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Abstract

Motivation: Cancer progresses by accumulating genomic events, such as mutations and copy
number alterations, whose chronological order is key to understanding the disease but difficult
to observe. Instead, cancer progression models use co-occurence patterns in cross-sectional data
to infer epistatic interactions between events and thereby uncover their most likely order of oc-
curence. State-of-the-art progression models, however, are limited by mathematical tractability
and only allow events to interact in directed acyclic graphs, to promote but not inhibit subse-
quent events, or to be mutually exclusive in distinct groups that cannot overlap.

Results: Here we propose Mutual Hazard Networks (MHN), a new Machine Learning algo-
rithm to infer cyclic progression models from cross-sectional data. MHN model events by their
spontaneous rate of fixation and by multiplicative effects they exert on the rates of succes-
sive events. MHN compared favourably to acyclic models in cross-validated model fit on four
datasets tested. In application to the glioblastoma dataset from The Cancer Genome Atlas,
MHN proposed a novel interaction in line with consecutive biopsies: IDH1 mutations are early
events that promote subsequent fixation of TP53 mutations.

Availability: Implementation and data are available at https://github.com/RudiSchill/

MHN.

1 Introduction

Tumours turn malignant in an evolutionary process by accumulating genetic mutations, copy num-
ber alterations, and changes in DNA methylation. Such progression events arise randomly in
tumour cells, but due to unknown epistatic interactions they tend to fixate in specific chronological
orders. Whether an event in- or decreases the reproductive fitness of a tumour cell relative to
competing clones depends on preceding events in this cell: a new mutation in a driver gene can be
advantageous for the cell in one genomic background and it can be neutral or lethal in another,
thus setting the course for the tumour’s future genomic progression.
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While progression is a dynamic process, available genotype data are cross-sectional and combine
static snapshots from different tumours at different stages of development. Nevertheless, assuming
that the tumour genomes are observations from the same stochastic process, cancer progression
models can infer epistatic interactions between events from their co-occurence patterns.

To this end, increasingly complex models and learning algorithms have been developed. Fearon
and Vogelstein (1990) manually inferred that colorectal cancers progress along a linear chain of
mutations in the genes APC → K-RAS → TP53. Desper et al. (1999) formalized and extended this
concept to Oncogenetic Trees, where a single event can promote multiple successor events in parallel.
Beerenwinkel et al. (2007) further generalized these to Conjunctive Bayesian Networks (CBN),
where events may require multiple precursors to convey a selective advantage and interactions are
hence described by a directed acyclic graph. Other models include Bayesian Networks with different
types of acyclic interactions (Farahani and Lagergren, 2013; Misra et al., 2014; Ramazzotti et al.,
2015) and networks with cycles (Hjelm et al., 2006) where events can be mutually promoting but
not exclusive.

Mutual exclusivity of events, however, is a frequently observed phenomenon in cancer (Yeang
et al., 2008). Two events are considered mutually exclusive if they co-occur less frequently than
expected by chance. There are at least two mechanisms that can cause this data pattern: (a) the
events are synthetically lethal and (b) the events disrupt the same molecular pathway such that
whichever event occurs first conveys most of the selective advantage and decreases selective pressure
for the others.

Mutual exclusivity is a cyclic interaction between events and thus cannot be naturally encoded
by an acyclic model. The currently prevalent workaround was introduced by Gerstung et al.
(2011) who first grouped events into pathways and in a second step learned acyclic models on the
coarser resolution of pathways. Pathways can either be derived from biological knowledge, learned
from data by testing groups of events for mutual exclusivity (Leiserson et al., 2013; Szczurek and
Beerenwinkel, 2014; Constantinescu et al., 2015), or by a combination of both (Ciriello et al., 2011;
Kim et al., 2015). Raphael and Vandin (2015) pointed out that inferring pathways separately
from their interactions can lead to inconsistencies in the presence of noise and presented the first
algorithm that simultaneously groups events into pathways and arranges the pathways in a linear
chain. PathTiMEx (Cristea et al., 2017) generalizes this from linear chains to acyclic progression
networks (CBN).

This approach, however, relies on the strong and unproven assumption that the future evolution
of a tumour does not depend on which specific event in a group of mutually exclusive events actually
occurred. In fact, we will show below that this interchangeability assumption is not always in line
with observed data.

Here, we propose Mutual Hazard Networks (MHN). Rather than grouping events into pathways,
MHN model both co-occurence and mutual exclusivity by direct interactions between events. MHN
characterize events by a combined rate of occurance and spontaneous fixation and by multiplicative
effects they exert on the rates of successive events. These effects can be cyclic and greater or less
than one, i.e., promoting or inhibiting. We provide formulas for the log-likelihood of MHN and
its gradient, and an implementation that is computationally tractable for systems with up to 25
events on a standard workstation and for larger systems on an HPC infrastructure.
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Figure 1: (Left) Transition rate matrixQ for the Markov processX with n = 4. It is lower triangular because
events are irreversible, and sparse because events accumulate one at a time. (Right) Parameterization QΘ

of the Markov process by a Mutual Hazard Network.

2 Methods

2.1 Mutual Hazard Networks

We model tumour progression as a continuous time Markov process {X(t), t ≥ 0} on all 2n combi-
nations of a predefined set of n events. Its state space is S = {0, 1}n, where X(t)i = 1 means that
event i has occurred in the tumour by age t, while X(t)i = 0 means that it has not.

We assume that every progression trajectory starts at a normal genome X(0) = (0, . . . , 0)T ,
accumulates irreversible events one at a time, and ends at a fully aberrant genome X(∞) =
(1, . . . , 1)T . Observed tumour genomes correspond to states at unknown intermediate ages 0 <
t <∞ and typically hold both 0 and 1 entries.

Let Q ∈ R2n×2n be the transition rate matrix of this process with respect to a basis of S in
lexicographic order (Fig. 1, left). An entry

Qy,x = lim
∆t→0

Pr (X(t+ ∆t) = y | X(t) = x)

∆t
, y 6= x (1)

is the rate from state x ∈ S to state y ∈ S, and diagonal elements are defined as Qx,x =
−
∑

y 6=xQy,x so that columns sum to zero. Q is lower triangular and has non-zero entries only for

transitions between pairs of states x = (. . . , xi−1, 0, xi+1, . . .)
T and y = x+i := (. . . , xi−1, 1, xi+1, . . .)

T

that differ in a single entry i.
Our aim is to learn for each event i how its rate of fixation Qx+i,x depends on preceding events in

x. It is, however, impractical to treat all entries in Q as free parameters because of its exponential
size. Instead we parameterize Q by a Mutual Hazard Network which is a smaller n × n matrix Θ
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with positive real entries. It restricts rates in Q to the functional form

Qx+i,x = Θii

∏
xj=1

Θij . (2)

Here, Θii is the baseline rate of spontaneous fixation of event i when it occurs before any other
event. Θij is the multiplicative effect by which a preceding event j in x modulates the rate of i
(Fig. 1, right).

2.2 Parameter Estimation

A dataset D of tumours defines an empirical probability distribution on S. It can be represented
by a vector pD of size 2n, where an entry (pD)x is the relative frequency of observed tumours with
state x in D.

At t = 0 tumours are free of any events, so the Markov process X starts with the initial
distribution p∅ := (100%, 0%, ..., 0%)T , which then evolves according to the parameterized rate
matrix QΘ. If all tumours had been observed at a common age t, pD could be modelled as a
sample from the transient distribution

etQΘ p∅ . (3)

Since the tumour age is usually unknown, we follow Gerstung et al. (2009) and consider t to be an
exponential random variable with mean 1. Marginalizing over t yields

pΘ =

∫ ∞
0

dt e−tetQΘ p∅ = [I −QΘ︸ ︷︷ ︸
=:RΘ

]−1p∅ , (4)

and the marginal log-likelihood score of Θ given D is

SD(Θ) = pT
D logpΘ = pT

D log(R−1
Θ p∅) , (5)

where the logarithm of a vector is taken component-wise.
When optimizing SD with respect to Θ we are especially interested in networks that can be

easily visualized and interpreted, i.e., where many events do not interact and off-diagonal entries
Θij are exactly 1. To this end, we penalize the score with a sparsity-promoting regularization term,

SD(Θ)− λ
∑
i6=j

| log Θij | , (6)

where λ is a tuning parameter. We will optimize this expression using the Orthant-Wise Limited-
Memory Quasi-Newton algorithm (Andrew and Gao, 2007). This general-purpose optimizer takes
care of the non-differentiability introduced by the regularization term, while only requiring a closed
form for the derivatives ∂SD/∂Θij with respect to each parameter.

From the chain rule of matrix calculus we have

∂SD
∂Θij

=
∂SD
∂R−1

Θ

·
∂R−1

Θ

∂Θij

=
pD
pΘ

pT
∅ ·
(
−R−1

Θ

∂RΘ

∂Θij
R−1

Θ

)
= −

(
pD
pΘ

)T

R−1
Θ

∂RΘ

∂Θij
R−1

Θ p∅ , (7)

where · is the Frobenius product and the ratio pD/pΘ is computed component-wise.
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2.3 Efficient implementation

To compute the score in equation (5) and its gradient in equation (7) we must solve the exponentially
sized linear systems [I −QΘ]−1 p∅ and (pD/pΘ)T [I −QΘ]−1. To this end, we employ the (left)
Kronecker product which is defined for matrices A ∈ Rk×l and B ∈ Rp×q as the block matrix

A⊗B =

b11A · · · b1lA
...

. . .
...

bk1A · · · bklA

 ∈ Rkp×lq . (8)

We follow the literature on structured analysis of large Markov chains (Buchholz, 1999; Amoia
et al., 1981) and write the transition rate matrix QΘ as a sum of n such Kronecker products,

QΘ =
n∑

i=1

⊗
j<i

(
1 0
0 Θij

)
⊗
(
−Θii 0

Θii 0

)
⊗
⊗
j>i

(
1 0
0 Θij

) . (9)

Here, the i-th term in the sum is a sparse 2n×2n matrix consisting of all transitions that introduce
event i to the genome. It corresponds to a single subdiagonal of QΘ, together with a negative
copy on the diagonal to ensure that columns sum to zero (Fig. 2). The benefit of this compact
representation is that matrix-vector products can be computed in O(n2n−1) rather than O(22n)
without holding the matrix explicitly in memory (Buis and Dyksen, 1996). We split RΘ = I −QΘ

into a diagonal and strictly lower triangular part,

RΘ = D + L = D(I +D−1L) , (10)

and use the nilpotency of D−1L to compute

R−1
Θ p∅ = (I +D−1L)−1D−1p∅

=

(
n−1∑
k=0

(−D−1L)k

)
D−1p∅. (11)

3 Results

3.1 Simulations

We tested in simulation experiments how well an MHN of a given size can learn a probability
distribution on S when trained on a given amount of data. We ran 100 simulations for each of
several sample sizes |D| ∈ {50, 100, 250, 500} and number of events n ∈ {10, 15}.

In each simulation run, we chose a ground truth model Θ with n possible events. A random half
of its off-diagonal entries were set to 1 (no interaction) and the remaining entries were drawn from
a standard log-normal distribution. We then generated a dataset of size |D| from this model and
trained on it another model Θ̂ by optimizing expression (6). We chose a common regularization
parameter for all 100 simulation runs, which we found to be roughly λ = 1/|D| through validation
on separate datasets of each sample size. We then assessed the reconstructed model Θ̂ by the
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Figure 2: Illustration of QΘ represented as a sum of Kronecker products for n = 3 in equation (9). The i-th row
corresponds to the i-th term in the sum and contains all transitions that introduce event i to the genome. A row is
read from left to right and shows how the Kronecker product successively describes all possible transition rates that
can arise due to multiplicative interactions with other events. The first highlighted Kronecker factor describes the
two possible states of event i and a transition with base rate Θii. Each subsequent Kronecker factor that is multiplied
from the left or from the right appends the two states of the corresponding event j to all previously modelled states.
This doubles the number of modelled states, where one half lacks the event j and retains their previous transition
rates, while the other half has j present, which modulates their transition rates by the factor Θij .
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Figure 3: Model fit for different sample
sizes in simulation experiments.
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Figure 4: Runtime of a single gradient step
for random and dense Θ.

Kullback-Leibler (KL) divergence from its probability distribution to the distribution of the true
model Θ,

DKL(pΘ‖pΘ̂) = pT
Θ logpΘ − pT

Θ logpΘ̂ (12)

The median KL divergence, as well as its variance over the 100 simulation runs, improved with
larger training datasets and reached almost zero (Fig. 3).

Next, we tested the performance of our implementation. MHN was written in R, and its
performance-critical parts were implemented in C (using the R package inline) to avoid unnec-
essary memory-copy operations. We made explicit calls to BLAS routines and compiled R to use
the Intel MKL library for vectorized and threaded matrix and vector operations. Fig. 4 shows the
runtime of a single gradient step for random and dense Θ on a Dell OptiPlex 9020 workstation with
8GB RAM and an Intel R© CoreTM i5-4590 CPU. The runtime was about 1 minute for n = 20 and
scaled exponentially with n as expected.

3.2 Application to Cancer Progression Data

3.2.1 Comparison to Conjunctive Bayesian Networks

We tested our method and first compared it to Conjunctive Bayesian Networks (CBN) on three
cancer datasets that were previously used by Gerstung et al. (2009). They were obtained from
the Progenetix molecular-cytogenetic database (Baudis and Cleary, 2001) and consist of 817 breast
cancers, 570 colorectal cancers, and 251 renal cell carcinomas. The cancers are characterized by 10,
11, and 12 recurrent copy number alterations, respectively, which were detected by comparative
genomic hybridization (CGH).

We trained MHN on all three datasets (see supplementary material) and compared them to
the CBN given in Gerstung et al. (2009), which provide log-likelihood scores in-sample. Since the
in-sample scores of MHN are biased by their greater flexibility, we also provide their average log-
likelihood scores in 5-fold cross-validation. To avoid a nested loop for tuning the sparsity parameter
λ we set it to a fixed value of 0.01. Despite these handicaps, MHN compared favourably on all
three datasets (Table 1).
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Table 1: Log-likelihood scores
(cross-validated) (in-sample)

dataset MHN CBN MHN

Breast cancer -5.68 -5.73 -5.62
Colorectal cancer -5.66 -5.79 -5.62
Renal cell carcinoma -5.04 -5.13 -4.87

3.2.2 Comparison to pathTiMEx

Next, we compared MHN to pathTiMEx on a glioblastoma dataset from The Cancer Genome Atlas
(Cerami et al., 2012) which was previously used in Cristea et al. (2017), see Fig. 5. The data consist
of |D| = 261 tumours characterized by 486 point mutations (M), amplifications (A), or deletions
(D). We focus on n = 20 of these events which were pre-selected by pathTiMEx using the TiMEx
algorithm (Constantinescu et al., 2015).

We trained MHN as above for 100 iterations, which achieved a log-likelihood score of -7.70 in-
sample and a score of -7.97 in 5-fold cross-validation. While pathTiMEx does not yield a directly
comparable log-likelihood score, it quantifies discrepancies between model and data by consider-
ing the data to be corrupted by noise, each event in a tumour being independently flipped with
probability ε. PathTiMEx estimated this noise parameter as ε̂ = 20%, from which we gauge an
upper bound on its log-likelihood score as follows: even a hypothetical model that learns the data
distribution pD perfectly but assumes a level of noise

pε̂ =
n⊗

i=1

(
1− ε̂ ε̂
ε̂ 1− ε̂

)
pD (13)

achieves only a score of pT
D logpε̂ = −8.50 in-sample, which is less than the cross-validated score

of MHN.
Nevertheless, MHN largely agreed with pathTiMEx on the three most mutually exclusive groups

of events. They broadly correspond to the signaling pathways Rb, p53, and PI(3)K (red, blue, and
green in Fig. 5) which regulate cell cycle progression, apoptosis, and proliferation and are well known
to be compromised in glioblastoma (McLendon et al., 2008). Where the models differ, MHN more
closely matches the literature and additionally included RB1(D) in the Rb pathway, EGFR(M)
and PDGFRA(A) in the PI(3)K pathway, and CDKN2A(D) in the p53 pathway. It also correctly
identified the fact that the Rb and p53 pathways overlap and that both involve CDKN2A(D) which
codes for two different proteins p16INK4a and p14ARF in alternate reading frames.

Notably, MHN inferred that the rare event IDH1(M) promotes the more common event TP53(M).
This is further illustrated in Fig. 6 which shows the most likely chronological order of events for all
261 tumours. Each of their 193 distinct states is represented by a path that starts at the root node
and terminates at either a leaf node or an internal node with a black outline. As can be seen in
the lower left, all tumours that contain IDH1(M) are located on a common branch and thus share
an early mutation history initiated by IDH1(M). This interpretation is in line with the fact that
IDH1(M) is considered a defining attribute of the Proneural subtype of gliobastoma which is clini-
cally distinct and also associated with TP53(M) (Verhaak et al., 2010). It is further supported by
independent data from consecutive biopsies of gliomas where IDH1(M) in fact preceded TP53(M)
(Watanabe et al., 2009).
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A. Glioblastoma dataset (TCGA)

B. pathTiMEx model

D. Mutual Hazard Network
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Figure 5: (A) Glioblastoma dataset from TCGA, where rows show events sorted by frequency and columns show tumours
sorted lexicographically. The purple stripes highlight tumours which have IDH1(M) but lack TP53(M). (B) PathTiMEx model
inferred in Cristea et al. (2017). It simultaneously divides the dataset into pathways, i.e., into mutually exclusive groups of
events and learns a CBN of these pathways. The CBN considers a pathway altered if at least one of its constituent events
has occured. A pathway alteration fixates at the rate given in the upper right-hand corner once all its parent pathways in the
CBN have been altered. (C) Highlighted discrepancies between the data and the pathTiMEx model due to its assumption of
interchangeable events. Although CDKN2A(D) and CDK4(A) were grouped into the same pathway, CDKN2A(D) is negatively
associated with MDM2(A) in the data while CDK4(A) is positively associated with it. (D) Mutual Hazard Network, where
nodes show the base rates Θii and edges show the multiplicative interactions Θij . Similarities to pathTiMEx are highlighted
in colour and roughly correspond to the signaling pathways Rb, p53, and PI(3)K (red, blue, and green).
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Figure 6: Maximum likelihood paths through the state space S from the starting state to each
observed tumour state. They were computed from the time-discretized transition rate matrix
I +QΘ̂/γ, where γ is the greatest absolute diagonal entry of QΘ̂.
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4 Discussion

We presented Mutual Hazard Networks, a new framework for modelling tumour progression from
cross-sectional observations. MHN build on previous work (Beerenwinkel et al., 2007; Hjelm et al.,
2006; Raphael and Vandin, 2015; Cristea et al., 2017) and extend it in multiple ways: (a) MHN
naturally account for any form of epistatic interactions including inhibition, promotion, and cycles.
(b) MHN do not rely on a hard grouping of events into pathways, hence allowing for overlap or
cross-talk. (c) MHN do not rely on the interchangeability assumption for mutually exclusive events.
In other words: they do not assume that the future progression of a tumour is independent of which
particular gene in a pathway was actually affected by a mutation.

These issues matter, as has become clear in the application to glioblastomas: (a) MHN detected
several inhibiting edges as well as cyclic interactions that remained obscure in acyclic models, (b)
MHN naturally resolved the role of CDKN2A, which is involved in at least two pathways (McLendon
et al., 2008), and (c) MHN uncovered that the interchangeability assumption does not hold for the
CDK4(A)-CDKN2A(D) group (Fig. 5C).

Our proposed implementation of the MHN learning algorithm has a space and time complex-
ity that is exponential in the number of events n. In practice, we saw limits at n = 25 on a
standard workstation. Modern cancer datasets report hundreds of recurrent mutations, and the
question arises whether MHN can deal with them. In fact we believe that MHN is competitive
with other algorithms also for these large datasets, because interactions between low-frequency
events cannot be resolved reliably at all. For example, in the glioblastoma dataset, the rare events
OBSCN(M), CNTNAP2(M), LRP2(M), TP53(D), and PAOX(M) remained unconnected to the
rest of the network. In other words, the evidence for possible interactions was so low that it could
not compensate for the L1-costs of an additional edge. These are limitations in the data itself and
not in computation times.

An interesting novelty of MHN are the spontaneous occurrence/fixation rates Θii. The event
pair IDH1(M) and TP53(M) was instructive for understanding their role. IDH1 mutations were
infrequent in the glioblastomas compared to TP53 mutations. Moreover, 10 out of 14 IDH1(M)
positive glioblastoma also showed a TP53 mutation. We see at least two alternative explanations
for this noisy subset pattern: (1) TP53 mutations are needed for IDH1 mutations to occur. (2)
TP53(M) has a much higher spontaneous rate than IDH1(M) explaining that it is more frequent,
and moreover, an IDH1 mutation strongly increases the rate of a TP53 mutation, explaining why
so many IDH1(M) positive glioblastoma were also positive for TP53(M). While both scenarios
explain the noisy subset pattern, they disagree with respect to the chronological order of events. In
(1) the TP53 mutation precedes the IDH1 mutation, while in (2) the events occur in reverse order.
MHN decided for explanation (2) and is endorsed by independent data from consecutive biopsies
(Watanabe et al., 2009). Where in the training data was the evidence in favour of (2)? We found
it in the four IDH1(M) positive / TP53(M) negative cases (Fig. 5A, purple). All of them had at
most one mutation in addition to IDH1(M), which is in line with (2) but not with (1).

In summary, we introduced a new, very flexible framework for tumour progression modelling
that naturally accounts for cyclic interactions between events.
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