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ABSTRACT

Pedestrian Dead Reckoning (PDR) plays an important role in many (hybrid) in-
door positioning systems since it enables frequent, granular position updates. How-
ever, the accumulation of errors creates a need for external error correction. In this
work, we explore the limits of PDR under realistic conditions using our graph-based
system as an example. For this purpose, we collect sensor data while the user per-
forms an actual navigation task using a navigation application on a smartphone. To
assess the localisation performance, we introduce a task-oriented metric based on
the idea of landmark navigation: instead of specifying the error metrically, we mea-
sure the ability to determine the correct segment of an indoor route, which in turn
enables the navigation system to give correct instructions. We conduct offline simu-
lations with the collected data in order to identify situations where position tracking
fails and explore different options how to mitigate the issues, e.g. through detection
of special features along the user’s path or through additional sensors. Our results
show that the magnetic compass is often unreliable under realistic conditions and
that resetting the position at strategically chosen decision points significantly im-
proves positioning accuracy.

KEYWORDS
Pedestrian Navigation, Indoor User Localisation, Inertial Navigation,
Map-Matching

1. Introduction

Indoor positioning for pedestrian navigation is still an open problem as no positioning
system that delivers absolute — such as GPS — coordinates is available. Many solu-
tions providing precise (sub meter) localisation require additional technical devices
(Guo et al. 2015; Pham and Suh 2016; Romanovas et al. 2013). However, they are not
at disposal in everyday life situations at which pedestrian navigation systems target.
Technically simpler solutions use sensors that come with every smartphone, such as
accelerometers, gyroscopes, and step counters (Basso, Frigo, and Giorgi 2015; Verma
et al. 2016). Such approaches provide relative positioning data, and often suffer from
cold start problems (Harle 2013). In the remainder of this section, we discuss system-
atic issues that limit the capability of smartphone sensors to reliably estimate indoor
positions even after a series of sensor updates. Furthermore, we identify the fact that
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(a) Step trajectories (magenta and blue) influ- (b) Step length errors often lead to missed cor-
enced by magnetic field bias. Actual route in ners. Red pluses denote position updates in the
green. wrong area.

Figure 1. Different types of bias that limit indoor positioning.

users — as opposed to technical devices that navigate autonomously in physical spaces
— have to cooperate with a navigation system and thereby perform activities that can-
not be observed directly as a source for noisy indoor positioning.

1.1. Limits of PDR-based Indoor Localisation

As will be detailed in Sec. 2, it is common to apply inertial sensors to localise users
in smartphone-based navigation systems for everyday usage. Unfortunately, magnetic
and electrostatic fields cause noisy data and thereby limit the quality of measurements.
The graphic in Fig. 1(a) illustrates the limit caused by magnetic bias. The graphic
shows two extreme logs: although in both cases the test person walked on the green
line, the smartphone’s orientation sensor computes wrong data from which the actual
orientation of the test person cannot be reconstructed. Furthermore, the geometry of
the green line is hardly recognisable.

The graphic in Fig. 1(b) illustrates the limit of step length. The test person walks
along the corridor — each step is represented by a red dot. At the corner, the person
turns to the right. However, as the smartphone estimated the step length incorrectly,
the indoor positioning system assumes the test person to still walk straight on although
the turn has already been completed (red pluses).

Solutions based on WiFi receivers can compute absolute coordinates of an area in
which a user is located. Therefore, they are useful for observing positions, but fail in
tracking a user’s movement precisely (Waqar, Chen, and Vardy 2016). In fact, with a
standard smartphone WiFi signal updates are slow and often noisy due to unknown



conditions of the physical environment. As a consequence, small movements of a walk-
ing person are hard to detect reliably. Detecting large movements only leads to a huge
lag in tracking movements as illustrated in Fig. 3(b) (see the yellow line). Further typ-
ical types of movements a walking person performs regularly such as turning around
a corner cannot be observed directly as the physical principle of estimating positions
using radio signals does not allow for it.

Combining sensors for movement and position could — in conclusion — improve the
quality of indoor positioning. In fact, as the green line in Fig. 3(b) indicates, this is
true, but only to a certain degree. The limit of delay still prevents higher accuracy.
In buildings with many corners, this limit may pose an additional problem to any
positioning algorithm: In the context of pedestrian navigation we are investigating
in this paper, unreliable position data leads to ambiguous interpretations. Navigation
systems assist users to walk along a route calculated earlier and runs into trouble if
position data is uncertain resulting in high probabilities that the system assumes users
to take paths they actually have not taken.

From such misinterpretations, severe confusions may arise that are well-known even
in outdoor areas. Using a navigation system as a pedestrian in a historic city cen-
tre is often frustrating as the system receives wrong or even no GPS updates and
in consequence locates users at wrong positions and computes erroneous navigation
instructions that users are unable to understand.

Given this situation, we are convinced that — even if in the last years many re-
searchers worked on this topic — it is still worth new research efforts. Actually, they
seem even to be mandatory for building indoor navigation systems that can provide
reliable assistance to their users.

1.2. Tracking Activities of Pedestrians

Experience gained in the last years shows that — due to the limits described above — in-
creasing the accuracy of state-of-the-art indoor positioning algorithms for smartphone
users (which we focus on in this paper) with more data only will hardly result in suf-
ficiently small error rates. Although — as Waqar, Chen, and Vardy (2016) point out —
the mentioned state-of-the-art approaches can advantageously be used to implement
indoor positioning rapidly at any location that provides the necessary infrastructure,
more context information is necessary to overcome the limits described above.

For navigation systems, such context information can be derived from the calculated
path to a target and the activities that persons have to perform in order to reach the
target. In fact, it is just these activities that have to be observed — either directly or
indirectly by calculating a sequence of position estimates.

We address exactly this issue and describe an approach that models spatial knowl-
edge for routes with an indoor navigation graph (see Fig. 2 as an example). The graph
contains all routing decisions and path segments between any two arbitrary locations
in an indoor/outdoor environment. Our algorithm for tracking the activities of pedes-
trians snaps position updates from smartphone sensors to particular edges of the graph
while they are navigated along a route calculated in advance. Position updates are
computed using PDR based on a Step and Heading System (SHS) approach. Typical
activities of pedestrians are:

e walking straight ahead
e turning left/right
e walking upstairs/downstairs
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Figure 2. Indoor navigation graph in one of the test areas. Main edges used for localisation are shown as
thick lines. Notice the mesh-like topology in larger open areas.
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e going up/down in an elevator
e taking an escalator uphill/downhill

In this work, we explore to what degree the activities of walking straight ahead, turning
left, and turning right can be observed with a standard SHS approach. We identify
situations of different accuracy rates and argue that each activity needs a particular
classifier in order to increase the overall accuracy of indoor positioning.

1.3. Tracking Pedestrians on a Navigation Route

In order to observe activities with a standard SHS approach we map each activity
on the area that has to be traversed in order to complete it. In other words, to each
activity during a navigation task, there exists

(1) a corresponding navigation instruction and
(2) an area in which the activity takes place.

Therefore, we segment a complete route according to the navigation instructions cal-
culated by the route planner of our system into a single area for each instruction and
observe the corresponding activity by mapping position updates onto the area. In or-
der to be able to evaluate the success of the approach, we introduce the area match
score as a new metric for indoor positioning: we calculate the probability of a posi-
tion update to fall into the area corresponding to the area for the current navigation
instruction. In this way, we establish a task-based concept of context for indoor posi-
tioning that has the potential to overcome the limits described above.

For the evaluation, we have collected a large corpus of indoor data under realistic
conditions: test persons had to walk on routes of roughly 800 m containing all types of
activities several times and show quite different architectural characteristics. There-
fore, the routes are typical for real world applications and avoid memory biases that
could influence the walking (and information) behaviour of the test persons.



From results of the analysis, we conclude that effective positioning algorithms for
pedestrian navigation must be able to apply different techniques for sensing the user’s
environment in order to correctly track the user activities during a navigation process.

1.4. Structure of the Paper

In this paper, we first report the relevant state of the art, then we explain how we re-
late landmark-based navigation and indoor positioning and develop our mathematical
model for the posed problem. Next, we present three empirical evaluations for navi-
gation tasks that required test persons to walk on indoor routes of varying complex-
ity across several buildings on the campus of our university. Finally, we discuss the
obtained results in the light of our task-based performance metric. We analyse lim-
itations of the approach and derive relevant issues of future work from the insights
obtained from the evaluation.

2. State of the Art in Indoor Positioning

As already mentioned, many localisation techniques based on different types of sensors
have been proposed for pedestrian indoor navigation systems and indoor positioning
in a broader sense. Despite all these research efforts, there is still no technology es-
tablished as a widely accepted state of the art similarly to GPS for outdoor areas. In
particular, published research results — the most recent ones (e.g. from the last IPIN
conference) will be discussed below — are based on data collected in short-distance and
short-time experiments and therefore do not reflect typical characteristics of realistic
indoor applications such as trying to reach a target in large buildings such as airports
or train stations, visiting a museum, or searching an office in a multi-level building.
Therefore, in order to build up a corpus containing more complex data we conducted
a series of experiments that will be described in detail in a later section.

As our work is focused on positioning algorithms that assist users in everyday nav-
igation tasks and may not need sensors beyond those available in a standard smart-
phone, the following review of the state of the art on PDR leaves aside more exotic
approaches that require special sensors or hardware.

WiFi-based indoor localisation can be widely deployed in modern buildings where a
sufficient WiFi infrastructure is usually available, but suffers from multiple problems,
as Davidson and Piché (2016) point out: Creation and maintenance of radio maps is
time consuming and therefore expensive. A low scan rate on current smartphones leads
to disjointed position estimates. Furthermore, device heterogeneity, influence of the
smartphone’s orientation, and the attenuation of signals by humans are identified as
disadvantages. Due to these issues, WiFi-based systems generally achieve an accuracy
of at most a few meters and are suited to determine the approximate position, but not
for continuous tracking.

Our own findings confirm these claims: Figure 3(a) shows some of the results from an
earlier study, where the location reported by Fraunhofer’s WiFi-based awiloc system! is
wandering around in an indoor area even if the test person is not moving. Consequently,
the RMSE of the position reaches up to 5 meters. Even more problems arise when
the test person is moving (an example can be seen in Fig. 3(b)), where the location
updates usually are lagging behind and do not match the path that was actually taken.

Thttps://www.iis.fraunhofer.de/en/ff/1v /lok /tech /feldstaerke/rssi/tl.html
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(a) Result of a previous WiFi study
in an indoor area using Fraunhofer’s
awiloc. While standing still at the po-
sitions indicated in red, the reported
locations (coloured dots) are scattered
around the area with a root mean
square error between 2.1 and 5.0 m.
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(b) Result of a previous WiFi study in
an indoor area using Fraunhofer’s aw-
iloc. The position reported by awiloc
(yellow) follows the ground truth (red,
from bottom to top) very loosely, if at
all. Only by fusing step detection data
with a Kalman filter (green) the actual

trajectory can be approximated.

Figure 3. Performance of WiFi signals in indoor positioning tasks.

On the other hand, Bluetooth Low Energy (BLE) beacons as another wireless lo-
calisation technique are designed to be more accurate, but are far less widespread and
therefore more expensive to deploy. In particular, as they are mounted at fixed posi-
tions and send signals over a small distance only, persons could be tracked continuously
only if beacons were mounted along all paths persons can walk on.

A recent development for getting an rough estimate of the user’s position bases on
sending a sound signal via the smartphone’s loudspeaker and recording it immedi-
ately with the microphone. Rooms have particular acoustic characteristics that can be
recognised to identify in which room out of a set of trained rooms the smartphone is
currently located (see Rossi et al. 2013).

Both BLE and acoustic approaches are examples for zone-based localisation ap-
proaches: their aim is to identify positions in a rough approximation of an existing
physical space instead of tracking user activities as we intend to do. To the best of our
knowledge, there is no evidence that with these approaches user activities taking place
in a very limited space may be observed reliably. For example, while it is possible to
detect that a user is positioned in a foyer, it is hard to observe that he is turning right
in this foyer in order to reach the door of an elevator. Consequently, zone accuracy
as presented e.g. in Pulkkinen and Verwijnen (2015) has to be distinguished from our
area match score: while for zone accuracy it is sufficient to locate the user in a certain
zone, for the area match score, the same observation is necessary, but not sufficient
as e.g. a right turn in the foyer, and in particular in front of the elevator door has to
be detected if this activity is currently expected by the navigation system to continue
on a computed route. Additionally, we want to note that the turn to the right may
be detected by other approaches than computing a sequence of several small position
changes and then reconstructing the turn from some kind of interpolation of the posi-



tion updates. For example, the accelerometer of the smartphone could help to detect
a rotation that is expected for a turn.

In summary, several approaches exist that provide a rough estimate of the user’s cur-
rent position, but not of the user’s movement. A notable exception for moving up/down
is the SemanticSLAM algorithm described in Abdelnasser et al. (2016). However, users
also perform other activities. For their recognition in a hybrid approach, correspon-
dences between activities, positions, and areas can be exploited to collect redundant
data reliably. Later in this paper, we will provide empirical evidence that redundant
data is actually necessary as data of a single sensor often leads to ambiguous interpre-
tations (see the discussion in Sec. 1.1).

Still the most important approach for PDR is a variant of so-called Step and Head-
ing Systems, that detect the user’s steps and try to estimate their length and direction
(Harle 2013). Step detection on smartphones is historically achieved through the ac-
celerometer using various techniques (see Susi, Renaudin, and Lachapelle 2013; Muro-
de-la Herran, Garcia-Zapirain, and Mendez-Zorrilla 2014; Sprager and Juric 2015).
Lately, dedicated step detector sensors are available in more and more devices. The
heading can be inferred from the magnetic compass and gyroscope of smartphones,
while step lengths can be either assumed as fixed or dynamic, e.g. based on the fre-
quency (Harle 2013).

A further limit of PDR is the need for an initial position from which the relative
positioning can start as SHS by their nature cannot compute absolute positions. Fur-
thermore, the positioning error increases over time due to noisy sensor data. Given
both of these problems either error correction through external sensors or an algorithm
that matches the sensor data to a final position estimate are necessary to employ dead
reckoning for more complex tasks such a navigating a user or other location-based ser-
vices.

As in our work external sensors should be avoided, matching algorithms that pro-
vide context information are the only option to address the PDR limits. Context
information is often provided in terms of maps, which in turn are often represented
as discrete graphs (see e.g. Thrun, Burgard, and Fox 2005) and have been used suc-
cessfully to locate robots in complex environments. For pedestrian indoor localisation,
graph models of the environment were first introduced by Liao et al. (2003) in com-
bination with the particle filtering method in order to make position estimation more
robust and efficient. Since then, other researchers have adapted and improved this ap-
proach (e.g. by adding multiple sensor modalities): the system recently presented by
Hilsenbeck et al. (2014) is operating on a graph generated from a 3D model of the
environment. Herrera et al. (2014) use existing material from OpenStreetMap and en-
rich it with information about the indoor areas of a building. A similar approach is
taken by Link et al. (2013), who use sequence alignment algorithms to match detected
steps with the expected route. Ebner et al. (2015) generate a densely connected graph
from the floor plan of a building. All these approaches have in common that creating
a map is either time consuming or expensive (due to the need for special hardware)
or relies on existing data. Furthermore, normally the resulting graphs do not contain
any information besides the geometry of the building, making them unsuitable to use
as data source for the path planner of a navigation system.

In our approach instead, we use graphs that represent all activities a user can
perform in a given physical environment and contain information where these activities
can be executed. The main advantage is — as already outlined in the discussion of BLE
above — that we now can observe activities indirectly by reconstructing them from
position updates — thereby reducing the impact of noise —, or directly by other sensing



strategies, or using hybrid approaches that fuse data from several sources.

Particle filtering has become the de facto standard for hybrid localisation systems
that combine PDR and additional sensors, with many improvements proposed since its
introduction. Most prominent among them is the Backtracking Particle Filter (Klepal,
Beauregard et al. 2008; Beauregard, Klepal et al. 2008), which is particularly suited to
generate smooth and coherent trajectories when calculations can be performed offline,
but provides little or even no advantage in real-time scenarios. It does however serve as
an example for map-matching that is not based on a graph structure, but on the actual
floor plans. Compared to the graph-based systems described above, the environment
can be represented more faithfully, with the downside of higher computational cost.

As far as the evaluation of indoor positioning is concerned, the state of the art can be
surveyed best by looking at recent competitions that aim to compare the performance
of indoor positioning systems. Held regularly, they provide an opportunity to gain
insights into established evaluation methods. Potorti et al. (2015) report the results of
the EvAAL-ETRI competition held in conjunction with the IPIN 2015 conference. To
assess the error of the participating systems, they add a penalty for wrongly detected
floors or buildings to the actual positioning error. The final ranking is determined by
the 75% quantile of the resulting errors. In their evaluation of the 2015 EvAAL-ETRI
WiFi fingerprinting competition, Torres-Sospedra et al. (2017a) rank the competitors
by the mean positioning error, which is also used by Lymberopoulos et al. (2015) for
the participants of the 2014 Microsoft Indoor Localization Challenge. Interestingly
however, they remark that the mean error or other commonly used metrics do not
represent the performance of a system in its entirety. We follow this assessment and
argue for a task-oriented view on the performance of a positioning approach that we
introduce below.

Sensor data for the IPIN 2016 offline competition was collected by an actor walking
along a predefined path as closely as possible, stopping at certain points to mark the
ground truth (Torres-Sospedra et al. 2017b). For the offline competition at IPIN 2017,
a few variations of carrying the device, e.g. by simulating a phone call, were added
(Torres-Sospedra et al. 2018). In recent Microsoft Indoor Localization Challenges, only
static locations were evaluated (Lymberopoulos and Liu 2017).

To our knowledge, none of the existing studies actually create a realistic scenario for
the intended application context, i.e. in our specific case a navigation task in an area
that is (at least partially) unfamiliar to the test person. The methodology presented
by De La Osa et al. (2016) aims at real-life use cases, but still relies on a tester who
can identify checkpoints on a predefined path.

3. Landmark-based Navigation

In the following section, we give an overview of the navigation system we use in the
experiments that we discuss later in the paper. In particular, we describe how the
graph model relates to areas and corresponding activities of indoor routes. Based on
this description, we then introduce the particle filter implementation that forms the
core of our indoor positioning approach.

3.1. Data Model

Fig. 2 visualises our data model that we call indoor navigation graph. It is used for com-
puting routes, generating navigation instructions, and indoor positioning (see Miiller



et al. 2017 for details). In order to be able to serve these three purposes, it formalises
knowledge about activities pedestrians perform in the physical environment. All pos-
sible activities (see Sect. 1.2) are represented as edges in the graph, while the nodes
represent locations where these activities can take place. In particular, source nodes of
edges represent the location where an activity can start, and sink nodes are used for
the location pedestrians are expected to reach after they have completed the activity
successfully. The edge is typed by a unique activity out of the list above and indicates
which kind of movement is to be expected next. In this way, we could potentially train
classifiers for each edge type.

Furthermore, the graph contains nodes for objects pedestrians can observe in the
environment (so-called landmarks). They are used to segment a route into areas. One
navigation instruction is computed for each area. While navigating a user, the system
has to keep track whether the user has completed the current activity as requested
in the current navigation instruction. Following this approach, for locating the user it
is sufficient to know that the user is close to a landmark (e.g. a door at the end of
a corridor or a certain cloth shop in a shopping mall) as human users are capable to
approach the landmark autonomously, i.e. a pedestrian can walk to a distant object
without continuous technical assistance while a robot cannot. Therefore, the mean
positioning error — while being definitely of interest for building autonomous systems
that can navigate in indoor environments (e.g. robots for ambient assisted living) — for
the implementation of many location-based services it is an inappropriate performance
metric. Consequently, the precision of indoor positioning for pedestrian navigation
systems should be measured in terms of the degree to which the current task-related
activity is completed instead of in meters in a coordinate system that the user cannot
even perceive (see e.g. Ohm, Miiller, and Ludwig 2015).

At this point, we can state one major contribution of the present paper. We pro-
pose an approach to combine a graph-like representation of an environment with the
minimally necessary metric information to correctly align the data computed by a
SHS in the graph in order to assign the user’s position to more easily perceivable
objects in the environment which we call areas or landmarks depending on whether
we refer to a part of a path the user should walk on or a relevant object the user can
perceive in the environment. An example can be seen in Figure 4, which shows part
of a corridor as an area consisting of a several adjacent edges. In Figure 5 a typical
landmark is displayed: the billboard shown on the map is also referred to in the navi-
gation instruction. This approach for an indoor navigation system shares similarities
with other work (in particular Link et al. 2013). As a new contribution, we introduce
the concepts of areas and the area match score that link indoor positioning based
on SHS with landmark-based navigation (see Sect. 3.2). By doing this, we relax per-
formance requirements for positioning algorithms as we no longer need to optimise the
metric errors at any time of the navigation process. Instead, it is sufficient to iden-
tify the correct area a user is currently walking on: given the current area, the system
can generate a navigation instruction that incorporates a landmark easily perceivable
from the estimated position of the user.

In a similar fashion, Pulkkinen and Verwijnen (2015) remark that for certain appli-
cations it is more important to reliably identify the room where a person or object is
located than to know the exact position. They therefore introduce zone/cell accuracy,
operationalised e.g. as the classification error. Our approach, in contrast, does not rely
on predefined, static zones derived from the building geometry, but generates its areas
dynamically depending on the planned route and the available landmarks. In other
words, our areas are not necessarily tied to the building layout but rather temporarily
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Figure 4. User interface of the data Figure 5. Example of a landmark-
collection app for the initial study. The based navigation instruction.

current area is highlighted in light red.

partition the space in a way that relates to the current navigation task.

As stated above, for landmark-based navigation it is crucial to give navigation
instructions at the right time in order not to confuse users and to guarantee good
usability as well as reaching the destination. A navigation instruction is given at the
right time if it does not refer to any landmark that is not yet visible from the user’s
current position or that the user has already passed. As a consequence, for indoor
positioning the main difference to zone accuracy lies in the fact that the positioning
algorithm has to determine whether the user is close to the landmark and can switch
to the next instruction. Mostly, this task is much easier than continuously determining
the exact position.

For the effort to create indoor navigation graphs, we note that it is impossible to
extract all the information about decision points and likely taken paths algorithmically,
especially when working with imprecise or outdated plans. The data we need goes
beyond what is contained in automatically generated topological building models (e.g.
Hilsenbeck et al. 2014). While there is no doubt that the automatic generation of
models for indoor environments will see much progress in the future — in particular
due to the application of modern machine learning techniques —, this issue is not
in the focus of our work. Instead, by entering the information intellectually and —
if needed — on-site, we can achieve a higher similarity between model geometry and
actual trajectory. In summary, the system relies on a single data model for routing,
instruction generation, and localisation that allows us to minimise the effort needed
for map creation and maintenance.

10



3.2. Graph-based Localisation

In order to give the correct instructions at any time, the user’s relative position to-
wards landmarks referred to in navigation instructions needs to be known. Our indoor
positioning algorithm computes this position by mapping sensor data to areas in the
indoor navigation graph. For this mapping, we implemented a recursive stochastic fil-
ter that after each measurement assigns a probability to each area proportional to the
likelihood of the user to currently walk on a certain area.

The filter is implemented as a particle filter (see Thrun, Burgard, and Fox 2005).
This family of algorithms represents a probability distribution by means of a represen-
tative sample, a set of so called particles. Around the expected position the number
of particles is high while elsewhere it is low according to the small probability mass.
Using a sampling and resampling strategy the set of particles is updated after each
measurement in order incorporate the new information (see Thrun, Burgard, and Fox
2005 for details): far away from the expected position the particles diminish while new
ones are generated for positions with high probability mass. Our implementation can
also incorporate input from multiple sensors such as detected steps or WiFi signals
in order to implement the advocated hybrid approach for indoor positioning. Further-
more, information contained in the indoor navigation graph stabilises and corrects the
position estimates as many constraints for the user’s current location can be derived
from the graph structure (in particular invalid positions receive probability zero while
in standard SHS approaches the same locations are possible positions).

The implementation does not rely on a particular sensor technology or SHS algo-
rithm, but only assumes to receive vectors that quantify the step length and direction
of a pedestrian’s movement. In fact, we do not perform any low-level sensor fusion or
step detection based on raw sensor values. In order to investigate the influence of the
precision of the SHS on our approach, we compared two different algorithms:

e motionDNA by Navisens
The motionDNA SDK by Navisens is a well-known commercial state-of-the-art
motion tracking solution. According to the company’s website?, it relies on iner-
tial sensors only and does not need any external infrastructure to operate. The
sensor readings are updated with a rate of 24 Hz on our test device and include
a variety of information such as the user’s activity and the device orientation
and position. For this study, only the position information (relative to the initial
position, measured in meters in X and Y direction) is used.

e Android’s built-in sensors
On recent devices, the Android framework gives access to many sensors that can
be used for motion tracking. The step detection sensor tells us whenever a step
occurs. Since it does not provide a step length, we initially use a fixed length
and later use the particle filter to adapt to the user. Under the assumption that
the user orients the smartphone roughly in his walking direction, the average
orientation during the step as provided by the rotation vector sensor is used
as step direction. Though this may seem like a strong assumption, we show
empirical evidence later on that in the targeted scenario pedestrians tend to
carry their device in exactly that way most of the time.

In Fig. 6 the data computed by each of both algorithms for a single walk on the
test route of the initial study is plotted into the map of the building. Many position

2https://navisens.com
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Figure 6. The trajectories of both motionDNA (blue) and raw step data (green) of a typical walk along the
test route of the initial study. Ground truth (starting top left, then clockwise) and the boundaries of the areas
defined for the evaluation experiment are drawn in red.

estimates are far off the route. This observation illustrates that information about
the environment is indispensable for the position estimates to be used in an indoor
navigation system.

In order to map SHS estimates to the indoor navigation graph, we apply the de-
scribed particle filter. Initially, the probability is distributed uniformly over all edges.
If information about the start position is available, e. g. during a navigation task, we
use a normal distribution centred around the start node instead to sample the initial
particle set.

Whenever a step is detected, a Gaussian naive Bayesian classifier updates the prob-
ability distribution for the edges starting in the current node. The update takes the
motion model for the user (i.e. the distance and direction of the detected step) and
the orientation of the considered edges into account. The probability of the user to
walk on an edge increases if this edge is parallel to the direction detected by the SHS.
The increment for an edge not parallel to the detected direction decreases proportion-
ally to the angle between the direction and the orientation of the edge.

Unlike other approaches, the algorithm does not immediately select the edge with
the highest probability as the current position estimate. Instead, it updates the set of
particles each of which represents a different hypothesis for the user’s current position.
A similar approach has been successfully applied to localisation in robotics (see Thrun,
Burgard, and Fox 2005) and allows to

e account for noise in the SHS data, which may stem from the rotation vector
sensor (or rather the underlying magnetic compass) or the way the device is
held in the hand,

e account for differences in step length while a person is walking, and

e account for different step lengths of different users.

More formally, each particle’s state is defined by the vector {ny, d, e;}, where n; de-
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notes the starting node at time ¢, d; the distance walked since leaving the node, and e,
a discrete probability distribution for the edges adjacent to the node. On every step,
the state is updated according to

{ne, di, et} ~ p(ne, di, e¢|ne—1, de—1, €—1, 204, 214, G), (1)

where zp; and z;; are the measured step direction and length, and G is a indoor navi-
gation graph. Applying the procedure detailed in Hilsenbeck et al. (2014), the update
rule can be decomposed to its independent parts. The noisy step length measurement
with the empirically determined variance 012 is modelled by

L ~ p(lelz1) ~ N (a0, 07), (2)
leading to the updated cumulative step distance of
dp ~ dyy + 1y 3)
Similarly, the step direction is updated by
O ~ p(0¢]20.4) ~ N (2,4, 0%) (4)
and subsequently used to determine the new edge distribution:
ei ~ P(eﬂei—b O, G) ~ N(At‘)fé,oﬁ) * 6%—1 (5)

Here, e} denotes the probability of the user to currently walk on the i-th edge adjacent
to the current node and A#; the angle difference between the step and the i-th edge.
Finally, the decision whether the user has completed an edge and moved to the next
is formalised as:
no if d; <length(e) A e = argmax;(e;) ()
Nny n~
yes if d; > length(e) A e = argmax;(et),

i. e. whenever d; exceeds the length of the currently most probable edge e. In this case
the starting node has to be updated: n; is set to the sink node of the previous edge
and d; is reset to zero. Since the walked distance usually does not align exactly with
the edge length, the difference is added to the position estimate and the step bias is
reinitialised to N (2, al2) as the prior distribution for the new current edge e;.

After the update step, the particle importance weights are distributed according to
the non-normalised probability of the most probable of all adjacent edges:

W = wi—1 * p(21¢, 2.4 |Ne) ~ w1 * mlfch(et) (7)

Finally, stochastic universal sampling is performed, which guarantees low variance
and a representation of the samples in the new particle distribution that is proportional
to their importance weights (see Thrun, Burgard, and Fox 2005 for further details).

In order to estimate the user’s position, the expected value of the particle distribu-
tion is calculated. From there, the closest point that is located on either an edge or a
node of the graph is computed as the final position estimate. This snap to the indoor
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navigation graph ensures that the position estimate is a location that is accessible to
the user and — differently to the pure SHS algorithms — prevents the positioning algo-
rithm to assume impossible movements, e.g. through walls.

4. Task-Oriented Evaluation

As stated above, a central objective of our work is to observe the activities of users
in the context of navigation tasks. As these activities correspond to certain traces
of movements that can be observed by state-of-the-art sensors, we can exploit this
dualism for activity recognition. In practice however, as we also noted above, the
state of the art of tracking movements is still imperfect. One reason for this — and
therefore a chance for improving the accuracy — may be the fact that currently for
indoor positioning all existing approaches use one single algorithm even if the physical
models underlying the different kinds of movements actually suggest that for each
kind of movement a particularly suited algorithm could be appropriate. While this
observation is obvious for walking upstairs compared to walking straight ahead in a
plain space, in indoor positioning a distinction has never been made e.g. between
classifying raw data into walking straight ahead and turning right. However, as research
in biology and medical engineering suggests (see Novak et al. 2014; Nandikolla et al.
2017; Hase and Stein 1999; Sreenivasa et al. 2008), it could well be worth to train a
different classifier for each type of movement.

As a first step in this direction, we wanted to analyse realistic data whether posi-
tioning errors of a state of the art-SHS-approach can be better explained if one knows
the expected type of movement. It could, for example, to true that on average SHS-
approaches perform well if users walk straight ahead, but could fail quite often to
detect users to turn aside.

Therefore, in order to explain the limits of PDR-based indoor positioning systems,
we have conducted three studies so far. In this section, we will describe each of them
in detail and reveal typical situation in which the accuracy of indoor positioning is
low.

The first study introduces the concept of task-oriented evaluation and the area
match score, while in the second experiment we collected and analysed data under
realistic conditions for everyday navigation scenarios. In the third study, we collected
and evaluated new data, taking the lessons learned from the previous studies into
account.

4.1. Study 1: Applying the Area Match Score

The purpose of the initial study is to demonstrate the benefits of a task-oriented
performance metric that shows how well the correct area on a route can be determined
by the localisation system, which — as noted above — is a requirement for correct
navigation instructions and for successful navigation in general. From the pedestrian’s
perspective, the concept of area-wise navigation instructions and the area match as an
estimate of the pedestrian’s performance result in minimising the cognitive workload
necessary for aided wayfinding.

The second purpose of this study is to identify contexts and situations during a
navigation task that point to problematic areas and to propose ways to mitigate the
revealed issues.
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Figure 7. Detailed view of the results for a single walk on the second half of route 1 of study 3. Green dots
denote successful position estimates; red dots represent estimates that are located in the wrong area or too far
away from the route.

4.1.1.  Setup

Based on the mathematical model introduced in Sect. 3.2, after each sensor data
update t our indoor positioning algorithm predicts the user’s current position p;. If
and only if the distance between p; and the spline interpolating all nodes of the current
area is sufficiently small, p, matches this area (see Fig. 7). The user is now assumed to
execute the activity corresponding to the calculated area. For this choice to be perfect,
i.e. to be always correct, users have to walk exactly on the spline, and the sensor data
has to precisely observe this movement.

To collect data for an evaluation of the implemented indoor positioning algorithm,
we conducted an empirical study in the ground floor in an university building. There,
we defined a test route spanning 182 meters. The route leads through 4 corridors in a
rectangular shape. Three of the corners are modelled as small foyers (see Fig. 2). The
only obstacles on the route are several glass doors that had to be passed in order to
reach the destination of the route.

The route was segmented into areas as described in Sect. 1.3. Their boundaries
were set at positions where semantically relevant objects — i.e. salient landmarks — are
located. For determining salient landmarks along the route, we followed the approach
described in Kattenbeck (2016): 19 persons rated 32 objects in the test area regarding
different aspects of their salience. We selected the objects with the highest predicted
overall salience as landmarks for the navigation instructions in our experiment. These
landmarks included e.g. a glass cabinet, a wall painting, a bench and a sign for the
department of psychology. Additionally, architectural features such as the aforemen-
tioned glass doors or the beginning and end of foyers were used to segment the route
into areas. For each area, we formulated a navigation instruction that should explain
to the test persons how to proceed the route. Finally, the route consisted of fourteen
areas of varying size (see Fig. 6). The main factor that influences the size of the areas
is the visibility of the landmark at their end: some can be referenced unambiguously
from further away, while for others one has to be closer, thus causing smaller areas.

4.1.2.  Procedure
Acquisition of Positioning Data

Starting from a defined position, 7 different persons who were familiar with the area
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and the landmarks performed a total of 15 walks along the test route. Data collection
took place over the course of several days, with an LG Nexus 5X running Android 7.1.2
as the test device. Before each test run, the compass was calibrated and its proper
functionality was verified. During the experiment, the phone was held in the hand in
front of the body, pointing in the direction the person was heading toward.

For data collection, a custom Android application was developed. It is able to cap-
ture data from various sensors of the device:

e Steps detected by the built-in Android step detection sensor.

e Orientation data from Android’s rotation vector sensor, which in turn fuses mag-
netometer, accelerometer and gyroscope readings.

e Data from Navisens’ motionDNA SDK. First and foremost, this includes the
relative position, but also heading direction, orientation of the device, as well as
detected user activity.

e The signal strength of nearby WiFi access points (not used in this study).

e A video recording of the device’s back-facing camera, capturing the test person’s
feet and the area immediately in front of them.

The app’s user interface consists of a map of the test area and a single button that
allows the user to start the test run. At the beginning of each test run, the indoor
positioning system is initialised on the starting node of the test route. Next, the first
area to traverse is highlighted on the map and the corresponding navigation instruction
is displayed. Each time a test person reaches the landmark related to the instruction,
he or she has to press the button in order to set the ground truth for the transition
between two adjacent areas. Finally, the interface is updated with information for the
next area on the route. This procedure is repeated for each area of the chosen route.

Validation of the Collected Data

With this experimental setup, we collected sensor data for the test route and a ground
truth labelled by experts in a single run of the experiment. As all test persons were
instructed before the experiments how to label the ground truth, the data sample is
valid for mathematical analyses.

In order to verify whether the collected samples were representative for average
persons walking straight ahead, several gait characteristics were calculated:

e The mean gait speed during a walk can easily be determined by the quotient
of route length and the time needed to complete the route, measured by the
difference of timestamps between last and first step. The result is a mean speed
of 1.30 m/s (SD = 0.14 m/s), which is well within the margin reported by
Bohannon and Williams Andrews (2011).

e In order to calculate the step length, the steps are counted manually for each
walk by means of the recorded video, revealing that Android’s step detector
misses about 5.8% of steps on average.

e The mean step length amounts to 0.73 m (SD = 0.077 m), which is classified as
fast gait according to the study from Oberg, Karsznia, and Oberg (1993). This
can be explained by the fact that the test persons knew the area and the route
very well.

In summary, the collected data is representative for the activities of humans during
the pedestrian navigation processes we want to analyse.

16



4.1.8.  Analysis of the Collected Data

The analysis of the raw data shows — quite expectedly — that the error quickly accu-
mulates, leading to a high mean location error of 11.5 m (Android sensors) respectively
12.0 m (motionDNA). Figure 6 shows the trajectories of a typical walk. Navisens’
motionDNA often struggles with substantial drift towards the left early on, but other-
wise manages to track the overall shape quite well. The version relying on the Android
step counter usually shows drifts in different directions throughout the walk due to
the lack of correction. Additionally, the reported distances differ between the track-
ing methods: motionDNA’s paths are usually shorter (M = 174.1 m, SD = 15.37 m),
Android’s longer (M = 189.4 m, SD = 16.49 m) than the ground truth of 182.0 meters.

Before the motionDNA data could be used as input to the particle filter, some
preprocessing was inevitable: Since the update frequency of about 20Hz was rather
high (about an order of magnitude higher than the step frequency), the data was split
in batches of ten measurements that were treated as a single step. In two of the 15
recorded walks, the relative location reported by motionDNA unexpectedly was set
back to the starting point of the route. Therefore, the area in which the reset occurred
was eliminated from the data set.

4.1.4. Results

Since it was not feasible to run both Navisens’ and our indoor localisation implemen-
tation at the same time on one device, we processed the collected data in an offline
simulation of our indoor positioning algorithm.

In order to extend the data set, sensor data from each actual walk was used multiple
times with different initial random seeds for the particle filter, resulting in 10 iterations
for motionDNA and the Android sensors, respectively.

The extended data set was used for the evaluation of the implemented algorithm.
In the remainder of this section, we present our evaluation results and discuss their
impact on the appropriateness of the proposed area match score for localising users
during indoor navigation.

Accuracy Metrics for the Sensor Data

Figure 8 shows a comparison of the two motion tracking solutions regarding their
positioning accuracy, i. e. the distance from estimated position to ground truth, after
their raw data has been processed by the particle filter.

The mean and median error of motionDNA amount to 7.02 and 4.28 meters respec-
tively, while the Android sensors lead to an accuracy of 4.39 (mean) and 2.60 (median)
meters. This performance gap is likely caused by two factors:

e The drift at the beginning that motionDNA often suffers from is propagated
throughout the whole walk, causing a mismatch between step directions and the
graph edges.

e Open spaces at the ends of the corridors allow for some overshooting, which
benefits the approach using Android sensors and its slightly longer steps. The too
short distance reported by motionDNA however can often not be compensated
by the particle filter.

Analysis of the Area Match Score

On average, 60.6% (motionDNA) resp. 74.7% (Android sensors) of position updates
are assigned to the correct area. Figure 9 visualises the area match score for each area
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Figure 8. Empirical cumulative distribution function showing the accuracy with the two different motion
tracking methods.

on the route. Obviously, the choice of the SHS influences the overall performance of
our positioning algorithm. It cannot repair arbitrary errors of the SHS as positions
too far away from any edge and directions very different from the orientation of the
edges nearby the user’s current position decrease the probability of the particles for
these edges significantly (see Eq. 5).
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Figure 9. Area match scores for the two motion tracking methods.

As Fig. 10 illustrates, the area match score and the positioning error are inversely
correlated (r(58) = -0.87, p < 0.05). From these observations we conclude that in
order to support indoor navigation effectively any indoor positioning needs to be able
to reliably estimate a user’s relative movements. While in this study we only analysed
walking, this observation in a more general setting equally applies to other kinds of
movement (e.g. climbing stairs, taking an elevator, etc.).

Influence of the Navigation Graph on the Area Match Score

While from the preceding analysis we learn the lesson that the area match score’s
precision depends on the quality of the step detection, in the following we identify
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Figure 10. The area match score correlates inversely with the median positioning error. Each point represents
the mean of 10 simulated runs for one actual walk.

other sources for area match errors.

The first source is the indoor navigation graph. Its usage introduces artifacts for
the actual movement of a person as it always has to be snapped on one of the edges —
sometimes a very crude discretisation of the actually available degrees of freedom how
to move.

While in corridors no problems may arise, Fig. 9 illustrates that in junctions and
foyers, the area match score tends to decrease. The limits of delay, magnetic bias, and
step length amount to the problem of turn detection. The sensors obviously are not
fast enough to reliably reconstruct the pedestrian’s motion — this is a clear hint for
the need to develop classifiers for turns as part of future work in indoor positioning.
Such a classifier should take the context (i.e. the activity users are expected to perform
according to the current navigation instruction) into account.

By analysing the data and the indoor navigation graph, we revealed a second issue
that influences the area match score: junctions of two corridors are often modelled using
three edges only (see Fig. 11). In such situations, there is only a single correct edge that
can be hypothesised as the current position. However, the particle resampling may fail
when the SHS due to the limits mentioned above misses the user’s turn or at least
recognises it too late. In this case only few or even no particles are generated for the
current edge while the majority of the particles hypothesises the user to continue to
walk straight ahead. This phenomenon is particularly obvious for the junction on the
bottom left in Fig. 9.

Contrarily, the three other larger foyers are represented by a densely connected net
that enables the system to track almost arbitrary paths within these areas (see Fig.
2). In these areas, the area match score remains high.

This circumstance teaches us that indoor navigation graphs should not only model
accessibility relations between locations in the modelled environment, but also approx-
imate the geometry of the locations.

We tested this hypothesis by connecting the nodes adjacent to junctions with addi-
tional slanted edges as depicted in Fig. 11, the benefits of which are twofold: Firstly,
it models more natural paths where the test person cuts the corner slightly; secondly,
it allows for the compensation of step length differences since now multiple paths lead
into the corridor that is branching off.

Using the new graph structure, we repeated the computation of the area match
score. The result was not only an improvement in the area after the junction, but in all
subsequent ones as well. In the small, but critical area immediately after the junction,
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Figure 11. Closeup of the part of the graph that was changed. The edges drawn in red were added to stabilise
the position estimation at this junction.
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Figure 12. Area match scores for the two motion tracking methods (with additional edges in the lower left
corner).

the area match score was improved by 38% (from 0.21 to 0.29) for motionDNA, and
almost tripled (from 0.13 to 0.36) for the Android sensors. The improvement is even
statistically significant for the remainder of the route after the change: a Wilcoxon
rank sum test indicates that the area match score is greater for the graph model
with additional edges (Mdn = 0.78) than for the original version (Mdn = 0.73), W =
33942, n; = ny = 300, p < 0.05.

For reference, the median position error when calculated for the whole route also
decreased from 2.60 to 2.52 meters for the Android sensors, and from 4.28 to 4.11
meters for the version running with motionDNA.

We conclude that by applying a systematic methodology to design an indoor nav-
igation graph, we can almost completely eliminate the negative influence of the dis-
cretisation of the physical environment into edges and thereby implement an approx-
imate solution for a turn detection classifier working on sensor data. We will have to
investigate whether combining both approaches will lead to a reliable turn detection
that seems to be a challenge specific to indoor positioning.

A further note: the comparison of the two motion tracking solutions showed that the
supposedly more sophisticated one does not outperform the built-in step counter when
embedded in a more complex, non-metric approach to indoor positioning. Both suffer
from a cold start problem and produce wrong estimates when indoor positioning starts.
To Navisens’ credit, we only used a small portion of motionDNA’s capabilities and
designed the experiment in a way that the Android sensors would have a reasonable
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chance at competing, e. g. by restricting the device location and only using a single
floor for the test route.

In the remainder of this analysis, we only discuss results obtained by applying best
practices learned so far: we use the internal Android SHS on the indoor navigation
graph with additional edges for junctions (as shown in Fig. 11).

Influence of Area Transitions on the Area Match Score

Dividing a route into areas as explained above introduces another artifact at the
boundaries of adjacent areas. It may prove problematic that boundaries are strict while
SHS is noisy. Therefore, measurements taken around boundaries may be randomly
assigned to one of the areas and increase the area match error.

In particular, the smaller an area is, the higher the precision of the SHS has to be for
the measurement to be matched to the correct area. Therefore, in order to eliminate
the influence of this artifact on the area match score, it seems justified to smooth the
boundaries, allowing positions up to 2.5 m (i. e. the median position error) away from
the exact boundary still to count as a match.

By loosening the definition of an area match in this way, the score increases from
0.77 to 0.88 on average, almost cutting the remaining error in half. Considering only
the middle part of each area, defined as those positions that are further than 2.5 m
away from each of the area’s boundaries, the area match score amounts to 0.87 (strict)
respectively 0.91 (approximate). On the other hand, when looking at the boundaries
themselves (i.e. the interval of +2.5 m around the boundary), the scores amount to
0.73 for the parts immediately after a segment change and 0.84 for the part at the end
of each segment.

In summary, we conclude that the SHS position estimate tends to lag behind more
often than it precedes the actual position.

4.2. Study 2: Creating Realistic Conditions

As detailed above, the initial study uses a controlled procedure for data collection,
where an expert walks along a known path as precisely as possible, annotating the
ground truth at predefined positions. This approach — also described by e.g. Torres-
Sospedra et al. (2017b) — has quite a few benefits, e.g. a high degree of repeatability.
Furthermore, it might be chosen simply for practical reasons since a few persons can
quickly collect a large amount of data.

However, we argue that data captured in this way does not convey the full range of
human activities during a real navigation task. Therefore, it is not possible to guarantee
that the accuracy achieved with such ‘artificial’ data sets can be reproduced in real-
world applications. As a consequence, it would be ideal to perform naturalistic studies.
However, they are impractical for the purpose of evaluating indoor positioning systems
since we lack a high precision approach that could automatically observe ground truth
data automatically in naturalistic situations. Lately, there have been advances towards
a more realistic setup, e.g. by simulating different ways of holding the device (Torres-
Sospedra et al. 2018), but they still rely on an expert who knows the environment or
the route in advance.

Therefore, based on our own experience and hints for best practice reported in the
literature, we devised a new experimental setup in order to collect data in conditions
as realistic as possible.
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Figure 13. Screenshots of the data collection setup

4.2.1.  Setup

In the new setup, the test person was given an actual navigation task that started at the
current position and led to a predefined room somewhere on the university campus. A
prototype of our navigation app for Android showed the route and provided navigation
instructions, while in the background all relevant sensor data was logged. Navisens’
motionDNA was not used this time since it did not show any significant improvement
over the integrated sensors in the initial study.

The experimenter walked close by and used a separate application that allowed him
to annotate the ground truth position and to control the test person’s navigation
app remotely via Bluetooth (see Fig. 13). The test person’s app was configured to
not switch instructions automatically when a new area was reached according to the
positioning system, but only when the corresponding signal was received from the
experimenter. Test persons were encouraged to think-aloud, and both devices were
recording the conversation in order to gain insights into the mental state of the test
person.

The main advantage of this setup is that the test person can concentrate on the
navigation process and behave as naturally as possible while still in a somewhat con-
trolled experiment situation. In particular, he or she does not need to know or even
stop at the points where the ground truth is annotated: only the experimenter needs
to know the environment beforehand.
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Figure 14. The three different test routes used in the second study.

The experiments were conducted by students taking part in a course on HCI. Each
group had to implement a different strategy to assist users e.g. when they had gotten
lost, or while they had trouble finding the correct path. For the purpose of present
paper, only the sensor data collected in the experiments under realistic conditions were
used. The student groups acquired test persons who did not participate in the course
on HCI.

The three long test routes (Fig. 14) ranging from 251 to 282 meters led across
several buildings on the campus and were designed to cause situations where the
test person would need assistance. Each of them contained at least one floor transition
and, in addition, featured different obstacles and difficulties such as (revolving) doors,
indoor/outdoor transitions, and highly frequented areas. So, we consider the routes
as representative for everyday navigation situations as they contain all activities that
humans eventually perform during navigation tasks.

Each group was provided with a different Google Pixel phone used by the test
person. All in all, there were 114 runs logged by 38 test persons across 6 groups,
resulting in roughly 91.2 km or 733 minutes of log data.

4.2.2.  Results and Lessons Learned

The experiments provided valuable data about the user behaviour during a realistic
navigation task: As expected, test persons occasionally slow down, stop to look around
or need to re-orient themselves. During this time, the sensors sometimes still detect
steps that of course influence the position estimate. These observations emphasise our
point that controlled data collection by a professional leads to data that does not
convey the full range of pedestrian movement. Systems trained on such data are likely
to fail if applied to real-world scenarios and in this way exposed to previously unseen
data.

One negative consequence of the new experiment design was the increased workload
for the experimenters: They had to interact with the test person, annotate the ground
truth, and determine which one of several assistance strategies to trigger whenever
the test person exposed a certain behaviour, e.g. hesitated for a while or was unable
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Figure 15. Raw step data from the first test route (dark green). Colour-coded by test device.

to understand the instruction. Therefore, the ground truth was not always annotated
correctly, as apparent from areas for which less steps were logged than actually needed
to completely traverse the area.

For this reason, we decided not to calculate the area match score or other perfor-
mance metrics from this data. Instead, we focused our evaluation on the analysis of
the sensor accuracy as a basis for future indoor-tracking experiments.

Since the compass was not calibrated before each test run started (we omitted
the calibration in order to simulate realistic conditions), the estimation of the step
direction proved to be more difficult: as can be seen in Figure 15 on the example of
the first route, the measured directions spread around the true direction, with a mean
error between 30 and 39 degrees and a standard deviation of 34 to 58 degrees when
considering the routes as a whole. Also apparent is a systematic bias dependent on
the test device, visualised by the different colours used to display the paths.

Looking at the individual trajectories, we often observe that turns are not registered
correctly by the orientation sensor, in particular apparent by the ubiquitous 90-degree
angles inside buildings. Immediately after these turns, the direction sometimes seem-
ingly tries to self-correct, resulting in inconsistent drift in one or the other direction.
This poses a big problem for the localisation system and can only to some degree be
corrected by our graph model.

We note that in the second study we are again confronted with the problem of turn
detection: limits of the smartphone’s sensors and the SHS lead to a repeated failure to
detect the activities of test persons reliably. In our view, the observed sensor behaviour
may explain to a large extent why accuracy rates in typical IPIN experiments do rarely
increase: it seems that a single classification algorithm does not reliably solve the
indoor positioning problem. Instead, depending on the current task context and the
activity that a user is expected to perform appropriate classifiers have to be selected.

In order to handle the often erroneous initial direction, we revised our implemen-
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tation and approached the problem algorithmically: The particle state is extended by
an element that contains the current heading bias, i.e. the angle that has to be added
to the measured step direction to obtain the true heading. Initially, the heading bias
is distributed randomly from 0 to 360 degrees for all particles. The particle filter then
during the first few steps can adjust the expected value for the heading bias automat-
ically if the user follows the route. Furthermore, the particle filter can alter the bias
slightly on every resampling step to account for changing environment conditions. In a
similar manner, heading drift compensation is implemented by adding a randomly ini-
tialised amount of drift for each particle. However, these measures cannot completely
compensate erroneous SHS data — adding a new point to our argument that the lim-
its of SHS may be eliminated by activity-specific classifiers resulting in increased area
match scores.

4.3. Study 3: Evaluating on a Precise and Realistic Data Set

In the third study, we combined the evaluation methodology from the first study and
the experimental setup from the second study. The goal was to collect more step
and orientation data and a reliable ground truth in order to be able to apply our
task-oriented metric onto a data set captured under realistic conditions. Based on the
lessons learned, we slightly revised our setup:

4.83.1.  Setup

In study 2 the test system calculated the estimated position, then searched the nearest
point on the route and used it to display the user position. This procedure should
ensure that the test person would not get confused by impossible trajectories, e.g.
through walls. Some confusion, however, arose when the compass behaved erratically,
sometimes causing the position indicator to move in the wrong direction. To avoid such
confusions in the new study, one option to mitigate this issue was to stop displaying
the position altogether, although we knew from feedback that test persons prefer their
position to be displayed on the map. For the new study, we therefore opted to display
the expected position and update it after each step. In this way we achieved the
familiar feedback without the risk of influencing the test person unintentionally.

As in study 2, the evaluation took place on three different test routes (Fig. 16). Since
the focus was solely on positioning again, they were not specifically tailored to trig-
ger situations where exceptional assistance was needed. Still, each of them contained
many features commonly seen in office buildings, e.g. narrow corridors, open spaces,
staircases, doors, different kinds of flooring, and crowded areas. With lengths between
151 and 190 meters, the routes were shorter this time and confined to a single uni-
versity building. The route segments and corresponding navigation instructions were
generated automatically by the routing system once again.

In order to guarantee an exact and reliable ground truth, the same person was acting
as experimenter for all test runs. As noted above, a simulated position was displayed on
each step to avoid influencing the test person by wrong position estimates. Just like
in a real-world scenario, no compass calibration was done prior to the experiments,
and the test persons were not instructed to hold the device in any specific way. Both
experimenter and test person were using Google Pixel phones running Android 8.1.
For all three routes, 12 runs were logged, yielding 110 minutes or about 6.0 km of
labelled data in total.
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Figure 16. The three different test routes used in the third study.

4.3.2.  Results

Though test persons were free to carry the device in any way they wanted, they
almost at all times opted to hold it in front of their body, pointing roughly towards
the walking direction. This observation can be explained by the fact that the test
persons had to read the navigation instructions and search the next intermediate
destination on the map presented on the smartphone’s display. In turn, this means
that the device direction is acceptable as a proxy for the walking direction during
pedestrian navigation.

Since our indoor navigation graph does not explicitly model the shape or the amount
of individual stairs in staircases, we ignore them for the purpose of this evaluation.
Instead, we reset the position after the staircases in route 2 and 3 and do not use the
areas in question for the calculation of any performance metrics. As we’ll discuss below,
we consider the detection of climbing stairs a problem that has to be solved separately.

Analysis of the Raw Data

Similar to the previous study, due to compass bias and drift the raw step trajectories
do hardly resemble the path that was actually taken, in some cases making it even
hard to map them to the actually expected locations in the environment intellectually
(see Fig. 17).

However, most of the measured walking patterns tend to look quite similar on visual
inspection, with some areas in which the observed bias is consistent across all test
persons, e.g. at the start of route 3. If this bias was constant throughout a complete
test run, the indoor positioning system could compensate for it. However, we observe
from the data that the bias actually changes while test persons are walking, e.g. after
the staircase in route 3.

In addition to these location-specific variations, the step logs exhibit different char-
acteristics depending on when the data was collected: Towards the end of route 2, for
example, one can easily distinguish between two clusters of six runs each (see Fig. 17).
The data for each cluster was collected on the same day, while there are a few days
between the test runs of the first and the second cluster.

As in both previous studies, the problem of turn detection can be observed also
in the new data set. In particular, 90-degree turns are rarely identified correctly by
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Figure 17. Detailed view of the raw step trajectories on route 2 (second floor only). Note the large discrepancy
between actual route and captured data, as well as the different characteristic of the six runs performed at a
later date (pointing roughly northeast).

the SHS. Techniques such as (improved) Heuristic Drift Elimination (Dez et al. 2016;
Deng et al. 2018) that are commonly used to correct the errors introduced by compass
or gyroscope drift are not able to handle the kinds of inconsistent deviations seen in
our data. They would have to be configured to tolerate a high amount of drift, in turn
making it even harder to detect where an actual turn took place.

For this study, the ground truth is available. The good news is that with the im-
provements of the indoor positioning algorithm and the assumptions mentioned above
— variable compass bias that is learned by the first 15 steps, position reset after stair-
cases —, the average area match score increases: our baseline system can now assign
SHS position updates to the correct area in 73% of all cases. Without the assumption
of the correct initial direction, the score suffers from the sometimes wildly inaccu-
rate direction and decreases to 0.59. Due to the different experimental setup and the
changes in the system, these figures are not directly comparable to those of the initial
study. However, it again helps in exploring the limits of SHS for indoor positioning in
navigation contexts: we can identify typical situations in which the area match score
is low. Furthermore, we can provide empirical evidence that area match errors can be
rooted back to wrong position estimates that, in turn, are caused by (some of) the
limits of SHS we have identified already. As the remainder of this section will illus-
trate, we can even increase the area match score further by taking simple measures
that simulate improved approaches for activity recognition:

Influence of Position Resets along the Route

Given the experience from study 1 that turns after long straight segments pose prob-
lems, for the data analysis we take a closer look at the individual runs. One area that
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proved especially difficult is the branch on route 1 that leads away from a large open
space through a door (see Fig. 7, end of segment 4), not unlike the situation in the
initial study. Using this example, we explore to what extent the position estimate can
be improved by precise position resets on a varying amount of points along the route.

With no position reset at all, the overall area match score across all test persons
for route 1 amounts to 0.63. Resetting the position whenever a door is passed as
well as at the end of a stairway results in a dramatic improvement, yielding a score
of 0.90. With just two resets at locations that prove especially problematic, a score
of 0.89 is achieved, and further reduction to a single point of re-initialisation at the
aforementioned junction still yields an area match score of 0.83. In our opinion, these
figures can compete with other approaches to indoor positioning mentioned in the
introduction and have the potential to be improved even further.

Route 2 is characterised less by doors that have to be passed (most of them were
always open during data collection and therefore would not lead to any detectable
motion), than by its 90-degree corners. If we take the information of when these
corners are passed into account, the overall area match score for route 2 improves
from a baseline of 0.75 to 0.85. Reducing the amount of resets to the two with the
most impact and then just a single one yields scores of 0.83 and 0.77, respectively.
Finally, route 3 contains only one door where it is possible to initiate a position reset.
However, due to its location near the end of the route this does not improve the overall
score of 0.81 significantly.

These figures illustrate the importance of detecting activities such as walking up-
stairs, walking downstairs, taking an elevator, and taking an escalator and deduce the
user’s current position from the observed activity instead of detecting subsequent posi-
tions which may be quite noisy and infer the current activity from geometric properties
of the last few position updates.

Further, and less obvious, evidence for this claim comes from our trial to observe
changes in the user’s orientation relying on sensor data not considered so far:

Eliminating Errors Introduced by the Magnetic Field

Since the error introduced by the Rotation Vector sensor repeatedly proved problem-
atic, we explored as an alternative the Android Game Rotation Vector sensor, which
does not rely on the magnetic field (Google 2017). It therefore cannot provide an ab-
solute direction, but shows a much higher fidelity of the relative changes in direction
(see Fig. 18). In particular, 90-degree turns are immediately recognisable, and though
there still exists some amount of drift, it can easily be compensated.

To confirm that the gyroscope on its own does not suffer from substantial bias,
we calculate the bias stability (i.e. the minimum Allan Deviation), which for our test
devices amounts to completely acceptable values between 0.00002 and 0.00004 rad/s.

Since our results show that the initial direction is unreliable even with the magnetic
compass included (see Fig. 17), the drawback of not knowing the absolute heading
does not matter too much in practice; in fact, the same mechanism that stabilises the
direction can also be applied here.

The similarity of step trajectories and ideal route can be quantified by the smallest
warp path calculated by the Dynamic Time Warp algorithm (Magdy et al. 2015). Av-
eraged over all runs, the rotation invariant smallest warp path decreases from 4563.6
to 2555.0 when not relying on the magnetic field, confirming the visual analysis. Re-
peating the simulation with these step trajectories as input, the average area match
scores improve to 0.80, 0.86 and 0.84 for routes 1-3 without any position reset except
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after staircases.

5. Discussion

The repeating theme in all three studies is the difficulty to track the user whenever
the walking direction changes or one of the other identified limits of SHS negatively
influences its position updates. In the initial study, areas immediately after 90-degree
turns are amongst the ones with the lowest area match score, even after improving
the graph model and thus allowing the filter to spread the particles over more edges
that can better match the raw data (see Fig. 12). Creating more realistic conditions
in the second study, e.g. by refraining from calibrating the compass, in many cases
led to an erroneous initial direction. Furthermore, we observed that the angle of turns
would often not get detected correctly and that the rotation vector would “bend back”
during straight segments, posing a big problem when matching the trajectories to the
indoor navigation graph. All these issues are present even more clearly in the third
study, with an additional temporal influence becoming apparent.

The underlying cause, of course, is the limit of magnetic bias that is slow to react
to changes and easily influenced by external magnetic fields. This effect should be
minimised by the usage of Android’s Rotation Vector sensor which fuses accelerome-
ter, gyroscope and magnetic field sensor in order to detect orientation changes more
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quickly. However, as our results in study 2 and 3 indicate, the sensor’s capability to
accurately determine the orientation is greatly reduced under realistic conditions. Un-
der these circumstances, it is advisable to only rely on gyroscope and accelerometer
(i.e. the Game Rotation Vector sensor), even though the ability to determine absolute
heading information is then no longer present.

One major advantage of our graph-based filtering approach is the system’s ability
to correct the position back on the correct track even without external, absolute mea-
surements (see Fig. 7). As we’ve seen however, and as it is common for dead reckoning
systems in general, when at some point the error accumulates to a degree that is no
longer correctable, there is a need to reset the position.

As detailed in the previous section, in many cases just one or two resets at strate-
gically chosen decision points can greatly improve the positioning accuracy. How to
determine these points based on a planned route and knowledge of the environment
is subject of ongoing research.

One option traditionally used in hybrid systems to stabilise the position is signal-
strength-based WiFi fingerprinting. For the purpose of resetting the position at cer-
tain exact locations, however, WiFi is not well suited since position updates are too
infrequent and not sufficient in terms of precision. An alternative approach for this
issue based on Bluetooth is presented by Hoffmann et al. (2017), but there’s still no
solution for the known drawbacks such as costly and time-consuming deployment and
maintenance.

Therefore, as mentioned already in the discussions of the presented studies, we pro-
pose a hierarchical architecture of classifiers for different purposes. The high-level
classifier uses raw data from the inertial sensor as well as others, e.g. the barome-
ter and magnetometer, to create hypotheses about the current activity. The result
from this classifier can be matched easily with the current context of the last naviga-
tion instruction in order to decide which of the created hypotheses are reasonable in
the current context. The most probable among them should be the hypothesis that
coincides with the expected activity — in this case, the user executes the navigation
instruction correctly, while for all other hypotheses the user has to be warned about
getting lost.

We simulated the effects of such an architecture by manually resetting the filter (see
the discussion on the influence of position resets in section 4.3.2), yielding evidence
that the strategy is reasonable.

A possible point of criticism against the proposed area match score is that it is
averaged over the whole test route. That way, if localisation fails in a few small but
important areas, the overall score can still be somewhat high even though localisation
as a whole cannot be considered successful. This is correct, but the same holds true
for other commonly used metrics such as the mean position error or the third quartile
of the position error, which are also not influenced very much by a few bad estimates.
Besides, any small malfunction or imprecise positioning as well as many other things
such as badly worded instructions can lead to an unsuccessful navigation. The area
match score as a single score cannot reflect all these possibilities, but can just give
an overall impression on how the system works in most cases. For a more detailed
analysis, it is necessary to directly look at the segments in question. To gain further
insights, it might also be useful to report different metrics such as the minimum score
and the standard deviation of the score, or to weigh the areas of a route in a different
manner.
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6. Future Work and Conclusion

The main objective of our work was to explore the limits of PDR-based indoor posi-
tioning under realistic conditions. Before moving on to the challenges for future work
in PDR research, we will recap the outcomes and findings of our studies so far:

e The area match score was introduced and validated as an approximate indoor
positioning metric tailored to the needs of landmark-based navigation for pedes-
trians.

e Determining the walking direction based on built-in sensors proved difficult un-
der realistic conditions, even when assuming a fixed device position. At least in
the devices we tested, the magnetometer can be biased very easily by external
influences, leading to early failures in position tracking. In such cases, e.g. turns
cannot be detected correctly.

e Not relying on the magnetic compass altogether and instead inferring the initial
direction from the information available from the map and/or the planned route
led to a more accurate trajectory and a higher area match score.

e We demonstrated that long-term stability for PDR could also be achieved by
position resets at certain decision points along the route, provided by a reliable
complementary classifier.

With this in mind, we identified room for improvements in indoor positioning, coin-
ciding with important research directions in indoor positioning in general and PDR in
particular:

e Context Model: The graph model works best in narrow corridors with little
degrees of freedom, but can be too restrictive in large open spaces. There, differ-
ent factors are at play that have to be balanced: The model needs to accurately
describe all paths that can be taken by a pedestrian, but cannot be too general
or else it will not provide any stabilisation. Furthermore, the effort that goes
into the manual creation as well as the computational effort resulting from a de-
tailed model has to be considered. Hybrid models that incorporate open spaces
into graphs as polygons (see e.g. Koivisto et al. 2015) provide a solution for the
oftentimes heterogeneous nature of building layouts and should therefore be ex-
plored further in the context of PDR.

e Motion Model: We assumed the user to steadily walk ahead on the same floor
in order to be able to reliably analyse the SHS data. However, analogous models
have to be developed for other ways to move (in areas of other environmental
type), such as taking stairwells, elevators, or escalators. According to the most
recent position estimate an indoor positioning algorithm will have to decide at
run-time which of the models to be used for the analysis of raw sensor data.

As already addressed above, reliably determining the walking direction in un-
favourable conditions (e.g. a fluctuating magnetic field) is still an open problem
whose solution most likely needs to involve information from the map and from
other sensors. While we observed that the users carried the device in front of
their body at almost all times during navigation, a system that aims for near-
perfect position tracking under all circumstances will have to account for other
transportation modes as well. The same holds true if non-visual means of infor-
mation transfer such as vibration or speech are used, where the user is no longer
required to keep an eye on the smartphone screen to receive navigation updates.
In our future work, we will investigate the influence of these alternative modali-
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ties on the positioning accuracy.

e Intelligent Sensor Fusion: Finally, there is a lot of potential for optimisation
in the way the various available sensors and classifiers are integrated with each
other into a coherent system. Some sensors might not be available at all times,
while others should only be used sparingly to preserve power. In our experience,
it is often advisable to temporarily reduce the influence of slower sensors such as
WiF'i while the user is walking, in order not to disrupt the more accurate position
tracking via PDR. Taking knowledge about the context into account, it is possible
to refrain from potentially expensive calculations on raw sensor data. Instead, the
indoor positioning algorithm has to prioritise the recognition of user activities
that given the context and the navigation instruction are most plausible to be
performed at any point of time. Lastly, in case no accurate position estimate is
computable based on device sensors, the system could enter into a dialog with
the user, e.g. asking whether a landmark expected from the context is actually
nearby.

As far as the practical purpose of implementing pedestrian navigation systems is con-
cerned we can state that our experiments indicate that integrating context helps to
eliminate the limits of indoor positioning exclusively based on sensor data. In particu-
lar, integrating metric sensor data and context information with landmarks and nav-
igation instructions based on them help to model the cooperation between users and
their navigation system and lead to cognitively adequate and easy-to-use navigation
strategies.

In our future work, we will also work on improving SHS and for this purpose will
evaluate hybrid system architectures with additional positioning data e.g. from WiFi
or BLE in order to analyse their performance to reinitialise PDR after a complete
failure. Finally, the observed variations in the magnetic field that heavily influence the
compass of smartphones can perhaps be turned into an advantage: we will investigate
whether locations exhibit characteristic patterns of magnetic field data that can be
exploited for distinguishing locations among each other. Furthermore, we will develop
an real-time approach to predict critical PDR errors online and investigate whether in
this way we can automatically switch to a classifier for the expected activity in order
to further reduce area match failures.
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