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Summary

The main goal of the thesis is to construct equivariant coarse versions of the classical
Hochschild and cyclic homologies of algebras. These are lax symmetric monoidal functors
from the category of equivariant bornological coarse spaces to the cocomplete stable
∞-category of chain complexes and are called equivariant coarse Hochschild and cyclic
homology. If k is a field, the evaluation at the one point bornological coarse space
induces equivalences with the classical Hochschild and cyclic homologies of k. In the
equivariant setting, the G-equivariant coarse Hochschild (cyclic) homology of (a canonical
bornological coarse space associated to) the group G agrees with the classical Hochschild
(cyclic) homology of the associated group algebra k[G].

The second aim of the thesis is the construction of natural transformations from
equivariant coarse algebraic K-homology to equivariant coarse Hochschild and cyclic
homology, and of natural transformations from equivariant coarse Hochschild and cyclic
homology to equivariant coarse ordinary homology. This is achieved by using trace-like
maps and gives a natural transformation from equivariant coarse algebraic K-homology
to equivariant coarse ordinary homology.

We conclude the dissertation with two additional investigations: we give a comparison
result between the forget-control map for equivariant coarse Hochschild homology and
the associated generalized assembly map, and we show a Segal-type localization theorem
for equivariant Hochschild and cyclic homology.
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Introduction

Coarse geometry is the study of metric spaces from a large-scale point of view, meaning
that one wants to capture the behavior at infinity of metric spaces, discrete groups or
more general spaces. The general principle, in coarse geometry, is that two spaces are
considered equivalent if they “look the same from great distances”. This viewpoint has
lead Roe to the abstract notion of coarse spaces, objects that encode the large-scale
geometry and properties of metric spaces [Roe93,Roe96,Roe03].

In order to apply homological methods in coarse geometry and perform index theory
on non-compact manifolds, a large-scale analogue of ordinary (co-)homology has also been
introduced by Roe and has been called coarse (co-)homology. This coarse cohomology
theory, together with a coarse version of topological K-theory, provided new invariants
and have applications in index theory, homotopy theory, K-theory of C∗-algebras and,
maybe most importantly, in studying assembly map conjectures [Roe93,Mit01,BEKW18].
Among the applications of coarse geometry to other mathematical fields there is, e.g.,
Mostow’s proof of his rigidity theorem [Mos73]. For further references and a survey on
coarse geometry we refer to [Roe03].

A new axiomatic and homotopic approach to coarse geometry and coarse algebraic
topology has been recently developed by Bunke and Engel [BE16], and then generalized to
the equivariant framework by Bunke, Engel, Kasprowski and Winges [BEKW17]. In their
set-up, the main objects are called bornological coarse spaces: these are triples (X, C,B)

consisting of a set X, equipped with a bornology B (describing the bounded subsets of X)
and a coarse structure C (a family of neighborhoods of the diagonal in X ×X encoding
the large-scale properties of X), with bornology and coarse structure being compatible in
a suitable way [BE16, Def. 2.1]. Every metric space is a bornological coarse space in a
canonical way, and, more generally, a coarse space, as defined by Roe, is a coarse space in
this framework.

Let G be a group. Among different invariants of (G-equivariant) bornological coarse
spaces, i.e., bornological coarse spaces with a G-action by automorphisms, there are
(equivariant) coarse homology theories, i.e., functors

E : GBornCoarse→ C

from the category of G-bornological coarse spaces GBornCoarse to a cocomplete sta-
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ble ∞-category C (e.g., the ∞-categories of chain complexes or spectra), satisfying
some additional axioms: coarse invariance, flasqueness, coarse excision and u-continuity
[BEKW17, Def. 3.10]. Examples of coarse homology theories arise as coarsifications
of locally finite homology theories [BE16]. Among others, there are coarse versions
of ordinary homology and of topological K-theory [BE16], of equivariant algebraic K-
homology and of topological Hochschild homology [BEKW17,BC17], and of Waldhausen’s
A-theory [BKW18].

This new homotopic approach to coarse geometry has brought new applications and
insight (for example, the dualizing spectrum of a group is now known to be a coarse
invariant [BE17b]), and it is now developing as a new field of research [BC17,BE17a,
BE17b,BE17c,Bun18,BKW18].

Hochschild and cyclic homology for bornological coarse spaces

Classically, Hochschild and cyclic homology are homological invariants of algebras [Lod98],
and have been extended to dg-algebras, schemes and, more generally, additive categories
and exact categories [McC94,Kel99]. The goal of this thesis is to construct (equivariant)
Hochschild and cyclic homology theories

XHHG
k : GBornCoarse→ Ch∞ and XHCG

k : GBornCoarse→ Ch∞

(as described below) for bornological coarse spaces within the homotopic framework
developed by Bunke and Engel [BE16,BEKW17].

Our main motivation comes from equivariant coarse algebraic K-homology [BEKW17,
BC17], as we now explain. Various versions of algebraic K-theory come equipped with
trace maps (e.g., the Dennis trace map from algebraic K-theory of rings to Hochschild
homology, or the refined version, the cyclotomic trace, from the algebraic K-theory
spectrum to the topological cyclic homology spectrum) and these trace maps have been
of fundamental importance in the understanding of algebraic K-theory; see, for example,
[DGM13]. A version of algebraic K-theory for bornological coarse spaces has recently also
been defined [BEKW17]; hence, inspired by the classical case, our aim is to define coarse
versions of Hochschild and cyclic homology and to define trace maps from equivariant
coarse algebraic K-homology to equivariant coarse Hochschild and cyclic homology.

We now present the main result of the thesis. Let k be field and let G be a group. The
symbols HH and HC refer to Hochschild and cyclic homology; we denote by CHH

∗ and CHC
∗

the chain complexes computing Hochschild homology and cyclic homology (of k-algebras)
respectively. We deonte by {∗} the one point bornological coarse space; the G-equivariant
bornological coarse space Gcan,min denotes a canonical equivariant bornological coarse
space associated to the group G (see Example 1.1.22).

The main result of the dissertation is the following theorem (see Definition 3.4.6,
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Theorem 3.4.7, Proposition 4.1.3 and Proposition 4.1.4):

Theorem. There are functors

XHHG
k : GBornCoarse→ Ch∞ and XHCG

k : GBornCoarse→ Ch∞

from the category of G-equivariant bornological coarse spaces to the cocomplete stable
∞-category Ch∞ of chain complexes, satisfying the following properties:

(i) XHHG
k and XHCG

k are G-equivariant coarse homology theories;

(ii) there are equivalences of chain complexes

XHHG
k (∗) ' CHH

∗ (k) and XHCG
k (∗) ' CHC

∗ (k)

between the evaluations of XHHG
k and XHCG

k at the one point bornological coarse
space {∗}, endowed with the trivial G-action, and the chain complexes computing
Hochschild and cyclic homology of k;

(iii) there are equivalences

XHHG
k (Gcan,min) ' CHH

∗ (k[G]; k) and XHCG
k (Gcan,min) ' CHC

∗ (k[G]; k)

of chain complexes between the evaluations at the G-bornological coarse space
Gcan,min and the chain complexes computing Hochschild and cyclic homology of
the k-algebra k[G].

The functors XHHG
k and XHCG

k are called equivariant coarse Hochschild homology
and equivariant coarse cyclic homology respectively. The names are justified by the
use of a suitable Hochschild homology (and cyclic homology) functor in their construc-
tion, and by the comparison results: the evaluation at the one point space and at
the (canonical G-bornological coarse space associated to the) group G agree with the
classical Hochschild and cyclic homologies of the base field k and of the group algebra k[G].

Our construction of the functors XHHG
k and XHCG

k uses a cyclic homology theory
for additive exact categories that satisfies certain additive and localizing properties in the
sense of Tabuada [Tab07]; see also [CT11]. This is Keller’s cone construction for exact
categories [Kel99]

C : Ex→Mix, (0.0.1)

which is a functor from the category Ex of small exact categories to Kassel’s category
Mix of mixed complexes [Kas87]. As shown by Kassel, Hochschild and cyclic homologies
can be defined in terms of mixed complexes, consistently with the classical definitions
for k-algebras [Lod98]. Hochschild and cyclic homologies of the Keller’s mixed complex
C(A), associated to a small exact category A, will be called Keller’s Hochschild and cyclic
homology of A.
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To every G-bornological coarse space X, we can associate a suitable k-linear category;
this is the k-linear category V G

k (X) of G-equivariant X-controlled (finite dimensional)
k-vector spaces ([BEKW17], or Definition 2.1.2). In fact, this correspondence is functorial
in X, and describes a functor

V G
k : GBornCoarse→ Catk

from the category of G-bornological coarse spaces to the category Catk of small k-linear
categories [BEKW17]. The k-linear category V G

k (X) is then equipped with the exact
structure given by the short split exact sequences. We define equivariant coarse Hochschild
(and cyclic) homology XHHG

k and XHCG
k , as Keller’s Hochschild and cyclic homology of

the k-linear category V G
k (X) equipped with the exact structure given by the short split

exact sequences. In Theorem 3.4.2, we show that these compositions of functors satisfy
the axioms describing a coarse homology theory.

Keller’s functor C satisfies several properties, like an additivity and a localization
property [Kel99]. We review them in Section 3.2. The localization property [Kel99, Thm.
1.5], in particular, is fundamental to us in order to prove coarse excision (Theorem 3.3.8),
one of the axioms defining a coarse homology theory. A simpler definition of Hochschild
and cyclic homologies for exact k-linear categories is due to McCarthy: his definition
uses the additive cyclic nerve CN(A) of the k-linear category A [McC94]. However, the
homology theories defined by McCarthy do not (a priori) satisfy the localization property
[Kel99, Example 1.8, Example 1.9]: a cyclic homology functor satisfying localization has
to take also negative values, and McCarthy’s Hochschild and cyclic homologies are only
positively graded. However, when restricted to additive categories with the split exact
structure, Keller’s and McCarthy’s definitions of Hochschild and cyclic homologies are
equivalent (see also Lemma 3.4.4 and Remark 3.4.5 for a discussion about it). This has
led us to define two intermediate coarse homology theories

XMixGk : GBornCoarse Catk Mix Mix∞
V G
k Mix loc

of Definition 3.4.1 and

X̃C
G

k : GBornCoarse Catk Exk Mix Mix∞
V G
k C loc

of Definition 3.3.1; here, the category Mix∞ is Kassel’s ∞-category of mixed complexes,
the functor C is Keller’s cone construction (0.0.1) and the functor Mix is the functor that
associates a canonical mixed complex to the additive cyclic nerve of a k-linear category.
Finally, the functor Catk → Exk sends a k-linear category to the same k-linear category
equipped with the split exact structure.

The functors XMixGk and X̃C
G

k provide equivalent coarse homology theories. Coarse

x



Hochschild and cyclic homology are then defined by post-composition of Hochschild and
cyclic homology for mixed complexes with either XMixGk or X̃C

G

k ; in this thesis, we decide
to use the functor XMixGk (see Section 3.4), but we prove most of the theorems by using
the functor X̃C

G

k (see Remark 3.3.3).

Trace-like maps

The construction of equivariant coarse Hochschild homology follows the same ideas of
[BEKW17], where the equivariant coarse algebraic K-homology XAKG (with values
in an additive category A with strict G-action) has been defined as the non-connective
K-theory of the additive category V G

A (X) of G-equivariant X-controlled A-objects (see
Definition 2.1.2). When A is the category of finitely dimensional k-vector spaces, we
denote by KXGk the corresponding G-equivariant coarse K-homology functor. By using
an extension to exact categories of the classical Dennis trace map we get the following
(see Proposition 4.4.1):

Theorem. There are natural transformations of equivariant coarse homology theories

KXGk → XHHG
k and KXGk → XHCG

k

induced by the classical trace maps from algebraic K-theory to Hochschild and cyclic
homology.

Equivariant coarse ordinary homology

XCG : GBornCoarse→ Ch∞

is defined in terms of equivariant locally finite controlled maps Xn+1 → k (see Defini-
tion 1.5.1), where X is a G-bornological coarse space and k is the field of coefficients. We
review its definition in Section 1.5.

The second main result of the thesis is the construction of a natural transformation
from equivariant coarse Hochschild homology to equivariant coarse ordinary homology.
We prove the following result (see Theorem 4.3.8 and Proposition 4.3.9):

Theorem. There is a natural transformation

ΦXHHG
k

: XHHG
k → XCG.

of G-equivariant Ch∞-valued coarse homology theories, which induces an equivalence of
chain complexes when evaluated at the one point space {∗}.

The transformation ΦXHHG
k

: XHHG
k → XCG is defined by using trace-like maps and

extends to coarse cyclic homology as well. The idea, developed in Section 4.3, is the
following.
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We start by considering the additive cyclic nerve of the k-linear category V G
k (X) of

G-equivariant X-controlled finite dimensional k-vector spaces. The n-th component of
the additive cyclic nerve of a k-linear category C is

CNn(C) =
⊕

(C0,...,Cn)

(
n⊗
i=0

HomC(Ci+1, Ci)

)

where the index i runs cyclically in the ordered set (0, . . . , n) and the sum ranges over
all the tuples (C0, . . . , Cn) of objects of C. When C is the k-linear category V G

k (X), we
let A0 ⊗ A1 ⊗ · · · ⊗ An, with Ai : Mi+1 → Mi, be an element in the n-th component of
the additive cyclic nerve CNn(V G

k (X))) and (x0, . . . , xn) be a point of Xn+1. There are
well-defined evaluations Mi(xj) of the object Mi ∈ V G

k (X) at the point xj ∈ X and there
are induced linear operators Axi,xi+1

i : Mi(xi)→Mi+1(xi+1) between finite dimensional
k-vector spaces. We consider the following composition:

M0(xn)
A

xn,xn−1
n−−−−−−→Mn(xn−1)

A
xn−1,xn−2
n−1−−−−−−−→ . . .

A
x1,x0
1−−−−→M1(x0)

A
x0,xn
0−−−−→M0(xn), (0.0.2)

that is an endomorphism of M0(xn) (a finite dimensional k-vector space). To every
tuple (A0, . . . , An) and every (n+ 1)-tuple (x0, . . . , xn) of points of X, we can associate
an element of the field k, that is the trace of the composition (0.0.2). We show that
this describes an equivariant coarse n-chain of X and extends linearly to a chain map
defined on the additive cyclic nerve CN(V G

k (X))). It extends to the canonical mixed
complex associated to CN(V G

k (X)), and this extension yields a natural transformation
ΦXHHG

k
: XHHG

k → XCG (see Theorem 4.3.8). The computation at the one point space
induces an equivalence of chain complexes and this implies that the transformation is not
trivial (as the equivariant coarse ordinary homology of the point is non-zero).

By composition of these two natural transformations, we get a natural transformation

KXGk → XHHG
k −→ XHG

k

from equivariant coarse algebraic K-homology to (the spectra-valued) equivariant coarse
ordinary homology. We believe that the study of this transformation may be useful for
the understanding and detection of coarse K-theory classes.

Assembly maps and localization results

One of the main applications of coarse algebraic topology is in the study of assembly map
conjectures, like the Farrell-Jones and the Baum-Connes assembly map conjectures. If
F is a family of subgroups of a group G (meaning that it is a collection of subgroups
of G closed under conjugation and under taking subgroups), and if GOrb denotes the
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orbit category (i.e., the category of transitive G-sets and G-equivariant maps), then we
can consider the full subcategory GOrbF of GOrb given by the G-sets whose stabilizers
belong to F . The assembly map for an equivariant homology theory (assumed to be
defined on GOrb), with respect to the family of subgroups F , is the map induced (after
taking colimits) in homology by the inclusion GOrbF → GOrb; roughly, it approximates
the starting functor with its restrictions in GOrbF [Lue18]. The Farrell-Jones conjecture,
for example, asserts that the assembly map for algebraic K-theory with respect to the
family of virtually cyclic subgroups is an isomorphism, and this conjecture has many
connections to other outstanding conjectures, like the Borel conjecture, the Kaplansky
conjecture or the Novikov conjecture. We refer to [BLR07,RV17,Lue18] for recent surveys
on the subject.

If E : GBornCoarse → C is a G-equivariant coarse homology theory, then the
composition

E ◦ O∞hlg : GTop→ C

with a suitable cone functor O∞hlg [BEKW17], describes a G-equivariant homology theory.
Furthermore, one can associate to E a fiber sequence of functors, called a cone sequence
[BEKW17, Def. 11.9] whose boundary map is called the forget-control map. In the
coarse approach to the assembly map conjectures, one studies the forget-control map
of a coarse homology theory E, trying to infer properties of the associated G-homology
theory E ◦ O∞hlg. Under some mild assumptions, the assembly map for this G-homology
theory is equivalent to the forget control map for E [BEKW17,BEKW18]; see [BKW18]
for a recent application of these methods to the split-injectivity of the assembly map in
Waldhausen A-theory.

We apply a comparison result (between the forget-control map and the assembly map
[BEKW17, Thm. 11.16]) to equivariant coarse Hochschild and cyclic homology as well.
Unfortunately, we do not know (and we do not expect) that coarse Hochschild and cyclic
homologies are additive coarse homology theories, hence we cannot apply directly the more
general results on the split-injectivity of the associated assembly map [BEKW18, Thm.
1.11]. However, we show (see Proposition 4.2.9) that, when restricted to the family Fin of
finite subgroups of G, the forget-control map for G-equivariant coarse Hochschild (cyclic)
homology agrees with the assembly map for the associated G-equivariant homology theory
HHG

k := XHHG
k ◦ O∞hlg:

Theorem. The forget-control map for XHHG
k is equivalent to the assembly map for the

G-homology theory HHG
k .

Our last application is inspired by Segal’s Localization Theorem [Seg68a], that we
briefly recall.

Atiyah gives a definition of G-equivariant K-theory K∗G of a G-space X in terms of
G-vector bundles [Ati64,Seg68a]. From this definition, the evaluation at the one point
space {∗} induces an isomorphism of rings between K0

G(∗) and the representation ring
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(called character ring therein) R(G) of G; hence the G-equivariant K-theory K∗G(X) of
a G-space X has the structure of an R(G)-algebra over the representation ring because
every space has a natural map onto a point.

Segal’s Localization Theorem [Seg68a, Prop. 4.1] says that, after localization at a
certain prime ideal p of R(G) (that is associated to a conjugacy class γ of G), the inclusion
Xγ → X of the subspace of γ-fixed points Xγ in X induces (for locally compact G-spaces)
an isomorphism

K∗G(X)p → K∗G(Xγ)p

in equivariant K-theory.

Inspired by Segal’s Localization Theorem, general localization results for equivariant
coarse homology theories, with the goal to develop new tools for studying equivariant
coarse algebraic K-theory, have been shown [BCb]. In this thesis, we apply these general
coarse localization results to (the lax-symmetric monoidal refinements of) equivariant
coarse Hochschild and cyclic homology, obtaining the following localization theorem for
the associated G-equivariant Hochschild homology (see Corollary 4.5.7):

Theorem. Let G be a finite group and γ be a conjugacy class of G. Let W be a finite
G CW-complex and let W γ be the sub-complex of γ-fixed points. Then, the inclusion
W γ →W induces an equivalence

HHG
(γ)(W

γ)→ HHG
(γ)(W )

of chain complexes.
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Organization of the thesis

The thesis is structured as follows.
In Chapter 1 we recall and study the category GBornCoarse of G-bornological

coarse spaces and its invariants, the G-equivariant coarse homology theories. This is
done in Section 1.1 and Section 1.2, where we also introduce the necessary notation
and terminology for the subsequent sections and chapters. In Section 1.3, we define the
forget-control map for a G-equivariant coarse homology theory. We introduce the notions
of G-uniform bornological coarse spaces and of the cone functor; the cone functor in
particular is important in the study of assembly map conjectures because it provides a
bridge between G-homology theories and G-equivariant coarse homology theories. We
then describe the general comparison result between the forget-control maps and the usual
assembly maps [BEKW17]. In Section 1.4, we describe the general coarse localization
theorems [BCb]. The last section, Section 1.5, is devoted to a first example of coarse
homology theories: this is coarse ordinary homology.

In Chapter 2, we study in detail the symmetric monoidal category V G
A (X) of G-

equivariant X-controlled A-objects, where X is a G-bornological coarse space and A

denotes an additive category with strict G-action. In Section 2.1, we analyze this category
and the associated functor V G

A : GBornCoarse → Add from G-bornological coarse
spaces to the category of small additive categories. Furthermore, we study the behavior
of this functor under coarse equivalences, colimits and flasque spaces [BEKW17]. In
Section 2.2, we discuss the behavior of the functor V G

A under products and we see that it
admits a lax symmetric monoidal refinement [BCa]. In the last section, Section 2.3, we
recall the definition of equivariant coarse algebraic K-homology, which is defined as the
non-connective K-theory of the category V G

A (X) [BEKW17].
In Chapter 3, we construct coarse versions of the classical Hochschild and cyclic

homologies of algebras as functors

XHHG
k : GBornCoarse→ Ch∞ and XHCG

k : GBornCoarse→ Ch∞

from the category of G-bornological coarse spaces to the cocomplete stable ∞-category of
chain complexes. In order to define these functors, we use Keller’s cyclic homology [Kel99]
of additive exact categories, which is recalled in Section 3.1 and Section 3.2. Section 3.3
and Section 3.4 are the core of the thesis, where we prove that, in complete analogy to
the construction of coarse algebraic K-homology of [BEKW17], the composition of the
functor V G

k and Keller’s cone functor provide a coarse homology theory. In Section 3.5,
we prove that equivariant coarse Hochschild and cyclic homologies refine to lax symmetric
monoidal functors.

In Chapter 4, we describe some features and properties of the coarse homology theories
defined in Chapter 3. In Section 4.1, we see that coarse Hochschild and cyclic homologies
do extend the classical Hochschild and cyclic homologies for algebras: we prove that the
evaluation at the one point space is equivalent to the usual Hochschild homology of the
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base field, and that the evaluation at (a canonical G-bornological coarse space associated
to) G is equivalent to the classical Hochschild homology of the group algebra k[G]. In
Section 4.2, we study the forget-control map for coarse Hochschild and cyclic homology,
by using the general results reviewed in Section 1.3 and we see that this forget-controlling
is equivalent to the assembly map for the G-equivariant homology theory associated to
coarse Hochschild and cyclic homology. In Section 4.3 and Section 4.4, we construct the
trace-like natural transformations from coarse algebraic K-homology to coarse Hochschild
homology, and from coarse Hochschild homology to coarse ordinary homology. In the last
section, Section 4.5, we apply the general localization theorems for equivariant coarse
homology theories, reviewed in Section 1.4, to the case of coarse Hochschild and cyclic
homology.

Finally, in the Appendix, we mainly recollect some useful facts concerning differential
graded categories.

Conventions

In this thesis we freely employ the language of ∞-categories. More precisely, we model
∞-categories as quasi-categories [Cis,Lur09,Lur14]. Our main reference on dg-categories
is Keller’s ICM [Kel06].

The results of this work are stated for small categories. However, the categories of
bornological coarse spaces, the category of dg-categories and dg-modules, etc., are not
small. There are classical ways to overcome size problems; we assume the Grothendieck
theory of nested universes.

In the thesis, G will usually denote a group, k a field and the symbol ⊗ denotes tensor
products over k. We assume that 0 belongs to the natural numbers and that {∗} is the
one point space.
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Wandrers Nachtlied

Über allen Gipfeln
Ist Ruh;
In allen Wipfeln
Spürest du
Kaum einen Hauch;
Die Vögelein schweigen im Walde.
Warte nur, balde
Ruhest du auch.

Goethe
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Chapter 1

Bornological coarse spaces and
coarse homology theories

A bornological coarse space is a set endowed with a bornology and a coarse structure (see
Definition 1.1.11). When a group G acts on such a space by automorphisms, we have the
notion of a G-equivariant bornological coarse space.

Following our main references [BE16,BEKW17], in this chapter we define the category
GBornCoarse of G-equivariant bornological coarse spaces and we recall the definition
of equivariant coarse homology theories. These are functors

E : GBornCoarse→ C

from the category of G-bornological coarse spaces to some cocomplete stable ∞-category
C satisfying additional axioms, as reviewed in Definition 1.2.1. We then recollect some
general properties and results about equivariant coarse homology theories, focusing in
particular on forget-control and assembly maps [BEKW17,BEKW18] and on Segal-type
localization theorems [Seg68a].

The chapter is organized as follows. In Section 1.1, we give the definitions of bornologi-
cal coarse spaces and G-bornological coarse spaces, introducing notations and terminology
for the subsequent sections and chapters. In Section 1.2 we study the (equivariant) coarse
homology theories and we introduce the notions of strongness and continuity, necessary
for studying coarse assembly map conjectures.

In Section 1.3 we focus on forget-control and coarse assembly maps for equivariant
coarse homology theories. Following [BEKW17], we give a comparison result between
these different maps, showing that in some special cases they are equivalent. We introduce
the necessary background and the core definition of cone functor O∞. In Section 1.4,
following [BCb], we focus on general localization theorems for coarse homology theories.

We conclude the chapter with a very first example of coarse homology theories:
equivariant coarse ordinary homology.

1
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1.1 G-Equivariant bornological coarse spaces

In this section we give the fundamental definition of G-bornological coarse spaces (see
Definition 1.1.21). The main source of examples is given by metric spaces, for which
the bornology is the family of bounded sets and the coarse structure is generated by the
family of controlled sets (see Example 1.1.12).

We denote by (G)BornCoarse the category of (G-)bornological coarse spaces and
(G-equivariant) proper controlled maps (see Definition 1.1.3 and Definition 1.1.6). After
reviewing some basic definitions, namely Definition 1.1.24–1.1.27, we describe the canonical
symmetric monoidal structure on GBornCoarse.

Let X be a set and let P(X) denote its power set.

Definition 1.1.1. [BE16, Def 2.1] A bornology on a set X is a subset B ⊆ P(X) such
that:

• B is closed under taking subsets;

• B is closed under taking finite unions;

• the set X is covered by elements of B: X = ∪B∈BB.

A bornological space is a pair (X,B) where B is a bornology on the set X.

The elements B in B are called B-bounded sets, or simply bounded sets when the given
bornology is clear from the context. Intersection of bornologies on a set X is again a
bornology on X; if A is a subset of X, the bornology generated by A is the minimal
bornology on X containing A. This bornology is denoted by B〈A〉.

Notation 1.1.2. In order to emphasize the dependence of the bornology B on the set X,
the bornology B on X will also be denoted by B(X).

Let (X,B) and (X ′,B′) be two bornological spaces and let f : X → X ′ be a map
between the underlying sets.

Definition 1.1.3. Let (X,B) and (X ′,B′) be two bornological spaces and let f : X → X ′

be a map between the underlying sets. The map f is called proper if the pre-image of
every B′-bounded set is B-bounded.

Let X be a set. Let U and U ′ be subsets of X × X; we consider the following
operations:

Inversion: U−1 := {(x, y) ∈ X ×X | (y, x) ∈ U};

Composition: U ◦ U ′ := {(x, y) ∈ X ×X | ∃z ∈ X : (x, z) ∈ U and (z, y) ∈ U ′}.
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We denote by ∆X := {(x, x) ∈ X × X | x ∈ X} the diagonal of X in the product
X ×X.

Definition 1.1.4. [BE16, Def. 2.3] A coarse structure on a setX is a subset C ⊆ P(X×X)

that contains the diagonal ∆X and is closed under taking subsets, finite unions, inverses,
and compositions.

The pair (X, C) given by a set X and a coarse structure C on X is called a coarse
space; elements of C are called entourages, or C-controlled sets.

Notation 1.1.5. In order to emphasize the dependence on X, the coarse structure C on
X will also be denoted by C(X).

Definition 1.1.6. Let (X, C) and (X ′, C′) be two coarse spaces and let f : X → X ′ be a
map between the underlying sets. The map f : (X, C)→ (X ′, C′) is called controlled (or
coarse) if for every entourage U of C the set (f × f)(U) belongs to C′.

Intersection of coarse structures on X is again a coarse structure on X. When a
subset F of P(X ×X) is given, the coarse structure generated by F is the minimal coarse
structure on X that contains F . It is denoted by C〈F 〉.

Example 1.1.7. (i) Let X be a set. The minimal bornology Bmin on X consists of all
the finite subsets of X; the maximal bornology Bmax on X is P(X). The minimal
coarse structure Cmin is the set Cmin = P(∆X) generated by the diagonal ∆X , and
the maximal coarse structure Cmax is P(X ×X).

(ii) Let (X, d) be a metric space. There is a canonical bornology and a canonical coarse
structure associated to (X, d), denoted by Bd and Cd respectively. The family

Bd := B〈{B(x, r) | x ∈ X, r ≥ 0}〉

is the bornology generated by the d-bounded balls B(x, r) of (X, d). We observe
that the bornology Bd on X contains all the d-bounded subsets of X. The coarse
structure Cd is generated by the family of subsets of X ×X

Ur := {(x, y) | d(x, y) ≤ r)} (1.1.1)

for every r ≥ 0.

By the previous example we can see that the definition of a bornology on a set X
generalizes the notion of bounded sets of a metric space (X, d) and that the definition of
a coarse structure generalizes the notion, for two points of X, of being uniformly close.

Let U be a subset of X ×X and let B be a subset of X; the U -thickening of B is the
subset of X defined as follows:

U [B] := {x ∈ X | ∃b ∈ B, (x, b) ∈ U} (1.1.2)
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If U is an entourage of a coarse space (X, C), the U -thickening is also called a controlled
thickening.

Example 1.1.8. Let (X, d) be a metric space. If p ∈ X is a point of X and Ur ∈ Cd is
a controlled set as in (1.1.1), then the Ur-thickening of p is the ball of radius r. More
generally, the Ur-thickening of a ball of radius s is contained in the ball of radius r + s.

Remark 1.1.9. Let X be a set endowed with a bornology and a coarse structure. For
every entourage U and V in C(X) and bounded set B in B(X) we have an inclusion
U [V [B]] ⊆ (U ◦ V )[B] of controlled thickenings.

Recall the definition of proper (Definition 1.1.3) and controlled maps (Defnition 1.1.6).

Definition 1.1.10. A bornology B and a coarse structure C on a set X are compatible if
every controlled thickening of every bounded set is bounded.

Definition 1.1.11. [BE16, Definition 2.6 & 2.10] A bornological coarse space is a
triple (X, C,B) given by a set X, a bornology B and a coarse structure C on X such that
B and C are compatible. We denote by BornCoarse the category of bornological coarse
spaces and proper controlled maps.

When the bornology B and the coarse structure C on a set X are clear from the
context, we will omit them and we will refer to a bornological coarse space just by its
underlying set. Proper and controlled maps between bornological coarse spaces are also
called morphisms of bornological coarse spaces.

Example 1.1.12. Examples of bornological coarse spaces arise from metric spaces (X, d),
by equipping the underlying set X with the associated bornology Bd and coarse structure
Cd. By Example 1.1.8, Cd and Bd are compatible and the space Xd := (X, Cd,Bd) is a
bornological coarse space.

Example 1.1.13. Let S be a set. We denote by Smin,max the bornological coarse
space (S, Cmin,Bmax) whose underlying set is S, equipped with the minimal coarse structure
and the maximal bornology.

Example 1.1.14. Let (X ′, C′,B′) be a bornological coarse space and let X be a set. A
map f : X → X ′ of sets induces a bornological coarse structure on X. In fact, let

f∗C′ := C〈{(f × f)−1(U ′) | U ′ ∈ C′}〉

and
f∗B′ := B〈{f−1(B′) | B′ ∈ B′}〉

be the coarse structure and bornology on X generated by the preimages. Then, the
triple (X, f∗C, f∗B) is a bornological coarse space and f : (X, f∗C, f∗B)→ (X ′, C′,B′) is
a morphism of bornological coarse spaces. When Z is a subset of X ′ and f is the inclusion
of Z in X ′, we refer to this construction as inclusion of bornological coarse spaces.
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If X and Y are metric spaces, two maps f, f ′ : X → Y are close to each other if
dY (f(x), f ′(x)) is bounded, uniformly in X. In the context of bornological coarse spaces
this leads to the following definition:

Definition 1.1.15. Let f0, f1 : (X, C,B) → (X ′, C′,B′) be morphisms in BornCoarse.
We say that f0 and f1 are close to each other if the image of the diagonal (f0, f1)(∆X) is
an entourage of X ′.

Observe that being close to each other is an equivalence relation on the set of morphisms
between X and X ′.

Definition 1.1.16. [BE16, Def. 3.14] A morphism f : (X, C,B)→ (X ′, C′,B′) of bornolog-
ical coarse spaces is an equivalence if there exists an inverse g : (X ′, C′,B′) → (X, C,B)

such that the compositions g ◦ f and f ◦ g are close to the identity maps. In this case,
the spaces X and X ′ are called coarsely equivalent.

Example 1.1.17. A quasi-isometry between metric spaces induces a coarse equivalence
between the associated bornological coarse spaces.

Definition 1.1.18. [BE16, Def. 3.21] A bornological coarse space X is called flasque if
it admits a morphism f : X → X such that:

(i) f is close to the identity map;

(ii) for every entourage U of X, the union
⋃
k∈N(fk × fk)(U) is an entourage;

(iii) for every bounded set B of X there exists a natural number k such that fk(X)∩B =

∅.

The definition says that the morphism f is equivalent to the identity, is uniformly
controlled, together with all its powers, and that each bounded set has eventually no
intersections with the image of fn. An example of such a morphism on the bornological
coarse space N (i.e., the bornological coarse space associated to the set of natural numbers
endowed with the standard metric) is the function N→ N sending the natural number n
to n+ 1. On the other hand, the bornological coarse space associated to the integers Z is
not flasque.

Definition 1.1.19. [BE16, Def. 3.2 & 3.5] Let (X, C,B) be a bornological coarse space.

1. A big family Y on X is a filtered family (Yi)i∈I of subsets of X satisfying the
following:

∀ i ∈ I, ∀U ∈ C, ∃j ∈ I such that U [Yi] ⊆ Yj .

2. A pair (Z,Y) consisting of a subset Z of X and of a big family Y = (Yi)i∈I on X is
called a complementary pair if there exists an index i ∈ I for which Z ∪ Yi = X.
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Example 1.1.20. Let X = R, endowed with bornology and coarse structure induced by
the standard euclidean metric on the real numbers. Let Z = (−∞, 0], and Yn = [−n,∞),
for n ∈ N. Then, the pair (Z,Y), with Y = (Yn)n∈N, is a complementary pair on R.

Let G be a group acting by automorphisms on a bornological coarse space X. The
G-action on X induces a diagonal G-action on X ×X, hence a G-action on the power
set P(X ×X) of X and on the set of entourages of X. Let CG be the partially ordered
subset of C consisting of the set-wise G-fixed entourages.

Definition 1.1.21. [BEKW17, Definition 2.1] A G-bornological coarse space is a bornolog-
ical coarse space (X, C,B) equipped with a G-action by automorphisms such that the set
of invariant entourages CG is cofinal in C.

Amorphism ofG-bornological coarse spaces is a morphism of bornological coarse spaces
that is also G-equivariant. We denote by GBornCoarse the category of G-bornological
coarse spaces and G-equivariant, proper controlled maps.

For a subset U of X ×X we set

GU :=
⋃
g∈G

(g × g)(U).

The cofinality assumption of CG in C is equivalent to requiring that, for every entourage U
of C, the set GU belongs to C.

Example 1.1.22. We provide some examples of G-bornological coarse spaces:

(i) If G acts on a metric space (X, d) by isometries, then (X, Cd,Bd) is a G-bornological
coarse space.

(ii) Let G be a group, Bmin be the minimal bornology on its underlying set, and let
Ccan := 〈{G(B × B) | B ∈ Bmin}〉 be the coarse structure on G generated by the
G-orbits. The space Gcan,min := (G, Ccan,Bmin) is a G-bornological coarse space.

(iii) Let G be a countable group equipped with a proper left invariant metric d; then,
(G, Cd,Bd) is the same as (G, Ccan,Bmin) and different choices of d induce the same
G-bornological coarse space.

(iv) Let X be a G-bornological coarse space and let Z be a G-invariant subset of X.
As in Example 1.1.14, we define the induced coarse structure and bornology on Z
by restriction: CZ := {(Z × Z) ∩ U | U ∈ C} and BZ := {Z ∩ B | B ∈ B}. Then,
ZX := (Z, CZ ,BZ) is a G-bornological coarse space and the inclusion Z ↪→ X is a
morphism of G-bornological coarse spaces.

(v) Let X be a G-bornological coarse space and let U be a G-invariant entourage of X.
The induced coarse structure CU is the coarse structure on X generated by U . This
is compatible with the bornology B and XU := (X, CU ,B) is a G-bornological coarse
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space. Moreover, the identity map X → XU is a morphism of G-bornological coarse
spaces and, if U ⊆ U ′, there is a natural induced morphism XU → XU ′ .

Let X be a G-set. In general, a bornology B on X is not closed under G-action.
However, we can complete the bornology B, obtaining a new G-bornological space with
this property:

Definition 1.1.23. [BEKW17, Def. 2.12] Let (X, C,B) be a G-bornological coarse space.
The G-completion of (X, C,B) is the G-bornological coarse space BGX := (X, C,BG),
where BG is the bornology generated by all the sets GB, with B in B.

A bornological coarse space X ∈ BornCoarse is a G-bornological coarse space with
trivial G-action and the category BornCoarse of bornological coarse spaces is a full
subcategory of GBornCoarse. The definitions 1.1.15, 1.1.16, 1.1.18 and 1.1.19, have
natural extensions to G-bornological coarse spaces:

Definition 1.1.24. [BEKW17, Def. 3.1] Two morphisms between G-bornological coarse
spaces are close to each other if they are close to each other as morphisms of bornological
coarse spaces (see Definition 1.1.15). A morphism f of G-bornological coarse spaces is
an equivalence if it admits an inverse g such that the two compositions are close to the
identities.

Definition 1.1.25. [BEKW17, Def. 3.8] A G-bornological coarse space X is called
flasque if it admits a morphism f : X → X such that:

(i) f is close to the identity map;

(ii) for every entourage U of X, the union
⋃
k∈N(fk × fk)(U) is again an entourage of

X;

(iii) for every bounded set B of X there exists k such that fk(X) ∩GB = ∅.

Definition 1.1.26. [BEKW17, Def. 3.5 & 3.7] Let X be a G-bornological coarse space.

(i) An equivariant big family on X is a big family (see Definition 1.1.19) consisting of
G-invariant subsets.

(ii) An equivariant complementary pair (Z,Y) on X is a complementary pair (see
Definition 1.1.19) where Z is a G-invariant subset of X and Y is an equivariant big
family.

Example 1.1.27. Let X be a G-bornological coarse space and A a G-invariant subset
of X. Then, the family

{A} := (U [A])U∈CG

is an equivariant big family on X (generated by A).
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The categories BornCoarse and GBornCoarse have natural symmetric monoidal
structures (see Definition A.3.1). We conclude the section with a description of them (see
[BE16, Example 2.30] and [BEKW17, Example 2.17]).

Let GSet be the category of G-sets and G-equivariant maps. Let

F : GBornCoarse→ GSet

be the forgetful faithful functor, which associates to every G-bornological coarse space X
its underlying G-set. The category GSet has the symmetric monoidal structure given
by the cartesian product. The symmetric monoidal structure on GBornCoarse is then
defined by pulling back the symmetric monoidal structure on GSet, as we now describe.

Let X and X ′ be G-bornological coarse spaces. Then, their tensor product

X ⊗GBornCoarse X
′

is the G-bornological coarse space defined as follows:

1. The underlying G-set of X ⊗GBornCoarseX
′ is the cartesian product X ×X ′ of the

underlying G-sets, with the diagonal action.

2. The bornology on X ×X ′ is generated by all the subsets B ×B′, with B and B′

varying among all the bounded sets of X and X ′.

3. The coarse structure on X ×X ′ is generated by the entourages U × U ′ with U in
C(X) and U ′ in C(X ′).

If f : X → Y and f ′ : X ′ → Y ′ are morphisms of G-bornological coarse spaces, then
their tensor product

f ⊗ f ′ : X ⊗GBornCoarse Y → X ′ ⊗GBornCoarse Y
′

is the equivariant map between the underlying G-sets (x, y) 7→ (f(x), f(y)).
This describes a bifunctor

−⊗GBornCoarse− : GBornCoarse×GBornCoarse→ GBornCoarse, (1.1.3)

which agrees with the cartesian symmetric monoidal structure of GSet on the underlying
G-sets. The tensor unit 1GBornCoarse (Definition A.3.1.2) is given by the one-point space ∗.

The functor F preserves the unit and the tensor product strictly, i.e., the morphisms
1 and 2 in Definition A.3.4 are identities. The associator, unit and symmetry constraints
are imported from those in GSet and are implemented by morphisms of G-bornological
coarse spaces; the relations of Definition A.3.1 are then satisfied and this finishes the
description of the symmetric monoidal structure on the category GBornCoarse.
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Remark 1.1.28. The one-point space ∗ is a commutative algebra object inGBornCoarse.

Notation 1.1.29. We will use the shorter notation X ⊗ X ′ for the tensor product
X ⊗GBornCoarse X

′.

1.2 Equivariant coarse homology theories

The goal of this section is to recall the definition of equivariant coarse homology theories
[BEKW17, Def. 3.10]. A coarse homology theory is a functor

E : GBornCoarse→ C

from the category of G-bornological coarse spaces to a cocomplete stable ∞-category C

(e.g., the∞-category of chain complexes Ch∞ or the∞-category of spectra Sp), satisfying
additional axioms: coarse invariance, flasqueness, coarse excision and u-continuity. These
are reviewed in Definition 1.2.1.

In order to study general properties of equivariant coarse homology theories, suitable
categories GSpcX of motivic coarse spaces and GSpX of motivic coarse spectra have
been constructed [BE16,BEKW17]; in particular, the category GSpX is the target of a
universal coarse homology theory

YosG : GBornCoarse→ GSpX

with the property that every equivariant coarse homology theory E : GBornCoarse→ C

has an essentially unique factorization over YosG. After reviewing these facts,we see that
equivariant coarse homology theories can be described as colimit-preserving functors on
the category of motivic coarse spaces and we conclude the section with the definitions
of a strong and of a continuous equivariant coarse homology theory; we will use these
notions in Section 1.3 in relation with forget-control and assembly maps.

In the following, let C be a cocomplete stable∞-category, let E : GBornCoarse→ C

be a functor and let X be a G-bornological coarse space.

If Y = (Yi)i∈I is a filtered family of G-invariant subsets of X, we define the value of
the functor E at the family Y as the colimit in C

E(Y) := colimi∈I E(Yi). (1.2.1)

Here, the subsets Yi of X are endowed with the G-bornological coarse structure induced
from X (by Example 1.1.22 (iv)). Observe that there is a natural morphism E(Y)→ E(X)

induced by all the inclusions Yi → X.
Let Z be a G-invariant subset of X, with the induced structures. If Y is an equivariant

big family on X (see Definition 1.1.26), then the intersection Z ∩ Y := (Z ∩ Yi)i∈I is



10 1. BORNOLOGICAL COARSE SPACES AND COARSE HOMOLOGY THEORIES

an equivariant big family on Z and E(Z ∩ Y) denotes the value of E at this filtered
family; moreover, we observe that there are natural morphisms E(Z ∩ Y)→ E(Z) and
E(Z ∩ Y)→ E(Y).

Let {0, 1}max,max be the G-bornological coarse space whose underlying set is {0, 1},
endowed with the maximal coarse structure and the maximal bornology; the G-action
is the trivial one. Recall that CG denotes the family of G-invariant entourages of X.
Recall Definition 1.1.25 of a flasque G-bornological coarse space and Definition 1.1.26
of equivariant complementary pair. We recall that the space XU , for U a G-invariant
entourage, is the G-bornological coarse space with coarse structure induced by U of
Example 1.1.22 (v). We can now give the fundamental definition of an equivariant coarse
homology theory:

Definition 1.2.1. [BEKW17, Definition 3.10] Let G be a group and let GBornCoarse

be the category of G-bornological coarse spaces. Let C be a cocomplete stable∞-category.
A G-equivariant C-valued coarse homology theory is a functor

E : GBornCoarse −→ C

with the following properties:

i. Coarse invariance: for all X ∈ GBornCoarse, the projection

{0, 1}max,max ⊗X → X

is sent by E to an equivalence of C;

ii. Flasqueness: if X is a flasque G-bornological coarse space, then E(X) ' 0;

iii. Coarse excision: E(∅) ' 0, and for every equivariant complementary pair (Z,Y)

on X, the diagram
E(Z ∩ Y) E(Z)

E(Y) E(X)

is a push-out square;

iv. u-continuity: for every G-bornological coarse space (X, C,B), the canonical mor-
phisms XU → X induce an equivalence E(X) ' colimU∈CG E(XU ).

We recall that the product ⊗ of G-bornological coarse spaces in Definition 1.2.1 is
the symmetric monoidal product (1.1.3).

Remark 1.2.2. [BEKW17, Rem. 3.11] Coarse invariance in Definition 1.2.1 is equivalent
to asking that the functor E sends equivalences of G-bornological coarse spaces (see
Definition 1.1.24) to equivalences of C.



1.2. EQUIVARIANT COARSE HOMOLOGY THEORIES 11

Examples of (equivariant) coarse homology theories are: coarse ordinary homology and
coarse topological K-theory [BE16], coarse algebraic K-homology and coarse topological
Hochschild homology [BEKW17,BC17], coarse A-theory [BKW18], coarse Hochschild
and cyclic homology (see Theorem 3.4.7). We will recall the definitions of coarse ordinary
homology in Section 1.5 and of coarse algebraic K-theory in Section 2.3.

Equivariant C-valued coarse homology theories can be equivalently seen as colimit-
preserving functors GSpX → C, where GSpX is a suitable category of motivic coarse
spectra, as we now explain. In [BE16, Section 3.4] and [BEKW17, Section 4.1], ∞-
categories SpcX and GSpcX of motivic coarse spaces and of G-equivariant motivic
coarse spaces respectively, together with the corresponding stable versions SpX and
GSpX , have been constructed. This is implemented by first completing the category of
bornological coarse spaces (by embedding it in the category of spaces-valued presheaves)
and then by localizing (in the realm of ∞-categories) the obtained ∞-category at various
sets of morphisms: these encode the properties of descent, coarse equivalences, vanishing
on flasque G-bornological coarse spaces, and u-continuity. The ∞-categories of motivic
coarse spectra SpX and GSpX are defined as the stabilizations of the ∞-categories
SpcX and GSpcX of motivic coarse spaces [BE16, Sec. 4].

Every bornological coarse space X represents a motivic coarse space Yo(X) in SpcX .
In fact, this is described by Yoneda functors

Yo : BornCoarse→ SpcX (1.2.2)

and
YoG : GBornCoarse→ GSpcX , (1.2.3)

sending a bornological coarse space (or a G-bornological coarse space) to its (equivariant)
coarse motivic space. The stable versions of these functors are denoted by

Yos : BornCoarse→ SpX (1.2.4)

and
YosG : GBornCoarse→ GSpX . (1.2.5)

The category GSpX of motivic coarse spectra is a stable cocomplete ∞-category and the
functor YosG : GBornCoarse→ GSpX is the universal G-equivariant coarse homology
theory [BEKW17, Def. 4.9]: every equivariant coarse homology theory factorizes in an
essentially unique way over it.

Let C be a cocomplete stable ∞-category and let CoarseHomologyTheoriesC be
the full subcategory of Fun(BornCoarse,C) consisting of all functors satisfying coarse
invariance, excision, continuity and vanishing on flasque spaces (as in Definition 1.2.1).
Let Funcolim(SpcX ,C) be the category of colimit-preserving functors from SpcX to C.
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Remark 1.2.3. [BE16, Cor. 3.34] For every cocomplete∞-category C, we have an equiv-
alence between the∞-categories CoarseHomologyTheoriesC and Funcolim(SpcX ,C).

Analogously, pre-composition with the functor YosG, yields an equivalence between
the ∞-category of G-equivariant coarse homology theories and the category of colimit-
preserving functors GSpX → C [BEKW17, Cor. 4.10].

Notation 1.2.4. If X is in BornCoarse (or GBornCoarse) and E is a colimit-
preserving functor in Funcolim(SpcX ,C) (or in Funcolim(GSpcX ,C)), then we write
E(X) instead of E(Yo(X)) (or E(YoG(X))).

The categories BornCoarse and GBornCoarse have symmetric monoidal structures
denoted by ⊗ (1.1.3). In the same way, the categories SpcX and GSpcX have symmetric
monoidal structures, also denoted by ⊗, which are essentially uniquely determined by the
requirement that the functors Yo and YoG refine to symmetric monoidal functors. For X
in GSpcX and Y in GBornCoarse we will often write Y ⊗X instead of YoG(Y )⊗X.

Definition 1.2.5. LetE : GBornCoarse→ C be a functor and letX be aG-bornological
coarse space. The twist EX of E by X is the functor

EX : GBornCoarse→ C

defined by EX(Y ) := E(X ⊗ Y ).

Remark 1.2.6. Analogously, we can twist a coarse homology theory E by a coarse
motivic space YoG(X) in GSpcX : EX(Y ) := E(YoG(X)⊗ Y ).

If E is a G-equivariant coarse homology theory, it is natural to ask whether the twisted
version is also a coarse homology theory:

Lemma 1.2.7. [BEKW17, Lemma 4.17] If E is a G-equivariant coarse homology theory
and X is a G-bornological coarse space, then the twist EX is a G-equivariant coarse
homology theory.

We conclude the section with the definitions of strongness and continuity for a
(equivariant) coarse homology theory. These properties are important is the study of
coarse assembly maps. We first need a more general definition of flasque spaces (recall
Definition 1.1.25):

Definition 1.2.8. [BEKW17] A G-bornological coarse space X is called weakly flasque
if it admits a morphism f : X → X such that:

1. YosG(f) ' idYosG
(X);

2. for every entourage U of X, the union
⋃
k∈N(fk × fk)(U) is again an entourage of

X;
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3. for every bounded set B of X there exists k such that fk(X) ∩GB = ∅.

Definition 1.2.9. [BEKW17, Def. 4.19] Let E : GBornCoarse→ C be a G-equivariant
coarse homology theory. Then, E is strong if E(X) ' 0 for all weakly flasque G-
bornological coarse spaces X.

Remark 1.2.10. [BEKW17, Lemma 11.25] Let E : GBornCoarse → C be a G-
equivariant coarse homology theory. Let X be a G-bornological coarse space. If E
is strong, then also the twist EX by X is strong equivariant coarse homology theory.

We now proceed with the definition of a continuous coarse homology theory. Let X
be a G-bornological coarse space.

Definition 1.2.11. [BEKW17, Def. 5.1] Let F be a subset of X. Then, F is called
locally finite if B ∩ F is finite for every bounded set B ∈ B(X).

Definition 1.2.12. [BEKW17, Def. 5.6] Let Y = (Yi)i∈I be a filtered family of invariant
subsets of X. The family Y is called a trapping exhaustion if, for every locally finite
G-invariant subset F of X, there exists an index i ∈ I for which F is contained in Yi.

Let E : GBornCoarse→ C be a G-equivariant coarse homology theory. Recall that,
for a given filtered family Y = (Yi)i, we define E(Y) as the colimit of the E(Yi) (1.2.1).

Definition 1.2.13. [BEKW17, Def. 5.15] A G-equivariant coarse homology theory E is
continuous if for every trapping exhaustion Y of a G-bornological coarse space X, the
morphism

E(Y)→ E(X)

is an equivalence.

1.3 Forget-control and assembly maps

One of the main applications of coarse geometry is in the study of (coarse) assembly
map conjectures. We refer to [BLR07,RV17,Lue18] for recent surveys on assembly map
conjectures and controlled methods. The coarse geometry approach to these conjectures
consists in analyzing the so-called forget-control map and then, by comparison, in getting
information about the assembly maps, as we shall see.

In this section, we recall the definitions of forget-control map [BEKW17, Def. 11.10]
and of coarse assembly map [BEKW17, Def. 10.24] in the framework of [BEKW17]. We
first need to introduce the category GUBC of G-uniform bornological coarse spaces (see
Definition 1.3.3). Then, we define the so-called cone functors

O,O∞ : GUBC→ GBornCoarse
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that are functors from the category of G-uniform bornological coarse spaces to the category
of G-bornological coarse spaces. From these functors, we get a fiber sequence

F 0 → F → F∞ → ΣF 0

of functors GBornCoarse→ GSpX (1.3.2). The forget-control map is then defined as
the connecting morphism associated to this fiber sequence.

After giving the definition of coarse assembly map (Definition 1.3.19), that is related
to the classical assembly map [BEKW17, BEKW18], we conclude the section with a
comparison result [BEKW17, Thm. 11.16]: under some mild assumptions, the coarse
assembly map and the forget-control map provide equivalent morphisms when restricted
to the family of subgroups (see Definition 1.3.16) Fin of finite subgroups.

We start by recalling the definition of G-uniform bornological coarse space.

Definition 1.3.1. Let X be a G-set. A G-uniform structure on X is a non-empty subset
U ⊆ P(X ×X) with the following properties:

• every element of U contains the diagonal ∆X of X;

• U is closed under inverses, compositions, finite intersections and supersets;

• for every U ∈ U there exists V ∈ U such that V ◦ V ⊆ U ;

• for every U in U the set
⋂
g∈G gU belongs to U .

A G-uniform space (X,U) is a pair given by a G-set X and a G-uniform structure U
on X. If (X,U) and (X ′,U ′) are G-uniform spaces, a G-equivariant map f : X → X ′ is
uniform if (f × f)−1(U ′) ∈ U for every U ′ ∈ U ′.

Definition 1.3.2. Let X be a G-set endowed with a coarse structure C and a uniform
structure U . The structures U and C are compatible if CG ∩ UG is not empty.

We can define a category GUBC of G-uniform bornological coarse spaces:

Definition 1.3.3. [BEKW17, Def. 9.9] A G-uniform bornological coarse space is a
G-bornological coarse space with a compatible G-uniform structure. Morphisms of G-
uniform bornological coarse spaces are morphisms of G-bornological coarse spaces that
are also uniform.

Remark 1.3.4. The category GUBC is symmetric monoidal. If X and Y are G-uniform
bornological coarse spaces, the product X ⊗ Y is defined to be the G-bornological coarse
space X ⊗ Y endowed with the (compatible) G-uniform structure generated by all the
products UX × UY of invariant uniform entourages of X and Y .
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Example 1.3.5. Let (X, d) be a metric space with G-action. The uniform structure Ud
on X associated to the metric d is generated by the sets

Ur = {(x, y) ∈ X ×X | d(x, y) ≤ r}

for all r in (0,∞). This is compatible with the coarse structure Cd of Example 1.1.22 (i).
We denote by Xdu the G-uniform bornological coarse space obtained in this way.

Let X be a G-uniform bornological coarse space and let Y = (Yi)i∈I be a G-equivariant
filtered family on X. Consider an order-preserving function ϕ : I → P(X ×X)G, where
P(X ×X)G is the family of G-invariant subsets of X ×X ordered by the opposite of
the inclusion relation. We say that ϕ is UG-admissible [BEKW17, Def. 9.14] if for every
U ∈ UG there exists i in I such that ϕ(i) ⊆ U .

For a UG-admissible function ϕ : I → P(X ×X)G, define the G-invariant entourages

Uϕ := {(x, y) ∈ X ×X | (∀i ∈ I | (x, y) ∈ Yi × Yi or (x, y) ∈ ϕ(i))}.

Assume also that Y = (Yi)i∈I is a G-equivariant big family on X (see Definition 1.1.26);
then, the hybrid coarse structure Ch is the coarse structure generated by the entourages
U ∩ Uϕ for all the G-invariant entourages U in CG and all the UG-admissible functions
ϕ : I → P(X ×X)G [BEKW17, Def. 9.15].

Definition 1.3.6. [BEKW17, Def. 9.16] Let X be a G-uniform bornological coarse space.
The hybrid space Xh is the G-bornological coarse space Xh := (X, Ch,B) with the hybrid
coarse structure and the same bornology.

In order to define the forget-control map, we first need to define the cone functor
O : GUBC → GBornCoarse [BEKW17, Sec. 9.4] from the category of G-uniform
bornological coarse spaces to the category of G-bornological coarse spaces. We now
explain how to construct it.

One first considers the metric space [0,∞) endowed with the trivial G-action. By
Example 1.3.5, we get the G-uniform bornological coarse space [0,∞)du. If X is a
G-uniform bornological coarse space, the product [0,∞)du ⊗ X is still a G-uniform
bornological coarse space by Remark 1.3.4. Let Y be the G-equivariant big family
Y(X) := ([0, n]×X)n∈N on [0,∞)du ⊗X.

Definition 1.3.7. [BEKW17, Def. 9.24] The cone functor

O : GUBC→ GBornCoarse

sends a G-uniform bornological coarse space X to the hybrid G-bornological coarse space
([0,∞)du ⊗X)h. If f : X → X ′ is a morphism of G-uniform bornological coarse spaces,
then O(f) : O(X)→ O(X ′) is the morphism of G-bornological coarse spaces induced by
id[0,∞) × f .
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For further details on the functoriality of the cone functor O, we refer to [BEKW17, Sec.
9.4].

Let R be the set of real numbers endowed with the euclidean metric; hence, R is a
G-uniform bornological coarse space (with trivial G-action). For a G-uniform bornological
coarse space X, the product R⊗X is again a G-uniform bornological coarse space; let Y
be the equivariant big family Y := ((−∞, n]×X)n∈N on it. As above, these data describe
a functor:

Definition 1.3.8. [BEKW18, Def. 4.9] We denote by

O∞geom : GUBC→ GBornCoarse

the functor that sends a G-uniform bornological coarse space to the hybrid G-bornological
coarse space O∞geom(X) := (R⊗X)h.

Let YosG : GBornCoarse → GSpX be the stable Yoneda functor (1.2.5) and let
GSpX be the category of motivic coarse spectra.

Definition 1.3.9. [BEKW18, Def. 4.10] We denote by O∞ the composition

O∞ := YosG ◦O∞geom : GUBC→ GSpX .

This composition is called cone-at-infinity functor.

Let F : GUBC→ GBornCoarse be the forgetful functor (which forgets the uniform
structure). By [BEKW17, Cor. 9.30] (see also [BEKW18, Sec. 4]), we have a fibre
sequence of functors

· · · → YosG ◦F → YosG ◦O → O∞ → Σ YosG ◦F → . . . (1.3.1)

called the cone sequence. The first map of the sequence is induced by the inclusion of X in
the product [0,∞)×X, the second by the inclusion of O(X) in O∞geom(X), and the third
is described as follows: the spaces O∞geom(X) and R⊗ F(X) have the same underlying
sets and the identity map induces a morphism YosG(O∞geom(X)) → YosG(R ⊗ F(X)).
The boundary map O∞ → Σ YosG ◦F is then obtained after applying the equivalence
YosG(R⊗F(X)) ' Σ YosG(F(X)) (that is obtained by using excision with respect to the
complementary pair of Example 1.1.20).

Definition 1.3.10. Let X be a bornological coarse space and U an entourage of X. Let
µ be a probability measure on the measurable space (X,P(X)). Then, µ is called finite
U -bounded if there is a finite subset of X such that F ×F is contained in U and µ(F ) = 1.
The support supp(µ) of µ is the smallest subset of X of µ-measure 1.

Definition 1.3.11. [BEKW17, Def. 11.1] Let X be a bornological coarse space and U
an entourage of X. Then, we denote by PU (X) the set of finite U -bounded probability
measures on X.
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The set PU (X) is actually a G-simplicial complex [BEKW17, Sec. 11.1]. On the set
PU (X), we consider the bornology generated by the sets PU (B) for all the bounded sets
B of X and the coarse and uniform structures induced by the path metric. Then, PU (X),
with these structures, is a G-uniform bornological coarse space [BEKW17, Def. 11.5] that
we denote by PU (X)u. When equipped with only the bornology and the coarse structure
(hence after forgetting the uniform structure), it is denoted by PU (X)d.

The construction of PU (X) can be made functorial (in pairs (X,U) of bornological
coarse spaces and fixed entourage) as described in [BEKW18, Sec. 4].

Definition 1.3.12. [BEKW17, Def. 11.9] Let X be a G-bornological coarse space, U a
G-invariant entourage and let PU (X) be the set of Definition 1.3.11 equipped with the
bornology and the uniform and coarse structure described above. Then, we define:

F (X) := colimU∈CG(X) YosG(PU (X)u)

F∞(X) := colimU∈CG(X)O∞(PU (X)u)

F 0(X) := colimU∈CG(X) YosG(PU (X)d).

These refine to functors F 0, F, F∞ : GBornCoarse → GSpX [BEKW17, Rmk.
11.11]. Composition of the functor P with the fibre sequence (1.3.1) induces a fibre
sequence of functors GBornCoarse→ GSpX

F 0 → F → F∞ → ΣF 0 (1.3.2)

(see [BEKW17, Def. 11.9] or also [BEKW18, Def. 4.15]). We are particularly interested
in the boundary map F∞ → ΣF 0 induced by the cone boundary:

Definition 1.3.13. [BEKW17, Def. 11.10] Let X be a G-bornological coarse space.
Then, the map

βX : F∞(X)→ ΣF 0(X)

in the cone sequence (1.3.2) is called the forget-control map.

Remark 1.3.14. The functors F 0, F∞ are not coarse homology theories, hence β is not
a transformation of coarse homology theories; however, if E is a strong equivariant coarse
homology theory, then the induced forget-control map

β : E ◦ F∞ → ΣE ◦ F 0

is a transformation of equivariant coarse homology theories [BEKW17, Cor. 11.26].

We now introduce the necessaryterminology for defining the coarse assembly map.

For a given group G, let GOrb be the category of transitive G-sets and G-equivariant
maps. Let GTop be the category of topological spaces (compactly generated weakly
Hausdorff spaces) endowed with a continuous G-action.
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The cone functor O∞ of Definition 1.3.9 induces a new functor [BEKW17, Def. 10.10]

O∞hlg : GTop→ GSpX (1.3.3)

that is an equivariant homology theory [BEKW17, Prop. 10.11]. By Elmendorf’s Theorem,
equivariant homology theories with values is a cocomplete stable ∞-category C are the
same as functors GOrb → C (see [Blu17, Thm. 1.3.8] for a recent reformulation of
the classical Elmendorf’s Theorem [Elm83]). The equivariant homology theory O∞hlg is
essentially uniquely characterized by the natural equivalence

O∞hlg(S) ' Σ YosG(Smin,max) (1.3.4)

for S in GOrb, where Smin,max denotes the G-bornological coarse space S with the
minimal coarse structure and the maximal bornology (see [BEKW17, Prop. 9.35] and the
text after [BEKW18, Rmk. 8.17]). We refer to [BEKW18, Def. 8.16] for a construction
of the functor O∞hlg.

Let C be a stable cocomplete ∞-category and let E be a G-equivariant C-valued
coarse homology theory, seen as a colimit preserving functor on GSpX .

Remark 1.3.15. [BEKW17, Prop. 9.35] The composition E ◦ O∞hlg : GTop → C is a
G-equivariant homology theory. By the equivalence (1.3.4), if EL is the twist of E by a
G-bornological coarse space L, then we get the equivalences

EL ◦ O∞hlg(S) ' ΣEL(YosG(Smin,max))

for S in GOrb.

Definition 1.3.16. Let F be a non-empty set of subgroups of G. The set F is called a
family of subgroups if it is closed under conjugation and under taking subgroups.

Example 1.3.17. Let G be a group. The trivial family {∗}, the set Fin of all finite
subgroups of G and the set All of all subgroups of G are families of subgroups.

Let G be a discrete group. We recall that a classifying space for a family of subgroups
F of G is a G-CW-complex EFG (unique up to G-homotopy) with the property that, for
every H in F , the set of H-fixed points of EFG is contractible, and is empty otherwise.

Definition 1.3.18. We denote by EFGcw the choice of a model of the classifying space
for the family of subgroups F of G.

The projection EFGcw → {∗} to the one point space is a morphism in GTop. By
applying an equivariant homology theory F we get a map F (EFG

cw) → F ({∗}), that
is the assembly map for F and the family of subgroups F . When F is the homology
theory O∞hlg : GTop → GSpX , we get an assembly map that is called the universal
assembly map [BEKW17, Def. 10.21].
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For a G-topological space X, the projection X → {∗} to the one point space induces
a morphism αX : O∞hlg(X)→ O∞hlg(∗).

Definition 1.3.19. [BEKW17, Def. 10.24] Let Q be a G-bornological coarse space such
that the G-action on the underlying G-set is free and let X be a G-topological space.
Then, the morphism

αX,Q := αX ⊗Yos(Q) : O∞hlg(X)⊗Yos(Q)→ Σ YosG(Q)

is called the motivic assembly map with twist Q.

We refer to [BEKW17, Sec. 10.3] for further details. The main example for us is
given by Q = Gcan,min of Example 1.1.22(ii) and for X by the choice of a model of EFinG.
In fact, with these assumptions, we get the assembly map for the equivariant homology
theory E ◦ O∞hlg.

We also consider twists βX,Q of the forget-control map βX (Definition 1.3.13).

We conclude the section with a comparison result between the coarse assembly map
αEFinG,Gcan,min and the forget-control map βGcan,min,Gmax,max :

Theorem 1.3.20. [BEKW17, Thm. 11.16] Let E : GBornCoarse→ C be a continuous
G-equivariant coarse homology theory. Then, the coarse assembly map αEFinG,Gcan,min and
the forget-control map βGcan,min,Gmax,max induce equivalent morphisms E(αEFinG,Gcan,min)

and E(βGcan,min,Gmax,max).

New developments and applications to split-injectivity results of the assembly maps
can be found in [BEKW18].

1.4 Localization theorems for coarse homology theories

Let G be a discrete group and denote by R(G) its representation ring [Seg68b]. Let
γ be a conjugacy class of G and denote by p the (prime) ideal of R(G) consisting of
representations in R(G) with trace 0. Segal proves a localization theorem [Seg68a, Prop.
4.1] saying that, after localization at the prime ideal p, the map

K∗G(X)→ K∗G(Xγ)

in equivariant K-theory induced from the inclusion of the γ-fixed points Xγ in X (for a
locally compact G-space X) is an isomorphism.

Inspired by Segal’s localization theorem, with the aim to develop new tools for studying
equivariant coarse algebraic K-homology, a general localization result for equivariant
coarse homology theories has been proved [BCb]. In this section we recall and state the
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principal results of [BCb], in particular the coarse localization theorems Theorem 1.4.15
and Theorem 1.4.21. We will apply these theorems in Section 4.5, where a localization
theorem for G-equivariant coarse Hochschild homology and cyclic homology is given.

Definition 1.4.1. [Mac71, Exercise IX.6.3] Let I be an ordinary category. The twisted
arrow category Tw(I) is the category defined as follows:

1. objects: the objects of Tw(I) are arrows i→ j in I.

2. morphisms: a morphism (i→ j)→ (i′ → j′) is a commuting diagram

i // j

��

i′

OO

// j′

with the natural compositions.

Observe that the twisted arrow category of I comes equipped with a functor

π : Tw(I)→ Iop × I , (i→ j) 7→ (i, j) .

Definition 1.4.2. [GHN17, Def. 2.5] Let I be a category and let C be a cocomplete
∞-category. For a functor F : Iop × I→ C, we define its coend∫ I

F := colimTw(I) F ◦ π.

as the colimit over the twisted arrow category Tw(I) of F ◦ π.

Let G be a discrete group, GOrb the category of transitive G-sets and G-equivariant
maps and let C be a stable cocomplete ∞-category. Recall that, by Remark 1.2.3, a
(non-equivariant) coarse homology theory is the same as a functor of Funcolim(SpcX ,C).

Consider a functor
E : GOrb→ Funcolim(SpcX ,C)

with values in non-equivariant coarse homology theories and let X be in

Fun(GOrbop,SpcX ).

Then, we can consider the induced functor

E ◦X : GOrb×GOrbop → C (1.4.1)

defined by sending a pair (S, T ) to the object E(S)(X(T )) of C. We can now apply the
coend formula of Definition 1.4.2:
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Definition 1.4.3. [BCb, Def. 3.13] As above, let E : GOrb → Funcolim(SpcX ,C) be
a functor with values in a cocomplete stable ∞-category C. We define the functor EG

associated to E by

EG(X) :=

∫ GOrb

E ◦X.

where the index category is GOrb and X is a functor X : GOrbop → SpcX .

A transformation of functors X → X ′ induces a transformation of the pairing E ◦X →
E ◦X ′ (that uses the functoriality of E(S) as well), hence a transformation between the
coend formulas.

Remark 1.4.4. We now briefly explain the motivation behind Definition 1.4.3. Let C
be a cocomplete stable ∞-category. In equivariant homotopy theory, as a consequence
of Elmendorf’s theorem [Elm83], a C-valued equivariant homology theory is essentially
uniquely determined by a functorH : GOrb→ C. There is an equivalence of∞-categories
between C and the colimit-preserving functors from the ∞-category of spaces Spc to C,
and by using this equivalence, we can interpret H as a functor

H : GOrb→ Funcolim(Spc,C).

If X is G-space, there is a well-defined pairing H ◦ X defined by sending the pair
(S, T ) ∈ GOrb × GOrbop to the object H(S)(X(T )) ∈ C and its evaluation can be
described in terms of a coend formula [BCb, Rmk. 3.11]. This interpretation can
be used in order to get abstract localization results [BCb]. In the case of equivariant
coarse homology theories and of G-bornological coarse spaces, the ∞-category Spc of
spaces is replaced by the ∞-category SpcX of coarse motivic spaces, which leads to the
Definition 1.4.3.

The functor EG is a coarse homology theory when pre-composed with a suitable orbit
functor, as we now explain.

Let G be a group and H a subgroup of G and denote by WG(H) := NG(H)/H the
associated Weyl group. If X is a G-bornological coarse space, we consider the subset XH

of H-fixed points, which has an induced WG(H)-action. In order to endow XH with a
compatible coarse structure and bornology, we embed it in the G-completion BGX of X
(see Definition 1.1.23); the set XH , endowed with the bornology and coarse structure
induced by the inclusion XH → BGX (see Example 1.1.14), is a WG(H)-bornological
coarse space. A morphism f : X → Y of G-bornological coarse spaces restricts to a
morphism fH : XH → Y H of WG(H)-bornological coarse spaces. Then, we get an
H-fixed points functor

(−)H : GBornCoarse→WG(H)BornCoarse
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sending X to the H-fixed points XH of X. The composition with the Yoneda func-
tor YoWG(H) : WG(H)BornCoarse→WG(H)SpcX (1.2.3) describes a new functor

GBornCoarse→WG(H)SpcX ,

that can be refined to a motivic orbit functor [BCb, Lemma 3.6 & Def. 3.8]

Ỹ : GBornCoarse→ Fun(GOrbop,SpcX ) (1.4.2)

(roughly) defined by sending a G-bornological coarse space X to the functor which sends
the G -set G/H to the motivic coarse space Yo(XH) of the bornological coarse space of
H-fixed points XH . In this way, we take the dependence on the subgroup H into account
properly; we refer to [BCb, Sec. 3.3] for further details on the definition of the motivic
orbit functor.

Let EG be the functor constructed in Definition 1.4.3. Then, we get a G-equivariant
coarse homology theory:

Lemma 1.4.5. [BCb, Cor. 3.15] Let E : GOrb→ Funcolim(SpcX ,C) be a functor with
values in a stable cocomplete ∞-category C. Then, the functor

EG ◦ Ỹ : GBornCoarse→ C

is a G-equivariant coarse homology theory.

We do not know whether all the C-valued equivariant coarse homology theories are of
the form EG for some functor E : GOrb→ Funcolim(SpcX ,C) [BCb, Rmk. 3.16]. Such
functors will be called of Bredon-style:

Definition 1.4.6. [BCb, Def. 3.17] Let E : GOrb → Funcolim(SpcX ,C) as above. A
G-equivariant coarse homology theory of the form EG is called a Bredon-style equivariant
coarse homology theory.

Bredon-style equivariant coarse homology theories are important to us because of
the coarse localization theorems Theorem 1.4.15 and Theorem 1.4.21; in fact, these
theorems are stated for Bredon-style equivariant coarse homology theories. However,
every equivariant coarse homology theory E can be approximated by a Bredon-style
equivariant coarse homology theory EBredon as follows.

Remark 1.4.7. Let C be a stable ∞-category and let E ∈ Funcolim(GSpcX .C) be a
functor corresponding to an equivariant coarse homology theory E ◦YoG. Consider the
functor

E : GOrb→ Funcolim(SpcX ,C)

defined as E(S)(X) := E(Smin,max ⊗X). We can then apply the coend formula to E and
X ∈ Fun(GOrbop,SpcX ) as in Definition 1.4.3 obtaining a new functor EG.
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We call Y : GSpcX → Fun(GOrbop,SpcX ) the factorization of the motivic orbit
functor (1.4.2) through the Yoneda functor YoG.

Definition 1.4.8. [BCb, Def. 3.29] The Bredon-style equivariant coarse homology theory
EBredon associated to a functor E : GOrb→ Funcolim(SpcX ,C) is the composition

EBredon := EG ◦ Y : GSpcX → C.

Consider the following categories:

Definition 1.4.9. [BCb, Def. 3.34] Let SpXbd denote the full subcategory of SpX
generated under colimits by the objects Yos(X), with X a bounded bornological coarse
space.

Definition 1.4.10. [BCb, Def. 3.46] Let

GSpX〈GOrb⊗ SpXbd〉

be the full subcategory of GSpX generated under colimits by the motives Smin,max ⊗X
for S in GOrb and X in SpXbd.

Let E : GOrb → Funcolim(SpcX ,C) be a functor and EBredon be its associated
Beredon-style coarse homology theory. There is a comparison map

EBredon → E (1.4.3)

[BCb, Sec. 3.5]. One may ask under which conditions on the functor E (and on the
bornological coarse space X) the comparison map (1.4.3) provides an equivalence. By
[BCb, Cor. 3.43], this is true if the group G is finite and X belongs to the category
GSpX〈GOrb ⊗ SpX〉, or, by [BCb, Cor. 3.47], if E is hyperexcisive [BCb, Def. 3.32]
and X belongs to the category GSpX〈GOrb⊗ SpXbd〉.

We do not give the definition of hyperexcisive coarse homology theory here; however,
if E is a coarse homology theory and EGcan,min denotes its twist by the G-bornological
coarse space Gcan,min, then the following is true:

Remark 1.4.11. [BCb, Lemma 3.37] The twist EGcan,min of a continuous equivariant
coarse homology theory E is an hyperexcisive coarse homology theory.

Let G be a discrete group and let F be a set of subgroups of G that is invariant under
conjugation. It determines the full subcategory GFOrb of GOrb of transitive G-sets
with stabilizers in F . Moreover, the inclusion of GFOrb in GOrb induces adjunctions:

IndF : Fun(GFOrbop,D) � Fun(GOrbop,D) : ResF

and
ResF : Fun(GOrbop,D) � Fun(GFOrbop,D) : CoindF
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for every presentable ∞-category D [Lur09, Corollary 5.5.2.9].

Definition 1.4.12. Let F be a conjugation invariant set of subgroups of G. Then,
F⊥ := All \ F denotes the complement of F in the set All of all subgroups of G.

Definition 1.4.13. Let X be in Fun(GOrbop,D), where D is a presentable∞-category.
We define

XF := IndF⊥ResF⊥X (1.4.4)

and we denote by XF → X the morphism induced by the counit of the adjunction (1.4).

Definition 1.4.14. [BCb, Def. 2.6] Let E : GOrb → C be a functor, with C a stable
∞-category, and let F be a conjugation invariant set of subgroups of G. We say that the
functor E vanishes on F if E(S) ' 0 for all S in GFOrb.

We can now formulate the Coarse Abstract Localization Theorem I. Let F be a family
of subgroups of G and let X be an object of Fun(GOrbop,SpcX ). Let E : GOrb →
Funcolim(SpcX ,C) be a functor with C a stable cocomplete ∞-category.

Theorem 1.4.15 (Coarse Abstract Localization Theorem I). [BCb, Thm. 4.1] If E
vanishes on F , then the map XF → X induces an equivalence

EG(XF )→ EG(X)

where EG is the functor associated to E in Definition 1.4.3.

For a second version of the localization theorem, we first need to fix a conjugacy class
γ of G and to restrict to a class of nice bornological coarse spaces, as we shall see.

Definition 1.4.16. [BCb, Def. 4.2] Let X be a G-bornological coarse space and γ be a
conjugacy class of the group G. Define the G-bornological coarse space of γ-fixed points
Xγ as the G-invariant subset of X

Xγ :=
⋃
g∈γ

Xg

with the induced bornology and coarse structures.

A G-invariant subset A of X generates a big family {A} (see Example 1.1.27). If F
is a functor from GBornCoarse to a cocomplete category, then we let F ({A}) be the
colimit

F ({A}) := colimA′∈{A} F (A′).

Recall the Yoneda functor YoG : GBornCoarse→ GSpcX (1.2.3).

Definition 1.4.17. [BCb, Def. 4.3] We say that a G-invariant subset A of X is a nice
subset if the natural morphism

YoG(A)→ YoG({A})
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is an equivalence.

Recall the construction of the functor O∞geom : GUBC→ GBornCoarse of Definition
1.3.8.

Example 1.4.18. [BCb] Let W be a finite G-simplicial complex and γ a conjugacy class
of G. Then, W is a uniform G-bornological coarse space with the uniform structure
induced from the path metric. The subsetW γ of γ-fixed points is a uniform G-bornological
coarse space. The cones O∞geom(W ) and O∞geom(W γ) are G-bornological coarse spaces. By
[BCb, Lemma 3.4], O∞geom(W γ) is equivalent to O∞geom(W )γ ; moreover, O∞geom(W )γ is a
nice subset of O∞geom(W ).

Definition 1.4.19. Let γ be a conjugacy class of the group G. Let F(γ) be the set of
subgroups of G

F(γ) := {H < G | H ∩ γ = ∅}

that do not intersect the conjugacy class γ.

Remark 1.4.20. The set F(γ) is a family of subgroups.

We can finally state the Coarse Abstract Localization Theorem II.
Consider a functor E : GOrb → Funcolim(SpcX ,C), with C a stable cocomplete

∞-category. Let X be a G-bornological coarse space and γ a conjugacy class of G. Let
Ỹ be the motivic orbit functor (1.4.2).

Theorem 1.4.21 (Coarse Abstract Localization Theorem II). [BCb, Thm. 4.4] Assume
that:

1. Xγ is a nice subset of X;

2. E vanishes on F(γ);

then, the map
EG(Ỹ (Xγ))→ EG(Ỹ (X))

induced by the inclusion Xγ → X is an equivalence.

Let E be a C-valued equivariant coarse homology theory seen as a functor in
Funcolim(GSpcX ,C) and E the functor of Remark 1.4.7. We have the following corollary
of the coarse localization theorem:

Corollary 1.4.22. [BCb, Cor. 4.9] Let X be a G-bornological coarse space and γ a
conjugacy class of G. Let Xγ be a nice subset of X and assume that E vanishes on F(γ).
Then, the morphism

EBredon(YoG(Xγ))→ EBredon(YoG(X)

induced by the inclusion is an equivalence.
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1.5 Equivariant coarse ordinary homology

A first example of equivariant coarse homology theories is given by the coarse version of
ordinary homology

XHG : GBornCoarse→ Sp,

that is a spectra-valued equivariant coarse homology theory [BE16,BEKW17]. The goal
of this section is to recall its construction.

Let X be a bornological coarse space, n ∈ N a natural number, B a bounded set of
X, and x = (x0, . . . , xn) a point of Xn+1. We say that x meets B if there exists an index
i ∈ {0, . . . , n} such that xi belongs to B. If U is an entourage of X, we say that x is
U -controlled if, for each i and j in {0, . . . , n}, the pair (xi, xj) belongs to U .

An n-chain c on X is a function c : Xn+1 → Z; its support supp(c) is defined as the
set of points for which the function c is non-zero:

supp(c) = {x ∈ Xn+1 | c(x) 6= 0}. (1.5.1)

We say that an n-chain c is U -controlled if every point x of supp(c) is U -controlled. The
chain c is locally finite if, for every bounded set B, the set of points in supp(c) which meet
B is finite. An n-chain c : Xn+1 → Z is controlled if it is locally finite and U -controlled
for some entourage U of X.

Definition 1.5.1. Let X be a bornological coarse space and n ∈ N a natural number.
Then, XCn(X) denotes the free abelian group generated by the locally finite controlled
n-chains on X.

We will also represent n-chains as formal sums∑
x∈Xn+1

c(x)x,

that are locally finite and U -controlled. The boundary map ∂ : XCn(X)→ XCn−1(X) is
defined as the alternating sum ∂ :=

∑
i(−1)i∂i of the face maps:

∂i(x0, . . . , xn) := (x0, . . . , x̂i, . . . , xn).

As the n-chains of XCn(X) are locally finite and controlled, then ∂i extends linearly to a
map ∂i : XCn(X)→ XCn−1(X).

Lemma 1.5.2. [BE16, Sec. 6.3] Let X be a bornological coarse space. The graded abelian
group XC∗(X), endowed with the boundary operator ∂ extended linearly to XC∗(X), is a
chain complex.
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When X is a G-bornological coarse space, we let XCGn (X) be the subgroup of XCn(X)

given by the locally finite controlled n-chains that are also G-invariant. The boundary
operator restricts to XCG∗ (X), and (XCG∗ (X), ∂) is a subcomplex of (XC∗(X), ∂).

It is easy to see that the chain complexes XC∗(X) and XCG∗ (X) are functorial in X;
namely, if f : X → Y is a morphism of G-bornological coarse spaces, then we consider the
map on the products Xn → Y n sending (x0, . . . , xn) to (f(x0), . . . , f(xn)). This extends
linearly to a map

XCG(f) : XCGn (X)→ XCGn (Y ) (1.5.2)

that is well-defined because the map f is proper and controlled and because the chains
are locally finite. In fact, the map XCG(f) involves sums over the pre-images by f , that
are finite. Moreover, XCG(f) sends controlled n-chains to controlled n-chains because f
is controlled.

We have described a functor

XCG : GBornCoarse→ Ch (1.5.3)

with values in the category Ch of chain complexes over the integers Z.

The ∞-category Ch∞ of chain complexes is defined as the localization (in the realm
of ∞-categories) of the nerve of the category Ch at the class W of quasi-isomorphism of
chain complexes:

Ch∞ := N(Ch)[W−1]. (1.5.4)

as described in [Lur14, Sec. 1.3.4].
There is a standard way to go from chain complexes to spectra that uses the equivalence

between the ∞-category of chain complexes Ch∞ and HZ −Mod of HZ-modules
[Shi07, Thm. 1.1]. This is the Eilenberg-MacLane correspondence

EM : Ch
loc−→ Ch∞

'−→ HZ−Mod→ Sp (1.5.5)

between the ∞-category of chain complexes and the ∞-category of spectra, where loc
is the localization functor (see [BE16, Sec. 6.3]); among the properties of the functor
EM, it is remarkable to say that it sends chain homotopic maps to equivalences, short
exact sequences of chain complexes to spectra and it preserves filtered colimits. By post-
composing the functor XCG with the functor EM, we get a coarse version of equivariant
coarse ordinary homology:

XHG := EM ◦ XCG : GBornCoarse→ Sp. (1.5.6)

Theorem 1.5.3 ([BE16,BEKW17]). The functor XHG is a G-equivariant Sp-valued
coarse homology theory.

Notation 1.5.4. When we want to specify the ring of coefficients, we denote by XHG
R(X)
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the G-equivariant coarse ordinary homology with R coefficients.

Example 1.5.5. Assume that X = {∗} is the one point space. Then, the chain complex
XC∗(X) has one free generator in each dimension, and the boundary maps are either the
null map or the identity, depending on the degree. The coarse homology groups are 0 in
positive and negative degree and Z otherwise. Hence, XH(∗) ' HZ.

Example 1.5.6. If X ∈ GBornCoarse has a trivial G-action, then XHG(X) ' XH(X).

Example 1.5.7 (Proposition 7.5 [BEKW17]). Let G be a group, and consider the G-
bornological coarse space Gcan,mn endowed with the canonical coarse structure and the
minimal bornology as described in Example 1.1.22 (ii); then the homology of the chain
complex XCG(Gcan,min) is isomorphic to the group homology of G:

H∗(XCG(Gcan,min)) ∼= H∗(G;Z).



Chapter 2

The symmetric monoidal category of
controlled objects

Let X be a G-bornological coarse space (Definition 1.1.21) and let A be an additive
category with a strict G-action (Definition A.1.3). From these data we can define a
category of objects that are “parametrized” on X: this is the category V G

A (X) of G-
equivariant X-controlled A-objects [BEKW17, Def. 8.3]. The definition of this category
is of fundamental importance for studying properties of bornological coarse spaces; for
example, it is a flasque category provided the G-bornological coarse space X is flasque
(Lemma 2.1.15), and coarse equivalences induce equivalent categories (Lemma 2.1.14).

The correspondence X 7→ V G
A (X) is functorial in the G-bornological coarse space X

and yields a functor
V G
A : GBornCoarse→ Add

from the category of G-bornological coarse spaces to the category of small additive
categories Add. This functor, when considered with values in the ∞-category Add∞
of additive categories (see Definition A.3.7), is lax symmetric monoidal [BCa, Thm.
3.26] and this fact allows us to refine many equivariant coarse homology theories to
lax symmetric monoidal functors. An example of equivariant coarse homology theory
is G-equivariant coarse K-homology KAXG [BEKW17, Def. 8.8], defined as the (non-
connective) K-theory of the additive category V G

A (X) of G-equivariant X-controlled
A-objects:

KAXG := K ◦ V G
A : GBornCoarse→ Sp.

In Section 2.1, we recall the definition of the category V G
A (X), we construct the functor

V G
A : GBornCoarse→ Add and we review its main properties. In Section 2.2, we we

see how to refine the functor V G
A to a lax symmetric monoidal one. In the last section we

recall the definition of equivariant coarse algebraic K-homology as defined in [BEKW17].

29
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2.1 The category of controlled objects

The goal of this section is to recall the definition of the additive category V G
A (X) of

G-equivariant X-controlled A-objects [BEKW17, Def. 8.3] and of the functor

V G
A : GBornCoarse→ Add.

sending a G-bornological coarse space to the category V G
A (X). We will show that

close morphisms of bornological coarse spaces (see Definition 1.1.24) induce naturally
isomorphic functors between the associated categories of controlled objects (see Lemma
2.1.14). Moreover, we will show that the category V G

A (X) is a flasque category (see
Definition A.1.4) provided the G-bornological coarse space X is also flasque (see Lemma
2.1.15).

Our main reference is [BEKW17, Sec. 8.2] where the main results of this section are
given.

Let G be a group and let X be a G-bornological coarse space.

Remark 2.1.1. The bornology B(X) on X defines a poset with the partial order induced
by subset inclusion; hence, B(X) can be seen as a category.

LetA be an additive category with strictG-action (Definition A.1.3). For every element
g in G and every functor F : B(X)→ A, let gF : B(X)→ A denote the functor sending
a bounded set B in B(X) to the A-object g(F (g−1(B))) (and defined on morphisms
B ⊆ B′ as the induced morphism of A (gF )(B ⊆ B′) : gF (g−1(B)) → gF (g−1(B′))).
If η : F → F ′ is a natural transformation between two functors F, F ′ : B(X) → A, we
denote by gη : gF → gF ′ the induced natural transformation between gF and gF ′.

Definition 2.1.2. [BEKW17, Def. 8.3] Let G be a group, X a G-bornological coarse
space and A an additive category with strict G-action. A G-equivariant X-controlled A-
object is a pair (M,ρ) consisting of a functor M : B(X)→ A and a family ρ = (ρ(g))g∈G
of natural isomorphisms ρ(g) : M → gM , satisfying the following conditions:

1. M(∅) ∼= 0;

2. for all B,B′ in B(X), the commutative diagram

M(B ∩B′) M(B)

M(B′) M(B ∪B′)

is a push-out;

3. for all B in B(X) there exists a finite subset F of B such that the inclusion induces
an isomorphism M(F )

∼=−→M(B);
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4. for all elements g, g′ in G we have the relation ρ(gg′) = gρ(g′) ◦ ρ(g), where gρ(g′)

is the natural transformation from gM to gg′M induced by ρ(g′).

Notation 2.1.3. If (M,ρ) is an X-controlled A-object and x is an element of X, we will
often write M(x) istead of M({x}) for the value of the functor M at the bounded set
{x} of X.

The following lemma is a consequence of the above definition:

Lemma 2.1.4. [BEKW17, Lemma 8.4] In the same hypothesis of Definition 2.1.2, let
(M,ρ) be a G-equivariant X-controlled A-object. Then,

(i) the canonical morphism
∑

x∈F (M({x} ↪→ F )) :
⊕

x∈F M({x}) → M(F ) is an
isomorphism for every finite subset F of X;

(ii) for all finite subsets F ⊆ F ′ of X the following diagram is commutative:

⊕
x∈F M({x}) M(F )

⊕
x∈F ′M({x}) M(F ′)

∑
x∈F (M({x}⊆F ))

∑
x∈F ′ (M({x}⊆F ′))

(iii) for each bounded set B of X, there exists a unique minimal finite subset FB ⊆ B

for which the induced morphism M(FB) → M(B) is an isomorphism. Moreover,
for every subset B′ of X with FB ⊆ B′ ⊆ B, the morphisms M(FB)→M(B′) and
M(B′)→M(B) are isomorphisms.

Proof. The items (i) and (ii) are clear from Definition 2.1.2.
We prove (iii). Let B be a bounded set of X and suppose that F and F ′ are two finite

subsets of B such that the morphisms M(F )→M(B) and M(F ′)→M(B) induced by
the inclusions F ⊆ B and F ′ ⊆ B are isomorphisms. The square

M(F ∩ F ′) M(F )

M(F ′) M(B)

∼=
∼=

is a push-out square and all the maps are inclusions of direct summands. This implies
that the morphism M(F ∩F ′)→M(B) is an isomorphism; hence, there exists a minimal
finite subset FB of B for which the morphism M(FB)→M(B) is an isomorphism.

In a similar way one proves that, for every subset B′ of X such that FB ⊆ B′ ⊆ B, the
morphismM(FB)→M(B′) is an isomorphism, henceM(B′)→M(B) is an isomorphism
as well.
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Definition 2.1.5. Let (M,ρ) be an equivariant X-controlled A-object. The function σ
which sends a bounded set B in B(X) to the minimal finite subset FB of Lemma 2.1.4 is
called the support function of (M,ρ).

Let X be a G-bornological coarse space. Recall that for every bounded set B of X and
every entourage U we can consider the U -thickening U [B] (1.1.2), which is again bounded
due to the compatibility of the bornology and coarse structure on X (see Definition
1.1.10). As U preserves the inclusions of bounded sets, this describes a functor

U [−] : B(X)→ B(X),

where B(X) is the family of bounded sets of X seen as a category (see Remark 2.1.1).
Observe that, if U is a G-invariant entourage of X, then U [gB] = g(U [B]) for every g in
G.

Definition 2.1.6. [BEKW17, Def. 8.6] Let X be a G-bornological coarse space, let
(M,ρ) and (M ′, ρ′) be G-equivariant X-controlled A-objects and let U ∈ CG(X) be a
G-invariant entourage of X. A G-equivariant U -controlled morphism ϕ : (M,ρ)→ (M ′, ρ′)

is a natural transformation
ϕ : M(−)→M ′ ◦ U [−]

such that ρ′(g) ◦ ϕ = (gϕ) ◦ ρ(g) for all g in G.

The set of G-equivariant U -controlled morphisms ϕ : (M,ρ)→ (M ′, ρ′) is denoted by
MorU ((M,ρ), (M ′, ρ′)).

Remark 2.1.7. The set MorU ((M,ρ), (M ′, ρ′)) is an abelian group with operation in-
duced by A.

Let X be a G-bornological coarse space and let U and U ′ be G-invariant entourages of
X with U ⊆ U ′. For every bounded set B of X, the inclusion U ⊆ U ′ induces an inclusion
U [B] ⊆ U ′[B]; this yields a natural transformation of functors M ′ ◦ U [−]→M ′ ◦ U ′[−],
hence a map

MorU ((M,ρ), (M ′, ρ′))→ MorU ′((M,ρ), (M ′, ρ′))

by post-composition.
By using these structure maps we define the abelian group of G-equivariant controlled

morphisms from (M,ρ) to (M ′, ρ′) as the colimit

HomV G
A (X)((M,ρ), (M ′, ρ′)) := colimU∈CG MorU ((M,ρ), (M ′, ρ′)).

We now describe the composition. Consider two morphisms in HomV G
A (X)((M,ρ), (M ′, ρ′))

and HomV G
A (X)((M

′, ρ′), (M ′′, ρ′′)) respectively and let ϕ : M →M ′ ◦U [−] and ϕ′ : M ′ →
M ′′ ◦ U ′[−] represent them. By using Remark 1.1.9, we see that ϕ and ϕ′ induce the
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following composition of functors

M →M ′ ◦ U [−]→M ′′ ◦ (U ◦ U ′)[−]

where U◦U ′ denotes the composition of entourages. The composition of the two morphisms
is defined as the morphism of HomV G

A (X)((M,ρ), (M ′′, ρ′′)) represented by the composition
M →M ′ ◦ U [−]→M ′′ ◦ (U ◦ U ′)[−].

Definition 2.1.8. Let X be a G-bornological coarse space and let A be an additive
category with strict G-action. The category V G

A (X) is the category of G-equivariant
X-controlled A-objects and G-equivariant controlled morphisms.

Notation 2.1.9. When A is the category of finitely generated free R-modules, with R a
commutative ring, then we denote by V G

R (X) the associated category of G-equivariant
X-controlled (finitely generated free) R-modules.

Recall that an additive category is a category enriched on abelian groups, with a zero
object and all finite biproducts (Definition A.1.1).

Lemma 2.1.10. [BEKW17, Lemma 8.7] The category V G
A (X) of G-equivariant X-

controlled A-objects is an additive category.

Proof. Let X be a G-bornological coarse space with bornology B. Let (M,ρ) and (M ′, ρ′)

be two equivariant controlled objects in V G
A (X). The category A is an additive category

and it induces a direct sum operation in the functor category Fun(B,A). Define the
functor M ⊕M ′ : B → A as the direct sum in Fun(B,A). In the same way, we define
ρ⊕ ρ′(g) := ρ(g)⊕ ρ′(g) for every g in G.

The pair (M ⊕M ′, ρ ⊕ ρ′) satisfies the conditions of Definition 2.1.2 and is a G-
equivariant X-controlled A-object. There are isomorphisms of G-sets

HomFun(B,A)(M⊕M ′, C◦U [−]) ∼= HomFun(B,A)(M,C◦U [−])×HomFun(B,A)(M
′, C◦U [−])

HomFun(B,A)(C,M⊕M ′◦U [−]) ∼= HomFun(B,A)(C,M◦U [−])×HomFun(B,A)(C,M
′◦U [−])

for every G-invariant entourage U of X and G-equivariant X-controlled A-object (C, η).
This implies that (M ⊕M ′, ρ⊕ ρ′) is also a biproduct in the category V G

A (X).
The biproduct of morphisms of V G

A (X) is defined analogously and is induced by the
direct sum operation of morphisms in the functor category.

Remark 2.1.11. If the category A is a k-linear category with strict G-action, then
the category of equivariant X-controlled A-objects V G

A (X) is a k-linear category. For
example, the category V G

k (X) of G-equivariant X-controlled finite dimensional k-vector
spaces is a k-linear category.

We now describe the functoriality of V G
A (X) with respect to X.
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Let f : (X, C,B) → (X ′, C′,B′) be a morphism of G-bornological coarse spaces. If
(M,ρ) is a G-equivariant X-controlled A-object, we consider the functor

f∗M : B′ → A

defined by f∗M(B′) := M(f−1(B′)) for every bounded set B′ in B′ and defined on
morphisms in the canonical way; observe that the functor is well-defined as f is proper.
For every g in G, the family of transformation f∗ρ = ((f∗ρ)(g))g∈G is given by the natural
isomorphisms (f∗ρ)(g) : f∗M → g(f∗M) with

((f∗ρ)(g))(B′) := ρ(g)(f−1(B′)).

The pair f∗(M,ρ) := (f∗M,f∗ρ) defined in this way is a G-equivariant X ′-controlled
A-object [BEKW17, Sec. 8.2]. Assume also that U is an invariant entourage of X and that
ϕ : (M,ρ)→ (M ′, ρ′) is an equivariant U -controlled morphism (Definition 2.1.6). Then,
the set V := (f × f)(U) is a G-invariant entourage of X ′ as f is controlled; moreover, the
relation U [f−1(B′)] ⊆ f−1(V [B′]) is true for all bounded subsets B′ of X ′. Therefore, we
obtain an induced V -controlled morphism on X ′:

f∗ϕ :=

(
f∗M(B′)

ϕf−1(B′)−−−−−→M(U [f−1(B′)])→ f∗M(V [B′])

)
B′∈B′

. (2.1.1)

We have just described a functor

f∗ := V G
A (f) : V G

A (X)→ V G
A (X ′) (2.1.2)

between the additive categories of equivariant controlled objects; observe that f∗ is also
exact.

We denote by
V G
A : GBornCoarse→ Add. (2.1.3)

the functor from the category of G-bornological coarse spaces to the category of small
additive categories obtained in this way.

Remark 2.1.12. If A is a k-linear category, then the functor V G
A : GBornCoarse →

Add refines to a functor V G
A : GBornCoarse→ Catk from the category ofG-bornological

coarse spaces to the category of small k-linear categories.

We conclude the section we some further properties of the functor V G
A .

Remark 2.1.13. Let (X, C,B) be a G-bornological coarse space and U ∈ CG be a G-
invariant entourage of X. Then, XU := (X, CU ,B) is a G-bornological coarse space by
restriction (see Example 1.1.22 (v)). The natural map XU → X induces an additive
functor ΦU : V G

A (XU ) → V G
A (X) which is the identity on objects as the definition of
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equivariant X controlled A-objects does not depend on the coarse structure. Moreover,
the category V G

A (XU ) can be seen as a subcategory of V G
A (X). On the other hand, every

controlled morphism in V G
A (X) is U -controlled for some entourage U in CG. Therefore,

the category V G
A (X) is the filtered colimit

V G
A (X) ∼= colimU∈CG V

G
A (XU )

indexed on the poset of G-invariant entourages of X.

Recall the definition of closeness for morphisms of G-bornological coarse spaces
Definition 1.1.24.

Lemma 2.1.14. [BEKW17, Lemma 8.11] Let f, g : X → X ′ be two morphisms of G-
bornological coarse spaces. If f and g are close to each other, then they induce naturally
isomorphic functors f∗ ∼= g∗ : V G

A (X)→ V G
A (X ′).

Proof. As f and g are close to each other, there exists an entourage U ′ of X ′ such that
(f, g)(∆X) ⊆ U ′. We can assume that U ′ is also symmetric (i.e., U ′ = (U ′)−1). Then, if
B′ is a bounded set of X ′, then f−1(B′) ⊆ g−1(U ′[B′]) and g−1(B′) ⊆ f−1(U ′[B′]).

Let (M,ρ) be a G-equivariant X-controlled A-object. The morphisms

M(f−1(B′))→M(g−1(U ′[B′]))

and
M(g−1(B′))→M(f−1(U ′[B′]))

induced by the inclusions define natural transformations η : f∗M → g∗M and η′ : g∗M →
f∗M . The composition η′ ◦ η is the identity η′ ◦ η = idf∗M ; in fact, it is given by the
transformation(

M(f−1(B′) ⊆ f−1((U ′)2[B′])) : f∗M → f∗M ◦ (U ′)2[−]
)
B′

where B′ runs among the bounded sets of X ′. We conclude that η is a natural isomorphism
with inverse of the same form.

Recall the notion of flasque category Definition A.1.4.

Lemma 2.1.15. [BEKW17, Lemma 8.13] If X is a flasque G-bornological coarse space,
then the category V G

A (X) of G-equivariant X-controlled A-objects is a flasque category.

Proof. The space X is flasque, hence there exists a morphism f : X → X as required in
Definition 1.1.25. Consider the following functor:

S :=
⊕
n∈N

(fn)∗ : V G
A (X)→ V G

A (X).
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For every equivariant controlled object (M,ρ), the direct sum
⊕

n(fn)∗M is well-defined
because for every bounded set B there exists an index n for which (fn)−1(B) = ∅. The
same is true for the family ρ. For a U -controlled morphism ϕ : (M,ρ) → (M ′, ρ′) let
V :=

⋃
n(f×f)n(U); this is an entourage ofX by the assumptions on f of Definition 1.1.25.

Hence, the map
⊕

n(fn)∗ϕ is V -controlled and S describes in fact an endofunctor.
In order to conclude, observe that, as f is close to the identity idV G

A (X), then the functor
f∗ ◦ S is naturally isomorphic to S. Hence, idV G

A (X) ⊕ S ∼= idV G
A (X) ⊕ (f∗ ◦ S) ∼= S.

2.2 The symmetric monoidal refinement of V G
A

The goal of this section is to explain how to refine the functor

V G
A : GBornCoarse→ Add

of (2.1.3) to a lax symmetric monoidal functor (see Definition A.3.7). This is [BCa, Thm.
3.26] and allow us to refine several equivariant coarse homology theories to lax symmetric
monoidal functors; for the sake of completeness, we report the entire construction. In order
to describe this lax symmetric monoidal refinement, we will also describe the Grothendieck
construction associated to the functor V G

A .

Let A be a small additive category with a strict G-action (Definition A.1.3).

Assumption 2.2.1. For the rest of the section we assume that the additive category A

has a symmetric monoidal structure and that the strict action of G on A has a refinement
to an action by symmetric monoidal functors.

Let C be a small category and let F : C→ Cat be a functor from C to the category
of small categories Cat. We recall that the Grothendieck construction for F provides a
category F and a projection (a cocartesian fibration) πF : F → C. We spell this out in
the case in which C is the category of G-bornological coarse spaces and F is the functor
V G
A : GBornCoarse → Add (2.1.3) viewed as a functor from GBornCoarse to the

category of small categories Cat:

Definition 2.2.2. The Grothendieck construction for the functor V G
A : GBornCoarse→

Cat is the category VGA defined as follows:

1. The objects of VGA are pairs (X, (M,ρ)) where X is a G-bornological coarse space
in GBornCoarse and (M,ρ) is a G-equivariant X-controlled A-object in V G

A (X).

2. A morphism (f, ϕ) : (X, (M,ρ)) → (X ′, (M ′, ρ′)) in VGA consists of a morphism
f : X → X ′ in GBornCoarse and of a morphism ϕ : f∗(M,ρ) → (M ′, ρ′) in
V G
A (X ′).
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3. The composition of morphisms is given by

(f ′, ϕ′) ◦ (f, ϕ) := (f ′ ◦ f, ϕ′ ◦ f ′∗(ϕ)) .

The projection

πV G
A

: VGA → GBornCoarse , (X, (M,ρ)) 7→ X

is the functor that forgets the second component.

Let C be a small category and let F : C→ Cat be a functor to the category of small
categories Cat. Let πF : F → C be the associated projection (via the Grothendieck
construction). Assume that the categories C and F have symmetric monoidal structures
and that the projection πF preserves the tensor product strictly:

πF ((X,A)⊗F (Y,B)) = X ⊗C X ′.

Then, the tensor product (X,A)⊗F (Y,B) can be written as (X ⊗C X ′, A�X,X′ B) for
some object A�X,X′ B of F (X ⊗CX

′). For every pair of objects X and X ′ of C, we get
a bifunctor

�X,X′ : F (X)× F (X ′)→ F (X ⊗C X ′)

and for every pair of morphisms f : X → X ′ and g : Y → Y ′, an induced morphism

F (f ⊗C g)(A�X,Y B)→ F (f)(A) �X′,Y ′ F (g)(B) (2.2.1)

where A is in F (X) and B in F (Y ) (see [BCa, Sec. 2.2] for further details).

Assume now that the functor F is actually a functor F : C→ Add from a symmetric
monoidal category C to the category of small additive categories Add endowed with
the symmetric monoidal structure of Definition A.3.2. Denote by Add⊗∞ the resulting
symmetric monoidal ∞-category of additive categories (see Definition A.3.7 and the
text below). Assume that also the Grothendieck construction F of F has a symmetric
monoidal structure. Then, with some mild assumptions, the functor F can be refined to
a symmetric monoidal functor in the sense of Definition A.3.7:

Theorem 2.2.3. [BCa, Thm. 2.3] Let C be a symmetric monoidal category and let
F : C → Add be a functor to the category of small additive categories Add. Assume
that:

1. the Grothendieck construction F for the functor F has a symmetric monoidal
structure;

2. the projection πF : F → C preserves the tensor product, the tensor unit as well as
the associator, unit, and symmetry transformations.
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3. The functors �X,X′ are bi-additive for all X,X ′ in C.

4. For objects (X,A) and (Y,B) in F and morphisms f : X → X ′ and g : Y → Y ′ in
C, the morphism (2.2.1)

F (f ⊗C g)(A�X,Y B)→ F (f)(A) �X′,Y ′ F (g)(B) .

is an isomorphism.

Then, the data provide a lax symmetric monoidal refinement (Definition A.3.7)

F⊗ : N(C⊗)→ Add⊗∞

of the functor F .

Before explaining how to refine the functor V G
A : GBornCoarse→ Add to a lax sym-

metric monoidal functor by using the theorem above, we need a more explicit description
of the morphisms in the category V G

A (X) [BCa, Sec. 3.3].

We use the following convention:

Convention 2.2.4. Let A be an additive category. If (Ai)i∈I is a family of objects of A
with at most finitely many non-zero members, then we use the symbol

⊕
i∈I Ai in order

to denote a choice of an object of A that comes together with a family of morphisms
(Aj →

⊕
i∈I Ai)j∈I and represents the coproduct of the family.

Since in an additive category finite coproducts and products coincide, for every j in I
we furthermore have a canonical projection⊕

i∈I
Ai → Aj

such that the diagram

Aj //

idAj

&&⊕
i∈I Ai

// Aj

commutes.
If (A′i′)i′∈I′ is a second family of this type and (ϕi,i′ : A′i′ → Ai)(i′,i)∈I′×I is a family

of morphisms in A, then we have a unique morphism ⊕ϕi,i′ such that the squares

A′i′
ϕi,i′

//

��

Ai

��⊕
i′∈I′ A

′
i′

⊕ϕi,i′
//
⊕

i∈I Ai
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commute for every i′ in I ′ and i in I (where the vertical morphisms are the inclusions of
summands).

Let X be a G-bornological coarse space and let (M,ρ) be an equivariant X-controlled
A-object. Let B be a bounded set of X and let x be a point in B. The inclusion {x} → B

induces a morphism M({x}) → M(B) of A. The conditions of Definition 2.1.2 imply
that M({x}) = 0 for all but finitely many points of B and that the canonical morphism
(induced by the universal property of the coproduct in A)⊕

x∈B
M({x})

∼=−→M(B) (2.2.2)

is an isomorphism.
Let U be an invariant entourage of X and let ϕ : (M,ρ)→ (M ′, ρ′) be an equivariant

U -controlled morphism, i.e., a natural transformation of functors ϕ : M → M ′ ◦ U [−]

satisfying an equivariance condition (see Definition 2.1.6). For every point x of X, the
transformation ϕ induces a morphism

M({x})
ϕ{x}−−−→M ′(U [{x}])

(2.2.2)∼=
⊕

x′∈U [{x}]

M({x′}) . (2.2.3)

We let
ϕx′,x : M({x})→M ′({x′}) (2.2.4)

denote the composition of (2.2.3) with the projection onto the summand corresponding to
x′. For every pair of points x, x′ ofX we get a morphism ϕx′,x, hence a family of morphisms
(ϕx′,x)x′,x∈X in A. In a similar way, for g in G, the transformation ρ(g) : M → gM gives
rise to a family of morphisms(

ρ(g)x : M({x})→ gM({g−1x})
)
x∈X . (2.2.5)

By construction the family (ϕx′,x)x′,x∈X satisfies the following conditions.

1. For all x, x′ in X the condition ϕx′,x 6= 0 implies that (x′, x) ∈ U .

2. We have ρ′(g)x′ ◦ ϕx′,x = (gϕ)g−1x′,g−1x ◦ ρ(g)x for all x, x′ in X and g in G.

Lemma 2.2.5. [BCa, Lemma 3.14] Let X be a G-bornological coarse space and let U be a
G-invariant entourage of X. The, we have a bijection between the equivariant U -controlled
morphisms ϕ : (M,ρ)→ (M ′, ρ′) and the families (ϕx′,x)x′,x∈X of morphisms as in (2.2.4)
satisfying the conditions 1 and 2.

Let f : X0 → X1 be a morphism of G-bornological coarse spaces and (Mi, ρi) be
objects of VGA(Xi) for i = 0, 1. Then, a morphism

ϕ : f∗(M0, ρ0)→ (M1, ρ0) (2.2.6)
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induces a matrix (
ϕfx1,x0 : M0({x0})→M1({x1})

)
x0∈X0,x1∈X1

. (2.2.7)

In fact, we observe that

(f∗M0)({x′1}) = M0(f−1({x′1}))
(2.2.2)∼=

⊕
x0∈f−1({x′1})

M0({x0})

so that, for x1, x
′
1 in X ′, the induced morphism ϕx1,x′1 : (f∗M0)({x′1})→M1(x1) is written

as sums ⊕x0∈f−1({x′1})ϕ
f
x0,x1 : M0(f−1({x′1})) ∼=

⊕
x0∈f−1({x′1})

M0({x0}) → M1({x1})
andϕx1,x′1 := ⊕x0∈f−1({x′1})ϕ

f
x0,x1 : M0(f−1({x′1})) ∼=

⊕
x0∈f−1({x′1})

M0({x0})→M1({x1})


x′1,x1∈X1

is the matrix representing ϕ according to Lemma 2.2.5. The following, is a consequence
of Lemma 2.2.5:

Corollary 2.2.6. [BCa, Cor. 3.15] A matrix (2.2.7) represents a morphism (2.2.6) iff
the following conditions are satisfied:

1. There exists an entourage U1 in C(X1) such that for every x0 in X0 and x1 in X1

the condition ϕfx1,x0 6= 0 implies that (x1, f(x0)) ∈ U1.

2. For every g in G we have the equality

ρ1(g)x1 ◦ ϕfx1,x0 = (gϕf )g−1x1,g−1x0 ◦ ρ(g)x0 .

With this explicit description of the morphisms of V G
A (X), we can now define the

symmetric monoidal structure on the Grothendieck construction VGA for the functor
V G
A : GBornCoarse→ Cat (se Definition 2.2.2). First, we describe the bifunctor

−⊗VG
A
− : VGA × VGA → VGA (2.2.8)

on objects.
Recall that the category GBornCoarse of G-bornological coarse spaces has a sym-

metric monoidal structure as reviewed in Section 1.1. Let (X, (M,ρ)) and (X ′, (M ′, ρ′))

be objects in VGA and define the functor

M �M ′ : B(X ⊗X ′)→ A (2.2.9)

(where B(X ⊗X ′) denotes the (category associated to the) bornology of the product of
G-bornological coarse spaces X ⊗X ′) as follows:
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1. For every B in B(X ⊗X ′) we set (see Convention 2.2.4)

(M �M ′)(B) :=
⊕

(x,x′)∈B

M({x})⊗A M ′({x′}) . (2.2.10)

Note that the sum has only finitely many non-zero summands because of Defini-
tion 2.1.2.

2. If B′ is in B(X ⊗X ′) such that B′ ⊆ B, then the morphism

(M �M ′)(B′ ⊆ B) : (M �M ′)(B′)→ (M �M ′)(B)

is given by the canonical map⊕
(x,x′)∈B′

M({x})⊗AM ′({x′})→
⊕

(x,x′)∈B

M({x})⊗AM ′({x′})

as described in Convention 2.2.4.

By using our Convention 2.2.4 and the universal property of the direct sum, one easily
checks that this describes a functor satisfying the first three conditions of Definition 2.1.2.

The family ρ� ρ′ is analogously defined as the sum
⊕

(x,x′)∈B ρ(g)x ⊗ ρ′(g)x′ :

(ρ� ρ′)(g)B :
⊕

(x,x′)∈B

M({x})⊗AM ′({x′})→
⊕

(x,x′)∈B

gM({g−1x})⊗A gM ′({g−1x′})

where we use the notation (2.2.5). For every object B ∈ B(X ⊗X ′) the map (ρ� ρ′)(g)B
provides an isomorphism as ρ(g)x and ρ′(g)x′ are isomorphisms for every (x, x′) ∈ B. By
using our Convention 2.2.4 and the universal property of the direct sum, it is easy to see
that the assignment is functorial in B and this provides a family of natural isomorphisms.

Remark 2.2.7. The pair (M �M ′, ρ � ρ′) satisfies the remaining condition of Defini-
tion 2.1.2 and therefore belongs to V G

A (X ⊗X ′).

We now describe the bifunctor ⊗VG
A

on morphisms. Let (f, ϕ) : (X0, (M0, ρ0)) →
(X1, (M1, ρ1)) be a morphism in VGA (see Definition 2.2.2 (2)). Then, we define the
morphism

(g, ψ) := (f, ϕ)⊗VG
A

(X ′, (M ′, ρ′)) : (X0⊗X ′, (M0�M
′, ρ0�ρ

′))→ (X1⊗X ′, (M1�M
′, ρ1�ρ

′))

as follows.

1. We set g := f ⊗ idX′ : X0 ⊗ X ′ → X1 ⊗ X ′ by using the tensor product in
GBornCoarse.



42 2. THE SYMMETRIC MONOIDAL CATEGORY OF CONTROLLED OBJECTS

2. In order to describe the morphism

ψ : (f ⊗ idX′)∗(M0 �M ′, ρ0 � ρ′)→ (M1 �M ′, ρ1 � ρ′)

we use Corollary 2.2.6, hence we have to describe the matrix

(ψ
f⊗idX′
(x1,y′),(x0,x′)

)(x0,x′)∈X0×X′,(x1,y′)∈X1×X′ .

By definition of M0 �M ′, for x0 in X0 and x′ in X ′, we have

(M0 �M ′)((x0, x
′)) ∼= M({x0})⊗AM ′({x′})

so that we can set

ψ
f⊗idX′
(x1,y′),(x0,x′)

:= ϕfx1,x0⊗A(id(M ′,ρ′))y′,x′ : M0({x0})⊗AM ′({x′})→M1({x1})⊗AM ′({y′}) .

This matrix satisfies the conditions listed in Corollary 2.2.6 and represents the
desired morphism.

In a similar way, we define (X, (M,ρ))⊗(f ′, ϕ′) for a morphism (f ′, ϕ′) : (X ′0, (M
′
0, ρ
′
0))→

(X ′1, (M
′
1, ρ1)). Moreover, this description is compatible with compositions.

Definition 2.2.8. [BCa, Def. 3.18 & 3.19] Let VGA be the Grothendieck construction of
Definition 2.2.2. The bifunctor ⊗VG

A
(2.2.8) is defined on objects (X, (M,ρ)), (X ′, (M ′, ρ′))

of VGA by
(X, (M,ρ))⊗VG

A
(X ′, (M ′, ρ′)) := (X ⊗X ′, (M �M ′, ρ� ρ′))

where ⊗ denotes the tensor product of GBornCoarse and on morphisms by the preceding
description.

We refer to [BCa] for the descriptions of the tensor unit 1VG
A
, of the associative

constrain αVG
A , of the unit constraint ηVG

A , the symmetry constraint σVG
A (see Definition

A.3.1), as they are defined by the same reasoning.

Proposition 2.2.9. [BCa, Prop. 3.23] Let VGA be the Grothendieck construction for the
functor V G

A : GBornCoarse→ Cat and let π : VGA → GBornCoarse be the associated
projection. Then:

1. the functor − ⊗VG
A
− and the object 1VG

A
together with the natural isomorphisms

αV
G
A , ηVG

A and σVG
A define a symmetric monoidal structure on VGA;

2. the functor π : VGA → GBornCoarse preserves the tensor product strictly and the
tensor unit as well as the associator, unit, and symmetry transformations.

The categories VGA and GBornCoarse have symmetric monoidal structures such
that the projection π preserves the tensor product strictly. This implies that, for all
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G-bornological coarse spaces X and X ′, we obtain a bifunctor

�X,X′ : V G
A (X)× V G

A (X ′)→ V G
A (X ⊗X ′) (2.2.11)

that preserves also the linear structure:

Proposition 2.2.10. [BCa, Prop. 3.24] Let X,X ′ be G-bornological coarse spaces. Then,
the functor

�X,X′ : V G
A (X)× V G

A (X ′)→ V G
A (X ⊗X ′)

is additive in both variables.

Proof. Let (Mi, ρi) be in V G
A (X) for i = 0, 1 and (M ′, ρ) be in V G

A (X ′). In view of the
symmetry it suffices to show that the canonical morphism

(M0 �X,X′ M
′)⊕ (M1 �X,X′ M

′)→ (M0 ⊕M1) �X,X′ M
′

is an isomorphism. It suffices to show that[
(M0 �X,X′ M

′)⊕ (M1 �X,X′ M
′)
]

({(x, x′)})→
[
(M0 ⊕M1) �X,X′ M

′] ({(x, x′)})

is an isomorphism for every point (x, x′) in X ×X ′. By inserting the definitions we see
that this morphism is the same as

(M0({x})⊗AM
′({x′}))⊕(M1({x})⊗AM

′({x′}))→ (M0({x})⊕M1({x}))⊗AM
′({x′}) .

But this last morphism is an isomorphism since the tensor product in A is additive in
the first argument.

Remark 2.2.11. If the category A is also k-linear, then bifunctor �X,X′ preserves the
k-linear structure as well.

We can now apply Theorem 2.2.3 to the functor V G
A : GBornCoarse → Cat. In

fact, the Grothendieck construction VGA for the functor V G
A , seen as a functor to the

category of small categories, has a symmetric monoidal structure by Proposition 2.2.9; the
projection π : VGA → GBornCoarse preserves the tensor product strictly and the tensor
unit as well as the associator, unit, and symmetry transformations. By Proposition 2.2.10,
�X,X′ : V G

A (X)× V G
A (X ′)→ V G

A (X ⊗X ′) is bi-additive for all X,X ′ ∈ GBornCoarse.
By [BCa, Lemma 3.25], Theorem 2.2.3 (2.2.1) is also satisfied and the data provide a lax
symmetric monoidal refinement as in Definition A.3.7:

Theorem 2.2.12. [BCa, Thm. 3.26] If A is a symmetric monoidal additive cat-
egory with a strict action of G by symmetric monoidal functors, then the functor
V G
A : GBornCoarse→ Add admits a refinement to a symmetric monoidal functor.
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Remark 2.2.13. If A is a symmetric monoidal k-linear category with a strict action
of G by symmetric monoidal functors, then the functor V G

A : GBornCoarse → Catk
takes values in small additive categories that are in addition k-linear. Hence, by Theorem
2.2.12 and [Lur14, Prop. 2.2.1.1], the functor V G

A admits a refinement to a symmetric
monoidal functor.

2.3 Equivariant coarse algebraic K-homology

In this section we recall the definition of equivariant coarse algebraic K-homology as
defined in [BEKW17]. This is a coarse homology theory

KAXG : GBornCoarse→ Sp.

with values in the ∞-category Sp of spectra and is defined as the (non-connective) K-
theory of the category V G

A (X) of G-equivariant X-controlled A-objects of Definition 2.1.2.
We remark that the equivariant coarse K-homology has been studied in several works
[BE16,BEKW17,BC17,BEKW18]. In this section we briefly give its definition and we
state the most important properties for us, referring to those papers for further details.

Let Add be the category of small additive categories and exact functors (see Defini-
tion A.1.1). Consider the non-connective version of K-theory of additive categories

K : Add→ Sp;

a construction (for more general exact categories) of this functor has been given by
Schlichting [Sch06]. We list some of its properties:

• if R is a ring, then the K-theory of the additive category of finitely generated free
R-modules is equivalent to the non-connective K-theory of the ring R;

• it sends isomorphic exact functors to equivalences of spectra;

• it commutes with filtered colimits of categories;

• it satisfies additivity and is a localizing invariant (see Section 3.2 for a description
of these properties in the case of Hochschild homology);

• it sends flasque categories to zero;

• it is a lax symmetric monoidal functor.

Recall Definition A.1.3 of an additive category with strict G-action.

Definition 2.3.1. [BEKW17, Def. 8.8] Let G be a group and let A be an additive
category with strict G-action. The G-equivariant coarse algebraic K-homology associated
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to A is the K-theory of the additive category of A-controlled objects:

KAXG := K ◦ V G
A : GBornCoarse→ Sp.

Notation 2.3.2. When A is the category of finitely generated free R-modules, we denote
by KXGR the associated G-equivariant K-homology.

The above properties of the K-theory functor are used in order to prove that the
composition KAXG provides a coarse homology theory:

Theorem 2.3.3. [BEKW17, Thm. 8.9] Let G be a group and let A be an additive
category with strict G-action. Then, the functor KAXG is a G-equivariant Sp-valued
coarse homology theory.

By Theorem 2.2.12, the functor V G
A : GBornCoarse→ Add admits a lax symmetric

monoidal refinement. As a consequence, coarse equivariant K-homology is a lax symmetric
monoidal functor as well:

Theorem 2.3.4. [BCa, Thm. 3.27] Let G be a group and let A be an additive category
with strict G-action. The functor KAXG admits a lax symmetric monoidal refinement.

For a proof of this theorem we refer to [BCa, Sec. 3.5].

In Farrell-Jones type questions, the twist (see Definition 1.2.5) of coarse algebraic
K-homology by the motivic coarse space YosG(Gcan,min) associated to a group G (see
Example 1.1.22 (ii)) is of fundamental importance. In order to state this computation,
we use the following category:

Definition 2.3.5. [BR07, Def. 2.1] Let A be an additive category with strict G-action.
Let X be a G-set. The additive category A ∗G X is described as follows:

Objects: an object of A ∗GX is a family A = (Ax)x∈X of objects of A such that the set
{x ∈ X | Ax 6= 0} is finite;

Morphisms: a morphism ϕ : A → B between A and B is a family of morphisms
ϕ = (ϕx,g)(x,g)∈X×G where ϕx,g : Ax → g(Bg−1x) is a morphism in A and the set of pairs
(x, g) for which ϕx,g 6= 0 is finite.

The composition is defined as the convolution product and the addition component-wise.

We recall that every G-set X, endowed with the minimal coarse structure and the
maximal bornology, belongs to GBornCoarse (Example 1.1.13).

Proposition 2.3.6. [BEKW17, Prop. 8.24] For every G-set X we have an equivalence

V G
A (Xmin,max ⊗Gcan,min) ' A ∗G X.
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We refer to [BEKW17, Prop. 8.24] for further details and the proof. As a consequence
of this proposition, we have:

Remark 2.3.7. Let G be a group and H a subgroup of G. Let G/H be endowed with
the minimal coarse structure and the maximal bornology; then the previous proposition
yields the following computation:

KAXG((G/H)min,max ⊗Gcan,min) ' K(A ∗G (G/H))

WhenA is the additive category of finitely generated free R-modules, R a ring, the category
A ∗G (G/H) is equivalent to the category of finitely generated free R[H]-modules.



Chapter 3

A coarse version of Hochschild and
cyclic homology

The goal of this chapter is to define equivariant coarse versions

XHHG
k : GBornCoarse→ Ch∞

and
XHCG

k : GBornCoarse→ Ch∞

of the classical Hochschild and cyclic homology for k-algebras [Lod98, Sec. 1.1 & 2.1],
where k is a field.

Our definition of equivariant coarse Hochschild and cyclic homology is analogous to
the definition of equivariant coarse algebraic K-homology [BEKW17,BC17] recalled in
Definition 2.3.1. In fact, we first consider the functor V G

k : GBornCoarse→ Catk (see
Remark 2.1.12) sending a G-bornological coarse space X to the k-linear category V G

k (X)

of G-equivariant X-controlled finite dimensional k-vector spaces (see Definition 2.1.2 and
Notation 2.1.9). Then, we define equivariant coarse Hochschild (and cyclic) homology as
Keller’s Hochschild (and cyclic) homology [Kel99] of the k-linear category V G

k (X) (see
Definition 3.4.6).

The chapter is structured as follows. In Section 3.2 we recall Keller’s definition
of Hochschild and cyclic homology for k-linear exact categories; as this definition uses
Kassel’s approach to cyclic homology via mixed complexes [Kas87], we start the chapter in
Section 3.1 by reviewing the main properties of the (∞-)category of mixed complexes. In
Section 3.3, we prove our main result Theorem 3.4.2, where we show that the composition
of Keller’s Hochschild homology with the functor V G

k yields a G-equivariant coarse
homology theory. In Section 3.4, we define coarse Hochschild and cyclic homology by
using the results of Section 3.3. We conclude the chapter with Section 3.5, where, by using
the results of Section 2.2, we refine equivariant coarse Hochschild XHHG

k and equivariant
coarse cyclic homology XHCG

k to lax symmetric monoidal functors.

47
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We will freely use the language of additive and exact categories, and of differential
graded categories, as reviewed in the Appendix.

In the following, as set in our conventions, we will always assume that k is a field and
tensor products ⊗ are tensor products over k. However, most of the proofs of this chapter
are also true for a general commutative ring. We choose to work with coefficients in a
field k instead of a ring because several properties of these coarse homology theories (as
discussed in Chapter 4) depend on the choice of a base field (see, e.g., the construction of
the natural transformation to equivariant coarse ordinary homology of Section 4.3).

3.1 The category of mixed complexes

In this section we describe the (cocomplete stable ∞-)category of (unbounded) mixed
complexes; we mainly follow Kassel’s viewpoint [Kas87].

We start with Kassel’s definition of mixed complexes:

Definition 3.1.1. [Kas87, §1] A mixed complex (C, b,B) is a triple consisting of a
Z-graded k-module C = {Cp}p∈Z together with differentials b and B

b = (bp : Cp → Cp−1)p∈Z and B = (Bp : Cp → Cp+1)p∈Z

of degree −1 and 1 respectively, satisfying the following identities:

b2 = 0, B2 = 0, bB +Bb = 0.

Morphisms f : (C, b,B) → (C ′, b′, B′) of mixed complexes are given by sequences f =

(fp : Cp → C ′p)p∈Z of maps commuting with both the differentials b and B. The category
of mixed complexes and morphisms of mixed complexes is denoted by Mix.

When the differentials are clear from the context, we refer to a mixed complex (C, b,B)

by C.

In the category of mixed complexes there is a notion of shifted mixed complexes and
of cone of a morphism of mixed complexes:

• the shifted mixed complex (C[1], bC[1], BC[1]) of a mixed complex (C, b,B) is defined
by (C[1])p := Cp−1, for all p, with differentials bC[1] := −bC and BC[1] := −BC .

• Let f : (C, b,B)→ (C ′, b′, B′) be a morphism of mixed complexes. The cone of f is
defined as the mixed complex

cone(f) :=

(
C ′ ⊕ C[1],

[
bC′ f

0 −bC

]
,

[
BC′ 0

0 −BC

])
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where C[1] is the shifted mixed complex of C.

Recall the definitions of dg-algebras and dg-modules over a dg-algebra, Definition A.2.1.
Let Λ be the dg-algebra over the field k

Λ := · · · → 0→ kε
0−→ k → 0→ · · · (3.1.1)

generated by an indeterminate ε of degree 1, with ε2 = 0 and differential (of degree −1)
d(ε) = 0. Then, mixed complexes are nothing but dg-modules over the dg-algebra Λ:

Remark 3.1.2. [Kas87] The category Mix of mixed complexes is equivalent (in fact,
isomorphic) to the category of left dg Λ-modules, which we denote by Λ-Mod, as we
now explain. A mixed complex (C, b,B) yields a differential graded left Λ-module whose
underlying differential graded module is (C, b) and where the multiplication ε · c is defined
by the differential B, i.e., ε · c := B(c). Vice versa, left Λ-dg-modules (M,d) correspond
to mixed complexes (C, b,B) by defining Cp := Mp, b(c) := d(c) and B(c) := ε · c for
every c ∈ Cp. The identity B2 = 0 corresponds to the relation ε2 = 0, and by using the
equality d(ε) = 0 one gets the identity bB+Bb = 0. Observe that also morphisms of mixed
complexes correspond one-to-one to morphisms of dg-Λ-modules (see Definition A.2.1
and the text thereafter) via this correspondence. We denote by L : Mix → Λ-Mod

the induced functor sending a mixed complex to the associated Λ-dg-module and by
R : Λ-Mod→Mix its inverse sending a Λ-dg-module to its associated mixed complex.

A mixed complex (C, b,B) functorially determines a double chain complex BC [Lod98,
§ 2.5.10] by means of the differentials b and B:

BC :=
(
. . .

0←− (C, b)
B←− (C[−1], bC[−1])

B←− . . . B←− (C[−n], bC[−n])
B←− . . .

)
; (3.1.2)

here, the chain complex (C, b) is placed in bi-degree (0, ∗), i.e., BC(0,∗) = (C∗, b), and
the chain complex (C[−n], bC[−n]), placed in bi-degree (n, ∗), is the chain complex (C, b)

shifted by −n, hence BC(p,q) = Cq−p for p ≥ 0 and BC(p,q) = 0 for p < 0. The total chain
complex Tot(BC), functorially associated to the double chain complex BC, is the chain
complex defined in degree n by Totn(BC) =

⊕
i≥0Cn−2i with differential d acting as

follows:
d(cn, cn−2, . . . ) := (bcn +Bcn−2, . . . ).

Let Ch be the category of chain complexes over k. Consider the forgetful functor

forget : Mix→ Ch (3.1.3)

sending a mixed complex (M, b,B) to its underlying chain complex (M, b), and the functor

Tot(B−) : Mix→ Ch (3.1.4)
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just described above. We observe that the chain complex Tot(BC) associated to the
mixed complex (C, b,B) represents the derived tensor product C ⊗L

Λ k.

Hochschild homology (and all its cyclic variants: cyclic, negative and periodic) can be
defined as functors from the category of mixed complexes:

Definition 3.1.3. [Kas87, Sec. 1] Let (C, b,B) be a mixed complex. The Hochschild
homology HH∗(C) of (C, b,B) is the homology of the underlying chain complex (C, b). Its
cyclic homology HC∗(C) is the homology of the associated chain complex Tot(BC).

Let M be a cyclic module (see Definition A.4.3) and let di and si denote the i-th face
and i-th degeneracy maps of M respectively. Let tn+1 be the cyclic operator in degree n
and let b : Mn →Mn−1 be the alternating sum

b :=
n∑
i=0

(−1)idi (3.1.5)

of face maps . Let N :=
∑n

i=0 t
i
n+1 be the sum of the powers of the cyclic operator tn+1

and define the cochain map B : Mn →Mn+1 as the composition

B := (−1)n+1(1− tn+1)sN. (3.1.6)

Here s denotes the extra degeneracy s = (−1)n+1tn+1sn : Mn →Mn+1.

Remark 3.1.4. Let M be a cyclic module. Let b be the differential b :=
∑n

i=0(−1)idi
(3.1.5) and B the differential B := (−1)n+1(1 − tn+1)sN (3.1.6). Then, (M, b,B) is a
mixed complex. Morphisms of cyclic modules commute with face and degeneracy maps,
and with the cyclic operators as well; hence yield morphisms of mixed complexes. This
describes a functor from the category of cyclic modules to the category of mixed complexes.

Example 3.1.5. If A is a k-algebra (that is associative and unital), then by Example A.4.5,
we get a cyclic module Z∗(A). The classical Hochschild homology HH(A) of A is defined
as the homology (of the underlying chain complex) of the cyclic module Z∗(A). If C(A)

is the mixed complex associated to the cyclic module Z∗(A) as described in Remark 3.1.4,
then the Hochschild homology of the mixed complex C(A) of Definition 3.1.3 coincides
with the Hochschild homology HH(A). Furthermore, the cyclic homology of the mixed
complex C(A) is the classical cyclic homology of the k-algebra A [Kas87, Prop. 1.3].

The category of dg-modules over k admits a combinatorial model structure (the projec-
tive model structure), whose weak equivalences are the objects-wise quasi-isomorphisms
of dg-modules (see Definition A.2.10 and Remark A.2.11). In the language of mixed
complexes, the definition of quasi-isomorphism of dg-modules translate as follows:

Definition 3.1.6. A morphism (C, b,B) → (C ′, b′, B′) of mixed complexes is a quasi-
isomorphism if the underlying b-complexes are quasi-isomorphic via the induced chain
map (C, b)→ (C ′, b′).



3.1. THE CATEGORY OF MIXED COMPLEXES 51

Remark 3.1.7. Consider the functors L : Mix → Λ-Mod sending a mixed complex
to the associated Λ-dg-module and R : Λ-Mod → Mix sending a Λ-dg-module to its
associated mixed complex, as defined in Remark 3.1.2. Then, quasi-isomorphisms of
mixed complexes correspond by the functor L to quasi-isomorphisms of Λ-dg-modules
and vice versa, i.e., the functors L and R preserve quasi-isomorphisms.

Remark 3.1.8. As observed by Keller, the correspondence M 7→ (M, b,B) from cyclic
modules to mixed complexes, using the differentials b (3.1.5) and B (3.1.6), is not
functorial when one considers morphisms of cyclic modules that do not commute with
degeneracies (as opposed to morphisms of cyclic modules that commute with both faces
and degeneracies) [Kel98, Sec. 2.1]. However, Keller defines a functor from the category
of precyclic modules (i.e., cyclic modules without degeneracies) to the category of mixed
complexes; for the sake of completeness we report also this approach [Kel98, Sec. 2.1].
Let C be a precyclic module, let di denote the i-th face map and set b′ :=

∑n−1
i=0 di and

b :=
∑n

i=0 di. Let t be the cyclic operator and let N be the sum of its powers. Keller
defines the mixed complex M̃ as follows:

M̃ :=

(
C ⊕ C[1],

[
b (1− t)
0 −b′

]
,

[
0 0

N 0

])
This correspondence yields a functor from precyclic modules to mixed complexes. More-
over, there is a canonical morphism (induced by [1, (1− t)s]) between this mixed complex
and the mixed complex constructed in Remark 3.1.4 by using the differentials (3.1.5) and
(3.1.6), and this canonical morphism of mixed complexes is a quasi-isomorphism of mixed
complexes [Kel98, Sec. 2.1].

To every small dg-category A, one can functorially associate a cyclic module, called
the additive cyclic nerve CN(A) as described in Definition A.4.7; hence, a mixed complex
by Remark 3.1.4. The composition of these two functors describes then a functor from
the category of small dg-categories to the category of mixed complexes, that we call Mix:

Definition 3.1.9. [Kel99, Def. 1.3] Let

Mix: dgcatk →Mix

be the functor from the category of small dg-categories over k to the category of mixed
complexes defined as composition of the additive cyclic nerve of Definition A.4.7 and of
the functor of Remark 3.1.4.

We now introduce the ∞-category Mix∞ of mixed complexes. We recall that, if C is
an ordinary category and W denotes a collection of morphisms of C, then N(C)[W−1] is
the ∞-category obtained by the nerve N(C) of C by inverting the set of morphisms W
[Cis, Def. 7.1.2 & Prop. 7.1.3], [Lur14, Def. 1.3.4.1].

The ∞-category Mix∞ of mixed complexes is then defined as the localization of the
nerve of the category Mix at the class Wmix of quasi-isomorphisms of mixed complexes
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(Definition 3.1.6):
Mix∞ := N(Mix)[W−1

mix]. (3.1.7)

Analogously, the ∞-category Λ-Mod∞ is defined as the localization of the cate-
gory Λ-Mod of dg-Λ-modules at the class W of quasi-isomorphisms of dg-Λ-modules
(Definition A.2.10):

Λ-Mod∞ := N(Λ-Mod)[W−1]. (3.1.8)

Proposition 3.1.10. The ∞-category Λ-Mod∞ is a cocomplete stable ∞-category.

Proof. The category Λ-Mod is a (pre-triangulated) dg-category. By applying the dg-nerve
functor Ndg [Lur14, Constr. 1.3.1.6] we obtain an ∞-category Ndg(Λ-Mod) [Lur14, Prop.
1.3.1.10]. The dg-nerve functor sends pre-triangulated dg-categories to stable∞-categories
[Fao17, Thm. 4.3.1], [Lur14, Prop. 1.3.1.10]. The ∞-category Ndg(Λ-Mod) is a stable
∞-category and its homotopy category can be identified (as triangulated category) with
the derived category D(Λ) associated to the dg-algebra Λ (see Definition A.2.14).

The category Λ-Mod is equipped with a combinatorial simplicial model structure
by Remark A.2.11. By [Lur14, Prop. 1.3.1.17] and by the fact that the simplicial
nerve of the simplicial category associated to Λ-Mod is equivalent to the localization
N(Λ-Mod)[W−1] (by [Lur14, Rem. 1.3.4.16 & Thm. 1.3.4.20] where we also use that
the model category Λ-Mod is combinatorial, hence admits functorial factorizations), the
two constructions N(Λ-Mod)[W−1] and Ndg(Λ-Mod) present equivalent ∞-categories.
Hence, the ∞-category Λ-Mod∞ is a stable ∞-category.

The ∞-category Λ-Mod∞ is also cocomplete by [Lur14, Prop. 1.3.4.22] because the
model category Λ-Mod is combinatorial.

Proposition 3.1.11. The ∞-category Mix∞ is a cocomplete stable ∞-category.

Proof. The categories Mix and Λ-Mod are isomorphic by Remark 3.1.2 and the functor
L : Mix→ Λ-Mod and its inverse R : Λ-Mod→Mix preserve quasi-isomorphisms by
Remark 3.1.7. This yields an equivalence of ∞-categories

N(Mix)[W−1
mix]→ N(Λ-Mod)[W−1].

The statement is then a consequence of this equivalence and of Proposition 3.1.10.

We observe that one can prove that the ∞-category Mix∞ is a cocomplete stable
∞-category by following the same arguments of [Fao17, Thm. 4.3.1]. In fact, the category
Mix is cocomplete, has a 0-object, and the cone of a morphism of mixed complexes and
the shift mixed complexes can be used for proving that Mix∞ is also stable.

Remark 3.1.12. The homotopy category of the stable ∞-category Mix∞ is canonically
equivalent to the derived category D(Λ) of the dg-algebra Λ (by Proposition 3.1.10 and
Proposition 3.1.11).
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3.2 Keller’s cyclic homology of exact categories

In this section we recall Keller’s construction of Hochschild and cyclic homology for exact
k-linear categories [Kel99]. In fact, Keller constructs a functor

C : Exk →Mix

from the category Exk of small exact k-linear categories to the category Mix of Kassel’s
mixed complexes. The functor C is also called the cone functor because its definition uses
the mapping cone for morphisms of mixed complexes. Hochschild and cyclic homology
are homological invariants of mixed complexes, as explained in Definition 3.1.3. Hence,
Keller’s Hochschild (or cyclic) homology of a k-linear exact category A is the Hochschild
(or cyclic) homology of the mixed complex C(A) associated to A by the functor C.

Among the various properties of Keller’s Hochschild homology, we have the following
[Kel99]:

Agreement : the Hochschild homology of the exact category of finitely generated projective
modules over a (unital) algebra agrees with the Hochschild homology of the algebra.

Invariance: Hochschild homology is preserved by exact functors inducing equivalences
in the bounded derived categories.

Localization: suitable sequences of exact categories (roughly, inducing short exact
sequences of bounded derived categories) are sent to triangles of the triangulated
category D(Λ) in a sense to be made precise.

Additivity : Hochschild homology is additive.

Trace maps: there are trace maps linking the K-theory of an exact category to its
Hochschild homology.

We review and explain these properties below in Theorem 3.2.5 and Theorem 3.2.7. The
relation with K-theory is discussed in Proposition 4.4.1. The most important property
for us is the localization property: it allows us to deduce Mayer-Vietoris type conclusions
(see Theorem 3.3.8) in the same way as it has been already done for other localizing
invariants [BEKW17,BC17].

We start with the definition of the functor C : Exk →Mix.
Let E be a small k-linear exact category (see Definition A.1.5). The category Chb(E)

of bounded chain complexes in E and the sub-category Acyb(E) of bounded acyclic chain
complexes in E have the structure of dg-categories, as described in Example A.2.6. We
denote these dg-categories by Chbdg(E) and Acybdg(E) respectively.

For a small dg-category A, let Mix(A) be the mixed complex associated to A as
described in Definition 3.1.9.
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Definition 3.2.1. [Kel99, Sec. 1.4] Let E be an exact k-linear category. The mixed
complex C(E) associated to E is the cone

C(E) := cone(Mix(Acybdg(E))→ Mix(Chbdg(E))) (3.2.1)

of the morphism of mixed complexes Mix(Acybdg(E)) → Mix(Chbdg(E)) induced by the
inclusion Acybdg(E)→ Chbdg(E) of dg-categories.

Remark 3.2.2. [Kel99, Sec. 1.4] The cone construction C of Definition 3.2.1 is functorial
with respect to (k-linear) exact functors between (k-linear) exact categories.

The cone construction C : Exk →Mix is a functor from the category Exk of small
exact k-linear categories to the category Mix of mixed complexes. We can describe the
functor as follows.

For a category C, we denote by C∆1 the arrow category Fun({0→ 1},C). Then, the
cone functor of Definition 3.2.1 can be written as the composition:

C : Exk dgcat∆1

k Mix∆1
MixMix cone (3.2.2)

where the first functor associates to a k-linear exact category E the morphism of dg-
categories Acybdg(E) → Chbdg(E) in dgcat∆1

(and on morphisms it is defined in the
canonical way), the second functor uses Definition 3.1.9 and the third functor is the cone
in the category Mix.

Definition 3.2.3. Let E be a small k-linear exact category. Keller’s Hochschild (cyclic)
homology of E is defined as the Hochschild (cyclic) homology of the mixed complex C(E)

associated to E by the functor C of Definition 3.1.3.

Before describing the properties of the functor C : Exk →Mix, we need some more
terminology:

Definition 3.2.4. [Kel99, Sec. 1.5] Let A,B be additive categories and let T , T ′ and T ′′
be triangulated categories.

(i) A factor-dense subcategory A′ of A is a full subcategory such that each object of A
is a direct factor of a finite direct sum of objects of A′.

(ii) An equivalence up to factors is an additive functorA → B that induces an equivalence
onto a factor-dense subcategory of B.

(iii) A sequence
T ′ → T → T ′′

of triangulated categories is exact up to factors if the composition is zero, the functor
T ′ → T is fully faithful and the induced functor T /T ′ → T ′′ from the Verdier
quotient to T ′′ is an equivalence up to factors.
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Let E be a small exact k-linear category and let Db(E) be the derived category of
E (see Definition A.1.10). We recall that, by Example 3.1.5, one can associate a mixed
complex C(A) to every k-algebra A. Recall also that D(Λ) denotes the derived category
of the dg-algebra Λ.

Theorem 3.2.5. [Kel99, Theorem 1.5] Let k be a commutative ring.

1. If A is a k-algebra, there is a natural isomorphism

C(A)→ C(projA)

in D(Λ), where projA is the exact category of finitely generated projective modules.

2. If F : A → B is an exact functor between exact categories that induces an equivalence
up to factors Db(A)→ Db(B), then F induces an isomorphism

C(A)→ C(B)

in D(Λ).

3. If F : A′ → A and G : A → A′′ are exact functors between exact categories such that
the sequence

Db(A′)→ Db(A)→ Db(A′′)

is exact up to factors, then there is a canonical morphism ∂(F,G) such that the
sequence

C(A′) C(A) C(A′′) C(A′)[1]
∂(F,G)

is a triangle in D(Λ).

Remark 3.2.6. After application of the functor C, the inclusion of an exact k-linear
category in its idempotent completion induces an isomorphism in D(Λ).

If E is a small k-linear exact category, let Ex E denote the category of admissible
short exact sequences of E (which is again exact, provided that short exact sequences are
defined component-wise). Consider the following exact functors:

I : E → Ex E A 7→ (A
1−→ A→ 0)

R : Ex E → E (A→ B → C) 7→ A

P : Ex E → E (A→ B → C) 7→ C

S : E → Ex E C 7→ (0→ C
1−→ C)

The functors I and P are left adjoint to the functors R and S, respectively. Keller proves
that Hochschild and cyclic homology are additive invariants:
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Theorem 3.2.7 (Theorem 1.12 [Kel99]). Let E be a small k-linear exact category. Then,
the functors P and R induce an isomorphism

C(Ex E)
∼−→ C(E)⊕ C(E)

in D(Λ).

We now interpret Keller’s results in the context of ∞-categories.

Let dgcatk be the category of small dg-categories over k. The category dgcatk is
endowed with the Morita model structure of Theorem A.2.16; we denote by dgcatk,∞
the underlying ∞-category:

dgcatk,∞ := N(dgcatk)[W
−1
Morita] (3.2.3)

where WMorita is the class of Morita equivalences between dg-categories.
To every dg-category we can associate a cyclic module, i.e., its additive cyclic nerve

of Definition A.4.7, hence a mixed complex by Remark 3.1.4. Let

Mix: dgcatk →Mix

be the functor of Definition 3.1.9. By Theorem 3.2.5 (2), the functor Mix sends Morita
equivalences of dg-categories to quasi-isomorphisms of mixed complexes. A morphism in
an ∞-category is an equivalence if its image in the homotopy category is an isomorphism,
hence, the functor Mix descends to a functor

dgcatk Mix

dgcatk,∞ Mix∞

loc

Mix

loc

Mix∞

(3.2.4)

on the localizations. Observe that the functor Mix preserves filtered colimits and that quasi-
isomorphisms of mixed complexes commute with filtered colimits of mixed complexes.
Hence, loc ◦Mix preserves filtered colimits because the localization preserves filtered
colimits as well.

Let Exk be the category of small exact k-linear categories. Let Wex be the class
of exact functors between exact k-linear categories inducing equivalences up to factors
between the associated bounded derived categories (Definition 3.2.4). Let N(Exk)[W

−1
ex ]

be the ∞-category associated to Exk by inverting the morphisms of Wex [Lur14, Def.
1.3.4.1]. By Theorem 3.2.5 (2), the cone functor C : Exk →Mix (3.2.2) sends morphisms
in Wex to quasi-isomorphisms of mixed complexes, hence it descends to a functor between
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the associated ∞-categories

Exk Mix

N(Exk)[W
−1
ex ] Mix∞

loc

C

loc

The functor C commutes with filtered colimits (see also Proposition 3.3.7).
The ∞-category Mix∞ is stable by Proposition 3.1.11. Cofiber sequences of Mix∞

[Lur14, Def. 1.1.1.6] are detected in its homotopy category, i.e., in D(Λ). By Theo-
rem 3.2.5 (3), the composition loc ◦C (and, analogously, composition with the functor Mix)
sends sequences of exact categories inducing equivalences up to factors (between the asso-
ciated bounded derived categories) to cofiber sequences of the stable ∞-category Mix∞.

3.3 The equivariant coarse homology theory X̃C
G

k

The goal of this section is to construct an equivariant Mix∞-valued coarse homology
theory (see Definition 1.2.1)

X̃C
G

k : GBornCoarse→Mix∞

from the category of G-bornological coarse spaces to the cocomplete stable ∞-category
of mixed complexes (Proposition 3.1.11) that uses Keller’s functor C : Exk → Mix of
Definition 3.2.1. In fact, the functor X̃C

G

k is defined (see Definition 3.3.1) as Keller’s
cone C of the k-linear category V G

k (X) of G-equivariant X-controlled finite dimensional
k-vector spaces (Definition 2.1.2) equipped with the exact structure given by the short
split exact sequences.

The main result of the section is Theorem 3.4.2, where we prove that the functor
X̃C

G

k : GBornCoarse → Mix∞ is a G-equivariant coarse homology theory; this is
achieved by showing that the functor X̃C

G

k satisfies:

(i) coarse invariance, see Proposition 3.3.4;

(ii) vanishing on flasque spaces, see Proposition 3.3.6;

(iii) u-continuity, see Proposition 3.3.7;

(iv) coarse excision, see Theorem 3.3.8;

i.e., the axioms describing an equivariant coarse homology theory (see Definition 1.2.1).

We start with the definition of the functor X̃C
G

k : GBornCoarse→Mix∞.
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By Remark 2.1.11, the category V G
k (X) of G-equivariant X-controlled finite dimen-

sional k-vector spaces is a k-linear category. It is also exact with the exact structure given
by the short split exact sequences by Example A.1.6. Hence, the functor V G

k (2.1.3) can
be seen as a functor

V G
k : GBornCoarse→ Exk

from the category of G-bornological coarse spaces to the category of small exact k-linear
categories. By abuse of notation, with denote the functor V G

k from GBornCoarse to
Add or to Exk with the same symbol.

Let loc be the localization functor loc : Mix→ N(Mix)→ N(Mix[W−1
mix]) = Mix∞

[Cis, Def. 7.1.2], [Lur14, Def. 1.3.4.1]. Let C : Exk → Mix denote Keller’s cone
construction of Definition 3.2.1.

Definition 3.3.1. We denote by X̃C
G

k the following composition of functors

X̃C
G

k : GBornCoarse Exk Mix Mix∞
V G
k C loc

from the category of bornological coarse spaces with G-action (Definition 1.1.21) to the
∞-category of mixed complexes (Definition 3.1.1 and (3.1.7)).

Theorem 3.3.2. The functor

X̃C
G

k : GBornCoarse Mix∞

is a G-equivariant Mix∞-valued coarse homology theory.

The proof of Theorem 3.3.2 follows the ideas of [BEKW17,BC17] and it is a combination
of the following Proposition 3.3.4, Proposition 3.3.6, Proposition 3.3.7 and Theorem 3.3.8.

Let split : Catk → Exk denote the functor that sends a k-linear category to the same
category equipped with the split exact structure.

Remark 3.3.3. We have decided to provide a complete proof for the composition

X̃C
G

k : GBornCoarse Catk Exk Mix Mix∞,
V G
k split C loc

(that uses the functor C : Exk →Mix of Definition 3.2.1 instead of the functor Mix of
Definition 3.4.1), because the proof of Theorem 3.3.2 works in the more general context
in which the k-linear category V G

k (X) is equipped with other (non-split) exact structures.

We proceed with the proof of the axioms of Definition 1.2.1.

Proposition 3.3.4. The functor X̃C
G

k : GBornCoarse→Mix∞ (3.3.1) satisfies coarse
invariance.
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Proof. If f : X → Y is a coarse equivalence of G-bornological coarse spaces, then it
induces a natural equivalence f∗ : V G

k (X) → V G
k (Y ) by Lemma 2.1.14. Keller’s cone

functor 3.2.1 sends equivalences of k-linear exact categories to equivalences of mixed
complexes by Theorem 3.2.5 (2). Hence, the functor f∗ induces the equivalence

X̃C
G

k (X)
∼−→ X̃C

G

k (Y )

in Mix∞. The functor X̃C
G

k satisfies then coarse invariance by Remark 1.2.2.

We recall that the homotopy category of Mix∞ is the derived category D(Λ). The
following is [Sch11, Theorem 2.3.11], reinterpreted in our setting:

Theorem 3.3.5. Let E and E ′ be exact categories and let F ′ → F → F ′′ be a sequence
of exact functors E → E ′ such that F ′(A)→ F (A)→ F ′′(A) is a short exact sequence for
all objects A ∈ E. Then, the functors F and F ′ ⊕ F ′′ induce an equivalence

C(F ) ' C(F ′ ⊕ F ′′) : C(E)→ C(E ′)

in Mix∞.

Proof. Recall the exact functors I, P,R, S defined in Theorem 3.2.7; the induced functors
DbI and DbP are left adjoint to DbR and DbS, with unit and counit the isomorphisms
id→ DbR ◦DbI and DbP ◦DbS → id.

The sequence of functors F ′ → F → F ′′ induces an exact functor F• : E → Ex E ′
sending an object A to the sequence F ′(A) → F (A) → F ′′(A). By Theorem 3.2.7, the
composition of the functors I ⊕ S and (R,P )

G : Ex E ′ (R,P )−−−→ E ′ × E ′ I⊕S−−−→ Ex E ′

being mutual inverses in D(Λ), induces a map C(G) : C(Ex E ′) → C(Ex E ′) that is
isomorphic to the identity in D(Λ).

Let M : Ex E ′ → E ′ be the functor sending a short exact sequence A→ B → C to the
object B. Then, the functors F and F ′⊕F ′′ can be written as the following compositions

E F•−→ Ex E ′ M−→ E ′ and E F•−→ Ex E ′ G−→ Ex E ′ M−→ E ′

and they induce isomorphic maps C(E)→ C(E ′) in D(Λ).

Recall the definition of a flasque category Definition A.1.4. As a corollary of Schlicht-
ing’s theorem, we get that the functor X̃C

G

k vanishes on flasque spaces:

Proposition 3.3.6. The functor X̃C
G

k : GBornCoarse → Mix∞ (3.3.1) vanishes on
flasque spaces.
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Proof. Let X be a flasque space. By Lemma 2.1.15, the category V G
k (X) is a flasque

category, hence there exists an endofunctor S : V G
k (X)→ V G

k (X) such that idV G
k (X)⊕S ∼=

S. By Theorem 3.3.5, C(id)⊕ C(S) and C(id⊕ S) ∼= C(S) induce equivalent morphisms
in Mix∞. This means that the morphism

X̃C
G

k (id) : X̃C
G

k (X)→ X̃C
G

k (X)

is equivalent to the 0-morphism, hence that X̃C
G

k (X) is equivalent to the object 0 in
Mix∞, concluding the proof.

Proposition 3.3.7. The functor X̃C
G

k : GBornCoarse→Mix∞ (3.3.1) is u-continuous.

Proof. Let X be a G-bornological coarse space, and let CG be the poset of G-invariant
controlled sets. By Remark 2.1.13, there is an equivalence V G

k (X) ' colimU∈CG V
G
k (XU )

of k-linear exact categories.
The canonical maps

colimU Chbdg(V G
k (XU ))→ Chbdg(V G

k (X))

and
colimU Acybdg(V G

k (XU ))→ Acybdg(V G
k (X))

are equivalences of k-linear exact categories. The functor C sends equivalences to
equivalences of mixed complexes, hence we get the equivalence

X̃C
G

k (X) ' colimU∈CG X̃C
G

k (XU )

in Mix∞. This proves that the functor X̃C
G

k is u-continuous.

Theorem 3.3.8. The functor X̃C
G

k : GBornCoarse → Mix∞ (3.3.1) satisfies coarse
excision.

The proof of the theorem follows the main ideas of [CP97,BE16,BEKW17]; we first
need some more terminology.

Definition 3.3.9. [Kas15] A full additive subcategory A of an additive category U is a
Karoubi-filtration if every diagram

X → Y → Z

in U , with X,Z ∈ A, admits an extension

X Y Z

U U ⊕ U⊥ U

∼=

i p
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with U ∈ A.

By [Kas15, Lemma 5.6], this definition is equivalent to the classical one [Kar70,CP97].
If A is a Karoubi-filtration of U , we can construct a quotient category U/A. Its objects
are the objects of U , and the morphisms sets are defined as follows:

HomU/A(U, V ) := HomU (U, V )/ ∼

where the relation identifies pairs of maps U → V whose difference factorizes through an
object of A.

Let X be a G-bornological coarse space and let Y = (Yi)i∈I be an equivariant big
family on X (see Definition 1.1.26). The bornological coarse space Yi is a subspace of
X with the induced bornology and coarse structure. The inclusion Yi ↪→ X induces
a functor V G

k (Yi) → V G
k (X) which is injective on objects. The categories V G

k (Yi) and
V G
k (Y) := colimi∈I V

G
k (Yi) are full subcategories of V G

k (X).

Lemma 3.3.10. [BEKW17, Lemma 8.14] Let Y be an equivariant big family on the
G-bornological coarse space X. Then, the full additive subcategory V G

k (Y) of V G
k (X) is a

Karoubi filtration.

Let X be a G-bornological coarse space, and (Z,Y) be an equivariant complementary
pair. Consider the functor

a : V G
k (Z)/V G

k (Z ∩ Y)→ V G
k (X)/V G

k (Y) (3.3.1)

induced by the inclusion of Z in X; on objects, it coincides with i∗ : V G
k (Z)→ V G

k (X),
but on morphisms it sends an equivalence class [A] of A in the equivalence [i∗(A)] of
i∗(A).

Lemma 3.3.11. [BEKW17, Prop. 8.15] The functor a (3.3.1) is an equivalence of
categories.

Remark 3.3.12. By [Sch04, Ex. 1.8, Prop. 2.6], if A ⊆ U is a Karoubi filtration with A
idempotent complete, the sequence of exact categories A → U → U/A induces a sequence
of triangulated categories

Db(A)→ Db(U)→ Db(U/A)

that is exact up to factors. When A is not idempotent complete, this is achieved by first
applying [Sch00, Lemma 3.8] to the Karoubi filtration A ⊆ U and then again [Sch04, Prop.
2.6].

We use this remark and the previous lemmas to prove Theorem 3.3.8:
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Proof of Theorem 3.3.8. Let X be a G-bornological coarse space, and let (Z,Y) be an
equivariant complementary pair on X. By Lemma 3.3.10, V G

k (Z ∩ Y) ⊆ V G
k (Z) and

V G
k (Y) ⊆ V G

k (X) are Karoubi filtrations. Consider the following sequences of k-linear
exact categories:

V G
k (Z ∩ Y)→ V G

k (Z)→ V G
k (Z)/V G

k (Z ∩ Y)

and
V G
k (Y)→ V G

k (X)→ V G
k (X)/V G

k (X ∩ Y).

By Remark 3.3.12, the induced sequences of bounded derived categories are exact up to
factors, hence the assumptions of Theorem 3.2.5 are satisfied and we get cofiber sequences
of mixed complexes:

C(V G
k (Z ∩ Y))→ C(V G

k (Z))→ C(V G
k (Z)/V G

k (Z ∩ Y))→ C(V G
k (Z ∩ Y))[1]

and
C(V G

k (Y))→ C(V G
k (X))→ C(V G

k (X)/V G
k (X ∩ Y))→ C(V G

k (Y))[1]

The inclusion Z ↪→ X induces a commutative diagram

C(V G
k (Z ∩ Y)) C(V G

k (Z)) C(V G
k (Z)/V G

k (Z ∩ Y))

C(V G
k (Y)) C(V G

k (X)) C(V G
k (X)/V G

k (X ∩ Y))

a∗

where a∗ is the map induced by a : V G
k (Z)/V G

k (Z ∩ Y) → V G
k (X)/V G

k (Y) (3.3.1). By
Lemma 3.3.11, the functor a∗ yields an equivalence of categories, hence the left square is
a co-Cartesian square in Mix∞.

In order to conclude the proof, we recall that XCGk (Y) is the filtered colimit XCGk (Y) =

colimiXCGk (Yi) (1.2.1) and that

V G
k (Y) := colimi∈I V

G
k (Yi).

The functor C commutes with filtered colimits of k-linear categories, hence we have the
equivalence C(V G

k (Y)) = C(colimi V
G
k (Yi)) ' colimiC(V G

k (Yi)) and the same holds for
Z ∩ Y. By using these identifications, we obtain the co-Cartesian square in Mix∞

X̃C
G

k (Z ∩ Y) X̃C
G

k (Z)

X̃C
G

k (Y) X̃C
G

k (X)

meaning that X̃C
G

k satisfies coarse excision.
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Proof of Theorem 3.3.2. By Proposition 3.1.11, the ∞-category Mix∞ is stable and
cocomplete. By Proposition 3.3.4, Proposition 3.3.6, Proposition 3.3.7 and Theorem 3.3.8,
the functor X̃C

G

k of Definition 3.3.1 is a G-equivariant coarse homology theory.

3.4 Coarse Hochschild and coarse cyclic homology

In this section, we define Hochschild homology

XHHG
k : GBornCoarse→ Ch∞

and cyclic homology
XHCG

k : GBornCoarse→ Ch∞

for G-bornological coarse spaces (see Definition 3.4.6). These are equivariant coarse homol-
ogy theories with values in the cocomplete stable ∞-category Ch∞ of chain complexes.

By Theorem 3.3.2, Keller’s cone functor C : Exk −→Mix yields an equivariant coarse
homology theory X̃C

G

k : GBornCoarse→Mix∞ with values in the cocomplete stable
∞-category Mix∞ of mixed complexes. In this section, namely in Lemma 3.4.4, we see
that the functor C and the functor Mix: dgcatk →Mix of Definition 3.1.9 are naturally
equivalent when restricted to k-linear categories (equipped with the exact structure given
by split short exact sequences). Hence, also the functor Mix yields a G-equivariant coarse
homology theory that we call XMixGk (see Definition 3.4.1).

Then, we define the functors XHHG
k and XHCG

k as the Hochschild and cyclic homology,
respectively, of the mixed complex Mix(V G

k (X)) associated to the k-linear category V G
k (X)

of G-equivariant X-controlled finite dimensional k-vector spaces (see Definition 2.1.2).

We start with the definition of the functor XMixGk : GBornCoarse→Mix∞.
LetCatk be the category of small k-linear categories, let V G

k : GBornCoarse→ Catk
be the functor of Remark 2.1.12, let Mix: dgcatk →Mix be the functor of Definition 3.1.9,
let ι : Catk → dgcatk be the functor that associates to a k-linear category the dg-category
with the same objects and morphisms complexes concentrated in degree zero (see Example
A.2.5) and let loc be the localization functor loc : Mix→ N(Mix)→ N(Mix[W−1

mix]) =

Mix∞.

Definition 3.4.1. Let k be a field. We denote by XMixGk the following composition of
functors

XMixGk : GBornCoarse Catk dgcatk Mix Mix∞
V G
k ι Mix loc

from the category of G-bornological coarse spaces (Definition 1.1.21) to the ∞-category
of mixed complexes (Definition 3.1.1).
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Theorem 3.4.2. The functor

XMixGk : GBornCoarse Mix∞

is a G-equivariant Mix∞-valued coarse homology theory.

Proof. The theorem is a consequence of Theorem 3.3.2 and the next Lemma 3.4.4.

Let A be a small additive category, equipped with the exact structure given by the
split short exact sequences (Example A.1.6). Consider the category of bounded chain
complexes in A and recall that a bounded chain complex is acyclic in degree n if the
boundary operator factors through an object Zn+1

Kn+1 Kn

Zn+1

pn+1

dn+1
K

in+1

with pn+1 a deflation and in+1 an inflation (see Definition A.1.8).

For an additive category A, let Chbdg(A) be the associated dg-category of bounded
chain complexes and Acybdg(A) be the sub-dg-category of bounded acyclic chain complexes;
let Mix: dgcatk →Mix be the functor of Definition 3.1.9.

Lemma 3.4.3. Let A be an additive category. Then, the mixed complex Mix(Acybdg(A))

associated to the dg-category of bounded acyclic chain complexes in A is quasi-isomorphic
to the mixed complex 0.

Proof. The exact structure on A is given by the short split exact sequences. Let K =

(Kp)p∈Z be a bounded acyclic chain complex in Chb(A). Let H be another bounded chain
complex in Chb(A) and consider the chain complex HomChb

dg(A)(H,K). First, we want
to see that this chain complex is acyclic.

Let g be a morphism in HomChb
dg(A)(H,K); without loss of generality, we can assume

that the degree of g is zero, hence g = (gp : Hp → Kp)p∈Z. We want to construct an
element f = (fp)p∈Z of HomChb

dg(A)(H,K) of degree 1 whose differential is g. In order to
construct fn : Hn → Kn+1 we use the split exact structure of A. In fact, by acyclicity, we
have the diagram:

Kn+1 Kn Kn−1

Zn+1 Zn

pn+1

dn+1
K

pn

dnK

in+1 in
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where the i’s are inflations and the p’s deflations of A. The split exact structure of
A provides splittings of both the i’s and p’s, say jn+1 : Kn → Zn+1 and qn : Zn → Kn.
Hence, a lift of gn : Hn → Kn is constructed as fn := qn+1 ◦ jn+1 ◦ gn, and this for every
n ∈ Z. This shows the existence of a map f = (fp)p∈Z of degree 1. By using again the
splitting at Kn, we see that the differential d(f) = dK ◦ f − f ◦ dH is the starting map g.
This is enough to prove that the chain complex HomChb

dg(A)(H,K) is acyclic.

The additive cyclic nerve associated to the dg-category Acybdg(A) is given in degree n
by direct sums of complexes

Hom(K1,K0)⊗k Hom(K2,K1)⊗k · · · ⊗k Hom(K0,Kn)

where every bounded chain complex Ki over A is acyclic, hence the chain complexes
Hom(Ki,Ki−1) are acyclic. The tensor product of acyclic complexes is again acyclic,
hence CNn(Acybdg(A)) is acyclic for each n. The whole complex CN∗(Acybdg(A)) is now
acyclic because it is a double chain complex with acyclic rows. Therefore, the associated
mixed complex Mix(Acybdg(A)) is quasi-isomorphic to the zero mixed complex.

Consider the following functors:

(a) C : Catk
split−−→ Exk

C−→ Mix
loc−−→ Mix∞ where the first functor sends a k-linear

category to the exact k-linear category with split exact structure and C is Keller’s
cone functor (3.2.2).

(b) Mix: Catk
ι−→ dgcatk

Mix−−→Mix
loc−−→Mix∞ where the first functor associates to a

k-linear category the dg-category with the same objects and morphisms complexes
concentrated in degree zero (Example A.2.5) and Mix is the functor of Definition
3.1.9.

(c) Mix ◦ Chbdg : Catk
ι−→ dgcatk

Chb
dg−−−→ dgcatk

Mix−−→Mix
loc−−→Mix∞ where the functor

Chbdg sends a k-linear category A to the dg-category Chbdg(A).

Lemma 3.4.4. Let C, Mix and Mix ◦ Chbdg be the functors defined in (a),(b) and (c),
respectively. Then, there are natural isomorphisms:

(i) Mix
'−→ Mix ◦ Chbdg;

(ii) Mix
'−→ C.

Proof. (i) Let A be a k-linear category, seen as dg-category by the functor ι : Catk →
dgcatk. Let id be the identity functor of dgcatk and let Chbdg : dgcatk → dgcatk
be the functor sending a dg-category A to the dg-category Chbdg(A) of bounded

chain complexes in A. Then, the transformation Mix −→ Mix ◦ Chbdg is induced by
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the transformation η : id→ Chbdg defined by

ηA : id(A)→ Chbdg(A),

the canonical inclusion of A in Chbdg(A).

The inclusion of A in the dg-category of bounded chain complexes represents the
inclusion in the pretriangulated hull, as remarked in Example A.2.13, and the
inclusion in the pretriangulated hull is a Morita equivalence by Example A.2.15.
Therefore, the transformation η induces an equivalence Mix(A) ' Mix(Chbdg(A))

of mixed complexes by Theorem 3.2.5 (2). This is enough to prove that the
transformation η induces a natural isomorphism.

(ii) Observe that the functor Catk
ι−→ dgcatk

Mix−−→ Mix is equivalent to the functor
Catk

ι′−→ dgcat∆1

k → Mix∆1 cone−−−→ Mix where a k-linear category A in Catk is
sent by the functor ι′ to the morphism 0→ A of dgcatk; the other functors are the
same functors as in (3.2.2).

Let j : dgcatk → dgcat∆1

k be the functor sending a dg-category A to the morphism
Acybdg(A)→ Chbdg(A) (defined on morphisms of dgcatk in the natural way) and let
ρ : ι′ → j be the transformation defined as:

ρA : ι′(A)→ j(A), (0→ A) 7→ (Acybdg(A)→ Chbdg(A)).

Then, ρ induces a transformation Mix→ C. By Lemma 3.4.3, the mixed complex
Mix(Acybdg(A)) is equivalent to 0 and by the equivalence (i), we have Mix(A)

∼−→
Mix(Chbdg(A)). After applying the cone,we get the equivalence

cone(Mix(0)→ Mix(A))
'−→ cone(Mix(Acybdg(A))→ Mix(Chbdg(A))),

i.e., Mix(A)
'−→ C(A).

Remark 3.4.5. There are two different cyclic homology theories for k-linear exact
categories: McCarthy’s cyclic homology [McC94] and Keller’s cyclic homology [Kel99].
McCarthy’s cyclic homology of a k-linear category A equipped with the exact structure of
split short exact sequences is defined as the cyclic homology of the additive cyclic nerve
associated to A. Keller’s cyclic homology of an exact category is defined in terms of the
functor C (3.2.2). The above lemma says that McCarthy’s Hochschild homology (and
cyclic homology) in terms of the additive cyclic nerve [McC94] and Keller’s Hochschild
homology (and cyclic homology) in terms of the cone construction in the category of
mixed complexes are equivalent functors when restricted to the category of small k-linear
categories (equipped with the split exact structure). This fact is probably known to the
experts, but for convenience of the reader we have provided a proof of it.
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Let Ch be the category of chain complexes (over k). Recall that there are functors
forget : Mix → Ch (3.1.3), sending a mixed complex to the underlying chain complex,
and Tot(B−) : Mix→ Ch (3.1.4), sending a mixed complex to the total complex of the
associated bicomplex. These functors send quasi-isomorphisms of mixed complexes to
quasi-isomorphisms of chain complexes. Hence, they induce the functors

forget∞ : Mix∞ → Ch∞ (3.4.1)

and
Tot(B−)∞ : Mix∞ → Ch∞ (3.4.2)

where Ch∞ is the ∞-category of chain complexes.

Definition 3.4.6. Let k be a field, G a group andCh∞ the∞-category of chain complexes
(over k). The G-equivariant coarse Hochschild homology XHHG

k (with k-coefficients) is the
G-equivariant Ch∞-valued coarse homology theory defined as the following composition:

XHHG
k : GBornCoarse Mix∞ Ch∞.

XMixG
k forget

where XMixGk is the equivariant coarse homology theory of Definition 3.4.1. The compo-
sition

XHCG
k : GBornCoarse Mix∞ Ch∞.

XMixG
k Tot(B−)

is called G-equivariant coarse cyclic homology.

Theorem 3.4.7. The functors

XHHG
k : GBornCoarse→ Ch∞ and XHCG

k : GBornCoarse→ Ch∞

of Definition 3.4.6 are G-equivariant coarse homology theories.

Proof. By Theorem 3.4.2, the functor XMixGk : GBornCoarse→Mix∞ is an equivari-
ant coarse homology theory and satisfies coarse invariance, coarse excision, u-continuity,
and vanishing on flasques. The functors forget∞ : Mix∞ → Ch∞ (3.4.1) and the functor
Tot(B−)∞ : Mix∞ → Ch∞ (3.4.2) commute with filtered colimits, and send cofiber se-
quences to cofiber sequences. The two compositions with XMixGk satisfy coarse invariance,
coarse excision, u-continuity, and vanishing on flasques, and the functors XHHG

k and
XHCG

k are equivariant coarse homology theories as well.

Question 3.4.8. The analogue functors providing negative and periodic cyclic homologies
are not u-continuous and not excisive, as direct products do not commute with colimits.
Hence, we are not able to construct coarse versions of negative and periodic cyclic
homology with the same methods. It remains open whether a different definition of coarse
versions of negative and periodic cyclic homologies can be given.
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By applying coarse excision, we can compute the value of coarse Hochschild (and
cyclic) homology on coarse spaces finitely generated by one point (endowed with trivial
G-action).

Example 3.4.9. By Example 1.1.20, we get:

XHH(Rn) ∼= ΣnXHH(∗)

where Rn is endowed with the euclidean metric.

3.5 A symmetric monoidal refinement of XHHG
k

The goal of this section is to refine the functors XHHG
k and XHCG

k of Definition 3.4.6 to
lax symmetric monoidal functors.

This is achieved by providing lax symmetric monoidal refinements of the functors V G
k ,

ι and loc ◦Mix in the definition

XMixGk : GBornCoarse Catk dgcatk Mix Mix∞
V G
k ι Mix loc

of XMixGk .

We start with the functor Mix: dgcatk → Mix; recall that Mix induces a functor
Mix∞ : dgcatk,∞ →Mix∞ (3.2.4). By [Kas87, Thm. 2.4], the functor Mix∞ has a lax
symmetric monoidal refinement (see also [CT12]):

Theorem 3.5.1. The functor Mix∞ : dgcatk,∞ →Mix∞ has a a lax symmetric monoidal
refinement.

The lax symmetric monoidal structure on the functor Mix∞ : dgcatk,∞ → Mix∞
(3.2.4) induced by [Kas87, Thm. 2.4] uses shuffle products, that for convenience of the
reader we now recall, before giving the proof of the theorem.

Remark 3.5.2. The category of mixed complexes has a natural symmetric monoidal
structure induced by the canonical symmetric monoidal structure of (the underlying)
chain complexes: if (C, b,B) and (C ′, b′, B′) are two mixed complexes, then their tensor
product is the mixed complex

(C ⊗ C ′, b⊗ id + id⊗ b, B ⊗ id + id⊗B)

where all the tensor products are taken over k. The unit object is k.

Let M and N two simplicial modules with associated chain complexes M∗ and N∗.
The product M × N is the simplicial module (M × N)n := Mn ⊗ Nn with face and
degeneracies maps di(m⊗n) := dMi (m)⊗ dNi (n) and sj(m⊗n) := sMj (m)⊗ sNj (n), where
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dMi and sMj are the face and degeneracy maps of M and dNi and sNj are the face and
degeneracy maps of N .

Let p, q be two non-negative integer numbers; a (p, q)-shuffle (µ, ν) is a partition of
the set of natural numbers {0, . . . , p+ q − 1} into two disjoint subsets

µ1 < µ2 < · · · < µp and ν1 < ν2 < · · · < νq.

The tuple (µ1, . . . , µp, ν1, . . . , νq) is the result of a permutation of the ordered set (0, . . . , p+

q − 1). Let sgn(µ, ν) be the sign of this permutation.
For simplicial modules M and N , define a homomorphism (a shuffle map) [Lod98, Sec.

1.6.8]
sh: M∗ ⊗N∗ → (M ×N)∗

in the product M ×N by extending linearly

sh(m⊗ n) =
∑
(µ,ν)

sgn(µ, ν)(sνq . . . sν1(m)⊗ sµp . . . sµ1(n)) (3.5.1)

where m belongs to Mp, n to Nq and (µ, ν) runs over all the (p, q)-shuffles. The Eilenberg-
Zilber Theorem says that the shuffle map sh is a quasi-isomorphism.

Proof of Theorem 3.5.1. The category dgcatk has a natural symmetric monoidal struc-
ture induced by the object-wise tensor product of Definition A.3.3. By Remark A.3.6,
we get a symmetric monoidal ∞-category N(dgcat⊗k ) → N(Fin∗) whose underlying
∞-category is N(dgcatk). As k is a field, this tensor product preserves the Morita equiv-
alences of the Morita model structure on dgcatk. Hence, we can consider the symmetric
monoidal localization [Hin16, Prop. 3.2.2]

dgcat⊗k,∞ := N(dgcat⊗k )[W⊗,−1
Morita]→ N(Fin∗)

whose underlying ∞-category is dgcatk,∞ = N(dgcatk)[W
−1
Morita] (3.2.3).

By [Hin16, Prop. 3.2.2], we also get a symmetric monoidal ∞-category

Mix⊗∞ := N(Mix⊗)[W⊗,−1
mix ]→ N(Fin∗)

because the tensor product of mixed complexes preserves equivalences. Its underlying
∞-category is Mix∞ = N(Mix)[W−1

mix] (3.1.7).
We observe that one can define the shuffle map (3.5.1) in the category of mixed

complexes as well, but the resulting map sh does not commute with the operator B, hence
it is not a morphism of mixed complexes. However, thanks to the work of Kassel [Kas87],
we know that the shuffle map can be extended to a map commuting with B up to higher
homotopies. Therefore, the functor Mix has a lax symmetric monoidal refinement (by
[Kas87, Thm. 2.4])

Mix⊗∞ : dgcat⊗k,∞ →Mix⊗∞
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induced by the shuffle map.

As a consequence of Kassel’s theorem, we also have lax symmetric monoidal refinements
of equivariant coarse Hochschild and cyclic homology:

Proposition 3.5.3. Coarse Hochschild homology XHHG
k : GBornCoarse→ Ch∞ and

coarse cyclic homology XHCG
k : GBornCoarse→ Ch∞ admit lax symmetric monoidal

refinements:
XHHG,⊗

k : N(GBornCoarse⊗)→ Ch⊗∞

and
XHCG,⊗

k : N(GBornCoarse⊗)→ Ch⊗∞.

where Ch⊗∞ is the ∞-category of chain complexes with the induced symmetric monoidal
structure.

Proof. Consider the functor

XMixGk : GBornCoarse Catk dgcatk Mix Mix∞
V G
k ι Mix loc

By Remark 2.2.13, the functor V G
k : GBornCoarse → Catk admits a lax symmetric

monoidal refinement. The inclusion ι : Catk → dgcatk is evidently symmetric monoidal,
due to Definition A.3.2, and we get a functor ι⊗∞ : Cat⊗k,∞ → dgcat⊗k,∞ of symmetric
monoidal∞-categories. By Theorem 3.5.1, the functor Mix has a lax symmetric monoidal
refinement Mix⊗∞ : dgcat⊗k,∞ →Mix⊗∞, hence so does XMixGk (3.4.1):

XMixG,⊗k : N(GBornCoarse⊗)→Mix⊗∞.

Finally, as the functors forget (3.4.1) and Tot(B−) (3.4.2) are lax symmetric monoidal,
also coarse Hochschild and cyclic homology admit lax symmetric monoidal refinements.



Chapter 4

A transformation to coarse ordinary
homology and further properties

In this chapter we study some additional properties of the functors XHHG
k and XHCG

k ,
equivariant coarse Hochschild and cyclic homology, of Definition 3.4.6. The main goal is
to define a natural transformation from equivariant coarse algebraic K-homology XKG

k

(see Definition 2.3.1) to equivariant coarse ordinary homology XHG
k (1.5.6), factoring

through coarse Hochschild homology XHHG
k .

The chapter is organized as follows. In the first section, Section 4.1, we give some
comparison results: we compare G-equivariant coarse Hochschild and cyclic homology with
the classical Hochschild and cyclic homology of algebras. In Section 4.2 we analyze the
forget-control map for coarse Hochschild homology and we show an equivalence between
the forget-control map for equivariant coarse Hochschild homology and the associated
generalized assembly map.

In the third section, Section 4.3, we construct a natural transformation ΦXHHG
k
from

equivariant coarse Hochschild homology to equivariant coarse ordinary homology, which
is the main result of the chapter. In Section 4.4, we see that the classical Dennis trace
map extends to a transformation from G-equivariant coarse algebraic K-homology to
equivariant coarse Hochschild homology. By composition of this natural transformation
with the transformation ΦXHHG

k
: XHHG

k → XHG, we get a transformation

KXGk → XHHG
k → XHG

of spectra-valued coarse homology theories from equivariant coarse algebraic K-homology
to equivariant coarse ordinary homology. We conclude the chapter, in Section 4.5, with a
Segal-type localization result for coarse Hochschild homology, in the spirit of Section 1.4.

71
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4.1 Comparison results

In this section, we compare equivariant coarse Hochschild homology with the classical
version of Hochschild homology for algebras. We show that the evaluation at the one point
(bornological coarse) space, endowed with the trivial action, agrees with the Hochschild
homology of k (see Proposition 4.1.3) and that the evaluation at the group G, seen as
a G-bornological coarse space, is equivalent to the Hochschild homology of the group
algebra k[G] (see Proposition 4.1.4).

Let A be a k-algebra, where k is a field. By Example A.4.5, the cyclic nerve Z∗(A) of
A is a cyclic module. By Remark 3.1.4, we get a mixed complex that we have denoted by
C(A) (consistently with Keller’s functor C of Definition 3.2.1).

Notation 4.1.1. Let A be a k-algebra. We denote by

CHH
∗ (A; k) and CHC

∗ (A; k)

the chain complexes computing the Hochschild and cyclic homology of the mixed complex
C(A) (with k coefficients) as defined in Definition 3.1.3.

Notation 4.1.2. We denote by C∞ the composition C∞ : Exk
C−→ Mix

loc−−→ Mix∞,
where C is the cone construction of Definition 3.2.1 and loc the localization functor to
the ∞-category of mixed complexes (3.1.7).

Observe that the homologies of CHH
∗ (A; k) and CHC

∗ (A; k) compute the Hochschild
and cyclic homology of the k-algebra A (see Example 3.1.5). We shall omit the field of
coefficients k, when clear from the context.

Let XHHk and XHCk be the non-equivariant coarse Hochschild and coarse cyclic
homology defined in Definition 3.4.6. Let {∗} be the one point bornological coarse space,
endowed with a trivial G-action.

Proposition 4.1.3. There are equivalences of chain complexes

XHHk(∗) ' CHH
∗ (k; k) and XHCk(∗) ' CHC

∗ (k; k)

between the coarse Hochschild (cyclic) homology of the point and the classical Hochschild
(cyclic) homology of k.

Proof. Let A be a k-algebra. By Theorem 3.2.5 (1), the mixed complex C(A) associated
to A is equivalent to the mixed complex associated to the exact category of finitely
generated projective A-modules. When X is a point endowed with a trivial G-action and
k is a field, the k-linear category Vk(X) is isomorphic to the category Vectf.d.k of finite
dimensional k-vector spaces; hence we get the equivalence of mixed complexes

C(Vk({∗})) = C
(
Vectf.d.k

)
' C(k),
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i.e., X̃C
G

k (∗) ' C∞(k); this proves the statement for both coarse Hochschild and coarse
cyclic homology by Lemma 3.4.4 and the fact that both the forgetful functor and the
functor Tot(B−) preserve equivalences.

Let G be a group. By Example 1.1.22, there is a canonical G-bornological coarse
space Gcan,min = (G, Ccan,Bmin) associated to it.

Proposition 4.1.4. There are equivalences of chain complexes:

XHHG
k (Gcan,min) ' CHH

∗ (k[G]; k)

and
XHCG

k (Gcan,min) ' CHC
∗ (k[G]; k)

between the G-equivariant coarse Hochschild and cyclic homologies of Gcan,min and the
classical Hochschild and cyclic homologies of the group algebra k[G].

Proof. The category V G
k (Gcan,min) of G-equivariant Gcan,min-controlled finite dimensional

k-vector spaces is equivalent to the category Modfg,free(k[G]) of finitely generated free
k[G]-modules [BEKW17, Proposition 8.24] (see also Example 2.3.7). By Remark 3.2.6,
Keller’s mixed complex C(Modfg,free(k[G])) of the category of finitely generated free k[G]-
modules is equivalent to the mixed complex associated to the category Modfg,proj(k[G])

of finitely generated projective modules. Therefore, the result follows from the chain of
equivalences of mixed complexes

C(V G
k (G)) ' C(Modfg,free(k[G])) ' C(Modfg,proj(k[G])) ' C(k[G]),

where the last equivalence is given by Theorem 3.2.5 (1), by using the same reasoning of
Proposition 4.1.3.

Let X be a G-set and let Xmin,max denote the G-bornological coarse space with
minimal coarse structure and maximal bornology. We conclude the section with the
calculations on G-bornological coarse spaces of the form Xmin,max ⊗Gcan,min:

Lemma 4.1.5. Let X be a G-set. Then, we have an equivalence of mixed complexes

X̃C
G

k (Xmin,max ⊗Gcan,min) ' C∞
(
Vectf.d.k ∗G X

)
where Vectf.d.k ∗G X is the category of Definition 2.3.5.

Proof. The result follows from Proposition 2.3.6.

Recall that, when A is the additive category of finitely generated free R-modules,
where R is a ring, then the category A ∗G (G/H) is equivalent to the category of finitely
generated free R[H]-modules. As in Remark 2.3.7, we also have:
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Remark 4.1.6. Let G be a group, H a subgroup of G and endow the set G/H with the
minimal coarse structure and the maximal bornology; then, by Lemma 4.1.5, we get an
equivalence of chain complexes:

XHHG
k ((G/H)min,max ⊗Gcan,min) ' CHH

∗ (k[H]; k);

the same holds for equivariant coarse cyclic homology.

4.2 The forget-control map for coarse Hochschild homology

In Section 1.3, we have discussed how to get equivariant homology theories from equivari-
ant coarse homology theories and we have defined the forget-control and the assembly
maps. In this section, we give a comparison result between the forget-control maps for
equivariant coarse Hochschild and cyclic homology and the associated assembly maps
(see Proposition 4.2.9). In order to apply the results of Section 1.3, we first need to prove
that coarse Hochschild and cyclic homologies are strong (Lemma 4.2.1) and continuous
(Lemma 4.2.3) equivariant coarse homology theories.

Recall the definitions of strongness (Definition 1.2.9) for a coarse homology theory. In
the following proofs, we use the equivariant coarse homology theory X̃C

G

k (3.3.1) (see
Remark 3.3.3). As in Notation 4.1.2, we denote by C∞ the composition loc ◦C.

Lemma 4.2.1. The functor XHHG
k : GBornCoarse→ Ch∞ is strong.

Proof. Let X be a weakly flasque space as defined in Definition 1.2.8. Let f : X → X be
a morphism that implements the weak flasqueness of X. Observe that the functor

S :=
⊕
n∈N

(fn)∗ : V G
k (X)→ V G

k (X).

defined in Lemma 2.1.15 is still well-defined. By Definition 1.2.8, we get the equivalence
id
X̃C

G

k (X)
' X̃C

G

k (f).
The functor S is naturally isomorphic to the functor idV G

k (X)⊕f∗◦S. By Theorem 3.3.5,
we get the chain of equivalences of mixed complexes

C∞(idV G
k (X) ⊕ f∗ ◦ S) ' C∞(idV G

k (X))⊕ C∞(f∗ ◦ S) ' id
X̃C

G

k (X)
⊕ X̃C

G

k (f) ◦ C∞(S)

hence,
C∞(S) ' idXCG

k (X) + C∞(S);

this shows that the morphism idXCG
k (X) is equivalent to zero. By Lemma 3.4.4, also the

chain complex XHHG
k (X) is equivalent to 0.

As a corollary of the previous lemma, we get:
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Corollary 4.2.2. The functor XHCG
k : GBornCoarse→ Ch∞ is strong.

Proof. Equivariant coarse cyclic homology XHCG
k has been defined (Definition 3.4.6)

as the composition of the functors XMixGk and Tot(B−); this last functor preserves
equivalences. Hence, the result follows from Lemma 4.2.1.

Recall the definition of continuity (Definition 1.2.13) for a coarse homology theory.

Lemma 4.2.3. The functor XHHG
k : GBornCoarse→ Ch∞ is continuous.

Proof. Let Y be a trapping exhaustion of X. Let (M,ρ) be a G-equivariant X-controlled
finite dimensional k-vector space of V G

k (X) and denote by F the subset

F = {x ∈ X |M({x}) 6= 0}

of X. The set F is locally finite: if B is a bounded set of X, then F ∩B = σ(B), where
σ is the support function of (M,ρ) (Definition 2.1.5). Therefore, the controlled module
(M,ρ) belongs to the subcategory V G

k (F ) of V G
k (X).

This proves that the category V G
k (X) is the filtered colimit of subcategories V G

k (F )

indexed on locally finite subsets of X:

V G
k (X) = colimF⊆X V

G
k (F ).

As the mixed complex functor and the forgetful functor commute with filtered colimits,
we get the equivalence XHHG

k (Y) ' XHHG
k (X). This shows that equivariant coarse

Hochschild homology is continuous.

As the functor Tot(B−) commutes with filtered colimits as well, the same proof of
Lemma 4.2.3 shows the following:

Corollary 4.2.4. The functor XHCG
k : GBornCoarse→ Ch∞ is continuous.

We now proceed with the comparison result of the forget-control map for coarse
Hochschild homology and the associated assembly map. Recall, from Section 1.3, the
definitions of the cone O∞hlg (1.3.3), of the forget-control map β (Definition 1.3.13) and
of the coarse assembly map α (Definition 1.3.19). By [BEKW17, Theorem 11.16], the
forget-control map for a G-equivariant coarse homology theory E can be compared
with the classical assembly map for the associated G-equivariant homology theory E ◦
O∞hlg : GTop→ C (see Remark 1.3.15).

By applying the Eilenberg-MacLane correspondence (1.5.5), we can assume that the
equivariant coarse homology theories XHHG

k and XHCG
k are equivariant spectra-valued

coarse homology theories.

Definition 4.2.5. Let HHG
k := XHHG

k ◦O∞hlg be the G-equivariant homology theory
associated to equivariant coarse Hochschild homology (with k-coefficients).
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Let i : GOrb→ GBornCoarse be the functor that associates to a transitive G-set S
in GOrb the G-bornological coarse space Smin,max with the minimal coarse structure and
maximal bornology. Recall that a coarse homology theory can be twisted by a bornological
coarse space (see Definition 1.2.5).

Remark 4.2.6. By Lemma 4.1.5, if XHHG
k,Gcan,min

is the twist of the coarse homology
theory XHHG

k by the G-bornological coarse space Gcan,min, then we get

HHG
k ' XHHG

k,Gcan,min
◦i.

Let Fin be the family of finite subgroups of G.

Proposition 4.2.7. The forget-control map βGcan,min,Gmax,max for XHHG
k is equivalent to

the assembly map αEFinG,Gcan,min for the G-homology theory HHG
k .

Proof. The functors XHHG
k and XHCG

k are strong by Lemma 4.2.1, and continuous by
Lemma 4.2.3. Then, the result follows by Theorem 1.3.20.

Remark 4.2.8. The assembly map αEFinG,Gcan,min for the G-homology theory HHG
k

(hence, the forget-control map βGcan,min,Gmax,max for XHHG
k ) is split injective by [LR06,

Thm 1.7].

By using the same reasoning, we get the same result for equivariant coarse cyclic
homology:

Proposition 4.2.9. The forget-control map βGcan,min,Gmax,max for XHCG
k is equivalent to

the assembly map αEFinG,Gcan,min for the G-homology theory HCG
k := XHCG

k ◦O∞hlg.

4.3 A transformation to coarse ordinary homology

Let XHHG
k ,XCG : GBornCoarse→ Ch∞ denote the G-equivariant coarse Hochschild

homology (see Definition 3.4.6) and the equivariant (chain complexes-valued) ordinary
homology (see Section 1.5) with coefficients in a field k, respectively. The goal of this
section is to define a natural transformation

ΦXHHG
k

: XHHG
k −→ XCG

from equivariant coarse Hochschild homology to the chain valued equivariant coarse
ordinary homology XCG, and a natural transformation ΦXHCG

k
from equivariant coarse

cyclic homology.
The idea of our construction uses the fact that, if A0 ⊗ A1 ⊗ · · · ⊗ An belongs to

the additive cyclic nerve CNn(V G
k (X))) associated to the category of controlled objects

V G
k (X) (see Definition 2.1.2 and Definition A.4.7), then, after evaluation at (n+ 1)-tuples

(x0, . . . , xn) of points ofX, there are well-defined linear operators (A0◦· · ·◦An)|(x0, . . . , xn)
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(see Notation 4.3.2) which are endomorphisms of finite dimensional k-vector spaces; we
associate to a such linear operator its trace, i.e., an element of k. This will give well-
defined chains in coarse ordinary homology and a natural transformation ΦXHHG

k
(see

Theorem 4.3.8) of equivariant coarse homology theories.

Recall that V G
k (X) denotes the k-linear category of G-equivariant X-controlled (finite

dimensional) k-vector spaces (Definition 2.1.8). Recall that the objects of V G
k (X) are

pairs (M,ρ) where M is a functor on the category associated to the poset of bounded
sets of X.

The construction of the transformation ΦXHHG
k
proceeds as follows:

1. For every G-bornological coarse space X, we consider its associated k-linear category
V G
k (X) of controlled objects, hence the associated additive cyclic nerve CN(V G

k (X))

(see Example A.4.6);

2. for every tensor element A0 ⊗ . . .⊗An in the additive cyclic nerve of V G
k (X) and

every n + 1 points x0, . . . , xn of X, we define a trace-like map, which gives an
element of k (see Notation 4.3.2);

3. by letting x0, . . . , xn vary, this yields a G-equivariant locally finite controlled chain
on X, i.e., an element of XCGn (X) (see Definition 4.3.3 and Lemma 4.3.4);

4. by letting A0 ⊗ . . .⊗An vary we get a map ϕ : CN∗(V
G
k (X))→ XCG∗ (X) that is a

chain map with respect to the differential d =
∑
di of CN(V G

k (X)) (see Proposition
4.3.6);

5. the additive cyclic nerve CN(V G
k (X)) yields a mixed complex with the differentials

b and B (3.1.6) and the chain map ϕ extends to a map of mixed complexes ϕ̃ (see
Lemma 4.3.7);

6. the map ϕ̃ yields a natural transformation of equivariant coarse homology theories
ΦXHHG

k
: XHHG

k −→ XCG (see Theorem 4.3.8).

We now proceed with the construction of the natural transformation ΦXHHG
k

: XHHG
k →

XCG.

Let n ≥ 0 be a natural number. The n-th component of the additive cyclic nerve of
V G
k (X) (see Definition A.4.7 or Example A.4.6) is :

CNn(V G
k (X)) =

⊕
((M0,ρ0),...,(Mn,ρn))

(
n⊗
i=0

Hom((Mi+1, ρi+1), (Mi, ρi))

)

where the index i runs cyclically in the set {0, . . . , n} and the sum ranges over all the
tuples ((M0, ρ0), . . . , (Mn, ρn)) of objects of V G

k (X).
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Remark 4.3.1. For every controlled morphism Ai : (Mi+1, ρi+1)→ (Mi, ρi) (see Defini-
tion 2.1.6) in Hom((Mi+1, ρi+1), (Mi, ρi)) and for every pair of points x and y of X, there
is a well-defined linear map

Ax,yi : Mi+1(x)→Mi(y)

(see also (2.2.4), where the notation is Ai,y,x).

In order to simplify the exposition of later proofs, we use the following notation:

Notation 4.3.2. Let A0 ⊗ . . .⊗An be an element of
⊗n

i=0 Hom((Mi+1, ρi+1), (Mi, ρi))

with Ai : (Mi+1, ρi+1)→ (Mi, ρi) and ((M0, ρ0), . . . , (Mn, ρn)) a tuple of objects of V G
k (X).

Let (x0, . . . , xn) be a point of Xn+1. The symbol

(A0 ◦ · · · ◦An)|(x0, . . . , xn)

denotes the linear operator (A0 ◦ · · · ◦An)|(x0, . . . , xn) : M0(xn)→M0(xn) defined as the
composition

(A0 ◦ . . . ◦An)|(x0, . . . , xn) :=

M0(xn)
A

xn,xn−1
n−−−−−−→Mn(xn−1)

A
xn−1,xn−2
n−1−−−−−−−→ . . .

A
x1,x0
1−−−−→M1(x0)

A
x0,xn
0−−−−→M0(xn)

of the induced operators Axi,xi+1

i : Mi(xi) → Mi+1(xi+1). It is an endomorphism of
M0(xn), which is a finite dimensional k-vector space.

Let X be a G-bornological coarse space and let XCn(X) be the k-linear vector space
generated by the locally finite controlled n-chains on X (see Definition 1.5.1).

Definition 4.3.3. Let X be a G-bornological coarse space and let n be a natural number.
We let ϕn : CNn(V G

k (X))→ XCn(X) be the map defined on elementary tensors as

ϕn : A0 ⊗ . . .⊗An 7−→∑
(x0,...,xn)∈Xn+1

tr ((A0 ◦ · · · ◦An)|(x0, . . . , xn) : M0(xn)→M0(xn)) · (x0, . . . , xn)

where we use Notation 4.3.2 and the symbol tr denotes the trace map.

The map ϕn is extended to CNn(V G
k (X)) by linearity.

Lemma 4.3.4. Let X be a G-bornological coarse space and let A0 ⊗ . . . ⊗ An be a
tensor element of CNn(V G

k (X)) with Ai : (Mi+1, ρi+1) → (Mi, ρi). Then, the n-chain
ϕn(A0 ⊗ . . .⊗An), given by the sum∑

(x0,...,xn)∈Xn+1

tr((A0 ◦ · · · ◦An)|(x0, . . . , xn)) · (x0, . . . , xn),

of Definition 4.3.3, is locally finite and controlled.
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Proof. In order to prove that ϕn(A0 ⊗ . . .⊗An) is locally finite and controlled we show
that its support (1.5.1) is locally finite and that there exists an entourage U of X such
that every x = (x0, . . . , xn) in supp(ϕn(A0 ⊗ . . .⊗An)) is U -controlled.

We first observe that the operators Ai : (Mi+1, ρi+1)→ (Mi, ρi) are Ui-controlled for
some entourage Ui of X. By Definition 2.1.6, Ai is given by a natural transformation of
functors Mi+1 →Mi ◦Ui[−] satisfying an equivariance condition. For every point x in X,
by using the Convention 2.2.4, Ai restricts to a morphism

Mi+1(x)→Mi(Ui[x]) ∼=
⊕

x′∈Ui[x]

Mi(x
′)

where the direct sum has only finitely many non-zero summands.
LetK be a bounded set of X. The set of points xn ∈ K for whichM0(xn) is non-zero is

finite (as a consequence of Definition 2.1.8). For such a fixed xn, there are only finitely many
points xn−1 ∈ Un[K] such that the corresponding map Axn,xn−1

n : M0(xn) → Mn(xn−1)

is non-zero. The set Un[K] is a bounded set of X, the morphism Ai : Mi+1 → Mi is
Ui-controlled and we can repeat the same argument for each Ai. This implies that the
n-chain is locally finite because, for the given bounded set K, we have found only finitely
tuples (x0, . . . , xn) in the support of ϕn(A0 ⊗ . . .⊗An) that meet K.

The chain is also U -controlled, where U is the entourage U := U0 ◦ · · · ◦ Un of X.

Remark 4.3.5. Let X be a G-bornological coarse space. Let (M,ρ) be a G-equivariant
X-controlled finite dimensional k-vector space and let g be an element of the group
G. Then, ρ(g) (Definition 2.1.2) is a natural isomorphism between the functors M
and gM . The morphisms in the category V G

k (X) satisfy a G-equivariant condition (see
Definition 2.1.6). These observations imply that the following diagram is commutative

M0(gxn) Mn(gxn−1) . . . M0(gxn)

gM0(xn) gMn(xn−1) . . . gM0(xn)

∼=

A
gxn,gxn−1
n

∼=

A
gx0,gxn
0

∼= ∼=
gA

xn,xn−1
n gA

x0,xn
0

for A0 ⊗ . . .⊗ An in CNn(V G
k (X)) with Ai : (Mi+1, ρi+1)→ (Mi, ρi), where the isomor-

phisms are induced by ρi(g). Hence, the image of ϕn is a G-invariant locally finite
controlled n-chain on X.

Let ∂i : XCGn (X)→ XCGn−1(X) be the i-th differential of the chain complex XCG(X)

and let di : CNn(V G
k (X))→ CNn−1(V G

k (X)) be the i-th face map of CN(V G
k (X)) (see Ex-

ample A.4.6). Consider the chain complex underlying the additive cyclic nerve CN(V G
k (X)).

Proposition 4.3.6. Let X be a G-bornological coarse space. The maps ϕn : CNn(V G
k (X))→

XCGn (X) of Definition 4.3.3 extend to a chain map

ϕ : (CN(V G
k (X)), d)→ (XCG(X), ∂).
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Proof. We prove that the following square is commutative:

CNn(V G
k (X)) XCGn (X)

CNn−1(V G
k (X)) XCGn−1(X)

di

ϕn

∂i

ϕn−1

Consider the case i 6= n and let A0 ⊗ . . .⊗An be an elementary tensor.
By Definition A.4.7 and by using Notation 4.3.2, we get:

ϕn−1(di(A0 ⊗ . . .⊗An)) =

=
∑

(x′0,...,x̂
′
i,...,x

′
n)

tr(A0 ◦ · · · ◦ (Ai ◦Ai+1) ◦ · · · ◦An|(x′0, . . . , x̂′i, . . . , x′n)) · (x′0, . . . , x̂′i, . . . , x′n)

=
∑

(x′0,...,x̂
′
i,...,x

′
n)

∑
x′i∈X

tr(A0 ◦ · · · ◦An|(x′0, . . . , x′i, . . . , x′n))

 · (x′0, . . . , x̂′i, . . . , x′n)

where we used that the trace is additive and that the morphism Ai ◦Ai+1 factors through
all the points x′i of X (that give contribution zero up to finitely many).

On the other hand, we also get

∂i(ϕn(A0 ⊗ . . .⊗An)) =

=∂i

 ∑
(x′0,...,x

′
i,...,x

′
n)

tr(A0 ◦ · · · ◦An|(x′0, . . . , x′i, . . . , x′n))

 · (x′0, . . . , x′i, . . . , x′n)

=
∑

(x′0,...,x̂
′
i,...,x

′
n)

tr(A0 ◦ · · · ◦An|(x′0, . . . , x′i, . . . , x′n)) · (x′0, . . . , x̂′i, . . . , x′n)

and, by gathering together the preimages, we can write the sum as follows:

∂i(ϕn(A0 ⊗ . . .⊗An)) =

=
∑

(x′0,...,x̂
′
i,...,x

′
n)

∑
x′i∈X

tr(A0 ◦ · · · ◦An|(x′0, . . . , x′i, . . . , x′n))

 · (x′0, . . . , x̂′i, . . . , x′n)

Therefore, for the i-face maps di and ∂i, with i 6= n, the above diagram is commutative.
For i = n, we recall that dn(A0 ⊗ · · · ⊗ An) = (An ◦ A0 ⊗ A1 ⊗ · · · ⊗ An−1). Hence,

the above diagram commutes for i = n as well because the trace map is invariant under
cyclic permutations.

Let (M, b) be a cyclic module. By Remark 3.1.4, we get a mixed complex whose
differential b is the differential d =

∑n
i=0(−1)idi of above. We recall that the operator B

(3.1.6) is defined by B := (−1)n+1(1 − tn+1)sN , where s denotes the extra degeneracy
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s = (−1)n+1tn+1sn. The chain complex XCG(X) is a mixed complex with the differential
B = 0.

Lemma 4.3.7. Let X be a G-bornological coarse space. The chain map ϕ : CN(V G
k (X))→

XCG(X) of Definition 4.3.3 extends to a map

ϕ̃ : Mix(V G
k (X))→ XCG(X)

that is a morphism of mixed complexes.

Proof. Let A0 ⊗ . . . ⊗ An be an element of CNn(V G
k (X)). Then, N(A0 ⊗ . . . ⊗ An) =∑n

i=0Ai ⊗ . . .⊗Ai+n. We have:

sN(A0 ⊗ . . .⊗An) = (−1)n+1
n∑
i=0

1⊗Ai ⊗ . . .⊗Ai+n

and then

B(A0 ⊗ . . .⊗An) =
n∑
i=0

1⊗Ai ⊗ . . .⊗Ai+n −
n∑
i=0

Ai+n ⊗ 1⊗Ai ⊗ . . .⊗Ai+n−1

=
n∑
i=0

(1⊗Ai ⊗ . . .⊗Ai+n −Ai+n ⊗ 1⊗Ai ⊗ . . .⊗Ai+n−1) .

By applying the map ϕn, we see that all the terms of B(A0 ⊗ . . .⊗An) cancel pairwise,
because the trace is invariant under cyclic permutations. This is enough to show that the
map ϕ extends to Mix(V G

k (X)).

We can finally construct the natural transformation ΦXHHG
k

: XHHG
k → XCG:

Theorem 4.3.8. There are natural transformations

ΦXHHG
k

: XHHG
k → XCG.

and
ΦXHCG

k
: XHCG

k →
⊕
n∈N
XCG

of G-equivariant Ch∞-valued coarse homology theories.

Proof. The map ϕ : (CN(V G
k (X)), d)→ (XCG(X), ∂) of Definition 4.3.3 is a chain map

by Proposition 4.3.6. Let f : X → Y be a morphism of G-equivariant bornological coarse
spaces. Consider the induced chain map XCG(f) : XCG(X)→ XCG(Y ) (1.5.2) and the
induced functor f∗ = V G

k (f) : V G
k (X)→ V G

k (X ′) (2.1.2). By functoriality of the additive
cyclic nerve, f∗ induces a morphism CN(f∗) : CN∗(V

G
k (X)) → CN∗(V

G
k (Y )) of cyclic

modules (hence, a chain map between the underlying chain complexes as well).
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The diagram
CNn(V G

k (X)) XCGn (X)

CNn(V G
k (Y )) XCGn (Y )

ϕn

CN(f∗) XCG(f)

ϕn

is commutative, as we now explain. If A0⊗ . . .⊗An is a tensor element of the additive cyclic
nerve associated to V G

k (X), then CN(f∗)(A0⊗ . . .⊗An) is the elementary tensor f∗A0⊗
. . .⊗f∗An and belongs to the tensor product

⊗n
i=0 HomV G

k (Y )(f∗(Mi+1, ρi+1), f∗(Mi, ρi)).
After application of the map ϕn we get:

ϕn(f∗A0 ⊗ . . .⊗ f∗An) =
∑

(y0,...,yn)

tr ((f∗A0 ◦ · · · ◦ f∗An)|(y0, . . . , yn)) · (y0, . . . , yn).

By definition of f∗Ai (2.1.1), the composition (f∗A0 ◦ · · · ◦ f∗An)|(y0, . . . , yn) decomposes
as a sum over the fibers (x0, . . . , xn) ∈ Xn of f at (y0, . . . , yn), i.e.,

ϕn(f∗A0⊗ . . .⊗f∗An) =
∑

(y0,...,yn)

 ∑
(x0,...,xn)

tr ((A0 ◦ · · · ◦An)|(x0, . . . , xn))

·(y0, . . . , yn)

where the second sum runs over the fibers of (y0, . . . , yn). But this last term is in fact
XCG(f)(ϕn(A0 ⊗ . . .⊗An)), proving that the diagram of above is commutative.

The map ϕ extends to the associated mixed complexes by Lemma 4.3.7 and this
extension preserves the commutative diagram (of associated mixed complexes). After
localization and application of the forgetful functor (recall the definition of equivariant
coarse Hochschild homology in terms of XMixGk , Definition 3.4.6), the map ϕ yields a
natural transformation of equivariant coarse homology theories

ΦXHHG
k

: XHHG
k → XCG.

To every mixed complex C, we associate the chain complex Tot(BC) (3.1.2) defined
by Totn(BC) =

⊕
i≥0Cn−2i with differential d(cn, cn−2, . . . ) = (bcn + Bcn−2, . . . ). By

Lemma 4.3.7, we conclude that the map ϕ extends to a chain map on the total complex
as well, and to a natural transformation of coarse homology theories

ΦXHCG
k

: XHCG
k →

⊕
n∈N
XCG

where the sum is indexed on the natural numbers because the (mixed complex associated
to) the additive cyclic nerve of V G

k (X) is positively graded.

The following result implies that the transformation ΦXHHk
: XHHk → XC is non-

zero.
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Proposition 4.3.9. If X is the one point space {∗}, then the transformation

ΦXHHk
: XHHk(∗)→ XC(∗)

induces an equivalence of chain complexes.

Proof. Let c : {∗}n+1 → k be an n-chain in XCn(∗); we identify this chain with the
element c ∈ k that is its image. Let ιn : XCn(∗)→ CNn(Vk(∗))) be the map sending c to
the element (·c)⊗ (·1k)⊗ . . .⊗ (·1k). This extends to a chain map that gives a section of
the trace map, i.e., ϕ ◦ ι = id.

As coarse Hochschild homology and coarse ordinary homology of the point are both
isomorphic to the Hochschild homology of the ground field k (by Example 1.5.5 and
Proposition 4.1.3), we get equivalences of chain complexes

XHHk(∗) ' CHH
∗ (k) ' XCk(∗).

By using these equivalences and the section ϕ ◦ ι = id, we obtain that, when X is the
one point space, the transformation ΦXHHk

induces an equivalence of chain complexes
XHHk(∗)→ XC(∗).

4.4 A transformation from coarse algebraic K-homology

In this section, we construct natural transformationsKXGk → XHHG
k andKXGk → XHCG

k

from equivariant coarse algebraic K-homology (see Definition 2.3.1) to equivariant coarse
Hochschild and cyclic homology (Definition 3.4.6). In order to construct these natural
transformations we use the trace maps constructed by McCarthy [McC94, Sec. 4.4] and
Keller [Kel99, Theorem 1.13]. As equivariant coarse algebraic K-homology takes values
in spectra, by applying the Eilenberg-MacLane correspondence EM (1.5.5), we assume
in this section that also equivariant coarse Hochschild and cyclic homology take values in
the ∞-category Sp of spectra.

Let KXGk be the equivariant coarse algebraic K-homology (Definition 2.3.1). Let
HHMcC and HHKel denote McCarthy’s [McC94] and Keller’s [Kel99] Hochschild homology,
respectively. Classically, there are trace maps from algebraic K-theory to (topological)
Hochschild homology and its cyclic variants. For example, the Dennis trace map is a
transformation from the algebraic K-theory of rings to Hochschild homology. McCarthy
has extended the Dennis trace map to a transformation from the algebraic K-theory (of
exact categories) to (McCarthy’s) Hochschild homology of exact categories [McC94, Sec.
4.4]. We use this extension to construct a transformation from equivariant coarse algebraic
K-homology to equivariant coarse Hochschild homology:
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Proposition 4.4.1. There are natural transformations

KXGk → XHHG
k and KXGk → XHCG

k

induced by the Dennis trace maps from algebraic K-theory to Hochschild homology.

Proof. When k is a field, Keller constructs a natural transformation HHMcC → HHKel

between McCarthy’s Hochschild homology of exact categories and Keller’s Hochschild
homology [Kel99, Theorem 1.13]. Trace maps between algebraic K-theory of exact
categories and Keller’s cyclic homology

K → HHMcC → HHKel . (4.4.1)

are then constructed by composing the transformation HHMcC → HHKel with the trace
maps K → HHMcC defined by McCarthy [McC94, Sec. 4.4].

Let V G
k : GBornCoarse → Add be the functor (2.1.3), seen as a functor to the

category of small exact categories (by equipping them with the split exact structure).
Then, composition of the transformation K → HHKel (4.4.1) with the functor V G

k , induces
a transformation KXGk → XHHG

k of equivariant coarse homology theories, as equivariant
coarse algebraic K-homology KXGk and equivariant coarse Hochschild homology XHHG

k

are defined as the algebraic K-theory and Keller’s Hochschild homology, respectively, of the
k-linear category of controlled objects V G

k (X). In the same way, we have a transformation
to equivariant coarse cyclic homology.

When restricted to k-linear categories with split exact structure, McCarthy’s and
Keller’s cyclic homologies provide equivalent complexes (in the sense of Lemma 3.4.4
and Remark 3.4.5), hence equivalent spectra after applying the Eilenberg-MacLane
correspondence EM (1.5.5). In particular, when X is the G-bornological coarse space
Gcan,min, the induced map

KXGk (Gcan,min)→ XHHG
k (Gcan,min)

is the classical Dennis trace map K(k[G])→ HH(k[G]) by McCarthy’s agreement result
[McC94, Sec. 4.5], by Proposition 2.3.6 and Remark 2.3.7, and by Proposition 4.1.4.

A symmetric monoidal natural transformation is a natural transformation between
lax symmetric monoidal functors that respects the symmetric monoidal structures.

Corollary 4.4.2. The transformation KXGk → XHHG
k is symmetric monoidal.

Proof. Both functors KXGk and XHHG
k admit lax symmetric monoidal refinements by

Theorem 2.3.4 and Proposition 3.5.3. By [McC94, Prop. 4.4.3 & Sec. 4.5], the trace
map K → HHMcC is lax symmetric monoidal, and the transformation KXGk → XHHG

k

respects the symmetric monoidal structures and is symmetric monoidal.
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Consider the transformations KXGk → XHHG
k and EM ◦ ΦXHHG

k
: XHHG

k → XHG
k

of spectra-valued equivariant coarse homology theories. By combining Remark 2.3.7,
Proposition 4.1.4, Example 1.5.7, Proposition 4.4.1 and Theorem 4.3.8, we get the following
evaluations:

KXGk (Gcan,min) XHHG
k (Gcan,min) XHG

k (Gcan,min)

K(k[G]) HH(k[G]) H(G; k)

'

EM◦ΦXHHG
k

' '

where the map K(k[G]) → HH(k[G]) is the Dennis trace map and the induced map
HH(k[G])→ H(G; k) can be described as follows:

1. the k-algebra k[G] can be seen as a category with a single object. The inclusion
of this category in the category of finitely generated free k[G]-modules induces an
equivalence of cyclic sets between the associated additive cyclic nerves.

2. By Proposition 2.3.6, the category of finitely generated free k[G]-modules is equiva-
lent to the category V G

k (Gcan,min) and this equivalence of additive categories induces
an equivalence between the associated additive cyclic nerves; then, we get an
equivalence of cyclic sets CN(k[G])→ CN(V G

k (Gcan,min)).

3. We apply the map ϕ of Definition 4.3.3 to the additive cyclic nerve associated to
the category V G

k (Gcan,min);

4. by [BEKW17, Prop. 7.5] there is an equivalence ψ : XCG(Gcan,min) → C∗(G; k)

of chain complexes, where XCG(Gcan,min) is the equivariant (Ch∞-valued) coarse
ordinary homology of X and C∗(G; k) is the chain complex computing the homology
of G with k-coefficients.

5. All the maps extend to morphisms of mixed complexes, and their composition (after
localization and application of the Eilenberg-MacLane correspondence EM) yields
the map HH(k[G])→ H(G; k) in the diagram.

We believe that further studies of the natural transformation

KXGk → XHHG
k

EM◦ΦXHHG
k−−−−−−−−→ XHG

k

from equivariant coarse algebraic K-homology to (the spectra-valued) coarse ordinary
homology, may be useful for a better understanding of equivariant coarse algebraic
K-homology and for detecting coarse K-theory classes.
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4.5 A Segal-type localization theorem for coarse Hochschild
homology

In this section we apply the abstract localization results of Section 1.4 to coarse Hochschild
and cyclic homology; we also assume that the field k is the field of complex numbers
k = C. Hence, the additive category with strict G-action of Definition 2.1.2 is the category
Vectf.d.

C of finite dimensional C-vector spaces. For simplicity of notation, we will omit
the subscript C in the symbol XHHG

C denoting equivariant coarse Hochschild homology.

In this section G is always supposed to be a finite group.

By Remark 1.1.28, the one point space ∗ ∈ GBornCoarse is a commutative algebra
object in the categoryGBornCoarse. By Proposition 3.5.3, equivariant coarse Hochschild
homology is a lax symmetric monoidal functor, hence the evaluation at the one point
space

RC := XHHG(∗)

is a commutative algebra object in the ∞-category of chain complexes and the functor
XHHG refines to aMod(RC)-valued equivariant coarse homology theory (whereMod(RC)

is the cocomplete stable ∞-category of modules over RC).

The functor XHHG, being a coarse homology theory, factors through the category of
motivic coarse spaces over the Yoneda functor YoG : GBornCoarse→ GSpcX (1.2.3).
We denote with the same symbol XHHG the factorization XHHG : GSpcX →Mod(RC),
which is still lax symmetric monoidal (YoG being lax symmetric monoidal as described in
Section 1.2).

Remark 4.5.1. The twist of XHHG by a G-bornological coarse space T , as in Defini-
tion 1.2.5, gives an equivariant Mod(RC)-valued coarse homology theory, i.e., an element
XHHG

T of Funcolim(GSpcX .C).

Remark 4.5.2. Equivariant coarse Hochschild homology is defined as the Hochschild
homology of the category V G

C (X). When X is a point, the category V G
C (∗) is equivalent

to the category of finitely generated free C[G]-modules that are of finite dimension
over C. Hence, by Theorem 3.2.5, Hochschild homology of this category is equivalent
to the Hochschild homology of C[G]. An easy computation shows that the Hochschild
homology of the group algebra C[G] is given by the representation ring R(G) of G and it is
concentrated in degree 0. It then follows that H∗(RC) is isomorphic to the representation
ring R(G).

Let p be a prime ideal of R(G). Then, we can form the lax symmetric monoidal
localization functor (a Bousfield localization)

(−)p : Mod(RC)→ LpMod(RC)
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generated by the set of morphisms (f : RC → RC)f∈RC\p and a lax symmetric monoidal
functor

Mod(RC)→Mod(RC)

sending an RC-module M to the localization Mp (see [BCa, Sec. 2.3] or [BCL18]). For
every G-bornological coarse space X, the twisted equivariant coarse Hochschild homology
XHHG

T (X) is an RC-module, and we denote by XHHG
T,p(X) its localization at the prime

ideal p of R(G) (by using the isomorphism between R(G) and the homology of RC).

We can apply the construction of Remark 1.4.7 to the functor XHHG
T,p, getting the

functor
XHHG

T,p : GOrb→ Funcolim(SpcX ,Mod(RC)). (4.5.1)

We now proceed with proving the coarse localization theorem for coarse Hochschild
homology.

Recall that a family of subgroups is invariant under conjugation and taking subgroups
(Definition 1.3.16). Let γ be a conjugacy class of G. Then, the family F(γ) = {H < G |
H ∩ γ = ∅} is a family of subgroups (see Definition 1.4.19 and Lemma 1.4.20).

Definition 4.5.3. Let γ be a conjugacy class of the group G. The ideal of R(G) given
by the representations ρ with tr(ρ(g)) = 0 for all g ∈ γ is denoted by (γ).

Remark 4.5.4. We observe that the ideal (γ) of Definition 4.5.3 is a prime ideal of the
representation ring R(G).

Let H be a subgroup in F(γ). Then Segal [Seg68b] has shown that there exists an
element η in the representation ring R(G) of G such that:

1. η|H = 0 and

2. tr(η(g)) 6= 0 for all g in γ.

Hence, ifH is any subgroup ofG, we can form the localization R(H)(γ) of the R(G)-module
R(H) at the prime ideal (γ).

Let C be a stable∞-category. Recall (Definition 1.4.14) that a functor E : GOrb→ C

vanishes on the family of subgroups F(γ) of G if E(S) is equivalent to 0 for all S in
GF(γ)Orb.

Lemma 4.5.5. Let XHHG
T,(γ) be the functor (4.5.1) localized at the prime ideal (γ)

associated to the conjugacy class γ of G. Then, the functor XHHG
T,(γ) vanishes on the

family F(γ) of Definition 1.4.19.
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Proof. We want to show that

XHHG
(γ)((G/K)min, max ⊗X) ' 0

for everyK in F(γ) and everyX in GBornCoarse. We first need to explicitly understand
the R(G)-module structure of XHHG(X) for a G-bornological coarse space. We proceed
as in [BCb, Prop. 4.11 & 4.15].

The module structure is induced by the morphism of C-linear categories

V G
C (∗)⊗ V G

C (X)→ V G
C (X)

that sends ((V, π), (H, ρ)) to (V ⊗H,π ⊗ ρ). Here (V, π) is a representation of G on a
finitely dimensional C-vector spaces, and (H, ρ) is an equivariant X-controlled Vectf.d.

C -
object. This construction extends to morphisms in the natural way and we get an exact
functor between additive categories

(V, π)⊗ (−) : V G
C ((G/K)min,max ⊗X)→ V G

C ((G/K)min,max ⊗X) .

We assume now that (V ±, π±) are two representations of G such that there exists an
isomorphism W : (V +, π+)|K → (V −, π−)|K . Then there is a controlled isomorphism
[BCb, Prop. 4.15]

W̃(H,ρ) : (V + ⊗H,π+ ⊗ ρ)→ (V − ⊗H,π− ⊗ ρ)

providing a natural isomorphism of functors

V G
C ((G/K)min,max ⊗X)

(V +,π+)⊗(−)

''

(V −,π−)⊗(−)

77
⇓ W̃ V G

C ((G/K)min,max ⊗X) .

The existence of the isomorphism W̃ implies that the multiplication by the classes [V +, π+]

and [V −, π−] in R(G) ∼= H∗(RC) on the homology of XHHG((G/K)min,max⊗X) coincide.
Hence, if η is an element of R(G) which restricts to 0 in K, then η acts trivially on the
homology of XHHG((G/K)min,max ⊗X).

Let now H be a subgroup of G in F(γ). Let η ∈ R(G) be the representation
constructed by Segal satisfying (1) and (2). By (2), the multiplication by η acts as an
isomorphism on the homology of XHHG

(γ)((G/H)min,max ⊗ X), but by (1) it vanishes.
This implies that the homology of XHHG

(γ)((G/H)min,max ⊗X) is zero, hence

XHHG
(γ)((G/H)min,max ⊗X) ' 0.
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The lemma is proved for any T by setting X = T ⊗ Y in the above argument.

Let X be a G-bornological coarse space and γ a conjugacy class of G. In Defini-
tion 1.4.10, we have defined a category GSpX〈GOrb ⊗ SpXbd〉; we consider here also
the category GSpX〈GOrb ⊗ SpX〉 defined analogously [BCb, Def. 3.43]. Recall Defi-
nition 1.4.16 of Xγ and Definition 1.4.17 of a nice coarse space. Let T be an object in
GSpX . The following is the coarse localization theorem for coarse Hochschild homology.

Theorem 4.5.6. Let G be a finite group and let γ be a conjugacy class of G. Let X be a
G-bornological coarse space and assume that the G-bornological coarse space of γ-fixed
points Xγ is a nice subset of X. Assume one of:

1. G is finite and both Xγ and X belong to GSpX〈GOrb⊗ SpX〉;

2. T = Gcan,min and both the G-bornological coarse spaces Xγ and X belong to
GSpX〈GOrb⊗ SpXbd〉.

Then, the inclusion Xγ → X induces an equivalence

XHHG
T,(γ)(X

γ)→ XHHG
T,(γ)(X).

The same theorem holds if one replaces XHHG with coarse cyclic homology XHCG

with C-coefficients.

Proof. Assume (1); then, by [BCb, Cor. 3.43], we can replace the functor XHHG
T,(γ) with

its Bredon-style approximation. In the case (2), we use [BCb, Cor. 3.47], Lemma 4.2.3
and Example 1.4.11.

By Lemma 4.5.5, the functor XHHG
T,(γ) vanishes on F(γ). By Corollary 1.4.22, the

morphism
XHHG

T,(γ)(X
γ)→ XHHG

T,(γ)(X).

is then an equivalence.

The localization theorem for coarse Hochschild homology implies a localization theorem
for the associated equivariant Hochschild homology HHG := XHHG

k,Gcan,min
◦O∞hlg:

Corollary 4.5.7. Let G be a finite group and let γ be a conjugacy class of G. Let W
be a finite G CW-complex and let W γ be the sub-complex of γ-fixed points. Then, the
inclusion W γ →W induces an equivalence

HHG
(γ)(W

γ)→ HHG
(γ)(W )

of chain complexes.

The proof is the same as [BCb, Cor. 4.14 & Rem. 4.20], where the same result has
been obtained in the case of equivariant coarse topological and equivariant coarse algebraic
K-homology. The result translates in the case of equivariant coarse cyclic homology as
well.



90 4. A TRANSFORMATION TO COARSE ORDINARY HOMOLOGY AND FURTHER PROPERTIES



Appendix A

In this appendix we collect some information about additive categories, dg-categories,
symmetric monoidal categories and cyclic objects. In this way we introduce the notation
and language that we need in this thesis, and specially in Chapter 3 in order to define
coarse Hochschild and cyclic homology.

In this appendix we let k be a commutative ring; we write ⊗ for the tensor product
over k when clear from the context.

A.1 Additive categories

In this section we recollect definitions and properties of additive categories, k-linear
categories and exact categories.

We start with the definition of an additive category.

Definition A.1.1. [Mac71, Section VIII.2] An additive category is a category enriched
over (the category of) abelian groups, that has a zero object and that admits a biproduct
for each pair of objects.

Let A and B be additive categories and let F : A → B be a functor. The functor
F is called additive if it preserves finite biproducts; hence it sends the 0-object to
the 0-object and for every two objects A, B in A there is a canonical isomorphism
F (A ⊕ B) ∼= F (A) ⊕ F (B), where ⊕ denotes the biproduct of A. If, in addition, F
preserves also finite limits and colimits, then it is called exact.

We denote by Add the category of small additive categories and exact functors.

Definition A.1.2. A k-category is a category enriched on k-modules; a k-linear category
is a k-category that is also additive.

An example of k-linear categories is given by k-algebras: a k-algebra is a k-linear
category with a single object. Morphisms of k-linear categories are additive functors that
preserve the k-linear structure as well. We denote by Catk the category of small k-linear
categories and exact functors.
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Let A be a small additive category and let G be a group.

Definition A.1.3. The additive category A is an additive category with strict G-action
(on the right) if:

1. for every g ∈ G we have an additive isomorphism Fg : A → A;

2. if e is the unit element of G, then Fe = idA;

3. for every g, h in G we have Fh ◦ Fg = Fgh satisfying strictly associative relations.

The equalities in the definition express the strictness of the G-action. In general, they
are replaced by natural isomorphisms subject to coherence associative relations. Observe
that, if BG denotes the category with a single object and endomorphisms the given group
G, then an additive category with strict G-action can be equivalently described as a
functor BG→ Add from the category BG to the category of small additive categories.

Let A be an additive category and denote by ⊕ its biproduct.

Definition A.1.4. An additive category A is called flasque if it admits an endofunctor
S : A → A and a natural isomorphism idA ⊕ S ∼= S.

Following Keller, we now recall the definition of an exact category [Kel96, Sec. 4].
Let A be an additive category. A pair (i, p) of composable morphisms

A
i−→ B

p−→ C

in A is called exact if i is a kernel for p and p is a cokernel for i. We use Keller’s
terminology: exact pairs (i, p), A i−→ B

p−→ C, are called conflations, the morphism i is
called an inflation and the morphism p a deflation.

Definition A.1.5. An exact category is an additive category equipped with a class of
exact pairs satisfying the following axioms:

1. The identity morphism of the zero object is a deflation.

2. A composition of two deflations is a deflation.

3. A composition of two inflations is an inflation.

4. The pull-back of a deflation exists and is a deflation.

5. The push-out of an inflation exists and is an inflation.

These set of axioms are equivalent to the Quillen’s axioms [Qui73], as proved by Keller
[Kel90]. If A and B are exact categories, an additive functor F : A → B is exact if it
sends conflations to conflations.
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Example A.1.6. Let A be an additive category. The family of all split short exact
sequences is an exact structure on A. We call this exact structure on A the split exact
structure.

Example A.1.7. Let A be an additive category and let Ch(A) be the category of chain
complexes in A, whose objects are chain complexes in A and morphisms are chain maps.
The category Ch(A), equipped with the class of exact pairs (i, p) for which (in, pn) is a
split short exact sequence in A for all n ∈ Z, is an exact category.

We now give the definition of acyclic chain complexes:

Definition A.1.8. [Kel90] Let E be an exact category. A chain complex K ∈ Ch(E) is
called acyclic in degree n if the boundary operator dn+1

K factors as follows:

Kn+1 Kn

Zn+1

pn+1

dn+1
K

in+1

where pn+1 is a deflation, and in+1 is an inflation. The complex K is called acyclic if it
is acyclic in degree n for every n.

We denote by Chb(E) the category of bounded chain complexes over E and by Acyb(E)

the category of bounded acyclic chain complexes over E .

Remark A.1.9. Let E be an exact category and let K be an acyclic chain complex. This
means that we have conflations

Zn+1
in+1−−−→ Kn

pn−→ Zn

for every n ∈ N.

Let E be a small exact k-linear category. Following [Kel96, Sec. 11], we now explain
how to define the bounded derived category Db(E). Let Kb(E) be the homotopy category
of bounded chain complexes. The objects are the bounded chain complexes in E and
the morphisms are given by the chain maps up to chain homotopy. The category Kb(E)

is a triangulated category. Let Kbacy(E) be the sub-category of acyclic chain complexes,
and observe that this is closed under taking cones and shifts in Kb(E). Hence, it is a full
triangulated sub-category of Kb(E). The bounded derived category Db(E) is then defined
as the Verdier quotient

Db(E) := Kb(E)/Kbacy(E).

Definition A.1.10. The category D(E) (Db(E)) is called the (bounded) derived category
of E .

We refer to [Kel96,Kel06] for more details.

93



A.2 Differential graded categories

In this section we recall the main notions concerning differential graded categories. We
give the definitions of dg-algebras, dg-modules and dg-categories. We also review the
notions of (strngly) pretriangulated categories and of Morita equivalences. Our main
references are [Kel06,Toë11].

We start with the definition of a dg-algebra:

Definition A.2.1. A differential graded k-algebra A (shortly, a dg-algebra), is a Z-graded
k-algebra A =

⊕
p∈ZA

p endowed with a differential d either of degree −1 (chain complex
convention) or of degree 1 (cochain complex convection) that satisfies the Leibniz rule

d(ab) = d(a)b+ (−1)pad(b)

for all a ∈ Ap and p ∈ Z, and all b ∈ A.

A left dg-module M over a dg-algebra A is a left graded module M = ⊕p∈ZMp

endowed with a differential d (of the same degree as the differential of A) such that
d(ma) = d(m)a+ (−1)pmd(a) for every m ∈Mp and a ∈ A. A morphism of dg-modules
is a homogeneous morphism of degree 0 of the underlying graded modules commuting
with the differentials.

The category of dg-modules over the dg-algebra A and morphisms of dg-modules is
denoted by A-Mod.

A dg-category over a ring k is a category enriched on (the category of) chain complexes
of k-modules. We spell it out:

Definition A.2.2. A small differential graded category A (shortly, a dg-category) consists
of the following data:

• a small set of objects obj(A) (denoted A as well);

• for each pair of objects A,B of A, a chain complex of k-modules HomA(A,B);

• for each triple of objects A,B,C in A compositions

HomA(A,B)⊗HomA(B,C)→ HomA(A,C)

satisfying the associativity relations;

• for each object A of A, a morphism k → HomA(A,A) satisfying the usual unit
condition with respect to the compositions.

Example A.2.3. Every dg-algebra is a dg-category with a single object.
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Definition A.2.4. Let A and A′ be small dg-categories. A dg-functor F : A → A′
consists of a map F : obj(A)→ obj(A′) of sets and, for each pair of objects A,B in A, of
a morphism F (A,B) : HomA(A,B)→ HomA′(F (A), F (B)) of chain complexes satisfying
the usual unit and composition conditions.

We denote by dgcatk the category of small dg-categories (over k) and dg-functors.

Example A.2.5. An additive category A is a dg-category: for every object A in A,
HomA(A,A) is a chain complex concentrated in degree 0. This gives a functor

ι : Add→ dgcat (A.1)

that sends an additive category to the corresponding dg-category.

Example A.2.6. Let E be a small k-linear exact category. The category Ch(E) of
chain complexes over E has the structure of a dg-category: if K and K ′ are two chain
complexes, then Homn(K,K ′) consists of the homogeneous morphisms f of degree n of
graded objects: (f : Kp → K ′p+n)p. The differential dn : Homn(K,K ′)→ Homn−1(K,K ′)

is defined by the Leibniz rule

d(f) := dK′ ◦ f − (−1)nf ◦ dK .

We denote by Chdg(E) this dg-structure of the category of chain complexes over E .
Analogously, the category of bounded chain complexes over E is a dg category that we
denote by Chbdg(E).

The category Acyb(E) of bounded acyclic chain complexes (see Definition A.1.8) is a
sub-category of the category of bounded chain complexes; we denote by Acybdg(E) the
category of bounded acyclic chain complexes with the induced dg-structure.

Example A.2.7. If A is a dg-category, then the dg-category Aop defined as the category
with the same objects as A and morphisms HomAop(A,B) := HomA(B,A), is a dg-
category.

We have defined dg-modules over a dg-algebra; we now generalize the definition of
dg-modules to dg-categories.

Definition A.2.8. Let A be a dg-category. A left (right) dg-module over A is a dg-functor

Aop → Chdg(k)

where Chdg(k) is the dg-category of chain complexes over the dg-algebra k.

There is a natural category of dg-modules over a dg-category A, whose objects are the
dg-modules over A and whose morphisms are the natural transformations of dg-functors
F : M → N such that F (A) : M(A)→ N(A) is a morphism of complexes for every object
A of A.
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Remark A.2.9. When A is a dg-category with one object (i.e., a dg-algebra), the
category of modules over A just described is equivalent to the category of dg-modules
(over a dg-algebra) defined in the text after Definition A.2.1.

Let A be a dg-category and letM,N be two dg-modules over A. Then, the evaluations
of M and N at an object A ∈ A are chain complexes.

Definition A.2.10. A morphism of dg-modules M → N is a quasi-isomorphism if it
induces a quasi-isomorphism of chain complexes M(A)→ N(A) for every object A in A.

Remark A.2.11. The category of dg-modules (over a dg-algebra or a dg-category)
admits two Quillen model structures where the weak equivalences are the object-wise
quasi-isomorphisms of dg-modules; these are the injective and the projective model
structure induced from the injective and projective model structure on chain complexes,
respectively. We remark that the category of dg-modules over a dg-algebra, equipped with
the projective model structure (hence the fibrations are the object-wise epimorphisms), is
a combinatorial model category; see, for example [Coh, Rem. 2.14].

In analogy with chain complexes, we can define shifts and cones of objects in a
dg-category, as we now explain.

Let A be a dg-category and let A be an object of A. The n-translation of A, for n an
integer in Z, is an object A[n] of A representing the dg-functor

B 7→ HomA(B,A)[n]

where HomA(B,A)[n] is the n-shifted chain complex.
If A and B are objects of a dg-category A, and ϕ : A→ A′ is a morphism of A, then

its cone cone(ϕ) is the object of A that represents the dg-functor

B 7→ cone(HomA(B,A)
Hom(B,ϕ)−−−−−−→ HomA(B,A′))

where the cone between the Hom-complexes here denotes the usual mapping cone of chain
complexes.

Definition A.2.12. [BV08,Dri04] The dg-category A is strongly pretriangulated if it
admits a zero object 0 and the translations A[n] and cones cone(ϕ) exist for every
object A ∈ A, n ∈ Z, and morphism ϕ.

For every dg-category A there exist a dg-category Apretr called the pretriangulated hull
of A and a universal dg-functor A → Apretr, i.e., a dg-functor inducing an equivalence
Homdgcat(A,B) ' Homdgcat(Apretr,B) for every strong pretriangulated dg-category B
[Kel06, Sec. 4.5] and [BK91].

We observe here that a weaker notion, namely of a pretriangulated category, is usually
considered (see e.g., [Coh,Kel06]). However, the pretriangulated hull Apretr of A is
always strongly pretriangulated [BK91,Dri04].
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Example A.2.13. [BV08,BK91] If A is an additive category, seen as a dg-category by
ι(A) (A.1), then its pretriangulated hull Apretr is the dg-category Chbdg(A) of bounded
chain complexes in A.

If A is a dg-category, we can define an associated derived category:

Definition A.2.14. [Kel06, Sec. 3.2] Let A be a dg-category. The derived category D(A)

of A is the localization of the category of dg-modules over A at the class of quasi-
isomorphisms.

The objects of D(A) are the dg-modules over A and the morphisms are obtained
from morphisms of dg-modules by inverting the quasi-isomorphisms. It is a triangulated
category with shift functor induced by the 1-translation and triangles coming from short
exact sequences of complexes.

Let A and B be two small dg-categories. A dg-functor F : A → B is called a Morita
equivalence if it induces an equivalence of derived categories. For a precise definition of
Morita equivalences we refer to [Kel06, Sec. 3.8], or [Coh, Def. 2.29]. The most important
example to us is the following:

Example A.2.15. [Kel06, Sec. 4.6] Let A be a dg-category. Then, the canonical
morphism A → Apretr in the pretriangulated hull is a Morita equivalence.

Theorem A.2.16. [Tab05, Thm. 5.1] The category dgcatk of small dg-categories over
k admits the structure of a combinatorial model category whose weak equivalences are the
Morita equivalences.

For a description of fibrations and cofibrations we refer to [Tab05, Thm. 5.1], or
[Kel06, Thm. 4.1].

The localization [Lur14, Def. 1.3.4.1] of the category of small dg-categories dgcat at
the class of Morita equivalences is the∞-category of (idempotent-complete) dg-categories:

dgcat∞ := N(dgcat)[W−1
Morita]

where WMorita denotes the class of Morita equivalences of small dg-categories.

Remark A.2.17. The Morita model structure on dgcat presents the ∞-category of
stable ∞-categories [Coh,Fao17]. The bridge between the two theories is the dg-nerve
functor Ndg that sends a dg-category to a stable ∞-categories [Lur14, Sec. 1.3.1].

We refer to Robalo’s thesis [Rob14, Sec. 6.1 & 6.2] for a comparison between the
theory of dg-categories and the theory of stable ∞-categories.

97



A.3 Symmetric monoidal structures

In this section we recall the definitions of a symmetric monoidal category and (lax)
symmetric monoidal functors.

A symmetric monoidal structure on a category C consists of a functor ⊗C : C ×C → C,
a tensor unit 1C , and the associator, symmetry and unit-transformations that must satisfy
some compatibility relations. We review these relations in the following definition:

Definition A.3.1. [Mac71, Sec. VII.1.] A symmetric monoidal structure on a category
C is given by the following data:

1. a bifunctor (−⊗C −) : C × C → C,

2. an object 1C (the tensor unit),

3. a natural isomorphism (the associativity constraint)

αC : (−⊗C −) ◦ ((−⊗C −)× idC)→ (−⊗C −) ◦ (idC × (−⊗C −)) ,

4. a natural isomorphism ηC : 1C ⊗C − → idC (the unit constraint),

5. a natural isomorphism (the symmetry) σC : (− ⊗C −) ◦ T → (− ⊗C −), where
T : C × C → C × C is the flip functor.

This data has to satisfy the following relations:

1. the pentagon relation;

((C ⊗C C ′)⊗C)C ′′ ⊗C C ′′′

αC,C′,C′′×idC′′′

��

αC⊗CC′,C′′,C′′′
// (C ⊗C C ′)⊗C (C ′′ ⊗C C ′′′)

αC,C′,C′′⊗CC′′′

��

(C ⊗C (C ′ ⊗C C ′′))⊗C C ′′′

αC,C′⊗CC′′,C′′′

++

C ⊗C (C ′ ⊗C (C ′′ ⊗C C ′′′))

C ⊗C ((C ′ ⊗C C ′′)⊗C C ′′′)

idC⊗αC′,C′′,C′′′
33

2. the triangle relation;

(C ⊗ 1C)⊗C C ′
αC,1C,C′

//

ηC×idC **

C ⊗C (1C ⊗ C ′)

id1C
×(ηC′◦σ1C,C′ )tt

C ⊗C C ′

,

3. the inverse relation; σC,C′ ◦ σC′,C = idC′⊗C ,
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4. the associativity coherence.

(C ⊗C C ′)⊗C C ′′
αC,C′,C′′

//

σC,C′×idC′′

��

C ⊗C (C ′ ⊗C C ′′)
σC,C′⊗CC′′

// (C ′ ⊗C C ′′)⊗C C

αC′,C′′,C
��

(C ′ ⊗C C)⊗C C ′′αC′,C,C′′
// C ′ ⊗C (C ⊗C C ′′)

idC′×σC′′,C
// C ′ ⊗C (C ′′ ⊗C C)

.

A symmetric monoidal category is a category with a symmetric monoidal structure.

The category Catk of small k-linear categories has a symmetric monoidal structure:

Definition A.3.2. Let A and B be small k-linear categories. The tensor product A⊗Catk

B is the k-linear category whose objects are pairs (A,B) of objects with A in A and B in
B and whose morphisms are defined by

HomA⊗Catk
B((A0, B0), (A1, B1)) := HomA(A0, A1)⊗k HomB(B0, B1).

Analogously, when k is a field, the category of small dg-categories has a natural
symmetric monoidal structure:

Definition A.3.3. Let A and B be small dg-categories over k. The tensor product
A⊗dgcatk B is the dg-category whose objects are pairs (A,B) of objects with A in A and
B in B and whose morphisms are defined by

HomA⊗dgcatk
B((A0, B0), (A1, B1) := HomA(A0, A1)⊗k HomB(B0, B1),

where ⊗k denotes the tensor product of chain complexes over k.

When k is not a field, the tensor product just described does not respect, in general,
the Morita model structure on the category dgcatk of Theorem A.2.16 because it is not
compatible with Morita equivalences. However, if k is a field, a dg-category over k is also
flat, and the tensor product induces a symmetric monoidal structure on dgcatk

−⊗k− : dgcatk × dgcatk → dgcatk (A.1)

that preserves the Morita equivalences. We denote by dgcat⊗k the symmetric monoidal
category obtained in this way.

Definition A.3.4. [Mac71, Sec. VII.1.] Let F : C → D be a functor between symmetric
monoidal categories. A symmetric monoidal structure on F is given by the following data:

1. an isomorphism εF : 1D → F (1C),

2. a natural isomorphism µF : (−⊗D −) ◦ (F × F )→ F ◦ (−⊗C −).
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This data has to satisfy the following relations:

1. associativity;

2. unitality;

3. symmetry.

We refer to [Mac71, Sec. VII.1.] for further details.

Remark A.3.5. If we weaken the assumption and only require that that εF and µF are
natural transformations, then we get the definition of a lax symmetric monoidal functor.

Remark A.3.6. Let C be a symmetric monoidal category. Then, it gives rise to a
category C⊗ [Lur14, Constr. 2.0.0.1] and to a symmetric monoidal ∞-category

N(C⊗)→ N(Fin∗)

[Lur14, Ex. 2.1.2.21] with the property that the underlying ∞-category of N(C⊗) is the
nerve N(C).

In Section 2.2, we need to refine functors with target the category of small additive
categories Add. Let C be an ordinary category. A functor F : C → Add gives rise to
a functor between ∞-categories F∞ : N(C) → Add∞ in the natural way, i.e., as the
composition

F∞ : N(C) N(F )→ N(Add)→ N(Add)[W−1
Add] = Add∞

where WAdd is the class of equivalences of additive categories.
Recall that a map of ∞-operads [Lur14, Def. 2.1.2.7] can be thought of as a (lax)

symmetric monoidal functor [Lur14, Def. 2.1.3.7] between the underlying categories.

Definition A.3.7. Let F : C → Add be a functor to the category of small additive
categories. A lax symmetric monoidal refinement of F is a morphism

F⊗ : N(C⊗)→ Add⊗∞

of ∞-operads that induces a functor equivalent to F∞ between the underlying ∞-
categories.

A.4 Cyclic objects and the additive cyclic nerve

Following [Con83,Lod98,NS17], we recall in this section the definition of cyclic objects in
a category C; then, we recall the definition of additive cyclic nerve of a dg-category.

A cyclic object X is a simplicial object with extra structure: in addition to face
and degeneracy maps, there is an action of the cyclic group of order i+ 1 acting on the
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objects Xi, for every i. There are different equivalent definitions of cyclic objects; we
define them as controvariant functors on Connes’ cyclic category, as we now explain.

We start with the definition of the paracyclic category Λ∞ [NS17, Appendix B].
The paracyclic category Λ∞ is a full subcategory of the category ZPoSet of partially

ordered sets equipped with a Z-action and non-decreasing equivariant maps. The objects
of Λ∞ are all the objects of ZPoSet that are isomorphic to

1

n
Z :=

{
k

n
| k ∈ Z

}
for n ≥ 1, equipped with its natural ordering and the Z action by addition. We use the
notation [n]Λ∞ := 1

nZ.
There is an action of Z on the morphism sets of Λ∞: if τ is a generator of Z and

f : [n]Λ∞ → [m]Λ∞ is a morphism of Λ∞, then τ(f) : [n]Λ∞ → [m]Λ∞ is defined as
τ(f) = f + 1.

Definition A.4.1. The cyclic category Λ is the full subcategory of Λ∞ with the same
objects as Λ∞; the morphisms between two objects of Λ∞ are given by the morphisms of
Λ∞ with the Z-action by τ divided out.

It is a standard fact that the category Λ is self-dual [NS17, Appendix B]. If ∆ is
the category of totally ordered non-empty finite sets, there is a functor ∆→ Λ sending
[n] = {0, . . . , n} ∈ ∆ to [n+ 1]Λ inducing faces and degeneracy maps. The cyclic operator
in Λ descends from the Z action by the generator τ described above. Then, the previous
definition of Λ is equivalent to the following more explicit one:

Definition A.4.2. [Lod98, Def. 6.1.1] The cyclic category Λ has objects [n], for every
n ∈ N, and morphisms generated by:

• faces δi : [n− 1]→ [n] for i ≤ n;

• degeneracies σj : [n+ 1]→ [n] for j ≤ n;

• cyclic operators τn : [n]→ [n];

satisfying the following relations:

(i) δjδi = δiδj−1 for i < j;

σjσi = σiσj+1 for i ≤ j;

σjδi =


δiσj−1 for i < j

id[n]σj−1 for i = j, i = j + 1

δi−1σj for i > j + 1

(ii) τnδi = δi−1τn−1 for 1 ≤ i ≤ n and τnδ0 = δn;
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τnσi = σi−1τn+1 for 1 ≤ i ≤ n and τnσ0 = σnτ
2
n+1;

(iii) τn+1
n = id[n].

Definition A.4.3. Let C be a category. A cyclic object in C is a functor

X : Λop → C.

Morphisms of cyclic objects are given by natural transformations of functors.

Notation A.4.4. We denote by Xn the value of X at [n].

There is a category of cyclic objects in C and morphisms of cyclic objects. When C is
the category k-Mod of k-modules over a ring k, then a cyclic object in k-Mod is called
a cyclic module. Hence, observe that a cyclic module C is a simplicial k-module endowed
for all n with an action of the cyclic group of order n + 1 on Cn. Morphism of cyclic
modules are morphisms of simplicial k-modules that commute with the cyclic structure.

Example A.4.5. Let k be a commutative ring with identity 1 and let A be a k-algebra.
Then, for each n ∈ N define

Zn(A) := A⊗kn+1.

The following degeneracies si, face maps di and cyclic maps t

di(a0, . . . , an) =

{
(a0, a1, . . . , aiai+1, . . . , an) if 0 ≤ i ≤ n− 1

(ana0, a1, . . . , an) if i = n

si(a0, . . . , an) = (a0, a1, . . . , ai, 1, ai+1, . . . , an) if 0 ≤ i ≤ n
tn+1(a0, . . . , an) = (an, a0, . . . , an−1)

make Z∗(A) a cyclic module [Goo85, Sec II.1].

Example A.4.6. [McC94, Def. 2.1.1] Let A be an additive category and k-Mod be the
category of k-modules, k being a ring. The previous construction generalizes to additive
categories, describing a cyclic module, called the additive cyclic nerve,

CN∗(A) : Λop → k-Mod

that in degree n is given by:

CNn(A) :=
⊕

HomA(A1, A0)⊗HomA(A2, A1)⊗ · · · ⊗HomA(A0, An)

where the sum runs over all the objects (A0, A1, . . . , An) in An+1 and tensor products
⊗ are tensor products over k. We give a description of the face maps, degeneracies and
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cyclic maps:

di(f0 ⊗ · · · ⊗ fn) =

{
f0 ⊗ f1 ⊗ · · · ⊗ fi ◦ fi+1 ⊗ · · · ⊗ fn if 0 ≤ i ≤ n− 1

fn ◦ f0 ⊗ f1 ⊗ · · · ⊗ fn if i = n

si(f0 ⊗ · · · ⊗ fn) =

{
f0 ⊗ f1 ⊗ · · · ⊗ fi ⊗ idAi+1 ⊗ fi+1 ⊗ · · · ⊗ fn if 0 ≤ i ≤ n− 1

f0 ⊗ f1 ⊗ · · · ⊗ fn ⊗ idA0 if i = n

t(f0 ⊗ · · · ⊗ fn) = (fn ⊗ f0 ⊗ · · · ⊗ fn−1)

The additive cyclic nerve is a covariant functor from the category of small k-linear
categories to the category of cyclic k-modules.

By [McC94, Ex. 2.2.1], when applied to a k-algebra A seen as a k-linear category with a
single object, the additive cyclic nerve CN∗(A) is the cyclic module Z∗A of Example A.4.5.

We can do the same for dg-categories. For reference, we spell this out:

Definition A.4.7. The additive cyclic nerve of a differential graded k-linear category C
is the cyclic k-module defined for each n by

CNn(C) :=
⊕

HomC(C1, C0)⊗HomC(C2, C1)⊗ · · · ⊗HomC(C0, Cn)

where the sum runs over all the objects (C0, C1, . . . , Cn) in Cn+1. The face and degeneracy
maps, and the cyclic action, are defined as follows:

di(f0 ⊗ · · · ⊗ fn) =

{
f0 ⊗ f1 ⊗ · · · ⊗ fi ◦ fi+1 ⊗ · · · ⊗ fn if 0 ≤ i ≤ n− 1

(−1)n+σfn ◦ f0 ⊗ f1 ⊗ · · · ⊗ fn if i = n

si(f0 ⊗ · · · ⊗ fn) =

{
f0 ⊗ f1 ⊗ · · · ⊗ fi ⊗ idCi+1 ⊗ fi+1 ⊗ · · · ⊗ fn if 0 ≤ i ≤ n− 1

f0 ⊗ f1 ⊗ · · · ⊗ fn ⊗ idC0 if i = n

t(f0 ⊗ · · · ⊗ fn) = (−1)n+σ(fn ⊗ f0 ⊗ · · · ⊗ fn−1)

where σ = (deg fn)(deg fn−1 + · · ·+ deg f0).
The differential b is defined as b = (−1)ndn +

∑n−1
i=0 di.

Observe that the definition of additive cyclic nerve for dg-categories generalizes both
Example A.4.5 and Example A.4.6. In particular, when applied to an additive category,
seen as a dg-category by means of the functor ι : Catk → dgcatk (A.1), we get (up to
sign) the additive cyclic nerve for additive categories of Example A.4.6 (because the maps
fi of the above definition have only degree 0).
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