contribute to the intended higher twist accuracy.
This also includes twist-four three-particle terms of O

(
mψ

)
which are absent within the LO FF

due to their non matching tensor structure (cf. Equation 330, Equation 331). Likewise, at O
(
α0S
)

Equation 754 does not imply any additional O
(
mψ

)
corrections related to φ(ψ)

4M. Hence, the
relevant “twist-four” amplitude (cf. ansatz of Equation 757) boils down to

F
QCD;(tw4)
γ∗γ∗→M

(
Q2,q2

)
=
∑
ψ

e2ψ

2

∫1
0
du

F
(ψ)
M φ

(ψ)
4M(u)

[
ūQ2 + uq2 + uūm2M

]2

=
∑
ψ

e2ψ

2

∫1
0
du

F
(ψ)
M φ

(ψ)
4M(u)

[
ūQ2 + uq2

]2 +O

(
m2M

[Q2]
3

)
. (764)
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After discarding all O(m2M/
[
Q2

]3) admixtures, Equation 764 is formally analogous to the corre-
sponding results of, e. g., [281]. That is also true for three-particle twist-four contributions which
are obtained by evaluating diagram b) of Figure 20 (see also [373]), i. e.,∫1

0
du
∫
Dα

Φ̃A4M(α) + ξvΦ
A
4M(α)

[(α1 + vα3)P− q1]
4

=

∫1
0

du
ρA4M(u)

[uP− q1]
4

, (765)

together with (α3=1−α1 −α2)

ρA4M(u) =

∫u
0

dα1

∫ ū
0

dα2
α3

[
Φ̃A4M(α) +

ξu −α1 +α2
α3

ΦA4M(α)

]
, (766)

while discarding all additional meson mass corrections, as implied by the associated denom-
inator. Again, the resulting amplitude is of similar appearance as her pion counterpart (e. g.,
[280, 281, 352])

F
QCD;(tw4)
γ∗γ∗→M

(
Q2,q2

)∣∣∣
3PP

= −2
∑
ψ

e2ψF
(ψ)
M

∫1
0

du
ρ
(ψ)
4M(u)

[
ūQ2 + uq2

]2 . (767)

The distinctive differences between the mentioned mesons manifest themselves in their internal
structure determined by the corresponding DAs.
The latter can be obtained from an analysis of the scaled LO η(′)-TFF14:

Q2FQCD
γ∗γ→M

(
Q2
)∣∣∣

LO
= 2

∑
ψ=u,d,s

e2ψF
(ψ)
M

∫1
0

du
u

{
φ
(ψ)
M (u)

−
1

Q2

[
ūm2Mφ

(ψ)
M (u) −

1

6uF
(ψ)
M

φ
(ψ);σ
3M (u) +

1

u
A

(ψ)
4M(u)

]}
, (768)

where “A
(ψ)
4M” collects all contributing twist-four15 DAs:

A
(ψ)
4M(u) =

1

4
φ
(ψ)
4M(u) − ρ

(ψ)
4M(u) . (769)

Therefore, by proofing the related collinear factorization assumption, we may get further insight
into the particle’s non-perturbative behavior16. Within the real photon limit “q2→ 0”, however,
several contributions of Equation 768 become ill-defined when taken separately. For instance, at
NLO in conformal spin17, both terms

A
(ψ)
4M(u) = uū

(
60
mψf

(ψ)
3M

f
(ψ)
M

+
h
(ψ)
M

f
(ψ)
M

)
+ u2ū2

(
80

3
δ
2(ψ)
M −

h
(ψ)
M

f
(ψ)
M

[
13

12
−
21

2
c
(ψ)
2,M

]

−315
mψf

(ψ)
3M

f
(ψ)
M

)
+ u3ū3

(
h
(ψ)
M

f
(ψ)
M

[
7

2
− 45c

(ψ)
2,M

]
+ 70

mψf
(ψ)
3M

f
(ψ)
M

)
, (770)

as well as
(
expanded in powers of [uū]k, k ∈N0

)

−
φ
(ψ);σ
3M (u)

6f
(ψ)
M

= −uū

(
60
mψf

(ψ)
3M

f
(ψ)
M

+
h
(ψ)
M

f
(ψ)
M

)
+ 300u2ū2

mψf
(ψ)
3M

f
(ψ)
M

, (771)

14 In Equation 768 all contributions have been combined with the correct prefactors.
15 Here, A

(ψ)
4M is the η−η′ analogon of Fπ (cf. Equation 739).

16 Especially, the interdependence of all involved higher twist DAs can be studied in this context.
17 Explicit expressions may be found in Chapter 3.
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exhibit end-point divergences (highlighted in blue) caused by the corresponding convolution
integrals ∼

∫1
0du ūu . Nevertheless, the explicit calculation of Equation 768 yields a finite result18

Q2FQCD
γ∗γ→M

(
Q2
)∣∣∣

LO
= 2
∑
ψ

e2ψF
(ψ)
M

[
3
(
1+ c

(ψ)
2,M

)
−
1

Q2

[
h
(ψ)
M

f
(ψ)
M

(
2+ 3c

(ψ)
2,M

)

+

{
80

3
δ
2(ψ)
M −

h
(ψ)
M

f
(ψ)
M

(
67

360
−
5

4
c
(ψ)
2,M

)
+
200− 203

2

mψf
(ψ)
3M

f
(ψ)
M

}]]
(772)

= 2
∑
ψ

e2ψF
(ψ)
M

{
3
(
1+ c

(ψ)
2,M

)
−
1

Q2

[
h
(ψ)
M

f
(ψ)
M

(
2+ 3c

(ψ)
2,M

)

+
80

3
δ
2(ψ)
M −

h
(ψ)
M

f
(ψ)
M

(
67

360
−
5

4
c
(ψ)
2,M

)
−
3

2

mψf
(ψ)
3M

f
(ψ)
M

]}
. (773)

Notably, Equation 773 entails the following conclusions:

• factorization : The singularity at u→ 0 in Equation 771 exactly cancels with that of Equa-
tion 770 because both originate from similar twist-three operators19. Notably, this cancella-
tion is general and does not depend on the twist-three DAs’ shape.

• consistency check : Moreover, Equation 773 represents another successful consistency check
for our ansatz as formulated in Equation 729.

• fks scheme : When assuming the FKS mixing scheme all ratios (R= q , s)

hRM
fRM

=
hR
fR

, (774)

become independent of the meson state M = η , η′ . Consequently, the 1/Q2 corrections of
Equation 773 (in square brackets) also get particle independent. Moreover, while (cf. [3],
Table 8)

h
(s)
M

f
(s)
M

= (0.50± 0.04) GeV2 (775)

should be taken into account, the complementary ratio for light quarks is compatible with
zero (cf. discussion in [3]).

• dominant admixtures : Similar to Equation 739, the higher twist corrections of Equa-
tion 773 are dominated by the contributions proportional to δ2(ψ)

M , whereas the residual
twist-three admixtures20 ∼mψf

(ψ)
3M
/f(ψ)
M are numerically negligible.

Based on Equation 773 and Section 4.1.1 we obtain a rough estimate of the considered higher
twist contributions

(
at O

(
α0S
))

when inserting the given numbers (see [3] and Chapter 3)

FQCD
γ∗γ→M

(
Q2
)
=

[
1−

0.9 GeV2

Q2

]
F

QCD;(tw2)
γ∗γ→M

(
Q2
)

. (776)

18 In Equation 772 the finite contributions of Equation 771 have been highlighted in orange, while the rest of Equation 772

(inside curly brackets) corresponds to all non-singular corrections resulting from Equation 770. Note that the scale
dependence is not written out explicitly, but is always implied.

19 As discussed in Section 3.4.3, there are counterparts to φ(ψ);σ
3M within A

(ψ)
4M, that are generated by adequate EOM.

20 These originate from contributions of twist-three quark-antiquark-gluon matrix elements.
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Figure 22: Assortment of conceivable twist-six contributions to the η(′) TFF (cf. [140, 281]). Here, a possible
non-perturbative quark-vacuum interaction is taken into account, via the inclusion of quark
condensate terms (cf. [64, 73–76]).

As expected, these corrections are only relevant in the small-Q2 region. Conversely, one can
show that contributions of arbitrary twist may produce 1/Q2 terms as well (see [281, 373] for a
detailed discussion), indicating that the light-cone dominance of Equation 731 with one virtual
and one real photon does not hold beyond leading power accuracy. An estimate of, e. g., the
twist-six corrections [373] results in a small positive 1/Q2 contribution that is enhanced via an
additional logarithmic factor (see [3, 373]).

For the η(′)-TFF, this approach would have to be retrofitted with O
(
mψ

)
terms, originating from

the (massive) quark propagator and quark condensates21 (see Figure 22). Still, the general mis-
match of twist- and power-counting remains. This is caused by the fact that to power accuracy
one must consider contributions of large light-cone distances between the currents (e. g., similar
to Equation 740) that are not “seen” in the twist expansion (see discussion in [3]). Up to O

(
α0S
)
,

such terms conceivably imply only a numerically small alteration within Equation 776 and the
resulting TFF as a whole. Consequently, it is reasonable to focus on the more pressing issue of
how NLO gluonic corrections can be included into our considerations. Hence, this will be a key
aspect of the following subsections.

4.1.3 Next-to-leading order calculations – light quark corrections

In this subsection, we focus on the calculation of αS-corrections related to gluonic DAs at leading-
twist accuracy and for light-quark flavors. Particularly, we assume two non-vanishing photon vir-
tualities, while performing all relevant analytical computations within the framework of pQCD

in external fields22 (see [64, 73–76]).

The main challenge is rooted in a key feature of the η−η′ system: its possible two-gluon content.
As depicted in Figure 23, each meson of the pseudoscalar octet (cf. Figure 1) can be exited via a
quark-antiquark pair. According to Chapter 3, η and η′ mesons may also be created by a photon-
photon fusion into two gluons. This (short-distance) mechanism (see Figure 24), however, is
suppressed by an extra factor of αS, when compared to the subprocess γ∗γ(∗)→ψ̄ψ (ψ=u,d, s),

21 Evidently, a distinction between light and strange flavor condensates requires non-vanishing quark-mass terms. How-
ever, in order to find all possible O

(
mψ

)
corrections, the quark propagator (expanded in an external field) has to be

reconsidered as well. A priori, this requires a rather costly calculation with an expectedly small numerical impact.
22 The corresponding results have also been tested by means of “standard” pQCD methods (i. e., those mentioned in [112]).
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M
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γ(∗)
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M

γ∗
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Figure 23: Sample of NLO Feynman diagrams contributing to the γ∗γ(∗)→M amplitude (e. g.,M=π0,η,η′).
Complementary diagrams can be obtained by reversing the fermion flow’s direction.

which may already be realized at LO in pQCD. Consequently, we naively might expect a strong
suppression of the gluonic DAs φgM within hard exclusive processes when compared to quark
distributions such as φRM (R = q, s). A consistent inclusion of all described NLO contributions
in combination with the O

(
α2S
)

RG corrections a posteriori leads to non-negligible effects, espe-
cially within Fγ∗γ→η′ (see Section 4.3). Therefore, after those adjustments, this process exhibits a
strong23 sensitivity to both quark and gluon DAs. Besides, another conceivable process which in
principle could be used as a promising testing ground for the twist-two η(′) meson DAs, is given
by (M1,M2=η,η′)

γ∗γ∗ →M1M2 . (777)

As discussed in [300], such a central exclusive pair production of pseudoscalar mesons would
potentially display a high sensitivity to gluonic components of the η and η′ mesons (for details
see also [374–377]). In particular, it is an example, where the two-gluon components enter at
the same order as quark-antiquark Fock states (see Figure 25). Hence, when corresponding data
gets available, this process should be recalculated within a model-independent approach. For
the time being, let us focus on the calculation of Figure 24.

In pQCD, the formation of η or η′ mesons out of light (at O
(
αQED

)
) via an intermediate two-

gluon state is given by corresponding NLO box-diagrams, such as those within Figure 24. When
considering quark loop effects of light flavors, a calculation in external fields seems to be prefer-
able. A major reason for this choice may be found in the resulting transformation of loop into
Fourier integrals (cf. Section B.6) which are (at least for the current problem) easier to solve. For
this purpose, the NLO diagrams of Figure 24 have to be reinterpreted and treated as follows:

i) According to24 Figure 26, the diagrams a) and b) of Figure 24 correspond to a product
of two propagators: one free, the other one emitting two soft gluons. Analogously, the
remaining diagram c) may be regarded as a quark propagation from xµ to yµ=0 and back,
each time accompanied by an emission of a slowly oscillating gluon field25.

ii) Furthermore, all emerging contributions ∼GαβGµν, G̃αβGµν, or GαβG̃µν, have to be taken
into account. Similar to Figure 9, the latter are non-perturbative objects, but instead of
forming condensates, they hadronize into η(′) mesons.

23 This may be seen on the level of Gegenbauer coefficients, as specified in Section 4.3.
24 In order to point out the difference between gluon condensates (see Figure 9 and [74]) and soft gluonic contributions to

Equation 731, we retrofit the latter with a blob.
25 The corresponding expressions for quark propagators are collected in [64, 73–76].
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M

Figure 24: Short distance gluon fusion mechanism for the η(′) meson creation. Distinct one-loop box-
diagrams of the corresponding γ∗γ(∗)→M (M=η,η′) amplitude.

Thus, for the actual calculation it becomes necessary to unfold the tensor structure of Equa-
tion 301, e. g., via

(
n2=0

)

〈0|Gαβ(z2n)Gµν(z1n)|M(P)〉 = f(0)M Tαβ;µν

∫1
0
dx e−iz

x
21(P·n)φ(g)

M (x) , (778)

〈0|G̃αβ(z2n)Gνµ(z1n)|M(P)〉 = f(0)M T̃αβ;µν

∫1
0
dx e−iz

x
21(P·n)φ(g)

M (x) , (779)

as well as

〈0|Gαβ(z2n) G̃µν(z1n)|M(P)〉 = f(0)M T̃αβ;µν

∫1
0
dx e−iz

x
21(P·n)φ(g)

M (x) . (780)

Where, in analogy to Equation 101, the Lorentz structures are given by

T̃αβ;µν =
Cf

4
√
3

[
pα
(
pµgβν − pνgβµ

)
+ pβ(pνgαµ − pµgαν)

]
, (781)

Tαβ;µν = −
1

2
ε ωτ
µν T̃αβ;ωτ =

Cf

4
√
3
pξ
(
pαεβξµν − pβεαξµν

)
, (782)

where pµ is a light-like vector constructed from nµ and Pµ (see Section A.10).26 In order to

26 Since we only want to take into account leading twist corrections, other possible parametrizations, such as

T alt
αβ;ωτ =

Cf

4
√
3
Pξ
(
Pβεωταξ−Pαεωτβξ+Pωεαβτξ−Pτεαβωξ

)
,

along with
(
T̃ alt
αβ;µν=

1
2ε

ωτ
µν T alt

αβ;ωτ
)

T̃ alt
αβ;µν =

Cf

4
√
3

{
2
[
Pβ(Pµgνα−Pνgµα)+Pα

(
Pνgµβ−Pµgνβ

)]
+P2

(
gµαgνβ−gναgµβ

)}
,

are excluded. The latter are contaminated with O
(
m2
M

)
contributions which could be interpreted as higher twist effects

(Equation 784).
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M1
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γ∗

M2γ∗

M1

γ∗

Figure 25: Representative Feynman diagrams for the γ∗γ∗→M1M2 (M1,M2=η,η′) transition (e. g., [300,
348]), belonging to two distinct classes of characteristic perturbative subprocesses, i. e., γ∗γ∗→
ψ̄ψχ̄χ or γ∗γ∗→ψ̄ψgg (ψ,χ=u,d, s).

demonstrate the need for Equation 778–Equation 780, let us, e. g., consider diagram b) of Fig-
ure 26, whose two-gluon leading twist contributions can be reduced to∫

dDx e−iq1·x〈M(P)|Tr
{
iSψ(0, x)γµiSψ(x, 0)γν

}
|0〉

= g2µ4−D
∫

dDx e−iq1·x
∫1
0
du 〈M(P)|Tr

{
Γ
(
D
2

)
/x

2πD/2i
[
−x2

]D/2γµ×

×
[

4iΓ
(
D
2 −1

)
/x

16πD/2
[
−x2

]D/2−1
∫u
0

dv ūxαvxβGαξ(ux)G
ξ
β (vx)

+
iΓ
(
D
2 −2

)

16πD/2
[
−x2

]D/2−2
(
uūxαγβ

[
Gβξ(ux)G

ξ
α (ux) − (α↔β)

]

+
1

2

∫u
0

dv
[
(2ūξv + 1) x

αGαξ(ux)G
ξ
λ(vx)γ

λ + (1− 2vξu)γ
αGαξ(ux)G

ξ
λ(vx) x

λ

+ ixαG̃αξ(ux)G
ξ
λ(vx)γ

λγ5 + i (ξv + 2ū) x
αGαξ(ux) G̃

ξ
λ(vx)γ

λγ5

])]
γν

}
|0〉 . (783)

When combined with all other corrections, we get27 a result proportional to
(
a :=uv+ ūw

)

∫1
0
du
∫1
0
dv
∫1
0
dwΘ(w− v)

(v−w)
(
ξa�

��Z
ZZ

m2M +Q2 − q2
)

[
aā
�
��Z
ZZ

m2M + āQ2 + aq2
]4−D/2φ

(g)
M (u)

=

∫1
0
du



∫u
0

dv
v2
(
ξv�
��Z
ZZ

m2M +Q2 − q2
)

[
vv̄
�
��Z
ZZ

m2M + v̄Q2 + vq2
]4−D/2 −

∫1
ū
dv

v̄2
(
ξv�
��Z
ZZ

m2M +Q2 − q2
)

[
vv̄
�
��Z
ZZ

m2M + v̄Q2 + vq2
]4−D/2



φ
(g)
M (u)

2u2
, (784)

from which we may extract the hard scattering kernel28

(
c1(µ, ε):= [4πµ2]

ε
Γ(2−ε)Γ(2+ε)Γ(−ε)

Γ(2−2ε)

)

TGH

(
u,Q2,q2

)
=
CfαS
2π

c1(µ, ε)
1

u2

[∫u
0

dv
v2
(
Q2−q2

)
[
v̄Q2+vq2

]2+ε −

∫1
ū
dv

v̄2
(
Q2−q2

)
[
v̄Q2+vq2

]2+ε

]
. (785)

27 For the calculation of Equation 784 we (partially) took into account O
(
m2
M

)
corrections.

28 Now including all prefactors, while suppressing the underlying scale dependencies.
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The corresponding ε-expansion29

TGH

(
u,Q2,q2

)
=
1

ε
T
g
div

(
u,Q2,q2

)
+ T

g
H

(
u,Q2,q2

)∣∣∣
light

+O(ε) , (786)

implies two (new) coefficient functions30, i. e.,

T
g
div

(
u,Q2,q2

)
=

2

u2ū2
[
Q2−q2

]2
CfαS
2π

[
u2Q2 log

(
uQ2+ūq2

Q2

)

− ū2q2 log
(
uQ2+ūq2

q2

)]
, (787)

T
g
H

(
u,Q2,q2

)∣∣∣
light

=
−1

u2ū2
[
Q2−q2

]2
CfαS
2π

{
u2Q2 log

(
uQ2+ūq2

Q2

)
×

×
[

log
(
uQ2+ūq2

µ2

)
+ log

(
Q2

µ2

)]

− ū2q2 log
(
uQ2+ūq2

q2

)[
log
(
uQ2+ūq2

µ2

)

+ log
(
q2

µ2

)]
+ 2

[
Q2u(3ū− 2) log

(
uQ2+ūq2

Q2

)

−q2ū (3u− 2) log
(
uQ2+ūq2

q2

)]}
, (788)

where especially the second one is relevant for our subsequent considerations. Besides, within
the limit “q2→0” Equation 788 reproduces a major result of [20], namely:

lim
q2→0

TGH

(
u,Q2,q2

)
= Cf

αS
2π

2 log(u)
ū2Q2

{
1

ε
−

[
1

u
− 3+

1

2
log(u) + log

(
Q2

µ2

)]}
. (789)

Therefore, Equation 786 represents the generalization of Equation 789 to q2 6= 0, as needed for
the anticipated LCSR approach (see Section 4.2).

4.1.4 Next-to-leading order – charm quark corrections

In this subsection, we focus on methods and results concerning the calculation of heavy quark
effects related to the η(′) TFF. These effects are especially important for large momentum trans-
fers where they enhance the most interesting two-gluon DAs decisively (see Section 4.3). Hence,
for this work, their inclusion is mandatory.

An inclusion of heavy flavor contributions into the selected QCD factorization formalism in prin-
ciple requires a reconsideration of the (physical) factorization scale “µ”. The latter can either be
(much) larger, µ�mh, or smaller, µ�mh than a given quark mass “mh” (h= c,b, t). Conse-
quently, two distinct approaches arise (cf. [3, 378–382]):

i) The decoupling, or fixed flavor number scheme (FFNS) which presumes a large quark mass(
i. e., ΛQCD� µ�mh,Q

)
of similar order as the photon virtuality Q2, predetermines all

29 Here, we by default use the MS-scheme (e. g., Equation 43).
30 While neglecting irrelevant contributions, such as “2uū

(
q2−Q2

)
” in Equation 787, which disappear after a convolu-

tion with φgM.
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γ(∗)

γ∗

a)

γ(∗)

γ∗

b)

Figure 26: Schematic diagrams, depicting the radiation of soft gluons (cf. [74]), similar to Figure 9. In con-
trast to the latter, these soft gluonic fields hadronize into η or η′ mesons.

“light” quark species via mlight <mh. For this scenario it is natural to write the involved
structure functions as a convolution of (hard) coefficient functions and (soft) parton densi-
ties that only involve light flavors (cf. [3]).

ii) Another possibility is given by assuming the hierarchy

ΛQCD,mh � µ� Q , (790)

and write the FF as a sum of active (heavy) flavors31. This ansatz is usually called the
variable flavor number scheme (VFNS).

Within this subsection and beyond, we favor scheme i) which retains the entire heavy quark
dependence in the coefficient functions. That ensures a standard one-scale calculation, incorpo-
rating (m2h/Q2)

n (n ∈ N0

)
terms as well (e. g., [383]). Nonetheless, for Q2�m2h the coefficient

functions involve potentially large logarithms ∼ log(Q2/m2h) which a priori should be resummed
systematically (e. g., [3, 380, 381]). Such improvements, however, are not likely to be large and
their numerical impact on the TFF should be negligible (cf. discussion in [3, 281]). Thus, we may
now focus on those techniques which allow a systematic calculation of heavy flavor corrections
to the (NLO) hard scattering kernels of Equation 751. A major reason for using such an approach
lies in its high degree of automation. The latter is indispensable when considering “real life” loop
calculations which at some point may produce an unmanageable number of terms. Hence, our
computations have been implemented in WolframMathematica®

8 [36], employing the Tracer 1.1
[384] and FeynCalc 8.1.0 [385, 386] packages32 for the decomposition of traces and resulting ten-
sor integrals. Due to the inherent limitations33 as set by FeynCalc 8.1.0, a bulk part of the actual

31 Their number changes according to the scale (cf. Section 2.3).
32 The FeynCalc 8.1.0 package enables a symbolic computation of specific tensor integrals (cf. [385, 387]).
33 In this context, the used FeynCalc 8.1.0 version provides a function called “OneLoop” which hitherto has been the only

implemented tool for a tensor decomposition of one-loop integrals. Most importantly, the tensor integrals’ maximal
processable rank has been limited to three, while the output was written in terms of (formal) Passarino-Veltman (PV)
coefficient functions. Therefore, its use has to be seen as a workaround, needed for our semiautomatic ansatz. This being
said, an updated version of FeynCalc 9 has been released recently (cf. [386]) which reportedly overcomes some of those
limitations.
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p1

pNN−1

pN−1N−2

p21

q

q + pN−1

q + p1 q + p2

q + pN−2

Figure 27: Conventions for N-point integrals, having the momenta p1, . . . ,pN−1 and q (e. g., [388]).

calculation has been kept independent of the underlying algorithm which allowed an additional
cross-check with a different reduction method.

4.1.4.1 Reduction algorithm

In order to discuss the main features of these reduction methods in detail, let us first review
some common facts about loop integrals.

Subsequently, the general classification of one-loop integrals in D dimensions (cf. Figure 27),
assumes N

(
N ∈ N

)
propagators in the denominator, together with P

(
P ∈ N0

)
integration

momenta within the corresponding numerator. Therefore, they happen to be UV divergent for
P+D−2N > 0 (e. g., [388]). As discussed in Chapter 2, those divergences can be regulated for
D 6= 4, while within a renormalizable theory we may assume P 6 N (see also [44, 388]). Thus,
considering a given problem and loop order, one faces a finite number of divergent integrals.
Moreover, all encountered one-loop (tensor) integrals, such as [388]

TNµ1...µP (p1, . . . ,pN−1;m0, . . . ,mN−1) :=
(2πµ)4−D

iπ2

∫
dDk

kµ1 · · ·kµP
D0D1 · · ·DN−1

, (791)

with denominator factors34 (j=1, . . . ,N− 1)

D0 := k
2 −m20 + i0

+ ≡ D0
(
m20

)
, Dj :=

(
k+pj

)2
−m2j + i0

+ ≡ Dj
(
m2j

)
, (792)

34 Like before “i0+” is an infinitesimal imaginary part (i. e., if φ : C → C is a test function with x 7→ φ(x), then
φ(x+i0+)≡ limε→0+ φ(x+iε)), which is needed to regulate singularities of the integral. Besides, it ensures causality
(e. g., [64]) and (after integration) determines the correct imaginary parts of resulting Spence functions or logarithms.
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only depend on the external momenta
(
p
µ
0 vanishes

)

p
µ
j0

:= pµj , p
µ
ij
:= pµi − pµj (793)

and the involved quark-masses mk (k = 0, . . . ,N − 1). Accordingly, their Lorentz covariance
allows an efficient decomposition into scalar integrals “TL0 ” (L6N), multiplied by tensors con-
structed from corresponding four-momenta (cf. Equation 793) and, in some cases, the metric
tensor. A well established method based on this circumstance is given by the PV algorithm35

[388, 394–400]. In its essence, this procedure can be roughly summarized as follows:

i) The Lorentz covariance of Equation 791 formally implies [388, 394]

TNµ1...µP (p1, . . . ,pN−1;m0, . . . ,mN−1) =

N−1∑
i1,...,iP=0

TNi1...iPpi1µ1 · · ·piPµP , (794)

where we have introduced the auxiliary four-vectors pµ0 . The latter give rise to totally
symmetric tensors, constructed from gµν via36

P∏
j=1

p0µj 7−→
{
g{µ1µ2 gµ3µ4 · · ·gµP−1µP} ,P even

0 ,P odd
. (795)

Notably, for N > 5 and a sufficient number of linear independent external momenta
{p̃1, . . . , p̃4} ⊆ {p1, . . . ,pN−1} Equation 794 can be replaced by [388, 394]

TNµ1...µP (p1, . . . ,pN−1;m0, . . . ,mN−1) =

4∑
i1,...,iP=1

TNi1...iP p̃i1µ1 · · · p̃iPµP , (796)

which, similar to Equation 794, includes unique scalar coefficient functions TNi1...iP . Those
are symmetric under any exchange of arguments and related indices, such as

(pk,mk, ik)↔
(
pj,mj, ij

)
, (797)

because the underlying one-loop integrals are themselves invariant with regard to similar
transformations concerning their propagators. Besides, when recording an explicit result,
one conveniently denotes TN by the Latin alphabet’s Nth letter, i. e., T1≡A, T2≡B, and so
forth.

ii) Most importantly, the emerging invariant coefficients within Equation 794 can then be
iteratively reduced to scalar integrals TL0 which in principle37 boil down to a basic set of PV

functions, as represented by A0, B0, C0 and D0 (cf. Section B.1).

The first step towards this favored reduction algorithm affects all scalar products within a given
loop integrand’s numerator which naturally can be expressed in terms of denominator factors
(e. g., [388, 394])

k · pj =
1

2

[
Dj−D0−fj

]
, fj = p

2
j −m

2
j +m

2
0 , (798)

k2 = D0 +m
2
0 . (799)

35 This commonly used term only mentions two of the many trailblazers in perturbative QFT (e. g., [44, 388]). In particular,
its application to NLO calculations of electroweak phenomena and the related renormalization of the SM (e. g., [44, 388–
391]) lead to an ongoing development within this field. Only recently, the linked problem of (scalar) one-loop integrals
has been reexamined [392, 393] and is only now assumed to be completely solved.

36 Within Equation 795 the bracket notation (cf. [401]) indicates a symmetrization over Lorentz indices included in those
brackets, e. g., g{µ1µ2

gµ3µ4}=gµ1µ2gµ3µ4+gµ1µ3gµ2µ4+gµ1µ4gµ2µ3 (see also [388]).
37 Except some special cases, everyN-point scalar integral (N>5) can be reduced to a set of four-point integrals, i. e., D0s

in four space-time dimensions (cf. [388, 394, 402–404]).
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To that effect, Equation 798 and Equation 799 entail two essential relations (cf. Equation 791)

RN,k
µ1...µP−1

:= TNµ1...µPp
µP
k =

1

2

[
TN−1
µ1...µP−1

[k]−TN−1
µ1...µP−1

[0]−fkT
N
µ1...µP−1

]
, (800)

RN,00
µ1...µP−2

:= TNµ1...µPg
µP−1µP = TN−1

µ1...µP−2
[0] +m20T

N
µ1...µP−2

, (801)

when employing the common definition38 (cf. [388, 394]; n=0, 1, . . . ,N)

TNµ1...µP [n] :=
(2πµ)4−D

iπ2

∫
dDk

kµ1 · · ·kµP
D0D1 · · ·DN

Dn . (802)

Additional contractions with external momenta, accompanied by another Lorentz decomposition
of involved tensor integrals within Equation 800 and Equation 801, such as

(
M6N− 1

)

RN,k
µ1...µP−1

=

M∑
i1,...,iP−1=0

RN,k
i1...iP−1

pi1µ1 · · ·piP−1µP−1 , (803)

RN,00
µ1...µP−2

=

M∑
i1,...,iP−2=0

RN,00
i1...iP−2

pi1µ1 · · ·piP−2µP−2 , (804)

give rise (see also e. g., [388, 394]) to a multitude of linear equations for the relevant coefficient
functions, formally resulting in [388] (see also Section B.2)

TN00i1...iP−2 =
1

D+ P− 2−M

[
RN,00
i1...iP−2

−

M∑
k=1

RN,k
ki1...iP−2

]
, (805)

TNki1...iP−1 =
(
X−1
M

)
kk′

[
RN,k′
i1...iP−1

−

P−1∑
r=1

δk
′
ir
TN00i1...ir−1ir+1...iP−1

]
. (806)

I. e., this set further decomposes into disjoint sub-sets of (up to) N−1 equations for each tensor
integral which can be solved, if the inverse matrix (cf. [388, 405])

X−1
M =




p21 p1 · p2 · · · p1 · pM
p2 · p1 p22 · · · p2 · pM

...
...

. . .
...

pM · p1 pM · p2 · · · p2M




−1

(807)

exists. Hence, the related invariant functions then yield tensor integrals (cf. Equation 805, Equa-
tion 806) with viewer indices and propagator factors (see [388, 394, 405] for details). In this
way, the bulk part of all required tensor integrals can be iteratively rewritten in terms of scalar
integrals and predetermined Lorentz tensors (see39 Section B.2). Nevertheless, there are a few
problematic cases which have to be circumvented40 (e. g., [388, 394]), for instance:

1) If (XN−1)ij=pi·pj
(
i, j=1, . . . ,N−1; cf. Equation 807

)
becomes singular, the described PV

algorithm breaks down. At best, this is caused by linearly dependent (external) momenta
which correspondingly can be left out in the Lorentz decomposition and Equation 807.
That implies a smaller matrix XM′

(
M′ 6N− 1

)
, which, if it is non-singular, restores the

algorithm.

38 Having an external momentum in its first propagator, the case n=0 has to be treated with caution. In order to restore
Equation 791, the integration measure of TNµ1...µP [0] has to be shifted accordingly, e. g., via k→k−p1.

39 An explicit application of this method can be found in Section B.2, where we calculate the first view tensor integrals.
40 Consistent with this rough sketch of the PV reduction algorithm, we only list the most relevant scenarios.
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2) If the Gram determinant detXN−1 is zero, but without linearly dependent four-momentum
vectors, a different reduction method has to be used (e. g., [402, 403]).

3) Another “worst case” scenario occurs
(
relevant for N> 5

)
when the Cayley determinant

[388, 394] “det Y”, as defined by

(Y)ij ≡ Yij :=m2i +m2j − p2ij , (808)

is vanishing. Consequently, the relatedN-point one-loop integral has either to be calculated
directly, or a different reduction procedure has to be applied (see [388, 402–404]).

Specifically, point 1) and 2) are relevant for the consecutive calculation of (leading-twist) charm-
quark effects due to occurring collinear momenta.

However, before proceeding, it should be mentioned, that the complementary Duplančić–Nižić
algorithm (see [406] for details), which we have used as a nontrivial cross-check, is addition-
ally based on integration-by-parts identities (e. g., [407–410]) in combination with the discussed
Lorentz decomposition (cf. [406]). This leads to different recursion relations for scalar integrals,
without restrictions regarding the external momenta41 (cf. [406, 416]). The resulting reduction
method [406, 407] is particularly useful for multi-leg calculations which include Feynman inte-
grals with massless internal lines (cf. [406]).

4.1.4.2 Calculation of charm quark corrections

For an explicit derivation of relevant heavy flavor corrections we may now resort to the discussed
reduction algorithm and introduced tensor integral formalism (cf. Section 4.1.4.1). Fortunately,
this profoundly facilitates a detailed delineation of intermediate steps towards our result, even
though the latter is actually independent of any decomposition method.

In order to get there, let us start with the following ansatz:

• The gluonic corrections to Equation 751 can be calculated with one single non-vanishing
photon virtuality Q2� 0, i. e., qµ2 can be treated as a given light-like vector.

• Furthermore, when focusing on leading twist NLO contributions, we may neglect all O
(
m2M

)

corrections from the very beginning.

Both points combined allow an efficient tensor decomposition due to the corresponding cancel-
lation of involved integrals and coefficient functions, as indirectly implied by P2,q2 = 0. Yet,
the very same set-up can also cause a breakdown of our preferred PV reduction algorithm, in
particular, when applying the QCD factorization (cf. Section 4.1.1) approach which may gener-
ate additional collinear four-momenta42 within related subgraphs. Consequently, a reasonable
choice of the interrelated momentum configuration is imperative, as discussed below.

In any case, the eligible heavy quark NLO corrections require an adequate reevaluation of all

41 Additionally, the involved generalized recursion relations connect scalar integrals in a different number of dimensions
with each other [407, 411–415]. Therefore, this algorithm also has a different set of master integrals.

42 Notably, a collinear setting permits the reformulation of scalar four-point integrals in terms of three-point PV functions
and their derivatives (see Equation 835).
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(A) (A′)
i) k→k−uP,
ii) P →−P,

qn→−qn
(n=1, 2) ;

k

k + P

k + q2 k + uP

q2 uP

q1 ūP

k + uP

k − ūP

k + q1 − ūP k

q2 uP

q1 ūP

ν α

µ β

ν α

µ β

Figure 28: Two basic possibilities for the hard subgraph of Figure 24 a) (or b), respectively). The corre-
sponding translation “kµ→ kµ−uPµ”, followed by a reversal of all “external” gauge particles’
momenta transforms diagram (A) into (A′).

related one-loop diagrams, i. e., those given by Figure 24. When starting with Figure 24 a), a
standard pQCD analysis of the embedded hard subgraph leads to the intermediate result43

M(A)
µν :=

∑
ψ

e2ψg
2µ4−D

∫
dDy

∫
dDz



4∏
j=1

∫
dDkj
(2π)D


eix·(k1−k2)+iy·(k3−k4)+iz·(k2−k3)×

× Tr
{(
/k1 +mψ

)
γµ
(
/k2 +mψ

)
/A(z)

(
/k3 +mψ

)
/A(y)

(
/k4 +mψ

)
γν
}∏4

l=1

[
k2l −m

2
ψ + i0+

] , (809)

which can then be further examined via the collinear factorization ansatz (cf. Equation 738).
Depending on the essential definition44 (see Equation 731)

F
(A)
µν (q1,q2) :=

∫
dDx e−iq1·x〈M(P)|M(A)

µν |0〉 , (810)

as well as (cf. Equation 303)

〈M(P) |Aα(z)Aβ(y)|0〉
∣∣
(z−y)2=0

∼ εαβσρ
Pσ(zρ − yρ)

P·(z− y) f0M

∫1
0
dueiP·(uy+ūz)

φ
g
M(u)

uū
, (811)

Equation 809 implies (modulo constant factors)

F
(A)
µν ∼

∑
ψ

e2ψCf
αS
2π

f0M
Q2
εαβρτq

ρ
1q
τ
2

∫1
0
du

φ
g
M(u)

uū
I(A,ψ)
µν;αβ(u;q1,q2) , (812)

43 In contrast to the background field method (cf. Section 4.1.3), a pQCD ansatz, e. g., as given by Equation 809 involves
combinations of soft gluon fields “Aµ”, instead of field-strength tensors “Gµν”.

44 Formally, the definition given in Equation 810 and, therefore, Equation 812 are analogous for all discussed cases, includ-
ing A=B,C.
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whose solution breaks down to a tensor reduction of

I(A,ψ)
µν;αβ(u;q1,q2)

:=

∫
dDk

Tr
{(
/k+ /q1+mψ

)
γµ
(
/k+mψ

)
γα
(
/k+ū/P+mψ

)
γβ
(
/k+/P+mψ

)
γν
}

[
k2 −m2ψ

][
(k− q1)

2 −m2ψ

][
(k+ ūP)2 −m2ψ

][
(k+ P)2 −m2ψ

] . (813)

Apparently, instead of Equation 813 we may equivalently solve (see Figure 28)

I(A,ψ)
µν;αβ(u;q1,q2)

∣∣∣
alt

=

∫
dDk

Tr
{(
/k+/P+mψ

)
γµ
(
/k+/q2+mψ

)
γν
(
/k+mψ

)
γα
(
/k+u/P+mψ

)
γβ
}

D0D1D2D3
, (814)

with the underlying (auxiliary) momenta (cf. Equation 792)

p
µ
1 = Pµ , p

µ
2 = qµ2 , p

µ
3 = uPµ . (815)

This choice exhibits several advantages over the original configuration (see Equation 813) due
to a facilitated trace and related denominator decomposition, as implicated by Equation 798(
p2i , fi = 0, ∀i = 1, 2, 3

)
. Appropriately, after applying Equation 798 and further simplifications,

Equation 814 can be split up into three different structures45

εαβρτq
ρ
1q
τ
2 I(A,ψ)
µν;αβ(u;q1,q2)

∣∣∣
alt

∼ εµνρτP
ρqτ2

[
Q2
(
uT30 [1] − ūT

3
0 [0] − T

3
0

)
− 2

(
T20 [0, 1] + T

2
0

)]

+ 2ε αν ρτP
ρqτ2

[
ξuQ

2T4αµ − PµξuT
3
α[2] + q2µT

3
α[1] −

(
Pµ+q2µ

)
T3α[0] − 2T

3
αµ[0]

]

+ 2ε αµ ρτP
ρqτ2

[
−ξuQ

2T4αν + PνξuT
3
α[2] + q2νT

3
α[1] + q1νT

3
α[0] + 2T

3
αν[1]

]
, (816)

where we adopt the generalization of Equation 802:

TN−n
µ1...µP

[m1, . . . ,mn] :=
(2πµ)4−D

iπ2

∫
dDk

kµ1 · · ·kµP
D0D1 · · ·DN−1

Dm1 · · ·Dmn . (817)

An extended calculation yields
(
p212=q

2
1, p213=0, p

2
23=uq

2
1; cf. Equation 815

)
a formal interme-

diate result in terms of PV functions (see Section B.1):

εαβρτq
ρ
1q
τ
2 I(A,ψ)
µν;αβ(u;q1,q2)

∣∣∣
alt

∼ iεµναβq
α
1 q
β
2

{
2− 2B0

(
p213;m2ψ,m2ψ

)
+
1

ū

[
B0
(
p212;m2ψ,m2ψ

)
−B0

(
p223;m2ψ,m2ψ

)]

+Q2

[[
2m2ψ

Q2
+u

]
C0
(
p22,p23,p223;m2ψ,m2ψ,m2ψ

)
− C0

(
p21,p22,p212;m2ψ,m2ψ,m2ψ

)

+2

[
m2ψ

Q2
−ξu

]
C0
(
p213,p212,p223;m2ψ,m2ψ,m2ψ

)
− ūC0

(
p213,p223,p212;m2ψ,m2ψ,m2ψ

)

−4ξum
2
ψD0

(
p213,p23,p22,p212,p21,p223;m2ψ,m2ψ,m2ψ,m2ψ

)]}
. (818)

45 After further tensor reduction, only a single structure will remain, as implied by Equation 731.
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(B) (B′)
i) k→k+ūP−q1,

ii) P →−P,
qn→−qn
(n=1, 2) ;

k + q1 k + q1 − ūP

k k + uP

k − ūP k

k + uP − q2 k − q2

ūP

uP

q1

q2

α α

β β

µ µν ν

ūP

uP

q1

q2

Figure 29: In analogy to Figure 28, (B) as well as (B′) represent the two fundamental choices for a hard
subgraph of Figure 24 c). Accordingly, the transition between (B) and (B′) is given by a shift
“kµ→kµ+ūPµ−qµ1 ” along with an inversion “Pµ→−Pµ”, “qµn→−qµn” (n=1, 2).

This notation enables a compact representation of integral expressions and, hence, is often used
in the standard literature (see [417], including references therein). By the same token, (UV) diver-
gences, such as (e. g., [418, 419])

(D− 4)A0
(
m2
)
= −2m2 +O(D− 4) , (819)

(D− 4)B0
(
p2;m20,m21

)
= −2+O(D− 4) , etc., (820)

are generic46 and, therefore, easily detectable47. Besides, the explicit analytical expression for
Equation 818 can always be reconstructed by inserting all necessary master integrals. Moreover,
as another validation for our approach, we have also analyzed the shifted amplitude

(
belonging

to Figure 28 (A′)
)

I(A,ψ)
µν;αβ(u;q1,q2)

∣∣∣
shift

=

∫
dDk

Tr
{(
/k−ū/P+mψ

)
γµ
(
/k+/q1−ū/P+mψ

)
γν
(
/k+u/P+mψ

)
γα
(
/k+mψ

)
γβ
}

D0D1D2D3
, (821)

resulting from Equation 815 via “kµ→kµ−uPµ”, followed by “Pµ→−Pµ” as well as “qµi →−qµi ”
(i = 1, 2). Together with (cf. Equation 792) a tensor decomposition based on “pµ1

∣∣
shift

= uPµ”,
“pµ2

∣∣
shift

= qµ1−ūPµ” and “pµ3
∣∣

shift
=−ūPµ” this (numerically) reproduces Equation 818. Similarly,

we have calculated both diagrams of Figure 29 which either correspond to

p
µ
1 = qµ1 , p

µ
2 = uPµ , p

µ
3 = qµ1 − ūPµ , (822)

46 Besides, several coefficient functions of Equation 794, such as B1, B00, B11, C00, C001, C002 and D0000 in general exhibit
UV divergences (see [418]).

47 In fact, this constitutes a major advantage of the underlying PV method and formalism, because especially for larger
calculations, where strong numerical cancellations and, therefore, instabilities may occur, an algebraic reduction method
can be preferable (e. g., [404]). Accordingly, the separation of UV divergences (cf. [418]) needs to be automatized. A
prominent example for such a program is given by the LoopTools package (cf. [420–423]), which offers corresponding
(numerical) subroutines.
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or
(
including a substitution or “shift”, as depicted in Figure 29 (B′)

)

p
µ
1

∣∣
shift

= −qµ1 , p
µ
2

∣∣
shift

= uPµ − qµ1 , p
µ
3

∣∣
shift

= −ūPµ , (823)

respectively. For brevity, we only discuss the first case48. Accordingly, analogous to Equation 812,
Figure 24 c) implies

M(B)
µν :=

∑
ψ

e2ψg
2µ4−D

∫
dDy

∫
dDz



4∏
j=1

∫
dDkj
(2π)D


eix·(k1−k2)+iy·(k2−k3)+iz·(k4−k1)×

× Tr
{(
/k1 +mψ

)
γµ
(
/k2 +mψ

)
/A(y)

(
/k3 +mψ

)
γν
(
/k4 +mψ

)
/A(z)
}∏4

l=1

[
k2l −m

2
ψ + i0+

] , (824)

which corresponds to the solution of (after applying Equation 810 and Equation 811)

I(B,ψ)
µν;αβ(u;q1,q2)

:=

∫
dDk

Tr
{(
/k+/q1+mψ

)
γµ
(
/k+mψ

)
γα
(
/k+u/P+mψ

)
γν
(
/k+/q1−ū/P+mψ

)
γβ
}

D0D1D2D3
. (825)

Diagram Figure 24 yields only two Lorentz structures49

εαβρτq
ρ
1q
τ
2 I(B,ψ)
µν;αβ(u;q1,q2)

∼ ε αν ρτP
ρqτ2

{
1

ū

[
PµT

3
α[3] + T

3
αµ[3] − uPµT

3
α[1] − ξuT

3
αµ[1]

]
+
1

u

[
q2µT

3
α[2] − T

3
αµ[2]

−
(
ūPµ + ξuq1µ

)
T3α[0] − ξuT

3
αµ[0]

]}
+ ε αµ ρτP

ρqτ2

{
1

ū

[
uPνT

3
α[1] − ξuT

3
αν[3]

+T3αν[1] −
1

2

(
1+ ξ2u

)
PνT

3
α[3]

]
−
1

u

[
(q1ν − ūPν)T

3
α[0] + T

3
αν[0] + ξuT

3
αν[2]

+

[
1

2

(
1+ ξ2u

)
Pν + ξuq1ν

]
T3α[2]

]}
, (826)

that ultimately induce
(
p22,p231,p232=0, p

2
1=q

2
1, p23=uq

2
1, p221= ūq

2
1

)

εαβρτq
ρ
1q
τ
2 I(B,ψ)
µν;αβ(u;q1,q2)

∼ iεµναβq
α
1 q
β
2

{
ξu

uū

[
uB0

(
p23;m2ψ,m2ψ

)
+ ūB0

(
p221;m2ψ,m2ψ

)
− B0

(
p21;m2ψ,m2ψ

)]

+2m2ψ
ū

u

[
C0
(
p231,p21,p23;m2ψ,m2ψ,m2ψ

)
− C0

(
p231,p223,p221;m2ψ,m2ψ,m2ψ

)]

+2m2ψ
u

ū

[
C0
(
p22,p223,p23;m2ψ,m2ψ,m2ψ

)
− C0

(
p22,p21,p221;m2ψ,m2ψ,m2ψ

)]}
. (827)

For consistency reasons, let us also have a look at Figure 24 a)
(
as well as Figure 24 b)

)
, with

reversed quark-lines, i. e., assuming
(
p22,p23=0

)

p
µ
1 =q

µ
1 , p

µ
2 =P

µ , p
µ
3 =uP

µ . (828)

The related subgraph entails

I(C,ψ)
µν;αβ(u;q1,q2)

:=

∫
dDk

Tr
{(
/k+/q1+mψ

)
γµ
(
/k+mψ

)
γα
(
/k+u/P+mψ

)
γβ
(
/k+/P+mψ

)
γν
}

D0D1D2D3
, (829)

48 The second case is completely equivalent, although its representation in terms of PV functions may be different.
49 Again, at the end of this calculation only a single tensor structure remains.



4.1 pqcd approach 157

which can be rephrased as follows:

εαβρτq
ρ
1q
τ
2 I(C,ψ)
µν;αβ(u;q1,q2)

∼ εµνρτq
ρ
1q
τ
2

{
Q2
[
ūT30 [0] − uT

3
0 [2] − T

3
0 [3]

]
− 2
[
T20 [1] + T

2
0 [0, 2]

]}
− 2ε αν ρτP

ρqτ2

{
Pµ

[
Q2ξuT

4
α + ξuT

3
α[1] + T

3
α[0]

]
+Q2ξuT

4
αµ + q1µ

[
T3α[2] − T

3
α[0]

]

+2T3αµ[2]
}
+ 2ε αµ ρτP

ρqτ2

{
Pν

[
Q2ξuT

4
α + ξuT

3
α[1] + T

3
α[0]

]
+Q2ξuT

4
αν

+q1ν

[
T3α[0] − T

3
α[2]

]
+ 2T3αν[0]

}
. (830)

When applying formal relations50 (using Equation 792 and Equation 828) such as

T4αβ=
(2πµ)4−D

iπ2ū

∂

∂m20

{∫
dDk

kαkβ

D0
(
m20
)
D1D2

− u

∫
dDk

kαkβ

D0
(
m20
)
D1D3

}∣∣∣∣∣
m2
0
=m2

ψ

, (831)

Equation 830 can be further reduced to

εαβρτq
ρ
1q
τ
2 I(C,ψ)
µν;αβ(u;q1,q2)

∼ iεµναβq
α
1 q
β
2

{
2ξu−1

u

[
B0
(
p21;m2ψ,m2ψ

)
− B0

(
p213;m2ψ,m2ψ

)]
− 2

+2B0
(
p223;m2ψ,m2ψ

)
−Q2

[[
ξu−ū+

2m2ψ

Q2

]
C0
(
p23,p21,p231;m2ψ,m2ψ,m2ψ

)

−C0
(
p22,p221,p21;m2ψ,m2ψ,m2ψ

)
+

[
ū+

2m2ψ

Q2

]
C0
(
p223,p221,p213;m2ψ,m2ψ,m2ψ

)

+2m2ψξuD0
(
p21,p221,p223,p23,p22,p231;m2ψ,m2ψ,m2ψ,m2ψ

)]}
. (832)

Notably, Equation 831 is the direct consequence of a simple partial fraction decomposition as
entailed by

(
set α ∈ R \ {0}, while using cf. Equation 792

)

Dm = αDn + (1−α)D0 + 2k·(pm −αpn) + (fm −α fn) . (833)

The latter unfolds its full power for a collinear setup
(
such as pµm = αpµn

)
together with equal

quark masses
(
mk=mψ, ∀k

)
and p2n= 0. Most importantly, in this context several more useful

identities can be derived, e. g.,
(
p
µ
3 =up

µ
2 and pµ1 not collinear to pµ2

)

C0
(
p21,p212,p22;m2ψ,m2ψ,m2ψ

)

= uC0
(
p21,p231,p23;m2ψ,m2ψ,m2ψ

)
+ ūC0

(
p221,p223,p231;m2ψ,m2ψ,m2ψ

)
, (834)

as well as (without additional simplifications)

ūD0
(
p21,p221,p223,p23,p22,p231;m2ψ,m2ψ,m2ψ,m2ψ

)

=
∂

∂m20

[
C0
(
p21,p221,p22;m20,m2ψ,m2ψ

)
−uC0

(
p21,p231,p23;m20,m2ψ,m2ψ

)]∣∣∣∣∣
m2
0
=m2

ψ

, (835)

50 In fact, such relations are normally not shown explicitly, because roughly speaking, all derivatives of C0 with respect to
any of its mass arguments can be expressed via B0s (e. g., [404]). However, this decomposition (along with Equation 835)
is beyond the standard reduction algorithm and may, therefore, be seen as a corresponding extension.
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which facilitate all calculations that involve (formal) four-point PV functions51 considerably. This
being said, let us now piece together the complete result:

FNLO
µν (q1,q2) ∼

∑
ψ

e2ψCf
αS
2π

f0M
Q2
εαβρτq

ρ
1q
τ
2

∫1
0
du

φ
g
M(u)

uū

[
2
(

I(A,ψ)
µν;αβ(u;q1,q2)

−I(A,ψ)
µν;αβ(ū;q1,q2)

)
+ I(B,ψ)
µν;αβ(u;q1,q2) − I(B,ψ)

µν;αβ(ū;q1,q2)
]

. (836)

Apparently, Equation 836 has been conflated distinctively by utilizing the identity52

εαβρτq
ρ
1q
τ
2

∫1
0
du

φ
g
M(u)

uū

(
I(A,ψ)
µν;αβ(u;q1,q2) − I(A,ψ)

µν;αβ(ū;q1,q2)
)

= εαβρτq
ρ
1q
τ
2

∫1
0
du

φ
g
M(u)

uū

(
I(C,ψ)
µν;αβ(u;q1,q2) − I(C,ψ)

µν;αβ(ū;q1,q2)
)

. (837)

Nevertheless, the explicit result of Equation 836 would still be unintelligibly long and, there-
fore, has to be abbreviated even more. A canonical approach for this endeavor is given by the
implementation of various logarithmic identities53, such as

Li2

(
2

1+βm(Q2)

)
+ Li2

(
2

1−βm(Q2)

)
= −

1

2
log2

(
βm(Q2)+1
βm(Q2)−1

)
, (838)

that include non-negative arguments m2, Q2 and

βm

(
Q2
)
:=

√
1+ 4m2

Q2
. (839)

When incorporating symmetry properties of Equation 303, the charm quark contribution of Equa-
tion 751 can be expressed as54 (now including all omitted prefactors)

T
(g)
H

(
x,Q2;µ,αS(µ)

)∣∣∣
charm

= −Cf
αS(µ)

2π

2

3

1

uū2Q2

{
u log2

(
βmc(uQ2)+1
βmc(uQ2)−1

)

− log2
(
βmc(Q2)+1
βmc(Q2)−1

)
+ 4βmc

(
Q2
)

log
(
βmc(Q2)+1
βmc(Q2)−1

)

−2 (u+ ξu) log
(
βmc(uQ2)+1
βmc(uQ2)−1

)}
. (840)

Analogously, the bottom quark corrections can be deduced from Equation 840 simply by replac-
ing55 “mc → mb” and a subsequent multiplication with an extra factor56 “1/4”. However, for
the whole experimentally accessible region Q2 . 100 GeV2 only charm and light quark correc-
tions turn out to be sizable, while already bottom admixtures are numerically negligible. Con-
sequently, the inclusion of the former plays an important role within further phenomenological
investigations.

For similar reasons, soft effects related to the real photon limit will be closely studied in the
next section. This can be realized within the LCSR framework which allows a systematic incorpo-
ration of perturbative-, mass- and non-perturbative corrections.

51 Hence, Equation 835 provides a welcome tool for the calculation of required scalar four-point integrals. The latter,
are more complicated than, e. g., their three-point counterparts, particularly, when considering a general setup, where
(depending on their representation) they have to be written in terms of either 72 or 32 dilogarithms (cf. [388, 424]).

52 Equation 837 serves as another (numerical) cross-check for the overall result.
53 Particularly, that includes functional equations for the dilogarithm.
54 Again, when expanding Equation 840 in powers of mc (around mc→0) the massless result (cf. Equation 789) can be

reproduced.
55 As discussed in Section 4.3, we may prefer pole masses (e. g.,mc≈1.42 GeV [43]) for the present numerical calculations.
56 Evidently, this factor compensates the different electric charge e2c→e2b.
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4.2 light-cone sum rule approach

Based on Section 2.4, Section 4.1.2 and Section 4.1.3 we may now derive corresponding LCSRs
for the γ∗γ→ (η,η′) TFFs. Considering the intended purpose, this following section covers all
required concepts and techniques as well as a short presentation of the related new results. The
latter will be depicted in two separate steps:

a) First, the specific techniques, as originally developed for γ∗γ→ π0 transitions (cf. [1, 280,
281, 425–432]) will be adapted to the η(′) case.

b) Secondly, all relevant results, including the new leading twist NLO spectral densities as well
as higher twist and mass corrections will be listed and calculated explicitly.

Point b) is particularly important for the destined phenomenological study of light-cone DAs in
Section 4.3. However, before pursuing these objectives, a few general remarks concerning the
LCSR method should be made.

4.2.1 Theoretical foundations

Since confinement plays an important role in the formation of hadrons, the resulting effects and
hadronic properties can in general not be fully described by short distance quark-gluon interac-
tions. However, for lack of an exact analytical solution for this problem, one may instead resort
to adequate approximation methods, such as low energy theorems, models or QCD sum rules
(see, e. g., [109, 114, 117, 433–439]).

Being among the most widely used working tools in hadron phenomenology, QCD sum rules
allow a more or less57 model independent approach to baryons and mesons which are repre-
sented in terms of interpolating quark-gluon currents58 taken at large virtualities (see [97, 440]
for a review). In their original version (commonly referred to as Shifman-Vainshtein-Zakharov
sum rules [109, 114, 117]), the calculations are carried out in the framework of Wilson’s OPE and
pQCD, where soft effects are parametrized in terms of universal vacuum condensates (cf. Sec-
tion 2.4). Combined with dispersion relations, the perturbatively calculated amplitudes can then
be related to corresponding observables that are typically associated with a sum over hadronic
states. Usually, this matching procedure necessitates an ansatz for the underlying hadronic spec-
trum and the related physical spectral density, which indirectly implies a model dependence (see
Section 5.1.1 for a detailed discussion). Nevertheless, sum rules obtained in this way give access
to a vast number of hadronic observables, while also providing qualitative insight into the QCD

vacuum (see [97] for an extended discussion). However, due to the truncated OPE and inevitable
deviations of the implemented spectral density from its physical counterpart, QCD sum rules
possess an irreducible systematic error ∼ 10% − 20% (see, e. g., [440]). Besides, channels, where
the conventional OPE is not applicable (see, e. g., [109, 114, 441, 442]), are also inaccessible for
the standard SVZ sum rule method. However, apart from the special cases, the application of
QCD sum rules shows a remarkable consistency with the experimental data (see [97, 440] and
references therein).

57 As discussed below (cf. Section 5.1.1), some model dependence arises from quark-hadron duality and the Borel transfor-
mation (see Section B.3).

58 SVZ sum rules allow a qualitative description of the quantum vacuum structure [96, 440] and resulting interactions with
quark-gluon operators, which crucially depend on the involved spin, as well as flavor structure (see also [94, 97, 109]).
Therefore, by expressing hadrons with corresponding interpolation currents, one may understand their properties and
differences on the basis of related quantum numbers.
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As roughly sketched in Section 2.4 and Section 4.1.1, the rather complicated kinematics of
light-cone dominated processes at large momentum transfer necessitate an elaborate theoreti-
cal description that systematically includes corresponding hard (perturbative) as well as soft
(end-point) contributions. In order to meet these requirements, the LCSR approach has been pro-
posed (see [141–143, 443–445]), representing an adaption of the standard QCD sum rule method
(cf. [109, 114, 117]) to hard exclusive processes. This leads to a powerful hybrid of both theories
[33, 97, 141–143, 301–303, 446–448] which essentially rests on three major pillars:

i) QCD factorization (i. e., factorization of hard exclusive processes in QCD),

ii) dispersion theory,

iii) quark-hadron duality.

Since point i) has already been dealt with in Section 4.1.1, let us now briefly discuss the re-
maining two items on this list59. Analogous to the pion case [1, 280, 281, 425–428, 430–432, 449]
the correlation function given in Equation 731 encodes all dynamical (QCD) effects and, most
importantly, is defined for a wide range of momentum transfers. That includes the preferred
experimental set-up, as mentioned in Equation 733. Accordingly, the idea is to consider a more
general TFF with two non-vanishing photon virtualities60

(
i. e., q21 = −Q2 � 0, q22 = −q2

)
and

perform an analytic continuation to the real photon limit q2 = 0, by employing dispersion rela-
tions (cf. [3]). The latter may either follow from first principles in QFT or are justifiable on general
grounds, by applying the Schwarz reflection principle (see Section B.4) and Cauchy’s theorem
to perturbation theory [98, 282, 450–456]:

• hadronic representation : Within the realm of time-like virtualities
(
q22 > 0

)
long dis-

tance quark-gluon interactions and, eventually, the associated particle formation (as in-
duced by Jem

µ – cf. Equation 20) becomes important (see, e. g., [97]). Under these circum-
stances, the investigated correlation function has a very complicated decomposition in
terms of hadronic observables (cf. [64, 97]). In fact, this can be quantified by inserting a
complete set of intermediate hadronic states (see also [97])

1 =
∑
h

∫∞
0

ds
∫

d4p θ(p0 ) δ
(
p2 −m2h

)
δ
(
s −m2h

)
|h(p)〉〈h(p) | (841)

into Equation 731, implying (subtraction terms are omitted):

ie2εµναβq
α
1 q

β
2 Fγ∗γ∗→M

(
Q2 , q2

)
=
∑
h

〈M(P) |Jem
µ |h(q2 )〉〈h(q2 ) |Jem

ν |0〉
m2h − q22

=

∫∞
0

ds
1

s + q2
ρhad
µν (q1 , q2 ; s) . (842)

The hadronic dispersion relation of Equation 842 includes a formal spectral density (cf.
Equation 1352 and the discussion below)

ρhad
µν (q1 , q2 ; s) :=

∑
h

δ
(
s −m2h

)
〈M(P) |Jem

µ |h(q2 )〉〈h(q2 ) |Jem
ν |0〉

= ie2εµναβq
α
1 q

β
2

1

π
ImsFγ∗γ∗→M

(
Q2 , −s

)
. (843)

59 Focusing on the relevant aspects for the γ∗γ→(η,η′) TFFs.
60 Considering this behavior, some authors refer to the correlation function as an object of dual nature (e. g., [97]).



4.2 light-cone sum rule approach 161

Apparently, its analytical properties are in one-to-one correspondence with the associated
QCD particle spectrum (cf. [64, 97, 109, 450]). The relevant singularities, branch points and
related branch cuts [97, 282, 450, 455, 456] on the first Riemann sheet are shown in Figure 30

(see, e. g., [97, 451, 457] for further explanations). Nevertheless, already the ground-state
vector meson

(
ε
(ρ)
ν being an adequate rho-meson polarization vector, with ε(ρ) ·q2 = 0

)

〈ρ0 (q2 ) |Jem
ν |0〉 = fρ√

2
mρε

(ρ)∗
ν , (844)

〈M(P) |Jem
µ |ρ0 (q2 )〉 = −i

1

mρ
εµλαβε

(ρ)λPαq
β
2 Fγ∗ρ→M

(
Q2
)

, (845)

not only entails two additional non-perturbative input parameters
(
fρ ≈ 200 MeV, mρ ≈

775 MeV
)
, but also yields two distinct TFFs

(
M = η,η′

)
“Fγ∗ρ→M

(
Q2
)
” for the related

γ∗ρ0→M transitions. Similar structures could be assigned to other resonances within this
channel, e. g., for the almost equally light (mω≈mρ)ωmeson, resulting in a plethora of re-
quired, yet most likely unknown hadronic parameters. Instead, one canonically [1, 280, 281,
426, 430] combines the ρ andω contributions within one resonance term,61 while collecting
all remaining excited, bound and continuum states with total mass squared above an ade-
quate hadronic threshold “sh0 ” in a dispersion integral. In reality, however, the numerical
value of sh0 is only approximately known. We may, therefore, use an effective parameter62

“s0” instead. On these grounds, the form factor’s Källén-Lehmann representation (using
the Sokhotski-Plemelj formula Equation 1352) arises:

Fγ∗γ∗→M
(
Q2,q2

)
=

√
2fρFγ∗ρ→M

(
Q2
)

m2ρ + q
2

+
1

π

∫∞
s0

ds
ImsFγ∗γ∗→M

(
Q2,−s

)

s+ q2
. (846)

• qcd and dispersion relations : The same FF can be derived by using the QCD factor-
ization framework [3]. Indeed, when applying Cauchy’s integral formula, along with the
Schwarz reflection principle (see [458] and Section B.4) to perturbatively calculated QCD am-
plitudes, they will obey similar dispersion relations, such as those given by Equation 846(
q2 ,Q2�Λ2QCD, Q2 fixed; see Figure 30

)
:

FQCD
γ∗γ∗→M

(
Q2 , q2

)
=

1

2πi

∮
C1

dz
FQCD
γ∗γ∗→M(Q

2 ,−z)

z + q2

=

∫ R
0

ds
1
π ImsF

QCD
γ∗γ∗→M(Q

2 ,−s)

s + q2
+

∮
|z|=R

dz
FQCD
γ∗γ∗→M(Q

2 ,z)

2πi
(
z − q2

) . (847)

Depending on the form factor’s UV behavior (see, e. g., [97, 373, 454]) Equation 847 may
require a modification to ensure that the limit at R → ∞ exits. This is due to possible

61 Here, one assumes mω≈mρ and uses the zero-width approximation.
62 Both parameters sh0 and s0 are correlated with the onset of excited states in the underlying photon channel (see, e. g.,

[97]). Yet, they do not necessarily coincide with each other.
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divergences which can be removed by appropriate subtraction terms (marked in blue),
such as63 (n ∈N sufficiently large)

F̃QCD
γ∗γ∗→M

(
Q2,q2

)
= FQCD

γ∗γ∗→M
(
Q2,q2

)
−

n−1∑
k=0

xk

k!
dk

d xk
FQCD
γ∗γ∗→M

(
Q2, x

)∣∣∣∣∣
x=0

=

[
q2
]n

2πi

∮
C1

dz
FQCD
γ∗γ∗→M

(
Q2, z

)

zn
(
z− q2

) . (848)

However, at asymptotically large momentum transfer
(
i. e., Q2,q2→∞) the QCD result for

FQCD
γ∗γ∗→M vanishes sufficiently fast, implying an unsubtracted dispersion relation [3, 280]:

FQCD
γ∗γ∗→M

(
Q2,q2

)
=

∫∞
0

ds
1
π ImsF

QCD
γ∗γ∗→M

(
Q2,−s

)

s+ q2
. (849)

While dispersion theory constitutes an important pillar of this ansatz, one more element is
needed to eventually bridge the apparent gap between a description in terms of hadronic (see
Equation 846) and partonic (cf. Equation 849) parameters. In other words, the contributions to
Equation 731

(
with Q2�Λ2QCD fixed

)
for space- and time-like photon virtualities q2 must be

related in a reasonable way64. Based on the original sum rule method [109, 114, 117], this can
be done by analytically continuing each term of a given truncated theoretical spectral density
from positive to negative q2 values. After reassembling these contributions, they constitute an
approximation for the actual hadronic spectral density (see, e. g., [95, 172, 459, 460]). Thus, for
lack of exact equality, “ImsF

QCD
γ∗γ∗→M” is said to be65 “dual” [459, 460] to its physical counter-

part “ImsFγ∗γ∗→M”. Conventionally, duality is either implemented via some kind of local or
non-local procedure [3, 97, 459, 460].

• local quark-hadron duality : This usually refers to a point-by-point comparison of the
theoretical and experimental spectral density, for instance at s→∞ [97]. In general, how-
ever, the pQCD predictions are very different from their hadronic counterparts. While the
former are smooth functions66, e. g.,

(
Cq :=

√
2
(
e2u+e

2
d

)
, Cs :=2e2s

)

1

π
ImsF

QCD
γ∗γ∗→M

(
Q2 , −s

)
=
∑
R=q ,s

CRfRM

∫ 1
0

dx
φRM (x)

x
δ
(
x̄
xQ

2−s
)
+ . . .

=
∑
R=q ,s

CRfRM
1

s + Q2
φRM

(
Q2

s+Q2

)
+ . . . , (850)

which do not necessarily vanish at small s → 0, the latter
(
i. e., ImsFγ∗γ∗→M

)
contain

generalized functions, such as67 “δ
(
s−m2ρ

)
” [3]. Thus, one might prefer the use of weaker

assumption; in some cases, those can even be attributed to dispersion integrals.

63 The modified integrand of Equation 848 is sufficiently suppressed at z→∞ to give a finite result.
64 Any practical calculation within this formalism is considered to be an approximation (cf. Section 4.1.1). Consequently, a

mere analytical continuation of one result, as obtained within its specific domain to the complementary region can most
likely not reproduce the related exact counterpart. Hence, when taking the current approach, the associated ignorance
has to be parametrized in a reasonable manner (see [95, 172, 459, 460] and references therein).

65 In other words, the integral of the QCD spectral density over a certain region of energies coincides with the physical
spectral density over the same region [3]. Hence, in this sense the QCD description of correlation functions in terms of
quarks and gluons is dual to the description using hadronic states [3].

66 The ellipses in Equation 850 represent omitted higher order and higher twist contributions.
67 This contribution is written in the limit of a vanishing width.
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(
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(
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(isolated poles)
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Figure 30: The (qualitative) analytic structure of FQCD
γ∗γ∗→M

(
Q2,−q22

) (
Q2�Λ2QCD, fixed

)
, as depicted in

the complex q22-plane, exhibits isolated poles, branch points and associated branch cuts. While
the former may be induced by one-particle or bound states, the latter are, e. g., related to mul-
tiparticle contributions (see [64, 97, 450]). Besides, the integration contour of Equation 847 is
shown. After deforming C1 and taking the limits ε→ 0 and R→∞ all contributions related to
Cε and CR vanish (cf. [373]).

• global quark-hadron duality : Accordingly, this concept compares the spectral densi-
ties FQCD

γ∗γ∗→M and Fγ∗γ∗→M multiplied with a suitable weight function68 w(s) and aver-
aged over an ad hoc interval (a , b)⊂ R:∫ b

a
ds w(s) ImsF

QCD
γ∗γ∗→M

(
Q2 , −s

)
≈
∫ b
a

ds w(s) ImsFγ∗γ∗→M
(
Q2 , −s

)
. (851)

For instance, when assuming that both spectral densities coincide if their arguments are
above an effective threshold s > s0, the comparison of Equation 846 with Equation 849 at
|q2|→∞ yields [3]

√
2fρFγ∗ρ→M

(
Q2
)
=

∫s0
0

ds
1

π
ImsF

QCD
γ∗γ∗→M

(
Q2,−s

)
. (852)

68 Instead of this weight function one may also use a (smooth) test function [3]. The latter is less restricted and may depend
on additional (external) parameters.
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That explains, why s0 is usually referred to as interval of duality [3, 445, 461].

In practical applications one usually combines this approximation with a trick borrowed from
SVZ sum rules [109, 114, 117], i. e., the Borel transformation (see Section B.3). If applicable69,
this mathematical method reduces the sensitivity to the duality assumption and additionally
suppresses contributions arising from higher order terms in the OPE [3]. In fact, by going over
to the Borel representation [3] of each involved integrand, its corresponding weight factor may
change, e. g., 1/(s+q2) → exp(−s/M2). Hence, together with an adequate choice of the Borel
parameter M2 this approach entails the desired properties70 (see Section B.3). As an illustration,
we may equate the Borel transform of Equation 846 and Equation 849 with each other which
implies a LCSR for the γ∗ρ0→(η,η′) FFs [3]:

√
2fρFγ∗ρ→M

(
Q2
)
=
1

π

∫s0
0

ds e−
s−m2ρ
M2 ImsF

QCD
γ∗γ∗→M

(
Q2,−s

)
. (853)

In contrast to Equation 852, the spectral density of Equation 853 is at this point exponentially
weighted. By varying the now present Borel parameter within a certain window, e. g., for dif-
ferent (each time fixed) high photon virtualities Q2 (cf. [3, 280]), one may test the form factor’s
sensitivity to a chosen spectral density71 (see Chapter 5). Ideally, the FF displays a negligible
dependence on M2 when restricted to this72 “working window” [3].

With these refinements, we may now substitute Equation 853 in Equation 846, while using the
duality assumption73 [3]. Since there are no massless states within the related vector channel, the
real photon limit can be recovered by simply substituting q2→0 [3]. That results in the desired
LCSR [3]

(
M=η,η′

)

FLCSR
γ∗γ→M

(
Q2
)
=
1

π

∫s0
0

ds
m2ρ

e
m2ρ−s

M2 ImsF
QCD
γ∗γ∗→M

(
Q2,−s

)

+
1

π

∫∞
s0

ds
s

ImsF
QCD
γ∗γ∗→M

(
Q2,−s

)
(854)

for the γ∗γ → (η,η′) TFFs. Most importantly, compared to a “pure” pQCD calculation this ex-
pression contains two additional non-perturbative parameters, i.e., the vector meson mass mρ
along with s0. This feature is linked to the general phenomenological scope of LCSRs and will
be discussed below. Both of the subsequent subsections are, therefore, complementary and will
lay the theoretical foundation for a numerical evaluation later on (see Section 4.3). Let us now
briefly discuss the general limitations of the QCD sum rule method as well as the form factor’s
soft contributions at very high energies.

69 The named properties depend on an adequate choice the Borel parameter and the associated “window of stability” (cf.
Section B.3). The latter does not exist for all physical problems (see [94, 97]). Fortunately, the analyzed cases do not
belong to this specific category.

70 As discussed above, when applying the Borel transformation to Equation 846 and Equation 849, the original dispersion
integral gets replaced by an exponentially weighted one. However, reiterating this procedure results in Bessel or hyper-
geometric functions instead of the desired positive definite exponential factor [109]. Furthermore, a similar exponential
fall-off of the continuum part, along with (heavy) resonances can be seen in lattice QCD [43, 462]. This specific exponential
suppression, however, is a consequence of the Euclidean time (cf. [97, 450, 463]).

71 In this sense, the inserted (and analytically continued) QCD spectral density serves as a model for its physical counterpart.
Conventionally, one tests the resulting sum rule’s sensitivity, by plotting it as a function of M2 (cf. [280, 464, 465]). Flat
curves indicate a good accuracy of the underlying QCD sum rule [464].

72 This interval is also referred to as “Borel window” [97] or “window of stability”[111].
73 Here, we employ Equation 851 for a→s0 and b→∞.
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4.2.2 Soft corrections vs. the large Q2 limit

In the previous subsection, we have derived the LCSRs for the γ∗γ→η and γ∗γ→η′ TFFs, which
will be analyzed at different realms of momentum transfer. This includes the case of asymp-
totically large photon virtualities which is dominated by LO and related leading twist effects.
Especially, the numerical impact of related soft corrections is important for Section 4.3 where the
η and η′ TFFs are studied at |Q2|=112 GeV2.

To this end, associated end-point contributions for Q2 � Λ2QCD have to be quantified. Within
the LCSR approach, those corrections correspond to deviations from a “pure” QCD calculation. In
other words, when taking into account Equation 849, we may rewrite the same result as [3]

FLCSR
γ∗γ→M

(
Q2
)
=FQCD
γ∗γ∗→M

(
Q2
)
+
1

π

∫s0
0

ds
m2ρ

[
e
m2ρ−s

M2 −
m2ρ

s

]
ImsF

QCD
γ∗γ∗→M

(
Q2,−s

)
, (855)

separating both components, i. e., “pure” pQCD and LCSR admixtures from each other. To get
an impression of how this modification affects the QCD results, we may, therefore, insert the
mentioned LO and leading twist expressions for ImsF

QCD
γ∗γ∗→M into Equation 855. Apparently, the

involved dispersion integral should also be modified to enable a clear-cut physical interpretation.
Most conveniently, this is done by substituting the integration variable s with the associated
spectator quark’s momentum fraction x=Q2/(s+Q2)

(
and analogously x0=Q2/

(
s0 +Q2

)):

Q2FLCSR
γ∗γ→M

(
Q2
)
=
∑
A=0,8

CAfAM

[∫1
0

dx
x̄
φAM(x) +

∫1
x0

dx
x̄

(
x̄Q2

xm2ρ
e
xm2ρ−x̄Q

2

xM2 − 1

)
φAM(x)

]
. (856)

Referring to [20], C0= 2√
3

(
e2u+e

2
d+e

2
s

)
and C8=

√
2
3

(
e2u+e

2
d−2e

2
s

)
are flavor factors74, as caused

by the quark content of the related SO DAs. Consequently, the first contribution of Equation 856

is the unmodified LO pQCD result for Fγ∗γ→M, while the second part represents an end-point
correction from the region x>x0=1− s0/Q2 +O(s20/Q4), as implied by the LCSR framework. For
a rough estimate of the soft corrections, we may expand Equation 856 near75 1−x0≈ 0

(
i. e., at

Q2�Λ2QCD
)
:

Q2FLCSR
γ∗γ→M

(
Q2
)
≈
∑
A=0,8

CAfAM

[∫1
0

dx
x̄
φAM(x) + x̄0

(
s0
2m2ρ

e
m2ρ−s0
M2 − 1

)
d

dx
φAM(x)

∣∣∣∣
x=0

]
. (857)

This can be further simplified, by using the identities76∫1
0

dx
x̄
φAM(x) = 3

[
1+

∞∑
n=1

cA2n,M

]
, (858)

d
dx
φAM(x)

∣∣∣∣
x=0

= 6

[
1+

∞∑
n=1

(2n+1) (n+1) cA2n,M

]
. (859)

For the intended phenomenological study of soft contributions to γ∗γ→ (η,η′) TFFs at very large
momentum transfers |Q2|∼112 GeV2 Equation 857 is of particular importance (see Section 4.3).

74 Analogous to Equation 267 we have adapted the definitions to ensure
(
C8

C0

)
=

(√
1
3 −

√
2
3√

2
3

√
1
3

)(
Cq

Cs

)
(cf. definitions of

Equation 850).
75 According to their conformal expansions, we may assume, that all involved twist-two DAs vanish linearly at the end

points (see [3]).
76 For the derivation of Equation 858 and Equation 859 reference [466] can be used.
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4.2.3 Predictive power of QCD sum rules

Let us discuss some selected aspects of QCD sum rules which are relevant for an intended error
analysis in the subsequent phenomenological chapters.

For assessing the general predictive power of QCD sum rules, their actual theoretical uncertainties
have to be estimated. Those originate from the following sources (cf. [97, 464, 465] and references
therein):

a) Being an approximation method, QCD sum rules entail a numerical dependence on the
Borel parameter as well as s0. Hence, large instabilities due to M2 would indicate the
absence of important higher order corrections or even may cast doubt over the duality
assumption and its reliability.

b) An inaccurate knowledge of the (universal) DAs and condensates.

c) The use of a truncated77 OPE, including a finite order perturbative calculation.

Fortunately, errors linked to point c) can be decreased by further theoretical endeavor, while con-
tinuing phenomenological and experimental progress may push back the ignorance concerning
item b) (see [97, 464, 465] for a further discussion). In other words, this conveys two important
messages (see, e. g., [97]):

i) The accuracy of QCD sum rules can be systematically improved, but not beyond certain
limits.

ii) Within these inherent limitations of the sum rule method, one is able to estimate theoreti-
cal uncertainties of the predicted hadronic parameters based on QCD. Similar conclusions
cannot be drawn out of, e. g., quark models which may use a non-universal input that is
not directly related to QCD.

After this justification, we may now focus on the calculation of required imaginary parts.

4.2.4 Twist-two spectral densities

Based on the previous chapters, we can now calculate all required twist-two spectral densities.
It is convenient to write the necessary imaginary parts78

1

π
ImsF

QCD
γ∗γ∗→M

(
Q2,−s

)
=
∑

A=0,8,g

1

π
ImsF

QCD;A
γ∗γ∗→M

(
Q2,−s

)
(860)

in terms of conformal coefficients, as induced by the DA’s Gegenbauer expansion. For A= 0, 8
we have (the case A=g is discussed below):79

1

π
ImsF

QCD;A
γ∗γ∗→M

(
Q2,−s

)
=
1

2
CAfAM

∞∑
n=0

cAn,M

(
µ2
)[ ∞∑
k=0

(
CfαS
2π

)k
ρ
(k)
n

(
Q2, s;µ2

)]
, (861)

including C0 = 4

3
√
3

and C8 = 2

3
√
6

(see [3]). Here, we encounter two types of contributions.
First of all, there are the (NLO) twist-two quark components which can be obtained from related

77 The truncated tail of this series is usually not ignored, but instead incorporated into soft corrections, such as those given
by the related condensates (see discussion in [111]).

78 This strategy is restricted to the leading twist accuracy.
79 By introducing, e. g., additional superscripts also the gluon case can be absorbed in Equation 861. However, we prefer to

tackle this problem separately.
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expressions, as presented in our previous work [281]. Notably, the flavor-octet contribution and
its corresponding singlet counterpart rely on identical LO

(
x=Q2/

(
s+Q2

))

ρ
(0)
n

(
Q2, s

)
= 2

x

Q2
ϕn(x) , ϕn(x) := 6xx̄C(3/2)

n (ξx) , (862)

as well as NLO spectral densities (cf. Section B.5):

ρ
(1)
n

(
Q2, s;µ2

)
=

x

Q2

{
ϕn(x)

[
−3 [1+ 2 (ψ(2) −ψ(2+n))] +

π2

3
−
γ
(0)
n

Cf
log
(
x̄Q2

xµ2

)

− log2
(
x̄
x

)]
− 2

[∫1
x
du
ϕn(u) −ϕn(x)

u− x
log
(
1− xu

)
+ (x↔ x̄)

]

+
γ
(0)
n

Cf

∫ x̄
0
du
ϕn(u) −ϕn(x̄)

u− x̄

}
. (863)

Hence, all differences, besides the apparent flavor factors are encoded in the decay constants
and associated expansion coefficients cAn,M. Conversely, the second type of contributions, i. e.,
NLO twist-two gluon LCSR corrections are completely new and might, therefore, need some more
explanation. With the results of Section 4.1 at hand, the corresponding imaginary parts can be
straightforwardly calculated (see Section B.4 and Equation 856). After the analytic continuation
q2→−s and some simplifications, we get (see Equation 788)

1

π
Ims T

(g)
H

(
u,Q2,−s;µ2

)∣∣∣
light

= −
2x

Q2

{
1

u2ū2
Θ(u−x)

[(
xū2 + x̄u2

)
log
(
1− ūx̄

)
+ uū

]

+

[
Θ(u−x)

x

u2
−Θ(x−u)

x̄

ū2

][
log
(
x̄Q2

xµ2

)
− 2
]}

. (864)

This rather compact expression is a natural consequence of the gluon distribution amplitude’s
transformation properties (cf. Equation 306). Analogously, the involved convolution integral
projects Equation 864 on each related Gegenbauer polynomial (see Section A.12)

ρ
(g)
n

(
Q2, s;µ2

)
:=
1

π

∫1
0
duωn(u) Ims T

(g)
H

(
u,Q2,−s;µ2

)∣∣∣
light

, (865)

that is given by the underlying conformal expansion of (cf. Equation 424, Equation 862)

φ
g
M(x,µ) =

∞∑
n=1

c
g
2n,M(µ)ω2n(x) , ωn(x) := 30x

2x̄2C(5/2)
n−1 (ξx) . (866)

The intended numerical implementation, however, depends on an adequate reformulation of
these gluon spectral densities, i. e., similar to the quark-antiquark case (cf. Section B.5), Equa-
tion 865 should be expanded into orthogonal polynomials and logarithms. In this way no aux-
iliary integrals80, except those of Equation 854, will remain.81 Accordingly, it is reasonable to
divide Equation 864 into two parts:

1

π
Ims T

(g)
H

(
u,Q2,−s;µ2

)∣∣∣
light

=

2∑
a=1

Ka

(
Q2, x,u;µ2

)
, (867)

80 Moreover, the integrals of Equation 854, corresponding to hard parts are taken analytically (see also [281]). Only the
remaining soft corrections have to be solved in a different way, e. g., via numerical integration.

81 In fact, this is of fundamental importance for the intended computer-assisted LCSR analysis, leading to a faster running(
Wolfram Mathematica®

8

)
code. That is certainly true for the quark-antiquark case (cf. Section B.5) which serves us as a

prototype.



168 meson photon transition form factors

which are defined by the integral kernels (cf. Equation 1422 in Section C.3)

Q2K1

(
Q2, x,u;µ2

)
:= −

x

Cf

[
log
(
x̄Q2

xµ2

)
− 2
]
qgV

(1)
D (x,u) , (868)

Q2K2

(
Q2, x,u;µ2

)
:= −2xΘ(u−x)

[
1

uū
+
xū2+x̄u2

u2ū2
log
(
1− ūx̄

)]
. (869)

In fact, this approach is justified by Equation 865, because those contributions have a very differ-
ent structure, when considering their convolution with ωn(x). Thus, the form of∫1

0
duωn(u)Q2K1

(
Q2, x,u;µ2

)
= −

5x

Cf
ϕn(x)

[
log
(
x̄Q2

xµ2

)
− 2
]
gqγ

(0)
n , (870)

is determined by the embedded LO evolution kernel “qgV(1)
D ” (see Equation 1422), whereas

R
(aux)
n (x) :=

∫1
0
duωn(u)Q2K2

(
Q2, x,u;µ2

)
= xx̄

n+1∑
k=0

ãkx
k (n=2m, m ∈N) (871)

is simply a real-valued
(
ãk ∈ R

)
polynomial. However, similar to the quark-antiquark case,

Equation 871 may also be expanded into a series of related Gegenbauer polynomials82, e. g., via

R
(±)
n (x) :=

1

2

(
R
(aux)
n (x)± R(aux)

n (x̄)
)

(872)

and the coefficients
(
Nk :=

2(2k+3)
3(k+1)(k+2) ; see also Section B.5 as well as Table 11

)

G̃kn := Nk

∫1
0
dxC(3/2)

k (ξx)R
(+)
n (x) , H̃kn := Nk+1

∫1
0
dxC(3/2)

k+1 (ξx)R
(−)
n (x) . (873)

Consequently, the gluonic spectral density (cf. Equation 865) can be written as

ρ
(g)
n

(
Q2, s;µ2

)
=
1

Q2



n/2∑
k=0

[
H̃2kn ϕ2k+1(x)+G̃

2k
n ϕ2k(x)

]
−gqγ

(0)
n
5x

Cf

[
log
(
x̄Q2

xµ2

)
−2
]
ϕn(x)


. (874)

In particular, we obtain for n=2 and n=4 the following explicit expressions (cf. Table 11)

ρ
(g)
2

(
Q2, s;µ2

)
=
5x

Q2

[
5

6
x̄2
(
65x2 − 30x+ 1

)
− gqγ

(0)
n

[
log
(
x̄Q2

xµ2

)
− 2
]
ϕ2(x)

]
, (875)

ρ
(g)
4

(
Q2, s;µ2

)
=
5x

Q2

[
14

15
x̄2
(
1827x4 − 2457x3 + 959x2 − 105x+ 1

)

− gqγ
(0)
n

[
log
(
x̄Q2

xµ2

)
− 2
]
ϕ4(x)

]
. (876)

After collecting all these partial results, we may formulate the final expression for NLO twist-two
gluonic spectral densities, as they enter the LCSR calculation (cf. Equation 865):

1

π
ImsF

QCD;g
γ∗γ∗→M

(
Q2,−s

)
=
1

2
C0f0M

∞∑
n=1

c
g
2n,M

(
µ2
)CfαS
2π

ρ
(g)
2n

(
Q2, s;µ2

)
. (877)

This represents the imaginary parts, as entailed by the (light-quark) box diagrams. As mentioned
in [3], the charm quark corrections do not need to be written in this form, as they are not affected
by the LCSR subtractions. Therefore, that concludes the necessary discussion of twist-two (NLO)
spectral densities.

82 Due to the structure of Equation 871 an expansion in terms of ϕn(x) seems canonical.
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G̃kn k=0 k=2 k=4 k=6 k=8 k=10

n=2 25
36 − 25

432 0 0 0 0

n=4 7
36

49
54 − 7

20 0 0 0

n=6 27
280

23
80

55
56 −18093136 0 0

n=8 11
189

88
567

3751
11340

55
54 −2575134020 0

n=10 325
8316

19825
199584

845
4536

845
2376

1235
1188 −19877652195424

H̃kn k=0 k=2 k=4 k=6 k=8 k=10

n=2 725
756 − 325

1008 0 0 0 0

n=4 35
108

931
990 −203396 0 0 0

n=6 9
56

45
112

1707
1960 −14432240 0 0

n=8 55
567

22
105

143
324

51865
64638 −5347171820 0

n=10 1625
24948

325
2464

845
3564

1105
2376

3117335
4207896 −37895654590432

Table 11: All NLO gluonic spectral densities of Equation 874 can be calculated with matching LO anomalous
dimensions gqγ(0)n and the related expansion coefficients G̃kn and H̃kn, as defined in Equation 873.
Here, the non-vanishing contributions for even k,n610 are listed.

4.2.5 Twist-three, twist-four and meson mass corrections

Let us extend our discussion to (meson) mass and higher twist corrections which are especially
important for the intended investigation of FFs at moderate momentum transfer Q2 (see Sec-
tion 4.3). Accordingly, we have to calculate all related spectral densities, as implied by Section 4.1.
The main results of this subsection have been published in [3].

All things considered (cf. [3, 281]), the bulk of higher twist effects is linked to two-particle and
three-particle twist-four DAs which have been investigated in Chapter 3. Consequently, we may
focus on the prepared result of Chapter 3 and Section 4.1, including the investigated mass cor-
rections. As a brief reminder: there are two main sources for such admixtures to the TFF. First
of all, the QCD EOM lead to quark-mass and anomalous contributions within the associated DAs.
Hence, at LO twist-four accuracy particularly the non-perturbative components engender possi-
ble O

(
mψ

)
and O

(
hRM

)
terms (cf. Chapter 3). Additionally, one has to take care of the twist-three

DAs, which appear, when assuming a non-vanishing strange quark mass. Furthermore, an extra
meson mass correction ∼m2M is introduced by a corresponding expression of the LO pQCD ampli-
tude (see Section 4.1).

For convenience, we may restrict ourselves to the QF basis, while collecting all the above men-
tioned results within suitable spectral densities, such as:

ρ
(i)
M

(
Q2, s

)
:=
1

π
ImsF

QCD; (i)
γ∗γ∗→M

(
Q2,−s

)
. (878)
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Here, we may assign to each specific contribution the superscript i=m, 3, 4 – denoting meson
mass, twist-three or twist-four densities, respectively. Moreover, Equation 878 can be further
decomposed into summands of different quark flavors:

ρ
(i)
M

(
Q2, s

)
= 2e2sρ

(i),s
M

(
Q2, s

)
+
√
2
(
e2u+e

2
d

)
ρ
(i),q
M

(
Q2, s

)
. (879)

Thus, all occurring matrix elements can be written in terms of FKS parameters, particularly, when
consequently applying the state mixing ansatz (cf. Section 3.1). For instance, the meson mass
corrections boil down to

(
R=q, s

)

ρ
(m),R
M

(
Q2, s

)
=

∞∑
n=0

cRn,Mh
R
M

x2

Q4

(
ξxϕn(x) − xx̄

d
dx
ϕn(x)

)
, (880)

after consistently applying Equation 1353 (see Section B.4) and Equation 729.83 Similarly, for the
contributions of twist-three and four DAs (see Chapter 3) up to NLO accuracy (in conformal spin)
we find:

ρ
(3),R
M

(
Q2, s

)
= −

x2

Q4

(
hRMξx + 60mRf

R
3MC(1/2)

3 (ξx)
)

, (881)

ρ
(4),R
M

(
Q2, s

)
= −

xξx

Q4

{
160

3
fRM

(
δRM

)2
xx̄+mRf

R
3M[60−210xx̄(3−xx̄)]

+hRM

[
1−xx̄

(
13

6
−
21

2
xx̄

)
+cR2Mxx̄(21−135xx̄)

]}
. (882)

According to the standard approach84 [281, 352], comparable higher-order conformal spin cor-
rections are absent in the corresponding pion case.

4.2.6 Rough estimate of twist-six corrections

Let us conclude this section with an estimate for possible twist-six corrections to the meson-
photon TFF. At this point, we will also take up some ideas which have originally been developed
in our previous work [281, 373] and adapt them to the η(′) TFFs.

In the present context, arguments based on power counting (cf. Chapter 2) would suggest that
contributions of higher Fock states to the OPE are strongly suppressed and may, therefore, be ne-
glected. Nonetheless, so-called factorizable contributions [140] can still be sizable, even for large
photon virtualities. The latter result from light-cone operators that can be factorized into a prod-
uct of two gauge invariant lower twist operators [140]. In fact, while impossible for the twist-four
case [140, 467], several twist-six light-cone operators exist, which can be written as a product of
two twist-three, or alternatively one twist-two and an adequate twist-four operator. When sand-
wiched between vacuum and one-meson state, this either implies a low-twist two-particle DA

multiplied with a quark/gluon condensate or gives rise to genuine multiparton twist-six DAs
[140]. As we have shown in [281], twist-six contributions to the γ∗γ → π0 TFF can be calcu-
lated within this factorization approximation. An extension of these results to the γ∗γ→ (η,η′)
transitions, however, is not immediate, as corresponding SU(3)F violation effects are yet missing.

Consequently, all related diagrams, such as those mentioned in Figure 31 would have to be

83 This approximation ensures a compatibility with the calculated twist-four contributions.
84 Here, one normally works in the strict chiral limit, including m2

π≈0 (see [281]).
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recalculated, while this time one must also keep terms linear in the (strange) quark mass. Es-
pecially, for the occurring soft gluon contributions (cf. Figure 31 c),d)) this might require an
adapted reevaluation of the quark propagator’s light-cone expansion in a background gluon
field [75]. Hence, we should first examine the basic structure of these quark-mass corrections.

Let us for example consider diagram Figure 31 a) which contributes to the OPE of Equation 731

if both photon virtualities Q2,q2�Λ2QCD are sufficiently large. Then, we get85 (cf. Equation 139)

−
∑
ψ

e2ψg
2
S

∫
d4x
∫

d4z1

∫
d4z2 e−iq1·x×

×
[
〈M(P)|ψ̄(z1) /A(z1)ψ(z1) ψ̄(x)γµψ(x) ψ̄(0)γνψ(0) ψ̄(z2) /A(z2)ψ(z2) |0〉

+ 〈M(P)|ψ̄(z2) /A(z2)ψ(z2) ψ̄(0)γνψ(0) ψ̄(x)γµψ(x) ψ̄(z1) /A(z1)ψ(z1) |0〉
]

=−
∑
ψ

e2ψg
2
S

∫
d4x
∫

d4z1

∫
d4z2 e−iq1·x

[
(z1−x)

β zα2

16π6 (z1−x)
4 z42 (z1−z2)

2
×

×
(
〈M(P)|ψ̄ai (z1)

[
γργβγµ

]
ij

[
TA
]ab

ψbj (x) ψ̄
c
k(0)[γνγαγρ]kl

[
TA
]cd

ψdl (z2) |0〉

+ 〈M(P)|ψ̄ai (z2)[γ
ργαγν]ij

[
TA
]ab

ψbj (0) ψ̄
c
k(x)

[
γµγβγρ

]
kl

[
TA
]cd

ψdl (z1) |0〉
)

+

(
〈M(P)|ψ̄ai (z1)[γ

ργµ]ij

[
TA
]ab

ψbj (x) ψ̄
c
k(0)[γνγαγρ]kl

[
TA
]cd

ψdl (z2) |0〉

− 〈M(P)|ψ̄ai (z2)[γ
ργαγν]ij

[
TA
]ab

ψbj (0) ψ̄
c
k(x)[γµγρ]kl

[
TA
]cd

ψdl (z1) |0〉
)
×

× imψ
zα2

32π6 (z1−x)
2 z42 (z1−z2)

2
+ imψ

(z1−x)
β

32π6 (z1−x)
4 z22 (z1−z2)

2
×

×
(
〈M(P)|ψ̄ai (z2)[γ

ργν]ij

[
TA
]ab

ψbj (0) ψ̄
c
k(x)

[
γµγβγρ

]
kl

[
TA
]cd

ψdl (z1) |0〉

− 〈M(P)|ψ̄ai (z1)
[
γργβγµ

]
ij

[
TA
]ab

ψbj (x) ψ̄
c
k(0)[γνγρ]kl

[
TA
]cd

ψdl (z2) |0〉
)]

+ . . ., (883)

where the fields marked in blue have to be understood as soft external fields, which may gen-
erate quark condensates [74, 97], i. e., as given by Equation 100. Based on this assumption, all
factorizable matrix elements can be approximated according to86

〈M(P)|ψ̄ai (z1)
[
γργβγµ

]
ij

[
TA
]ab

ψbj (x) ψ̄
c
k(0) [γνγαγρ]kl

[
TA
]cd

ψdl (z2) |0〉

≈ Cf
3
〈ψ̄ψ〉εµναβ〈M(P)|ψ̄(z1) iγ5ψ(z2) |0〉−mψ〈ψ̄ψ〉

Cf
24
xτ
(
gανεβµτκ − gατεβµνκ

−gβµεαντκ + gντεαβµκ + gµκεαβντ − gβκεαµντ
)
〈M(P)|ψ̄(z1)γ

κγ5ψ(z2) |0〉+. . . , (884)

or similarly

〈M(P)|ψ̄ai (z1)
[
γργβγµ

]
ij

[
TA
]ab

ψbj (x) ψ̄
c
k(0) [γνγρ]kl

[
TA
]cd

ψdl (z2) |0〉

≈ Cf
6i
〈ψ̄ψ〉εµνβκ

(
〈M(P)|ψ̄(z1)γ

κγ5ψ(z2) |0〉+
mψ

2
xκ〈M(P)|ψ̄(z1) iγ5ψ(z2) |0〉

)
+ . . . . (885)

85 The ellipses represent higher order quark-mass correction.
86 Here, we may focus on the strange quark case. Nevertheless, the light-quark contributions have a similar formal structure.
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Figure 31: Selected examples (see, e. g., [281, 468]) for two-body (cat’s ears) contributions to the γ∗γ(∗)→
(η,η′) TFFs. These correspond to twist-six four-quark corrections in the “factorization” approxi-
mation (cf. [140, 280, 281]), where broken quark lines with crosses stand for quark condensates.
Of particular note are the diagrams c) and d), which contain the emission of a soft gluon.

Therefore, in case of equally large virtualities Q2=q2 the (new) partial result for ψ=s

F
QCD;(Figure 31a))
γ∗γ∗→M

(
Q2,q2

)∣∣∣
ψ=s

= −e2s8παSCf〈s̄s〉
∫1
0
dx

F
(s)
6M(x)

Q2q2
(
x̄Q2+xq2

) , (886)

F
(s)
6M(x) :=

1

6ms
φ
(s);p
3M (x) +

5

12
msF

(s)
M φ

(s)
M (x) , (887)

fits with the naive power counting assumption, i. e., it is suppressed by two extra powers of 1/Q2

F
QCD;(Figure 31a))
γ∗γ∗→M

(
Q2,Q2

)∣∣∣
ψ=s

= −e2s8παSCf
〈s̄s〉
Q6

[
H

(s)
M

6ms
+
5

12
msF

(s)
M

]
, (888)

when compared to the leading (twist-two) term87. On the other hand, Equation 886 cannot de-
scribe the real photon limit, since it exhibits a clearly unphysical pole at q2=0 (cf. [281]). In fact,
this singularity appears due to missing soft quark-photon interactions which are beyond the
standard OPE and pQCD description (cf. [281]). Accordingly, additional non-perturbative correc-
tions are needed that correspond to photon emissions from long distances and would be present
in the full theory (cf. Section 4.1.1). As discussed in Section 4.2.1 (and [281]), the LCSR approach
regulates these divergences, by correcting the underlying QCD spectral density (cf. Equation 849)

1

π
Ims F

QCD;(Figure 31a))
γ∗γ∗→M

(
Q2,−s

)∣∣∣
ψ=s

= −e2s8παSCf
〈s̄s〉
Q4

∫1
0

dx
x̄

[
δ(−s) − δ

(
x̄

x
Q2 − s

)]
F
(s)
6M(x) , (889)

87 The leading pion counterpart of Equation 888 would be proportional to 〈q̄q〉2/Q6 (cf. [281]).
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via an inclusion of the ρ and ω resonances as well as continuum states88
(
x0=Q

2/
(
s0 +Q2

)):

F
LCSR;(Figure 31a))
γ∗γ→M

(
Q2
)∣∣∣
ψ=s

= e2s8παSCf

(
〈s̄s〉
m2ρQ

4

[∫1
0
dx
[
1

x̄

]

+

F
(s)
6M(x) e

xm2ρ−x̄Q
2

xM2

−

∫x0
0

dx
x̄

F
(s)
6M(x) e

xm2ρ−x̄Q
2

xM2

]
−
〈s̄s〉
Q6

∫x0
0

dx
xF

(s)
6M(x)

x̄2

)
. (890)

This new result, however, is of order 1/Q4 not 1/Q6 which entails the mentioned enhancement
within the complete sum rule (cf. [281]). Indeed, the remaining factorizable twist-six corrections
would exhibit a similar formal structure (see also [3]), as they are largely analogous to the (lead-
ing) pion case. Furthermore, when employing both Equation 890 and Equation 888, we can
roughly estimate the SU(3)F corrections of Figure 31 a) to be less than 10% relative to their
O
(
m0s
)

counterparts89.

Based on this heuristic analysis, we can estimate the numerical impact of possible factorizable
twist-six contributions to the η and η′ TFFs. The latter should amount to an additional uncer-
tainty of 2% − 3% [3, 281] which is beyond the existing experimental precision. For this reason
and theoretical consistency, we should omit such corrections at this point entirely.

4.3 phenomenological analysis of η(′) -meson-photon transitions

Based on the previously presented theoretical findings, we are now able to perform an improved
numerical analysis of the existing space- and time-like data sets, as measured by CLEO and
BABAR [7, 8, 351]. This includes a careful survey of the associated uncertainties and possible
prospects to constrain the two-gluon η(′) DAs, in particular, when more precise data on TFFs
become available.

The presentation is organized as follows (using our work published in [1, 3]):

• the babar puzzle (i): In Section 4.3.1 a brief review of the “BABAR puzzle” [5] and its90

implications on the (η,η′) TFFs is given. This is supplemented by an explanation of several
essential techniques, necessary for the intended extraction of DA related parameters from
experimental FF data. Furthermore, we present a new model for the pion DA that is used
to describe the recent Belle measurement [6].

• the babar puzzle (ii): Building on this know-how, we resume our previous discussion on
the FKS state mixing approximation (cf. Section 3.1) by including phenomenological aspects
that result from the CLEO and BABAR measurements [7, 8].

• the asymptotic limit : Section 4.3.3 is devoted to study the formal “Q2→∞” limit. Most
importantly, by including finite renormalization corrections into the flavor singlet contribu-
tions91, we are able to remove an apparent discrepancy between the expected asymptotic
behavior of the γ∗γ→ η′ FF and the (experimental) data [7, 351].

• the time-like ffs : Furthermore, in Section 4.3.4 we discuss the crucial difference between
time- and space-like FFs, based on a pQCD approach. That is followed by a comparison of
the theoretical results with existing data [351] at |Q2 |= 112 GeV2 .

88 For an integrable function “f”, we here encounter a “plus” distribution, i. e.,
∫1
0 dx

[
1
x̄

]
+
f(x)=

∫1
0 dx 1x̄ (f(x)−f(1)).

89 Here, we are focusing on the asymptotic DAs. Otherwise, Equation 888 suggests a relative size of about 6%.
90 Here, we mean the puzzle proposed by the BABAR data [5] on γ∗γ→π0 transitions.
91 To our best knowledge, this has not been done before.
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Figure 32: Based on [1] the scaled TFF
(
in [GeV]

)
is plotted against the momentum transfer

(
in [GeV]2

)
for

LCSR calculations (cf. [1, 281]), that include the “asymptotic” φAS
π (x)=6xx̄ (solid line), BMS [469]

(short dashes), “holographic” φhol
π (x)= 8

π

√
xx̄ [470] (long dashes), “model II” of Ref. [281] (dash-

dotted) and “flat” φflat
π (x) = 1 [471] (dots) pion DA. The experimental data are from Belle [6]

(squares), BABAR [5] (circles) and CLEO [8] (open triangles).

• numerical lcsr analysis : In Section 4.3.5 we provide a detailed numerical analysis of
the available space-like data within the LCSR framework. In particular, we present three
possible models for the η and η′ DAs which may be used to describe the γ∗γ→ η(′) TFF

measurements of [7, 8].

Accordingly, this section is of central importance for this work.

4.3.1 The BABAR puzzle – part I

Meson-photon TFFs and in particular the π0γ∗γ FF have been a hot subject over the last several
years (cf. [1, 281]). This has been further fueled92 by the BABAR measurement93 [5] which sug-
gested a strong scaling violation of Q2Fγ∗γ→π0

(
Q2
)
. In order to identify the main challenges

posed by this “BABAR puzzle”, some basic facts about γ∗γ→ P
(
P = π0,η,η′

)
TFFs should be re-

considered. This includes several phenomenological concepts, used to determine the underlying

92 As discussed in our earlier work [281] and the corresponding addendum [1], the BABAR measurement caused a flurry of
theoretical activity.

93 As reported in [3, 7, 351], the differential cross section for the two-photon fusion reaction e+e− → e+e−P (P is a
pseudoscalar meson) has been measured by using the single tag mode (cf. Figure 18). In fact d

dQ2σ(e
+e−→ e+e−P)

is related to the TFF Fγ∗γ→π0
(
Q2
)

via a simple formula analogous to [472, Equation 2.1, 4.5] (cf. [7, 351]).
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distribution amplitude’s shape94. Based on an analytical approach towards QCD, only the low-
and high energy limits of Fγ∗γ→P are at this point constrained. In fact, by defining the FF via95

Equation 731 we have implicitly accepted the standard choice [7, 8] for its normalization which
allows an extrapolation to the two-photon decay width Γ(P→2γ)

(
i. e., Q2→ 0

)
. For instance,

when considering the neutral pion decay [6, 8]
(
analogously for M=η,η′

)

lim
Q2→0

∣∣∣Fγ∗γ→π0
(
Q2
)∣∣∣
2
=
4Γ
(
π0→2γ

)

πα2QEDm
3
π

, (891)

the Adler-Bell-Jackiw anomaly96 [51, 52] predicts (cf. Equation 2) a corresponding lower bound:

lim
Q2→0

Fγ∗γ→π0
(
Q2
)
=

√
2

4π2fπ
. (892)

On the other hand, at sufficiently large momentum transfer pQCD can be applied
(
µ2=Q2

)
:

Q2FQCD
γ∗γ→π0

(
Q2
)
=

√
2fπ

3

∫1
0
dx
φπ(x,µ)

x
+O(αS) +O

(
Λ2QCD
Q2

)
, (893)

which implicates the famous Brodsky-Lepage limit97 [301]

lim
Q2→∞Q2FQCD

γ∗γ→π0
(
Q2
)
=
√
2fπ ≈ 0.185 GeV . (894)

For any finite value of Q2, however, the meson-photon TFF exhibits a rather nontrivial behavior.
In short, any attempts to describe the FF entirely in the framework of pQCD is futile98 (cf. [1, 281]).
Instead, non-perturbative and (other) soft corrections must be taken into account, e. g., with a
modified approach, such as the Musatov-Radyushkin (cf. Equation 748) model or LCSRs (see
Section 4.2.1). Here, it is useful to discuss some facts about the interplay of DAs and FFs. As
mentioned in [281], those modifications effectively suppress contributions of higher order terms
within the Gegenbauer expansion99

(
similarly for η and η′ DAs

)

φπ(x,µ) = 6xx̄

[
1+

∞∑
k=1

aπ2k(µ)C(3/2)
2k (ξx)

]
, (895)

i. e., contributions beyond k=2 have a small impact on the TFF. This can be illustrated100 by the
discussed Musatov-Radyushkin model

(
i. e., we use Equation 748 for σ=0.53 GeV2

)

Q2F
q̄q

γ∗γ→π0
(
Q2=20GeV2

)
=
√
2fπ[0.908+ 0.556aπ2 + 0.221aπ4 + 0.052aπ6 + 0.006aπ8 +. . .] , (896)

94 Here, we mainly describe the pion TFF. However, the strategies and implied conclusions for the η(′) case are completely
analogous.

95 Evidently, for M=π0 Equation 731 also describes the pion TFF.
96 Usually calculated in the chiral limit (cf. [49]).
97 For Q2→∞ only the asymptotic DA contributes. In this way Equation 894 can be deduced from Equation 893.
98 Estimates for soft contributions within the LCSR approach are power suppressed compared to their hard counterparts.

However, in this context, soft corrections are sizable for a moderate momentum transfer Q2 ∼2− 6 GeV2 and can still
account for ca. 25% of the

(
γ∗γ→π0 FF

)
atQ2=30 GeV2 [281]. Accordingly, a pure pQCD calculation of the TFF with

one real photon and in the collinear factorization approach should not be expected to have a high accuracy (e. g., [281]).
99 This may also restrict the relevance of the involved end-point behavior.

100 The problem, whether such soft corrections can be estimated in a model independent way has been addressed in Sec-
tion 4.1.1. For the chosen LCSR approach, those non-perturbative modifications are in general somewhat smaller, but
sizable (see, e. g., [281]).
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which manifests such corrections101, as compared to a LO pQCD result
(
e. g., also atQ2=20 GeV2

)

Q2FQCD
γ∗γ→π0

(
Q2
)
=
√
2fπ [1+ a

π
2 + aπ4 + aπ6 + aπ8 + . . .] . (897)

Here, we have omitted RG effects
(
e. g., with aπn =̂ aπn(µ) and µ2 =Q2

)
for brevity and a better

visibility of the non-perturbative admixtures. As discussed in Section 4.2.1, similar soft contri-
butions exist in the LCSR approach for each Gegenbauer moment, yet with a more complicated,
but also individually different scale dependence. Especially, the latter could, therefore, be made
responsible for the role which the different regions of momentum transfer play, when one is
extracting information on the DAs from FF measurements (following [1]):

• moderate momentum transfer : A sensitivity to the meson DA within this realm of mo-
mentum transfer, i. e., Q2 ∼ 2 − 6 GeV2 is mostly limited to the second-order coefficient
in the Gegenbauer expansion102. Correspondingly, that second moment

(
e. g., aπ2

)
can be

roughly determined via fits of LCSR calculations to the experimental data at lower or mod-
erate Q2 values, while all other Gegenbauer coefficients are temporarily put to zero. More-
over, in the case of Q2 . 6 GeV2 higher twist corrections appear to be significant for
QCD and LCSR predictions. For moderate Q2 values, however, the sum rule method relies
rather heavily on the duality assumption which is used to model soft contributions (cf.
Section 4.2.1). According to [459, 460], the accuracy of such approximations is difficult
to quantify and should, therefore, be tested. At NLO in αS, we may roughly estimate an
irreducible theoretical uncertainty for this region of about ±5% [1].

• intermediate momentum transfer : QCD predictions in the region of intermediate mo-
mentum transfer are particularly sensitive to higher-order shape parameters, such as the
fourth and sixth Gegenbauer coefficients. More precisely, the experimental data at Q2 ∼

10 GeV2 allows access to quantitative information on the fourth moment, while data points
around Q2 . 20 GeV2 can be used to further constrain aπ6 . This can be done as follows:
provided that aπ2 has already been determined, another fitting procedure can be carried
out, which iteratively incorporates additional non-vanishing Gegenbauer coefficients into
the considerations. Unfortunately, this strategy is strongly dependent on the data quality.
Furthermore, it should be noted that the shape parameters seem to be interdependent.
For instance, a sizable coefficient aπ6 leads to a decreasing value of aπ4 (cf. [1, 281]). Let
us return to the original problem. Regarding the BABAR and Belle experiment [5, 6], the
difference between their data points within this region is statistically the most significant
(cf. [1]). If the values reported by BABAR [5] are true, a description based on QCD collinear
factorization which does not use unconventional models for the pion DA (e. g., with large
end-point enhancements) seems hard to maintain. In the context of Gegenbauer moments,
this is manifested by an inverse hierarchy aπ4 > a

π
2 [1, 281]. Conversely, the Belle data [6]

at Q2 ∼ 9 − 12 GeV2 is much easier to accommodate within a “standard” scenario, e. g., by
using the holographic model (see Figure 32).

• large momentum transfer : In accordance with pQCD the TFF is expected to approach
the Brodsky-Lepage limit in this region, i. e., for Q2 > 20 GeV2 . Nevertheless, since an

101 The mentioned soft corrections within Equation 896 (cf. Equation 748) would vanish in the limitQ2→∞, formally restor-
ing Equation 897. However, the (not shown) RG effects will at some point become dominant, leading to an additional
suppression of the Gegenbauer moments.

102 This second Gegenbauer coefficient aπ2 has been calculated rather precisely (e. g., [11]) on the lattice. When used as
an input, a comparison of the resulting LCSR calculations with the form factor data may allow a better assessment
concerning the theoretical accuracy that is presently available [1]. Especially with the expected BES III experiment [473],
which plan a significant improvement over the CLEO, BABAR and Belle results in this region, there can be quantitative
progress [1]. That will be important in a broader context, e. g., for QCD calculations of semileptonic heavy to light meson
form factors and comparable weak decays, which involve similar relatively low scales (cf. [1]).
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Measurement aπ2 (µ0) aπ4 (µ0) aπ6 (µ0) aπ8 (µ0)

BABAR [5] 0.140 0.230 0.180 0.050

Belle [6] 0.100 0.100 0.100 0.034

Table 12: Two different models for the pion DA
(
aπn ≡ 0, n > 10

)
, either describing the BABAR [5] or Belle

[6] measurement (cf. [1]). All involved Gegenbauer coefficients are taken at the generic scale
µ0=1 GeV.

asymptotic behavior in QCD is generally achieved for very large scales, it seems unlikely
to observe this prediction within the BABAR range (cf. [1]). Additionally, much of the ex-
citement caused by the BABAR experiment resulted from the associated power-law fit [5](
A= 0 .182 ± 0 .002 GeV, β= 0 .25 ± 0 .02

)

Q2Fγ∗γ→π0
(
Q2
)
' A

(
Q2

10 GeV2

)β
(898)

to the FF data [1]. This fit, however, is dominated by the data at lower momentum trans-
fer. Thus, the proclaimed rise at large Q2 values is not warranted (see [1] and references
therein for an extended discussion). In fact, a much higher accuracy would be needed to
discriminate between different models that include aπn 6= 0 with n > 6 and also provide
quantitative constraints. Therefore, higher partial waves, such as aπ8 , aπ10, etc., which may
become important in this large Q2 region, cannot be deduced from the existing data with
satisfactory accuracy. Apart from that, higher-order Gegenbauer moments contribute only
marginally in the BABARQ2 range due to cut-off effects caused by soft corrections [1, 281].
Unfortunately, this is also true in the η(′) case.

Broadly speaking, the distribution amplitude’s “x”-dependence (cf. Equation 895) is determined
by the form factor’s Q2-dependence and vice versa. In this way it is possible to test different
(generic) models103 on the basis of the given experimental data. As an illustration Figure 32

shows a compilation of FF measurements provided by the Belle [6], BABAR [5] and CLEO [8] col-
laborations. Evidently, the BABAR data displays a significant scaling violation at Q2 > 10 GeV2,
i. e., it exceeds the asymptotic limit and (seemingly) continues to rise. Conversely, the Belle data
points [6] are systematically lower than those of BABAR [5] within a broad range of photon virtu-
alities Q2.104 Consequently, a LCSR analysis based on [281], which is designed to describe each
of the two measured data sets separately, will also give rise to two distinct models for the oth-
erwise universal pion DA. In order to obtain a good fit, we may, therefore, use the Gegenbauer
coefficients of Table 12 (cf. [1]). Evidently, these shape parameters by design either describe the
new Belle experiment [6] or form a model which may be used to interpret the BABAR data [5] (cf.
[1]). A comparison of those models can be seen in Figure 32 and Figure 33.

In the context of meson structure physics we may, therefore, summarize [1]:

• The measurements reported by the Belle collaboration [6] should somewhat take the heat
off theorists struggling to invent new non-perturbative mechanisms (cf. [1] and references
therein) which postpone or even invalidate the onset of QCD factorization in the meson TFF.

103 As pointed out in [1], one has to be very careful in comparing statements on the distribution amplitude’s shape which
have been obtained within different theoretical approaches. Their specific properties can distort the general form of the
DA.

104 The discrepancy between those two data sets is within 1.5− 2.0 standard deviations (cf. [1]).
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Figure 33: Both models of Table 12 and the asymptotic DA are plotted (picture taken from [1]) against the
quark momentum fraction “x” (at µ0 = 1 GeV). In particular, the corresponding model for [6]
(solid line) is compared to “model II” of [281] (dashed) and the asymptotic DA (dotted).

• A new generation of experimental data, e. g., coming from super-B factories (e. g., [473])
could help to settle this question and allow the γ∗γ→π0 transition to serve its purpose as
a gold plated reaction within the theory of hard exclusive reactions.

• Moreover, a global fit of all hard exclusive processes including pions is needed. This may,
eventually, also include available lattice data105.

However, the BABAR puzzle is not restricted to the γ∗γ→π0 FF. Instead, it also affects the analo-
gous measurements of the electromagnetic TFFs γ∗γ→ (η,η′) at space-like momentum transfers
within the interval Q2∼4− 40 GeV2 [3].

4.3.2 The BABAR puzzle – part II

In this section we will discuss the general implications of the BABAR puzzle (cf. [1, 3]) on η and
η′ DAs.

When looking at the γ∗γ→ (η,η′) BABAR data [7] (see Figure 34), it immediately comes to mind
that no similar scaling violation, as in the pion case [5] can be observed. Instead, when fitted106

with the function
(
Q2 in GeV2; P=π0,η,η′; aP,bP∈ R

)
[7]

Q2Fγ∗γ→P
(
Q2
)
' bP + aP log

(
Q2

1 GeV2

)
(899)

the observed rise107 of both η and η′ TFFs [7, 351] is about three times weaker [471] than their
corresponding counterpart for γ∗γ→π0 transitions [5] (cf. [7]). But more importantly, the very

105 In recent years, lattice QCD has emerged as a valuable addition to the sum rule method. Both approaches now have a
similar precision, e. g., this can be seen in [281, TABLE I.].

106 As reported by [7], this fit uses a combination of the data sets [7] and [351].
107 Here, “rise” is synonymous to the related numerical value “aP” of this fit (cf. [7]).
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Figure 34: The experimental data on γ∗γ→ π0 [5, 6, 8] (open symbols) compared with the non-strange
component of the η(′) TFFs γ∗γ → |ηq〉 (filled symbols), that arise from the combination of
BABAR or CLEO measurements [7, 8] on η and η′ production in the FKS mixing scheme, i. e., by
applying the rescaled Equation 900.

same data can be related to each other via a flavor decomposition. In other words, based on
the FKS scheme (cf. Section 3.1.1) a comparison of the η and η′ data [7] with γ∗γ → π0 FF

measurements [5, 6] is thus also possible via (cf. Equation 315)

Fγ∗γ→|ηq〉
(
Q2
)
:= cos(φ) Fγ∗γ→η

(
Q2
)
+ sin(φ) Fγ∗γ→η′

(
Q2
)

, (900)

Fγ∗γ→|ηs〉
(
Q2
)
:= cos(φ) Fγ∗γ→η′

(
Q2
)
− sin(φ) Fγ∗γ→η

(
Q2
)

. (901)

According to [7, 474] the (naive) asymptotic limits are, therefore, given by108

lim
Q2→∞Q2Fγ∗γ→|ηq〉

(
Q2
)
=
5
√
2

3
fq , (902)

lim
Q2→∞Q2Fγ∗γ→|ηs〉

(
Q2
)
=
2

3
fs , (903)

which are equivalent to the conservative upper bound
(
M=η,η′, while using Equation 280

)
:

lim
Q2→∞Q2Fγ∗γ→M

(
Q2
)
≈
√
2

3

[
f
(8)
M + 2

√
2f

(0)
M

]
. (904)

108 When assuming the (strict) FKS scheme, we may expect, that φq(x) (i. e., the related twist-two DA of |ηq〉 – cf. Sec-
tion 3.1.4) is close to φπ(x), except for a prefactor. The latter originates from different quark charges and has to be used
when rescaling Equation 900.
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In Figure 34 we show a comparison of the γ∗γ→ π0 experimental data with the rescaled non-
strange γ∗γ→ |ηq〉 FF which has been extracted from the BABAR [7] and CLEO [8] data for γ∗γ→η
and γ∗γ→η′ transitions, while using Equation 900 (multiplied by 3/5) [3]. If the FKS scheme were
exact, the two FFs would coincide in the whole Q2 range, i. e., up to tiny isospin breaking cor-
rections (cf. [3]). As can be seen with reference to Figure 34, the existing measurements do not
contradict the (assumed) FKS approximation at low-to-intermediate Q2 6 10 GeV2, whereas at
larger virtualities the comparison is inconclusive because of significant discrepancies between the
BABAR and Belle pion data [5, 6]. Moreover, when taken in isolation, the BABAR data exhibits dra-
matic differences between the γ∗γ→π0 and γ∗γ→ |ηq〉 FFs at large momentum transfers which
cannot be explained by perturbative effects (see [3]). Most importantly, if these discrepancies
were confirmed, it would be a stark indication that the concept of state mixing (cf. Section 3.1.4)
is not applicable to the η and η′ DAs. Hence, already at a low scale, the corresponding relations
between higher-order Gegenbauer coefficients would be strongly broken. We will extend this
discussion within Section 4.3.5 in the context of η(′) TFFs.

It should be emphasized again (cf. Chapter 3), that we use this FKS state mixing assumption
for the η and η′ DAs

(
at µ0 = 1 GeV

)
only as a working hypothesis to avoid a proliferation of

parameters. If necessary, we are able to relax those presuppositions in the future109.

4.3.3 The asymptotic limit for η and η′ transition form factors

This subsection110 is devoted to discuss the behavior of η and η′ TFFs at very large momentum
transfers. In that context we will derive an analogue to the Brodsky-Lepage limit (cf. Equa-
tion 894), which, to our best knowledge for the first time includes finite RG effects of the single
decay constant (see Equation 462). As further explained in Section 4.3.5, this enables a better
compatibility with the experimental data [7, 351].

In the formal Q2 →∞ limit the scaled TFFs (cf. Equation 751) have to approach their asymp-
totic values111

lim
Q2→∞Q2Fγ∗γ→M

(
Q2
)
=

√
2

3

[
f
(8)
M + 2

√
2f

(0)
M (µ0)

(
1−
2Nf
πβ0

αS(µ0)

)]
. (905)

Based on Equation 462, the scale dependence of f(0)M (µ0) gives rise to a finite renormalization
factor (marked in blue) which is not negligible. Consequently, when using Nf = 4, µ0 = 1 GeV,
αS(µ0) ≈ 0.5, and the FKS parameters in Equation 280, we obtain (all numbers in parenthesis
correspond to the parameter set of Equation 281):

lim
Q2→∞Q2Fasy

γ∗γ→η
(
Q2
)
= 0.173 (0.158) GeV , (906)

lim
Q2→∞Q2Fasy

γ∗γ→η′
(
Q2
)
= 0.247 (0.270) GeV . (907)

This finite renormalization correction to the flavor singlet contribution has not been taken into
account in [7, 20, 28] (see, e. g., Equation 904). In fact, it causes less than a 5% effect for the η
meson, but leads to a 20% reduction of the asymptotic γ∗γ→η′ FF value. In the latter case, this
effect is amplified by a cancellation between the flavor singlet and flavor octet contributions, i. e.,

109 For instance, by replacing the Gegenbauer coefficients via particle dependent counterparts.
110 Here, we closely follow our work of [3].
111 Strictly speaking: contributions of heavy quarks have to be added at the corresponding thresholds (cf. Section 2.3), i. e.,

one has NfαS(µ0) 7→ 3αS(µ0)+αS(µc)+αS(µb)+ . . . . Numerically, however, the difference is not significant.
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f
(0)
η′ = 0.15 (0.17), along with f(8)

η′ = −0.06 (−0.08). As a consequence, the discrepancy between
the data [7, 351] and the expected asymptotic behavior of the γ∗γ→ η′ FF is removed112 (see
Section 4.3.5).

These renormalization group effects are, therefore, of particular interest in the following chapter.

4.3.4 The time-like form factors

In this subsection we analytically continue the η and η′ TFFs to large negative photon virtualities
which allows a comparison with existing measurements.

It is worth emphasizing that in reference [351] the annihilation processes e+e−→γ∗→ (η,η′)γ
(cf. Figure 18) were studied at a center-of-mass energy

√
s=10.58 GeV. This is especially impor-

tant, because those measurements can be interpreted in terms of γ∗γ→ (η,η′) FFs at remarkably
high time-like photon virtuality Q2=−s=−112 GeV2 [3, 351]:

∣∣∣Q2Fγ∗γ→η
(
Q2=−112 GeV2

)∣∣∣ = (0.229± 0.031) GeV , (908)
∣∣∣Q2Fγ∗γ→η′

(
Q2=−112 GeV2

)∣∣∣ = (0.251± 0.021) GeV . (909)

Here, we added the statistical and systematic uncertainties (cf. [351]) in quadrature. In general,
time-like FFs are complex quantities, whereas only their absolute value is measured [351]:

dσ (e+e−→Mγ)
dcos

(
θ∗γ
) =

π2α3QED

4

∣∣Fγ∗γ→M(−s)
∣∣2
(
1+cos2

(
θ∗γ
))

. (910)

For the related center-of-mass frame “θ∗γ” is the angle between its incoming electron and the
outgoing photon (see [351]). At leading twist accuracy, all required time-like FFs can be obtained
from their Euclidean (space-like) counterparts via the analytic continuation

(
ε→0+

)

Q2 7−→ −s− iε . (911)

In this process imaginary parts arise both from the analytically continued hard coefficient func-
tions as well as involved DAs which become complex at time-like scales µ2∼Q2=−s. Particularly,
two types of logarithmic corrections become relevant in this context [476]:

• UV logarithms, e. g., originating from the time-like version of αS, or

• collinear logarithms, e. g., caused by the renormalization of DAs.

Therefore, we encounter functions that contain logarithmic contributions, such as

lim
ε→0+

log
(
s
µ2F

− iε

)
= log

(
Q2

µ2F

)
− iπ , (912)

or
(
µ2F being some fixed mass scale

)

lim
ε→0+

log
(

log
(
s
µ2F

− iε

))
= log

(√
log2

(
Q2

µ2F

)
+π2

)
− i arctan


 π

log
(
Q2

µ2F

)


 . (913)

112 The BABAR data [7, 351] suggests, that Fγ∗γ→η
(
Q2
)

has a slightly different scaling behavior than the γ∗γ→ η′ FF.
As reported by [7], the preferred description for the combined data [7, 351] corresponding to Q2Fγ∗γ→η

(
Q2
)

FFs
is given by Equation 899. This function, however, corresponds to a model with a finite DA at the end points [7] (as
proposed [471, 475] for the γ∗γ→π0 TFF [5]). Conversely, the η′ TFF can be better described (cf. [7]) via models with a
conventional DA, yielding a flat scaled FF for (very) large momentum transfers.
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Unfortunately, the transition from space-like to corresponding (mirror) time-like momenta en-
genders rather cumbersome expressions which we prefer not to show explicitly for their sole
evaluation at Q2 = −112 GeV2. Thus, let us instead focus on the numerical evaluation. Since
Equation 751 is applicable, both TFFs are linear functions of the DAs. By using the inherent
conformal expansion of the latter, each FF can be written as a formal sum over the different
Gegenbauer moments113 (see Equation 447, Equation 467 and Equation 751)

FQCD
γ∗γ→M

(
Q2
)
=
∑
A=0,8

3CAf
(A)
M (µ)

[∫1
0
dx xx̄ T (A)

H

(
x,Q2;µ,αS(µ)

)

+

∞∑
n=1

c
(A)
2n;M(µ)

∫1
0
dx xx̄C(3/2)

2n (ξx) T
(A)
H

(
x,Q2;µ,αS(µ)

)]

+ 15C0f
(g)
M (µ)

∞∑
n=1

c
(g)
2n;M(µ)

∫1
0
dx x2x̄2C(5/2)

2n−1(ξx) T
(g)
H

(
x,Q2;µ,αS(µ)

)
, (914)

that are most conveniently taken at a low reference scale
(
ĨQF :={q, s,g}

)
:

Q2Fγ∗γ→η
(
Q2=−112 GeV2

)
= 0.161 GeV +

∑
p∈ĨQF

∞∑
n=1

f
(p)
η;2n

(
Q2

µ2
,αS(µ) ;µ0

)
c
(p)
2n (µ0) , (915)

Q2Fγ∗γ→η′
(
Q2=−112 GeV2

)
= 0.241 GeV +

∑
p∈ĨQF

∞∑
n=1

f
(p)
η′;2n

(
Q2

µ2
,αS(µ) ;µ0

)
c
(p)
2n (µ0) . (916)

Essentially all scale dependencies can be absorbed114 in the coefficient functions f(p)M;n, while
analogous contributions of the asymptotic DA may be written separately115. For their numerical
evaluation, we also choose the factorizations scale µ2=Q2 and analytically continue the results
via Equation 911 to time-like momentum transfers. A comparison between numerical values of
possible space- and time-like coefficients for the η and η′ mesons, with focus on n = 2, 4 are
given in Table 13. It should be noted that the functions f(p)M;n have been (originally) calculated

without further restrictions, while the corresponding shape parameters c(p)2n are assumed to be
particle independent, as implied by the used FKS state mixing ansatz. Accordingly, the param-
eters of Equation 280 have been used as a default input. Besides, by varying the scale µ2 we
may additionally estimate related perturbative uncertainties which result from a truncation of
higher-order O

(
α2S
)

corrections. As a conventional range of variation [37, 42], we choose116 [3]

Q2

2
< µ2 < 2Q2 . (917)

Consequently, the given numbers of Table 13 will change by at most 10%. Moreover, we see, that
the coefficients of higher order Gegenbauer polynomials are in general rather small which is due
to a suppression caused by the anomalous dimensions. These coefficients acquire rather large
phases. However, for realistic values of the Gegenbauer moments, e. g., c(q)n ∼ c

(s)
n ≈ 0.1 − 0.2

113 Here, we set f(8)M (µ)=f
(8)
M . Moreover, for consistency reasons, we keep particle dependence at this point.

114 This includes RG effects, which are also encoded in the coefficients f(p)M;n.

115 Their absolute values
(

i. e., f(p)M;0

)
are almost the same in the time-like and space-like regions.

116 The residual uncertainty O
(
αN+1
S

)
of a finite perturbative series, such as

∑N
k=0 ck

(αS
π

)k (N> 0) is associated with
the ambiguity in choosing a factorization scale. Hence, varying this scale can be an input in estimating uncertainties on
predictions (see [37, 42]).
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Meson Scale f
(q)
M;2 f

(s)
M;2 f

(g)
M;2

η
space-like 0.126 −0.037 0.010

time-like 0.113+ 0.032i −0.033+ 0.009i 0.011− 0.001i

η′
space-like 0.103 0.045 0.061

time-like 0.093+ 0.026i 0.040+ 0.011i 0.069− 0.005i

Meson Scale f
(q)
M;4 f

(s)
M;4 f

(g)
M;4

η
space-like 0.105 −0.030 0.006

time-like 0.086+ 0.039i −0.025− 0.011i 0.006+ 0.001i

η′
space-like 0.086 0.037 0.037

time-like 0.070+ 0.032i 0.030+ 0.014i 0.040+ 0.005i

Table 13: Based on their conformal structure, the twist-two DAs give rise to a similar Gegenbauer expansion
of the related TFFs, e. g., as it has been implemented in Equation 915 or Equation 916. Accordingly,
we list the first few coefficients (n = 2, 4) for the FFs at time-like

(
Q2 = −112 GeV2

)
and space-

like
(
Q2 = 112 GeV2

)
momentum transfer. Here, all numbers are given in units of [GeV], while

assuming validity of the FKS scheme at the reference scale µ0=1 GeV.

(n = 2, 4) the corresponding contributions to the FF appear to be marginal as compared to the
leading terms in Equation 915 and Equation 916 (cf. [3]). Thus, the overall phase is small and the
related absolute values of the FF in the space- and time-like regions remain close to each other.
This result is in agreement with the conclusion in [476], stating that perturbative corrections can-
not generate a significant difference between the space-like and time-like FFs.

Unfortunately, the situation beyond the discussed leading power accuracy is less well under-
stood. For instance, the overall 1/Q2 corrections to the space-like TFFs is negative117 and by virtue
of the sign change in Q2, one expects a positive correction to the time-like FF if the analytic
continuation is justified to power accuracy which is, however, not obvious (cf. [3]). In general,
the higher twist contributions correspond to less singular terms within the light-cone OPE of the
product Jem

µ (x) Jem
ν (0) are small and tend to have alternating signs [3] (see, e. g., Equation 773).

In particular, they are unlikely to play any role at
∣∣Q2

∣∣∼112 GeV2. Conversely, soft contributions
can be significant, even for very large momentum transfers. As discussed in [3, 281], within the
LCSR approach the magnitude of soft corrections is correlated with the leading-twist distribution
amplitude’s shape, i. e., broader DAs generally lead to larger soft corrections and vice versa. A
rough estimate can be given by Equation 857 when assuming numerically equal values for octet
and singlet Gegenabuer moments

(
at leading twist accuracy and Q2 sufficiently large

)
:

Q2Fγ∗γ→M
(
Q2
)
= Q2FQCD

γ∗γ→M
(
Q2
)[
1−

(3− 7)GeV2

Q2

]
. (918)

Here, the larger number corresponds to a broad DA of the type [281] (cf. Section 4.3.1) required
to describe the BABAR data [5] on γ∗γ→π0 transitions, and the smaller one is obtained from the
asymptotic DA. If the soft correction changes sign in the time-like region, we may conclude that
the difference between related time- and space-like FFs at

∣∣Q2
∣∣=112 GeV2 can be between ∼5%

117 This can be shown in many ways, see, e. g., [1, 281].
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and ∼ 13% for the “narrow” and “broad” meson DA, respectively118. It is interesting that the
experimental result for γ∗γ→η′ transitions at Q2=−112 GeV2 [351] is very close to the contri-
bution of an asymptotic η′ meson DA in Equation 916, whereas the asymptotic contribution to
γ∗γ→η is almost 50% below the data (cf. Equation 909). This result urgently needs verification!
If correct, it can probably only be explained by much larger soft contributions, e. g., as implied
by a much broader η meson DA, as compared to the η′ case. This conclusion, however, would
also be in conflict with the state mixing approximation for DAs.

We, therefore, conclude that the performed analysis, which is based on an analytical continua-
tion of the γ∗γ→(η,η′) FFs to a large negative momentum transfer, entails important constraints
on the possible structure of involved meson DAs as well as the allowed approximation methods.

4.3.5 Numerical analysis of the space-like γ∗γ→(η,η′) transition form factors

The following section is devoted to the phenomenological study of η and η′ meson DAs based
on available space-like TFF measurements. Correspondingly, it is one of the core components of
this thesis.

In addition to a detailed numerical LCSR analysis, the available experimental data will be used to
find models for the η and η′ meson DAs. As shown below (see also Section 4.3.1), the given data
sets do not suffice for more than a reasonable determination of the first two shape parameters,
that are engendered by φ(q)

M (x,µ) or φ(s)
M (x,µ). In the case of the gluon DAs φ(g)

M (x,µ) only the
first non-trivial moment can be constrained. As discussed in [28], these quantities are only effec-
tive parameters which carry an error due to the truncated Gegenbauer expansion. Higher order
terms of the latter, however, should be sufficiently suppressed by soft effects (cf. Section 4.3.1).

According to Section 4.3.1, it is, therefore, necessary for such a procedure to name the involved
input, i. e., sum rule parameters first.

4.3.5.1 Light-cone sum rule parameters

All numerical results in this subsection are obtained by using the two-loop running QCD coupling
of Equation 74 (with Equation 67) for Nf=4 active flavors and Λ(4)

QCD=326 MeV (cf. Equation 81).
Based on Chapter 3 we assume that the FKS mixing scheme is valid for all involved DAs at
the generic renormalization scale µ0 = 1 GeV

(
αS(µ0) = 0.494

)
. Unless stated otherwise, we

use the set of FKS parameters, as specified in Equation 280. Moreover, all given values of non-
perturbative parameters refer to the same reference scale µ20 = 1 GeV2. Furthermore, a natural
factorization and renormalization scale µ for the pQCD calculation of meson TFFs with two large
photon virtualities Q2,q2�Λ2QCD is given by the virtuality of the quark propagator

(
x ∈ [0, 1]

)

µ2 ∼ x̄Q2 + xq2 . (919)

In the LCSR framework, with q2→0, the relevant factorization scale becomes [140]

µ2 ∼ x̄Q2 + xM2 , (920)

or, if M2�s0 one has [3]

µ2 ∼ x̄Q2 + xs0 . (921)

118 This difference can further be enhanced by Sudakov-type corrections [3]. For a discussion see, e. g., [476] and references
therein.
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Nevertheless, using an x-dependent factorization scale is rather inconvenient. Hence, we replace
“x” by the average 〈x〉 which is varied within a certain range [3]:

µ2 = 〈x〉Q2 + 〈x〉s0 ,
1

4
< 〈x〉 < 3

4
. (922)

By the same token, the Borel parameter M2 in LCSRs has to be selected carefully (cf. [464, 465]).
In contrast to “classical” QCD sum rules, the twist expansion in LCSRs goes in powers of 1/(xM2)

rather than 1/M2. Therefore, in order to ensure the same hierarchy of contributions for two point
functions within the SVZ approach, one has to use somewhat larger values of M2 in the LCSR

framework [3]. We choose the working window (cf. Section 4.2.1)

1 GeV < M2 < 2 GeV (923)

and M2=1.5 GeV2 as the default value in our calculations. Similarly, we use the standard value
s0=1.5 GeV2 for the continuum threshold as well as the range

1.3 GeV2 < s0 < 1.7 GeV2 (924)

for the error estimates.

Possible corrections due to the finite widths of the ρ and ω resonances have not been con-
sidered. The estimates in [430] for such modifications suggest a possible enhancement of the FF

by 2% − 4% in the small-to-medium Q2 region, i. e., where the resonance part dominates. We
believe, that these uncertainties are effectively covered by our (conservative) choice of the con-
tinuum threshold [3]. Finally, we use the values of the twist-three parameters hq and hs [265]
specified in Table 8 and also use δ2(q)M =δ

2(q)
M =0.2± 0.04 GeV2 [428, 477] (at the scale µ0=1 GeV)

for the normalization parameter of twist-four DAs (cf. Section 3.4.3).

4.3.5.2 Models of distribution amplitudes and comparison with the data

This part summarizes all results concerning models of η(′) distribution amplitudes which we
have published in our recent work [3].

Based on Section 4.2, the corresponding LCSR calculations for γ∗γ→ (η,η′) TFFs, together with
the experimental data [7, 8] is shown in Figure 35. In this context, the sum rule’s dependence
on the Borel parameter, continuum threshold, the normalization of higher twist contributions
and, to a lesser extend, the factorization scale can be interpreted as an intrinsic irreducible un-
certainty of the LCSR method (see [3]). Within Figure 35, these “errors” are shown as dark blue
bands. Besides, in order to reduce the number of required parameters, the FKS mixing scheme
[9, 15] is used. By assuming that it holds for complete wave functions, e. g., at an ad hoc scale
µ0 = 1 GeV, this working hypothesis can be extended to the level of DAs (cf. Chapter 3). As a
possible error estimate for this approach, the parameters given by Equation 280 can be varied
around their central values, while studying the implied change of the sum rule results. Conse-
quently, a combination119 with the intrinsic LCSR uncertainties gives rise to an estimate for the
total errors which are depicted in Figure 35 by light blue bands. One may expect, that the bulk
part of these uncertainties can be eliminated, when, e. g., first-principle lattice calculations for
the coupling constants become available.

Another point concerns the form factors’ behavior at large photon virtualities which has been

119 Here, we assume, that all errors are statistically independent, i. e., we may add them in quadrature.
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Figure 35: Based on [7, 8] the scaled FFs (in GeV) for γ∗γ→ η (left panels) and γ∗γ→ η′ (right panels)
transitions are compared to the described LCSR calculations, while using three different models
of the twist-two DAs (specified in Table 14) as input. Asymptotic values of the TFFs are shown by
the horizontal dashed lines and correspond to the central values mentioned in Equation 280. The
depicted dark blue shaded areas correspond to those uncertainties of the calculated scaled FF that
are caused by the involved LCSR

(
M2, s0

)
and higher twist parameters

(
hq,hs, δ2(q)M , δ2(s)M

)
as

well as the varied factorization scale µ (see Section 4.3.5.1). On this basis, the light blue bands are
obtained by further adding the error estimates for the FKS parameters, as listed in Equation 280

(see also [3]).

discussed in Section 4.3.3. According to Equation 907, the asymptotic values for γ∗γ→ η′ tran-
sitions differ considerably from the one assumed in [7, 20, 28]. This is an effect of the finite
renormalization correction to the flavor singlet contribution (see Equation 905). Note, that ex-
perimental measurements for both η and η′ form factors at large momentum transfers are now
consistent with the expected asymptotic behavior (see Figure 35).

As a remaining non-perturbative input, we finally require the distribution amplitudes’ shape
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Model c
(q)
2 c

(s)
2 c

(q)
4 c

(s)
4 c

(g)
2

I 0.10 0.10 0.10 0.10 −0.26

II 0.20 0.20 0.0 0.0 −0.31

III 0.25 0.25 -0.10 -0.10 −0.25

Table 14: Gegenbauer coefficients of three sample models for the η and η′ twist-two DAs; both are written
in the QF basis at a generic scale µ0=1 GeV.

parameters. In this connection, we do not view that underlying dependence as an "uncertainty".
Indeed, the following aspects should be emphasized [3]:

• On the one hand, extraction of information about the DAs is the primary motivation behind
this study of TFFs.

• On the other hand, lowest non-trivial moments of DAs can also be studied via lattice QCD

[267, 478] which may then serve as input for a possible cross-check with available FF data.

While we strictly focus on the first aspect, such lattice calculations are ongoing and the corre-
sponding parameters will eventually be known to a sufficient precision in the near future120 [3].
This leads us back to the FKS approximation (cf. Equation 315) where the remaining informa-

tion on η and η′ DAs is encoded in a set of three constants
(
c
(q)
2n (µ0) , c(s)2n (µ0) , c(g)2n (µ0)

)
, given

for each n ∈ N. The non-strange coefficients c(q)2n (µ0) should, in accordance with Section 4.3.1
and Section 4.3.2, be similar to the corresponding pion distribution amplitude’s Gegenbauer
moments aπ2n(µ0) (see Equation 895). Unfortunately, the situation with the pion DA is far from
being settled (cf. [1, 281]). This is due to the discussed BABAR puzzle and an insufficient accuracy
of the existing QCD sum rule as well as lattice calculations (see [1, 3, 281] and references therein).

Because of this uncertainty, we consider three different models of the η(′) DA, as specified in
Table 14. These results are based on popular models for the pion DA, i. e., we choose c(q)n to
be in the range of aπn, while SU(3)F-breaking effects were neglected. Appropriately, the related
gluonic shape parameters are fitted to describe the experimental data. In particular, we suggest
the following models:

• model I : This first model corresponds to the pion DA developed to describe the Belle data (cf.
Table 12, truncated at n> 6).

• model II : The second model resembles a typical ansatz used in vast literature on the weak
B→ π decays.

• model III : The third model with a negative n = 4 coefficient is advocated by the Bochum-
Dubna group (see [431] and references therein).

On general grounds, it is expected, that the DAs of hadrons containing strange quarks are nar-
rower than those built out of light u and d quarks

(
cf. [479]; n ∈ N

)
, i. e.,

c
(s)
2n (µ0 ) < c

(q)
2n (µ0 ) . (925)

120 Evidently, this could, among other things, allow further conclusions on the precision of the sum rule method.
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Figure 36: Analogous to Figure 35, the η(′) TFF is plotted (dark blue line) with all parameters of model I as
input (see Table 14), except for the gluon Gegenbauer moment c(g)2 (µ0) which is per default set

to zero. In order to study the impact of φ(g)
M (x,µ), its (remaining) gluonic moment is varied in

an ad hoc interval c(g)2 =±0.5. The shaded area in light green shows the corresponding effect.

Existing numerical estimates of this effect, however, are rather inconclusive [3]. In fact, QCD sum
rule calculations (see, e. g., [271, 314]) and lattice calculations [267, 478] do not seem to indicate
any large differences at all. Therefore, we may assume

(
n ∈ N

)

c
(s)
2n (µ0 ) ≈ c(q)2n (µ0 ) (926)

for the present study. To further investigate the influence of this strange quark components, we
may assume

c
(s)
2n (µ0)

!
= 0 , (927)

which is probably rather extreme. Consequently, the γ∗γ→ η TFF gets increased by 5% − 6%,
while the γ∗γ→ η′ FF decreases by about 4% − 5% for Q2 >5 GeV2 as compared to the results
shown in Figure 35. Moreover, the gluon DA mainly contributes to the η′ FF, whereas its effect
on the η meson is small. This dependence is illustrated in Figure 36 where we plot model I
for different values of the gluonic coefficient (see Table 14). Note, that the contributions from
the gluon DA is significantly enhanced

(
by a factor 5/3 for large Q2

)
when including the (NLO)

charm quark corrections. They are, therefore, an important innovation that goes along with this
work. Furthermore, all three models in Table 14 lead to an equally good description of the ex-
perimental data at large Q2 > 10 − 15 GeV2, but differ perceptibly within the realm of small
and intermediate momentum transfers, where model I seems to be preferred. Unfortunately, the
given uncertainties related to LCSR calculations in this region increase. This is especially true for
model III which suffers from a strong dependence on the Borel parameter. For this reason, non
of the considered models can at that point be completely excluded. Based on the experiences
with γ∗γ→π0 transitions (cf. Section 4.3.1), future experimental data on η(′) TFFs alone could be
insufficient for a reliable determination of relevant shape parameters. Instead, one needs a com-
bined effort of theory and experiment, e. g., by supplementing FF data with lattice calculations
for selected key parameters (cf [3]).

Last but not least, as shown in Figure 37, we extend these results to a logarithmic scale in
Q2, where we have also included the time-like momentum transfer data point [351] at

∣∣Q2
∣∣ =

112 GeV2 (red star) for comparison. The measurement of e+e−→γ∗→η′γ appears to be in good
agreement with the expected asymptotic behavior in the space-like region, whereas the result for
e+e−→γ∗→ ηγ is still considerably higher. This difference is interesting and surprising, since
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Figure 37: Similar to Figure 35, but here we are applying a logarithmic scale in Q2. The underlying
calculation uses the first model of Table 14. In addition, the time-like data points [351] at∣∣Q2

∣∣=112 GeV2 are shown by red stars for comparison (see [3]).

QCD effects, such as a possible Sudakov enhancement (see, e. g., [362, 480, 481]) of the time-like
form factors compared to their space-like counterparts are universal and should, therefore, af-
fect both η as well as η′ production equally strong. Hence, it is natural to attribute the causes of
these differences to non-perturbative phenomena, e. g., by considering corrections arising from
end-point integration regions. Although a rigorous connection of such contributions to the DAs
does not exist, one can plausibly argue, that large soft corrections are correlated with the end-
point enhancement in DAs (see [3]). Thus, these are corrections of the same type, as discussed in
conjunction with the BABAR puzzle (cf. [1, 3]). Accordingly, it is reasonable to expect, that if this
large value of the time-like η FF is confirmed, its corresponding space-like counterpart should ex-
hibit a similar scaling violation behavior, as observed by BABAR for the pion. In fact, the existing
data (i. e., [7]) may support such a trend (see Figure 37), although it is not statistically significant
(cf. [3]).

To summarize, in this subsubsection the existing FF data of [7, 8, 351] has been confronted with
a refined full NLO LCSR calculation (see previous chapters for details). As a result, we suggest
three different models (cf. Table 14) for the twist-two η and η′ meson DAs. Moreover, in order to
ultimately pin down the shape of these DAs, we conclude, that either more high precision mea-
surements on, e. g., γ∗γ→ (η,η′) transitions for a wide range of momentum transfer or suitable
lattice calculations are needed. Especially, the scaling behavior of the η TFF has to be clarified,
which would also answer questions concerning the gluonic content of the η− η′ system, as well
as the relevance and impact of possible SU(3)F corrections.





5H E AV Y T O L I G H T M E S O N T R A N S I T I O N F O R M FA C T O R S

“With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk.”

— John v. Neumann (1903 – 1957)

In this chapter, we study the semileptonic B,D(s) → η(′) decays using the associated vector
form factors f+HM

(
H=B,D,Ds; M=η,η′

)
within the LCSR approach. The heavy-to-light transi-

tions Ds→η(′)lνl have been analyzed phenomenologically [30, 482] and via LO LCSRs [31], that
were based on chiral currents, while including finite meson mass corrections. We improve these
previous approaches in the following way:

i) Instead of chiral currents, we use standard interpolating and weak currents (see Sec-
tion 5.1.2 for details). This allows us to take into account a broad spectrum of higher
twist effects, including the dominant twist-three LO and NLO quark contributions (cf. Sec-
tion 5.1.2.1, along with Section 5.1.2.3).

ii) Additionally, NLO twist-two gluon corrections are considered. The latter enable us to extract
information on the gluonic content of the η′ meson and in particular, its (twist-two) gluon
DA.

iii) Moreover, our results for the decay form factors agree (within the given uncertainties) with
those of [31] (see, e. g., Section 5.3).

Besides, the decays B→ η/η′lνl were analyzed in [483] at LO and in [32] at the same level of
accuracy as in this work. We improve these calculations by performing an analysis of both, the
branching fractions and their ratios (cf. Section 5.3).
Motivation to perform these calculations for all three cases H=B,D,Ds comes from an expected
increase in the experimental accuracy (see [2] for an extended discussion). Thus, future experi-
ments for this complete set of meson decays will most likely provide evidence for the underlying
gluonic content of the η′ particle.

5.1 pqcd approach

This subsection forms the basis for Section 5.2 an the related numerical analysis in Section 5.3.
Accordingly, in this context the following issues are elaborated:

• For B→η(′) transition form factors the B meson decay constant fB is needed. By following
the standard approach (cf. [320, 322]), we, therefore, prepare corresponding SVZ sum rule
calculations and extract fB from the latter.

• Furthermore, we calculate the H→Mlνl
(
H=D,Ds,B; M= η,η′

)
transition form factor

at LO in αS within the collinear factorization ansatz, while using the new η(′) DAs up
to twist-four accuracy. Besides, omitted higher twist effects are estimated and discussed
below.

• Most importantly, we investigate the applicability of the state mixing ansatz as implied by
the FKS scheme. This is done by applying the customized NLO QCD evolution of singlet and
octet DAs, including a very short numerical analysis.
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Decay mode axial-vector current pseudoscalar current

D+→ l+νl jD
+

µ :=d̄γµγ5c jD
+

5 =(mc +md) d̄iγ5c

D+
s → l+νl j

D+
s

µ := s̄γµγ5c j
D+
s

5 =(mc +ms) s̄iγ5c

B− → l−ν̄l jB
−

µ :=ūγµγ5b jB
−

5 =(mb +mu) ūiγ5b

Table 15: Quick reference guide for the underlying axial-vector currents jHµ
(
H=D,Ds,B

)
of purely leptonic

decays H→ lνl as well as related divergences ∂µjHµ = jH5 (cf. Section 2.6.1).

• Additionally, a strategy is reviewed which allows an inclusion of existing NLO corrections
(cf. [32, 320, 322]) as well as their adaption to the D(s)→η(′) case.

Therefore, this subsection represents a relevant contribution, extending previous studies.

5.1.1 Heavy-Meson Decay Constants

In this subsection we briefly outline the SVZ sum rule method, while focusing on heavy decay
constants, such as fB and fD(s)

. These are necessary for a subsequent numerical evaluation of the

related B−→η(′)l−ν̄l and D+
(s)
→η(′)l+νl form factors in Section 5.3. Therefore, we present all

required basics in the context of an example calculation, while further clarifying the phenomeno-
logical necessity for this ansatz.

According to Section 2.6.2, the charged pseudoscalar mesons under consideration can decay
into lepton-neutrino pairs H+→ l+νl

(
e. g., H+=π+,K+,D+,D+

s ,B+, . . .
)
, thus providing com-

plementary information to other processes, such as inclusive or exclusive semileptonic decays.
Based on the spectator model, purely leptonic decays of heavy mesons, that are formed from
valence quarks ū1d1 (u1 is an up-type and d1 a down-type quark), can be related to a corre-
sponding decay rate Γ(H→ lνl) via the associated subprocess u1→ d1 +W+ (see Table 15). At
leading order this annihilation process is, therefore, given by [225, 245]

Γ(H→ lνl) =
G2F
8π
f2H
∣∣Vu1d1

∣∣2mHm2l

(
1−

m2l
m2H

)
, (928)

which includes a product of the decay constant (see Table 15)

ifHPµ = 〈0|jHµ |H(P)〉 , (929)

and the related CKM matrix element, i. e., its absolute value
∣∣Vu1d1

∣∣. Consequently, by measur-
ing these branching fractions and lifetimes, one may experimentally determine the product
fH
∣∣Vu1d1

∣∣. This, however, offers the opportunity to extract fH from Γ(H→ lνl) if
∣∣Vu1d1

∣∣ is
known and vice versa (see [225, 245, 484] for more details). Hence, a precise numerical value
of associated CKM matrix elements is crucial for the determination of fH. Unfortunately, there
is a persistent tension [37] between the determination of

∣∣Vu1d1
∣∣ from exclusive B→ πlνl and

inclusive (charmless semileptonic) B→Xulνl decays1, where Xu denotes all hadronic states, that
contain a valence up-quark (see [37, 42, 360, 485–487]). Therefore, extracting fB from QCD sum

1 As discussed in [37, 245], purely leptonic decays, such as H→ lνl proceed in the SM via axial-vector currents (see
Table 15), while semileptonic transitions H→Mlνl

(
H = π0,η(′), . . .

)
involve weak vector currents (cf. Table 16).

Both decay modes may involve the very same CKM matrix elements which can be determined accordingly. Hence, the
comparison of these measurements for

∣∣Vu1d1
∣∣ can be used to test the underlying standard model physics, in particular,
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rules at O(αS) accuracy seems to be a viable solution for this specific problem (cf. also [32]).

The central object of that approach is given by a two-point correlation function [96, 488–502]

Ψ
(
q2
)
:= i

∫
d4x eiq·x〈0|T

{
j5(x) j

†
5(0)
}
|0〉 , (930)

which includes the renormalization invariant (see, e. g., Section 2.6.2) operator j5 :=jB
−

5 (adapted
to the notation of [488]). For positive momentum transfers q2>0, this interpolating current gives
rise to a hadronic spectrum, with corresponding quantum numbers, including the lowest lying
resonance B−. Accordingly, the related phenomenological spectral density [97, 488]

ρph(s) = m
4
Bf
2
Bδ
(
s−m2B

)
+ ρth(s)Θ

(
s− s̄B0

)
(931)

implies the Källén-Lehmann representation2 and its Borel transform
(
see Section B.3

)

Ψ
(
q2
)
=

m4Bf
2
B

m2B − q2
+

∫∞
s̄B0

ds
ρth(s)

s− q2
+ subtractions (932)

⇒ Ψ̂
(
M
2
B

)
= m4Bf

2
Be

−
m2
B

M
2
B +

∫∞
s̄B0

ds ρth(s) e
− s

M
2
B . (933)

On the other hand, for −q2�Λ2QCD Equation 930 can be calculated via a short distance OPE (see
Section A.15). A posteriori, the resulting amplitudes may exhibit branch cuts along the real axis,
which entails a dispersive representation similar to

Ψ(OPE)
(
q2
)
=
1

π

∫∞
0

ds
Ims
{
Ψ(OPE)(s)

}
s− q2

+ subtractions , (934)

⇒ Ψ̂(OPE)
(
M
2
B

)
=
1

π

∫∞
0

ds Ims
{
Ψ(OPE)(s)

}
e
− s

M
2
B , (935)

where Ims
{
Ψ(OPE)(s)

}
includes terms proportional to Θ

(
s−m2b

)
(see [488] and discussion be-

low). Under the assumption of quark-hadron duality (see Section 4.2.1) Equation 933 and Equa-
tion 935 can be related, leading to the SVZ sum rule for fB (cf. [488]):

m4Bf
2
B =

1

π

∫ s̄B0
0

ds Ims
{
Ψ(OPE)(s)

}
e

m2
B
−s

M
2
B . (936)

its electroweak charged-current interactions and corresponding (V − A) structure. Thus, large discrepancies between
associated measurements for

∣∣Vu1d1
∣∣ could be caused by (small) right-handed admixtures to the standard model weak

currents, indicating effects beyond the SM (see [32, 37, 245]).
2 The subtraction polynomials, which depend on q2 (see Section 4.2) will not be specified at this point (see [503] for

details), since they are removed via a Borel transformation.
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The input of Equation 936 can be calculated with the same tools as discussed in Section 2.4. For
instance, at leading order in αS one easily gets3

(
δm± :=mb ±mu

)

Ψ(OPE)
(
q2
)∣∣∣

bubble
= δm2+i

∫
d4x eiq·x〈0|ū(x)iγ5b(x)b̄(0)iγ5u(0)|0〉

= 3δm2+i

∫
d4k

(2π)4
Tr

{
/k+mu
k2 −m2u

iγ5
/k+ /q+mb

(k+ q)2 −m2b
iγ5

}

=
3δm2+
8π2

[(
q2 − δm2−

)
B0
(
q2;m2u,m2b

)
− A0

(
m2u

)
− A0

(
m2b

)]

=
3m2b
8π2

[(
q2 −m2b

)
B0
(
q2; 0,m2b

)
− A0

(
m2b

)]
+O

(
m2u

)
, (937)

as well as (see Equation 100)

Ψ(OPE)
(
q2
)∣∣∣
〈q̄q〉

= δm2+i

∫
d4x eiq·x〈0|ū(x)iγ5b(x)b̄(0)iγ5u(0)|0〉

= δm2+i

∫
d4x eiq·x〈0|ūaα(x)ufω(0)|0〉 [iγ5]αβ baβ(x)b̄fρ(0) [iγ5]ρω

=
m3b〈ūu〉
q2 −m2b

+O
(
m2u

)
. (938)

When neglecting all light-quark mass corrections, the analytical continuation q2→s implies4:

Ims
{
Ψ(OPE)

(
q2
)}∣∣∣

bubble
=
3m2b
8π

(
s−m2b

)2

s
Θ
(
s−m2b

)
, (939)

Ims
{
Ψ(OPE)

(
q2
)}∣∣∣
〈q̄q〉

= −πm3b〈ūu〉δ
(
s−m2b

)
. (940)

As a result, we reproduce the well-known findings of [244, 257, 488]:

f2B =
3m2b
8π2m4B

∫ s̄B0
m2b

ds

(
s−m2b

)2

s
e

m2
B
−s

M
2
B −

m3b〈ūu〉
m4B

e

m2
B
−m2

b

M
2
B +O(αS) . (941)

For the intended accuracy, however, Equation 941 has to be retrofitted with NLO perturbative and
condensate contributions which can be borrowed from [488] (see Section A.17).

The subsequent numerical evaluation is carried out in two basic steps (see also Section 4.2.1):

i) One starts with a determination of the Borel window (see Section B.3), i. e., a domain for
M
2
B, where truncation errors are sufficiently suppressed, while continuum contributions5

amount to less than ∼ 30% (see, e. g., [95, 97, 244, 322]).6

ii) For a given Borel window the continuum threshold s̄B0 can be determined via an additional
sum rule (resulting from Equation 936)

m2B =

M
4
B

d
dM2

B

{
f2Bm

4
B exp

(
−
m2B

M
2
B

)}
f2Bm

4
B exp

(
−
m2B

M
2
B

) =

∫s̄B0
0 ds s Ims

{
Ψ(OPE)(s)

}
e
− s

M
2
B∫s̄B0

0 ds Ims
{
Ψ(OPE)(s)

}
e
− s

M
2
B

(942)

3 Here, we use the same formalism as in Section 4.1.4.
4 The imaginary part of Equation 939 corresponds to a simple free-quark approximation. Therefore, it is a purely mathe-

matical object (see, e. g., [97]).
5 This refers to the part of the dispersion integral with s> s̄B0 .
6 The first restriction sets a rough lower bound for M2

B, whereas the second condition leads to an upper bound for the
Borel parameter.
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Decay mode meson interpolating current weak current

D+→ η(′)l+νl jD+ :=mcd̄iγ5c V
D+η(′)
µ :=d̄γµc

D+
s → η(′)l+νl jD+

s
:=mcs̄iγ5c V

D+
s η

(′)
µ := s̄γµc

B− → η(′)l−ν̄l jB− :=mbūiγ5b V
B−η(′)
µ :=ūγµb

Table 16: Currents entering the correlation function of Equation 946 (see also [2]).

and the related experimental value of mB (see also [488]).

As a result, we determine the following set of parameters
(
mB+ =(5279.26± 0.17) MeV [42]

)
:

s̄B0 = (35.75± 0.25) GeV2 , M
2
B = (5± 1) GeV2 , (943)

which are close to the ones obtained in [319, 320]. This issue will be further elaborated in Sec-
tion 5.3, where the discussed two-point sum rule is embedded within a corresponding LCSR for
B→η(′)lνl transition form factors.

Thus, all necessary analytical tools are now at hand, and we may focus on the actual (numerical)
calculation of heavy-to-light form factors.

5.1.2 Perturbative calculations

This subsection provides all required analytical results to formulate the associated LCSR in Sec-
tion 5.2. In the following, we, therefore, explicitly calculate LO corrections up to twist-four accu-
racy and adjust existing NLO contributions accordingly. This allows a state-of-the-art phenomeno-
logical analysis as carried out in Section 5.3.

For the exploration of meson-to-meson transition amplitudes standard three-point sum rules
proved to be particularly useful, since they successfully describe a multitude of different prob-
lems, including pion electromagnetic form factors at intermediate momentum transfers and
semileptonic Ds decays (see, e. g., [30, 97, 445, 504, 505]). Nevertheless, this extension of the
standard SVZ sum rule method to three-point functions possesses several major problems, which
decisively restrict its applicability (following [445]):

• The underlying short distance OPE and associated condensate expansion can be inadequate,
causing problems within the systematics of power counting. This in some cases leads to a
breakdown of the OPE beyond a relatively narrow kinematical interval7.

• The calculation of three-point functions usually includes double dispersion relations which
are connected to another fundamental issue of this ansatz. In fact, the underlying hadronic
representation exhibits associated matrix elements at zero momentum transfer, leading to
a contamination of the ground state by its excitations. On a theoretical level the latter are

7 As discussed in [97, 445], three-point sum rules for the pion electromagnetic form factor Fπ
(
Q2
)

are only legitimate in
the interval of intermediate momentum transfers 0.5 GeV26Q261.5 GeV2. For larger values ofQ2, the contributions
related to higher dimensional condensates contain terms ∼ Q2/M2, overpowering lower dimensional corrections and
leading to an unphysical rise at Q2 > 3− 5 GeV2 (see also [97, 445, 504, 505]). A similar hierarchy can be detected
within the AB→ρ1 form factor for B → ρeνe decays at maximum recoil, thus indicating a general problem of this
approach (cf. [445, 506]).
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uCorrelation function:

Πµν(q) = i

∫
d4x eiq·x〈0|T

{
Jµ(x) J†ν(0)

}
|0〉

=
(
qµqν − gµνq2

)
Π
(
q2
)

FHadronic representation (SVZ model):

1

π
Ims[Π(s)]

(HAD)
= f2V δ

(
s−m2

V

)
+ ρh(s) Θ

(
s− sh0

)

GOperator product expansion:

[
Π
(
q2
)](OPE)

=
∑

d

Cd
(
q2, µ

)
〈0|Od(µ)|0〉

FHadronic dispersion relation:

[
Π̄
(
q2
)](HAD)

=
q2f2V

m2
V (m2

V − q2)
+ q2

∫ ∞

sh0

ds
ρh(s)

s(s− q2)

GAnalytic continuation of [Π(s)]
(OPE)

:

[
Π̄
(
q2
)](OPE)

=
q2

π

∫ ∞

tmin

ds
Ims[Π(s)]

(OPE)

s(s− q2)

©Quark-hadron duality:

∫ ∞

sh0

ds
ρh(s)

s(s− q2)
≈
∫ ∞

s0

ds
1
π Ims[Π(s)]

(OPE)

s(s− q2)

©Borel transformation:

BM2Π
(
q2
)

= lim
−q2,n→∞
− q2

n
=M2

(
−q2

)n+1

n!

(
d

dq2

)n
Π
(
q2
)

©QCD sum rule:

f2V =

∫ s0

4m2

ds e
m2

V −s

M2
1

π
Ims[Π(s)]

(OPE)

q2 > 0 q2 < 0

Figure 38: Basic steps towards the SVZ sum rules for a generic decay constant fV (see also [97, 257]). This
observable is related to the ground-state vector meson 〈V(q) |Jµ|0〉 = fVmVε∗µ (ε·q = 0) in the
channel of the current Jµ

(
e. g., Jµ≡Jem

µ

)
. A similar example has been considered in Section 2.4,

assuming the light-quark case m2�Λ2QCD�Q2 at large Euclidean virtualities (cf. Section 4.2.1).

represented by single-pole terms, while in this particular case the contribution of interest
corresponds to a double-pole correction which cannot simply be isolated via the standard
Borel transformation (cf. [97, 445]). Instead, more modifications are needed (cf. [443, 504,
505, 507, 508]). A posteriori, these and analogous8 technical problems entail a considerable
loss of accuracy for the sum rule (see [445] and references therein).

8 For instance, (see [445]) transition matrix elements with large mass differences are also problematic.
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Historically, light-cone sum rules [141–143, 443, 444] were developed to circumvent these prob-
lems as far as possible, by implementing a modified factorization approach (see Section 4.2.1),
which substitutes the expansion at short distances, with one in the transverse distances between
partons within the infinite momentum frame [445, 464]. That also solves another critical problem
concerning the end-point corrections. While in this context three-point sum rules9 may become
unreliable, LCSRs are fully consistent with QCD, i. e., both hard scattering as well as soft contri-
butions can be systematically taken into account, hence, reproducing the observed behavior (for
a detailed discussion see [97, 445, 464]). The most compelling evidence, that LCSRs are imple-
menting the correct physical assumptions and quantum numbers (e. g., conformal spin, etc.) to
describe heavy-to-light form factors, would be given by a good agreement with experimental
data. Fortunately, the LCSR program, with its steady improvements, has been successfully ap-
plied to various problems in heavy-meson physics (see [32, 257, 320] and references therein).

This motivates the following considerations which are largely inspired by [32, 319, 320, 322].
As a starting point, we may resume the discussion on heavy-to-light form factors of Section 2.6.2.
They are defined by on-shell matrix elements10 [2, 322]

(
qµ :=pµH − pµ

)

〈M(p) |VHMµ |H(pH)〉 =
(
(p+ pH)µ −

m2H −m2M
q2

qµ

)
f+HM

(
q2
)
+
m2H −m2M

q2
qµf

0
HM

(
q2
)

= 2f+HM

(
q2
)
pµ +

(
f+HM

(
q2
)
+ f−HM

(
q2
))
qµ , (944)

describing an underlying H→Mlνl transition
(
H=D+,D+

s ,B−; M=π,K,η,η′
)

via the standard
weak current VHMµ (see Table 16). An important kinematic constraint arises from the chosen
parametrization in Equation 944, i. e.,

f 0HM

(
q2
)
= f+HM

(
q2
)
+

q2

m2H −m2M
f−HM

(
q2
)

. (945)

Within the limit q2 → 0 ⇒ f+HM(0) = f 0HM(0) (see also Section 2.6.2). Furthermore, f 0HM
(
q2
)

enters semileptonic decays proportional to ∼ m2l and is, therefore, irrelevant for light leptons
(l = e,µ), where the vector form factor dominates (see Section 2.6.2). Most importantly, both
form factors can be extracted from [2, 320, 322]

FHMµ (p,q) = i
∫

d4x eiq·x〈M(p) |T
{
VHMµ (x) j†H(0)

}
|0〉

= FHM
(
q2, (p+ q)2

)
pµ + F̃HM

(
q2, (p+ q)2

)
qµ , (946)

9 As discussed in Section 2.4, an expansion in slowly varying vacuum fields is inadequate, if short distance subprocesses
are involved [445, 464], as it holds true for hard exclusive processes.

10 Another possible form factor parametrizes matrix elements similar to [322]
(

e. g., H=B−, M=η(′)
)

〈M(p) |JHMµ |H(pH)〉 =
ifT
HM

(
q2
)

mH+mM

[
q2(pH+p)µ−

(
m2
H−m2

M

)
qµ

]
,

that include penguin currents, such as JBη
(′)

µ = ūσµνq
νb. Those operators may occur in the construction of weak

effective Hamiltonians, e. g., within those describing gluomagnetic penguins [509]

T = is̄RσµνT
AdLG

A,µν ,

with a corresponding Wilson coefficient that is then proportional to the strange quark mass ms. For convenience, we
have omitted the resulting renormalization scale dependence of fT

HM

(
q2
)

(see also [322]). Nevertheless, this tensor form
factor is only relevant in rare decays, such as B→πl+l− or Bs→η(′)l+l−.
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which yields two separate dispersion relations in the variable (p+ q)2 (omitting subtractions)

FHM
(
q2, (p+ q)2

)
=
2m2HfHf

+
HM

(
q2
)

m2H − (p+ q)2
+

∫∞
sh0

ds
ρHM

(
q2, s

)

s− (p+ q)2
, (947)

F̃HM
(
q2, (p+ q)2

)
=
m2HfH

(
f+HM

(
q2
)
+ f−HM

(
q2
))

m2H − (p+ q)2
+

∫∞
s̃h0

ds
ρ̃HM

(
q2, s

)

s− (p+ q)2
, (948)

after inserting a complete set of hadronic states11 between the interpolating currents jH (see
Table 16) and VHMµ , while separating the associated ground states. Those correspond to the two
independent Lorentz structures of Equation 946, which are also accessible via a conformal OPE,
particularly, for (p+ q)2�m2Q as well as fixed momentum transfers m2Q − q2 > O

(
ΛQCDmQ

)

[322, 445] (cf. Section 5.1.2.1), where they can be written in the general form
(

cp. Equation 738;

analogously for FHM↔ F̃HM, along with T (t)n ↔ T̃ (t)n
)

[
FHM

(
q2, (p+ q)2

)]
OPE

=

∞∑
n=0

∑
t

(
αSCf
4π

)n
FHMn,t

(
q2, (p+ q)2

)
, (949)

with associated convolutions12

(∫
Dα=

[∏
i

∫1
0dαi

]
δ
(
1−
∑
j αj

))

FHMn,t

(
q2, (p+ q)2

)
=

∫
DαT

(t)
n

(
q2, (p+ q)2 ,m2Q,α,µ2

)
φ
(t)
M

(
α,µ2

)
. (950)

Here, “t” denotes the collinear twist, “µ” represents the chosen factorization scale and “α” col-
lects all related parton momentum fractions.13 Besides, the process-dependent perturbative ker-
nels T (t)n , in general, exhibit a heavy-quark propagator, whereas T (t)n>1 also include hard-gluon
exchanges. Moreover, apart from the present notation in Equation 950, the universal meson DAs
φ
(t)
M coincide with those of Chapter 3, i. e., we may use φ(2)

M ∈
{
φAM
}
A=8,0,g and so forth.

Without reprising previous arguments, this approach provides a good approximation for the
two-point correlation function of Equation 946, i. e., higher twist effects are in general subdomi-
nant (cf. [142, 269, 319, 320]) and can be neglected14 at t>5 (see discussion in Section 5.1.2.1).

In the next subsections we can, therefore, focus our attention on corrections up to twist-four.

5.1.2.1 Leading-order higher twist corrections

Higher twist corrections to B→ π,K transition form factors have been known since the early
1990s [510] and were constantly improved since then, culminating in the inclusion of SU(3)F-
breaking as well as quark along with meson mass corrections at LO accuracy (cf. [246, 320–
322, 371, 511–519]). Among other reasons, this was possible due to advances in the exploration of
pseudoscalar non-singlet meson DAs (cf. [269, 271, 272, 314, 520, 521]). Nevertheless, the research
of B− → η(′)l−ν̄l and D+

(s)
→ η(′)l+νl decays has received much less attention, leading to

11 Only those with H-meson quantum numbers will contribute.
12 Similar to Equation 334, for α ∈ Rn we use α=(α1, . . . ,αn).
13 At this point, we use a notation complementary to Equation 738.
14 As mentioned in [257], multi-parton corrections, as well as terms with twist larger than four should amount to ∼ 1% of

the total LCSR result for B→π transition form factors. On the other hand, twist-three effects turn out to be numerically
significant (cf. [320]).
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iγ5 γµc

s̄ s

η(′)

p+q qa) b)

iγ5 γµc

s̄ s

η(′)

p+q q

Figure 39: LO two- and three-particle contributions to the operator product expansion of Equation 946

for D+
s → η(′)l+νl transitions. Here, the vertex depicted by a black square (n) corresponds to

V
D+
s η

(′)
µ , while its dotted counterpart (l) represents jD+

s
(see Table 16). Accordingly, related

external currents are represented by wave and double-dashed lines and heavy quark flavors are
shown as thick black lines. See also Figure 41) for corresponding NLO diagrams.

only a handful of theoretical (see [31, 32, 483]) and phenomenological studies15 (e. g., [30, 482,
522]). Furthermore, let us emphasize that the calculations within [31, 483] are actually restricted
to B,Ds → η form factors and have been carried out for correlation functions with so called
chiral currents b̄i (1+ γ5)u, c̄i (1− γ5) s, which are designed to exclude twist-three corrections.
Besides, the authors of [31, 483] assume non-singlet, i. e., pion-like η DAs as established by [314].
Accordingly, the D+

s →η′l+νl case has been extracted from the related analysis of D+
s →ηl+νl

form factors via an approximation, based on the QF state mixing ansatz (see Equation 315):

f±
D+
s η

f±
D+
s η′

=

cotφ
f ±
D+
s ηq

f ±
D+
s ηs

− 1

tanφ
f ±
D+
s ηq

f ±
D+
s ηs

+ 1

tanφ = − tanφ+
f±
D+
s ηq

cos2φf±
D+
s ηs

+O



[
f ±
D+
s ηq

f ±
D+
s ηs

]2
 , (951)

while assuming a vanishing non-strange component16 f+
D+
s ηq

.17 At this point, we are not using
any of these assumptions, but instead follow the strategy suggested by [32, 320, 519], while
extending it to the η− η′ system. Therefore, we recalculate all LO corrections up to twist-four
accuracy, by using the updated η and η′ meson DAs. This is complemented by a short discussion
concerning the numerical impact of neglected higher twist effects.

As mentioned above, for q2, (q+ p)2 �m2Q the correlation function of Equation 946 is domi-
nated by light-like distances x2 ∼ 0, justifying a conformal expansion similar to Equation 949

(see also [97, 517, 523]). Thus, the leading contributions to FHMµ (p,q) are given by Figure 39,

15 In general, form factors of semileptonic heavy-to-light or similar non-leptonic two-body decays can be used to extract
CKM matrix elements from corresponding processes. Thus, it seems plausible, that the rather complicated anatomy of
the involved flavor singlet sector made decay modes, such asD+

s →η(′)l+νl transitions less favorable for flavor physics.
Instead, they are especially interesting for probing the underlying η−η′ systems gluonic content (see, e. g., [482]).

16 In other words, the authors of [31] assume that at LO in αS both form factors are related by f±
D+
s η

= − tanφf±
D+
s η
′ .

17 In Equation 951 a perturbative expansion of the involved form factors is assumed, i. e., compared to f+
D+
s ηs

the function

f+
D+
s ηq

is suppressed by extra powers of αS.
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where a highly virtual heavy quark propagates near the light-cone, while interacting with soft
background fields. Formally, this can be expressed by (flavors are specified in Table 16)

FHMµ (p,q)
∣∣∣
LO

= i

∫
d4x eiq·x〈M(p) |ψ̄(x)γµQ(x)Q(0)iγ5ψ(0)|0〉mQ , (952)

with the heavy-quark propagator of Equation 754. Hence, Equation 952 entails the anticipated
two-particle

F
(a)
µ (p,q) := imQ

∫
d4x
∫

d4k

(2π)4
eix·(q−k)

1

m2Q − k2

[
mQ〈M(p) |ψ̄(x)γµγ5ψ(0)|0〉

−ikµ〈M(p) |ψ̄(x) iγ5ψ(0)|0〉− ikν〈M(p) |ψ̄(x)σµνγ5ψ(0)|0〉
]

, (953)

as well as three-particle corrections

F
(b)
µ (p,q) := imQ

∫
d4x
∫

d4k

(2π)4
eix·(q−k)

m2Q − k2

∫1
0
dv

[
v

i
xρ〈M(p) |ψ̄(x)σµλγ5gG

ρλ(vx)ψ(0)|0〉

+
kν

m2Q − k2

(
〈M(p) |ψ̄(x)σµλγ5gG

λ
ν (vx)ψ(0)|0〉

−
1

4
gαβενρλαεµβωτ〈M(p) |ψ̄(x)σωτγ5gG

ρλ(vx)ψ(0)|0〉
)

+
mQ

m2Q − k2

(
i〈M(p) |ψ̄(x)γλγ5gG

λ
µ (vx)ψ(0)|0〉

+〈M(p) |ψ̄(x)γδgG̃µδ(vx)ψ(0)|0〉
)]

, (954)

corresponding to diagram a) and b) of Figure 39, respectively. Analogous to [371, 501] the
derivation of Equation 953 and Equation 954 requires several matrix identities which can be
found in Section A.2. Besides, for the implementation of two-particle DAs (see Equation 325) one
may prefer a slightly modified version as realized by the substitution (identical for s↔q)

F
(s)
M

ixµ

2p · x

∫1
0

dueiup·xψ(s)
4M(u) = F

(s)
M

xµ

2

∫1
0

dueiup·x
∫u
0

dvψ(s)
4M(v) . (955)

Together with Equation 955 and comparable transformations18 all occurring tensor integrals end
up having a similar structure

(
f is an integrable and well behaved function, n ∈N0

)

Iµ1···µn(up,q) =
∫

d4x
∫

d4k

(2π)4
f(k) xµ1 · · · xµ1eix·(q−k+up) , (956)

18 Here, we include definite integrals, such as

i

∫u
0

dweip·x(u−w) =
eiup·x− 1
p ·x ,

which are needed to get rid of (p ·x)−1 terms.
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which can be immediately solved via19

Iµ1···µn(up,q) =
(
−i

∂

∂qµ1

)
· · ·
(
−i

∂

∂qµn

) ∫
d4x
∫

d4k

(2π)4
f(k) ei(q−k+up)·x

=

(
−i

∂

∂qµ1

)
· · ·
(
−i

∂

∂qµn

) ∫
d4k δ(4)(q− k+ up) f(k)

=

(
−i

∂

∂qµ1

)
· · ·
(
−i

∂

∂qµn

)
f(q+ up) . (957)

In the next step, each remaining mixed scalar product, such as

2p·(up+ q)
(
m2Q − (up+ q)2

)2 = −
1

u

[
1−

m2Q − q2 + u2p2

m2Q − (up+ q)2

]
1

m2Q − (up+ q)2
, (958)

has to be simplified accordingly. As a partial result, we obtain for20 Equation 953:

F
(a)
µ (p,q) = pµm2QF

(ψ)
M

∫1
0

du
1

m2Q − (up+ q)2


φ(ψ)

M (u) −
m2Qφ

(ψ)
4M(u)

2
(
m2Q − (up+ q)2

)2

−
u

m2Q − (up+ q)2

∫u
0

dvψ(ψ)
4M(v) +

1

2mQmψF
(ψ)
M

(
uφ

(ψ);p
3M (u)

+

[
2+

m2Q + q2 − u2p2

m2Q − (up+ q)2

]
φ
(ψ);σ
3M (u)

6

)]

+ qµm
2
QF

(ψ)
M

∫1
0

du
1

m2Q − (up+ q)2

[
1

2mQmψF
(ψ)
M

(
φ
(ψ);p
3M (u)

+

[
1−

m2Q − q2 + u2p2

m2Q − (up+ q)2

]
φ
(ψ);σ
3M (u)

6u

)
−

1

m2Q − (up+ q)2

∫u
0

dvψ(ψ)
4M(v)

]
. (959)

The calculation of three-particle corrections involve somewhat lengthy tensor structures which
will not be explicitly shown at this point. Instead, let us emphasize, that the relevant contribu-
tions, e. g., possible twist-three matrix elements of Equation 954 boil down to rather compact
terms, i. e.,

〈M(p) |ψ̄(x)γµγνσρλγ5gG
ρλ(vx)ψ(0)|0〉 = 6if(ψ)

3Mgµνp
2

∫
Dαei(α1+vα2)p·xΦ(ψ)

3M(α) , (960)

along with
(
X≡X(v,α1,α2):=α1 + vα2

)

〈M(p) |ψ̄(x)γµγλγ5gG
ρλ(vx)ψ(0)|0〉 = f(ψ)

3M

(
2pµp

ρ + p2g ρµ

)∫
DαeiXp·xΦ(ψ)

3M(α) , (961)

19 Since Equation 957 is a standard “trick”, it seems hardly possible to specify a unique source (e. g., the special case n=1
can also be found in [244]). However, the resulting representation is clearly preferable to a calculation in position space
(cf. [483]).

20 With this result the well-known pion case [319, 320] can be reproduced, by applying the following substitutions:

p2,m2
M,aM 7→ 0, F(ψ)

M 7→ fπ, φ(ψ)
M 7→ φπ, ψ(ψ)

4M 7→ ψ4π, φ(ψ)
4M 7→ φ4π,

(
2mψ

)−1
φ

(ψ);σ
3M 7→ fπµπφ

σ
3π as well as

(
2mψ

)−1
φ

(ψ);p
3M 7→ fπµπφp3π. Similarly, the kaon case can be generated, however, this time SU(3)F-breaking effects

(see Section C.9) have to be included.
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after performing all required contractions properly. As a result, we get

F
(b)
µ (p,q) = pµ

∫1
0

dv
∫
Dα

1
(
m2Q − (q+Xp)2

)2
[
mQf

(ψ)
3MΦ

(ψ)
3M(α)

(
4vp·q+ 3ξvXp2

)

+m2Qf
(ψ)
M

(
2
[
Ψ
(ψ)
4M(α) + Ψ̃

(ψ)
4M(α)

]
−
[
Φ

(ψ)
4M(α) + Φ̃

(ψ)
4M(α)

])]

+ pµ

∫1
0

dv
∫
Dα

∫X
0

dw
4m2Qf

(ψ)
M (X−w)p2

(
m2Q − (q+ (X−w)p)2

)3A
(ψ)
4M(α)

+ qµ

∫1
0

dv
∫
Dα

mQf
(ψ)
3M(ξv − 2)p

2

(
m2Q − (q+Xp)2

)2Φ
(ψ)
3M(α)

+ qµ

∫1
0

dv
∫
Dα

∫X
0

dw
4m2Qf

(ψ)
M p2

(
m2Q − (q+ (X−w)p)2

)3A
(ψ)
4M(α) , (962)

with the auxiliary function21

A
(ψ)
4M(α) := Ψ

(ψ)
4M(α) + Ψ̃

(ψ)
4M(α) +Φ

(ψ)
4M(α) + Φ̃

(ψ)
4M(α) . (963)

Again, Equation 962 can be used to correctly reproduce the corresponding LO pion [320] and
kaon [519] results, except for an additional factor “3” (marked blue in Equation 962) that is
missing22 in [519, Equation 10]. Since the latter results from Equation 960 and Equation 961,
which also entail rather nontrivial combinations, such as terms proportional to ∼ ξvXp

2, an
absent factor is clearly a literal error. Thus, [519] is still valid for further cross-checks. In fact,
after performing an integration by parts, i. e., when inserting∫X

0
dw

4(X−w)
(
m2Q − (q+ (X−w)p)2

)3 =
X
(
p·q+Xp2

)−1
(
m2Q − (q+Xp)2

)2

−

∫X
0

dw
p·q

(
p·q+ (X−w)p2

)−2
(
m2Q − (q+ (X−w)p)2

)2 (964)

into Equation 962, the notation of [335, 519] can be fully reproduced. Before proceeding, let us
briefly reconsider the involved convolution integrals and structure of Equation 954 and Equa-
tion 962 with respect to their numerical impact [2]:

• Every additional two units of collinear twist are accompanied by an extra power of the
denominator

(
u ∈ [0, 1]

)

1

D
:=

1

m2Q − (q+ up)2
=

1

m2Q − u (p+ q)2 − ūq2 + uūp2
. (965)

Thus, to ensure a converging light-cone OPE, the momentum transfer q2 is severely con-
strained. For instance, the natural hierarchy of this expansion can be justified for a suffi-
ciently large virtuality (p+ q)2�m2Q and m2Q − q2>O

(
ΛQCDmQ

)
.

21 Note, that surface terms proportional to
∫
DαA

(ψ)
4M(α) vanish (at least up to NLO in conformal spin).

22 However, within a recent paper (see [335]) this factor has been recovered, at least on the level of related imaginary parts.
Besides, this paper builds on [3], i. e., it includes spectral densities that have been retrofitted with corresponding η(′)

DAs borrowed from [3]. Most importantly, those coincide with our findings of Section 5.2.2.
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• Contributions with odd twist
(
e. g., todd =2k+ 1, k∈N fixed

)
may arise from mass terms

of the heavy-quark propagator (see Equation 754) and are, therefore, subleading in 1/m2Q
compared to their even counterparts

(
here teven = 2k

)
. However, this does not automati-

cally result in a numerical suppression of the corresponding convolutions. For example,
the two-particle twist-three corrections, appearing in Equation 954, mitigate the effects
caused by inverse powers of mQ via an extra prefactor ∼ (H(ψ)

M
/mψ) (see Chapter 3) which

comes from the related DAs. As exhibited by the subsequent numerical analysis, φ(ψ);p
3M and

φ
(ψ);σ
3M entail dominant23 LO as well as NLO QCD corrections to the correlation function (see

also [2, 319, 320]). On the other hand, for similar reasons, the mostly unknown twist-five
corrections could exceed their twist-four counterparts. To get at least a rough impression
of the resulting uncertainty in associated LCSR calculations, we follow [319] and assume an
approximate equality for the ratios (see Section 5.2)

f+HM
(
q2
)∣∣

twist-4
f+HM

(
q2
)∣∣

twist-2
≈
f+HM

(
q2
)∣∣

twist-5
f+HM

(
q2
)∣∣

twist-3
, (966)

where f+HM
(
q2
)∣∣

twist-t represent the underlying LO twist-t
(
t ∈ N

)
contributions. This

would cause an additional error, varying from 4%
(
for q2=−2 GeV2

)
to 2.5%

(
for q2=0

)
.

Furthermore, a recent study (see [524]) dedicated to the exploration of factorizable twist-five
and twist-six corrections in LCSRs for B→π form factors

(
i. e., f+Bπ

)
reveals an extreme numerical

suppression24 of corresponding higher twist effects. Hence, justifying a conventional truncation
of the OPE up to twist-four accuracy.

With Equation 954 and Equation 962 all required LO corrections up to twist-four accuracy are
now at hand. In the next step, NLO contributions have to be included.

5.1.2.2 Evolution effects and pseudoscalar meson mixing

For the intended inclusion of NLO QCD corrections to the corresponding hard-scattering ker-
nels of Equation 949, it is sensible to reconsider existing strategies, such as those outlined in
[20, 28, 32, 525]. All of these approaches are ultimately affected by renormalization group ef-
fects. The following part is, therefore, dedicated to investigate and justify the selected method
including an updated discussion based on the NLO evolution of singlet as well as octet DAs (see
Chapter 3).

As a special feature, the complete description of semileptonic B,D(s) → η(′) form factors re-
quires specific gluonic contributions which at NLO in αS are given by diagrams similar to Fig-
ure 40. Here, the mechanism responsible for the annihilation of a heavy pseudoscalar meson
into two gluons is depicted. The latter may create η or η′ particles that undergo a complicated
mixing mechanism, as caused by general features of the underlying η− η′ system25, including

23 The given twist-four two-particle contributions are proportional to δ2(ψ)
M D−1, while twist-three three-particle terms

include (numerically small) factors of f(ψ)
3M. Besides, the remaining twist-four three-particle convolution integrals of

equation are suppressed by extra powers of D−1. Consequently, the presented higher twist corrections are in general
subdominant when compared to their twist-two counterparts.

24 Within the whole domain of momentum transfers, where the LCSR is applicable, the relative contributions of these higher
twist effects do not exceed 0.05% (see [524, 5 Conclusion]).

25 As mentioned above, one could also take into account mixing with other pseudoscalar mesons, such as the closely
related neutral pion. However, the induced mixing effects are found to be at the level of a few percent [13–15, 152, 526].
Similarly, the small intrinsic charm component c̄cwithin the η(′) meson (see [9]) can be neglected in the present situation.
Therefore, we follow [152] and focus on the η−η′ system.



204 heavy to light meson transition form factors
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Figure 40: SU(3)-flavor singlet and octet contributions to the D+
s →η(′)l+νl transition form factors.

OZI rule violating subprocesses26 and the U(1)A anomaly in particular (see Section 3.1.4). Since
no analytical solution for those phenomena has yet been found, we resort to the phenomenologi-
cally motivated FKS scheme (see discussion in Section 3.1.4). Thus, this mixing scheme forms the
starting point for the developed η(′) DAs (see Chapter 4), absorbing all relevant physical param-
eters of the η− η′ system (cf. [9, 15]). Apart from that, the applied RG methods rest on strong
theoretical foundations that go beyond a mere phenomenological approach. However, unlike for
γ∗γ(∗)→η(′) TFFs, no comparably large momentum transfers occur in B,D(s)→η(′) decays. For
instance, the mass of an arbitrary hadron “H”

(
e. g., H=D,Ds,B;

)
that contains a heavy quark

“Q” can be expressed via [238]

mH = mQ +Λ+O
(
1
mQ

)
. (967)

Accordingly, the mass independent parameter Λ
(
sometimes referred to as “binding energy”

[238]
)

gives a rough estimate for the involved characteristic transverse parton momenta. Con-
sequently, the factorization scale µF for heavy-to-light decays should be roughly given by µF≈
µH :=

√
m2H −m2Q (see also [2, 319, 320, 322]). On these grounds, let us reconsider our strategy:

• The numerical impact of higher Gegenbauer moments has, e. g., been investigated for φπ
in B→ π transitions, concluding (cf. [281, 299, 527]), that heavy-to-light decays are only
slightly influenced by higher order coefficients n>4. Hence, we expect a similar behavior
for f+HM

(
M=η,η′

)
. Consequently, we truncate the conformal expansions (see Section 3.2)

of φA2M (A=0, 8 or A=q, s) as well as φ(g)
2M at n>2.

• Since we are using theMS-scheme throughout our calculations, all renormalized quantities,
such as quark masses or Gegenbauer moments have to be evolved from their individual
reference scale µ0 to the preferred renormalization point µF. For the latter, we may choose
µF=µH.

• This leaves the question about the relative size of RG effects and their impact on the dis-
cussed H →Mlνl transition form factors. According to Chapter 3, the evolution of sin-
glet and octet Gegenbauer coefficients can be cast into the form

(
for a = 0, 8,g, where

α8g≡αg8≡α08≡α80≡0
)

c
(a)
2,M(µ) =

∑
b∈{0,8,g}

αab(µ,µ0) c
(b)
2,M(µ0) +βa(µ,µ0) , (968)

with continuous coefficient functions αab and βa, which are defined on µ∈
[
µ0,µH

]
. Here,

αgg(µ,µ0) , α00(µ,µ0) , α88(µ,µ0)61 and β0(µ,µ0) , β8(µ,µ0)60 are strictly decreasing,

26 Those effects are of order O
(
N−1
c

)
in a formal N−1

c expansion and are phenomenologically found to be small [13, 14].
Thus, in this case, OZI violating contributions can be safely neglected, leaving the U(1)A anomaly as the main mixing
mechanism.
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µ=1.4 GeV µ=1.5 GeV µ=2.5 GeV

α88(µ,µ0) 0.904426 0.888145 0.790773

β8(µ,µ0) −0.001725 −0.001996 −0.003461

α00(µ,µ0) 0.914812 0.900010 0.809757

α0g(µ,µ0) 0.067888 0.078594 0.136372

β0(µ,µ0) −0.002468 −0.002827 −0.004598

αgg(µ,µ0) 0.832543 0.804931 0.646365

αg0(µ,µ0) 0.005523 0.006343 0.010485

βg(µ,µ0) 0.002587 0.002961 0.004787

Table 17: Coefficients of Equation 968, evaluated for µ0=1.0 GeV and µ=µH=
√
mh −mQ (H=B,D,Ds).

The induced uncertainties are estimated by varying Λ2QCD by 10%, resulting in approximate rela-
tive errors (∆α00/α00)≈ 2%, (∆α88/α88)≈ 3%, (∆αgg/αgg)≈ 4%, (∆α0g/α0g)≈ 6%, (∆αg0/αg0)≈ 9%,
(∆β0/β0)≈17%≈(∆βg/βg) and (∆β8/β8)≈19%

(
taken at µ=2.5 GeV

)
.

while 0 6 α0g(µ,µ0) , αg0(µ,µ0), along with βg(µ,µ0) > 0 are strictly increasing (see Ta-
ble 17). Similar to [32, 525], but this time with a NLO evolution of the involved Gegenbauer
moments we may analyze (for simplicity, we are dropping the subscript M)

∆0(µ,µ0) :=

∣∣∣∣∣
c
(0)
2 (µ) − c

(8)
2 (µ)

c
(0)
2 (µ)

∣∣∣∣∣ . (969)

Since we expect the most significant changes for B meson decays, we favor the interval
µ∈

[
1.0 GeV, 2.5 GeV

]
. Thus, the generic parameters c(0)2 (µ0) = 0.25± 0.15= c(8)2 (µ0) and

c
(g)
2 (µ0)=±0.67 imply27 (neglecting correlations)

∆0(2.5 GeV, 1.0 GeV) = 0.018± 0.453
∣∣∣
c
(g)
2 (µ0)

± 0.603
∣∣∣
c
(0)
2 (µ0)

± 0.600
∣∣∣
c
(8)
2 (µ0)

. (970)

The central value in Equation 970 is calculated with those of the Gegenbauer moments,
while all uncertainties are due to the variation of the latter. In other words, for c(g)2 (µ0)≈0
and c(0)2 (µ0)≈ c(8)2 (µ0) the relative deviation ∆0 amounts to less than 2% over the range
1.0 GeV<µ<2.5 GeV. Otherwise, RG mixing effects would not be negligible.

Furthermore, for c(0)2 (µ0) ≈ 0.25, µ ∈
[
1.0 GeV, 2.5 GeV

]
and the rather conservative estimate

c
(g)
2 (µ0)=±0.67, the gluon Gegenbauer moment changes by at most 36% due to QCD evolution.

Based on Chapter 3 and Section A.14, we may, therefore, proceed as follows:

• As discussed in Chapter 3, the QF basis can be beneficial when considering meson DAs,
because it prevents a proliferation of largely unknown parameters. One reason for this
finding is its inherent state mixing approach (see Equation 315) which we want to exploit

27 In principle, a knowledge of the monotonicity of all coefficient functions as well as the recorded values in Table 17 are
sufficient for an evaluation of Equation 970.
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in Section 5.1.2.3. Nevertheless, the associated omission of OZI-rule violating contributions,
i. e., (see Section A.14 for further details)

|ηq(p)〉 ∝ φ(q)
2 (u,µ) |qq̄〉+φOZI

2 (u,µ) |ss̄〉+ . . . , (971)

|ηs(p)〉 ∝ φOZI
2 (u,µ) |qq̄〉+φ(s)

2 (u,µ) |ss̄〉+ . . . , (972)

also implies a loss of scale dependence in the corresponding parameters, such as the decay
constants28 or mixing angles. Fortunately, this does not necessarily affect the involved DAs

φ
(q)
2 (u,µ) =

1

3

(
φ
(8)
2 (u,µ) + 2φ(0)

2 (u,µ)
)

, (973)

φ
(s)
2 (u,µ) =

1

3

(
φ
(0)
2 (u,µ) + 2φ(8)

2 (u,µ)
)

, (974)

φOZI
2 (u,µ) =

√
2

3

(
φ
(0)
2 (u,µ) −φ(8)

2 (u,µ)
)

, (975)

as long as we consistently implement the condition

φOZI
2 (u,µ) !

= 0 . (976)

However, according to the above preparations Equation 976 can be approximately fulfilled if we
demand the subsequent rules:

i) At the refernce scale µ0=1 GeV, we may set

φ
(0)
2 (u,µ0)

!
= φ

(8)
2 (u,µ0) , (977)

or equivalently (see Equation 973 and Equation 974)

φ
(q)
2 (u,µ0)

!
= φ

(s)
2 (u,µ0) . (978)

ii) We can then model φ(q)
2 and φ(s)

2 via (a=0, 8)

φ
(a)
2 (u,µ) = 6uū

(
1+ c

(a)
2 (µ)C(3/2)

2 (ξx)
)

, (979)

and evolve the remaining coefficient

c2(µ0) := c
(a)
2 (µ0) (980)

according to the scaling-law for the octet Gegenbauer moments (cf. Section 3.3):

c2(µ) ≈
[
αS(µ)

αS(µ0)

] 50
9β0
c2(µ0) . (981)

iii) Furthermore, we can assume that (see29 Section A.14)

φ
(g)
2η (u,µ) = φ(g)

2η′(u,µ) , (982)

and entailed SU(3)F-breaking corrections have only a small impact on f+HM
(
q2
)
. This is

consistent with our general assumption, that the bulk part of flavor symmetry breaking
effects are encoded in the decay constants, while they are subleading in the Gegenbauer
coefficients [3, 271, 525].

28 Since the scale dependence of f0(µ) is a subleading two-loop effect, its impact is numerically insignificant, i. e., at least
for µ0≈1 GeV and µ≈µH.

29 As discussed in Section A.14, Equation 982 is a consequence of point i) and ii).
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iγ5 γµc

s̄ s

p+q q

η(′)

Figure 41: NLO contributions to the operator product expansion of Equation 946 for D+
s →η(′)l+νl transi-

tions.

In conclusion, by reconsidering the original ansatz of [20, 28, 32, 525], we are able to confirm
their findings, particularly concerning the implemented models for Gegenbauer moments and
related RG techniques.

Thus, in the light of this ansatz, we may now turn to the remaining NLO corrections.

5.1.2.3 Inclusion of next-to-leading order corrections

In this sub-subsection, we devote our attention to the inclusion of NLO QCD corrections into the
OPE of Equation 946. Those corrections can in principle be reconstructed from existing calcula-
tions, such as30 [32, 320, 322], to describe D+

s ,D+ → η(′)l+νl transition form factors. For this
purpose, some adaptations have to be made which go beyond the existing strategies.

In accordance with Section 5.1.2.2, we neglect all OZI-rule violating effects, allowing us to ap-
ply Equation 315 which relates the physical |η(′)〉 states and the QF basis states |ηq,s〉 with each

30 The twist-three corrections have been calculated in [2, 320], while gluonic twist-two contributions were studied by
[32, 525].
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other. As a consequence, the correlation function of Equation 946 can be decomposed into formal
contributions similar to

(
this analogously applies to F̃HM

)
[2]

FDsη
(
q2, (p+ q)2

)
= −FDsηs

(
q2, (p+ q)2

)
sinφ+ FDsηq

(
q2, (p+ q)2

)
cosφ , (983)

FDsη
′(
q2, (p+ q)2

)
= FDsηs

(
q2, (p+ q)2

)
cosφ+ FDsηq

(
q2, (p+ q)2

)
sinφ , (984)

FDη
(
q2, (p+ q)2

)
= FDηq

(
q2, (p+ q)2

)
cosφ− FDηs

(
q2, (p+ q)2

)
sinφ , (985)

FDη
′(
q2, (p+ q)2

)
= FDηq

(
q2, (p+ q)2

)
sinφ+ FDηs

(
q2, (p+ q)2

)
cosφ . (986)

Here, the main difference with respect to [32], besides using MS masses for mb and mc, is that
in the case of Ds→η(′) decays we probe the η(′) meson’s strange quark (viz. s̄s) content. This im-
plies a different dependence on the mixing angle, when compared to B→η(′) transitions, which
resemble the D→η(′) case after replacing all particle specific masses, i. e., mc↔mb, mD↔mB,
along with related sum rule parameters (e. g., the Borel parameter and continuum threshold). In
other words (see Figure 41), according to the given interpolating current within Equation 946, the
second summand in each equation of Equation 983 – Equation 986 only receives non-vanishing
contributions31 at NLO accuracy, coming from gluonic singlet diagrams, while the first summand
is a combination of LO as well as NLO quark and gluonic QCD corrections. The most striking
aspect of this approach, where SU(3)F-flavor violations are exclusively taken into account via
the decay constants32, concerns twist-three two-particle DAs. In fact, by consistently applying the
strict FKS scheme (see Equation 551), we receive a simplified set of parameters which entail the
following replacement rules for existing NLO quark contributions [2]:

fπ 7→ fq,s , fπ
m2π
2mq

7→ fq
m2π
2mq

, fπ
m2π
2mq

7→ fs
2m2K −m2π
2ms

. (987)

The latter allow a straight forward implementation of the corresponding results, based on the
pion and kaon case [319, 320]. Besides, our results do not change significantly if meson and
quark mass corrections are included (see also [2]). However, keeping all SU(3)F-breaking effects
would not only force us to respect every possible mass dependence in the correlation function,
but also to use Equation 534 and Equation 535 instead of Equation 551. As already discussed
in Section 3.4.2, these quantities are only weakly constrained and their inclusion would lead to
uncertainties at the level of 200%, i. e., if one assumes uncorrelated errors within the twist-three
part (see also [2, 32]). This, however, would be inconsistent with the chosen ansatz that automat-
ically avoids these uncertainties.

Together with Equation 983 – Equation 986 and the associated replacement rules, we can now
consistently implement NLO QCD corrections into our considerations.

5.2 light-cone sum rules for heavy-to-light decays

In this subsection the LCSRs for B,D(s)→ η(′)lνl transition form factors are derived. Based on
Section 5.1, where we also discuss some of the underlying historical developments, which led to
the currently used method (see Section 5.1.2), we may now place our main focus on the following
three goals:

31 All remaining LO and NLO corrections, however, have the wrong flavor content (see Figure 41) and can thus only
contribute to the first terms in Equation 983 – Equation 986.

32 In [319, 519] it was shown, that for heavy-to-light decays into pions and kaons, this is indeed a good approximation [2].
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i) As mentioned above, the subsequent part represents an extension of previous studies, in
particular, those concerning B→ π decays which are among the most important applica-
tions for the LCSR method33 (see [245, 269, 322, 335, 445, 519, 523]). Consequently, we have
to reconsider the techniques which have been developed for similar approaches and apply
the required minor changes accordingly.

ii) As a showcase, we calculate the LO spectral densities, while all remaining NLO results of
[32, 320] are included via Equation 983 – Equation 986.

iii) The collected formulas are extended by complementary sum rules for physical observables,
such as m2H, as needed to fix related LCSR parameters. This is done as a preparation for the
intended numerical analysis, carried out in Section 5.3.

Thus, the present subsection is essential for this work.

5.2.1 General structure and special features

The basic concepts of the LCSR method are outlined in Section 4.2 and will not be repeated at
this point. However, there are specific features which have to be considered. For this purpose, it
is reasonable to resume the discussion of Section 5.1.2.

In this context, the two hadronic dispersion relations Equation 947 and Equation 948 were de-
rived, which can be equated with

(
again omitting subtraction terms; similar for FHM↔ F̃HM

)

[
FHM

(
q2, (p+ q)2

)]
OPE

=
1

π

∫∞
m2Q

ds
Ims

[
FHM

(
q2, s

)]
OPE

s− (p+ q)2
(988)

after assuming approximate quark-hadron duality, i. e.,∫∞
sh0

ds
ρHM

(
q2, s

)

s− (p+ q)2
≈ 1

π

∫∞
s0

ds
Ims

[
FHM

(
q2, s

)]
OPE

s− (p+ q)2
. (989)

Here, the substitution (as resulting from Equation 965)

s(u) =
m2Q − ūq2 + uūp2

u
⇒ u =

q2 + p2 − s+

√(
s− q2 − p2

)2
+ 4p2

(
m2Q − q2

)

2p2
(990)

has been applied, which entails the named integration limits, while Equation 989 is assumed
to hold for a certain continuum threshold s0 which not necessarily coincides with its hadronic
counterpart sh0 . After subtracting Equation 989 from both sides of the resulting equation

1

π

∫∞
m2Q

ds
Ims

[
FHM

(
q2, s

)]
OPE

s− (p+ q)2
≈ 2m

2
HfHf

+
HM

(
q2
)

m2H − (p+ q)2
+

∫∞
sh0

ds
ρHM

(
q2, s

)

s− (p+ q)2
+ subtractions, (991)

one usually performs a Borel transformation34 in the variable (p+ q)2 (see Section B.3; n∈N):

B̂
(p+q)2→M2

{
1

Dn

}
=

exp
[
−
m2Q−ūq2+uūp2

uM2

]

(n− 1)!
(
M2
)n−1

un
. (992)

33 Among other things, this is a consequence of its use in flavor physics (see, e. g., [97, 320, 322, 445, 464]).
34 The Borel transformation provides an exponential suppression of the mostly unknown continuum contribution, while it

also leads to a factorial suppression of remaining power-corrections. Thus, the impact of neglected higher twist effects
gets reduced accordingly.



210 heavy to light meson transition form factors

As discussed above, this operation removes all subtractions and gives rise to the LCSRs for the
D(s),B→η(′)lνl form factors

(
later on, we use M2 7→M2H

)

f+HM

(
q2
)
=

e
m2
H

M2

2m2HfH

∫s0
m2Q

ds
1

π
Ims

[
FHM

(
q2, s

)]
OPE

e
− s

M2 , (993)

f+HM

(
q2
)
+ f−HM

(
q2
)
=

e
m2
H

M2

m2HfH

∫s0
m2Q

ds
1

π
Ims

[
F̃HM

(
q2, s

)]
OPE

e
− s

M2 . (994)

Both sum rules require an adequate Borel window35 which is determined in Section 5.3.1 (see
Section 5.1.1 and Section B.3 for more details). If the latter has been roughly determined, we may
use the following sum rule

(
m2H results from experimental data

)

m2H =M4
d

dM2
log

[
2m2HfHf

+
HM

(
q2
)
e
−
m2
H

M2

]

=M4
d

dM2

{∫s0
m2Q

ds
1

π
Ims

[
FHM

(
q2, s

)]
OPE

e
− s

M2

}
(995)

to fix36 the numerical value of s0.

In conclusion, Equation 993, Equation 994 and Equation 995 thus provide all formal founda-
tions for an actual determination of the corresponding LCSRs.

5.2.2 Leading-order and next-to-leading order spectral densities

In this subsection, we explicitly formulate the LCSRs for the f+HM form factor. For this purpose,
we show the calculation of all considered LO spectral densities, while following the strategy of
Section 5.1.2.3 to include existing NLO QCD corrections. The resulting LCSRs then allow a phe-
nomenological NLO analysis of the D(s),B→η(′) transition form factors.

Before proceeding with an actual calculation, let us reconsider the expected structure of the
included contributions. According to the factorization theorem (see Equation 949), all relevant
results can be written in the general form

(
cf. [2]; pµH=(p+ q)µ

)
:

[
FHM

(
q2,p2H

)]
OPE

=
∑

t=2,3,4

FHM0,t

(
q2,p2H

)
+
αSCf
4π

∑
t=2,3

FHM1,t

(
q2,p2H

)
+ . . . , (996)

where the ellipses represent neglected higher order corrections. For the subsequent determina-
tion of imaginary parts, we may use Equation 988 after performing a Borel transformation in
(p+ q)2 on it:

B̂
(p+q)2→M2

{[
FHM

(
q2, (p+ q)2

)]
OPE

}
=

∫1
0
du exp

[
−
m2Q − ūq2 + uūp2

uM2

]
m2Q − q2 + u2p2

u2
1

π
Ims(u)

[
FHM

(
q2, s(u)

)]
OPE

. (997)

35 Along with the continuum threshold s0, a variation of M2 is required to have only a negligible numerical impact on
the given sum rule. The interval of Borel parameters (if existing), where this behavior is guaranteed, is usually named a
Borel window.

36 Based on [322], the threshold parameter s0 is roughly determined by its SVZ counterpart for fB. Thus, the optimal value
for s0 has to be found in connection with the determination of M2.
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In this way, the formally similar QCD amplitudes (see Equation 959 and Equation 962) give rise
to corresponding imaginary parts, simply by means of partial integration. This is necessary
to remove the contributions that depend on inverse powers of the Borel parameter. Since the
latter can be generated via

(
−M2

)−n
e
− s

M2 = dn
dsn e

− s

M2 (n ∈N0), integration by parts offers
the opportunity to shift derivatives between different functions of the integrand. In this way all(
−M2

)−n terms can be absorbed into derivatives. For instance, Equation 959 entails corrections

similar to
(
here all surface terms ∼ φ

(ψ)
4M are omitted

)

∫1
0
du

φ
(ψ)
4M(u)

u3M4
e
−
m2
Q

−ūq2+uūp2

uM2 =

∫1
0
due−

m2
Q

−ūq2+uūp2

uM2




12u3p4φ
(ψ)
4M(u)

[
m2Q − q2 + u2p2

]4

−
6u2p2

dφ(ψ)
4M(u)

du[
m2Q − q2 + u2p2

]3 +
u

d2φ(ψ)
4M(u)

du2[
m2Q − q2 + u2p2

]2


 . (998)

Thus, as a result, we get for Equation 959 (terms marked in blue are a difference to [319, 335, 519])

B̂
(p+q)2→M2

{[
FHM

(
q2, (p+ q)2

)]
OPE

}∣∣∣
LO

= m2QF
(ψ)
M

∫1
0
due−

m2
Q

−ūq2+uūp2

uM2

{
φ
(ψ)
M (u)

u
+

1

2mψmQF
(ψ)
M

(
φ
(ψ);p
3M (u)

+


 2
u
+

4m2Qup
2

(
m2Q − q2 + u2p2

)2 −
m2Q + q2 − u2p2

m2Q − q2 + u2p2
d

du


φ

(ψ);σ
3M (u)

6

)

−
m2Qu

4
(
m2Q − q2 + u2p2

)2


 12u2p4
(
m2Q − q2 + u2p2

)2 −
6up2

m2Q − q2 + u2p2
d

du

+
d2

du2

]
φ
(ψ)
4M(u) +

1

m2Q − q2 + u2p2

[
uψ

(ψ)
4M(u) +

m2Q − q2 − u2p2

m2Q − q2 + u2p2

∫u
0

dvψ(ψ)
4M(v)

]}

+
m4QF

(ψ)
M e

−
m2
Q

M2

4
(
m2Q − q2 + p2

)2
{

d
d x
φ
(ψ)
4M(x)

}∣∣∣∣
x=1

, (999)

with the surface term (cf. Equation 997)

1

π
Ims(u)

[
FHM

(
q2, s(u)

)]
OPE

∣∣∣∣
surface

=
m4QF

(ψ)
M u3δ(ū)

4
(
m2Q − q2 + u2p2

)3
{

d
d x
φ
(ψ)
4M(x)

}∣∣∣∣
x=u

. (1000)

All remaining imaginary parts can be extracted from Equation 999 in the same manner, i. e.,
within the corresponding sum rules only the integration limits will change37 (see Equation 993).
Similarly, the three-particle corrections can be resolved, in particular, after introducing the iden-
tity (“f” represents a well-behaved function)∫1

0
dv
∫
Dα f(α, v) =

∫1
0

du
∫u
0

dα1

∫1
u−α1
1−α1

dv
1

v
f(α, v)

∣∣∣∣∣α2=1−α1−α3
α3=

u−α1
v

. (1001)

37 In other words, by replacing
∫1
0 du 7→

∫1
u0

du within Equation 999 the corresponding LCSRs can be derived.
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Based on Equation 1001, we may, therefore, define

I
(ψ)
3M(u) :=

∫u
0

dα1

∫1
u−α1
1−α1

dv
1

v
Φ

(ψ)
3M(α)

(
4vp·q+ 3ξvup2

) ∣∣∣∣∣α2=1−α1−α3
α3=

u−α1
v

, (1002)

I
(ψ)
4M(u) :=

∫u
0

dα1

∫1
u−α1
1−α1

dv
v

(
2
[
Ψ
(ψ)
4M(α) + Ψ̃

(ψ)
4M(α)

]
−
[
Φ

(ψ)
4M(α) + Φ̃

(ψ)
4M(α)

]) ∣∣∣∣∣α2=1−α1−α3
α3=

u−α1
v

, (1003)

I
(ψ)
4M(u) :=

∫u
0

dα1

∫1
u−α1
1−α1

dv
v

(
Ψ
(ψ)
4M(α) + Ψ̃

(ψ)
4M(α) +Φ

(ψ)
4M(α) + Φ̃

(ψ)
4M(α)

) ∣∣∣∣∣α2=1−α1−α3
α3=

u−α1
v

, (1004)

Ĩ
(ψ)
3M(u) :=

∫u
0

dα1

∫1
u−α1
1−α1

dv
1

v
(2− ξv)Φ

(ψ)
3M(α)

∣∣∣∣∣α2=1−α1−α3
α3=

u−α1
v

, (1005)

which together with∫1
0

du
∫u
0

dw
(u−w) I

(ψ)
4M(u)

[
m2Q − (q+ (u−w)p)2

]3 =

∫1
0

du
1

[
m2Q − (q+ up)2

]3
∫1
u

dwI(ψ)
4M(w) , (1006)

∫1
0

du
∫u
0

dw
I
(ψ)
4M(u)

[
m2Q − (q+ (u−w)p)2

]3 =

∫1
0

du
1

[
m2Q − (q+ up)2

]3
∫1
u

dwI(ψ)
4M(w) , (1007)

imply a modified version of Equation 962

F
(b)
µ (p,q) = pµ

∫1
0

du
m2QF

(ψ)
M[

m2Q − (q+ up)2
]2

[
f
(ψ)
3M

mQF
(ψ)
M

I
(ψ)
3M(u) + I

(ψ)
4M(u)

+
4up2

m2Q − (q+ up)2

∫1
u

dwI(ψ)
4M(w)

]

− qµ

∫1
0

du
m2QF

(ψ)
M[

m2Q − (q+ up)2
]2

[
f
(ψ)
3M

mQF
(ψ)
M

p2 Ĩ
(ψ)
3M(u)

−
4p2

m2Q − (q+ up)2

∫1
u

dwI(ψ)
4M(w)

]
. (1008)
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Consequently, the Borel transformation of Equation 1008 can again be simplified via integration
by parts. Thus, for Equation 1008 we finally get the result

B̂
(p+q)2→M2

{[
FHM

(
q2, (p+ q)2

)]
OPE

}∣∣∣
LO

= m2QF
(ψ)
M

∫1
0

due−
m2
Q

−ūq2+uūp2

uM2

{
1

m2Q − q2 + u2p2
×

×
[

2up2

m2Q − q2 + u2p2
−

d
du

](
f
(ψ)
3M

mQF
(ψ)
M

I
(ψ)
3M(u) + I

(ψ)
4M(u)

)

−
2up2

[
m2Q − q2 + u2p2

]2

[(
u

d
du

+ 2
m2Q − q2 − 2u2p2

m2Q − q2 + u2p2

)
I
(ψ)
4M(u)

+
6up2

(
m2Q − q2 − u2p2

)

[
m2Q − q2 + u2p2

]2
∫1
u

dwI(ψ)
4M(w)




 , (1009)

which can be used to reproduce the findings of [335, 519], i. e., after applying
(
1−

4u2p2

m2Q − q2 + u2p2
+ u

d
du

)
I
(ψ)
4M(u)

+
m2Q − q2 − u2p2

m2Q − q2 + u2p2

(
6up2

m2Q − q2 + u2p2
−

d
du

) ∫1
u

dwI(ψ)
4M(w)

=

(
2
m2Q − q2 − 2u2p2

m2Q − q2 + u2p2
+ u

d
du

)
I
(ψ)
4M(u) + 6up2

m2Q − q2 − u2p2

m2Q − q2 + u2p2

∫1
u

dwI(ψ)
4M(w) (1010)

and related replacement rules (see Section 5.1.2.1). In accordance with Section 5.1.2.2, the remain-
ing NLO QCD corrections can be introduced by inserting the given spectral densities of [32, 320]
into Equation 983 – Equation 986 and subsequently Equation 993. Since the resulting expressions
are in general kept unchanged, we refer to the original works [32, 257, 320, 525] for a detailed
review. Let us instead mention the extent of all included corrections (cf. Equation 996):

• At LO in αS the vector form factor f+HM is calculated up to twist-four accuracy, while in
general keeping O(ms) as well as O

(
m2H

)
effects in the meson DAs and FHM0,t .

• For the hard scattering kernels FHM1,t , however, only O(ms) ∼ O
(
m2H

)
and O(αS) contribu-

tions, but not O(msαS) admixtures are taken into account, since the latter would induce a
mixing between different twist components which is beyond the scope of this study38 (see
[319, 335] for more details).

Hence, we adopt similar assumptions, such as those made in [32, 319, 519]. Correspondingly, the
intended numerical evaluation exhibits constraints analogous to those of [32].

With this in mind and the NLO LCSRs ready to use, we may now focus on a phenomenologi-
cal analysis of f+HM form factors.

38 Those corrections originate from finite mass-terms proportional to ms or p2 =m2
M within the NLO diagrams (see

Figure 41). Therefore, these effects would require a recalculation of related hard scattering kernels, including a dedicated
study of the various higher twist DAs (see [319, 322, 335] for an extended discussion).
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5.3 numerical evaluation

The discussed upcoming high luminosity experiments at B-factories and other collider facilities,
such as Belle II (at the SuperKEKB accelerator complex) [528], BABAR (PEP-II collider at the SLAC
laboratory) [529], BES III (BEPC II) [530] or PANDA (FAIR) [29], may produce crucial statistics
needed for a phenomenological study of B,D(s)→ η(′)X decays (see [35, 42] for details). Most
importantly, the semileptonic decay modes

(
e. g., X = lνl, with l = e,µ

)
are expected to be

mainly driven by SM dynamics. Thus, their detailed analysis could reveal the underlying non-
perturbative mechanisms, responsible for mixing effects and meson transitions. Moreover, the
weak decays D+

s →η(′)l+νl, D+→η(′)l+νl and B+→η(′)l+νl proceed on greatly different time
scales [35, 522], since they are driven by Cabibbo-allowed, Cabibbo-suppressed and Kobayashi-
Maskawa-suppressed subprocesses [225], respectively. Additionally, all three processes could
provide highly complementary information on the η(′) meson’s flavor structure, because the
latter is produced via a ss̄, dd̄, uū or gg valence Fock-state (see Section A.14). Accordingly,
there are several ways to approach this topic, i. e., our strategy could be as follows (see also
[2, 244, 525]):

i) When focusing on the aspects related to flavor physics, we could analyze the spectrum
d Γ(H→η(′)lνl)

dq2 which allows an extraction of CKM matrix elements [VCKM]ij ≡ Vij (see
Section 2.6.1).

ii) Alternatively, one may use ratios of branching fractions to constrain the gluonic Gegen-
bauer moment.

Since our primary goal is an investigation of η(′) DAs, we follow the second path, while using
|Vij| as an external input parameter. Furthermore, we extract f+HM form factors from LCSRs for
all three decay modes, starting with an analysis at q2 = 0 (see Section 5.3.2). This is followed
by a calculation of Branching fractions which we compare to the existing experimental data (cf.
Section 5.3.4). However, for that purpose, a corresponding extrapolation method39 is needed,
which we also discuss in detail.

5.3.1 Choice of input parameters

In this subsection, all necessary input parameters are introduced, while some important aspects
concerning the assumed numerical values of Gegenbauer moments at a preferred reference scale
µ0=1 GeV are discussed. Here, we closely follow our publication [2].

As mentioned above, we consistently use the MS scheme and one universal scale µ2≈m2H−m2Q
(see Table 16) throughout our calculations. Correspondingly, all quantities are evolved to this
renormalization point, using a two-loop running coupling constant αS (see Section 2.3) for pa-
rameters related to DAs, while the scale dependence of MS masses are calculated up to one-loop
accuracy (see [2, 319, 320] for more details).

The choice for the implemented Gegenbauer moments requires some explanation (see also Sec-
tion 5.1.2.2), since it is affected by the chronological order of our own publications that have been
included in this work. Since [3] has been published after [2] we make use of a very general ansatz
for the applied input parameters, including the Gegenbauer moments c(a)2,M(µ0)

(
a = 0, 8,g;

M = η,η′
)
. The latter were mostly unknown, and to our best knowledge have only been in-

vestigated in [20, 28, 531, 532]. In fact, within the recent perturbative analysis of [20, 28] η(′) DAs

39 In Section 5.3.3 we give an introduction to the used extrapolation methods and their nontrivial physical content.



5.3 numerical evaluation 215

and, in particular, their two-gluon components were studied, giving rise to the following values
(see Section 3.1.4) [20, 28]:

c
(8)
2 (µ0)

∣∣
Kroll = −0.05± 0.02 , c(0)2 (µ0)

∣∣
Kroll = −0.12± 0.01 , c(g)2 (µ0)

∣∣
Kroll = 0.67± 0.16 . (1011)

According to [28] these parameters are contaminated by effects related to omitted higher order
Gegenbauer coefficients and neglected power corrections. Nevertheless, both of these effects are
sizable for the underlying pion and η, η′ transition form factors at intermediate momentum
transfer, as we were able to show in [1, 3, 281], and should, therefore, not be neglected. For
instance, within the accessible kinematic region of the γ∗γ(∗) → π0 form factor they imply a
considerable difference between the moments obtained in [1, 281]

(
c2,π(µ0)≈ 0.14± 0.02

)
and

those given by [28]
(
c2,π(µ0)≈−0.02± 0.02

)
. In other words, by including corresponding generic

power corrections, one may create a shift in the parameters of Equation 1011 which roughly
amounts to c(8)2 (µ0)

∣∣
Kroll ≈ 0.06 ± 0.05. Consequently, Equation 1011 should be taken with a

grain of salt. Instead of retrofitting these older studies, we will use the more general average
value [2]:

c2(µ0) := 0.25± 0.15 . (1012)

The latter results from a combination of lattice QCD and sum rule calculations which also in-
cludes LCSR fits to experimental data (see [1, 2, 281] for more details). Thus, in accordance with
Section 5.1.2.2, we implement the QCD evolution of Gegenbauer moments via Equation 981, i. e.,
by neglecting all higher order coefficients except for

c
(0)
2 (µ0)

!
= c

(8)
2 (µ0)

!
= c2(µ0) . (1013)

A posteriori (see, e. g., [2, 3, 271, 319, 525]), there is no indication of large SU(3)F-flavor viola-
tions in pion or kaon DAs, i. e., c2,π ≈ c2,K. Thus, Equation 1013 and the ansatz described in
Section 5.1.2.2 should imply an acceptable approximation. Moreover, due to a rather moderate
mixing between c(0)2 and c(g)2 (see Section 5.1.2.2), we may treat the latter as a free parameter

and vary it over the same conservative range c(0)2 (µ0) =±0.67 as done in [2, 32]. For the quark
and meson masses, we adopt their current values

(
µaux :=2 GeV

)
, as given by [2, 225]:

mc(mc) = (1.275± 0.025) GeV , mu(µaux) =
(
2.3+0.7

−0.5

)
MeV , (1014)

md(µaux) =
(
4.8+0.7

−0.3

)
MeV , ms(µaux) = (95± 5) MeV , (1015)

mD+ = 1869.6 MeV , mD+
s
= 1968.5 MeV , (1016)

mπ0 = 134.98 MeV , mK0 = 497.61 MeV . (1017)

Here, Equation 1017 is needed to determine the hypothetical masses of the |ηq〉 and |ηs〉 states
(see Equation 541). Furthermore, in order to reduce the involved uncertainties, we use the corre-
sponding experimental values for [225]

fD = (206.7± 8.5± 2.5) MeV , fDs = (260± 5.4) MeV , (1018)

while fB is extracted from a NLO two-point QCD sum rule (see Section 5.1.1). In this context
also the quark-, gluon- and mixed condensate, as listed in Section 2.4 are employed. Finally, at
the given order of accuracy, we require the standard twist-three and twist-four parameter (cf.
[2, 271]), as mentioned in Table 7, along with Section 3.4.3. Besides, we need [2, 271]

επ =
21

8
(0.2± 0.1) GeV . (1019)

This concludes the list of necessary numerical parameters.
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Figure 42: The vector form factors |fDs→η+

(
M2

)
|, |fDs→η

′
+

(
M2

)
| plotted as functions of the Borel parameter

M2. Here, the blue dashed line corresponds to |f
Ds→η
+

(
M2

)
|, while the brown dashed line

represents |f
Ds→η′
+

(
M2

)
| (the plots are taken from [2]).

5.3.2 Phenomenological results for q2= 0

We now turn to the numerical evaluation of LCSRs for f+HM form factors, as introduced in Equa-
tion 993. The code used in this analysis is partially based on an older program, written by
N. Offen, which provides the required NLO quark spectral densities. We extend the underlying
program code by including gluonic NLO contributions and other subroutines which allow an
extended statistical analysis of all input parameters.

As a starting point for an evaluation of Equation 993, the inherent Borel window and effec-
tive threshold parameter have to be determined. For an illustration, we show the dependence
of f+HM(0) on M2

(
i. e., let us use f+HM

(
0,M2

)
=: fH→M+

(
M2
))

in Figure 42. In fact, the sum
rule exhibits a stable behavior over a wide range of input parameters. Thus, the optimal values
should lie within the intervals [2]

sD0 = (7± 0.6) GeV2 , sB0 = (35.75± 0.25) GeV2 , (1020)

M2D = (4.4± 1.1) GeV2 , M2B = (18± 3) GeV2 . (1021)
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The corresponding LCSR results for q2=0 can be written as

|f+
D+
s η

(0)| = 0.432± 0.003
∣∣∣
M2
± 0.026

∣∣∣
µ
± 0.010

∣∣∣
s0

± 0.013
∣∣∣
c2

± 0.001
∣∣∣
c
(g)
2

± 0.025
∣∣∣
(fq ,fs ,φ)

± 0.014
∣∣∣

twist-3
± 0.002

∣∣∣
twist-4

± 0.005
∣∣∣
(condensates,mc)

, (1022)

|f+
D+
s η′

(0)| = 0.520± 0.003
∣∣∣
M2
± 0.032

∣∣∣
µ
± 0.012

∣∣∣
s0

± 0.015
∣∣∣
c2

± 0.070
∣∣∣
c
(g)
2

± 0.028
∣∣∣
(fq ,fs ,φ)

± 0.016
∣∣∣

twist-3
± 0.002

∣∣∣
twist-4

± 0.006
∣∣∣
(condensates,mc)

, (1023)

which include an error analysis of all relevant parameters, i. e., the latter are varied within their
respective ranges (see discussion above). Similarly, we get [2]

|f+
D+η

(0)| = 0.552± 0.008
∣∣∣
M2
± 0.034

∣∣∣
µ
± 0.013

∣∣∣
s0

± 0.016
∣∣∣
c2

± 0.002
∣∣∣
c
(g)
2

± 0.015
∣∣∣
(fq ,fs ,φ)

± 0.036
∣∣∣

twist-3
± 0.002

∣∣∣
twist-4

± 0.007
∣∣∣
(condensates,mc)

, (1024)

|f+
D+η′(0)| = 0.458± 0.007

∣∣∣
M2
± 0.028

∣∣∣
µ
± 0.011

∣∣∣
s0

± 0.013
∣∣∣
c2

± 0.096
∣∣∣
c
(g)
2

± 0.025
∣∣∣
(fq ,fs ,φ)

± 0.030
∣∣∣

twist-3
± 0.002

∣∣∣
twist-4

± 0.006
∣∣∣
(condensates,mc)

, (1025)

|f+
B+η

(0)| = 0.238± 0.002
∣∣∣
M2
± 0.013

∣∣∣
µ
± 0.002

∣∣∣
s0

± 0.004
∣∣∣
c2

± 0.001
∣∣∣
c
(g)
2

± 0.006
∣∣∣
(fq ,fs ,φ)

± 0.011
∣∣∣

twist-3
± 0.0002

∣∣∣
twist-4

± 0.007
∣∣∣
(condensates,mb)

, (1026)

|f+
B+η′(0)| = 0.198± 0.001

∣∣∣
M2
± 0.011

∣∣∣
µ
± 0.002

∣∣∣
s0

± 0.003
∣∣∣
c2

± 0.061
∣∣∣
c
(g)
2

± 0.007
∣∣∣
(fq ,fs ,φ)

± 0.009
∣∣∣

twist-3
± 0.0001

∣∣∣
twist-4

± 0.006
∣∣∣
(condensates,mb)

. (1027)

Inspired by [319], we also consider the variation 1 GeV < µ < 3 GeV as a possible source of
uncertainty. Most importantly, ratios of the f+

Hη′(0) and f+Hη(0) form factors are particularly
interesting, since for such quantities most of the related uncertainties cancel [2]:
∣∣∣∣∣
f+
D+
s η′

(0)

f+
D+
s η

(0)

∣∣∣∣∣ = 1.20± 1 · 10
−13

∣∣∣
M2
± 1 · 10−12

∣∣∣
µ
± 6 · 10−13

∣∣∣
s0

± 7 · 10−14
∣∣∣
c2

± 0.16
∣∣∣
c
(g)
2

± 0.06
∣∣∣
(fq ,fs ,φ)

± 3 · 10−12
∣∣∣

twist-3
± 3 · 10−14

∣∣∣
twist-4

± 2 · 10−14
∣∣∣
(condensates,mb)

, (1028)
∣∣∣∣∣
f+
D+η′(0)

f+
D+η

(0)

∣∣∣∣∣ = 0.83± 5 · 10
−13

∣∣∣
M2
± 9 · 10−13

∣∣∣
µ
± 2 · 10−13

∣∣∣
s0

± 5 · 10−15
∣∣∣
c2

± 0.18
∣∣∣
c
(g)
2

± 0.04
∣∣∣
(fq ,fs ,φ)

± 8 · 10−13
∣∣∣

twist-3
± 3 · 10−14

∣∣∣
twist-4

± 5 · 10−14
∣∣∣
(condensates,mb)

, (1029)
∣∣∣∣∣
f+
B+η′(0)

f+
B+η

(0)

∣∣∣∣∣ = 0.83± 8 · 10
−13

∣∣∣
M2
± 6 · 10−13

∣∣∣
µ
± 1 · 10−13

∣∣∣
s0

± 1 · 10−13
∣∣∣
c2

± 0.26
∣∣∣
c
(g)
2

± 0.04
∣∣∣
(fq ,fs ,φ)

± 8 · 10−13
∣∣∣

twist-3
± 2 · 10−14

∣∣∣
twist-4

± 2 · 10−13
∣∣∣
(condensates,mb)

. (1030)

Here, we should recall, that by assuming SU(3)F-breaking effects in the gluonic Gegenbauer
moments, i. e., c(g)

2,η′ ≈ c
(g)
2,η , no similar behavior can be inferred for the associated TFFs. Instead,
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Figure 43: Based on [2]
∣∣∣f+D+

s η′
(
q2
)
/f+
D+
s η

(
q2
)
∣∣∣≡
∣∣fD+

s→η′
+

(
q2
)
/fD

+
s→η

+

(
q2
)∣∣ is plotted as a function of q2. Again,

the black dots are calculated sum rule results, where the upper and lower line correspond to the
uncertainties of our calculation. Those are completely dominated by the gluonic contributions
(red lines).

contributions to the form factor are vastly different, because the gluonic admixtures of the singlet
part are determined by (see Chapter 3)

f
(0)
η =

√
2

3
fq cosφ−

√
1

3
fs sinφ , (1031)

f
(0)
η′ =

√
2

3
fq sinφ+

√
1

3
fs cosφ . (1032)

Therefore, the corresponding dependence on the gluonic Gegenbauer moment does not cancel.
In fact, as listed in Equation 1028 – Equation 1030, almost the entire uncertainty in

∣∣f+
Hη′(0)/f+Hη(0)

∣∣
comes from c

(g)
2 (µ0), thus offering a possibility to constrain the gluonic DAs, if more precise ex-

perimental data becomes available. In the next step, we may study the behavior of
∣∣f+
Hη′(0)/f+Hη(0)

∣∣
for different q2 values. The results forDs→η(′) form factors are shown in Figure 43. As expected,
the given uncertainties are completely governed by gluonic contributions. However, this evalua-
tion anticipates a peculiarity of the LCSR method which is only applicable for q2.m2Q − 2mQχ(
χ=O(1 GeV), see [257, 517, 523]

)
.

Correspondingly, the plots of Figure 43 actually require an adequate extrapolation method which
is discussed in the next subsection.
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5.3.3 Parametrizations of heavy-to-light form factors

In this subsection, we summarize and compare some of the most popular extrapolation meth-
ods40, that are used in form factor calculations. While focusing on the nontrivial physics be-
hind those different parametrizations, we also address the resulting impact on observables and
their statistical interpretation. This forms a theoretical basis for the subsequently performed phe-
nomenological analysis.

As mentioned above, the LCSR method for “heavy (H)→light (M)” transitions is restricted to a
kinematical regime of sufficiently large meson energies EM := pH·pMmH

�ΛQCD which translates
into small or moderate values of momentum transfers41:

q2 = m2H − 2mHEM +m2M . (1033)

In other words, it cannot access the entire physical region42 0 6 q2 6 (mH −mM)2 = q2max, as
needed to obtain the corresponding semileptonic branching ratios. Consequently, a parametriza-
tion that reliably reproduces the data beyond this accessible realm is required43. For this pur-
pose, one may start from first principles which ideally imply the required general structure of
fHM+

(
q2
)

as well as fHM0
(
q2
)
. Indeed, due to their inherent Lorentz invariance both form factors

are analytic functions in q2 satisfying unsubtracted dispersion relations [542–544]:

fHM+

(
q2
)
=

Rest=m2
H∗

{
fHM+ (t)

}
m2H∗ − q

2
+
1

π

∫∞
t0

dt
Imt fHM+ (t)

t− q2
, (1034)

fHM0

(
q2
)
=
1

π

∫∞
t0

dt
Imt fHM0 (t)

t− q2
. (1035)

As implied by the associated quantum numbers of f+
(
JP = 1−

)
, or its scalar counterpart f0(

JP = 0+
)
, each imaginary part contains all possible poles and branch points/cuts which are

situated above the generic two-particle threshold t0=(mH +mπ)
2. It is worth highlighting that

the vector form factor exhibits an isolated pole below t0, while possible analogous contributions
to f0 are effectively hidden within the related dispersive term (cf. [322, 542]). Moreover, the
residue of44 f+ at q2=m2H∗ (see [322, 371, 542])

cH∗ :=
fH∗gH∗HM
2mH∗

=
Resq2=m2

H∗

{
fHM+

(
q2
)}

m2H∗
= lim
q2→m2

H∗

(
1−

q2

m2H∗

)
fHM+

(
q2
)

(1036)

40 Strictly speaking, those techniques have been developed mainly for B→ πlνl decays, but can be straightforwardly
adapted to similar problems. Here, we do not include other approaches and parametrizations, as described by [533–537]
or [538, 539].

41 Here, EM is the light hadron’s energy in the rest frame of the heavy meson.
42 A similar problem arises in lattice QCD calculations of the form factors for B0→π−l+νl decays near zero recoil (see,

e. g., [540]), where f+ and f0 are usually extrapolated to the full recoil range via adequate models, such as Equation 1042.
Correspondingly, the present LCSR and lattice studies access complementary realms of the given physical region. For
instance, when focusing on B→ πlνl decays, the related QCD sum rule results are restricted to 06 q2 6 14 GeV2,
while analogous lattice simulations are limited to 16 GeV26q2626.4 GeV2 (cf. [322, 541]).

43 As discussed in [322], a multitude of processes do not require any knowledge or specific extrapolation method beyond
this accessible realm. Prominent examples are non-leptonic B or rare B → Pl+l−

(
P = π,K,η

)
decays. Thus, the

discussed H→Mlνl transitions are an important exception.
44 Based on the fundamental principles of dispersion relations and the S-matrix theory, each semileptonic decayH→Mlνl

can be (kinematically) connected to HM→ lνl via crossing symmetries. This reaction, however, indirectly includes an
elastic strong scattering process HM→HM, which may exhibit every intermediate state

(
e. g., HM→H∗→HM

)

with quantum numbers similar to the related vector meson “H∗”. In terms of coupling constants, which describe the
corresponding hadronic transitions, this gives rise to contributions that involve gH∗HM. The analytic continuation of
fHM+ based on dispersion relations, therefore, contains a term proportional to ∼gH∗HM

(
m2
H∗ −q

2
)−1.
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can be expressed by hadronic on-shell matrix elements similar to
(
εµ is the H∗ meson’s polariza-

tion vector, cf. [371, 542]
)

〈0|VMµ |H∗(p, ε)〉 = fH∗mH∗εµ , (1037)

〈H∗(p, ε)M(q) |H(p+ q)〉 = −gH∗HM (q·ε) , (1038)

which involve two additional non-perturbative parameters, such as the hadronicH∗HM coupling
gH∗HM, along with the vector meson decay constant fH∗ (compare with [334, 371, 542, 545]).
This relation is particularly useful when studying H∗HM (on-shell) vertices, such as45 D∗Dπ,
B∗Bπ or D∗sDsη

(′) (see [334]), where the implied normalization factor fH∗gH∗HM approximately
determines the associated heavy-to-light form factor’s behavior near zero (pionic) recoil (cf. [322,
371, 546, 553]):

fHM+

(
q2≈q2max

)
≈ fH∗gH∗HM

2mH∗

[
1− q2

m2
H∗

] . (1039)

Accordingly, it is connected to an important input parameter which should not be dropped.
As discussed in [537], the remaining dispersion integrals can be approximated to any desired
accuracy by introducing a sufficient number of finely-spread effective poles

(
N>1

)

f+(x) ≈
cH∗

1− x
+

N∑
k=1

ρk
1− x

γk

, f0(x) ≈
N∑
k=1

σk
1− x

βk

, x :=
q2

m2H∗
, (1040)

with formal coefficients βk>0, σk, and (t06t1<. . .<tn+1<∞) [537]

ρk =
1

π

∫tk+1
tk

dt
Imt f+(t)

t
, γk =

tk

m2H∗
. (1041)

The present generation of experimental and lattice QCD data, however, cannot yet resolve46 sce-
narios beyond N = 1 (cf. [537, 556]). Thus, many popular approaches are based on the (four-
parameter) Bečirević-Kaidalov parametrization [542] which not only retains the first isolated
pole, but also models all remaining contributions by a single effective pole [542, 554] (α, β, γ>0)

f+(x) =
cH∗

1− x
+
cH∗α

1− x
γ

, f0(x) =
cH∗(1−α)

1− x
β

. (1042)

In other words, this ansatz entails an additional parameter for each effective pole squared mass,
i. e., m21− = γm2H∗ and m20+ = βm2H∗ as well as α to further quantify the corresponding impact
of higher states. We observe in passing that the relative slope of f+ and f0 at large recoil is
determined by

(
neglecting O(m2H∗/m2H) corrections, along with powers of “1−m2H∗/m2H”

)
[556]

δ := 1−
m2H −m2M
f+(0)


 d f+

(
q2
)

dq2

∣∣∣∣∣
q2=0

−
d f0

(
q2
)

dq2

∣∣∣∣∣
q2=0


 , (1043)

1

β
:=
m2H −m2M
f+(0)

d f0
(
q2
)

dq2

∣∣∣∣∣
q2=0

, (1044)

45 Both couplings, i. e.,D∗Dπ and B∗Bπ have been studied with a variety of different approaches, e. g., [97, 109, 371, 546–
548]. Hence, they may serve as prime models for other coupling constants. It should be emphasized that gD∗Dπ is
directly related to the decay width Γ(D∗→Dπ) [546, 549], while the analogous process B∗ → Bπ is kinematically
forbidden. Instead, one encounters B∗ → Bγ as the dominant decay mode (cf. [42, 546]). Nevertheless, the B∗Bπ
on-shell vertex may occur as a fundamental parameter of chiral effective Lagrangians with heavy-light mesons (cf.
[371, 465, 550–552]) and (as mentioned above) can constrain the B→πlνl form factor (see also [371, 546]).

46 This has to be understood in the sense that the inclusion of additional fit parameters would not significantly improve
the corresponding results for Γ(H→Mνll), etc. (see also [537]).
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(4 Parameter) Bečirević-Kaidalov:
• Fit-parameters: (cH∗ , α, β, γ)
• Parametrization:

f+
(
q2
)
=

cH∗

1− x −
cH∗α

1− x
γ

f0
(
q2
)
=
cH∗(1− α)

1− x
β

Light-Cone Sum Rule Parametrization:
• Fit-parameters: (f(0) , aF , bF )
• Parametrization (aF =αF + βF , bF =αFβF ):

f+
(
q2
)
=

f(0)

(1− αFx) (1− βFx)
=

f(0)

1− aFx+ bFx2

(4 Parameter) Ball-Zwicky:
• Fit-parameters: (f(0) , α̃, β, r)
• Parametrization:

f+
(
q2
)
=

f(0)

1− x +
f(0) rx

(1− x) (1− α̃x)

f0
(
q2
)
=

f(0)

1− x
β

(3 Parameter) Bečirević-Kaidalov:
• Fit-parameters: (cH∗ , α, β)
• Parametrization:

f+
(
q2
)
=

cH∗(1− α)
(1− x) (1− αx)

f0
(
q2
)
=
cH∗(1− α)

1− x
β

α = r
1−α̃+r

γ = 1
α̃

cH∗= f(0)(1−α̃+r)
1−α̃

r= α
1−α

(
1− 1

γ

)

α̃= 1
γ

f(0)= cH∗(1− α)

aF = 1 + α

bF = α

f(0)= cH∗(1− α)

α̃ = α = r

f(0)= cH∗(1− α)

α = 1
γ

Figure 44: This is a contrasting juxtaposition of the most common extrapolation methods for f+ and f0.
While using x = q2/m2H∗ , the listed examples involve the Bečirević-Kaidalov [542, 554], Ball-
Zwicky [555], along with a conventional LCSR parametrization (where originally a=(m2H/m2H∗)aF
and b=(m2H/m2H∗)

2 bF is used) [515].

implying
(
γ≡γ(α,β, δ)

)

1

γ
= 1−

1−α

α

(
1

β
− 1+

m2H∗

m2H −m2M
(1− δ)

)
≈ 1− 1−α

α

(
1

β
− δ

)
. (1045)

Additionally, the parameter δ is implicitly measuring the relative size of hard-scattering and soft-
overlap contributions47 in the H→Mlνl form factors (for a detailed discussion see [557, 558]).
This reveals a deeper connection between the scalar and vector form factor which is also encoded
in the following relations (cf. [537, 556]):

47 Based on the soft-collinear effective theory (SCET) formalism (E being the light hadron energy) [557–563]

f+(E) =
√
mH

[
ζ̂M(E)+

(
4E

mH
− 1

)
ĤM(E)

]
, f0(E) =

2E√
mH

[
ζ̂M(E)+ ĤM(E)

]
,

both form factors can be decomposed into contributions of hard-scattering
(
ĤM

)
and soft-overlap

(
ζ̂M

)
terms. At large

recoil E≈ mH
2 , the heavy quark expansion gives rise to [556]

δ =
2ĤM

ζ̂M+ ĤM

∣∣∣∣∣
E=
mH
2

+ . . . .

Here, the ellipses correspond to corrections beyond leading order in m−1
Q and αS

(
mQ

)
. Consequently, two opposing

scenarios may occur:

i) The case δ≈0 indicates a negligible presence of hard-scattering contributions.

ii) For δ≈2 the form factor is dominated by hard-scattering effects.

Those may serve as a simple guideline to assess the underlying heavy quark physics.
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i) The kinematical constraint f+(0) = f0(0) (cf. Equation 945), as already implemented in
Equation 1042, entails the generic parameter (cf. Figure 44)

f+(0) = cH∗(1−α) =: f(0) . (1046)

According to this equation, cH∗ and the normalization f(0) can be used equivalently.

ii) For a renormalization point µF.mQ
(
“Q” being a heavy quark flavor

)
, at which αS

(
mQ

)

is still a sufficiently small expansion parameter, the underlying physics can be approxi-
mately described by an effective field theory, such as heavy quark effective theory (HQET)
[248, 564–566]. In the heavy quark limit

(
mQ→∞) and near zero recoil

(
q2≈q2max

)
, one

will encounter the famous Isgur-Wise scaling law [557]:

f+

(
q2≈q2max

)
∼
√
mH , f0

(
q2≈q2max

)
∼

1√
mH

. (1047)

iii) A similar heavy quark (meson) scaling law exists for both form factors in the low q2→ 0
region, i. e., at large recoil:

f+

(
q2≈0

)
∼ m

−
3
2

H ∼ f0

(
q2≈0

)
. (1048)

This has been originally predicted by [141] using the LCSR method and was later on con-
firmed within the large energy effective theory (LEET) framework (cf. [248, 567]).

iv) Another nontrivial symmetry relation between the form factors emerges within the heavy
quark limit and for large recoils

(
mQ→∞, E→∞) [248, 249]:

f+

(
q2≈q2max

)
=
2E

mH
f+

(
q2≈q2max

)
. (1049)

Based on these general restrictions48, one may finally test the chosen model for its consistency.
For instance, in accordance with [371] the resulting scaling behavior of Equation 1036 is given by
cH∗ ∼

1√
mH

. In combination with point iii), a pole dominance ansatz is, therefore, excluded (see
also [542, 556]). Thus, it is essential to understand the effects caused by all remaining hadronic
states within the related vector meson channel, e. g., as encoded in the scaling laws for γ and α.

Due to49 ii) αγ and (1− γ)mH scale as constants, while i) combined with iii) imply: 1/(1−α)∼mH.
In summary, when omitting logarithmic and higher order mass corrections, i) – iii) lead to the

48 When applying the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula to corresponding heavy-to-light decays,
additional nontrivial equations for the related coupling constants may arise. For example, the resulting Callan-Treiman
relation for B→πνll decays implies [554, 568]

(
p
µ
π→0, m2

π→0
)

f0

(
m2
B

)
=
fB
fπ

,

which can be relevant in associated numerical calculations (cf. [322, 554]).
49 For the assumed heavy quark limit, it is reasonable to apply q2max≈m2

H. Consequently, a dimensional analysis according
to ii) implies (while neglecting light meson mass corrections)

f+

(
q2max

)
= cH∗

[
m2
H∗

m2
H∗ −m

2
H

+
αγ

1−γ
+O

(
m2
H−m2

H∗
)]
≈ cH∗mH

(
1+

αγ

(1−γ)mH
+ . . .

)
,

which reproduces [542, Equation 13]. Based on this heuristic approach, one may deduce the discussed scaling laws. A
similar argument is valid for the scalar form factor in Equation 1042.
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simple estimate50 α, γ ∼ 1 + const.
mH

+ . . . (for further discussion see [542]). Besides, these well-
known findings have been confirmed within the SCET approach [556]. The latter additionally
predicts δ to be of O(1) in the power counting. Consequently, Equation 1045 has the following
structure (cf. Figure 44)

1

γ
= α+ (1−α)δ+O

(
m−2
H

)
= α+O

(
m−1
H

)
, (1050)

approximately yielding two independent parametrizations for f+ and f0 that are valid within
the whole physical region. Alternatively, when taking point iv) into consideration, one may anal-
ogously deduce 1

γ =α+O(1/mH) (see [542] for details). Hence, in order to satisfy relation iv) (cf.
Equation 1049), while neglecting O(1/mH) corrections, the number of free fit parameters can be
even further reduced (see Figure 44).

A posteriori, the parameter set (cH∗ ,α,β,γ) is, therefore, sufficient to describe the currently avail-
able data without contradicting general physical constraints (see also [322, 542, 554, 556]). Con-
versely, Equation 1042 allows a physically interpretable extrapolation of available data points,
e. g., as produced by the given vector and scalar form factor calculations. Nonetheless, in ref-
erence to previous LCSR and recent lattice studies, such as [12, 319, 319, 322, 541], we use a
modified51 version of Equation 1042 [2, 555]

(
αBZ :=(m

2
H/m2H∗) α̃

)
:

f+

(
q2
)
= f(0)

(
1

1− x
+

rx

(1− x)(1− α̃x)

)
, f0

(
q2
)
=

f(0)

1− x
β

, (1051)

known as the (four parameter) Ball-Zwicky parametrization (see Figure 44). As intended, this
approach fulfills all the mentioned requirements and is valid for q2 ∈

(
−∞,q2max

)
, but unfortu-

nately represents another source of error.

In general, however, it is difficult to isolate and quantify possible uncertainties on the form
factor shape inherent to LCSR calculations. Or to put it differently: some observables imply a
tightly constrained fit that is less dependent on the chosen parametrization, while other impor-
tant physical quantities are sensitive to the inclusion of more parameters than can be constrained
by the given data points (see, e. g., [537] for a detailed discussion). Fortunately, for certain observ-
ables, such as the total semileptonic decay rates, comparable existing studies indicate a rather
mild dependence of Γ(B→πlνl) on the method used to extrapolate fBπ+ . In fact, it has been
pointed out by52 [322], that Γ(B→πlνl) changes at most 6% for three different extrapolations53

(see [322]) of their LCSR results54. Similar studies have been carried out for |Vub|f+(0), using

50 Similarly, β scales as 1+ const.
mH

+ . . ., since ii) and iii) have to be fulfilled simultaneously (see, e. g., [542, 554]).
51 At this level of accuracy, the parameters of Equation 1042 and Equation 1051 can be related via (cf. Figure 44):

r =
1

β
− δ =

α

1−α

(
1−

1

γ

)
, α̃ =

1

γ
= 1−

1−α

α

(
1

β
− δ

)
.

52 Other LCSR studies (cf. [319, 320, 569]) come to similar conclusions when comparing the results of different parametriza-
tions as based on [533–536] or [538, 539].

53 Those parametrizations are based on Equation 1042:

f
(i)
+

(
q2
)
=

r1

1− q2

m21

+
r2

1− q2

m2fit

, f
(ii)
+

(
q2
)
=

f+(0)(
1− q2

m21

)(
1− q2

m2fit

) , f
(iii)
+

(
q2
)
=

r1

1− q2

m2fit

+
r2(

1− q2

m2fit

)2 ,

while using mπ,η
1 →mB∗ , mK

1→mB∗s and (r1, r2,mfit) as fit parameters (cf. [322]).
54 According to [537], that is also true for other quantities, such as |Vub|f+(0), |Vub| and f+(0), which have been ex-

tracted from experimental [570–573] as well as lattice [574, 575] data. In fact, a corresponding rigorous error estimate
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Decay mode r αBZ |f+HM(0)|

D+
s → ηl+νl 0.284+0.003

−0.002 0.252+0.107
−0.082 0.432+0.033

−0.033

D+
s → η′l+νl 0.284+0.137

−0.095 0.252+0.382
−0.395 0.520+0.080

−0.080

D+ → ηl+νl 0.174+0.001
−0.001 −0.043+0.068

−0.052 0.552+0.051
−0.051

D+ → η′l+νl 0.174+0.243
−0.142 −0.043+0.526

−0.596 0.458+0.105
−0.105

Table 18: Shape parameters for the vector form factor f+HM
(
q2
) (
H = D,Ds; M = η,η′

)
as input for the

Ball-Zwicky parametrization, see Equation 1051 (cf. [2]). For reasons of numerical stability we use
Equation 1051 with αBZ instead of α̃.

the rather different Ball-Zwicky [322], Albertus-Flynn-Hernandez-Nieves [538, 576] and Boyd-
Grinstein-Lebed [534, 536] parametrizations to estimate the inherent model dependence of this
observable (cf. [577]). Indeed, it has been reported in [577], that the uncertainty induced by each
set of related shape parameters does not exceed ∼ 6%. Most interestingly, for q2 . q2max the
named parametrizations yield (to within 2% accuracy) the same numerical results, indicating a
model independence [577].

Thus, the systematic error introduced by this fitting procedure would be considerably smaller
than the estimated intrinsic and irreducible uncertainty of the sum rule method, which should
amount to ∼ 7% − 15% (see [109, 114, 117, 320–322, 464, 515]). Since our present basic problem
is completely compatible with these findings, they may be used to establish a rough order of
magnitude estimate for corresponding systematic uncertainties of Γ(H→Mlνl).

If accepted being only slightly dependent on the chosen Ball-Zwicky parametrization, which
again could be seamlessly absorbed into the total systematic errors, the subsequent phenomeno-
logical analysis lends itself to a straightforward statistical interpretation (see also [322, 537, 556]).

5.3.4 Heavy-to-light form factors and their shape
(
q2 6= 0

)

According to Section 5.3.3, the LCSR method cannot access the entire physical region. Thus, the
form factors are calculated for sufficiently small momentum transfers q2 . q2χ ≈m2Q − 2mQχ

where the sum rule is easily applicable. All corresponding results are then extrapolated to the
remaining interval. On the one hand, this allows for the calculation of branching fractions, but
on the other hand a necessary error analysis gets more difficult. Therefore, both of these aspects
are described in the following subsection.

As a starting point, the results for f+
D+
s η

(
q2
)

and f+
D+
s η′
(
q2
)

are shown in Figure 45 as well
as Figure 46. In order to get the related error bands, we perform a statistical analysis for all
input parameters at each grid point q2 . q2χ, while assuming Gaussian uncertainties. Then we
extrapolate all results in the same way as the plotted central values. Again, we note, that the
uncertainty coming from the unknown gluon DAs is almost negligible for the f+Hη

(
H=D,Ds,B

)

form factors. This supports the notion of the η meson being almost an ideal octet state. On the
other hand, there is a considerable impact of gluonic singlet contributions on the f+

Hη′ form

has been carried out by [537] for arbitrary many parameters, while assuming very loose dispersive bounds (cf. Equa-
tion 1040), i. e.,

∑
k|ρk|∼

√
ΛQCD/mb<10. The resulting estimates for uncertainties on f+(0) and |Vub|, as introduced

by the form factor shape, do not exceed ∼4% − 6% (see [537]).
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Figure 45: f+
D+
s η

(
q2
)

plotted as a function of q2 (cf. [2]). Black dots represent the calculated sum rule values.
Correspondingly, the straight blue line is the fit to central values. Here, the blue dashed band
depicts the full uncertainty of our result, while red lines are limited to uncertainties coming from
gluonic contributions. The latter have a very small numerical impact on f+

D+
s η

(
q2
)
, thus almost

concealing the blue line. Results of [31] are included via brown lines. The orange point illustrates
recent lattice results from [12, 578] (see [2] for details).

factors. The associated fit parameters can be found in Table 18 which employ a slightly mod-
ified version of the Ball-Zwicky model to guarantee a better numerical stability. Furthermore,
Figure 45 and Figure 46 also contain results from the first lattice simulation for these quantities
[2, 578], supporting our present calculations. Unfortunately, there is no experimental data for the
previously discussed form factors themselves. Then again, with an extrapolation of f+HM

(
q2
)

to
the entire kinematic region, we can calculate corresponding branching fractions, for which ex-
perimental results are available (see Table 19). Based on Section 2.6.2, the decay rate for massless
leptons is given by55

(
similarly for H=D,Ds,B; M=η,η′; l=e,µ; |VqQ| from Table 16

)

Γ
(
H+→Ml+νl

)
=
G2F|VqQ|2

24π3

∫q2max

0
dq2 λ3/2

(
q2,m2H,m2M

) ∣∣∣f+HM
(
q2
)∣∣∣
2

(1052)

λ
(
q2,m2H,m2M

)
=

1

4m2H

[(
m2H +m2M − q2

)2
− 4m2Hm

2
M

]
. (1053)

After a multiplication with the mean lifetime of the considered meson, we get the relevant
branching fractions. In order to extract the underlying uncertainties, we again assume Gaus-
sian errors of

∣∣f+HM
(
q2
)∣∣2 with different fit functions from q2 . q2χ to the physical region. The

entailed deviations are incorporated into the error budget. Our results and associated experi-
mental values are shown in Table 19. Again, the ratios Γ

(
H+→η′l+νl

)
/Γ
(
H+→ηl+νl

) turn out to
be especially interesting, since most of the given theoretical uncertainties cancel. The remaining

55 For the currently available data only transitions with electrons or muons (i. e., l = e,µ) in the final state have been
measured [360]. Thus, Equation 1052 is a reasonable approximation. Here, contributions of f 0HM can be safely neglected.
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Figure 46: f+
D+
s η′
(
q2
)

plotted as a function of q2. Here, we use the same conventions as in Figure 45.

error bars are dominated by contributions of the gluonic Gegenbauer moment as well as FKS

parameters. A comparison with the available data reveals an overall good agreement of the theo-
retical predictions with the experiment, see Table 20. Nevertheless, the achievable experimental
precision is up to now insufficient to draw any conclusion on c(g)2 (µ0).

In this chapter we have calculated the form factors and branching fractions of the decays D+
(s)
→

η(′)l+νl as well as B+→ η(′)l+νl within the LCSR framework for massless leptons. Both form
factors were shown to agree within the available lattice results, while the determined branching
rations also concur with the experimental data. Thus, the overall picture implies a general agree-
ment of these complementary sources. Our main result, however, is related to the performed
statistical analysis. For all studied quantities c(g)2 (µ0) dominates the resulting uncertainties.56

Therefore, even a moderate increase in the experimental accuracy or quality of lattice data could
provide decisive contributions to a better understanding of η, along with η′ DAs, and, in par-
ticular, concerning their gluonic content. Accordingly, precision measurements of the discussed
different branching ratios (see Table 20) would allow us to settle this long-standing issue.

56 Within the recent publication [335] a possible shortcoming of [32] has been pointed out which is related to the γ5
problem in D dimensions. In fact, resulting ambiguities have led to a difference between the findings of [32] and [335].
As a consequence, the gluonic singlet contributions would change accordingly. E. g., at q2 = 0 the relative change of
related numerical results would amount to approximately 30% for D(s)→ η(′) and up to 50% for B→ η(′) decays.
Fortunately, this does not affect any qualitative or quantitative findings of this work, except for a possible decrease in
the uncertainty related to the gluonic Gegenbauer moments.
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Decay mode LCSRs (this work) Experiment

D+
s → η′e+νe (0.75± 0.23) % (0.91± 0.33) % [579]

D+
s → ηe+νe (2.00± 0.32) % (2.48± 0.29) % [579]

D+ → η′e+νe (3.86± 1.77) · 10−4 (2.16± 0.53± 0.07) · 10−4 [580]

D+ → ηe+νe (24.5± 5.26) · 10−4 (11.4± 0.9± 0.4) · 10−4 [580]

B+ → η′e+νe (0.36± 0.22) · 10−4 (2.66± 0.80± 0.56) · 10−4 [581]

(0.24± 0.08± 0.03) · 10−4 [582]

B+ → ηe+νe (0.73± 0.20) · 10−4 (0.44± 0.23± 0.11) · 10−4 [581]

(0.36± 0.05± 0.04) · 10−4 [582]

Table 19: Branching fractions for the different decays, including a comparison of LCSR results and experi-
mental data.

Ratio LCSRs (this work) Experiment

Γ
(
D+
s → η′l+νl

)
/Γ
(
D+
s → ηl+νl

)
0.37± 0.09

∣∣∣
c
(g)
2

± 0.04
∣∣∣

rest
0.36± 0.14 [271]

Γ
(
D+ → η′l+νl

)
/Γ
(
D+ → ηl+νl

)
0.16± 0.06

∣∣∣
c
(g)
2

± 0.02
∣∣∣

rest
0.19± 0.09 [579]

Γ
(
B+ → η′l+νl

)
/Γ
(
B+ → ηl+νl

)
0.50± 0.29

∣∣∣
c
(g)
2

± 0.05
∣∣∣

rest
0.67± 0.26 [581]

Table 20: Ratios of branching fractions for the different decay modes (see [2]). Here, we explicitly indicate
the uncertainties caused by c(g)2 (µ0), while all residual errors are collected accordingly.
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“The effort to understand the universe is one of the very few things
which lifts human life a little above the level of farce and gives it some of the grace of tragedy.”

— Steven Weinberg

In this thesis, we provide a state-of-the-art NLO analysis of corresponding γ∗γ → η(′) and
D(s)→ η(′)lνl transition form factors within the LCSR framework. The obtained results can be
presented in the following way [2, 3]:

In anticipation for the possibility of high-precision measurements of the transition
form factors γ∗γ→η and γ∗γ→η′ at the upgraded KEKB facility, in this work we up-
date the corresponding theoretical framework. The presented formalism incorporates
several new elements in comparison to the existing calculations, in particular a full NLO

analysis of perturbative corrections, the charm quark contribution, and revisited twist-
four contributions taking into account SU(3)-flavor breaking and the axial anomaly. A
numerical analysis of the existing experimental data is performed with these improve-
ments.

For the numerical analysis we have used the FKS state mixing assumption for the η, η′

DAs at a low scale 1 GeV as a working hypothesis to avoid proliferation of parameters.
This assumption does not contradict the data on the FFs at small-to-moderate photon
virtualities and can be relaxed in future, if necessary.

The most important effect of the NLO improvement is due to the finite renormalization
of the flavor-singlet axial current which results in a 20% reduction of the the expected
asymptotic value of the γ∗γ→ η′ form factor at large photon virtualities. Taking into
account this correction brings the result in agreement with BABAR measurements [7].

We also want to emphasize the importance of taking into account the charm quark
corrections. This effect is negligible at small Q2, but increases the contribution of the
most interesting two-gluon DA by a factor 5/3 at large scales, so that a consistent imple-
mentation of the charm-quark mass threshold effects is mandatory.

The update of the higher twist corrections does not have a large numerical impact,
but is necessary for theoretical consistency when taking into account the meson mass
corrections to the leading-twist diagrams. Identifying the hadron mass corrections in
hard exclusive reactions is in general a nontrivial problem [583], and it is made even
harder by the axial anomaly. We have calculated the anomalous contribution to the twist-
four DA for one particular case and found a specific mechanism how this contribution
can restore the relations between η, η′ masses implied by the state-mixing assumption
for higher twist.

Our results for the FFs at Euclidean virtualities are, in general, in good agreement with
the experimental data [7], although the present statistical accuracy of the measurements
is insufficient to distinguish between different models of the DAs specified in Chapter 4.
We expect that experimental errors will become smaller in future, and also that some
of the parameters, most importantly the decay constants fη, fη′ , will be calculated with
high precision on the lattice. In this way the comparison of the QCD calculation with
experiment will allow one to study the structure of η, η′ mesons at short interquark
separations, encoded in the DAs, on a quantitative level.
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We have given a short discussion of the transition form factors in the time-like region.
The result by BABAR [351] suggesting a large enhancement of the η form factor in the
time-like as compared to the space-like region, and at the same time no such enhance-
ment for η′ is rather puzzling. If confirmed, this difference would imply a significant
difference in the end-point behavior of η and η′ DAs.

Furthermore, we have calculated the form factors and branching fractions of the
D(s)→η(′)lν and B→η(′)lν decays in the framework of LCSR for massless leptons. The
form factors were shown to agree with available lattice results and the branching ratios
Chapter 5 with experiment. So the overall picture is nicely consistent. Our main result
is, however, the error budget given in Chapter 5 clearly showing that c(g)2 dominates
the uncertainties in all cases. Therefore, already a moderate increase in experimental
accuracy will allow to determine the gluonic contribution to η and η ′ from all three
ratios, providing a sensitive consistency check. FAIR and Super-KEKB should even pro-
vide precision measurements of these ratios and thus allow to settle this long-standing
issue.
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AA P P E N D I X – M I S C E L L A N E O U S T O P I C S

In the following appendix chapter, several topics are collected, that are required for this work. If
not stated otherwise we use the Einstein notation (cf. [584]) which shortens the given expressions
considerably.

a.1 pauli and gell-mann matrices

In general, the special unitary group of degree N ∈N is a Lie group formed by unitary N×N
matrices U ∈CN×N with determinant det(U) = 1 (see, e. g., [83, 156, 283, 585] for details). The
corresponding (infinitesimal) generators of SU(N) are usually represented as traceless Hermitian
matrices. Accordingly, in the fundamental representation these N2−1 generators TA are given
by N×N matrices

(
A=1, . . . ,N2−1

)
, obeying the following relations1:

[
TA, TB

]
−
≡
[
TA, TB

]
= i

N2−1∑
C=1

fABCTC , (1054)

[
TA, TB

]
+
≡
{
TA, TB

}
=
1

N
δAB1N×N +

N2−1∑
C=1

dABCTC . (1055)

The involved structure constants fABC and coefficients dABC can be extracted from2

fABC = −iT−1F Tr
{[
TA, TB

]
−
TC
}

, (1056)

dABC = T−1F Tr
{[
TA, TB

]
+
TC
}

, (1057)

which themselves result from the relations
(
CA=N, Cf= N

2−1
2N and TF= 12

)

δABCA = Tr
{
TATB

}
=

N2−1∑
C=1

N2−1∑
D=1

fACDfBCD , (1058)

δabCf =
(
TATA

)
ab

=

N2−1∑
A=1

N∑
c=1

(
TA
)
ac

(
TA
)
cb

, (1059)

δABTF = Tr
{
TATB

}
=

N∑
a=1

N∑
b=1

(
TA
)
ab

(
TB
)
ba

. (1060)

In this context, the
(
N2−1

)
-dimensional adjoint representation of the generators occurs. The

latter correspond to
(
N2−1

)
×
(
N2−1

)
matrices, whose elements can be defined by

(
TA
)
BC

= −ifABC . (1061)

1 Here, we imply 1N×N≡1N=diag(1, . . . ,1) to be the N×N identity matrix (N∈N).
2 According to Equation 1056 and Equation 1057 the structure constants are antisymmetric in all indices, whilst the dABC

are totally symmetric under any permutation of the given indices A,B,C.
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Moreover, these generators again fulfill the commutation relation

[
TA,TB

]
= i

N2−1∑
C=1

fABCTC . (1062)

Besides, for the fundamental representation of SU(N) we get the completeness relation [325]

N2−1∑
A=1

(
TA
)
ab

(
TA
)
cd

= TF

(
δadδcb −

1

N
δabδcd

)
, (1063)

giving rise to
(

i. e., M∈CN×N with (M)ij∈C
)

1

TF

N2−1∑
A=1

N∑
t=1

(
TAM

)
tt

(
TA
)
ij
+
1

TF

N∑
r=1

(√
TF
N

1N×NM

)

rr

(√
TF
N

1N×N

)

ij

= (M)ij . (1064)

In fact, Equation 1064 is particularly useful for the decomposition of arbitrary matrices M. For
the construction of a basis it is, therefore, reasonable to include (see Equation 1063)

T0 :=

√
TF
N

1N×N ⇒
N2−1∑
A=0

(
TA
)
ab

(
TA
)
cd

= TFδadδcb , (1065)

which entails the general identity
(

using T−1F ≡2
)

M =

N2−1∑
A=0

2Tr
{
MTA

}
TA . (1066)

Two important examples for special unitary groups have to be discussed in detail, including
N=2, along with N=3. Starting with the Pauli matrices

{
σj
}
j=1,2,3

(
here fijk≡εijk

)
[323]

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
, (1067)

we get the generic generators of SU(2) via T j ≡ 1
2σj. The latter are also embedded in the first

three Gell-Mann matrices
{
λA
}
A=1,...,8, which are given by (see [38]):

λ1=



0 1 0

1 0 0

0 0 0


 , λ2=



0 −i 0

i 0 0

0 0 0


 , λ3 =



1 0 0

0 −1 0

0 0 0


 ,

λ4=



0 0 1

0 0 0

1 0 0


 , λ5=



0 0 −i

0 0 0

i 0 0


 ,

λ6=



0 0 0

0 0 1

0 1 0


 , λ7=



0 0 0

0 0 −i

0 i 0


 , λ8 = 1√

3



1 0 0

0 1 0

0 0 −2


 .



(1068)
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A= 0 A= 8 A= 3 R= q R= s R= 3

α0A
2(2mq+ms)

3

2
√
2(mq−ms)

3

√
2(mu−md)√

3

α8A
2
√
2(mq−ms)

3

2(mq+2ms)
3

(mu−md)√
3

α3A

√
2(mu−md)√

3

(mu−md)√
3

2mq

αqR 2mq 0 mu −md

αsR 0 2ms 0

α3R mu −md 0 2mq

Table 21: Selected coefficients of Equation 1070 in the SO and QF basis.

Those can be used to define the generic SU(3) generators TA ≡ λA

2 . On the other hand, in
Chapter 3 an alternative definition of the subspace “span

({
T8, T0

})
C

” via the generators Tq, Ts

has been discussed. Accordingly, the following identity is valid for A∈ I= {0, 1, . . . , 8} as well as
A∈I= {q, s, 1, . . . , 7} (see Equation 150):∑

f,f′
Af
[√
2TA, m̂

]ff′
±

Bf′ = 2
∑
B∈I

∑
f,f′

Tr
{[
TA, m̂

]
±
TB
}

Af
[√
2TB

]ff′
Bf′

=
∑
f,f′
± (mf ±mf′) Af

[√
2TA

]ff′
Bf′ , (1069)

where Af and Bf are components of arbitrary complex vectors ~A, ~B ∈ C3. Besides, it is useful to
introduce the following abbreviations:

αAB = 2Tr
{[
TA, m̂

]
+
TB
}

, (1070)

βAB = 2Tr
{[
TA, m̂

]
−
TB
}

, (1071)

with αAB = αBA and βAB =−βBA. The relevant coefficients of Equation 1070 are collected in
Table 21. For the discussed SO and QF basis, all contributions of Equation 1071 vanish:

β0A ≡ β8A ≡ β3A ≡ 0 , ∀A = 0, 1, . . . , 8 , (1072)

⇔βqR ≡ βsR ≡ β3R ≡ 0 , ∀R = q, s, 1, . . . , 7 .

In a nutshell, the “raison d’être” for Equation 1070 and Equation 1071 may be found in the local
and non-local operator identities, such as Equation 178 or Equation 1485, which are relating the
different symmetry currents in a closed form.

Furthermore, the operators to construct the weight diagrams (see discussion in [38, 44]) of
SU(3)F should be mentioned. For instance, the related isospin operator and its third compo-
nent can be represented (using the first three generators of SU(3)) by T̂ 2 =

∑3
i=A

(
TA
)2

and T̂3 = T 3 , respectively. Additionally, the hypercharge can be related to Ŷ = 2√
3
T 8 , ful-

filling
[
Ŷ , T̂3

]
= 0.3 Since both operators can be diagonalized simultaneously, they can be

3 Both Ŷ and T̂3 are part of the Cartan-Weyl basis which implies a multitude of different commutation relations. The latter
can be used to construct a irreducible representation of SU(3) (see [586] for details).
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used to label different states |I, Iz, Y〉
(
i. e., related to a given eigenvalue of the isospin Casimir

operator T̂2|I, Iz, Y〉 = I (I+ 1) |I, Iz, Y〉
)

by the associated eigenvalues of Ŷ and T̂3, e. g., via
Ŷ|I, Iz, Y〉 = Y|I, Iz, Y〉 and T̂3|I, Iz, Y〉 = Iz|I, Iz, Y〉. Thus, they give rise to the anticipated weight
diagrams, that are usually depicted in the Iz − Y plane. By including other quantum numbers
(e. g., charm), they can be extended to supermultiplets similar to Figure 1.

a.2 dirac algebra and chiral projection operators

This is a short collection of required identities concerning Dirac matrices and spinors.

Most of the time we only need the defining property (a more complete list can be found in
[64, 98, 323, 324]) for the four-dimensional complex 4×4 gamma matrices

{
γ0,γ1, . . . ,γ4

}
to

generate a Clifford algebra (see [64, 98]), i. e.,

{γµ,γν} = 2gµν14 (1073)

along with relations implied by γ5= iγ0γ1γ2γ3
(
ε0123=+1

)
, such as

{γµ,γ5} = 0 . (1074)

Analogous to Equation 1073, one may additionally define σµν, which can bee seen as the anti-
symmetric counterpart of gµν:

i [γµ,γν] = 2σµν . (1075)

Nevertheless, in the context of projection operators (see Equation 144), with the characteristic
properties

P2R,L = PR,L , PLPR = 0 = PRPL , PL + PR = 14 (1076)

it is sometimes needed to choose a specific basis for the gamma matrices. The two most common
choices are the Weyl, or chiral basis

(
with σµ = (12,~σ) , σ̄µ = (12,−~σ)

)

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 = γ5 =

(
−12 0

0 12

)
(1077)

and the Dirac basis4 (k = 1, 2, 3):

γ5Dirac = γ
0
Weyl , γkDirac = γ

k
Weyl , γ0Dirac = −γ5Weyl . (1078)

The Weyl basis has several advantages, when expressing Dirac spinors [64]

ψ =

(
ψWL

ψWR

)
(1079)

in terms of left- and right-handed Weyl spinors ψWL,R, which obey the following chiral projections

PLψ =

(
ψWL

0

)
, PRψ =

(
0

ψWR

)
. (1080)

4 Here, we use the subscripts “Dirac” and “Weyl” to point out the specific basis.
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In this notation, the massless free Dirac equation implies two separate Weyl equations [64, 188]

i/∂ψ = 0⇒
{
iσ̄µ∂µψ

W
L = 0

iσµ∂µψ
W
R = 0

. (1081)

On the other hand, e. g., when focusing on a set-up with massless particles, it is easier to clar-
ify the connection between chirality and helicity by using the Dirac representation [188]. For
instance, each Dirac spinor describing massive (m 6=0) spin-12 fermions in momentum-space

us(p) = N

(
χs

~σ·~p
E+mχ

s

)
m→0−−−−−→

(E→|~p|)
Ñ

(
χs

~σ·~p
|~p| χ

s

)
(1082)

can be decomposed into adequate normalization factors5 N, Ñ (cf. [64, 66, 76]) and an arbitrary
two-spinor χs. The latter can be defined as an eigenvector

χs =

{(
1
0

)
, s = 1(

0
1

)
, s = 2

(1083)

of the related eigenequation (with eigenvalues hs = ±1)
~σ · ~p
|~p|

χs = hsχ
s , (1084)

which itself results from the underlying helicity operator (cf. [64, 188])

Λh = ~Σ · ~p
|~p|

=




~σ·~p
|~p| 0

0 ~σ·~p
|~p|


 . (1085)

Therefore, we may conclude, that in the massless limit a given chiral projector
(
e. g., PR or PL

)

1

2

(
14 ± γ5Dirac

)
us(p) =

1

2
Ñ

(
(1± hs)χs
± (1± hs)χs

)
(1086)

projects on right-handed/left-handed states (i. e., hs = 1 or hs = −1 respectively) [76].
Here, us(p) describes particles

(
set N=

√
E+m

)
, while anti-particles are given by

vs(p) = N

(
~σ·~p
E+mχ

s

χs

)
. (1087)

Accordingly, in Equation 242 we apply the completeness relations for the four-spinors u and v(
/p=pµγ

µ, ū=u†γ0
)

[64]∑
s

us(p) ūs(p) = /p+m , (1088)∑
s

vs(p) v̄s(p) = /p−m . (1089)

Besides, we have to mention the following relation (for α∈R), which can be easily proven6:

1

2
(14 + γ5) e

iα +
1

2
(14 − γ5) e

−iα = 14 cos(α) + γ5 sin(α) = exp(iαγ5) , (1090)

5 For a particle with mass m and three-momentum ~p the energy is given by E≡E~p=
√
m2+ ~p2.

6 For instance with properties of the involved nilpotent matrix γ5.
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when using the Taylor expansions of the involved matrix functions (see, e. g., [323, 324]).
Additionally, we use identities based on (see also [323, 324, 371, 501])

γµγαγν = gµαγν + gανγµ − gµνγα + iεµναβγ
βγ5 , (1091)

as well as
(
2iσαβγ5=εαβµνσ

µν
)

γµσρλ= i
(
gµργλ − gµλγρ

)
+ εµρλδγ

δγ5 ⇒ {γµ,σνλ} = 2εµνλργργ5, (1092)

γµγν + iσµν=gµν14 ⇔ γµγλγ5 = −iσµλγ5 + gµλγ5, (1093)

γµγνσρλ=σµλgνρ − σµρgνλ + i
(
gµλgνρ − gµρgνλ

)
− εµνρλγ5 − iενρλαg

αβσµβγ5. (1094)

Furthermore, the Fierz identity (see, e. g., [322])

δα′βδαβ′ =
1

4

[
(14)αα′(14)ββ′ − (iγ5)αα′(iγ5)ββ′ + (γµ)αα′(γ

µ)ββ′

−(γµγ5)αα′(γ
µγ5)ββ′ +

1

2
(σµν)αα′(σ

µν)ββ′

]
(1095)

is very useful for the parametrization of quark-antiquark matrix elements, especially with

(σµν)αα′(σ
µν)ββ′ = (σµνγ5)αα′(σ

µνγ5)ββ′ . (1096)

Moreover, we make use of several trace theorems, in particular (for more, see [98, 323, 324])

Tr
{
γµγνγαγβ

}
= 4
[
gµνgαβ + gµβgαν − gµαgνβ

]
, (1097)

Tr
{
γµγνγαγβγ5

}
= 4iεµναβ , (1098)

Tr
{
γµ1γµ2 · · ·γµ2n+1

}
= 0 = Tr

{
γµ1γµ2 · · ·γµ2n+1γ5

}
(n ∈N0) . (1099)

For generalized D-dimensional identities, we refer to [64, 98, 323, 324, 587].

a.3 operator identities

This short supplement collects several operator identities for Section 3.4.3. Here, we did not
intend to circumvent possible redundancies because the listed expressions are supposed to be
some sort of “cheat sheet” for the actual calculations.
Hence, we get for (cf. Chapter 2)

→

Dµ =
→

∂µ13 − igA
A
µ T
A , (1100)

←

Dµ =
←

∂µ13 + igA
A
µ T
A , (1101)

∂µ =
→

∂µ +
←

∂µ =
→

Dµ +
←

Dµ , (1102)
↔

Dµ =
→

Dµ −
←

Dµ , (1103)

the standard relations:
→

D/γ5ψ = imψγ5ψ , (1104)

−
→

D/ψ = imψψ , (1105)

ψ̄
←

D/ = imψψ̄ , (1106)
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as well as
→

D2 =
→

D/2 +
1

2
σµνgG

µν , (1107)
↔

D2 = 2
→

D2 + 2
←

D2 − ∂2 , (1108)

∂µ
↔

Dµ =
→

D2 −
←

D2 , (1109)
↔

Dα
↔

Dβ + ∂α∂β = 2
→

Dα
→

Dβ + 2
←

Dα
←

Dβ , (1110)
↔

D2 =
↔

D/2 + 2gσµνGµν , (1111)
[→
Dµ,

→

Dν

]
= −igGµν =

[←
Dµ,

←

Dν

]
, (1112)

[↔
Dµ,

↔

Dν

]
= −4igGµν , (1113)

[←
Dµ,

→

Dν

]
= igGµν =

[→
Dµ,

←

Dν

]
, (1114)

[→
Dµ,

↔

Dν

]
= −2igGµν =

[←
Dν,

↔

Dµ

]
, (1115)

[
∂µ,

↔

Dν

]
= 0 . (1116)

Besides, we use relations for the gluon field strength tensor, such as

εξβρσG
ξ
α=gβαG̃ρσ . (1117)

a.4 restrictions on the lagrangian

The structure of the general Lagrangian is based on Lorentz invariance, including an invariance
under space inversions and time reversal as well as renormalizability (following [45]). The latter
is particularly important for a reasonable formulation of the underlying theory, since covariance
and gauge-invariance alone would not only allow terms proportional to (for definitions see
Section 2.2)

ψ̄ψ , ψ̄ /Dψ , GAµνG
A,µν , (1118)

but also to

ψ̄σµνGµνψ , ψ̄ /Dψψ̄ψ , . . . . (1119)

Thus, owing to renormalizability irrepressible contributions (denoted by the ellipsis)

L =
∑
ψ

(
a1ψ̄ψ+ a2ψ̄ /Dψ

)
+ a3G

A
µνG

A,µν +
∑
ψ

a4ψ̄σ
µνGµνψ+ . . . (1120)

to the invariant Lagrangian density can be ruled out. Based on the corresponding operator
dimension (for D=4)

dim
[
ψ̄ψ
]
= 3 , dim

[
ψ̄ /Dψ

]
= 4 , dim

[
GAµνG

A,µν
]
= 4 , dim

[
ψ̄σµνGµνψ

]
= 5 , . . . (1121)

the mass dimension of each coefficient ai (i = 1, 2, 3, . . .) can be deduced. For instance, the
coefficients a1, a2 and a3 have positive or vanishing mass dimensions “dim[ai]”, while a4, etc.
have a negative canonical dimension. According to [45] the sign of dim[ai] is related to the
renormalizability of the underlying theory which is ultimately governed by the corresponding
Lagrangian. Therefore, terms with dim[ai]> 0 are renormalizable, while those with dim[ai]<0

are non-renormalizable and have to be discarded. Furthermore, the flavor-independence of gluon
fields excludes terms proportional to γ5 and γµγ5 in the QCD Lagrangian (see, e. g., [44] for a
detailed discussion).
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a.5 elements of quantization

In the following subsection we collect some selected facts concerning Feynman path integrals
in the continuum. As mentioned in Section 2.2, this approach provides a self consistent formal-
ism to introduce gauge-fixing and Faddeev-Popov ghosts (the original ansatz can be found in
[72, 588]). Thus, we may focus on the main features of this method, while closely following [45].

As a starting point, we note, that within this formalism one can calculate any Green’s function
as a (functional) derivative

δZ[J(x)]

δJ(y)
= lim
ε→0

Z[J(x) + εδ(x− y)] −Z[J(x)]

ε
(1122)

of the generating functional Z[J(x)]. For convenience, one may choose a massive scalar field
theory to introduce the notation. Accordingly, we encounter a self-coupling of the related field
φ, as denoted by V(φ), i. e.,

Lscal =
1

2

(
∂µφ∂µφ−m2φ2

)
− V(φ) . (1123)

Moreover, this generic notation includes an artificial source function J(x)

Z[J] =

∫
[dφ] exp

{
i

∫
d4x (L+φJ)

}
, (1124)

which is needed to generate the actual Green’s function7

〈0|T
{
φ̂(x1) . . . φ̂(xn)

}
|0〉 = (−i)n

Z[0]

δnZ[J]

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

. (1125)

In the case of QCD for each field a corresponding source function has to be introduced. Let us
start with the pure gluonic case

Z[J] =

∫
[dA] exp

{
i

∫
d4x

(
LG +AAµ J

A,µ
)}

. (1126)

The need for a gauge fixing condition, similar to Equation 25 in the path integral approach is
essential, since it prevents the emergence of divergences. In fact, the action S =

∫
d4xLG is in-

variant for all gluon fields related to a specific gauge-transformation, corresponding to the same
physical configuration. Since S is constant for all those configurations of the subset, Z[0] diverges
as the region of the integration is infinite. Hence, it is necessary to implement the condition in-
troduced by Equation 25 into Equation 1126. As a consequence, the integration is restricted to
physically different field configurations and one can additionally factor out a (divergent) formal
constant. In the next step one inserts8 (in the limit n→∞)

detMG

∫∏
A

[
d θA

]
δ(n)

(
GµAAµ (x) −BA(x)

)
= 1 (1127)

[MG(x,y)]AB =
δ
(

GµAA,θ
µ (x)

)

δθB(y)
(1128)

7 Here, a distinction between the field φ and the corresponding operator φ̂ should be made.
8 The existence and structure of MG is caused by the underlying theory and involved gauge transformations (see, e. g.,

[44, 45]).
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into Equation 1126. After exponentiating the inherent delta-function
(
using, that BA can be

arbitrarily chosen
)

we see, that Equation 1127 is effectively a modification of the action:

Z[J] =

∫
[dA] detMGe

i
∫

d4x
(
LG−

1
2ξ [G

µAAµ ]
2
+AAµ J

A,µ
)

. (1129)

Let us now include fermions, e. g., by replacing the underlying Lagrangian and introduce ade-
quate source functions:

Z[J,η, η̄] =
∫
[dA][dψ]

[
d ψ̄
]

detMGe
i
∫

d4x
(
LG+LF−

1
2ξ [G

µAAµ ]
2
+AAµ J

A,µ+ψ̄η+η̄ψ
)

. (1130)

When calculating MG for the assumed gauge-fixing condition one finds

δ
(

GµAA,θ
µ (x)

)

δθB(y)
= −

1

g

[
δABGµ∂µ − gfABCGµACµ

]
δ(4)(x− y) . (1131)

Thus, there are two completely different scenarios concerning the choice of Gµ (see discussion in
Section 2.2). For some cases, such as Gµ≡nµ

(
nµ being an adequate four-vector

)
and nµAAµ = 0,

the matrix is independent of the gluon fields and, therefore, a constant. On the other hand, i. e.,
for choices similar to the Lorentz gauge Gµ ≡ ∂µ

(
with ∂µAAµ = 0

)
the dependence on the

gauge-field in the determinant of MG does not vanish. As a result it has to be included in the
dynamics of the physical theory. As a consequence, the effects of detMG have to be included
into the effective Lagrangian. For the fermionic contributions, one may use an identity devel-
oped for Grassmann numbers. As discussed in [45], for Grassmann variables ψ, ψ̄, along with
diagonalizable matrices A, one may find∫

[dψ]
[
d ψ̄
]

exp
{∫

d4x
∫

d4y ψ̄A(x,y)ψ
}

= detA . (1132)

The same “trick” can be used to exponentiate the determinant detMG when introducing the
complex fictitious fields χ̃A, χ̃A∗ that are in the adjoint representation of SU(3)c. These Faddeev-
Popov ghost9 fields are complex scalar fields (see Section A.6), which anti-commute, similar to
fermions. For a general choice of the gauge-fixing condition one may, therefore, get

Z
[
J, ξ̃, ξ̃∗,η, η̄

]
=

∫
[dA][dψ]

[
d ψ̄
]
[d χ̃][d χ̃∗] exp

{
i

∫
d4x (LG +LF)

+i

∫
d4x

(
AAµ J

A,µ + ψ̄η+ η̄ψ+ χ̃A∗ξ̃A + ξ̃A∗χ̃A
)

−i

∫
d4xd4y χ̃A∗(x) [MG(x,y)]AB χ̃B(y) − i

∫
d4x 1

2ξ

[
GµAAµ

]2}
. (1133)

After redefining the ghost fields and involved generating functions in Equation 1133, the full
quantum Lagrangian of QCD (as mentioned in Section 2.2) can be derived.

a.6 feynman rules of qcd

In this subsection the explicit expressions for the propagators and vertices (see Section 2.2) are
collected.

9 They are necessary as computational tools, but do not correspond to any real particles.
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According to Equation 29 the quantum Lagrangian of QCD can be split up into a free component
L
(0)
QCD, giving rise to possible propagators and an interactive part L(1)

QCD, which entails all vertices
of the theory. In fact, the free Lagrangian can be written as (using Equation 6, Equation 22 and
Equation 26)

L
(0)
QCD = L

(0)
F +L

(0)
G +LGF +L

(0)
FP , L

(0)
FP = −χA∗δABGµ∂µχB . (1134)

Let us start with the derivation of the gluon propagator. For the latter the gauge-fixing condition
has to be incorporated:

L
(0)
G +LGF = −

1

2
AAν

[
−gµν∂2 + ∂µ∂ν

]
AAµ −

1

2ξ

[
GµAAµ

][
GνAAν

]
. (1135)

Thus, when choosing “Gµ=∂µ”, Equation 1135 implies the invertible operator KABµν :

L
(0)
G +LGF

∣∣∣
Gµ=∂µ

= −
1

2
AAµK

AB
µνA

B
ν , KABµν = δAB

[
−gµν∂

2 +

(
1−

1

ξ

)
∂µ∂ν

]
. (1136)

Similarly, the classical field equations for the propagators of the quark and ghost fields can be
found. Correspondingly, the following differential equations arise

−gλρKACµλ D
CB
ρν(x) = δ

ABgµνδ
(4)(x) , (1137)

−δAB∂2DBC(x) = δACδ(4)(x) , (1138){[
iγµ∂

µ −mψ
]
Sψ(x)

}ab
αβ

= δabδαβδ
(4)(x) , (1139)

which have the formal solutions
(
ε→ 0+

)

DABµν(x) = δ
AB

∫
d4k

(2π)4
dµν(k, ξ)

e−ik·x

k2 + iε
, (1140)

DAB(x) = δAB
∫

d4k

(2π)4
e−ik·x

k2 + iε
, (1141)

[
Sψ(x)

]ab
αβ

= δab
∫

d4p

(2π)4

[
/p+mψ

]
αβ

p2 −m2ψ + iε
e−ip·x . (1142)

Those describe the gluon propagator DABµν , the (free) quark-propagator
[
Sψ
]ab
αβ

, and the ghost
propagator DAB in position space, respectively. Additionally, we define the auxiliary function:

Dµν(x) =

∫
d4k

(2π)4
dµν(k, ξ)

e−ik·x

k2 + iε
. (1143)

It is important to note that the related Lagrangian of Equation 1141 describes a massless charged
scalar particle. Besides, the tensor structure of the gluon propagator in Equation 1140 is given by

dµν(k, ξ) =
(
−gµν + (1− ξ)

kµkν

k2

)
, (1144)

where the choice ξ=1 is usually referred to as “Feynman gauge”, while ξ=0 is known as “Lan-
dau gauge”. Note that a non-covariant gauge-fixing condition, such as the axial gauge nµAAµ =0

not only implies a decoupling of the ghost from the gluon fields, but also a quite complicated
form for the associated gluon propagator:

dµν(k, ξ) =

(
−gµν +

kµnν + kνnµ
(k ·n) −

n2 + ξk2

(k ·n)2

)
. (1145)
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On the other hand, L(1)
QCD can be written as (using Equation 18)

L
(1)
QCD = −

g

2
fABC

(
∂µA

A
ν − ∂νA

A
µ

)
AB,µAC,ν−

g2

4
fABEfCDEAAµA

B
νA

C,µAD,ν

+ gfABCχA∗GµACµχ
B + gAAµ J

A,µ , (1146)

which gives rise to the quark-gluon vertex, three-gluon vertex and four-gluon vertex. For a
complete set of (SM) Feynman rules (consistent with the given formulas) we refer to [45, 198, 589].

a.7 renormalization group – basics

Based on Section 2.3 let us consider two different renormalization procedures R and R′ (for a de-
tailed discussion see [45]). Since both schemes start with the same unique Lagrangian (following
[44, 45])

LR = L = LR′ (1147)

they can be related accordingly. In terms of a generic unrenormalized field φ0 and the corre-

sponding scheme dependent renormalization constants Zφ

(
R(′)

)

φR = Zφ(R)φ0 , φR′ = Zφ
(
R′
)
φ0 , (1148)

therefore, implies the relation

φR′ = Zφ
(
R′,R

)
φR , Zφ

(
R′,R

)
=
Zφ(R

′)
Zφ(R)

. (1149)

Thus, fields in different subtraction schemes are related by a multiplicative factor. The latter
has to be a finite quantity, because the renormalized fields are themselves finite. Besides, the
complete set of transformations

{
Zφ(R

′,R)
}
R′,R forms an abelian group, usually referred to as

RG. The formal group axioms can be easily confirmed via Equation 1149 and

Zφ(R
′′,R) = Zφ(R

′′,R′)Zφ(R′,R) (composition) ,

Zφ(R,R) = 1 (unity) ,

Zφ(R
′,R)−1 = Zφ(R,R′) (inverse) ,

 (1150)

which are by definition realized. Note, that the RG is not depending on a perturbative approach.

a.8 calculation of the chiral anomaly

Within this subsection, we calculate the chiral anomaly. For this purpose, we outline Schwinger’s
split point regularization approach (e. g., [3, 55, 66]). Moreover, in order to shorten the expres-
sions, we consider the divergence of a current

(
|εµ|� 1

)

j
(ψ)
µ5 (x) = ψ̄(x+ ε)γµγ5 [x+ ε, x− ε]ψ(x− ε) , (1151)

which is defined for one of the Nf active flavors ψ. Throughout the calculation εµ will be kept
fixed, until the limit |εµ|→ 0 can be taken to obtain the final result. Then the divergence is

∂µj
(ψ)
µ5 (x) = ψ̄(x+ ε)

←−
/∂ γ5 [x+ ε, x− ε]ψ(x− ε) + ψ̄(x+ ε) [x+ ε, x− ε]

−→
/∂ γ5ψ(x− ε)

+ ψ̄(x+ ε)
(
/∂γ5 [x+ ε, x− ε]

)
ψ(x− ε) . (1152)
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The derivative of the Wilson-line10
(
P̂ denotes the path-ordering operator

)
[64]

[x,y] = P̂

{
ig

∫1
0

du (x− y)µA
µ(xu+ yū)

}
(1153)

is proportional to (using a short-distance expansion of the quark fields)
[
/A(x+ ε) − /A(x− ε)

]
∼ γµενGµν(0) , (1154)

while the QCD EOM for the quark fields imply

−→
/∂ ψ = ig/Aψ− imψψ (1155)

ψ̄
←−
/∂ = −igψ̄/A+ imψψ̄ . (1156)

Thus, Equation 1152 gives rise to

−ig/A(x+ ε)γ5 − igγ5 /A(x− ε) = igεργµγ5Gµρ(0) + . . . , (1157)

which results in

∂µj
(ψ)
µ5 (x) = 2ψ̄(x+ε)

{
mψiγ5+igε

ργµγ5Gµρ(0)
}
ψ(x−ε) . (1158)

In the next step we neglect quark mass terms to get (taking the limit |εµ|→ 0)

lim
mψ→0

∂µj
(ψ)
µ5 (x) = ψ̄aα(x+ε) 2igε

ρ[γµγ5]αβ[Gµρ(0)]
abψbβ(x−ε)

= 2gTr
{
Sψ(x−ε, x+ε) εργµγ5Gµρ(0)

}
. (1159)

After inserting the short distance propagator [3]

ψ(−x) ψ̄(x) = −
i/x

16π2x4
+
ixρgG̃ρσ

16π2x2
γσγ5 + . . . (1160)

into Equation 1159 only the structures ∼γϕγ5 can contribute. Therefore, we get

lim
mψ→0

∂µj
(ψ)
µ5 =

g2

8π2
Tr
{
εαερ

ε2
γµγ5γ

ϕγ5GµρG̃αρ

}
=−

g2

4π2
εαερ

ε2
GAµρG̃

A,µ
α . (1161)

Within the symmetric limit (e. g., [64])

εµεν → 1

D
ε2gµν (1162)

Equation 1161 reproduces the anticipated identity (at NLO accuracy)

∂µj
(ψ)
µ5 =

αS
4π

GAµνG̃
A,µν + 2mψψ̄iγ5ψ . (1163)

Surprisingly, as discussed in [55, 66] Equation 1163 represents the complete answer, which is
also valid at higher loop accuracy.

10 Equation 1153 contains soft gluon fields (see, e. g., [64]).
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a.9 light-cone coordinates and projection operators

In this section we discuss the standard conventions concerning light-cone coordinates, which are
used throughout this work. For the sake of convenience, we focus on the Brodsky-Lepage (LB)
and Kogut-Soper (KS) conventions (see [266] and references therein).
Based on the LB convention, the time- and space-like components (cf. [266]) of the contravariant
vector

xµ =
(
x0, x1, x2, x3

)T
≡
(
x+, x−,~x⊥

)T (1164)

are defined via

x± = x0 ± x3 . (1165)

The remaining coordinates form the two-dimensional vector

~x⊥ =
(
x1, x2

)T
. (1166)

Covariant vectors are obtained by using the metric tensor

gµν =




0 2 0 0

2 0 0 0

0 0 −1 0

0 0 0 −1




and gµν =




0 1
2 0 0

1
2 0 0 0

0 0 −1 0

0 0 0 −1




, (1167)

i. e., xµ=gµνxν. Accordingly, the scalar product of two four-vectors xµ and pµ in the LB conven-
tion is given by

x · p = xµpµ =
1

2

(
x+p− + x−p+

)
−~x⊥· ~p⊥ . (1168)

In order to avoid extra factors of 2 and 1/2 the KS convention may be used instead. The latter
uses a different definition of the “light-cone time” and “light-cone position” [266], i. e.,

x+ =
1√
2

(
x0 + x3

)
and x− =

1√
2

(
x0 − x3

)
, (1169)

respectively. The definition of the perpendicular components stays the same as in Equation 1166.
Consequently, the corresponding metric tensor boils down to

gµν =




0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1




= gµν , (1170)

which implies the scalar product
(
x± = x∓

)

x · p = xµpµ = x+p+ + x−p− + x1p1 + x
2p2

= x+p− + x−p+ −~x⊥· ~p⊥ . (1171)
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This formalism is very useful in the context of light-cone dominated processes11, where the ultra-
relativistic particles travel close to the light-cone. Therefore, the light-cone coordinates seem to
be a natural choice for this specific set-up.
Moreover, the KS convention is present (following [128]) in the context of conformal operators.
It is, therefore, reasonable to introduce several abbreviations. Let us assume two independent
light-like vectors, similar to

nµ =
(
0, 1,~0⊥

)T
, n̄µ =

(
1, 0,~0⊥

)T
, (1172)

which fulfill

n2 = 0 = n̄2 , n · n̄ = 1 . (1173)

Accordingly, the “+”- and “−”-projections of an arbitrary four-vector vµ correspond to:

v+ = vµnµ , v− = vµn̄µ . (1174)

Additionally, the notation for a four-vector, that only has (a priori non-vanishing) perpendicular
components

x
µ
⊥ = gµν⊥ xν (1175)

can be defined, via the metric tensor in the directions orthogonal to the light-cone

g⊥µν = gµν −nµn̄ν −nνn̄µ . (1176)

Thus, a decomposition of any four-vector xµ can be written as12

xµ = x−nµ + x+n̄µ + xµ⊥ . (1177)

Consequently, with Equation 1173 it is easy to verify the general relations (cf. [266])

γ+γ+ = 0 = γ−γ− , (1178)

as well as

γ+γ−γ+ = 2γ+ , γ−γ+γ− = 2γ− . (1179)

Moreover, with Equation 1178 and Equation 1179 the fundamental properties of Equation 354,
i. e.,

Π+ +Π− = 14 , Π±Π∓ = 0 , Π2± = Π± , (1180)

can be easily verified. Additionally, the following identities can be useful:

γ⊥µ = −
1

2
[γ+γµγ− + γ−γµγ+] , (1181)

iεσµ+−γ
σγ5 = +

1

2
[γ+γµγ− − γ−γµγ+] . (1182)

11 When using this light-cone formalism, a multitude of expressions can be simplified. For instance, boosts in the z-direction
can be calculated in a simpler way, i. e., when compared to the standard notation (see also [590]).

12 In the original work [128] all contravariant vectors are consistently written in a modified way: xµ = (x+,x−,~x⊥)
T .
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a.10 construction of light-like vectors

This supplement features some common lore about the construction of light-like vectors. In fact,
a standard way to construct two light-like vectors nµ and pµ from predefined four-vectors xµ,
Pµ is given by (cf. [532])

nµ = xµ −
Pµ

P2

[
(P·x) −

√
(P·x)2 − P2x2

]
, (1183)

pµ = Pµ −
xµP

2

(P·x) +
√

(P·x)2 − P2x2
. (1184)

These definitions are particularly useful for x2≈0, P2=m2M and P·x > 0:

nµ = xµ +O
(
x2
)

, (1185)

pµ = Pµ −
xµm

2
M

2 (P·x) +O
(
x2
)
= Pµ −

nµm
2
M

2 (P·x) +O
(
x2
)

. (1186)

Moreover, we may write
(
neglecting O

(
x2
)

corrections
)

p·n = P·n = P·x . (1187)

Moreover, for this set-up one usually defines (up to the intended order of accuracy)

pµ = Pµ −
nµm

2
M

2 (P·n) ⇒ n̄µ =
pµ

p·n , (1188)

along with the projection operator (cf. Equation 1176)

g⊥µν = gµν −
1

(p·n) (pµnν + pνnµ) . (1189)

a.11 lie algebra of the conformal group

The Lie algebra of the Pointcaré group is generated by the operators (cf. Section 3.2) Pµ and
Mµν [55, 128]:

i[Pµ,Pν] = 0 , (1190)

i
[
Mαβ,Pµ

]
= gαµPβ−gβµPα , (1191)

i
[
Mαβ,Mµν

]
= gαµMβν−gβµMαν−gανMβµ+gβνMαµ , (1192)

while the conformal algebra is defined via the extensions

i[D,Pµ] = Pµ , (1193)

i[D,Kµ] = −Kµ , (1194)

i
[
Mαβ,Kµ

]
= gαµKβ−gβµKα , (1195)

i[Pµ,Kν] = −2gµνD+2Mµν , (1196)

i[D,Mµν] = i[Kµ,Kν] = 0 . (1197)
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The latter include operators that give rise to the special conformal transformations
(
Kµ
)

and
dilatations

(
D
)
. By using the definitions of Equation 362 and Equation 364, one obtains the

following relations (cf. [128])

[L+,φ(α)] = − d
dαφ(α) ≡ L+φ(α) ,

[L−,φ(α)] =
(
α2 d

dα + 2jα
)
φ(α) ≡ L−φ(α) ,

[L0,φ(α)] =
(
α d

dα + j
)
φ(α) ≡ L0φ(α) .

 (1198)

Similar to the one-particle case (cf. Equation 384), the adjoint representation for the ladder oper-
ators (see Equation 388) may be formulated via13:

L0P̃n(κ1, κ2)=
∑2
i=1

(
κi∂κi + ji

)
P̃n(κ1, κ2) ,

L−P̃n(κ1, κ2)= −
∑2
i=1 ∂κi P̃n(κ1, κ2) ,

L+P̃n(κ1, κ2)=
∑2
i=1

(
κi∂κi + 2jiκi

)
P̃n(κ1, κ2) ,

 (1199)

with the characteristic polynomials P̃n(κ1, κ2). The latter arise from Equation 387 when applying
the substitution of Equation 396 (see [55, 128] for a detailed discussion).

a.12 polynomials and orthogonality relations

This short supplement collects the orthogonality relations of Gegenbauer and Jacobi polynomi-
als as well as some general theorems concerning polynomials used in this work.

The Gegenbauer, or “ultraspherical” polynomials [291]

C(α)
n (ξ) =

(−2)n

n!
Γ(n+α) Γ(n+ 2α)

Γ(α) Γ(2n+ 2α)

(
1−ξ2

)1
2−α dn

d ξn

{(
1−ξ2

)n+α−12
}

(1200)

are a special case (cf. Equation 407) of the Jacobi (or “hypergeometric”) polynomials [291, 591]

P(α,β)
n (ξ) =

(−1)n

2nn!
(1−ξ)−α (1+ξ)−β

dn

d ξn
{
(1−ξ)α (1+ξ)β

(
1−ξ2

)n}
. (1201)

Both belong to a class of orthogonal polynomials that have the domain ξ∈ [−1, 1]. For instance,
the Gegenbauer polynomials fulfill the orthogonality relation14

(
α>−12 fixed

)
[466]∫1

−1
dξC(α)

n (ξ)C(α)
m (ξ) w̃(α)(ξ) = δnmÑ

(α)
n , (1202)

using the weight function [466]

w̃(α)(ξ) =
[
1− ξ2

]α−12 (1203)

and the normalization constant [466]

Ñ
(α)
n =

π 21−2αΓ(n+ 2α)

n! (n+α) [Γ(α)]2
. (1204)

13 At this point, Equation 1199 could also be formulated with adequate test functions instead of P̃n(κ1,κ2).
14 Similar orthogonality relations for the hypergeometric polynomials may be found in [466, 592].
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The given physical set-up (cf. Section 3.1.4 and in particular Equation 290) restricts us to x∈ [0, 1].
This implies the substitution “ξ→ ξx” (cf. Equation 128). Therefore, Equation 1202 has to be
written as∫1

0
dxC(α)

n (ξx)C(α)
m (ξx)w

(α)(x) = δnmN
(α)
n (1205)

including the new weight function

w(α)(x)= 21−2αw̃(α)(ξx) ≡ [xx̄]α−
1
2 (1206)

and the normalization factor

N
(α)
n =

21−4α
[
Γ
(
1
2

)]2
Γ(n+ 2α)

(n+α) [Γ(α)]2 Γ(n+ 1)
. (1207)

The latter reproduces the widely used (cf. [20, 26]) conventions:

N
(3/2)
n =

(n+ 1) (n+ 2)

4 (2n+ 3)
, N

(5/2)
n−1 =

n (n+ 3)

36
N

(3/2)
n . (1208)

Analogously, we make use of the corresponding orthogonality condition (cf. [593] when adapted
to the domain of definition x∈ [0, 1]):∫1

0
dxP(α,β)

n (ξx)P(α,β)
m (ξx) = N

(α,β)
n δnm , (1209)

with the normalization constant

N
(α,β)
n =

1

n! (2n+α+β+ 1)

Γ(n+α+ 1) Γ(n+β+ 1)

Γ(n+α+β+ 1)
. (1210)

Let us now discuss the use of the named orthogonality relations. Apparently, for a given function
φ(x)

(
x∈ [0, 1]

)
, one may consider the (formal) power series15

φ(x) =

∞∑
n=0

cφn;αw
(α)(x)C(α)

n (ξx) , (1211)

with the Gegenbauer coefficients

cφn;α =

∫1
0

dx
C(α)
n (ξx)

N
(α)
n

φ(x) . (1212)

The latter have been derived via the assumption∫1
0

dx

( ∞∑
n=0

cφn;αw
(α)(x)C(α)

n (ξx)

)
φ(x) ≡

∞∑
n=0

cφn;α

∫1
0

dxw(α)(x)C(α)
n (ξx)φ(x) . (1213)

Alternatively, the expansion of “φ” may be written as

φ(x) =

∞∑
n=0

c̃φn;αC(α)
n (ξx) , (1214)

15 According to Chapter 3, we refer to Equation 1211 as the Gegenbauer expansion, while other sources introduce Equa-
tion 1214 with the very same name (cf. [594]).
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with the coefficients

c̃φn;α =

∫1
0

dx
w(α)(x)

N
(α)
n

C(α)
n (ξx)φ(x) . (1215)

Similarly, we encounter functions similar to f(x)
(
x∈ [0, 1]

)
:

f(x) =
Γ(α+β+ 2)

Γ(α+ 1) Γ(β+ 1)
x̄αxβg(x) , (1216)

where the power series expansion for “g” is given by:

g(x) =

∞∑
n=0

κ
(α,β)
n P(α,β)

n (ξx) , (1217)

with the coefficients (α, β some given constants)

κ
(α,β)
n =

∫1
0

dx
x̄αxβ

N
(α,β)
n

g(x)P(α,β)
n (ξx) . (1218)

Furthermore, among the multitude of possible identities for Gegenbauer and Jacobi polynomials,
we emphasize [466, 591, 592]:

(
1−ξ2x

) d
d ξx

C(α)
n (ξx) = (n+ 2α) ξxC(α)

n (ξx)−(n+ 1)C(α)
n+1(ξx) , (1219)

C(α)
n+1(ξx) = ξxC(α)

n (ξx) +
2α+n− 1

2α− 2
C(α−1)
n+1 (ξx) . (1220)

When using Equation 407, Equation 1219 and Equation 1220, we get the important relations:

d
d x

{
6xx̄C(3/2)

n (ξx)
}
= −3 (n+ 1) (n+ 2)C(1/2)

n+1 (ξx) , (1221)

C(1/2)
n (ξx) = x̄P(1,0)

n (ξx) + xP(0,1)
n (ξx) , (1222)

C(1/2)
n+1 (ξx) = xP(0,1)

n (ξx) − x̄P(1,0)
n (ξx) . (1223)

In order to derive the formal structure of the two-particle twist-three DAs, Equation 1222 and
Equation 1223 as well as Equation 1221 has to be used.
Apart from that, for the proper description of generic three-particle operators, such as (cf. Equa-
tion 385)

O(α1,α2,α3) = φj1(α1)φj2(α2)φj3(α3) (1224)

a suitable conformal basis has to be constructed. According to [128, 293, 297], a well-defined
choice of basis not only requires a definite total three-particle spin (N ∈N0)

J = j1 + j2 + j3 +N , (1225)

but also a fixed value of the conformal spin in the preassigned two-particle channel (0 6 n 6 N)

j = j1 + j2 +n . (1226)

The latter is related to the generic ambiguity of this system to couple all three spins to the total
spin “J”. Consequently, the following polynomials arise (cf. [128]):

Y(12)3
J,j (α) = αn3 P(2j3−1,2j−1)

N−n

(
−ξα3

)
P(2j1−1,2j2−1)
n

(
α2−α1
α3

)
, (1227)
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which obey the relation [128, 293, 297]

∫
Dα

[
3∏
k=1

α
2jk−1
k

]
Y(12)3
J,j (α)Y(12)3

J′,j′ (α) ∼ δJJ′δjj′ . (1228)

In particular, they are orthogonality with respect to the corresponding asymptotic DA (cf. Equa-
tion 412). Besides, for a given triplet (j1, j2, j3) of spins, we use the following abbreviation:

Y(12)3
J,j (α)→ Y(j1,j2)j3

J,j (α) . (1229)

For instance, Y(1,1/2)3/2
3,3/2 (α) corresponds to “

(
1, 12 , 32

)
”. Furthermore, for the derivation of Equa-

tion 395 the multinomial theorem (n, h ∈N0)

(
n∑
k=1

xk

)h
=
∑

|α|=h

(
h

α

)
xα (1230)

has been used, where we apply the multi-index notation [595]:

α = (α1, . . . ,αn) ∈Nn
0 (1231)

|α| = α1 + . . .+αn (1232)
(
h

α

)
=

h!
α1! · · ·αn!

(1233)

x = (x1, . . . , xn) ∈ Rn (1234)

xα = xα11 · · · xαnn . (1235)

For a detailed discussion see, e. g., [595].

a.13 asymptotic expansion

This is a short supplement concerning asymptotic expansions (see Section 2.4) (e. g., [77, 79]).
Let us assume a generic observable R(αS). Since the corresponding asymptotic power series
R(αS) ≈

∑
n Cnα

n
S (cf. Equation 49) does not converge, its partial sums do not provide an

arbitrarily accurate approximation to R(αS) for any fixed value of αS (cf. [77, 79, 596]). When
assuming (N ∈N fixed) a polynomial truncation error (KN,a,b ∈ R being some constants)

∣∣∣∣∣R(αS) −
N−1∑
n=0

Cnα
n
S

∣∣∣∣∣ 6 KNα
N
S , KN ∼ aNN!Nb , (1236)

in αS<1 the related ratio for successive terms (n�1)

Knα
n
S

Kn−1α
n−1
S

= an

(
1+

1

n− 1

)b
αS ≈ anαS (1237)

generally grows with n, e. g., it becomes larger than 1, if n > (|a|αS)
−1. Most importantly, the

best approximation can be achieved for

|a|αSn ∼ 1 , (1238)
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i. e., at this point the inclusion of higher order corrections does not improve the overall accuracy.
Thus, when truncating the series at N∗ ∼ (|a|αS)

−1, one may expect an error proportional to
(N∗�1 applying Stirling’s formula) [77]

KN∗α
N∗
S ∼

(
1

|a|αS

)1
2+b

e
−

1
|a|αS ∼ e

−
1

|a|αS , (1239)

implying an exponentially accurate approximation of R(αS).
This knowledge about the optimal truncation point N∗ is applied in Equation 92.

a.14 fock states and light-cone wave functions

Here, is a short supplement collecting heuristic examinations concerning the (hypothetical) fla-
vor states |ηq〉 and |ηs〉 (see Equation 315). In this subsection we also try to further elucidate the
relationship between gluon distribution amplitudes and the state-mixing approach. Accordingly,
we reconsider the work done by [20, 32, 278] and extend it according to our approach.

In the following we focus on the flavor structure of valence Fock states (cf. Section 2.5, Sec-

tion 3.1.4). For the quark-antiquark case they are defined by
(
Ψ = (u,d, s)T, |ψψ̄q〉 ≡ |qq̄〉,

|ψψ̄s〉≡ |ss̄〉
)

|ψψ̄A〉 =
∣∣∣Ψa

[√
2TA

]
ab
Ψb

〉
, (1240)

while |gg〉 is representing the two-gluon component of a given meson state. In this context, a,b=
1, 2, 3 are flavor indices related to corresponding SU(3)F generators TA = λA

2

(
e. g., A=q, s, 8, 0

)
.

Therefore, the decomposition of a given vector |M〉
(
i. e.,M=η, η′ labeling the associated element

of the underlying Hilbert space
)

into Fock components [20, 152] can be reduced to16

|M〉 =
∑
A=8,0

ΨAM|A〉+ΨgM|gg〉+ . . . , (1241)

with the individual light-cone wave functions ΨAM for each Fock state17 (cf. Equation 288). The

latter can be decomposed into a DA φ
A
M and a transverse momentum part ΣAM [278, 369, 597]:

ΨAM

(
x,~k⊥

)
=

fAM
2
√
2Nc

φ
A
M(x)ΣAM

(
~k⊥√
xx̄

)
, (1242)

which again is normalized as [278]∫
d2k⊥
16π3

ΣAM

(
~k⊥√
xx̄

)
= 1 ⇒

∫
d2k⊥
16π3

∫1
0

dxΨAM
(
x,~k⊥

)
=

fAM
2
√
2Nc

. (1243)

As discussed in [278], we could assume

ΣAM

(
~k⊥√
xx̄

)
=
16π2

[
ãAM

]2

xx̄
exp

(
−

[
ãAM

]2 ~k2⊥
xx̄

)
. (1244)

16 Here, the ellipses represent neglected states.
17 As discussed in Section 3.1.4 (see also [278]), the momentum fraction x and transverse momentum ~k⊥ refer to the

involved quark, while the given antiquark is characterized by x̄ as well as −~k⊥.
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Here, the associated transverse size parameters ãAM can be approximated with their pion coun-
terpart, i. e., we may infer ãAM ≈ ãπ. For the given set up, we can, therefore, expect a similar
transverse momentum dependence for all involved light-cone wave functions.

Most importantly, by using Equation 268 the quark-antiquark Fock components of Equation 1241

can be rewritten. Together with a formal integration of the light-cone wave functions18

fAM
2
√
2Nc

φAM

(
x,Q2

)
=

∫Q2
0

d2k⊥
16π3

ΨAM

(
x,~k⊥

)
, (1245)

while applying the state mixing assumption Equation 315 we get19

|ηq〉 ∼
[√

1

3
h1 +

√
2

3
h2

]
|qq̄〉+

[√
1

3
h2 −

√
2
3h1

]
|ss̄〉+ g1|gg〉+ . . . (1246)

|ηs〉 ∼
[√

1

3
h̃1 +

√
2

3
h̃2

]
|qq̄〉+

[√
1

3
h̃2 −

√
2

3
h̃1

]
|ss̄〉+ g2|gg〉+ . . . . (1247)

Here, we make use of the following abbreviations20

(
σ=
√
Nf
Cf

)
:

h1
(
x,µ2

)
:= cosφf8ηφ

8
η

(
x,µ2

)
+ sinφf8η′φ

8
η′

(
x,µ2

)
, (1248)

h2
(
x,µ2

)
:= cosφf0ηφ

0
η

(
x,µ2

)
+ sinφf0η′φ

0
η′

(
x,µ2

)
, (1249)

h̃1
(
x,µ2

)
:= cosφf8η′φ

8
η′

(
x,µ2

)
− sinφf8ηφ

8
η

(
x,µ2

)
, (1250)

h̃2
(
x,µ2

)
:= cosφf0η′φ

0
η′

(
x,µ2

)
− sinφf0ηφ

0
η

(
x,µ2

)
, (1251)

g1
(
x,µ2

)
:= cosφ

f0η

σ
φgη

(
x,µ2

)
+ sinφ

f0η′

σ
φ
g
η′

(
x,µ2

)
, (1252)

g2
(
x,µ2

)
:= cosφ

f0η′

σ
φ
g
η′

(
x,µ2

)
− sinφ

f0η

σ
φgη

(
x,µ2

)
. (1253)

In the next step, relations similar to (cf. [9, 15, 20]):

cos(φ− θ8) =
1√
3

fq
f8

, cos(φ− θ0) =
1√
3

fs
f0

,

sin(φ− θ8) =
√
2
3
fs
f8

, sin(φ− θ0) =
√
2
3
fq
f0

,
(1254)

are useful. Combined with the standard trigonometric identities each amplitude can be further
simplified. In parallel, the general relations of Equation 307 can be used to extend these consider-
ations to our approach. Consequently, the different limits imply

(
M=η,η′; A=8, 0,g; R=q, s,g

)

|ηq〉 ∼

fq
(
φSO
q |qq̄〉+φopp|ss̄〉+

√
2
3
1
σφg|gg〉

)
, φAM=φA

fq

(
φq|qq̄〉 +

√
2
3
1
σφg|gg〉

)
, φRM=φR

(1255)

|ηs〉 ∼

fs
(
φSO
s |ss̄〉+φopp|qq̄〉+

√
1
3
1
σφg|gg〉

)
, φAM=φA

fs

(
φs|ss̄〉 +

√
1
3
1
σφg|gg〉

)
, φRM=φR

, (1256)

18 A similar ansatz is valid for “A=g”, however, with an additional prefactor (see discussion below).
19 For convenience, we are omitting possible renormalization scale dependencies, e. g., for f0M.
20 The named amplitudes may be shortened even more, however, this would result in rather cryptic expressions. Therefore,

we leave them as they are.
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where21 we use Equation 314, along with the abbreviation

φSO
q

(
x,µ2

)
=
1

3

(
φ8

(
x,µ2

)
+ 2φ0

(
x,µ2

))
, (1257)

φSO
s

(
x,µ2

)
=
1

3

(
φ0

(
x,µ2

)
+ 2φ8

(
x,µ2

))
. (1258)

Within this specific limit we, therefore, reproduce the corresponding results of [20]. Furthermore,
by assuming φgM≈φg and fs

fq
≈
√
2 we may also deduce (see Equation 1255 and Equation 1256):

〈0|Gnξ(z2n) G̃nξ(z1n)|ηq〉 ≈ 〈0|Gnξ(z2n) G̃nξ(z1n)|ηs〉 . (1259)

In other words, the assumption of a particle independent gluon DA is (approximately) consistent
with the state mixing ansatz (for further discussion, see [3]).

In Chapter 3 we discuss a less-constrained22 approach which also takes into account the scale
dependence of all occurring (leading-twist) DAs and decay constants. Hence, this ansatz is indis-
pensable for a description of γ∗γ(∗)→η(′) transition form factors at large momentum transfers.
On the other hand, B,D(s)→η(′) decays can be easier described by the above method, inter alia,
since there are no large factorization scales involved (see Section 5.1.2.2).

a.15 short-distance correlation functions

The present subsection serves as a supplement, discussing required kinematical conditions nec-
essary for the short distance domination of two-point correlation functions (see, e. g., [97] and
references therein).

For this purpose, we may consider the generic example of a hadronic observable which is repre-
sented by adequate local operators J1,2 taken at large virtualities23 Q2=−q2�Λ2QCD:

P(q) = i

∫
d4x eiq·x〈0|T{J1(x) J2(0)} |0〉 . (1260)

Correspondingly, both interpolation currents J1,2 are chosen to have the correct quantum num-
bers and intended particle content (see, e. g., Section A.17), while the preferred momentum con-
figuration Q2→∞ turns Equation 1260 into a genuine short distance object. Accordingly, the
dominant contributions to Equation 1260 come from partons propagating at small spacial dis-
tances and time intervals, such as

(
Rhad denoting the typical hadronic size

)

|~x| ∼ x0 ∼
1√
Q2
� Rhad , (1261)

which in turn justifies the use of a short distance OPE. Before devoting ourselves to a proof sketch
of these assertions, we must distinguish between the following two basic cases:

i) J1 and J2 are currents that only involve light quark flavors (ψ = u,d, s).

ii) At least one of the two operators J1,2 is a heavy quark current (Q = c,b, t).

21 The results mentioned in Equation 1255 and Equation 1256 only list the first view Fock states.
22 Here, no restrictions, such as Equation 313, are needed, allowing wider application possibilities.
23 Here, “qµ” is the incoming external momentum.
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In the second case the mere existence of heavy flavored quarks mQ�ΛQCD introduces a simi-
larly large intrinsic energy scale. Therefore, already at small |q2|�4m2Q one may expect asymp-
totically free quark-antiquark fluctuations. Consequently, the characteristic distances of Equa-
tion 1260 are an inverse of the involved heavy quark masses, i. e., |~x| ∼ x0 ∼ 1

2mQ
(see also [97]).

For light quarks, an approach based on the method of stationary phase can be used (cf. [598, 599]).
In fact, when combining the concepts of Fourier analysis with Lorentz invariance:

f
(
x2
)
= i〈0|T{J1(x) J2(0)} |0〉 =

1

2π

∫∞
−∞dτ eiτx

2
f̃(τ) , (1262)

Equation 1260 gives rise to (see also [97])∫
d4x eiq·x f

(
x2
)
=

∫∞
−∞dτ

∫
d4x eiq·xeiτx

2 f̃(τ)

2π
=

∫∞
−∞dτ

∫
d4x eiτ(x+

1
2τq)

2

ei
Q2

4τ
f̃(τ)

2π

=

∫∞
−∞dτ

∫
d4x eiτx

2
ei
Q2

4τ
f̃(τ)

2π
. (1263)

Based on [598, 599], Equation 1263 is thus dominated by contributions related to τ2 ∼ Q2/x2,
i. e., where its phase term φ(τ) :=τ x2 + 1

4τ
−1Q2 is (almost) stationary24, while integrands with

rapidly varying phases approximately cancel (see, e. g., Riemann-Lebesgue lemma [600, 601]).
In other words, an oscillatory behavior of the involved exponential functions is suppressed if
both τ ∼ 1/x2 and τ ∼Q2 are fulfilled simultaneously, which is equivalent to x2 ∼ 1/Q2. Thus, for
Q2→∞ the involved quarks predominantly propagate near the light-cone, which is a necessary,
but not yet a sufficient condition for the assumed short distance domination of Equation 1263.
To proof the latter, one conveniently (cf. [97]) chooses a reference frame with q0=0, i. e., ~q2=Q2,
implying, that leading terms of the altered correlation function (cf. Equation 1260)∫

d4x f
(
x2
)
eiq·x ≡

∫
d4x f

(
x2
)
e−i~q·~x , (1264)

arise from regions, where its integrand does not exhibit fast oscillations:

|~x| ∼
1√
Q2

. (1265)

Together with the underlying light-cone dominance, it follows the assertion. In other words, for
large values of Q2 Equation 1260 is mainly determined by short distance QCD effects.

a.16 light-cone dominated correlation functions

The following subsection supplements our discussion on hard exclusive processes, while focus-
ing on their specific kinematical structure. For the sake of completeness, we, therefore, extend
Section A.15 to (approximately) light-cone dominated phenomena and current correlators in po-
sition space with small space-like separations25 |x2|�Λ−2

QCD.

As an example for the latter, we may consider a two-point correlation function26

Fab(q1,q2) = i
∫

d4x e−iq1·x〈M(P)|T{Ja(x) Jb(0)} |0〉 , (1266)

24 More precisely, the phase term actually becomes stationary
(
φ′(τ)=0

)
at τ2= Q2

4x2
.

25 At sufficiently small space-like separations, the matrix element in Equation 1266 can be calculated by applying the OPE.
When analyzing the corresponding Fourier transform, we therefore have to ensure, that the given kinematical input
implies all necessary conditions for such an evaluation.

26 Here, “a” and “b” may, e. g., represent a set of open Lorentz indices.
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representing the annihilation of a given hadronic state M into two suitable currents Ja and Jb.
Accordingly, it is sufficient to study the analogous meson-photon transition

(
M= π0,η,η′, . . .

)

γ∗(q1)γ∗(q2)→M(P) which for large space-like momenta
(
Q2 := −q21, q2 := −q22

)

Q2, q2 � Λ2QCD, µ2 (1267)

can be approached perturbatively (cf. Section 4.1.1). In accordance with [97] Equation 1267 al-
ready includes a generic mass scale µ ∼ |~P| ∼ |P0| as introduced by the meson four-momentum.
Furthermore, the potentially large scalar product q1·P can be expressed via [97, 517]:

ξ =
2q1 · P
Q2

=
q2 −Q2 + P2

Q2
. (1268)

It should be noted, that under appropriate conditions this hadronic variable may be used as a
generic "small" parameter. For instance, the discussed (cf. Chapter 4) γ(∗)γ∗→M TFF at LO and
leading-twist accuracy boils down to (using Fock-Schwinger gauge):

Fµν(q1,q2) = −
∑
ψ

e2ψεµναβ

∫
d4x e−iq1·x

xα

π2x4
〈M(P)|ψ̄(x)γβγ5ψ(0) |0〉

∣∣∣
twist-2

. (1269)

After an expansion into local operators around the origin xρ=0

〈M(P)|ψ̄(x)γβγ5ψ(0) |0〉 =
∞∑
n=0

1

n!
xµ1 · · · xµn〈M(P)|ψ̄

←
Dµ1 · · ·

←
Dµnγβγ5ψ|0〉 (1270)

one can extract traceless
(
at P2 = 0

)
and totally symmetric components of the arising matrix

elements, e. g., via27 (see also [97, 602, 603]):

〈M(P)|ψ̄
←
Dµ1 · · ·

←
Dµnγβγ5ψ|0〉 = inPµ1 · · ·PµnPβM(ψ)

n + . . . , (1271)

which by definition (cf. Chapter 3)

〈M(P)|ψ̄(x)γβγ5ψ(0) |0〉 = −if
(ψ)
M Pβ

∫1
0
dueiuP·xφ(ψ)

M (u) (1272)

also correspond to moments of twist-two DAs:

M(ψ)
n = −if

(ψ)
M

∫1
0
duunφ(ψ)

M (u) . (1273)

Based on this decomposition one straightforwardly gets a formal power series in ξ for the phys-
ical observable28 (reproducing the findings of [97])

Fµν(q1,q2) = εµναβqα1 q
β
2

2

Q2

∑
ψ

e2ψ

[
M(ψ)
0 − ξM(ψ)

1 +

(

�
�
�P2

Q2
+ ξ2

)
M(ψ)
2

−

(
2
�
�
�P2

Q2
ξ+ ξ3

)
M(ψ)
3 + . . .

]
= εµναβq

α
1 q
β
2

2

Q2

∑
ψ

e2ψ

∞∑
n=0

(−ξ)nM(ψ)
n . (1274)

27 For convenience, possible higher twist corrections, a scale dependence as well as traces are omitted.
28 This is also true for higher twist corrections. Besides, the first few terms of Equation 1274 explicitly contain possible

O
(
P2
)

corrections which would cancel with the traces.
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Consequently, when assuming soft pion momenta |Pµ|→ 0, i. e., |ξ|≈ 0 the correlation function
resembles a short distance object (cf. Section A.15), which can be reasonably well described
by a truncated OPE similar to Equation 1274. The preferred kinematical set-up ξ ∼ 1, however,
prohibits such an approach29 (cf. Section 2.4). Instead a non-local ansatz seems to be favorable
(see Section 4.1.1). According to [97] a light-cone dominance of Equation 1266 within the x0−x3
plane30 can be proven. For this purpose, one conveniently defines (see also [97, 257])

q
µ
1
:= (q0, 0, 0,q3)

T , (1275)

with the related components (while neglecting all other O(µ) corrections to q0 and q3)

q0 ≈
Q2ξ

4µ
, q3 ≈

√
Q2 + q20 =

Q2ξ

4µ

∞∑
n=0

(−1)n (2n)!

(1− 2n) (n!)2 4n

[
16µ2

Q2ξ2

]n
≈ Q

2ξ

4µ
+
2µ

ξ
. (1276)

Analogous to the statements in Section A.15 one may argue that the integrand of Equation 1266

is suppressed if its related exponential function is rapidly oscillating. Consequently, dominant
contributions to Equation 1266 are determined by the phase term

q1 · x = q0x0 − q3x3 ≈
Q2ξ

4µ
(x0 − x3) −

2µ

ξ
x3 +O

(
1
Q2

)
, (1277)

and thus arise from regions with

x0 − x3 ∼
4µ

Q2ξ
∧ x3 ∼

ξ

2µ
. (1278)

In other words, within this domain the difference

x20 − x
2
3 ∼

4

Q2
+
16µ2

Q4ξ2
(1279)

at Q2→∞ tends to zero, while all involved components remain finite and relatively large

x0 ∼ x3 ∼
ξ

2µ
� 1√

Q2
. (1280)

By further following this line of argument, one a priori puts no restrictions on the remaining
directions in space31. But instead of attempting to refine the current proof (for further details
see, e. g., [97, 257, 517]), let us assume finite deviations from the light-cone |x2|�Λ−2

QCD.

The latter can be absorbed into higher twist corrections (cf. [352]) which in general include
related O

(
x2
)

terms32. Thus, their Fourier transform exhibits extra inverse powers of the under-
lying (photon) virtualities as compared to the given leading contributions. For Q2,q2�Λ2QCD
the correlation function (cf. Equation 1266) in coordinate space is, therefore, dominated by dis-
tances close to the light-cone.

In conclusion, the present kinematical set-up justifies an approach based on conformal sym-
metry and QCD factorization (see also [128, 604, 605]). Moreover, a similar discussion concerning
the light-cone dominance for heavy-to-light correlation functions (see e. g.Equation 946), can be
found in [517, 523]. Here, the arguments presented in [97] are extended to systems with heavy
quarks.

29 A priori the series in Equation 1274, with ξ∼1 cannot be truncated at any finite order.
30 Instead of x3, one could readily apply the same arguments to x1 or x2.
31 This proof incorporates a definition for qµ1 (see Equation 1275) which essentially allows an arbitrary choice of x1 and
x2. Hence, while at Q2→∞ the difference x20−x

2
3 tends to zero, −x21−x

2
2 may still be large.

32 It has been pointed out by [352] that the preferred (light-cone) OPE is still applicable for possible small space-like
separations.
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a.17 svz-sum rule for the decay constant

The LCSR analysis of Chapter 5 depends on several external input parameters, such as fB. In par-
ticular, this observable will be discussed below. Apart from direct measurements, decay constants
of pseudoscalar mesons can also be derived via QCD sum rules for the corresponding two-point
correlation functions (cf. Equation 930). Fortunately, the required results are well-known and can,
e. g., be found in [488]. For the reader’s convenience, however, we collect all needed formulas in
the following subsection.

All spectral functions and quark masses are presented in the MS scheme, while being evalu-
ated at the scale (see [488, 606]). Hence, at O(αS) accuracy, the SVZ sum rule analysis for fB can
be written as33 (e. g., ψ=u,d, s) [488]

m4Bf
2
B(

mb +mψ
)2 =

Nc

8π2

∫sB0
m2b

ds e
m2
B
−s

M2

{(
s−m2b

)2

s
+
CfαS
2π

ρ
(1)
pert(s)

}

+ e
m2
B
−m2

b
M2

{
1

12
〈αSπ GAµνG

A,µν〉−mb〈ψ̄ψ〉
[
1+

m2bm
2
ψ

2M4

−

(
1+

m2b
M2

)
mψ

2mb
−
CfαS
2π

ρ
(1)
q̄q

(
M2
)
+
m20
2M2

(
1−

m2b
2M2

)]}
, (1281)

which is based on
(
x=m2bs

−1
)

ρ
(1)
pert(s) := s(1− x)

{
(1− x)

[
4Li2(x) + 2 log(x) log(1− x) − (5− 2x) log(1− x)

]

+ (1− 2x) (3− x) log(x) + 3(1− 3x) log
(
µ2

m2b

)
+
1

2
(17− 33x)

}
, (1282)

ρ
(1)
q̄q

(
M2
)
:= 3

{
Γ

(
0, m

2
b

M2

)
e
m2
b

M2 −

[
1+

(
1−

m2b
M2

)(
log
(
µ2

m2b

)
+
4

3

)]}
, (1283)

and incorporates the incomplete gamma function [593] (using n>0)

Γ(n, z) :=
∫∞
z

dt tn−1e−t , Γ(n, 0)≡Γ(n) . (1284)

While Wilson’s OPE may give rise to a plethora of possible higher dimensional operators, only the
associated first few condensates, such as 〈gSψ̄σµνGAµνψ〉 (see Equation 105) turn out to be rele-
vant (cf. [125, 488, 607–609]). Although numerically small, we have also included contributions
that are related to four-quark condensates (cf. [257, 488]):

f2B

∣∣∣
4-quark

= −
16π

27m4B
e
m2
B
−m2

b
M2

αSm
2
b〈ψ̄ψ〉2
M2

(
1−

m2b
4M2

−
m4b
12M4

)
+O

(
mψ

)
. (1285)

Besides, values for the Borel parameter M2 :=M2B and continuum threshold sB0 := s̄
B
0 are specified

in Section 5.1.1. For further details we refer to the discussion in [488] and Chapter 5. To con-
clude, the presented QCD sum rule exhibits large higher-order corrections, hence excluding an
analysis solely relying on the quark pole masses. In fact (see also [488]), the underlying pertur-
bative expansion displays good convergence, indicating a reliable determination of fB. Thus, the

33 By adequately choosing the input parameters, Equation 1281 can also be used to calculate fBs , fD as well as fDs .
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predictive power of this approach is mainly limited by the present error in the heavy (Q= c,b)
quark mass mQ

(
mQ

)
. The latter relies on34 [488, 610–613]

m(µ) = mpole

[
1+

CfαS(µ)

2π

(
2+ 3 log

(
µ

m(µ)

))
+O

(
α2S

)]
, (1286)

which at this order of accuracy cancels the corresponding logarithmic terms within Equation 1281

(see discussion in [488]). Based on these formulas and considerations, we can refine our analysis
in Chapter 5 accordingly.

34 In Equation 1286 mpole denotes the pole mass of a generic quark flavor, while m(µ) represents its mass in the MS
scheme.





BA P P E N D I X – C A L C U L AT I O N S U P P L E M E N T S

The subsequent appendix section includes supplementary material belonging to the PV reduction
algorithm (see Section 4.1.4.2). Accordingly, it provides a basis for the performed NLO calcula-
tions of this work. Additionally, we show all required Fourier integrals, including an example
calculation.

b.1 scalar one-loop integrals

Instead of always starting from first principles for each arising tensor integral (cf. Equation 791),
the discussed PV algorithm (cf. Section 4.1.4) relies on a standardized and in its limits univer-
sal approach. The latter requires an analytical input, as given by four distinct classes of scalar
functions. Based on the original work of Passarino [395], Veltman [395, 397–399], ’tHooft [399]
and Melrose [400] (cf. also [388]) it is, therefore, sufficient to consider adequate scalar master
integrals when applying this reduction algorithm (e. g., Section 4.1.4.1). Correspondingly, the fol-
lowing discussion may be restricted to related one-, two-, three- and four-point functions, which
in fact reflect all possible one-loop diagram topologies. In particular, a constructive treatment of
the PV functions “D0”, along with our preferred solution method will be addressed below.

According to the standard Feynman parametrization (e. g., [282]) each generic PV function (cf.
Equation 791, Equation 792) can be written as

TN0 (p1, . . . ,pN−1;m0, . . . ,mN−1) = Γ(N)

∫
dDk



N∏
j=1

∫1
0
dαj



δ
(∑N

k=1 αk − 1
)

[∑N
t=1 αtDt−1

]N , (1287)

which naturally gives rise to
(
choose a 15 j5N, along with αj=1−

∑
n 6=j αn

)

IN(AN) =

∫
dDk

1
[
k2 −AN + i0+

]N , (1288)

AN =

(
N∑
n=1

αnpn−1

)2
+

N∑
k=1

αk

(
m2k−1 − p

2
k−1

)
, (1289)

after performing an adequate shift, such as “kµ→ kµ−∑Nn=1 αnpµn−1”. This auxiliary integral
may then be solved via standard techniques (e. g., [64, 418, 419]), which are

i) performing a Wick rotation in the k0-plane and introduce generalized spherical coordinates
within this underlying euclidean space.

ii) Separately solving the spherical and radial integration.

As a result (e. g., [418, 419]) Equation 1288 engenders
(
D 6= 4

)

IN(AN) = i (−1)N π
D/2 Γ

(
N−D2

)

Γ(N)

[
AN − i0+

]D/2−N , (1290)
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whose UV divergences appear as poles in “(D− 4)”. Hence, after an expansion in powers of
“(D− 4)” only the parameter integrals would remain to be determined. This, however, may
become a rather nontrivial problem and has, therefore, been the recurring subject of intense
research (cf. [388, 392, 393, 395, 397–400, 424]) for several decades. Consequently, we can only
mention the basic techniques (e. g., [419]) needed for this work.

When starting with the simplest possible topology, i. e., N=1
(
A1≡m20

)
:

A0
(
m20

)
=

(2πµ)4−D

iπ2
I1

(
m20

)
= m20

[
∆4−D − log

(
m20
µ2

)
+ 1

]
+O(D− 4) , (1291)

∆4−D :=
2

4−D
− γE + log 4π , (1292)

one faces a (mass-dependent) UV divergence, as given by Equation 819. Similarly, two-point PV

functions, such as
(
A2=x

2p2+x
(
m21−m

2
0−p

2
)
+m20

)

B0
(
p2;m20,m21

)
=

(2πµ)4−D

iπ2

∫1
0
dx I2(A2)

= ∆4−D −

∫1
0
dx log

(
A2−i0

+

µ2

)
+O(D− 4) , (1293)

can be straightforwardly calculated, revealing (e. g., [388, 417])

B0
(
p2;m20,m21

)
= ∆4−D + 2− log

(
m0m1
µ2

)
+
m20 −m

2
1

p2
log
(
m1
m0

)

−
m0m1
p2

(
1

r
− r

)
log r+O(D− 4) , (1294)

where “r” and “1/r” are determined by1

x2 +
m20 +m

2
1 − p

2 − i0+

m0m1
x+ 1 = (x+ r)

(
x+

1

r

)
. (1295)

Analogous to Equation 819 B0 possesses a universal UV singularity, as recorded in Equation 820.
In fact one- and two-point PV functions are not only both UV divergent, but are additionally
interconnected via (e. g., [418]) relations, such as

(
m20 −m

2
1

)
B0
(
0;m20,m21

)
= A0

(
m20

)
− A0

(
m21

)
, (1296)

(
1+ B0

(
0;m2,m2

))
= A0

(
m2
)

. (1297)

Thus, any use of A0 can be completely circumvented if desired (see, e. g., Equation 818). In turn,
the scalar three-point functions, as denoted by “C0”, are UV convergent (e. g., [388, 418, 419]),
i. e.,

(D− 4)C0
(
p21,p221,p22;m20,m21,m22

)
= O(D− 4) . (1298)

For this reason, they can be safely calculated in the limit D→4 (see Equation 1300):

C0
(
p21,p221,p22;m20,m21,m22

)
=

(2πµ)4−D

iπ2
2

∫1
0
dx
∫ x̄
0
dy I3(A3)

= −

∫1
0
dx
∫ x̄
0
dy

1

A3 − i0+
+O(D− 4) (1299)

1 This representation ensures that “r” never crosses the negative real axis, i. e., the natural logarithm’s branch cut (see
[388] for further a discussion).
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entailing a rather intricate integration procedure. The latter can be summarized as follows (cf.
[399, 419]):

i) As a first step, all y2-terms of

A3 = x2p21 + y
2p22 + xy

(
p21 + p

2
2 − p

2
21

)
+ x
(
m21 −m

2
0 − p

2
1

)

+ y
(
m22 −m

2
0 − p

2
2

)
+m20 (1300)

have to be removed, e. g., via an Euler shift (cf. [392, 399, 419])

x→ x+αy , (1301)

where “α” may be extracted from2

α2p21 +α
(
p21 + p

2
2 − p

2
21

)
+ p22 = 0 . (1302)

ii) With the application of Equation 1301 all y-integrals become feasible, resulting in struc-
tures, similar to

(
a,b, c,d ∈ C

)

∫
dx

log(ax+ b)
cx+ d

. (1303)

iii) Further simplifications imply a decomposition of this intermediate result into logarithms
and Spence’s functions which are defined by3 (e. g., [388])

Li2(x) = −

∫1
0

dt
t

log(1−xt) , |arg(1− x)| < π . (1304)

In consequence, the structure of every three-point PV function can be deduced by applying this
scheme. Yet, instead of listing all calculated cases4 for the needed master integrals, we quote a
general formula, applicable to real momenta and physical masses (cf. [388]):

C0
(
p21,p221,p22;m20,m21,m22

)
=

1

κ
(
p21,p221,p22

)
2∑
i=0

{
2∑
n=1

[
Li2
(
− ȳi0yin

)
− Li2

(
yi0
yin

)

+η
(
x̄in,y−1in

)
log
(
− ȳi0yin

)
−η
(
−xin,y−1in

)
log
(
yi0
yin

)]

+
[
η(yi2,yi1) + 2πiθ

(
−p2jk

)
θ(− Im(yi2yi1))

−η(−xi2,−xi1)
]
log
(
− ȳi0yi0

)}
(1305)

2 Equation 1302 is true for the generic example of Equation 1299 and Equation 1300.
3 This representation of the dilogarithm enables an elegant reformulation of remaining parameter integrals, as given by

Equation 1287 and Equation 1303.
4 In fact, a direct calculation of C0 is always advisable when dealing with general arguments. This ensures a correct

representation of the PV function’s complex structure.
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including
(
(i, j, k) ∈ {(0, 1, 2) , (1, 2, 0) , (2, 0, 1)}; n=1, 2

)

yi0 :=
1

2κ
(
p21,p221,p22

)
p2jk

[
p2jk

(
p2jk − p

2
ki − p

2
ij + 2m

2
i −m

2
j −m

2
k

)

−
(
p2ki − p

2
ij

)(
m2j −m

2
k

)
+ κ
(
p21,p221,p22

)(
p2jk −m

2
j +m

2
k

)]
, (1306)

xin :=
1

2p2jk

[
p2jk −m

2
j +m

2
k + (−1)n αi

]
, (1307)

αi := κ
(
p2jk,m2j ,m2k

)[
1+ ip2jk0

+
]

, (1308)

yin := yi0 − xin . (1309)

Here, one also uses the Källén function

κ(x,y, z) :=
√
λ(x,y, z) , λ(x,y, z) = (x− y− z)2 − 4yz , (1310)

as well as (see [388, 392, 399])

η(a,b) = log(ab) − log(a) − log(b) , (1311)

with, e. g.,
(
a,b, c ∈ C\ (−∞, 0) on the first Riemann sheet [614]

)

η(a,b) = 2πi [θ(− Im(a)) θ(− Im(b)) θ(Im(ab)) − θ(Im(a)) θ(Im(b)) θ(− Im(ab))] . (1312)

In a similar manner the scalar four-point integrals (e. g., [388, 392, 399])

D0
(
p21,p221,p232,p23,p22,p231;m20,m21,m22,m23

)

= Γ
(
4− D

2

)(
4πµ2

)2−D/2 1∫
0

dα1

ᾱ1∫
0

dα2

ᾱ1−α2∫
0

dα3
1

[P(ᾱ1 −α2 −α3,α1,α2,α3)]
4−D/2

, (1313)

as defined by (cf. Equation 808)

P(x0, x1, x2, x3) =
3∑
i=0

m2i x
2
i +

3∑
i,j=0
i<j

Yijxixj , (1314)

can be reduced to logarithms and dilogarithms. The required procedure has been recently re-
viewed in [392] and will not be shown here. Alternatively, when restricting our discussion to a
collinear set-up (cf. discussion of Section 4.1.4.2), while neglecting O

(
m2M

)
(M=η,η′) corrections,

all required “four-point” PV functions can be further reduced via5 Equation 835. This approach,
though beyond the standard PV reduction algorithm, ensures a straight forward calculation of
all needed D0’s, which is preferable over an otherwise rather tedious solution procedure.

In essence, the latter concludes this short collection of relevant techniques and formulas con-
cerning one-loop scalar integrals, as needed for this work.

5 As mentioned in Section 4.1.4.2, the right hand side of Equation 835 could be further reduced, ultimately leading to
(derivatives of) scalar two-point functions.
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b.2 passarino-veltman decomposition – calculation example

This short supplement mainly serves as a retrofit for Section 4.1.4.1, as well as Section 4.1.4.2,
where we focus on the PV reduction algorithm’s formal structure and several specific applications.
Accordingly, a generic example is given below which explicitly depicts the essential techniques,
as used within Section 4.1.4.2.

Let us exemplify the method for6 Cµ, together with Cµν which are primarily required in Equa-
tion 826. Similar to the general case, those two tensor integrals can be iteratively calculated, i. e.,
when starting at two-point level7 all interconnected one-loop integrals can be derived step-by-
step, in ascending order. Hence, Equation 794 implies

Bµ(p1;m0,m1) = p
µ
1B1

(
p21;m20,m21

)
, (1315)

which can be solved via Equation 800, i. e., (see also Equation 798)

B1 =
p
µ
1

p21
Bµ(p1;m0,m1) =

1

2p21

[
A0
(
m20

)
− A0

(
m21

)
− f1B0

(
p21;m20,m21

)]
. (1316)

Analogously, we may write
(
(p1·p2)= 12

(
p21 + p

2
2 − p

2
21

))

Cµ(p1,p2;m0,m1,m2) =
2∑
k=1

p
µ
kCk

(
p21,p221,p22;m20,m21,m22

)
, (1317)

giving rise to
(
cf. Equation 1310, with λ

(
p21,p22,p221

)
=4
(
(p1·p2)2 − p21p22

))

(
C1
C2

)
= −

4

λ
(
p21,p22,p221

)
(

p22 −(p1·p2)
− (p1·p2) p21

)(
R3,1
0

R3,2
0

)
. (1318)

The latter requires
(
cf. Equation 800, i. e., R3,k

0 =pµkCµ for (k, j) ∈ {(1, 2) , (2, 1)}
)

R3,k
0 =

1

2

[
B0
(
p2j ;m20,m2j

)
− B0

(
p221;m21,m22

)
− fkC0

(
p21,p221,p22;m20,m21,m22

)]
. (1319)

Notably, the coefficient functions of (while omitting all related arguments)

Cµν = gµνC00 +
(
p
µ
1p
ν
2 + pν1p

µ
2

)
C12 + p

µ
1p
ν
1C11 + p

µ
2p
ν
2C22 , (1320)

can only be determined by a subsequent Lorentz decomposition (cf. Equation 803)
(

R3,1
µ

R3,2
µ

)
=

(
R11 R12
R21 R22

)(
p1µ

p2µ

)
, (1321)

that entails (see Equation 806)
(

C11 C12
C21 C22

)
=

4

λ
(
p21,p22,p221

)
(

−p22 (p1·p2)
(p1·p2) −p21

)(
R11 − C00 R12

R21 R22 − C00

)
. (1322)

6 For brevity, we focus on formulas, with finite p2j (j=1,2). Other cases can be derived analogously.
7 As the denominator of Aµ (cf. Equation 791) is symmetric under a reflection “kµ→−kµ”, this integral has to vanish.

Therefore, there cannot be a one-point one-loop tensor integral.
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When eliminating all spurious dependencies8 within
(

R00≡R3,00
0 =gµνCµν

)

C00 =
1

D

(
R00 − 2 (p1· p2)C12 − p21C11 − p22C22

)
, (1323)

Equation 1322 engenders (cf. Equation 805)

C00 =
1

D− 2

[
R00 − R11 − R22

]
, (1324)

leaving us with the determination of R00, R11, R12 and R22. In fact, the former can be easily
derived

R00 = B0
(
p221;m21,m22

)
+m20C0

(
p21,p221,p22;m20,m21,m22

)
, (1325)

while all other coefficients emerge from
(
again (k, j) ∈ {(1, 2) , (2, 1)}

)

R3,k
µ =

1

2

[
Bµ
(
p2j ;m20,m2j

)
− Bµ

(
p221;m21,m22

)
+ p1µB0

(
p221;m21,m22

)

− fkCµ(p1,p2;m0,m1,m2)
]

, (1326)

after equating coefficients of pµ1 , along with pµ2 . This leads to

R11 = f1
(p1·p2)f2−p22 f1
λ(p21,p22,p221)

C0
(
p21,p221,p22;m20,m21,m22

)
+
m21−m

2
2

4p221
B0
(
0;m21,m22

)

+
1

4

(
2+

m22−m
2
1

p221
+
m20−m

2
1

p21
+ 4f1

(p1·p2)(p21−(p1·p2))
p21λ(p

2
1,p22,p221)

)
B0
(
p221;m21,m22

)

+ f1
p22

λ(p21,p22,p221)
B0
(
p22;m20,m22

)
− f1

(p1·p2)
λ(p21,p22,p221)

B0
(
p21;m20,m21

)
, (1327)

R12 = f1
(p1·p2)f1−p21 f2
λ(p21,p22,p221)

C0
(
p21,p221,p22;m20,m21,m22

)
+
m20−m

2
2

4p22
B0
(
0;m20,m22

)

+
1

4

(
1+

m21−m
2
2

p221
− 4f1

p21−(p1·p2)
λ(p21,p22,p221)

)
B0
(
p221;m21,m22

)

+
1

4

(
m22−m

2
0

p22
− 4f1

(p1·p2)
λ(p21,p22,p221)

− 1

)
B0
(
p22;m20,m22

)

+ f1
p21

λ(p21,p22,p221)
B0
(
p21;m20,m21

)
+
m22−m

2
1

4p221
B0
(
0;m21,m22

)
, (1328)

R22 = f2
(p1·p2)f1−p21 f2
λ(p21,p22,p221)

C0
(
p21,p221,p22;m20,m21,m22

)
+
m22−m

2
1

4p221
B0
(
0;m21,m22

)

+
1

4

(
2+

m21−m
2
2

p221
− 4

(p1·p2)((p1·p2)−f2)+p21(m20−m22)
λ(p21,p22,p221)

)
B0
(
p221;m21,m22

)

+ f2
p21

λ(p21,p22,p221)
B0
(
p21;m20,m21

)
− f2

(p1·p2)
λ(p21,p22,p221)

B0
(
p22;m20,m22

)
. (1329)

When restricted to a collinear set-up, as discussed in Section 4.1.4.2, we can essentially avoid
an explicit derivation of Dµ, along with Dµν via relations, such as Equation 831. Hence, the
corresponding formulas are not mentioned at this point.

In conclusion, the mentioned techniques and formulas (including their variations) are sufficient
to decompose the bulk part of all encountered tensor integrals within this work.

8 For this purpose, all symmetries of the non-diagonal coefficient functions Cij have been used.
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b.3 the borel transformation

This supplement collects several concepts and formulas concerning the Borel transformation, as
required to formulate Section 4.2 and Chapter 5. Usually, this transformation is part of the Borel
summation method9 [219, 615, 616, 619–624] which provides a technique to treat divergent series.

For instance (following [625]), suppose the (formal) power series
(
g, fk∈C

)

f(g) =

∞∑
k=0

fkg
k , (1330)

which may have a zero radius of convergence, e. g., due to10 its coefficients (k�1, α ∈ C)

fk ∝ (−α)k k! . (1331)

In order to counter this kind of divergences and eventually obtain a convergent series, the Borel
transformation [74, 626] can be applied which is denoted by [630] “B[f](σ)” (σ ∈ C). The latter
(if it exists) may be interpreted as an inverse Laplace transformation [617], i. e.,

f(g) =

∫∞
0

dt e−tB[f](gt) , (1332)

and is for integer power series11 defined via12 [617, 630]:

B : C[[g]] −→ C[[t]] ,

Γ(s+1)gs 7−→ ts (s ∈N) . (1333)

Consequently, the Borel transform of Equation 1330 is given by its equivalent exponential series

B[f](t) =

∞∑
k=0

fk
k!
tk , (1334)

which includes the auxiliary (Borel) parameter “t”. Alternatively, an analytical approach can be
chosen, i. e., using the integral13 [625]

B[f](t) =
1

2πi

∮
γ

dz
ez

z
f
(
t
z

)
, (1335)

whose contour “γ” encircles the origin. Significantly, the actual calculation of Equation 1335

can be performed by adopting Cauchy’s residue theory (cf. [632]). In fact, when considering a
meromorphic function h(z), which possesses a pole of order n > 2

(
n ∈ N

)
at z0 ∈ C, the

corresponding residue around z=z0 can be found with [632]:

Resz0h =
1

(n− 1)!
dn−1

d xn−1

∣∣∣∣∣
z0

(x− z0)
n h(x) . (1336)

9 The complete method, as discussed in [615–618] is not subject of this supplement.
10 Typically, this behavior can be seen in the context of perturbative calculations [77, 102, 103, 108, 116, 626–629]. For

example, in φ4-theory [625] the occurring perturbation series is often factorially divergent.
11 Here, we follow the standard notation of [618, 631]. Accordingly, let C[[z]] be the space of all formal series in z, i. e.,

similar to “
∑∞
k=0 ckz

k” with complex coefficients ck ∈ C (see also [617]).
12 Equation 1333 arises when adapting the definitions of [617] to our notation.
13 There are several physical problems, such as the polarization operator of Equation 85, which cannot be entirely repre-

sented as an infinite series in 1/Q2 (see, e. g., [109]). Therefore, the definition of Equation 1335 is required which is
additionally compatible with related dispersion relations (see below).
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To that effect, after inserting Equation 1330 into Equation 1335, the Equation 1334 can be repro-
duced.

Yet, the accepted standard definition, as used for QCD sum rules (cf. [97, 109, 464, 465]) has
been adapted to suit the specific requirements of this approach. That entails a slightly differ-
ent appearance. As a matter of convenience, we focus on sum rules for two-point functions14,
which at the end only exhibit a single Borel parameter, along with an effective threshold “s0”.
Indeed, the Borel transform of a test function (such as Equation 85 or Equation 930) is given by
[97, 109, 588]

(
including the fixed Borel parameter “M2”

)

B̂M2

{
Ψ
(
Q2
)}

:= lim
n,Q2→∞
M2=Q2/n

1

(n− 1)!

[
Q2
]n(

−
d

dQ2

)n
Ψ
(
Q2
)
≡ Ψ̂

(
M2
)

, (1337)

which implies two essential results
(
see also [97, 109, 440], k ∈N

)

B̂M2

{
1

s+Q2

}
= lim
n,Q2→∞
M2=Q2/n

1

Q2

n

1
(
1+ s

n
1

Q2/n

)n+1 =
1

M2
e
−
s
M2 , (1338)

B̂M2

{[
Q2
]k}

= 0 . (1339)

An alternative calculation method [440, 633], which is based on the Schwinger parametrization
and a tailor-made integral identity (see below, as shown in blue) turns out to be useful for a
wide range of problems15 (see also [440]), e. g.,

B̂M2

{
1

(
s+Q2

)k

}
=

1

(k− 1)!

∫∞
0

dααk−1e−αsB̂M2

{
e−αQ

2
}

=
1

(k− 1)!

∫∞
0

dααk−1e−αsδ
(
1−αM2

)

=
1

(k− 1)!

[
1

M2

]k
e
−
s
M2 . (1340)

Accordingly, when applied to a dispersion relation, such as16 [97]
(
taken from Equation 85, with

Q2=−q2
)

Π
(
q2
)
=

∫∞
0

ds
1
π ImsΠ(s)
s+Q2

−Π(0) = Π
(
q2
)
−Π(0) , (1341)

Equation 1339 implicates the removal of all involved (polynomial) subtraction terms. Moreover,
contributions of higher resonances and continuum states become exponentially suppressed17

(see Equation 1338), i. e.,

B̂M2

{
Π
(
q2
)}

=
1

M2

∫∞
0

ds e−
s
M2

1

π
ImsΠ(s) = B̂M2

{
Π
(
q2
)}

, (1342)

which effectively reduces their impact on the resulting sum rule (see also [97, 464, 465]). Con-
versely, for correlation functions that include charm or bottom quark-antiquark (interpolation)

14 Hence, we may again use Equation 85 as a generic example.
15 For “s→0” Equation 1340 implies the mapping “[1/Q2]k 7→ 1

(k−1)! [
1/M2]k”. This is the analogue of Equation 1333 for

f(1/Q2) (cf. Equation 1330) and its Borel transform B[f](1/M2) (cf. Equation 1334).
16 As discussed in [97], the constant subtraction term within Equation 1341 is vanishing. Yet, we formally retain it.
17 Consequently, this reduces the sum rule’s sensitivity to the duality approximation (see, e. g., [97]).
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currents, already a power suppression of the induced heavy resonances (as well as multiparti-
cle and continuum states) can be sufficient. In other words, a simpler method than the Borel
transformation may be applied which is based on general dispersion relations, such as [97, 109](
q2060

)
:

Mn

(
q20

)
=

(−1)n

n!
dn

d
[
Q2
]nΠ

(
q2
)∣∣∣∣∣
Q2=−q20

=

∫∞
0

ds
1
π ImsΠ(s)(
s− q20

)n+1 . (1343)

Here, n ∈ N is chosen sufficiently large to remove all occurring subtraction terms. E. g., the
proper analogue of Equation 1341 would be given by

(
Q2 fixed

)

−
d

dQ2
Π
(
q2
)
=

∫∞
0

ds
1
π ImsΠ(s)(
s+Q2

)2 , (1344)

which again corresponds to an inverse of18 Equation 1342 (see also [109])∫∞
0

d
(
Q2

M2

)
e
−
Q2

M2 B̂M2

{
Π
(
q2
)}

=

∫∞
0

d
(
1
M2

) ∫∞
0

ds
Q2

M2
e
−
s+Q2

M2
1

π
ImsΠ(s)

= Q2
∫∞
0

ds
1
π ImsΠ(s)(
s+Q2

)2 = −Q2
d

dQ2
Π
(
q2
)

. (1345)

For practical applications, however, those desired properties also depend on an adequate choice
of the Borel parameter and the related continuum threshold19.

Accordingly, the working window’s limits are determined by the subsequent considerations and
assumptions (see, e. g., [97, 464, 465]):

i) By demanding a sufficient suppression of higher order OPE corrections, one receives a lower
Bound on the possible Borel parameters20.

ii) Conversely, M2 cannot be chosen arbitrarily large21, because otherwise the intended expo-
nential suppression of higher state contributions

(
with masses22 m2 > s0

)
would become

inefficient. In other words [97], when using too large values for the Borel parameter one
should be cautioned not to place undue reliance on the quark-hadron duality approxi-
mation. Consequently, this method additionally requires an upper bound on M2 which
(together with point i)) results in the named window of stability.

Let us assume, that for the given QCD sum rule such a Borel window exists23. In order to test its
model dependence

(
which is, inter alia, caused by s0, M2

)
, one may plot the specific sum rule as

18 Equation 1345 results from Equation 1332, after applying the substitution t=λ/g, along with λ=1/M2 and g=1/Q2.
Moreover, because of their inherent structure, one may set f(1/Q2)≡Π

(
q2
)

and B[f](1/M2)≡B̂M2
{
Π
(
q2
)}

.
19 Due to the sum rule’s formal structure, both parameters are interconnected in a nontrivial way [97]. Besides, the numer-

ical value of s0 is not arbitrary, but can be related to the channel specific resonance activity (see [97, 280]).
20 For example, when considering a truncated short distance OPE (such as Equation 85) terms with the highest included

energy dimension are usually supposed to remain a small fraction of all incorporated contributions (see, e. g., [97]). In
the context of LCSRs that is still a working assumption, but the involved Borel parameter has to be modified accordingly
(see, e. g., Section 4.3). Thus, this required lower limit (ideally) enables a better control over the OPE’s convergence and
as a result may also reduce the error caused by neglecting higher-dimensional corrections (see, e. g., [97, 634] for an
extended discussion):

21 This may be seen when considering the limit M2→∞.
22 Being the sum of all involved (hadron) masses within this specific state.
23 There are cases, where the QCD sum rule method cannot access the lowest lying meson states [94]. Such channels usually

exhibit a strong coupling to the vacuum fluctuations [94] and sometimes no Borel window can be found [97]. This may
involve a scenario, where the lower limit of M2 overshoots the upper one [97].
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a function of the Borel parameter at different values of the generic momentum transfer and s0,
while keeping all other parameters fixed (see [97, 280, 464, 465]). For instance, the leading twist
(LO) LCSR (see Section 4.2), which describes the γ∗ρ→P

(
P=η,η′

)
transition FF

(
x0=Q

2/
(
s0 +Q2

))

√
2fρFγ∗ρ→P

(
Q2
)
=

∫1
x0

dx

[
2e2sf

s
P

φ
(s)
P (x)

x
+
√
2
(
e2u + e2d

)
f
q
M

φ
(q)
P (x)

x

]
e
xm2ρ−x̄Q

2

xM2 (1346)

can be analyzed in this way24. Flat curves, i. e., the negligible dependence on M2, would indicate
a good accuracy of the sum rule [280, 464]. Besides, after narrowing down the Borel window,
s0 can be further studied25 by demanding maximal stability of the underlying sum rule (see
[97, 464]). This leads to a similar working window for the effective threshold parameter26.

In brief, the introduced techniques and concepts are pivotal for the used QCD sum rule method
and all related numerical evaluations. Correspondingly, the most basic facts have been presented,
as required for this work.

24 Besides, Equation 1346 reproduces the leading twist structure of [280, Equation 28].
25 This can be done by an adequate fitting procedure, as discussed in [97].
26 A more detailed discussion of this ansatz may be found in [95, 445, 460].
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b.4 calculation of imaginary parts

In the following we introduce several concepts and formulas, which are necessary to calculate
the occurring imaginary parts within this work. Yet, here we focus on a heuristic discussion,
i. e., for brevity no proofs are shown explicitly. Instead, the latter may be found in the named
references and textbooks, such as [458, 632, 635, 636].

When considering complex functions, one may encounter a general problem concerning their
uniqueness. Already the complex numbers27 z = |z|ei arg(z) ∈ C in their polar form are multi-
valued functions

(
arg(z)=arctan( Imz/Rez)

)
, because their argument arg(z) is only defined up to

the addition of 2πk, k ∈ Z. Most easily this ambiguity can be resolved by defining the principal
value “Arg” of the function28 “arg”:

Arg : C→
(
− π,π

]
, with z 7→ Arg(z) . (1347)

This new function z= |z|eiArg(z), however, is not continuous anymore, but has a discontinuity
along the negative real axis. Analogously, the complex logarithm “Log”

Log(z) = Log(|z|) + i arg(z)
(
z ∈ C\ {0}

)
, (1348)

is not single-valued before we choose one of its branches. Following the standard approach (e. g.,
[632]), we select the related principal branch of the logarithmic function29:

log : C\ (−∞, 0]→
{
z=x+iy

∣∣x ∈ R,y ∈ (−π,π)
}

, (1349)

z 7→ log(z) = log(|z|) + iArg(z) . (1350)

Thus, “log” possesses a branch cut along the negative real axis as well as a branch point in the
origin, i. e., we may write [587]

(
x, x0 ∈ R

)

lim
ε→0+

log(x−x0±iε) = log(|x−x0|)± iπΘ(x0−x) . (1351)

In fact, Equation 1351 is of profound importance for our needs, because it entails the well known
Sokhotski-Plemelj formula30 [587, 637]

1

x−x0 ± i0+
=

d
d x

log
(
x−x0±i0+

)
=

1

x−x0
[Θ(x−x0) +Θ(x0−x)]∓ iπδ(x−x0)

= PV
1

x−x0
∓ iπ δ(x−x0) , (1352)

which can be generalized31 [587] via
(
n>2

)

1

(x−x0 ± i0+)n
=

(−1)n−1

(n− 1)!
dn−1

d xn−1
1

x−x0 ± i0+

=
1

(x−x0)
n [Θ(x−x0) +Θ(x0−x)]∓ iπ

(−1)n−1

(n− 1)!
δ(n−1)(x−x0) . (1353)

27 Here, |z| is the modulus of z, as defined by |z|2= zz∗. Without any restrictions, we use z̄ as well as z∗ to denote the
complex conjugate of z. Moreover, the argument of z is written as “arg(z)” (cf. [458, 632, 635, 636]).

28 Thus, we have arg(z)=Arg(z)±2πk, with k ∈ Z.
29 Here, one commonly uses the restriction Arg ∈ (−π,π).
30 Here, we use |x−x0|=(x−x0)Θ(x−x0)+(x0−x)Θ(x0−x).
31 As an abbreviation, we use dn

dxn δ(x)≡δ(n)(x).
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However, when considering products32 of functions, such as
log(x−x0±i0+)
x−x0±i0+ the related complex

structure can in general not simply be deduced from the factors’ imaginary parts. In order to
solve this problem, we may either search for an adequate artifice (see, e. g., [587]) or apply a
more straightforward approach (similar to [638]). When choosing the latter, some basic results
of complex analysis should be recapitulated33:

• analytic continuation : In a nutshell [639–642], suppose two analytic functions (i= 1 , 2)
fi : Ui → C, that are defined on non-empty open subsets Ui ⊂ C. If U1 ⊂ U2 and
f1 (z) = f2 (z) ∀z ∈ U1 , then f2 is an analytic continuation of f1 .

• uniqueness of analytic continuation : Let γ : [t0 , t1 ] → C be a continuous path
(cf. [632, 639]). The holomorphic functions g , g̃ : Dε′ (γ(t1 )) → C may arise from f :

Dε (γ(t0 ))→C by analytic continuation along a finite (n ∈ N) chain of discs34 (D0, . . . ,Dn)
which themselves run along γ. Then the two functions are identical [632, 639], i. e., g(z)=
g̃(z) ∀z ∈ Dε′(γ(t1)). In other words, the analytic continuation of f is unique (see, e. g.,
“identity theorem” for analytic functions [458]).

• schwarz reflection principle : Let the non-empty domain D ⊂ C be symmetric with
respect to the real axis R, i. e., for z ∈ D ⇒ z∗ ∈ D. Furthermore, let us define
D+ :=

{
z ∈ D

∣∣ Im z > 0
}

, D− :=
{
z ∈ D

∣∣ Im z < 0
}

and D0 := D∩R. If a function
f :D+∪D0→C is continuous and f |D+

is analytic, with f(D0 )⊂R, then

f̃ :D→C , as defined by z 7→ f̃(z) :=

f(z) , z ∈ (D+∪D0 )
f(z∗ )∗ , z ∈ D−

(1354)

is also an analytic function (cf. [458]).

In order to see the full power of these theorems, consider an analytic function f with f([a , b])⊂
R for an interval [a , b]⊂R. Then the relation (z ∈ [a , b])

f(z) = f(z∗ )∗ , (1355)

holds and f can be analytically continued to other parts of the complex plane, where it is single-
valued (i. e., well-defined) [450]. Thus, Equation 1355 implies

Re f(z) = Re f(z∗ ) , Im f(z) = − Im f(z∗ ) . (1356)

Suppose, that f has a branch cut along the negative real axis. By defining z = s+ iε
(
s , ε ∈ R

)

together with [450]

discsf(s) := lim
ε→0+

(f(s+iε) − f(s−iε)) , (1357)

we may analyze the underlying discontinuity. Most importantly, Equation 1356 combined with
Equation 1357 implicates:

discsf(s) = 2i Imsf(s) . (1358)

32 Here, we mean pointwise products of functions.
33 Following the standard notation [632] we define the open ε-disc around z0: Dε(z0):=

{
z ∈ C

∣∣|z−z0| < ε
}

.
34 More precisely, we subdivide the parameter interval t0 6 τ0 6 . . .6 τn 6 t1 and define Dj :=Dεj

(
γ
(
τj
))

(with εj
sufficiently large) to ensure γ|[τi−1 ,τi]

⊂(Di−1∩Di) ∀i=1, . . . ,n and ∀j=0, . . . ,n (cf. [632]).



B.4 calculation of imaginary parts 273

Analogously, one may find

Resf(s) := lim
ε→0+

1

2
(f(s+iε) + f(s−iε)) , (1359)

which entails35

f
(
s± i0+

)
= Resf(s) ± i Imsf(s) . (1360)

Now the machinery is in place to solve our initial problem concerning pointwise products of
adequate complex functions, such as f1 and f2. By employing the definition of Equation 1359,
while using Equation 1360, we get:

Resf1(s) f2(s) =
1

2

(
f1
(
s+i0+

)
f2
(
s+i0+

)
+ f1

(
s−i0+

)
f2
(
s−i0+

))

= Resf1(s)Resf2(s) − Imsf1(s) Imsf2(s) , (1361)

Imsf1(s) f2(s) = Resf1(s) Imsf2(s) + Resf2(s) Imsf1(s) . (1362)

Both results reproduce similar findings of [638]. Moreover, with Equation 1361 and Equation 1362

it is now possible to iteratively calculate the real and imaginary parts of pointwise products, such
as
∏N
i=1 fi(s)

(
N ∈N

)
, by simply knowing each factor’s complex structure. For instance, when

considering the case x−x0>0 (analogously for x↔x0) we get36:

1

π
Ims

{
log(x−x0±i0+)
x−x0 ± i0+

}
=
1

π
Res
{

log
(
x−x0±i0+

)}
Ims

{
1

x−x0 ± i0+
}

+
1

π
Ims
{

log
(
x−x0±i0+

)}
Res

{
1

x−x0 ± i0+
}

= ±
[
Θ(x0−x)

x−x0
− δ(x−x0) log(x0−x)

]
. (1363)

With the mentioned techniques and relations all occurring imaginary parts within Chapter 4 as
well as Chapter 5 can be calculated.

35 Equation 1360 has been mentioned to show the consistency of Equation 1357 and Equation 1359 with Equation 1355.
36 This reproduces a similar result of [587]. However, the authors of [587] use a different approach.
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b.5 next-to-leading order quark-antiquark spectral densities

For an elegant numerical implementation37, the NLO twist-two quark-antiquark spectral density
of Equation 1366 has to be reformulated. Fortunately, we have solved this problem in our previ-
ous work [281] which can now be adapted to the γ∗γ→(η,η′) TFFs.

Thus, we use the definitions of [281, Equation (33), (34), (35)]
(

including Nm :=
2(2m+3)

3(m+1)(m+2)

)

for the coefficients Hkn and G2kn , i. e., we apply:

Hmn := Nm

∫1
0
dxC(3/2)

m (ξx)

[∫ x̄
0
du

ϕn(u) −ϕn(x̄)

u− x̄
+ 3x̄

]
, (1364)

Gmn := Nm

∫1
0
dxC(3/2)

m (ξx)

[∫x
1
du

ϕn(u) −ϕn(x)

u− x
log
(
1− x

u

)
+ {x→ x̄}

]
. (1365)

The latter basically arise from the integrals of Equation 863 which have been expanded into
Gegenbauer polynomials (see Section A.12). Besides, corresponding numerical values for n,m6
12 can be found in [281, Table IV, V]. As a result Equation 863 boils down to

(
x=Q2/

(
s+Q2

))

ρ
(1)
n

(
Q2, s;µ2

)
=
x̄

s


2

n/2∑
k=0

G2kn ϕ2k(x) −
γ
(0)
n

Cf

(
3x̄−

n∑
k=0

Hknϕk(x)

)
+ Rn

(
Q2

µ2
, x
)
ϕn(x)


 , (1366)

together with the coefficient function (see Equation 863):

Rn

(
Q2

µ2
, x
)
= −3 [1+ 2 (ψ(2) −ψ(2+n))] +

π2

3
− log2

(
x̄
x

)
−
γ
(0)
n

Cf
log
(
x̄Q2

xµ2

)
. (1367)

Accordingly, Equation 1366 will be used for the related numerical analysis. As discussed in Sec-
tion 4.2.4 a similar method may, therefore, be applied to the new NLO gluon spectral densities.

Finally, it should be pointed out once again that the discussed changes are of fundamental
importance for the computer-assisted evaluation38.

b.6 fourier integrals

In this appendix, we collect several standard integrals which are needed for the calculations of
this work (set D=4− 2ε).
The necessary Fourier integrals can be derived from (cf. [74, 373, 643] for details)∫

dDx
πD/2

eiq·x[
−x2

]α = −i2D−2α Γ
(
D
2 −α

)

Γ(α)

[
−q2

]α−D/2
(1368)

37 In particular, this version ensures a fast code.
38 In other words, without Equation 1366 an implementation of the related sum rules would be crucially impaired.



B.7 two-gluon correlation function 275

after iteratively differentiating both sides with respect to “qµ”. Correspondingly, the first three
integrals are given by:

−

∫
dDx
πD/2

xµe
iq·x

[
−x2

]α = qµ2
D+1−2α Γ

(
D
2 +1−α

)

Γ(α)

[
−q2

]α−1−D/2
, (1369)∫

dDx
πD/2

xµxνe
iq·x

[
−x2

]α = i2D+1−2α Γ
(
D
2 +1−α

)

Γ(α)

[
−q2

]α−2−D/2
×

×
[
gµν

(
−q2

)
+ 2qµqν

(
D

2
+ 1−α

)]
, (1370)∫

dDx
πD/2

xµxνxρe
iq·x

[
−x2

]α = 2D+2−2α Γ
(
D
2 +2−α

)

Γ(α)

[
−q2

]α−3−D/2[
2qµqνqρ

(
D

2
+ 2−α

)

− q2(qνgµρ + qµgνρ + qρgµν)

]
. (1371)

Depending on the value of “α”, however, the limit D→ 4 has to be taken with great caution. In
this context, it is possible to create ill-defined expressions. For instance, Equation 1368 has to be
expanded into a Laurent series in “ε”

(
cf. Equation 43, with µ≡µMS

)
, implying

µD−4

∫
dDx
π2

eiq·x
[
−x2 + i0+

]2 = i

(
1

ε
+ log

(
−q2−i0+

µ2

))
+O(ε) . (1372)

Analogously, Equation 1370 (omitting irrelevant contributions) gives rise to

µD−4

∫
dDx
π2

xµxνe
iq·x

[
−x2 + i0+

]4 =
i

48

(
1

ε
+ log

(
−q2−i0+

µ2

))
×

×
[(

−q2
)
gµν − 2qµqν

]
+ . . . . (1373)

Those expressions are particularly useful for calculations in the position space.

b.7 two-gluon correlation function

In following we sketch the calculation that results in Equation 709.
The LO ansatz is given by

(
n2=0

)

Π(p) =
i

4

∫
dD y e−ip·y

[
〈0|Gµν(z1n)Gαβ(y)Gρσ(z2n)Gγδ(y)|0〉

+ 〈0|Gµν(z1n)Gγδ(y)Gρσ(z2n)Gαβ(y)|0〉
]
εµνρσεαβγδ, (1374)

together with (omitting color matrices and indices)

Gµν(x)Gαβ(0) = Dµν;αβ(x) −Dνµ;αβ(x) −Dµν;βα(x) +Dνµ;βα(x) , (1375)

Dµν;αβ(x) =
gνβ

2πD/2

[
2xµxα

Γ
(
D
2 +1

)
[
−x2

]D/2+1 + gµα
Γ
(
D
2

)
[
−x2

]D/2

]
. (1376)

Due to its simple tensor and color structure, i. e.,

εµνρσεαβγδ〈0|Gµν(z1n)Gαβ(y)Gρσ(z2n)Gγδ(y)|0〉
= 16εµνρσεαβγδδAADµν;αβ(z1n−y)Dρσ;γδ(z2n−y) , (1377)
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one easily gets

Π(p) = −
32i

πD

∫
dD y e−ip·y

[
D
[
Γ
(
D
2

)]2
[
−x21

]D/2 [
−x22

]D/2 −
(x1·x2)2D2

[
Γ
(
D
2

)]2
[
−x21

]D/2+1 [
−x22

]D/2+1

]
. (1378)

Here, we use the abbreviations

x
µ
1 = z1n

µ − yµ , x
µ
2 = z2n

µ − yµ . (1379)

After further simplifications39, the Fourier integrals within

Π(p) = −
32D

πD
i

∫1
0
due−iz

u
21p·n

∫
dD y e−ip·y

[
uū

Γ(D)
[
−y2

]D

−
4

D
(D+ 1)u2ū2

(
D

Γ(D)
[
−y2

]D + 2z21ξu
Γ(D+1) (n·y)
[
−y2

]D+1

+
z221ξ

2
u

D+ 1

Γ(D+2) (n·y)2
[
−y2

]D+2

)]
(1380)

can be solved via (Section B.6)

i

∫
dD y

Γ(D)
[
−y2

]D e
−ip·y = −2−Dπ

D/2Γ
(
−D2

) [
−p2

]D/2
, (1381)

as well as

i

∫
dD y

Γ(D+ 1)
[
−y2

]D+1
e−ip·y (n·y) = −

1

2
i (n·p) 2−DπD/2Γ

(
−D2

) [
−p2

]D/2
, (1382)

i

∫
dD y

Γ(D+ 2)
[
−y2

]D+2
e−ip·y (n·y)2 =

1

4
(n·p)2 2−DπD/2Γ

(
−D2

) [
−p2

]D/2
. (1383)

Hence, we get (cf. Equation 710)

Π(p) = D
25−D

πD/2
Γ
(
−D2

) [
−p2

]D/2 ∫1
0
du
[
uū−

4

D
u2ū2

(
D(D+ 1)

+ (D+ 1) ξu∂u +
1

4
ξ2u∂

2
u

)]
e−iz

u
21p·n

= −2N
(
p2
) ∫1
0
due−iz

u
21p·n

[
uū− 20u2ū2 + 5∂u

{
u2ū2ξu

}
−
1

4
∂2u

{
u2ū2ξ2u

} ]
= −2N

(
p2
) ∫1
0
du
[
uū (1− 20uū) + 10uū (5uū− 1)

−
1

4

(
120u2ū2 − 36uū+ 2

)]
e−iz

u
21p·n , (1384)

which implies Equation 709.

39 The additional integral “
∫1
0du” arises when combining the different propagators via a Feynman parametrization.
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This appendix chapter contains:

• a collection of required projection operators for the evolution procedure, and LO evolution
kernels,

• a calculation of the singlet decay constant’s evolution,

• a list of all needed (NLO) anomalous dimensions.

Moreover, an adaption of the singlet evolution and related formalism is discussed. In short,
based on [13, 20, 26, 27, 129, 304, 385] and Chapter 3, the following supplement represents a
stand-alone toolbox which allows a full NLO evolution of η and η′ DAs. Furthermore, we present
the higher twist kaon DAs, which have been retrofitted with our newly calculated results (see
Chapter 3).

c.1 evolution of the singlet decay constant

Finding the explicit evolution of the singlet decay constant1

f0M ∼ 〈0|J+5(0)|M(P)〉 (1385)

is a standard problem of QCD. In fact, the renormalized decay constant f0M
(
µ2
)

is connected to
its bare counterpart

[
f0M
]

bare (cf. [644]) via the corresponding renormalization constant Z
(
µ2
)
:

f0M

(
µ2
)
= Z−1

(
µ2
) [
f0M

]
bare

. (1386)

The resulting2 RGE (see, e. g., [45, 644])
[
µ2

∂

∂µ2
+β(αS)

∂

∂αS
+
1

2
γ(αS)

]
f0M

(
µ2
)
= 0 , γ(αS) =

2µ2

Z

∂Z

∂µ2
(1387)

may be solved in a similar to Equation 53. This means, based on an adequate substitution proce-
dure, with proper initial conditions we may use the associated truncated3 asymptotic expansions
of β(αS) as well as γ(αS). Consequently, one gets the general solution (see for example [45, 644])

f0M
(
µ2
)

f0M
(
µ20
) =
[
αS
(
µ2
)

αS
(
µ20
)
]−γ(0)

β0

[
4πβ0+β1αS

(
µ2
)

4πβ0+β1αS
(
µ20
)
]− 2

β1

(
γ(1)−

β1
2β0

γ(0)
)

(1388)

1 Again, we will swap between f0M and f(0)M , if we see fit. Here, one has to find a compromise between overloading the
expressions and precision.

2 The RG of Equation 1387 boils down to Equation 261.
3 The asymptotic expansions will be taken into account up to the intended order of accuracy.
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at NLO accuracy4. Moreover, in the case of a small strong coupling constant αS
(
Q2
)
� 1

(
for

Q=µ,µ0
)
, Equation 1388 can be simplified to 5

f0M
(
µ2
)

f0M
(
µ20
)≈
[
αS
(
µ2
)

αS
(
µ20
)
]−γ(0)

β0
(
1+

αS(µ20)−αS(µ
2)

2πβ0

(
γ(1)− β1

2β0
γ(0)

))
. (1389)

The latter results in Equation 462 when adapted to the rest of our notation
(
e. g., γ(0) → 0,

γ(1)→ −4Nf
)
.

c.2 list of anomalous dimensions

For this work a full NLO evolution of the η and η′ DAs is needed. Correspondingly, within the sub-
sequent subsection we list all required anomalous dimensions. For this purpose, we collect and
adapt the results of [129, 385] to the formalism of [26, 304]. Besides, the anomalous dimensions
of the parity-odd sector, the non-singlet case is listed up to NLO accuracy. Most importantly, the
formalism given below, together with Section 3.3.3 and Section C.6 builds a stand-alone toolbox
for the intended (NLO) evolution of η(′) meson DAs.

The literature does not provide us with a (flawless) list of anomalous dimensions ready to use6.
However, after some modifications and cross-checks with the splitting functions of7 [129, 385]
the subsequent anomalous dimensions for the parity-odd case have been found.

Let us start with the Gegenbauer coefficients of the flavor-octet contributions. The analytically
continued LO flavor non-singlet anomalous dimensions are given by [36, 281, 385] (n > 0):

γ
(0)
n = Cf

[
4ψ(n+ 2) + 4γE − 3−

2

(n+ 1) (n+ 2)

]
, (1390)

where ψ(x) = d
dxΓ(x) is the digamma and Γ(x) the usual gamma function. For the NLO case, we

will use the definition (cf. Equation 116)

γ
(1)
n = NSγ

(1)
n , (1391)

4 When asymptotically expanding γ(αS) in powers of “αS2π ”, the first two coefficients are γ(0) and γ(1). This is similar
to Equation 262, except for an extra minus signs.

5 Here, we may use xb≈1+b (x− 1), because x≈1 is fulfilled.
6 Due to this lack of information, it seems obligatory to list the used anomalous dimensions explicitly.
7 Unfortunately, the published version uses a different representation compared to the “arXiv” version which may lead to

some confusion.
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with the explicit expression [36, 129, 385] (n > 0)

NSγ
(1)
n = 8CfS̃1,2(n) (CA − 2Cf) + 4CACfS3(n− 1)

+
4(2n+ 3)CfS̃2(n) (CA − 2Cf)

(n+ 1) (n+ 2)
− 4CfS̃3(n) (CA − 2Cf)

+
2

9
CfS1(n− 1)

(
67CA −

18Cf
(
4n4 + 18n3 + 31n2 + 24n+ 8

)

n2 (n+ 1)2 (n+ 2)2

)

− 8C2fS1,2(n− 1) − 8C2fS2,1(n− 1)

+
2

3
CfS2(n− 1)

(
3

(
n (3n+ 5)

(n+ 1) (n+ 2)
−
4

n

)
Cf − 11CA

)

+
Cf

36n3 (n+ 1)3 (n+ 2)3

((
− 51n9 + 613n8 + 6297n7

+ 20435n6 + 31794n5 + 25568n4 + 10944n3 + 4288n2

+ 3072n+ 1152
)
CA − 9

(
3n9 + 27n8 + 51n7 − 11n6

+ 206n5 + 1692n4 + 3888n3 + 4224n2 + 2304n+ 512
)
Cf

)

+Nf

((
3n6 − 62n5 − 309n4 − 456n3 − 168n2 + 128n+ 96

)
Cf

18n2 (n+ 1)2 (n+ 2)2

−
20

9
CfS1(n− 1) +

4

3
CfS2(n− 1)

)
. (1392)

Here, the following functions have been used [36, 129, 385]

Sr(n) =

n∑
i=1

sgn(r)i

i|r|
, (1393)

Sr,s(n) =

n∑
k=1

k∑
j=1

sgn(r)k

k|r|
sgn(s)j

j|s|
, (1394)

S̃r(n) =

n∑
i=1

(−1)i

ir
, (1395)

S̃r,s(n) =

n∑
k=1

k∑
j=1

1

kr
(−1)j

js
. (1396)

Moreover, the (cf. Section 3.3.3) off-diagonal mixing coefficients may be introduced

dkn

(
µ2,µ20

)
= rnk

(
µ2,µ20

)
Mkn , (1397)

with the help of

rnk

(
µ2,µ20

)
=

−1

γ
(0)
n −γ

(0)
k −β0

1−
[
αS
(
µ2
)

αS
(
µ20
)
]γ(0)

n −γ
(0)
k −β0
β0

 (1398)
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and the matrix

Mkn =
(k+ 1) (k+ 2) (2n+ 3)

(n+ 1) (n+ 2)

[
γ
(0)
k − γ

(0)
n

]
×

×
{
4CfA

k
n − γ

(0)
k −β0

(n− k) (n+ k+ 3)
+ 2Cf

Akn −ψ(n+ 2) +ψ(1)

(k+ 1) (k+ 2)

}
. (1399)

The latter contains the definition

Akn = ψ

(
n+ k+ 4

2

)
−ψ

(
n− k

2

)
+ 2ψ(n− k) −ψ(n+ 2) −ψ(1) . (1400)

For the singlet sector, the forward anomalous dimensions “γfw(m)
n ” are formally related to the

diagonal anomalous dimensions via [26]

qqγ
D(m)
n = qqγ

fw(m)
n , qgγ

D(m)
n = qgγ

fw(m)
n

6
n ,

ggγ
D(m)
n = ggγ

fw(m)
n , gqγ

D(m)
n = gqγ

fw(m)
n

n
6 .

}
(1401)

Here, the original forward anomalous dimensions of Equation 118 have been rescaled by ade-
quate factors of

(
1
2

)m
(i. e., m=1 for LO, m=2 for NLO, etc.), while the index j→n+ 1 has been

shifted accordingly. Apart from these modifications, one has to replace Tf→NFTA to get a result
for Nf active flavors. Therefore, the LO expressions for singlet anomalous dimensions are given
by (n>2)

qqγ
D(0)
n = γ

(0)
n , (1402)

qgγ
D(0)
n =

−12Nf
(n+ 1) (n+ 2)

, (1403)

gqγ
D(0)
n =

−Cfn (n+ 3)

3 (n+ 1) (n+ 2)
, (1404)

ggγ
D(0)
n = Nc

[
4ψ(n+ 2) + 4γE −

8

(n+ 1) (n+ 2)

]
−β0 . (1405)

For the NLO anomalous dimensions, the modification

SINGγ
(1)
n = Nf

4TFCf (n+ 3)
(
n3 + 3n2 + 5n+ 4

)

(n+ 1)3 (n+ 2)3
(1406)

is needed to get (cf. [304]):

qqγ
D(1)
n = NSγ

(1)
n + SINGγ

(1)
n . (1407)

In the context of the NLO evolution formalism (cf. Section 3.3.3), Equation 1407 connects the
singlet and the non-singlet sectors with each other. Besides, the case n=0 has to be emphasized:

NSγ
(1)
0 = 0 , SINGγ

(1)
0 = 4Nf , (1408)
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because it is interconnected with the evolution of the singlet decay constant f0M (cf. Section 3.3.3).
Furthermore, the remaining anomalous dimensions are given by:

qgγ
D(1)
n = Nf

(
48TFCA

n2 + 3n+ 2
S̃2(n) +

24TA (CA−Cf)

(n+ 1) (n+ 2)
S21(n− 1)

−
48TF

((
n2 + 3n+ 2

)
Cf −n (2n+ 3)CA

)

n (n+ 1)2 (n+ 2)2
S1(n− 1)

−
12TF

n (n+ 1)3 (n+ 2)3

(
2
(
n5 + 6n4 + 6n3 − 7n2 − 18n

− 12)CA +
(
5n3 + 30n2 + 56n+ 33

)
n2Cf

)
+
24TF(CA+Cf)

(n+1)(n+2)
S2(n−1)

)
, (1409)

and

gqγ
D(1)
n = −

n (n+ 3)Cf (CA−Cf)

3 (n+ 1) (n+ 2)
S21(n− 1)

+
2n (n+ 3)CACf
3 (n+ 1) (n+ 2)

S̃2(n) +
n (n+ 3)Cf (CA+Cf)

3 (n+ 1) (n+ 2)
S2(n− 1)

+
Cf

9 (n+ 1)2 (n+ 2)2

((
11n4 + 54n3 + 67n2 − 12n− 36

)
CA

− 3
(
3n4 + 12n3 + 3n2 − 22n− 12

)
Cf

)
S1(n− 1)

+
Cf

54n (n+ 1)3 (n+ 2)3

(
9
(
9n7 + 63n6 + 152n5 + 159n4

+ 125n3 + 180n2 + 160n+ 48
)
Cf − 2n

(
76n6 + 585n5

+ 1573n4 + 1605n3 + 151n2 − 678n− 324
)
CA

)

+Nf

(
4TF

(
5n4 + 21n3 + 10n2 − 30n− 18

)
Cf

27 (n+ 1)2 (n+ 2)2

−
4TFn (n+ 3)Cf
9 (n+ 1) (n+ 2)

S1(n− 1)

)
, (1410)
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as well as

ggγ
D(1)
n = −

8nC2A
n2 + 3n+ 2

S̃2(n) + 4C
2
AS̃3(n) − 8C

2
AS̃1,2(n)

+
2C2A

9n2 (n+ 1)2 (n+ 2)2

(
67n6 + 402n5 + 799n4

+ 588n3 − 128n2 − 432n− 144
)
S1(n− 1)

+ 4C2AS3(n− 1) − 8C2AS1,2(n− 1) − 8C2AS2,1(n− 1)

−
8
(
2n2 + 3n+ 2

)
C2A

n (n+ 1) (n+ 2)
S2(n− 1)

−
C2A

9n3 (n+ 1)3 (n+ 2)3

(
48n9 + 164n8 − 369n7

− 2474n6 − 4695n5 − 2990n4 + 2820n3 + 6056n2

+ 3888n+ 864) +Nf

(
2TF

9n (n+ 1)3 (n+ 2)3

(
4
(
3n7

+ 17n6 + 27n5 − 23n4 − 141n3 − 215n2 − 150n

− 40)CA + 9n
(
n6 + 9n5 + 35n4 + 71n3 + 70n2

+ 30n+ 8)Cf) −
40

9
TFCAS1(n− 1)

)
. (1411)

According to [26, 27] the non-diagonal anomalous dimensions may be defined by

qqγ
ND(1)
nm =

(
qqγ

(0)
n −qqγ

(0)
m

) [
dnm

(
β0−

qqγ
(0)
m

)
+ qqgnm

]

−
(
qgγ

(0)
n −qgγ

(0)
m

)
dnmgqγ

(0)
m + qgγ

(0)
n
gqgnm , (1412)

qgγ
ND(1)
nm =

(
qgγ

(0)
n −qgγ

(0)
m

)
dnm

(
β0 −

ggγ
(0)
m

)

−
(
qqγ

(0)
n − qqγ

(0)
m

)
dnmqgγ

(0)
m + qgγ

(0)
n
gggnm

− qgγ
(0)
m
qqgnm , (1413)

gqγ
ND(1)
nm =

(
gqγ

(0)
n −gqγ

(0)
m

)
dnm

(
β0 −

qqγ
(0)
m

)

−
(
ggγ

(0)
n − ggγ

(0)
m

)
dnmgqγ

(0)
m + gqγ

(0)
n
qqgnm

− gqγ
(0)
m
gggnm +

(
ggγ

(0)
n − qqγ

(0)
m

)
gqgnm , (1414)

ggγ
ND(1)
nm =

(
ggγ

(0)
n −ggγ

(0)
m

) [
dnm

(
β0−

ggγ
(0)
m

)
+ gggnm

]

−
(
gqγ

(0)
n −gqγ

(0)
m

)
dnmqgγ

(0)
m − qgγ

(0)
m
gqgnm . (1415)

Here, the named definitions contain several abbreviations, such as

dnm = −
1

2

(2m+ 3)
[
1+ (−1)n−m

]

(n−m) (n+m+ 3)
, (1416)



C.3 leading-order evolution kernels 283

along with (see also [26]):

qqgnm = 2Cfdnmθn−2,m

{
2Amn + (Amn −ψ(n+ 2) +ψ(1))

(n−m) (n+m+ 3)

(m+ 1) (m+ 2)

}
, (1417)

gqgnm = Cfdnmθn−2,m
(n−m) (n+m+ 3)

3 (m+ 1) (m+ 2)
, (1418)

gggnm = 2CAdnmθn−2,m {2Amn + (Amn −ψ(n+ 2) +ψ(1))×

×
[
Γ(n+ 4) Γ(m)

Γ(n) Γ(m+ 4)
− 1

]
+ 2 (n−m) (n+m+ 3)

Γ(m)

Γ(m+ 4)

}
, (1419)

where we use

θn,m =

{
1 , n > m

0 , n < m
. (1420)

c.3 leading-order evolution kernels

This is a short supplement for the LO evolution kernels. The latter were used for the adaptation
of the LO and NLO anomalous dimensions, as discussed in Section C.5 as well as Section C.2.
Moreover, in Section 4.2.4, one of these kernels is explicitly needed.
Since they have been investigated in a number of papers, such as [20–27, 645], we only collect
the corresponding results:

qqV
(1)
D (x,y) = −2Cf

{
x

y

[
1+

1

y− x

]
θ(y− x) +

{
x→x̄
y→ȳ

}}
+

, (1421)

qgV
(1)
D (x,y) = 2Cf

{
x

y2
θ(y− x) −

{
x→x̄
y→ȳ

}}
, (1422)

gqV
(1)
D (x,y) = −2Nf

{
x2

y
θ(y− x) −

{
x→x̄
y→ȳ

}}
, (1423)

ggV
(1)
D (x,y) = −2Nc

{
x

y

[(
θ(y− x)

y− x

)

+

+
ξx

y
θ(y− x)

]
+
{
x→x̄
y→ȳ

}}
−β0δ(x− y) . (1424)

Here, the plus distribution occurs which is defined by (cf. [20])

[F(x,y)]+ = F(x,y) − δ(x− y)
∫1
0

d z F(z,y) . (1425)

Most importantly, the conversion to the formalism of [20] is given by
(
σ=
√
Cf/Nf and a=q,g

)
:

Vaa(x,y) = −aaV
(1)
D (x,y) (1426)

Vqg(x,y) = −qgV
(1)
D (x,y)σ−1 (1427)

Vgq(x,y) = −gqV
(1)
D (x,y)σ . (1428)

Therefore, the original LO eigenvalue problem (see, e. g., [20]) boils down to (a,b=q,g):∫1
0

dy
[
abV

(1)
D (x,y)ϕ(ν(b))

n (y)
]
= baγ

(0)
n ϕ

(ν(a))
n (x)

⇔
∫1
0

dy
[
Vab(x,y)ϕ(ν(b))

n (y)
]
= γabn ϕ

(ν(a))
n (x) , (1429)
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where we have introduced the abbreviations

ϕ
(α)
n (x) := [xx̄]α−

1
2 C(α)

n+3/2−α
(ξx) , (1430)

ν(a) :=
{
3/2 , a=q
5/2 , a=g , (1431)

along with (a = q,g)

γaan = −aaγ
(0)
n , (1432)

γqgn = −gqγ
(0)
n σ−1 , (1433)

γgqn = −qgγ
(0)
n σ . (1434)

Besides, in the context of Equation 1429 and for the given anomalous dimensions (cf. Section C.2,
Section A.12) the kernels may also be expressed via8

Vab(x,y) =
∞∑
n=2

γabn ϕ
(ν(a))
n (x)

C(ν(b))
n+3/2−ν(b)

(ξy)

N
(ν(b))
n+3/2−ν(b)

. (1435)

Furthermore, the connection to the LO renormalization matrix Z is given by (e. g., [20])

Z
(
x,y;αS

(
µ2
))

= δ(x−y) 12︸ ︷︷ ︸
=1(x,y)

+
αS
(
µ2
)

4π

1

ε

(
Vqq(x,y) Vqg(x,y)
Vgq(x,y) Vgg(x,y)

)

︸ ︷︷ ︸
=V(1)(x,y)

, (1436)

which is consistent∫1
0

d x′Z−1
(
x, x′;αS

(
µ2
))

Z
(
x′,y;αS

(
µ2
))

=

∫1
0

d x′
[

1(x,x′) −
αS
(
µ2
)

4π

1

ε
V(1)

(
x, x′

)
][

1(x
′,y) +

αS
(
µ2
)

4π

1

ε
V(1)

(
x′,y

)
]
= 1(x,y) , (1437)

with the ansatz Equation 430

(
up to O(αS) accuracy

)

−

∫1
0

d x′Z−1
(
x, x′;αS

(
µ2
))[

µ2
∂

∂µ2
Z
(
x′,y;αS

(
µ2
))]

=
αS
(
µ2
)

4π
V(1)(x,y) +O

(
α2S

)
. (1438)

Here, we use (cf. Equation 64 and [20])

β
(
αS

(
µ2
)

, ε
)
= −εαS

(
µ2
)
−β0

α2S
(
µ2
)

4π
+O

(
α3S

)
. (1439)

Last but not least, the LO non-singlet evolution kernel V(1)
NS

V
(1)
NS (x,y) = qqV

(1)
D (x,y) . (1440)

coincides with the singlet kernel qqV(1)
D [3]. This is particularly important for matching the

normalization constants of octet and singlet DAs.

8 Here, we also use γqq0 ≡0.
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c.4 projection operators for the evolution procedure

This is a short supplement concerning the projection operators of Equation 444. The latter ef-
fectively decouple the evolution of the Gegenbauer coefficients c(a)n,M (with a=±; see also Sec-
tion 3.3.2). That may be most easily seen in the eigenbasis of the ±-modes:

P±n
∣∣
eig =

±1
γ
(+)
n − γ

(−)
n

(
diag

(
γ
(+)
n ,γ(−)

n

)
− γ

(∓)
n 12

)
=

{
diag(1, 0) for “+ ′′

diag(0, 1) for “− ′′
. (1441)

Accordingly, with the change of basis (cf. Equation 437, Equation 440)

P±n = [TnDn]
(
P±n
∣∣
eig

) [
D−1
n T

−1
n

]
(1442)

the projection operators of Equation 444, i. e., for the basis related to c(a)n,M
(
with a= 1,g

)
can

be reproduced. Based on the structure of Equation 441, which includes a vanishing gluonic
Gegenbauer moment, we may define

P+0 :=

(
1 0

0 0

)
, P−0 :=

(
0 0

0 1

)
. (1443)

This is possible, because the analytic continuation of P±n to n=0 represents an upper triangular
matrix. Furthermore, the operators P±n act on the eigenstates of the corresponding evolution
equation, and fulfill

P+n +P−n = 12 ,
(
P±n
)2

= P±n , P+nP
−
n = 0 . (1444)

c.5 details of kroll’s formalism

In this section, we provide a comparison to other conventions, such as [20, 28]. Furthermore,
the following steps have been important when adapting the existing formalism of the singlet
evolution. Therefore, it seems reasonable to mention some details.

When focusing on LO accuracy, Equation 434 and Equation 435 lead to the ansatz of [20]

µ
d

dµ
[
L~cn,M(µ)

]
=
αS(µ)
4π K

(
γ
qq
n γ

qg
n

γ
gq
n γ

gg
n

)
K−1

[
L~cn,M(µ)

]
, (1445)

which entails the relation

K

(
γ
qq
n γ

qg
n

γ
gq
n γ

gg
n

)
K−1 = −LTnγ

D(0)
n TnL

−1 (1446)

together with the coefficient matrices

L = diag(l1, l2) , (1447)

K = diag(k1,k2) . (1448)

Here, the entries of K correspond to the (chosen) normalization constants of the quark-antiquark
and two-gluon leading twist DAs, i. e., for this work, they are given by (cf. Chapter 3):

k1 = 6 , k2 = 30 , (1449)
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whereas for [20] they are defined via

k1 = 6 , k2 = 1 . (1450)

On the other hand, L collects the additional factors of σ=
√
Cf/Nf

(
except for possible constants,

that usually cancel in the quotient l1/l2
)
, e. g.,

L = diag
(
1,σ−1

)
. (1451)

According to Equation 1446, the differences between the formalism of [20] and this work will
be present in the off-diagonal elements of the anomalous dimension matrices. Thus, it can be
absorbed within the gluonic DA (see also [20]). Moreover, by interchanging the off-diagonal
elements related to the anomalous dimension matrix γD(0)

n , we may reproduce the LO set-up of
[20], as well as that mentioned in Section 3.3.2 (again neglecting extra prefactors, such as those
of L, K). However, for this purpose the matrix Tn (cf. Equation 437) has to be constructed. This
is possible due to (see also [20]) the relation

qgγ
(0)
n

gqγ
(0)
n

=
N

(3/2)
n

N
(5/2)
n−1

Nf
Cf

. (1452)

c.6 next-to-leading order singlet evolution

In this section, we collect the definitions used to reformulate the NLO singlet evolution.

As discussed in Section 3.3.3, the general solution of Equation 429 is given in terms of the
partial conformal wave expansion [27]

φM

(
x,µ2

)
=

∞∑
j=0



∞∑
k=j

φk(x)Bkj

(
µ2,µ20

)

Ej

(
µ2,µ20

)
φ̃j,M

(
µ20

)
. (1453)

Here, the partial conformal wave matrix

φj

(
x;µ2,µ20

)
=

∞∑
k=j

φk(x)Bkj

(
µ2,µ20

)
, (1454)

with the LO kernel eigenfunctions

φk(x) = diag

(
xx̄

N
(3/2)
k

C(3/2)
k (ξx) ,

x2x̄2

N
(5/2)
k−1

C(5/2)
k−1 (ξx)

)
, (1455)

is an eigenstate of Equation 429 to all orders of αS (cf. [26]). Moreover, the B-matrix9

Bkj

(
µ2,µ20

)
= δkj12 +B

(1)
kj

(
µ2,µ20

)
+O

(
α2S

)
(1456)

defines the higher order corrections to the tree-level eigenfunctions, including the non-diagonal
behavior of the kernel. It is (up to NLO in αS) determined by [26]

=
1

β0

{[
γD(0),B(1)

(
µ2,µ20

)]
+
αS
(
µ2
)

2π
γND(1)

}
+O

(
α2S

)
, (1457)

9 We use the abbreviations Bkj
(
µ2,µ20

)
≡Bkj

(
αS
(
µ2
)

,αS
(
µ20
))

and Ej
(
µ2,µ20

)
≡Ej

(
αS
(
µ2
)

,αS
(
µ20
))

.
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with the (NLO) solution (k>j)

B
(1)
kj

(
µ2,µ20

)
=
αS
(
µ2
)

2π
D
j
k

(
µ2,µ20

)
, (1458)

where we introduce the abbreviation10

Dkn

(
µ2,µ20

)
=
∑
a,b=±

Rabnk

(
µ2,µ20

)
PanM

k
nP
b
k , (1459)

with

Rabnk

(
µ2,µ20

)
=

−1

γ
(a)
n −γ

(b)
k −β0

1−
[
αS
(
µ2
)

αS
(
µ20
)
]γ(a)

n −γ
(b)
k −β0
β0

 . (1460)

Moreover, the scale dependence of multiplicatively renormalizable moments is encoded in the
evolution operator

φ̃j,M

(
µ2
)
= Ej

(
µ2,µ20

)
φ̃j,M

(
µ20

)
, (1461)

which is (up to NLO) determined by [26]

d
d lnαS

(
µ2
)ENLO

(
µ2,µ20

)
=
1

β0

{
γ

D(0)
j +

αS
(
µ2
)

2π
Γj

}
ENLO

(
µ2,µ20

)
+O

(
α2S

)
. (1462)

This includes the matrix

Γj = γ
D(1)
j −

β1
2β0

γ
D(0)
j (1463)

and the boundary condition

ENLO
(
µ20,µ20

)
= 12 = ELO

(
µ20,µ20

)
. (1464)

In order to decouple the evolution of f0M and the singlet Gegenbauer moments (cf. Section 3.3.3),
one has to replace γD(1)

j →γ(1)j (cf. Equation 466) in Equation 1463. Nevertheless, for the corre-
sponding NLO solution of Equation 1462 we may write

ENLO
j

(
µ2,µ20

)
=
∑
a,b=±

[
δabPaj +

αS
(
µ2
)

2π
Rabjj

(
µ2,µ20

)
Paj ΓjP

b
j

][
αS
(
µ2
)

αS
(
µ20
)
]γ

(b)
j

β0

. (1465)

In general, the definitions of Equation 1465 and Equation 1458 ensure, that there are no radiative
corrections at the reference scale µ20. Therefore, the Gegenbauer moments at µ20 are defined via

φ̃j,M

(
µ20

)
=

∫1
0
d x Cj(x)φM

(
x,µ20

)
, (1466)

using the matrix (cf. [26])

Cj(x) = diag
(

C(3/2)
j (ξx) , C(5/2)

j−1 (ξx)
)

. (1467)

10 These choices create an analogy to Equation 1397 and Equation 1398 of the octet case.
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particle : valence state : flavor structure :

π− ūd T1 + iT2

K− ūs T4 + iT5

K
0

d̄s T6 + iT7

π0 1√
2

(
ūu− d̄d

) √
2T3

η,η′


1√
3

(
ūu+ d̄d+ s̄s

)

1√
6

(
ūu+ d̄d− 2s̄s

)


{ √

2T0√
2T8

}

Table 22: The flavor structure Equation 1470 of the corresponding valence quark state “ΨFΨ” (omitting the
associate Lorentz structure, etc.).

Furthermore, a compatibility with the formalism of this work requires the following substitu-
tions (cf. Section 3.3.3):

φ̃j,M

(
µ20

)
= f0M

(
µ20

)
T j~cj,M

(
µ20

)
, (1468)

φj(x) = Ψj(x) T
−1
j , (1469)

which may be seen by a straightforward calculation. When inserting Equation 1458, Equation 1465,
Equation 1468 and Equation 1469 in the general solution of Equation 1453, we get the NLO ex-
pression, as given by Equation 455.

c.7 equations of motion

In the following, we provide some basic details, which are needed to derive the necessary EOM.
Moreover, in order to shorten the results, we apply Equation 141. The latter is especially useful,
when relating the specific flavor structure11

(
αA ∈ C

)

F =

8∑
A=0

αAT
A (1470)

to the valence quark content “Ψf [F]ff
′
Ψf′” of a given particle. Thus, for kaons and charged

pions we get (cf. Table 22), Equation 1470 boils down to (A=1, 4, 6)

F = TA ± iTA+1 , (1471)

while π0 along with η(′) imply (A=0, 3, 8)

F =
√
2TA . (1472)

Additionally, the abbreviations defined in Equation 1070 and Equation 1071 have to be applied.
In a nutshell, a reasonable ansatz to devise relations between DAs is based on non-local opera-
tor identities, known as EOM. For this work it is sufficient to analyze the total translation and
dilatation of (cf. [313] and references therein)

Ψf(n)
[√
2TA

]ff′
σµνγ5Ψf′(−n) , (1473)

11 In the context of Table 22, the related anti-particles would have a flavor structure proportional to F† corresponding to F

of the particle.
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along with

Ψf(n)
[√
2TA

]ff′
γµγ5Ψf′(−n) . (1474)

In this context, all required EOM contain the standard QCD EOM (cf. Equation 1155, Equation 1156)

γµ
∂

∂xµ
ψ(x) = igAµ(x)γµψ(x) − imψψ(x) (1475)

∂

∂xµ
ψ̄(x)γµ = −igψ̄(x)γµA

µ(x) + imψψ̄(x) (1476)

and derivatives of Wilson-lines12, similar to (cf., e. g., [646] )

∂

∂hµ
[x+ h,h− x]

∣∣∣∣
h→0

= igAµ(x) [x,−x] − ig [x,−x]Aµ(−x)

− ig

∫1
−1

d v [x, vx] xρGρµ(vx) [vx,−x] , (1477)

∂

∂xµ
[x,−x] = igAµ(x) [x,−x] + ig [x,−x]Aµ(−x)

− ig

∫1
−1

d v [x, vx] vxρGρµ(vx) [vx,−x] . (1478)

In the following, we also use the abbreviation [271]

∂ρF(x) =
∂

∂hρ
F(x+ h)

∣∣∣∣
h→0

, (1479)

and omit the gauge-links. Furthermore, we assume non-vanishing (light-like) distances. After
a short straight forward calculation (applying Equation 1475-Equation 1478), we can reproduce
the well known EOMs (cf. [3, 271, 313, 315])

∂

∂xµ
{χ̄(x)σµνγ5ψ(−x)} = −∂νχ̄(x) iγ5ψ(−x) −

(
mχ +mψ

)
χ̄(x)γνγ5ψ(−x)

− ig

∫1
−1

d v χ̄(x) xρGρν(vx) iγ5ψ(−x)

− ig

∫1
−1

d v χ̄(x) vxρGρµ(vx)σµνγ5ψ(−x) , (1480)

∂µ {χ̄(x)σµνγ5ψ(−x)} = −
∂

∂xν
χ̄(x) iγ5ψ(−x) +

(
mψ −mχ

)
χ̄(x)γνγ5ψ(−x)

− ig

∫1
−1

d v χ̄(x) vxρGρν(vx) iγ5ψ(−x)

− ig

∫1
−1

d v χ̄(x) xρGρµ(vx)σµνγ5ψ(−x) , (1481)

12 When calculating the EOM, contributions of gluon-four potentials related to the Dirac equations will cancel with counter
terms caused by Equation 1477 and Equation 1478.
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along with

∂

∂xµ
{χ̄(x)γµγ5ψ(−x)} =

(
mχ −mψ

)
χ̄(x) iγ5ψ(−x)

− ig

∫1
−1

d v χ̄(x) vxρGρµ(vx)γµγ5ψ(−x) , (1482)

∂µ {χ̄(x)γµγ5ψ(−x)} =
(
mψ +mχ

)
χ̄(x) iγ5ψ(−x)

− ig

∫1
−1

d v χ̄(x) xρGρµ(vx)γµγ5ψ(−x) , (1483)

which are valid for arbitrary quark flavors χ and ψ, e. g., χ,ψ=u,d, s. We also have to consider
a shifted version of Equation 1483 for equal flavors (cf. Section 3.4.3)

∂µ
{
ψ̄(x+a)γµγ5ψ(b−x)

}
= −i

∫1
0
d v ψ̄(x+a)∆ρgGρµ(v(a+x)+v̄ (b−x))γµγ5ψ(b−x)

+ 2mψψ̄(x+a) iγ5ψ(b−x) , (1484)

with ∆ρ=(a− b+ 2x)ρ, e. g., aµ=z1nµ and bµ=z2nµ (cf. Chapter 3). Although Equation 1480-
Equation 1483 are most suitable for describing kaons and charged pions (cf. Table 22), it seems
more convenient to model adequate EOMs in terms of related symmetry currents when consid-
ering π0 and η(′) mesons. Accordingly, when combining Equation 1480 and Equation 1481 with
Equation 1069, we get13:

∂µ
{
Ψf(x)σµνγ5

[√
2TA

]ff′
Ψf′(−x)

}
= −

∂

∂xν

{
Ψf(x) iγ5

[√
2TA

]ff′
Ψf′(−x)

}
+
∑
B∈I

βABΨf(x)γνγ5

[√
2TB

]ff′
Ψf′(−x)

− ig

∫1
−1

d vΨf(x) vxρGρν(vx) iγ5
[√
2TA

]ff′
Ψf′(−x)

− ig

∫1
−1

d vΨf(x) xρG µρ (vx)σµνγ5

[√
2TA

]ff′
Ψf′(−x) , (1485)

along with

∂

∂xµ

{
Ψf(x)σµνγ5

[√
2TA

]ff′
Ψf′(−x)

}
= −∂ν

{
Ψf(x) iγ5

[√
2TA

]ff′
Ψf′(−x)

}
−
∑
B∈I

αABΨf(x)γνγ5

[√
2TB

]ff′
Ψf′(−x)

− ig

∫1
−1

d vΨf(x) xρGρν(vx) iγ5
[√
2TA

]ff′
Ψf′(−x)

− ig

∫1
−1

d vΨf(x) vxρG µρ (vx)σµνγ5

[√
2TA

]ff′
Ψf′(−x) . (1486)

13 Such a closed form unleashes its full power in the context of the SO basis, where the different flavors a priori belong to
fundamentally different currents.
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Here, we may either set I = {0, 1, . . . , 8} or I = {q, s, 1, . . . , 7}, while using A = 8, 0 or A = q, s.
Analogously, the two-particle twist four DAs can be constrained with

∂µ
{
Ψf(x)γµγ5

[√
2TA

]ff′
Ψf′(−x)

}
= −ig

∫1
−1

d vΨf(x) xαGαµ(vx)γµγ5
[√
2TA

]ff′
Ψf′(−x)

+
∑
B∈I

αABΨf(x) iγ5

[√
2TB

]ff′
Ψf′(−x) , (1487)

as well as

∂

∂xµ

{
Ψf(x)γµγ5

[√
2TA

]ff′
Ψf′(−x)

}
= −ig

∫1
−1

d vΨf(x) vxαGαµ(vx)γµγ5
[√
2TA

]ff′
Ψf′(−x)

−
∑
B∈I

βABΨf(x) iγ5

[√
2TB

]ff′
Ψf′(−x) . (1488)

With Equation 1485-Equation 1488 at light-like separations, a consistent application of Equa-
tion 325 and Equation 327-Equation 331 is possible (cf. Section 3.4).

c.8 twist-three distribution amplitudes

This short supplement, provides selected details related to the derivation of two-particle twist-
three η(′) meson DAs. In the following we, therefore, take the chance to calculate14 all involved
quantities and cross-check our results with those of the existing pion and kaon case (cf. [142, 271]).
The latter are presented in Section C.9.

One method (cf. Section 3.4.2) to derive the explicit solutions for Equation 502, along with Equa-
tion 513 is based on a formal expansion of Equation 489 and Equation 490 in powers of P·n=P+(
with n2=0

)
. As a consequence, the generic expressions∫1

0
dx eiξxP+ξxφ(x) =

∞∑
m=0

(iP+)
m

m!

[
M
φ
m+1

]
, (1489)

iP+

∫1
0
dx eiξxP+φ(x) =

∞∑
m=0

(iP+)
m

m!

[
mM

φ
m−1

]
, (1490)

iP+

∫1
0
dx eiξxP+ξxφ(x) =

∞∑
m=0

(iP+)
m

m!

[
mMφm

]
, (1491)

as well as
(
cf. Equation 494, with z=(−1, 1, v)

)

∫1
−1

dvΦA3M(z ,P+) =
∞∑
m=0

(iP+)
m

m!

∫1
−1

dv �(α1−α2−vα3)
m� , (1492)

iP+

∫1
−1

dv vΦA3M(z ,P+) =
∞∑
m=0

(iP+)
m

m!

∫1
−1

dv vm�(α1−α2−vα3)
m−1� , (1493)

14 For this purpose, we have reverse engineered the findings of [332] and applied the techniques in a broader context.
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arise15. Again, the test function “φ” represents an arbitrary DA. Evidently, dependencies on the
indices “m” may be translated into derivatives with respect to the longitudinal parton momen-
tum fractions, via integration by parts. Hence, we find the identity16 (n,k ∈N0)

2 (n+ k)Mφn = 2 (k− 1)Mφn −Mφ
′
n+1 + ξn+1x φ(x)

∣∣∣
1

0
, (1494)

which unleashes its full power when used iteratively or as superposition for different values
of the involved indices. For instance, Equation 497 implies the pattern

(
including an auxiliary

function L(x)
)

(n+ 1)Mφn − (n− 1)Mφn−2 =
1

2
ML
n−1 , (1495)

with the solution17 (cf. Equation 1494)∫1
0
dx ξn−1x

[
4xx̄ d

dxφ(x)
]
− ξn−1x [4xx̄φ(x)]

∣∣∣
1

0
=

∫1
0
dx ξn−1x L(x) . (1496)

According to the formal structure of φA;p
3M (cf. Equation 479) all surface terms in Equation 1496

vanish, i. e., for the substitution φ→φA;p
3M . Surface terms also vanish for the discussed integral

equations which can include φA;σ
3M , φAM, ϕA;(1)

3M as well as ϕA;(2)
3M (see discussion below). Further-

more, for the proper derivation of all source terms, Equation 497 has to be converted into the
form of Equation 1496. For example, Equation 497 gives rise to18

(n+1)M
φ
A;p
3M
n −(n−1)M

φ
A;p
3M
n−2

∣∣∣∣
ρM−

=
∑
B∈I

[
ρM−

]AB
(n+ 1)M

φBM
n−1, (1497)

which may be solved with Equation 1494:

2(n+ 1)Mφn−1 = ξnxφ(x)|
1
0 +

∫1
0
dx ξn−1x

[
2φ(x) − ξxφ

′(x)
]

. (1498)

The appearance of Equation 1498, however, changes after integration (cf. Equation 505), because
the contributions in

(
ξv̄=−ξv

)

1

v̄

[
2φ(v) − ξvφ

′(v)
]
=
1

v̄

[
2φ(v) −φ′(v)

]
+ 2φ′(v) , (1499)

1

v

[
2φ(v) − ξvφ

′(v)
]
=
1

v

[
2φ(v) +φ′(v)

]
− 2φ′(v) , (1500)

proportional to “2φ′(v)” imply vanishing surface terms. Similar considerations lead to the solu-
tion Equation 500, along with Equation 503 to Equation 505. Some three-particle contributions
cannot be solved by the (multiple) application of Equation 1494 alone. For instance (cf. Equa-
tion 497):

4(n−1)(n−2)Mφn−3=M
φ′′
n−1−ξ

n−2
x

[
ξxφ

′(x)−2 (n−1)φ(x)
]∣∣∣
1

0
(1501)

15 For the derivation of Equation 1489–Equation 1493 in their present form, the interchangeability of summation and
integration has been assumed.

16 Here, we use the abbreviations φ′(x)= d
dxφ(x) and φ′′(x)= d2

dx2φ(x).
17 Due to the structure of Equation 1496, all source terms (and involved DAs) are well-defined up to a possible null set. In

order to eliminate this apparent ambiguity, one may define adequate equivalent relations and quotient spaces (cf. [647]).
18 Equation 1497 is restricted to the contributions of Equation 497 proportional to ρM− .
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additionally requires relations similar to

4(n+ 1)(n− 1)Mφn−2 =

∫1
0
dx ξn−1x

[
ξxφ

′′(x) − 2φ′(x)
]

− ξn−1x

[
ξxφ

′(x)−2 (n+1)φ(x)
]∣∣∣
1

0
. (1502)

Analogously, the careful use of Equation 1494, e. g.,

(n+ 3)Mφn − (n− 1)Mφn−2 = 2

∫1
0
dx ξn−1x

[
ξxφ(x) + xx̄φ

′(x)
]
− 2ξn−1x xx̄φ(x)

∣∣∣
1

0
(1503)

reveals the underlying structure of Equation 512 and φA;σ
3M . It should be noted, that similar

structures, such as Equation 503–Equation 505 and Equation 514–Equation 516 have been found
for the kaon case (cf. [271]). Therefore, we confirm their universal structure for the pseudoscalar
meson sector and extend their use to the η(′) mesons.
Before we proceed, let us discuss the structure of twist-three DAs formulated in the SO basis (cf.
Section 3.4.2 for definitions). In analogy to Equation 553 we propose the following definitions
(M=η,η′)

h8M = α88f
8
Mh

8
3M , h0M = α00f

0
Mh

0
3M , (1504)

which formally give rise to (cf. Equation 524)

h8M
α88

= −
f8Mm

2
Mα00 +

√
3aMα80 − f

0
Mm

2
Mα80

α280 −α00α88
, (1505)

h0M
α00

=
f8Mm

2
Mα80 +

√
3aMα88 − f

0
Mm

2
Mα88

α280 −α00α88
. (1506)

The latter are consistent with Equation 559 and Equation 560 (see also Table 8). Additionally, in
the SU(3)F limit, i. e.,

m = 1
3 (mu +md +ms) , (1507)

α00, α88 → 2m , (1508)

α08 → 0 , (1509)

Equation 1505 and Equation 1506 boil down to

h0M = m2Mf
0
M −

√
3aM , h8M = m2Mf

8
M . (1510)

This profound simplification may also be seen on the level of twist-three19 DAs (A=0, 8)

hAMφ
A;σ
3M(x) =: φ

A;σ
3M(x) , hAMφ

A;p
3M(x) =: φ

A;p
3M(x) , (1511)

which are formally defined via
(
analogously for “8↔0”

)

φ
8;p
3M(x) = h8M +α88f

8
3Mφ

8;(g)
3M (x) +α288f

8
Mφ

8;(+)
3M (x) +α08α88f

0
Mφ

0;(+)
3M (x) , (1512)

φ
8;σ
3M(x) = 6xx̄h8M +α88f

8
3Mφ̃

8;(g)
3M (x) +α288f

8
Mφ̃

8;(+)
3M (x) +α08α88f

0
Mφ̃

0;(+)
3M (x) . (1513)

19 As discussed in Section 3.4.2, it is reasonable to absorb all hAM factors into the corresponding DAs.
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According to the assumed NLO accuracy in conformal spin and within the SU(2)I limit, we,
therefore, get

(
similar for “8↔0”

)

φ
8;p
3M(x) = h8M + 3α88

[
α08f

0
M

(
1+6c

(0)
2,M

)
+α88f

8
M

(
1+6c

(8)
2,M

)]

+ 15α88

(
2f83M+α08f

0
Mc

(0)
2,M+α88f

8
Mc

(8)
2,M

)
C(1/2)
2 (ξx)

− 3α88f
8
3Mω

8
3MC(1/2)

4 (ξx) +
3

2
α88

[
α08f

0
M

(
1+6c

(0)
2,M

)

+ α88f
8
M

(
1+6c

(8)
2,M

)]
log xx̄ , (1514)

φ
8;σ
3M(x) = 6xx̄

{
h8M +

3

2
α88

[
α08f

0
M

(
1+10c

(0)
2,M

)
+α88f

8
M

(
1+10c

(8)
2,M

)]

+
1

2
α88

[
10f83M − f83Mω

8
3M + 3α08f

0
Mc

(0)
2,M + 3α88f

8
Mc

(8)
2,M

]
C(3/2)
2 (ξx)

}
+ 9xx̄α88

[
α08f

0
M

(
1+6c

(0)
2,M

)
+α88f

8
M

(
1+6c

(8)
2,M

)]
log xx̄ . (1515)

In particular, the SU(3)F symmetric DAs (A=8, 0)

φ
A;p
3M(x) = hAM + 12m2fAM

(
1+6c

(A)
2,M

)
+ 60

(
mfA3M+m2fAMc

(A)
2,M

)
C(1/2)
2 (ξx)

− 6mfA3Mω
A
3MC(1/2)

4 (ξx) + 6m
2fAM

(
1+6c

(A)
2,M

)
log xx̄ , (1516)

φ
A;σ
3M(x) = 6xx̄

[
hAM + 6m2fAM

(
1+10c

(A)
2,M

)

+
(
10mfA3M −mfA3Mω

A
3M + 6m2fAMc

(A)
2,M

)
C(3/2)
2 (ξx)

]

+ 36xx̄m2fAM

(
1+6c

(A)
2,M

)
log xx̄ , (1517)

formally correspond to their QF counter parts, i. e., as given by Equation 554 and Equation 555,
after replacing all relevant parameters, such as “{8, 0}↔ {q, s}”, along with “m↔mq,ms” the
associated quark mass terms.

Nevertheless, the QF DAs rely on milder constraints and consequently have a larger scope of
application (cf. discussion in Section 3.4.2). Therefore, let us resume the initial problem state-
ment, i. e., Equation 474 and Equation 475. For the corresponding explicit calculation of φR;M

↑↓
and φR;M

↓↑ (R=q, s; M=η,η′), Equation 476 as well as Equation 477 have to be written as20:

φR;M
↑↓

(
x,µ2

)
= φR;p

3M

(
x,µ2

)
+
1

6

d
d x
φR;σ
3M

(
x,µ2

)
, (1518)

φR;M
↓↑

(
x,µ2

)
= φR;p

3M

(
x,µ2

)
−
1

6

d
d x
φR;σ
3M

(
x,µ2

)
. (1519)

Based on Equation 554, along with Equation 555 (cf. Section A.12 for the used orthogonality
relations) we, therefore, find the conformal coefficients:

κR;M
0 = hRM + 12

[
1+ 6c

(R)
2,M

]
fRMm

2
A = κR;M

0 ,

κR;M
1 = −24c

(R)
2,Mf

R
Mm

2
R = −κR;M

1 ,

κR;M
2 = 12mR

[
5fR3M + 3c

(R)
2,Mf

R
MmR

]
= κR;M

2 ,

κR;M
3 = 6fR3Mω

R
3MmR = −κR;M

3 .


(1520)

20 Note that EOM relations among φR;M
↑↓

(
or φR;M

↓↑
)

and φR;σ
3M, as mentioned in [271, Chapter 3, p. 13] can be readily

derived from Equation 1518 and Equation 1519.
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twist-two twist-three auxiliary quantities

φRM→φK ΦA3M→Φ3;K φ
A;(g)
3M →φp3,g

φ
A;p
3M→φ

p
3;K φ

A;(±)
3M →φp3,±

φA;σ
3M→φσ3;K φ̃

A;(g)
3M →φσ3,g

φ̃
A;(±)
3M →φσ3,±

fAM→fK fA3M→f3K
∑
B∈I

[
ρM±

]AB
φ
B;(±)
3M →ρK±φp3,±

c
(R)
n,M→aKn λA3M→λ3K

∑
B∈I

[
ρM±

]AB
φ̃
B;(±)
3M →ρK±φσ3,±

ωA3M→ω3K RA3M→η3K

Table 23: Replacement rules (at NLO in conformal spin), used to reproduce the twist-three kaon DAs (cf.
[271]) via the results of Chapter 3.

Moreover, up to the assumed accuracy, we may set κR;M
n ≡ 0≡κR;M

n for n> 4, while the related
logarithmic corrections (cf. Equation 479, Equation 480) are given by

κR;M
log = 12

[
1+ 6c

(R)
2,M

]
fRMm

2
R = κR;M

log . (1521)

Before concluding this supplement, we emphasize, that the use of all named identities is not
restricted to twist-three DAs. Instead, similar integral equations, such as Equation 665 or Equa-
tion 669, with

(
see Equation 334, while using “α3=1−α1 −α2”

)

∫1
−1

d v
∫
Dα [α1 −α2 − vα3]

n−1 F(α) =

∫1
0
d x ξn−1x

∫x
0
dα1

∫ x̄
0
dα2

2F(α)

α3
, (1522)∫1

−1
d v v

∫
Dα [α1 −α2 − vα3]

n−1 F(α) =

∫1
0
d x ξn−1x

∫x
0
dα1

∫ x̄
0
dα2

2 [α1 −α2 − ξx]F(α)

α23
, (1523)

arise for the twist-four case. Hence, their solution is similar to the given approach.

c.9 retrofitted higher twist kaon distribution amplitudes

This section contains a conversion scheme for kaon twist-three DAs, and most importantly an
update of the associated twist-four distributions. For the latter, we also introduce all necessary
parameters and common estimates, based on [271].

Starting with the former, Equation 1480-Equation 1483 and Equation 1485 to Equation 1488 evi-
dently lead to analogous operator relations which only vary in their flavor structure. Consequently,
all implied DAs share a similar structure which is already present in Equation 503-Equation 505

and Equation 514-Equation 516. Thus, instead of introducing adjusted definitions, e. g., (cf. Equa-
tion 1471, Table 22; A=4, 6)

〈0|ψ(z2n) iγ5
[
TA+iTA+1

]
ψ(z1n) |K(P)〉

∣∣∣
n2=0

=
f3K
η3K

∫1
0
dx e−iz

x
21(P·n)φp3;K

(
x,µ2

)
, (1524)
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together with
(
cf. Equation 520, [271], written for the SU(2)I limit

)

〈0|ψσ ζ
+ γ5gG+ζ

[
TA+iTA+1

]
ψ|K(P)〉 = 2if3KP2+ , (1525)

〈0|ψγ+γ5
[
TA+iTA+1

]
ψ|K(P)〉 = ifKP+ , (1526)

f3K
fK

mq +ms

m2K
= η3K , (1527)

we suggest the following replacement rules. Those are intended to reproduce all kaon twist-three
DAs, along with other results of [271] (this excludes the sum rule parameters):

i) Up to NLO in conformal spin, the essential replacements are given by Table 23. Those have
to be combined with

√
2TR →

[
TA+iTA+1

]
, (1528)

for the involved matrix elements (cf. Chapter 3, Section C.7) of charged pions (A = 1) or
kaons (A = 4, 6). Based on the notation of Section 3.4.2, we are, therefore, not only able
to reproduce [271, Equation 3.25, Equation 3.26], but also [271, Equation 3.17], along with
[271, Equation 3.18-Equation 3.23].

ii) Furthermore, several auxiliary quantities include the definitions21 (see Table 23) [271]:

ρK+ =
(ms +mq)

2

m2K
, ρK− =

m2s −m
2
q

m2K
. (1529)

Nonetheless, under specific conditions, both notations (i. e., the corresponding definitions of
Section 3.4.2 and [271]) may coincide. For instance, when neglecting all anomalous contributions
and differences in the Gegenbauer moments, the π− case as implied by

(
up to NLO and within

the strict SU(2)I limit; see [271]
)

aπ1 = 0 , ρπ− = 0 , λ3π = 0 , κ4π = 0 etc., (1530)

has a similar formal structure as Equation 563 or Equation 564. Accordingly, this entails the
opportunity for another cross-check with22 [271, Equation 3.25, Equation 3.26] (in the limit Equa-
tion 1530) confirm our findings, i. e., Equation 554 and Equation 555.

Notably, for the twist-four DAs, we are able to provide a substantial update. In this context,
the improvements are twofold: on the one hand, as a by-product of our investigations, we have
recalculated the operator relations for Equation 583. This leads to adjusted three-particle twist-
four23 DAs (cf. Section 3.4.3 and [271]), i. e.,

Φ4K(α) = 120α1α2α3

[
φK0 +φK1 (α1−α2) +φ

K
2 (3α3−1)

]
+ . . . , (1531)

Φ̃4K(α) = 120α1α2α3

[
φ̃K0 + φ̃K1 (α1−α2) + φ̃

K
2 (3α3−1)

]
+ . . . , (1532)

21 These dimensionless parameters are a scalar analogon of the matrices
[
ρM±

]AB (cf. Equation 491). For instance, when as-

suming the state mixing ansatz as well as f3q→f3π, fq→fπ, one may get ρπ+=
4m2q

m2π
= limmη→mπ

(
limaη→0

[
ρ
η
+

]qq)

(cf. Equation 552) and η3π=
f3π
fπ

2mq

m2π
= limmη→mπ

(
limaη→0 R

q
3η

)
.

22 Based on the results of [271] for Equation 1530, it seems reasonable to reproduce all relevant elements of
[
ρM+

]AB as
well as Equation 563, Equation 564, by another set of adequate substitutions (cf. Section 3.4.3). Nevertheless, a thorough
calculation of the latter (as done in Section 3.4.2) is preferable.

23 The ellipses in Equation 1531–Equation 1534 represent contributions of higher order conformal spin.
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as well as (the ellipses represent neglected higher order correction)

Ψ4K(α) = 30α
2
3

[
θK0 (1−α3) + θ

K
1 [α3(1−α3) − 6α1α2]

+ θK2

[
α3(1−α3) −

3

2

(
α21+α

2
2

)]

− (α1−α2)

[
ψK0 +α3ψ

K
1 +

1

2
(5α3−3)ψ

K
2

] ]
+ . . . , (1533)

Ψ̃4K(α) = −30α23

[
ψK0 (1−α3) +ψ

K
1 [α3(1−α3) − 6α1α2]

+ψK2

[
α3(1−α3) −

3

2

(
α21+α

2
2

)]

− (α1−α2)

[
θK0 +α3θ

K
1 +

1

2
(5α3−3) θ

K
2

] ]
+ . . . , (1534)

with coefficients as discussed below. Here, the
{
θKi
}
i∈N0

represent SU(3)F-breaking corrections
which induce G-parity violations. Furthermore, we have calculated a state-of-the-art version of
all two-particle twist-four DAs, up to NLO accuracy in conformal spin.
Based on Section 3.4.3 the particle’s flavor structure is predominantly present within the corre-
sponding decay constants and quark-mass correction (as well as anomaly contributions), e. g.,
Equation 626 or Equation 627. For instance, the kaon case may be deduced from the latter via:

mq −→
1

2
(mq +ms) , (1535)

combined with Equation 1531–Equation 1534 (cf. [271, Equation 4.8]). Similar to Equation 634, the
local limit of Equation 628 and Equation 629 (adapted for the kaon case, e. g., [271, Equation 4.2])
together with Equation 1531 to Equation 1534 further reveals [271] (cf. Table 10)

φK0 = −θK0 =
1

3
m2Kκ4K , (1536)

〈0|q̄γαγ5igGµαs|K(P)〉 = iPµfKm2Kκ4K , (1537)

while θK1 , θK2 and φK2 may, for example, be roughly estimated with the renormalon model24

[271, 319, 521]

φK2 = −
7

20
aK1 δ

2
K , θK1 =

7

10
aK1 δ

2
K , θK2 = −

7

5
aK1 δ

2
K . (1538)

24 As discussed in [271], a consistent treatment of G-parity-breaking corrections (up to J = 4) would, e. g., require the
exclusive application of [271, Equation 4.8]. Nevertheless, similar to [319], we will use Equation 1538 as the best available
estimate.
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In combination with our newly calculated coefficients (cf. Equation 657–Equation 661 and Equa-
tion 1535):

φ̃K0 = ψK0 = −
1

3
δ2K, (1539)

φ̃K2 =
21

8
δ2Kω4K , (1540)

φK1 =
21

8

[
δ2Kω4K +

2

45
m2K

(
1−

18

7
aK2

)]
, (1541)

ψK1 =
7

4

[
δ2Kω4K +

1

45
m2K

(
1−

18

7
aK2

)
+ 2 (ms +mq)

f3K
fK

]
, (1542)

ψK2 =
7

4

[
2δ2Kω4K −

1

45
m2K

(
1−

18

7
aK2

)
− 2 (ms +mq)

f3K
fK

]
, (1543)

all NLO twist-four kaon parameters are specified. Analogous to Equation 675 along with Equa-
tion 678 and according to the notation of [271], both twist-four two-particle DAs

ψ4K(x) = ψ
T4
4K(x) +ψ

WW
4K (x) , (1544)

φ4K(x) = φ
T4
4K(x) +φ

WW
4K (x) , (1545)

can be split up into a genuine twist-four contribution
(
i. e., ψT4

4K, φT4
4K

)
and a Wandzura-Wilczek

type mass correction (see [271] and references therein). Correspondingly, we find

ψT4
4K(x) =

20

3
δ2KC(1/2)

2 (ξx) + 5
(
2θK1 − θK2

)
C(1/2)
3 (ξx) , (1546)

as well as (see also Equation 1554)

ψWW
4K (x) = 6m2K

[
ρK+

(
1+ 6aK2

)
− 3ρK−a

K
1

]
C(1/2)
0 (ξx)

− 3m2K

[
4κ4K − 9ρK+a

K
1 + ρK−

(
1+ 18aK2

)
+
6

5
aK1

]
C(1/2)
1 (ξx)

+ 2m2K

[
1

3
+ 3

(
5ρK+a

K
2 − ρK−a

K
1

)
−
6

7
aK2

]
C(1/2)
2 (ξx)

+

{
m2K

[
16

3
κ4K − 9ρK−a

K
2 +

18

5
aK1

]
+ 20

f3K
fK

(mq +ms) λ3K

}
C(1/2)
3 (ξx)

−

{
3

2

f3K
fK

(4ω3K − 5) (mq +ms) −m
2
K

[
3

4
+
45

14
aK2

]}
C(1/2)
4 (ξx)

− 3m2K

(
ρK− − ρK+

)[
1+ 3aK1 + 6aK2

]
log x̄

+ 3m2K

(
ρK− + ρK+

)[
1− 3aK1 + 6aK2

]
log x . (1547)

For consistency reasons with [271] and Chapter 3, terms proportional25 to ρK±, such as
(
ρK− + ρK+

)
m2K = +2ms (mq +ms) , (1548)

(
ρK− − ρK+

)
m2K = −2mq (mq +ms) , (1549)

25 Along with all other corrections of O
(
m2
ψ

)
.
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have to be omitted. Hence, we get:

φT4
4K(x) =

200

3
δ2Kx

2x̄2 + 20ξxx
2x̄2
(
4θK1 − 5θK2

)

+ 21δ2Kω4K

([
2x3
(
6x2 − 15x+ 10

)
log x

]
+ [x↔ x̄] + xx̄ (2+ 13xx̄)

)

+ 40φK2

(
ξxxx̄(2+ 3xx̄) −

[
2x3(x− 2) log x

]
+ [x↔ x̄]

)
, (1550)

along with

φWW
4K (x) =

16

3
m2Kκ4K

(
ξxxx̄ (1− 2xx̄) +

[
5x3(x− 2) log x

]
− [x↔ x̄]

)

+
36

5
m2Ka

K
1 ξxxx̄ (1+ 3xx̄) + 4

f3K
fK

(mq +ms) xx̄

(
30

(
1+ ξx

mq −ms
mq +ms

)

−ω3K

[
3ξx (1− 7xx̄)

mq −ms
mq +ms

+ 3− 21xx̄+ 28x2x̄2
]

+ 10λ3K

[
(1− 5xx̄)

mq −ms
mq +ms

+ ξx(1− xx̄)

]
+
5

2
xx̄(14xx̄− 63)

)

+
1

15
m2K

(
xx̄
(
88+ 117xx̄+ 210x2x̄2

)

+
[
28x3

(
6x2 − 15x+ 10

)
log x

]
+ [x↔ x̄]

)

−
6

5
m2Ka

K
2

(
xx̄
(
4− 9xx̄+ 150x2x̄2

)

+
[
4x3

(
6x2 − 15x+ 10

)
log x

]
+ [x↔ x̄]

)
. (1551)

In Equation 1546, we have corrected another typo (i. e., the figure marked with blue) which has
not been spotted before. As mentioned above, a consistent application of the renormalon model
[271, 521] would imply different models for Equation 1544 and Equation 1545, such as

[
ψT4
4K(x)

]ren
=
20

3
δ2KC(1/2)

2 (ξx) + 14δ
2
Ka
K
1C(1/2)
3 (ξx) , (1552)

together with
[
ψWW
4K (x)

]ren
= 6m2K

[
ρK+

(
1+ 6aK2

)
− 3ρK−a

K
1

]
C(1/2)
0 (ξx)

+ 3m2K

[
9ρK+a

K
1 −

6

5
aK1 − ρK−

(
1+ 18aK2

)]
C(1/2)
1 (ξx)

+ 2
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m2K
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1−
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7
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K
1 + 15ρK+a

K
2

]
+ 30

f3K
fK

(mq +ms)
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C(1/2)
2 (ξx)

+
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m2K

[
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5
aK1 − 9ρK−a

K
2

]
+ 20

f3K
fK

(mq +ms) λ3K

}
C(1/2)
3 (ξx)

+ 6

{
6

7
m2Ka

K
2 −

f3K
fK

(mq +ms)ω3K

}
C(1/2)
4 (ξx)

− 3m2K

(
ρK− − ρK+

)[
1+ 3aK1 + 6aK2

]
log x̄

+ 3m2K

(
ρK− + ρK+

)[
1− 3aK1 + 6aK2

]
log x . (1553)
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This ansatz, however, would lead astray from our approach and we will, therefore, not further
follow this path. Nonetheless, similar to Equation 1551, we suggest to rewrite Equation 1547

according to

ψWW
4K (x) = 3m2Ka

K
1

[
3ξx

(
3ρK+ − 4xx̄

)
− 4ρK− (2− 3xx̄)

]

+
3

2
m2Ka

K
2

[
1+ 44ρK+ + 6ρK−ξx (10xx̄− 7) + 6xx̄

(
25xx̄− 2

(
10ρK+ + 3

))]

+
15

2

f3K
fK

(mq +ms)
(
1− 20xx̄+ 70x2x̄2

)
−
20

3
m2Kκ4Kξx (1+ 8xx̄)

+m2K

(
6ρK+ − 3ξxρ

K
− +

17

12
− 19xx̄+

105

2
x2x̄2

)

+ 20
f3K
fK

(mq +ms) λ3Kξx (1− 10xx̄)

− 6
f3K
fK

(mq +ms)ω3K

(
1− 20xx̄+ 70x2x̄2

)

− 3m2K

(
1+ 3aK1 + 6aK2

)(
ρK− − ρK+

)
log x̄

+ 3m2K

(
1− 3aK1 + 6aK2

)(
ρK− + ρK+

)
log x . (1554)

This ensures a visible difference to the conformal expansion in Equation 1546. Furthermore, in
this way the connection to Equation 676–Equation 677 and Equation 679–Equation 680 is more
visible.
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