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1 Introduction

The research on two dimensional electron gases (2DEG) has been playing a
central role in solid state physics in the last fifty years, yielding major progress
in semiconductor technology [1, 2| and fundamental research [3]. The Nobel
Prize awarded integer [4] and fractional quantum Hall effect [5-7] are the most
prominent examples of phenomena observed in such systems, both in a regime

of strong magnetic fields, where a strong quantization has to be considered.

Not only in this regime fascinating effects occur. Also in the range of lower
magnetic fields where classical or semi-classical approaches can be used. Two
examples of such effects are the commensurability modifications of the resistance
induced by periodic potentials, known as Weiss-oscillations [8, 9|, and the
magnetoresistance oscillations generated by external fields applied additionally
to the magnetic field [10]. To the latter count, e.g. the Hall field induced
resistance oscillations [11], the phonon induced resistance oscillations [12, 13],
and the microwave induced resistivity oscillations (MIRO) [14]. Especially the
observation of zero resistance states (ZRS) in the context of MIRO [15, 16|
has drawn a lot of attention. Many experimental works on MIRO have been
reported over the last eighteen years [15-37|. Although several models have been
developed [38-42|, there is still no commonly accepted theoretical explanation
of the phenomenon [43, 44]. In particular three open questions remain: Firstly,
whether they are a phenomenon which occurs on the boundaries of a 2DEG and
the respective contacts [45] or environment, which can be, e.g. air or vacuum
[38], or whether it occurs in the whole 2DEG [42, 46]. Secondly, it has to be
clarified how strongly the oscillations are influenced by the polarization of the
applied radiation [23]. And as a third open question, the behavior of MIRO
when illuminated with high intensity radiation was studied lately [29, 35] in
the microwave range, but high intensity data induced by higher frequencies are
yet to be obtained. Such data would demonstrate the robustness of the effect,
even under extreme experimental conditions on the one hand and would help

to understand the underlying mechanisms on the other.

This thesis is devoted to the study of radiation induced resistivity oscillations
in GaAs 2DEG, not induced by microwaves but by terahertz (THz) radiation.
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Although most works on MIRO are performed in the microwave range, it
was shown that MIRO-like oscillations can also be induced by high frequency
radiation [32, 36, 37|. Here, the advantages of THz laser radiation, which
are not present in the microwave range, are exploited to provide answers to
the open questions in the field of MIRO. The study shows, that, indeed, the
observed THz induced photoconductivity oscillations are MIRO. In this thesis
also the question, whether the observed oscillations originate from the sample
boundaries, or whether the effect stems from the whole 2DEG, is answered.
This allows to determine which of the theories addressed above can be employed
on the observed oscillations. In the following the results are analyzed in the
framework of those theories. Furthermore, the helicity dependence of MIRO is
intensely studied. The analysis shows that the influence of the radiations helicity
is weaker than theoretically expected. Consequently, possible reasons for this
discrepancy are discussed. Furthermore the study reports on the irradiation of
GaAs 2DEG with high power radiation. There, MIRO are observed for several
frequencies and in a intensity range of five orders of magnitude. Based on these

observations the corresponding saturation mechanisms are discussed.

In detail, this thesis is structured as follows: Chapter 2 is devoted to the
physical background of MIRO and an overview over preliminary works on the
topic. It starts with a general description of a 2DEG in Sec. 2.1.1 and with
the mechanisms describing magnetotransport in such a system in Sec. 2.1.2.
Afterwards radiation related phenomena in a 2DEG are discussed, including
cyclotron resonance (CR) in Sec. 2.2.1 and electron gas heating in Sec. 2.2.2.
Finally, in Sec. 2.2.3, MIRO are discussed on the basis of preliminary works on
this effect and the displacement and the inelastic mechanism are introduced
in Sec. 2.2.4. The second chapter gives an overview over the applied methods.
It starts with the description of the probed samples in therms of material
properties and the used contact geometries in Secs. 3.1.1 and 3.1.2, respectively.
Afterwards the radiation sources and the different experimental setups used
in this work are described in Sec. 3.2. In chapter 4 the experimental results
are presented and discussed. The first part, Sec. 4.1.1 is devoted to the
presentation of the photoconductivity data featuring THz induced magneto-
oscillations Then, it is demonstrated that the observed oscillations feature

exactly the same properties as MIRO in Sec. 4.1.2, which in turn allows to treat
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them as the same effect. In the following section, 4.2.1, the oscillations are
studied by selective illumination of either only the bulk or the boundaries. The
results show, that MIRO is a bulk effect, which in turn allows on to conclude
which theory describes the observed oscillations best. Consequently the data
is analyzed in therms of the respective mechanisms in Sec. 4.2.2. Afterwards
the helicity dependence of MIRO is studied in Sec. 4.3.1 and the results for
different polarizations are discussed in Sec. 4.3.2. In Sec. 4.4 photoconductivity
oscillations induced by high intensity THz radiation are presented. They show
a strong saturation for high intensities. The underlying saturation mechanisms
are discussed in Sec. 4.4.2. Finally, chapter 5 summarizes the work and gives

an outlook to further research on MIRO.



2 Physical Background and Preliminary Works

This chapter’s purpose is to introduce the fundamental principles necessary
to get an understanding of this work. Therefore a short introduction to the
dimensional electron gases (2DEG), the systems in which MIRO are observed
is given. Afterwards the carrier transport and radiation absorption in a 2DEG
will be discussed. The last part of this chapter is devoted to give an overview

of both experimental and theoretical preliminary work on MIRO.

2.1 Two-Dimensional Electron Gas

Two dimensional electron gases play a crucial role when it comes to designing
high mobility semiconductor structures, which are of tremendous importance in
modern electronic technology [1, 2]. Their role in solid state physics, however, is
not less important. The quantum Hall effect [4] is, for instance, a fundamental
effect discovered in a 2DEG. The following example for the band engineering
of a 2DEG is adapted from Ref. [47].

2.1.1 Band Structure of the Two-Dimensional Electron Gas

A 2DEG can be realized when two semiconductor materials with different band
gaps but similar lattice constants are stacked on top of each other. Figure 1 (a)
shows the band structures of two such semiconductors, A and B, before assembly.
Following Anderson’s rule the vacuum levels of the two materials line up [47].
The vacuum level alignment leads to potential differences Ae, and Ae, for both,
the conduction and the valence band. When the two materials are assembled
and if they are doped, for example one p- and one n-typed, a charge transfer
takes place. This leads to the formation of a dipole layer and, correspondingly,
to that to a band bending at the heterojunction. Figure 1 (b) shows this for
the two exemplary materials. Here, the one with the large band gap 5? is
n-doped, whereas the one with the smaller gap Eg is slightly p-doped. When
thermal equilibrium is achieved the Fermi levels are matched up in the region
of the junction. If the new Fermi level is now higher than the minimum of

the bended conduction band, electrons are trapped in a potential well being
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roughly triangular. Ae. prevents electrons and holes from recombining and the
electrostatic potential in between squeezes the electrons towards the interface.
The potential well is usually about 10 nm thick, and the electron movement
is restricted in growth direction of the semiconductor structure. The growth
direction is defined as z in this work. In the orthogonal directions z and v,
however, the electrons can move freely. This is the two-dimensional electron
gas. This method of growth with the donors lying at a distance from the
2DEG is referred to as modulation doping and yields two main benefits: besides
the confinement of electrons to two directions addressed above, the donors
and electrons are separated, and therefore scattering by ionized impurities is

reduced and high mobilities can be achieved.

(@) (b)
. A
aligned vacuum levels
A A A
v/
€p
A 77
&
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A
A B
&
g g
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I Agy,
Y
>z
material 4 material B material 4 material B

Figure 1: Conduction and valence bands of two semiconductors, A and B, before (a)
and after (b) thermal equilibration. The material growth direction is represented by
z. Vacuum levels are aligned, shown in panel (a) following Anderson’s rule. (b) Fermi
levels are aligned yielding a band bending, leading to a roughly triangular potential
well. Adapted from [47].

The restriction in z yields an energy quantization of the electrons in the 2DEG
which is discussed in the following. To calculate the electron wave functions and

their energy eigenvalues the 2DEG potential will be approximated as a perfect
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triangular potential well. For simplification the potential barrier at z < 0 is
defined as finitely high. For z > 0 a linear potential V' (z) = ez is assumed.
It describes an electron of the charge e in an electric field E. The free carrier
motion in the 2DEG plane is not related to the confinement in z-direction.

Hence a product approach to the wave function can be taken, which reads as

Y(r) = et Te Vo (z). (1)

With ¢(z) being the z-dependent part of the wave equation, one can write the

one dimensional Schrédinger’s equation [47]

— + eEz} o(2) = ep(2). (2)

In order to solve it the dimensionless quantities Z = z/zy and & = ¢/gq are
defined, where

K2 1/3 (€Eh)2 1/3
20 = (QmeE) , &op = |: om :| = €EZ(). (3)

Schrodinger’s equation reduces now to the Airy equation [47]

d2
d_j = 56, (4)

with the new independent variable s = Z — £. The Airy equation has two
independent solutions Ai(s) and Bi(s) [47]. Two requirements have to be
fulfilled in order to obtain an applicable solution: The boundary condition at
z = 0 requires ¢(z = 0) = ¢(s = —gp) = 0. Both Airy functions oscillate for
negative (s), and consequently the energies of the bound states of the triangular
well are found for the functions being zero. Moreover the wave function should
be well defined for z — +o00. Therefore, the solution Bi(s) can be neglected,

since it diverges for s — +oo [48]. For Ai(s) however there is an infinite number
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n of negative s-values where it equals zero, which are called —c,, here. To make
sure that ¢(z = 0) = 0 is fulfilled, € = ¢, is necessary and the allowed energies

are given by

E 271/3
5n)zzcnlﬂ] , withn=1,2,3,..., (5)

*
2m

and m} being the effective electron mass in z-direction.

02
V(z) = eEz
......................................................................................... n=3
L R | S A
= n=2
..................................................... n=1
0 | | | | |
0 10 20 30 40 50
z (nm)

Figure 2: Energy levels (dashed lines) and corresponding wave functions (colored
solid lines) of a triangular potential well with potential energy V' (z). The scales are
for electrons in GaAs and an electric field £ = 5MV m~!. Adapted from [47].

The respective unnormalized one dimensional wave functions are

€o

6a(2) = Ai(s) = Ai<€EZ—_€). (6)

Following the product approach in Eq. (1), the three dimensional energy eigen-

values are given by
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Rk Wk,

* *
2my - 2my

gi(kxa ky) =Enz + ) (7)

containing the effective electron masses m}, m,,, and the electron wave vectors

k, and k, [47].

2.1.2 Electron Transport in Two Dimensions

This work is devoted to study the influence of external experimental parameters
like magnetic fields and terahertz radiation on the electron motion in a 2DEG.
The microscopic description in this section will mainly follow the logic of Ref.

[49]. When it comes to electron motion Ohm’s law

j(r) = oE(r) (8)

is best to start with. It states that the electric current density j(r) and
the electric field E(r) driving the electrons, are proportional to each other.
The constant linking them together is the electrical conductivity o, which is

independent on the direction r in a homogeneous conductor.

Though, the electrical conductivity depends on the conducting material, the
material shape determines whether the electrons can move in three or just
two dimensions. From a microscopic perspective, the material dependence of
the conductivity is described by the Drude model and based on the scattering
probability of an electron in the respective material. Scattering is possible, i. a.

with crystal defects, or phonons.

In this work two fields are applied: An electric field in the 2DEG plane, for
instance E = (E,0,0), and a magnetic field B = (0,0, B) perpendicular to it.
The electrons are then accelerated by the Lorentz force F = —eE — ev x B
and the motion between two scattering events can be described by Newton’s

equations

dv, le]
e N gy B
dt m*( +vyB),
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dvy |€|
- T

v, B. 9)

These equations can be rewritten as

dv, (vp +v,)

— = —w.(vp + vy),

dt bt

d

% = WUy (10)
introducing the cyclotron frequency w. = |e|B,/m* and the drift velocity

vp = E/B. The solution of Eq. (10) is

— 0 vy(0) +vp ) . v,(0)
v(t) = (—UD) + ( 0, (0) ) sin(w,t) + (vy(O) +UD> cos(wet). (11)

Here t = 0 represents the time when the last scattering event took place leaving
the electron with the velocity (v,(0),v,(0). The first term on the right hand
side describes the drift motion, which is normal to the magnetic and the electric
field direction. The second and third term represent a circular motion with
the frequency w,, called cyclotron motion. The electron transport is strongly
influenced by the cyclotron motion, being controlled by the product of cyclotron
frequency and the average scattering time 7,. In the case of small magnetic
fields, i.e. w.r, < 1, the electrons can not complete a full cyclotron orbit
without being scattered. The case w.7, > 1, in which one or even multiple
cyclotron orbits are completed yields some drastic differences compared to the

first case, as will be discussed later in this section.

On large time scales t > 7, the electron will perform a drift motion. Under the
assumption that an electron has as drift velocity vy in a random direction after
a collision which is independent of the direction before the scattering the drift
velocity can be calculated. Following this assumption the probability P(y)dy

that the electron moves into direction ¢ after the collision is expressed by
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Pp)dp = dp/27. (12)

Additionally to the direction the time until the next scattering event has to
be considered. The rate equation dP(t)/dt = —wP(t), which correlates the
probability P(t) that an electron has not been scattered until the time ¢ and
the probability wdt that an electron is scattered within an infinitesimal time
interval dt, has the solution P(t) = Ce™'. Here C' =1 can be derived from the
initial condition P(0) = 1. The probability that the electron scatters within
the time interval [t,t 4 dt] is given by the product p(t) = P(¢)w(t). The mean

scattering time is now

o 1
Ty = / dtwe ™'t = —,
0 w
and
dt
p(t)dt = eV = (13)

Tq

From Eq. 10 one obtains the drift velocity by multiplying v with the probabilities
P(p)de and p(t)dt and integrating over t and ¢, which reads as

b= / " deP(p) / " () (1). (14)

Consequently, the components of the drift velocity are given by

_ wch |€|7-q/7n>k
Vo =—Upy 5= ke 5
14 werg 14+ werg

w22 1
T R R———— 15
Yy UDl +w§7'q2 D ( 1 +w627'q2) (15)
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Note that for zero magnetic field strength B the mean drift velocity vanishes in
y-direction, and reduces to a zero magnetic field value induced by the applied
electric field in direction of x. The proportionality constant connecting the
electric field and the drift velocity v, at B = 0 is the mobility, given by

|e‘7'p

_ 16
p= (16)

with the transport lifetime, given by

o / " do(1— cos(2))P(p). (17)

From equation (15) one immediately sees the properties of the Hall effect:
Under orthogonal application of an electric field and a magnetic field, the
direction of the average electron drift deviates from the electric field direction

by the Hall angle 6, obeying

tanf = ¥ = Wy = uB. (18)

T

The current density is given by

. - nefr, 1

Jz = —TLS|6|’U$ - m* 1 ‘I’WETZ? T

. _ ns€’7, WeTy

Jy = —nslelvy = (19)

-
m* 1+ wit?

Applying this result to Ohm’s law, see Eq. (8), one asserts that at finite
magnetic field normal to the 2DEG plane, the conductivity is a second rank

tensor with the components



2 Physical Background and Preliminary Works 14

nseQTp 1
Ogx =
* 2,2
m* 1+ wiT,
2
Ng€“Tp  WeTp
Opy = (20)

m* 1 +w§7'5'

The missing tensor components can be taken from the same calculation as above
but for an electric field in y-direction. This gives oy, = 04, and 0y, = —04y.

Ohm’s law can now be written as

jx o Ozx Oxy EJ:
() ()

Note that Ohm’s law can also be written in terms of resistivity

(Ex> _ < Pz pxy) (h) ' (22)
Ey —Pzxy Pzx jy

with the resistivity tensor p being the inverted conductivity tensor

-1
Prx pmy _ Ogzx ny _ . 1 . Ozx _ny ) (23>
_p:py Pz _ny Oz Oz + U:py ny Ozx

With rising magnetic fields additionally quantization effects have to be taken
into account and pB = w7, > 1. This means that electrons complete multiple
cyclotron orbits. Since the electron has also a wave character, it can interfere
with itself. This interference is constructive for a certain phase and, therefore,
it splits the former constant density of states npog of the 2DEG into discrete

energy levels ¢;, called Landau levels.

In order to get the values of the Landau levels, Schréodinger’s equation for the

potential V(z) under influence of an external magnetic field
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(p+ A +V(2)| ¢ = et (24)

2m*

has to be solved. For a magnetic field B = (0,0, B) normal to the 2DEG plane
one obtains the vector potential A = (A,, A,,0). Similar to the procedure in

Sec. 2.1, a product approach

(. y,2) = 0(2,y)6(2) (25)

is chosen where the in- and out-of-plane Hamiltonians get separated, yielding

the equations

Gy [(px + eAx>2 + (py + eAy)z} 0(x,y) = eay 0(z,y) (26)
and
1 2
et + V)| 0 =00 7

with € = g, + €.

Equation (27) is identical to Eq. (2), the one dimensional Schrédinger’s equation
from Sec. (2.1), with the subband energies ; from Eq. (5) representing the
eigenvalues ¢,. For simplicity the vector potential A = (—yB,0,0), known as

the Landau gauge, is chosen and inserted to Eq. (26). This gives

1
2m*

(2 + (P — eBY)?] 0(x,y) = ex,0(x, y). (28)

To solve this equation, again a separation approach

0(x,y) = e™*n(y) (29)
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is used. Together with w, = |e|B/m* and p, = —ih(9/0x)e** = hk,, Schro-

dinger’s equation now reads

2 « 2
Py, m* , (hk,
A = 30
[2m*+ 5 We (eB y )| ke (y) = ene, (), (30)
which is the equation for a one-dimensional harmonic oscillator with the
potential minimum shifted by the value y, = %. For this equation the

eigenstates are

e =hw(l+1/2), 1=0,1,2,... (31)

The quantized energy is independent of k,, hence all states with different k,
but the same [ are degenerate. These degenerate states together form a Landau
level. The density of states npos(e), which is continuous for free electrons
and represented by the gray box in Fig. 3 (a), is replaced by a sequence of
o-functions at the Landau levels, represented by the blue lines. The total energy

of the system consists of the three different contributions

Eil,s — Ezn + Exy,l + Sg*,uBB' (32)

In this equation ¢,; describes the energy subbands due to the confinement
in z-direction and ¢,,; the Landau levels. The additional term describes the
energy difference due to spin splitting with s = £1/2 being the spin quantum
number, g* being the effective Landé-factor, and pup being Bohr’s magneton.
Since spin does not play a role in this work, the last term will be neglected in

the following considerations.

Since the cyclotron frequency w. depends linearly on B, so does the Landau
level separation, see Fig. 3 (b). They are highly degenerate and carry the

number

n = npos(E)hw, = —— (33)
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(a) eA (b) &4
[=4
ho
=3
-------- EF
=2
=1
/=0
nDOS({»,; v=6 v=4 v=2 E

Figure 3: Energy of the first Landau levels for the lowest subband (n = 1) as a
function of (a) the density of states npos and (b) the magnetic field B. Panel (a)
shows that the energy levels, represented by the blue lines, are equidistant, separated
by the factor fiw.. The electron distribution for free electrons is sketched by the gray
box. In panel (b) the Fermi energy oscillates as function of the filling factor v for

fixed carrier density n.. Adapted from refs. [47, 49].

of states per unit area and per spin orientation. If the s pin degeneracy is not
lifted the Landé factor g equals two. The filling factor

v =2n./n; = hn./eB (34)

compares the number of total electrons n, in the system to the number of states
per Landau level n;. In experiment, with increasing magnetic field, hw. and
consequently n; also increase. Since n. is constant, the number of occupied
Landau levels decreases for rising magnetic fields and the Fermi energy drops
to deeper Landau levels at even filling factors v, if the spin degeneracy is not
lifted.

In the beginning of this section the classical description of the E x B drift has

been presented. This drift has to be considered also in the quantum mechanical
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picture presented above. The applied electric field E = (0, F,0) appears in
Schrodinger’s equation as an electrostatic potential V(y) = eEy. The problem
can, again be solved in analogy to the harmonic oscillator. However, the center
coordinate is now modified to 3o = (hk,+m*vp)/eB, with vp being the classical
drift velocity. The Landau levels are then described by

ei(ks) = hwe (1 +1/2) + eEyjo +m’vp /2, (35)

containing the additional potential term eE, 7o and the kinetic energy m*vd /2
from the drift motion. In real space, the additional terms result in a tilt of the
Landau levels, as depicted in Fig. 4 (a).

(a) e 4

>
nD()S (8) nD()S (8)

<y

Figure 4: Landau levels in real space representation under application of an electric
field E in y-direction are presented in panel (a) and adapted from Ref. [49]. The
density of states npog in a magnetic field is presented in panels (b) and (c), showing
Landau level broadening due to scattering. Distinct Landau levels for hw. > T" in (b)
and overlapping Landau levels for hw, < T' in (c). Adapted from Ref. [47].

Generally, the description of the Landau levels as d-functions is only valid for
ideal systems, where scattering, i.e. on other electrons, impurities, or phonons
is not present. In real systems at finite temperatures 7' # 0, however scattering
has to be taken into account. The finite lifetime 7, defines how long an electron

remains unscattered in a system. Note that it differs from the transport lifetime
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7, = pm/e. While all collisions contribute equally to 7,, the change of direction

of the electrons influences the contribution to 7, strongly.

The finite lifetime 7, results in an energy uncertainty I' = //7, for the Landau
levels. The precise shape of the real system Landau levels is assumed to be
of either elliptic or Lorentzian shape or a combination of both [49]. For all
cases, it is important how I relates to the Landau level separation Aw.. For
strong magnetic fields hw, > I', the Landau levels are separated and quantum
mechanical effects have to be taken into account, see Fig. 4(b). For low
fields the Landau levels overlap and the density of states can be attributed
as constant with a periodic modulation, see fig 4 (c). Experimentally this
periodic oscillation can, for instance, be observed as 1/B periodic oscillations
of the longitudinal magnetoresistivity p,z, called Shubnikov-de Haas (SdH)

oscillations.

03T 7-17k

3 3.5 4

B (T)

Figure 5: Shubnikov-de Haas oscillations in the longitudinal resistivity py, of a
2DEG in a 10 nm GaAs quantum well. The measurement was performed at the
temperature 7' = 1.7 K. Adapted from [49].

The longitudinal resistivity in the low-magnetic-field SdH-regime is given by
[49]

* 2
M [ 27k T e

hn,
2 .
nee’t, sinh(272kpT/ hw,) o8 ( 7T2€B):| (36)

pa::c(Bv T) =
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This equation can be interpreted by looking separately at its components.
The magnetoresistance oscillates 1/B-periodically around the B-independent
classical Drude resistivity, which is given by the prefactor. The term in the
brackets represents the low-magnetic-field thermodynamic density of states for
the broadened LL. It is assumed that the broadening is of Lorentzian shape.
Consequently, the oscillatory behavior of the longitudinal resistivity reflects at
low magnetic fields the density of states at the Fermi energy. The exponential
Dingle factor takes into account the finite lifetime broadening of the LL. For
low magnetic fields the separation of the LL Aw. is much smaller than the
broadening I' and the modulation amplitude gets strongly reduced. The energy
averaging over kg7’ around the Fermi level leads to a reduction of the SAH
oscillations’ amplitude by temperature. The Fermi energy is assumed to be
constant here. For higher magnetic fields this approximation is not valid, since
the Fermi energy jumps when the modulation of the density of states is strong
or a regime of separated LL is reached [49]. As Eq. 36 shows, the electron
density n., as well as the quantum lifetime 7, can be determined from SdH

oscillations observed in transport experiments.

2.2 Radiation Induced Effects in Two Dimensional

Electron Gases

In the previous section the band structure of a 2DEG and the transport
phenomena in crossed electric and magnetic fields are discussed. The physics of
such a system exposed to electromagnetic waves are in the focus of the following
section. Cyclotron resonance (CR) and electron gas heating are discussed in
the first two subsections followed by the core topic of this thesis, microwave

induced resistivity oscillations in the third subsection.

2.2.1 Cyclotron Resonance

The effect of cyclotron resonance describes the resonant absorption of radiation
with an angular frequency w = w,. by carriers moving on a cyclotron orbit
in a magnetic field B. The z-y-plane is defined as the plane of movement

in this section. The phenomenon of CR can be approached either quantum
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mechanically as resonant absorption between the Landau levels [50] or classically
[51, 52]. Here the classical approach is used. As described in Sec. 2.1.2 electrons
are driven on cyclotron orbits by the Lorentz force due to a perpendicular
magnetic field. When radiation with an electric field, lying in the cyclotron
orbit plane and an angular frequency w = w, is incident on the material, it is
resonantly absorbed by the moving electrons. The equation of motion of the

electrons is

*

m*%:e(E—l—va)—mv, (37)

Tp

with the effective mass m* of the electron in the semiconductor, the carrier drift
velocity v, the electron charge e, the electric field E, the magnetic field strength
B, and the momentum lifetime 7, [52]. The current density components can be
expressed as j; = nev; using the carrier density n. and ¢ = x,y. The absorbed

energy density per unit time P is obtained from the Joule losses formula

P — Ro(J) - Re(E) — %Re(J B, (38)

with Re denoting the part of a complex number. Equation (38) shows that the
orientation of the electric field of the incident electromagnetic wave is of special
importance for the energy transfer. In this thesis the focus lies on circularly
right- and left-handed polarized radiation, which will be elaborated on in the
following. The radiation is assumed to be propagating along z-direction with
an angular frequency w. For right-handed circular polarization the electric field

vector acts as
E, Eyett 1
= " =B ) (39)
E, —1Bpe™ —1
The absorbed power density per unit time for this polarization then reads as

UoEg

(w+ wc)QTg +1

pP= (40)
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For left-handed circular polarization the electric field vector is given by

Ex E iwt 1
— (2 V=g (41)
E, iEge™! i
and consequently, the power density is

O'()E02

p—
(w— wc)QTq2 +1

(42)

which only defers from Eq. 40 by the sign in the bracket. Remember, that the
cyclotron frequency is defined as w. = eB,/m*, which means that cyclotron
resonance for right-handed helicity only occurs if the incident electromagnetic
wave moves parallel to the magnetic field vector and for left-handed helicity only
when the magnetic field is turned into the opposite direction of the incoming
electromagnetic wave. This is a specific characteristic for the case of circularly
polarized light. The helicity at which cyclotron resonance absorption occurs for
a given magnetic field direction is addressed as CR active (CRA) polarization,
whereas the one with no absorption is addressed as CR inactive (CRI). For
linearly polarized radiation CR occurs in both magnetic field directions [52].
CR studies are usually carried out in absorption experiments. Under ideal
conditions the transmission signal drops to zero for circularly polarized radiation
and to = 50 % for linear polarization at the CR magnetic field position Bcg. By
fitting the slope of the CR-absorption signal with a Lorentzian the momentum
relaxation time 7, can be extracted as the full width at half minimum. However,
CR can also be observed in conductivity measurements. In order to evaluate
how the absorbed power impacts the conductivity, the conductivity tensor
elements from Eq. (20) have to be changed to [53]

—1 .
e2ne7'p T, tw
Ogy = Oyy = ;
* —1 2 2
m* (7,1 iw)? + w?
2
€ NeTp We
Opy = —Oyz = . (43)
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Note, that for simplicity an energy distribution of the electrons is not taken into
account here and that for w = 0 the above equations equal the original tensor
elements, see Eq. (20). For right-handed circular polarization the conductivity
is given by [53]

—1
O'UTp

44
szl—i—i(quwc)’ (44)

04 =
and for left-handed circularly polarized radiation as [53]

O'()Ti1

_ = P : 45
7 o+ i(w — we) (45)

2.2.2 Electron Gas Heating

The previous section is devoted to the CR and it is shown that it also influences
the conductivity o. In the following the effect of electron gas heating is discussed,
which can affect the conductivity strongly, especially if the incident radiation
has a high intensity I.

The carriers in an electron gas permanently exchange energy with the lattice.
If additional energy is delivered to the electrons it is transfered to the crystal
by exchange mechanisms such as electron-phonon scattering. For high tem-
peratures these transfer mechanisms are so effective, that the electrons are
considered to be in thermal equilibrium with the lattice. At low temperatures,
however, the coupling between charge carriers and the crystal can be much
weaker. When the electrons exchange energy very effectively among each other,
i.e. that the electron-electron interaction time 7., is much shorter than the
energy relaxation time, their distribution can be described by an effective
temperature 7, which is higher than the lattice temperature 7; [54]. This is

particularly the case at high carrier densities n. [55].

The change of carrier energy distribution by incident radiation results in a
change of mobility and accordingly a variation of the sample conductivity. The

balance equation
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K(w)[eeff .

o (Q(T2))n (46)

determines the electron temperature 7, based on the relation between absorbed
energy and the energy loss rate (QQ) = (de/dt). The absorbed energy depends on
the absorption coeflicient K (w), the intensity I and e.ss, which is the effective

energy that one photo-excited electron contributes to the system [55].

As mentioned above the increase in 7, leads to a change in mobility p. The
associated conductivity modification is referred to as pu-photoconductivity and
described by the equation [55]

Ao 1 0p

o uoT, T.=T,

AT,. (47)

In GaAs quantum wells high intensity THz excitation can lead to strong
saturation effects [56, 57| of the photoconductivity due to scattering with
longitudinal optical (LO) phonons. The energy transfer rate (@) in this case is
exponentially dependent on T, [55], given by

Q) =210 oy (0. ()

Te,LO

Here the growing number of electrons, which are energetic enough to emit LO-
phonons of the energy hwr,o lifts the electron-gas temperature and consequently
(@). The emission rate is denoted as T Llo' In comparison to the LO-phonon
emission rate of the electrons, the anharmonic decay rate for LO phonons
is slow. Hence the energy transfer from electrons to phonons can produce a

number of non-equilibrium phonons which results in a saturation of Ao /o at

high 1.

Not only the mobility u is affected by the electron gas temperature. It was
shown in Sec. 2.1.2, that the quantum lifetime 7, is significantly changed
when the lattice temperature 7T; is increases, resulting in a decline in SdH

oscillation amplitude. The same effect can also be observed, when due to
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high intensity illumination the electron gas is heated, which is reasonable
considering that the main mechanism limiting 7, in high mobility 2DEGs is
electron-electron scattering [58]. However, it has to be addressed that the
effect is weaker for rising 7T, as for 7;, since less phonons are involved in the
first case. The reduction of the SAH oscillation amplitude is also measured as
photoconductivity oscillations under illumination with high intensity radiation.
The oscillations occur at the same magnetic field values as the SAH oscillations

obtained in magnetotransport experiments.

2.2.3 Microwave Induced Resistivity Oscillations

In the previous sections two photoconductivity effects based on different mi-
croscopic mechanisms are discussed. Zudov et. al reported on a completely
new photoconductivity phenomenon in 2001 [14]. By applying microwave
radiation to high mobility (1 > 3.0 x 10%cm?/Vs) GaAs 2DEGs, oscillations of
the longitudinal conductivity are observed at low magnetic field values, where
contributions of CR and SdH oscillations are not expected. By using ultra
high (p ~ 1.5 x 10" cm?/Vs) mobility 2DEGs in 2002 Mani et al. where able
to increase the oscillation amplitude such strongly that they where able to
observe zero resistivity states [15]. Both publications attracted a lot of interest
and stimulated a high number of works on the topic of MIRO in the following

decade.

The original results of Zudov et al. are presented in Fig. 6, showing oscillations
that are, just like the SAH oscillations, 1/B periodic and hence where called
"SdH-like"[14]. However, they occur at much weaker magnetic fields, where the
Landau levels are not yet strictly separated. Their period is governed by the
ratio of € = w/w, x 1/B, with w being the microwave frequency and w, being
the cyclotron frequency. Figure 7 (b) shows MIRO as a function of €. The
maxima ¢ and minima €~ are roughly symmetrically offset from the harmonics

of the cyclotron resonance at integer ¢ and occur at

e =eF . (49)
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Figure 6: Magnetoresistivity p,, p with (solid lines) and without (dashed lines)
microwave illumination for different frequencies f = 45, 72, and 94 GHz normalized
to its zero magnetic field strength value p,, p—o. Data for different frequencies are
vertically offset for better visibility. Integer numbers denote maxima corresponding
to the order of MIRO e*. The data is obtained at 7' = 1.7K in a Hall bar sample.
Adapted from [14].

The value of the phase is reported as ¢ = 1/4 in many experiments [17-19].
For low harmonics, measurements show that the extrema move towards integer
¢ yielding a phase smaller than 1/4 [21, 25, 27]. The magnetic field dependence
of the photoresistivity is described by the empirical equation [10]

Ap = —Acesin(27e) exp(—ae), (50)

see Fig. 7. Here, the damping parameter « is proportional the inverse of
the quantum lifetime 7,. The experimental oscillation amplitude A, is B-
independent for € = 2. Both a and A,, are decreasing for increasing temperature
[26, 28], hence the majority of experiments on MIRO are performed at or below

liquid helium temperature.

It is reported that, at low microwave intensities, A, is linear in the radiation’s

power P [20, 30|, but there are also experiments which show a sublinear
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Figure 7: (a) Magnetoresistivity oscillations in respect to B at f = 81 GHz. Lon-
gitudinal resistivity change dp., induced by microwave radiation as a function of
€ = w/w,, obtained by subtracting the varying background. The data are obtained at
T =~ 1.5K in a Hall bar sample. Adapted from [10].

dependence |24, 31|. Hatke et al. showed that, with increasing power there is a
cross over from a linear A, o P to a sublinear regime A,, o< P'/? | accompanied
with a decrease of the phase ¢ [29].

Most of the experiments on MIRO employ frequencies between 30 and 150
GHz [10]. The linear dependence on w, see Eq. (50), reduces the magnetic field
positions of the oscillations for lower excitation frequencies and the oscillations
are suppressed by the Dingle factor [10]. For higher frequencies than 150 GHz,
however, the amplitude decreases as well [26]. According to theory [42, 46],
for fixed € > 2 and microwave intensity I the oscillation amplitude scales as
Apge < w™. Nevertheless there are also works reporting on the observation of
MIRO-like oscillations induced by terahertz radiation [36, 37|.
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Apart from many experimental works dedicated to MIRO, several microscopic
theories describing the effect have been developed. In general one can separate
between mechanisms describing MIRO as an effect originating on the boundaries
of the sample, e.g. by Chepelianskii and Shepelyansky [38] or by Mikhailov [39],
and so called bulk mechanisms as the displacement mechanism, firstly proposed
by Ryzhii et al. [40, 59|, and the inelastic mechanism which is suggested by
Dmitriev et al. [41, 42].

2.2.4 Displacement Mechanism and Inelastic Mechanism

Later, in Sec. 4.2 of this thesis it is demonstrated, that the observed oscillations
are of bulk nature and the results are analyzed in the framework of the
displacement and inelastic mechanism. In this section here a brief introduction

to the two mechanisms is given.

Both mechanisms are based on the combination of disorder broadened LL
and external magnetic fields affecting either the momentum relaxation in the
displacement mechanism or the energy distribution of the electrons within the
LL in the inelastic mechanism [10, 46]. The dissipative current j = en.(9,R) is
described as a scattering induced shift of the guiding center AR = R.e, x (n,, —
ny ) where n,, = (cos(y),sin(p,)) is the unit vector in direction of motion
before the collision and n,, afterwards. Here, R. = vp/w, is the cyclotron
radius with the Fermi velocity vg. Note that here ¢, does not denote the phase
of MIRO ¢ from Sec. 4.1, but the angle between the direction of the applied
electric field and the electron movement direction. The cyclotron orbit shift is
sketched in Fig. 8 (a).

In order to describe MIRO, the photoinduced shift AX and the resulting
current j, along the z-axis for a homogeneous 2DEG subjected to a dc electric
field E = e, E has to be determined. The shift current has two components
Je = j¥ 4+ jin described by the respective mechanisms and resulting in a

photoconductivity signal.

At low magnetic fields Landau quantization leads to a periodic modulation

of the density of states npos(e) = npos(e + w.). The electric field adds an
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Figure 8: (a) Scattering induced guiding center shift AX of a cyclotron orbit. (b)
Direction of the shift due to the detuning §,, = w/w. — N for the second harmonic
(N = 2) of the CR. The yellow stripes represent the LL maxima. Adapted from [10].

electrostatic potential ¢(x) to the system, which makes the density of states

spatial dependent, given by

fipos (€, ) = npos(e — ep(w)). (51)

The normalization to the constant density of states npos(¢)|p=o makes npos(e, x)

dimensionless.

The shift current density is defined as

Je = 2npos(€)|p=oe / dxy / dry(Wa, 2y — Wasosay ) (52)
—0o0 x
in terms of the of the probabilities W,, _,,, and W,,_,,, of the guiding center

shifts 1 — x5 and x5 — x1. The probabilities are given by the integrals over

the initial €, and final €5 energies of the collision, e. g.

Wx1—>x2 = </d€1 /dEzM;lg;(S(JTl — Ty + AX)
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X { e O(AS) + T, N " S(ASY £ w) }> : (53)
+

/

‘101 901‘

Here, AX =e, - AR = R.(sing, — sin¢/,) denotes the z-component of AR
and the whole term is averaged over the initial and final angles. The delta
functions in the second line are an expression for the total energy conservation
Ael% =) —eo + eEAX = 0 in the elastic scattering (oc FSQO; ) and its change
by +w in the photon-assisted scattering (ox Fffzh;; ). The distribution function
is given by

Mi;llzé = nDOS<517 x1>ﬁDOS<5> x)fEl [1 - fsz]v (54>

consisting of the dimensionless density of states npos and the non-equilibrium

distribution functions f.. The elastic scattering rate is given by [60]

1 P / z— &
11(61), _ _ Tatel 2 f P (55)

Pl St '

2

Tox—el,  Too—y),

and the rate for the photon-assisted scattering by [60]

, /
pon) _ Powret o0 Pa =00 56

According to Ref. [61] the collisions are described using a generic disorder

model characterized by an arbitrary dependence of the elastic scattering rate

1 1 im(pa—gh) . _
Tsoz—tp’z - Z Tm € T T = Tem. (57)

The dimensionless power P, 1. of the incident radiation’s electric field
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E,(t) = E,» Re[siesc™], (58)

where e = e, £ ie, and s is the complex vector of unit length determining
the polarization of the field, is given by

Py =P — 2RelE,E €Y,

P=IE P +IE-I%
Eyr =szevpBLw  (wEw,) ™ (59)

Note that, here the factor P is sensitive to the circular polarization helicity. A
change of the linear polarization’s direction, in contrast only has an effect on

the second part of the term describing Py. Ohms law is now expressed as

Jo = 0(ipos(e)?)E + Ac™E + Ac™E. (60)

Here, the first term describes the linear dark conductivity and (...). denotes
the energy averaging over the period w.. The other two terms are radiation
induced corrections. The first one (x Ac®®) originates from the photon assisted
displacements in Egs. (53) and (54) if the non-equilibrium distribution function

f- is replaced by the equilibrium distribution function, given by.

fE =11 9 =0 (61)

£

with the space-independent chemical potential 7.

The current density contribution of the displacement mechanism reads now

Jo® = 2enpos(e)|p=o Z/dg(fe(T) - foka)- <@(AX)F“(Z23”
+
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X / dr'nposle — ep(x')|nposle £ w — ep(x’ + AX)]> : (62)
T—AX Prpy

where the Heaviside function ©(AX) imposes the condition AX > 0. The only

contribution of the electric field to Eq. (62) is the position dependence of npos.

The two terms corresponding to € + w would exactly cancel each other out in

the absence of a local electric field E = V¢(z). The conductivity contribution

is given by

Aot = o, 477’ (P — Re[€.E )R,
Ta
2
Rl = waw<ﬁpos(€)ﬁpos(€ + (JJ)>E = —4(52E sin ﬂ-w, (63)

We We

which describes the photoconductivity oscillation contribution, reflecting exactly
the periodicity and phase of the observed MIRO. Here, 7, ! is expressed in
terms of the partial contribution to the disorder-induced scattering rate, see
Eq. (57) as follows

=20, (1 = cos0)?)g =375 — A+ (64)

where (..)p denotes the averaging over #. Note that the dimensionless power
enters Eq. (63), with both, the helicity dependent part and the contribution

which depends on the linear polarization.

If the incoming radiation’s energy equals the multiples of the distance between
the LL maxima (w = nw., n = 1,2,3...), no shift and consequently, no pho-
toconductivity is present. The magnitude and sign of the photoconductivity

depends on the energy detuning, for the Nth harmonic of the CR given by

0w =w/w.— N, N=1,2,3.... (65)

An excited electron will always take the shortest path to its energetically most

favorable spot, which is the maximum of the density of states npog, see Fig. 8
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(b). The electric potential ¢(z) breaks the symmetry of the system, so for
the electron in any case, except for exactly at the nppos minimum, there is a
preferred scattering direction. For radiation energy slightly higher than the
distance between two maxima of the density of states npos, d, > 0, the electron
scatters to the right, and other way around for a lower energy. Scattering of
the electrons in direction of the applied field leads to an enhancement of the
dissipative current j,. In the opposite direction it is reduced. Accordingly, the
dis

photoconductivity Ac®® due to the displacement oscillates with w/w,, with a

phase ¢ = +1/4, not to confuse with the angle ,.
(a) (b)
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Figure 9: (a) Photon absorption and emission with a detuning of §, = 1/4. (b)
Modulated (blue line) and constant (black line) density of states in phase relation
to the equilibrium (black line) and non-equilibrium distribution function (red line).
Adapted from [10].

The displacement mechanism assumes an equilibrium electron energy distri-
bution f. = fI'. The inelastic mechanism, in contrast, takes into account an
additional radiation induced change of the energy distribution d f. , < fipos(e, )
[62]. In this model the photoconductivity Ac™ depends on the derivative of
the distribution function 9,0 fe ;.

In contrast to the displacement mechanism, the inelastic mechanism takes into

account, that the distribution function f. is also influenced by the incoming
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radiation. The balance equation for the non-equilibrium energy distribution is

given by

T)

f. = £ . —1p(ph) + +

e = (Awos(7 T MM - MEES)) L (60)
:l: QOISOI

where 7;, ~ T~ 2n is the inelastic relaxation time, describing in which time

changes in the distribution function are balanced out. Just as for the dis-

placement mechanism, the a chemical potential 7 is assumed to be spatially

independent here. The photo-induced change to the balance equation reads

5fs =P—

4Ttr

S (D — ) posle £w — ep(x)]. (67)

+

Now, the dependence of the density of states on x also leads to an oscillation

of ¢ f. with space. Consequently, the elastic contribution to the current j, in
Eq. (52) does not vanish, M3, — M # 0.

The inelastic contribution to the current is obtained by substituting Eq. (67)
into Eq. (52), reading

T ~2 !
g = 2e nDOS(S)’BO/dE <AX®(AX)/ dm’nDOS(g’ )Vadler > :
z—AX e’

To—y!
(68)
The conductivity contribution, then is given by
Ag™ T DR, (w)
o' =0 w
D47_tr 2 )
Ro(w) = wd., (Rpos(e)*(fipos(e + w) + fipos(e — w)))e. (69)

Just as the displacement mechanism, the inelastic mechanism describes MIRO

well in terms of periodicity and phase. The phase comes again from the energy
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detuning 6,,. If it is positive it leads to an increase of the occupation for
states lying above a LL maximum, decreasing the number of states below
simultaneously. Since the conductivity depends on the derivate of ¢ f., already
a small change can have a large impact. Note, that in contrast to the dis-
placement mechanism, the inelastic mechanism is only sensitive to the circular

polarization’s helicity and not the direction of the linear polarization.



3 Methods

In the following a short description of the probed samples in terms of sample
characteristics, such as mobility and carrier density, and the used contact

geometries is given. Afterwards the experimental setup will be illustrated.

3.1 Investigated Samples

The two kinds of GaAs/AlGaAs heterostructures probed in this work are
explained in this chapter. Additionally the different contact geometries are

shown and their respective advantages and disadvantages are illustrated.

3.1.1 Material Properties

In this work (001)-oriented, molecular-beam-epitaxially grown GaAs/AlGaAs
quantum wells are probed. All of them have at least one d-doping layer. These
layers are positioned outside the 2DEG and consist of n-donors enhancing the
carrier density inside the 2DEG. Two kinds of samples were produced for this
work: The samples #A, #D, #E, and #G, which are sketched in Fig. 10 (a),
are grown in the group of Prof. Dr. Bougeard and consist of a layer of GaAs,
surrounded by two AlGaAs layers with single silicon-d-doping. The quantum
well width of those samples is d = 10 nm. The second kind of samples, #B, #C,
shown in Fig. 10 (b), were by Dr. N. N. Mikhailov, and Dr. S. A. Dvoretsky in
the Rzhanov Institute of Semiconductor Physics in Novosibirsk, Russia. Here
the GaAs layer is embedded in alternating layers of GaAs and AlAs that are
forming a superlattice. In this case the QW width is d = 12.5 nm.

The transport parameters presented in Tab. 1 are obtained at T = 2K
on samples contacted in either van-der-Pauw or Hall bar geometry. The
photoconductivity measurements that form the main experimental part of
this work are performed on samples from the same wavers, but contacted
in Corbino disc geometry. Although the majority of works on MIRO were
performed on Hall bar samples [10, 14, 15|, MIRO and even zero resistant
states were observed on Corbino disk samples [16, 63|. Since MIRO only occur

in the longitudinal resistance, it is worthwhile to measure the xz-direction
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Figure 10: Sketch of the two different types of sample structures probed in this
thesis. (a) Double AlGaAs enclosed GaAs heterostructure with single d-doping. (b)
GaAs/AlGaAs superlattice enclosed GaAs QW with double §-doping.

with highest possible accuracy. This accuracy is not provided if the measured
conductivity is influenced by both longitudinal- and Hall-conductivity, e.g. due
to misalignment of the sample contacts, which is possible in van-der-Pauw and
Hall bar samples. Misalignment is particularly an issue if the samples are large
sized, as it is necessary for parts of this work. Therefore Corbino geometry is
chosen here, since for this sample geometry, the longitudinal conductivity o,

can be directly probed, and no Hall contribution is present [49].

As fig. 11 (a) illustrates a Corbino disc consists of a radial inner contact with
radius r; centered in the middle of a larger outer contact ring with radius r,.
For this work the contacts are fabricated as an Au/Ge coating in the group of
Prof. Dr. Weiss in Regensburg or, for samples #B and #C, in Novosibirsk.
The sample radii are given in Tab. 1. Where multiple radii are shown, multiple
samples from one waver with different radii exist, to satisfy specific experimental
requirements which are explained in the respective sections of the chapters 4.2
and 4.4. The Corbino disc contacts are evaporated on square shaped samples

ranging from five to eleven millimeters side length.
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Sample T T 1 Te QW thickness

[mm] [mm] | 10%[cm?/Vs] | 10! [em ™2 [nm]

#A 0.25 1.5/4.25 820 12.0 10

#B 0.3 1.0 1800 9.3 12.5

#C 0.3 1.0 150 18.0 12.5

#D 0.25 1.5/4.25 980 24.0 10

#E 0.25 1.5 280 3.7 10

#G 0.5/1.0/1.5 4.25 680 13.5 10

Table 1: Sample parameters and transport data obtained at T' = 2 K including the

electron density n, and mobility wu.

3.1.2 Corbino Geometry

In this work mainly photoconductivity is measured, which is defined as the
difference in conductivity between illuminated and dark sample. When mea-
suring conductivity in a Corbino disk, a significant geometrical influence has
to be taken into account. When a voltage is applied between the inner and
outer contact, the cylindrical symmetry requires the Electric field lines to
point radially outwards. Due to the Lorentz force the current density lines
follow logarithmic spirals between the contacts, see Fig. 11 (b). The only
current component that is measured is the longitudinal one. Hence, only the
0z component of the conductivity tensor is accessible, not the horizontal o,
[49]. The current density at the inner contact is given by j = I/(27r;) with
the electric field strength E = j/o., = I/(27r;0.:). The voltage difference
between inner and outer contact then reads U = I /(270 )In(r,/r;)[49]. From

this, the longitudinal conductivity is given as

Since in this work only the longitudinal conductivity is in focus it will be

denoted as o in the following.
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(a) O O (b)

Figure 11: (a) Sketch of the Corbino geometry consisting of two radial contacts.
(b) Electric field and current distribution in a Corbino disc with an applied magnetic
field. Adapted from [49].

3.2 Experimental Technique

The samples described above are illuminated with monochromatic THz radiation
to study the photoconductivity response. In this section the optical and the

electrical setup for the photoconductivity experiments are described.

Two types of THz lasers are employed for the experiments in this thesis, a
continuous wave (cw) one and a pulsed one. They are pumped by a cw or
a pulsed COy laser in turn: The longitudinally excited CO, laser, emits cw
radiation of a few tens of watts power, and the transversely-excited atmospheric
pressure (TEA) CO, laser emits short (=~ 100ns) pulses with powers up
to megawatts. Both systems have in common that the emitted radiations
wavelength is tunable in the range between 9 and 11 um. The laser beam is
coupled into a .ond resonator, where a molecular gas is pumped to emit THz
radiation due to rotational laser transitions. Several discrete THz wavelengths
between 35 um and 496 um can be achieved by choosing different molecular
gases and pumping lines. All lasers emit radiation with a Gaussian transversal
profile and a beam diameter between 2 and 3.5 mm full width at half maximum.
A detailed description of the laser systems can be found in Ref. [55]. Pulsed laser
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wavelengths used in this work are 280, 385, and 496 um, the cw wavelengths
employed are 186 and 432 um.

reference detector—b‘ lambda plate™ optical cryostat  lens”

lens™>»

THz laser } ************* / ””””””””” H ””””””””””””” I ”””””””””””” '
optical zhopper/ T T T

beam splitter lens sample transmission detector

Figure 12: Sketch of the optical setup. The red dotted line represents the beampath.
Components marked with a star (*) are optional and only included in the setup
if necessary. Depending on the laboratory conditions some lenses are replaced by
parabolic mirrors. The optical chopper is used only for the cw setup, consists of
aluminum, which reflects THz radiation, and acts similarly to the beam splitter in

the pulsed setup.

Figure 12 shows a sketch of the optical setup used for most of the experiments
in this thesis. The emitted laser beam is firstly transmitted trough a lens to
reduce the divergence of the beam, which is particularly present at the cw laser.
Afterwards a part of the signal gets decoupled from the beampath by either a
beam splitter (pulsed) or a reflecting chopper (cw) in order to get focused by a
lens and detected as a reference signal. Photon drag detectors [55] are used
for the pulsed and pyroelectric [55] ones for the cw radiation. The chopper
additionally fulfills its usual purpose which is modulating both the probe and
the reference beam, to allow lock-in processing of the measured signals. A
lambda plate can be included in the setup to manipulate the polarization state
of the THz radiation, which is linear when emitted from the gas laser. Before
entering the optical cryostat the beam gets focused. Note that the lenses are put
in Fig. 12 to keep the sketch simple. In reality most of the focusing is done with
parabolic mirrors, which have less signal loss. The sample is fixed on a carrier
which is built to transmit as much of the radiation as possible. The electrical
connection of sample and holder is realized by gold wires welded on sample-
and carrier-gold-contacts. The optical cryostat also includes superconducting
magnets which can achieve a field strength B = 7T. Radiation which passed
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the sample is detected behind the cryostat, which makes a parallel detection of
photoconductivity- and transmission/absorption data possible. Transmission
signal is picked up by a photon drag detector at the pulsed system and by
either a pyroelectric detector or a Golay cell [64] in the cw case.

The photoconductivity data presented in this thesis is detected according
to the circuit diagrams presented in Fig. 13. A dc voltage Ug. is applied
to the sample and a varied magnetic field of field strength B is positioned
perpendicular to the sample surface and hence the 2DEG plane. The THz laser
beam impacts also normal to the 2DEG plane. The radiation is either pulsed
or modulated by a chopper, which means that it changes periodically from zero
to maximum intensity. The intensity change results in a conductivity change,
which consequently results in a voltage drop via a load resistor of resistance Ry.
The voltage drop is detected by a lock-In amplifier in the medium intensity
cw case or, preamplified by a AD50 amplifier, by a GHz oscilloscope for high
intensity pulsed radiation. The AD50 has an amplification factor 100 and a
bandwidth of 300 MHz. The high frequency signals are carried by high quality

coaxial cables and the open ends are covered by 50 €2 resistors.

(@ 12 (b) sample Lock-in amplifier /
=8
~~ ® .
5 A @ l ho B ADS50 argphﬁer +
2 R GHZ oscilloscope
0 - Ud

0 4 8 12 l l
x (mm)

Figure 13: (a) Sketch of the electrical wiring of the photoconductivity setup. The
sample is biased by a dc voltage Ug.. The the measured voltage drop Uy, via the load

resistor (resistance: Ry) is proportional to the photoconductivity.

When the sample is irradiated the total current reads

Udc _ UL(B7Iw) (71)

I p—
RS(Bajw) RL

where [, represents the radiation intensity and Rg is the sample resistance.
Solving the equation one obtains
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Udc

Rs(B,1,) = RL(M

—1). (72)
The voltage drop Uy, over the load resistor consists of a dc radiation independent
part U (B, 1, = 0) and an ac part Uy (B, I,) which is induced by the change in
conductivity.The dc component, however, is canceled out by either the lock-in
amplifier for cw or by the oscilloscope for pulsed radiation. Accordingly the

measured voltage U, is proportional to the photoconductivity Ao:

Up x Ao (73)



4 Terahertz Radiation Induced Resistivity Oscil-

lations

This chapter is devoted to the presentation and the discussion of the experimen-
tal results. In the first subsection photoconductivity oscillations in an external
magnetic field are shown and empirically analyzed. It is demonstrated that the
observed oscillations are the THz analogue of MIRO. In the second subsection
the advantages of THz radiation compared to microwaves are exploited to
determine whether the observed effect stems from the samples is a bulk or the
boundaries. This helps to identify which microscopic description applies best
to the phenomenon. Afterwards the respective microscopic mechanisms are
explained in detail. Subsection 4.3 is concerned with the dependence on circular
polarization of the MIRO-like oscillations. Thereafter the magnitude of the
observed helicity dependence is compared to the theoretical expectations. In the
last subsection, 4.4, the chapter is completed by the results of MIRO induced

by high intensity THz radiation and the underlying saturation mechanisms.

4.1 Terahertz Analogue of Microwave Induced

Resistivity Oscillations

In this subsection photoconductivity measurements under the influence of
an external magnetic field are presented. The results are obtained under
application of a cw optically pumped molecular THz laser, operating at an
average intensity in the range between I = 10 mW /cm? and I = 500 mW /cm?,
depending on the wavelength. It is shown, that the observed conductivity
oscillations display the same attributes as MIRO, although being induced by a

much higher frequency.

4.1.1 Results

[luminating a 2DEG under application of a bias voltage and a varying magnetic
field, a photoconductivity signal is measured. This photoconductivity Ao

is exemplary presented in Fig. 14, induced by radiation of the frequency
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Figure 14: Photoconductivity Ao for sample # A induced by modulated cw radiation
with the frequency f = 0.69 THz and an intensity I ~ 110 mW /cm? as a function of
magnetic field B for T'= 4.2 K in panel (a) and 7"= 15 K in panel (b). (c¢) Sample
resistance R for sample #A in respect to the magnetic field B for T = 4.2 K.

f =0.69THz and an intensity I ~ 110 mW /cm? in sample #A. The results
are shown for two temperatures, T'= 4.2 K and T'= 15 K , in panel (a) and
(b), respectively. Strong oscillations of Ao are observed, accompanied by a
background offset signal, which is particularly strong for low magnetic field
values B < 0.2T. The origin of the background signal is discussed later for
normed photoconductivity data. The observed oscillations are symmetric for
both magnetic polarities except for the region around |B| ~ 1.85 T. A closer
look reveals the presence of two kinds of oscillations, see Fig. 14 (a), both being
1/ B-periodic, but having a different periodicity. The first kind of oscillations
are present between B ~ 0.25 T and B ~ 2.5T, whereas the second is present
for large magnetic fields, above B ~ 1T. In contrast to this dataset, at higher
temperature 7' = 15 K, presented in Fig. 14 (b), only one type is present.

The oscillations present for high magnetic field values, are at the same magnetic

field positions as the SdH oscillations observed in dark transport, see Fig. 14
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Figure 15: Transmittance as a function of magnetic field B for circularly right-
and left-handed polarization shown in (a) as red dots and blue squares, respectively.
The lines show transmission calculated after [65]. Panels (b)-(e) show normed
photoconductivity Ao /o as a function of € = w/w¢ for four different samples. Ao is
induced by right- and left-handed circularly polarized radiation, represented by solid
red lines and dashed blue lines, respectively. Data for € > 2.5 are magnified by the

factors shown in the panels.

(c). The origin of the high B oscillations is discussed in detail in Sec. 4.1.2 and
the attention here is put to the first kind of oscillations which is present for
T =42K and T'= 15K as well. Note that the magnitude of the oscillations
is over one order of magnitude smaller for 7" = 15 K, see Fig. 14 (b). Their
magnetic field positions, however, are identical in both cases. The oscillation
amplitude grows with rising magnetic field B, however there are no more
oscillations observed at magnetic fields higher than |B| ~ 2.5 T. Actually, the
last and largest pair of extrema has its node at |B| ~ 1.88 T, which is the CR
position Bogr. The CR position Beog at w = w, is obtained from transmission
experiments, executed together with the photoconductivity experiments, as

described in Sec. 7?7. An exemplary dataset for sample #A is shown in Fig. 15
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(a). Here, the vertical arrows mark the positions of the first three harmonics
of the CR, € = w/w. = 1,2,3. The transmission data for linearly right-and
left-handed circular polarized light is shown as red dots and blue squares,
respectively. The solid lines represent fits, which are discussed together with

the asymmetric shape of the CR in Sec. 4.3.

The earlier claimed 1/B-periodicity is much clearer recognizable when the
normed photoconductivity Ao /o is presented in respect to the oscillation
number ¢, see Fig.15. This number, in turn, is proportional to the inverse
magnetic field € = w/w. « 1/B. The data shown are obtained with four
different samples, all illuminated by radiation of the frequency f = 0.69 THz.
The sample temperatures are chosen such, that only the first type of oscillations
are observed. Norming the photoconductivity Ao to the dark conductivity o,
the observed background signal becomes B-independent and small compared
to the oscillatory component. The background can, hence, be attributed to the
influence of the sample shape on the dark conductivity. The photoconductivity
data presented in Fig. 15 (b)-(e) clearly show that for the four probed samples,
the oscillations are periodic in €. The extrema are roughly symmetrically offset
to €. Moreover, in all four cases the oscillation amplitude reduces with rising e.

The magnitude of the amplitude damping depends on the sample.

The amplitude of the observed oscillations depends linearly on the radiation’s
power. Reducing the radiation intensity reduces the amplitude, see Fig. 16
for the photoconductivity in the magnetic field range between B = 0.3 T and
B = 0.55 where oscillations with ¢ = 4 and € = 5 are found. Note that the
positions of the extrema do not change. The differences in photoconductivity
of the maximum and minimum for each oscillation in respect to the ratio
between applied and maximum intensity, /I,,., are shown in Fig. 16 (b),

demonstrating a linear intensity dependence.

Changing the excitation frequency from f = 0.69 THz to f = 1.62 THz modifies
the periodicity of the first type, but does bot influence the oscillations with
the SAH period. This is shown exemplary for sample # A in Fig. 17 (a). The
experiments were carried out at helium temperature and under excitation
with either right- or left-handed circularly polarized radiation, represented by

the red solid and the blue dashed line, respectively. Note that the radiation
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Figure 16: Intensity dependence of the photoconductivity oscillations . Panel (a)
shows the magnetic field dependence of Ao for four different intensities for e = 4 and
€ = 5. The intensity dependence of the amplitudes A of the 4th and 5th harmonics is
presented in panel (b). The data show that the oscillation amplitude scales linearly

with the radiation intensity and that the maximum signal positions do not shift with

changing intensity.

intensity at this frequency is by a factor of five larger (I ~ 550 mW /cm?) than
for the frequency f = 0.69 THz. The photoconductivity Ao is presented in
respect to the inverse magnetic field 1/B. The observed low-B oscillations
have a smaller amplitude compared to the lower frequency data and a more
unsteady background signal is present. Figure17 (b) shows the respective
transmission data. It reveals that also the CR position has shifted. For an
excitation frequency of f = 1.62 THz it is found at B ~ 4.25 T.

Note that both, the transmission data as well as the photoconductivity is pre-
sented for illumination with circularly right- and left-handed polarized radiation,
respectively represented by red- and blue-colored graphs. In contrast to the
transmittance, the photoconductivity shows only a weak helicity dependence.

This feature is analyzed in detail in Sec. 4.3.

4.1.2 Discussion

The origin of the photoconductivity oscillations in the external magnetic field
presented in the previous subsection is discussed in the following. At first,

the oscillations, which vanish for higher temperatures are discussed.Secondly,
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Figure 17: Photoconductivity data Ac (a) and transmittance data (b) for sample
#A induced by modulated cw radiation with the frequency f = 1.62THz and an
intensity I ~ 550 mW /cm? as a function of magnetic field B for T = 4.2 K.

and in more detail, the temperature resistant oscillations, which occur at
lower magnetic field values are discussed. Therefore, the shape of the normed
photoconductivity signal is analyzed and empirically fitted. A particular focus
lies on the oscillation amplitude A, the phase ¢, which separates the oscillation

extrema from the node positions ¢, and the damping parameter a.

Comparing the oscillations in Fig. 14 (a) to the magneto-transport data for this
sample presented in Fig. 14 (c) shows, that the photoconductivity oscillations
are at the same magnetic field values as the SAH oscillations measured in
dark conductivity. Observed only for low temperatures, the second type of
oscillations, see Fig. 14 (a) and Fig. 17 (a), can be attributed to a trace of SAH
oscillations observed in the photoconductivity signal. They can be attributed to
the decrease in SdH-amplitude due to electron gas heating induced by the THz
radiation, described in Sec. 2.2.2. The absence of the high B oscillations in
the photoconductivity data for T'= 15K, presented in Fig. 14 (b), supports an
explanation based on heating, because an increase of electron gas temperature
T, does not yield a reduction of SAH amplitude at this sample temperature.
This is due to the fact, that at this temperature T" = T, = 15K no SdH
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oscillations are observed in magneto transport either, due to the smeared out
LL, see Sec. 2.1.2.
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Figure 18: Normed photoconductivity Ao /o as a function of e for sample #A at
T = 4.2 K represented by the red line. For better visibility Ao /o has been multiplied
by a factor 17 for higher harmonics (¢ > 3) and the B-independent offset is subtracted.
The green line is a fit after Eq. (74) with B-independent A..

Now the other type of oscillations, present at low magnetic field values B < 2.5T
are analyzed. Figure 18 shows the normed photoconductivity of sample #A in
respect to the oscillation number ¢ measured at 1" = 4.2 K, represented by the

red line. It is complemented by an empirical fit, given by

Ac /o = —€eA.sin(2m (e + de)) exp(—ae), (74)

represented by the green line. Here A, is the experimental oscillation amplitude,
which shows to be B-independent for ¢ > 2, and « is the exponential damping
parameter. The fit can not be applied reliably for lower harmonics. In this
range the photoconductivity is influenced additionally by the CR. Similarly to
the procedure on photoconductivity oscillations reported in previous works [10,
14] the low harmonics are excluded from the analysis based on Eq. (74). Note
that, except for the additional phase de, Eq. (74) is identical to Eq. (50) in Sec.
2.2.3, the empirical fit of MIRO, firstly reported in Ref. [14]. The CR position
Bé’; = 1.84T, extracted from the fit and therefore based on the periodicity of

the oscillations is in good accordance to Bor = 1.85T the value obtained in
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the transmission experiments. Table 2 in Sec. 4.2, shows Bgpg, the additional
phase de, the oscillation amplitude A, and the damping parameter a extracted
from the normed photoconductivity Ao /o measurements, together with the

temperature of the respective experiments.

Due to the exponential damping, higher harmonics, € > 1, can not be resolved
sufficiently well to allow a precise fit without additional methods. However,
the precision for high harmonics can be checked by multiplying the normed
photoconductivity Ao /o with a part of the empirical fitting term —e exp(ae), as
exemplary shown for sample #A in Fig. 19(a). The amplitude now is constant
for up to € = 12, showing how good the fit corresponds to the obtained data,

even though several parameters are involved.
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Figure 19: (a) Relative, normed oscillations Ao /o with removed constant back-
ground when multiplied by —e~!exp(ae) in respect to e. The damping factor « is
taken from the fit after Eq. (74). The plot illustrates the quality of the fit in relation
to the original data for high harmonics € > 1. (b) Example of how Bgg, de, and ¢

are obtained.

From the presented data also the phase ¢ of the oscillations extrema relative

to the nodes can be extracted. The extrema are found at

e =eTF o, (75)

with the phase being ¢ = 1/4 for all probed samples, and +(—) corresponding
to maxima (minima). The phase ¢ = 1/4 is reported to be universal in



Refs. [17-19]. Figure 19 shows exemplary for sample #A how the phase ¢,
the additional phase de and the CR magnetic field position Bgg are precisely
determined from the photoconductivity data. The 1/B values of the magnetic
field positions of the oscillation’s minima and maxima are plotted against e.
From the gradient 1/Bcr = 1/1.84 T~! of the straight lines which are fit
through maxima and minima positions the CR position is obtained. Precisely
in the middle between the red lines a blue line representing the nodes of the
oscillations is placed, which crosses the abscissas at de = —0.09. The horizontal
distance between corresponding extrema is 1/2, which means that they are

¢/2 phase-shifted to each other and symmetrically offset from the nodes by
p=1/4.

MIRO amplitude is reported to strongly decline with rising frequency, A, o< w™
[10, 26]. Sample #A is probed with the frequency f = 0.69 THz in Fig. 15 (a)
and the frequency f = 1.62 THz in Fig. 17, both at T' = 4.2 K. The oscillation
amplitudes are decreased by a factor FS* ~ 5 for the higher frequency. The

4

ratio of the frequencies 1.62/0.69 ~ 2.35 applied to the 4th order frequency
dependence of A, gives a theoretical ratio F'' ~ 6, assuming a linear intensity
dependence and considering the five times higher intensity for f = 1.62 THz.
The deviation of both ratios can be explained by the inaccuracy with which the

amplitudes for f = 1.62 THz are obtained, due to the unsteady background.

The e-periodicity, the exponential damping «, the fixed phase relation ¢ = 1/4,
and the frequency dependence A, oc w™* are reported as the main experimental
characteristics of MIRO, see Sec. 2.2.3. Though being excited by radiation of
a higher frequency, the oscillations observed in this work feature all of these
characteristics, which shows that they represent the THz analogue of MIRO.
The intensity dependence in Fig. 16 supports this assertion. In analogy to MIRO
the oscillations are addressed as THz induced resistivity oscillations (TIRO)
in the following, although actually conductivity oscillations are presented.
Remembering Eq. 23 in Sec. 2.1.2, however, one can conclude that oscillations
observed in conductivity are resistivity oscillations at the same time, and vice

versa.
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4.2 Bulk or Boundary Origin of the Terahertz Radiation

Induced Resistivity Oscillations

In the previous section it is shown, that TIRO show the same physical properties
as MIRO and hence, are the same effect. The excitation with THz instead of
microwaves yields a lot of advantages. The radiation’s polarization state can
be easier controlled and the laser beam can be focused to a much smaller area
than it is possible for a microwave signal. In the following section the latter
property is exploited in order to answer one of the most intriguing questions in
the hole field of MIRO: Are they an effect excited on the edge between the two
dimensional electron gas and the sample boundaries, like contacts or vacuum,
or can they also be observed if only the bulk of the sample is illuminated?
Answering this question helps to figure out, which of the competing theories for
the description of MIRO that developed in the last 15 years can describe the
effect. In the beginning of this section the spatial origin of TIRO is determined.
Afterwards the microscopic mechanisms, which are in line with the beforehand

obtained results are discussed.

4.2.1 Results

To be able to selectively excite the sample large area Corbino discs were
manufactured in the group of Prof. Dr. Weiss, with an outer contact diameter
of r, = 9.5mm. The, compared to microwaves relatively small spot of the
molecular THz laser with a diameter of d =~ 3.4 mm full width at half maximum
at a frequency of f = 0.69 THz is applied to the large sized samples, such, that
the sample edges are not illuminated. To guarantee, however, that only the
bulk is illuminated, a metal aperture is placed on top of the sample. To avoid
boundary effects between aperture and sample, insulating spacers provide a
distance between them. A sketch of the aperture on top of the sample is given
in Fig. 20 (a). It shows the setup from top perspective and a cut through the
sample center along x direction. The laser spot is sketched true to scale. The
results of the photoconductivity measurements applied to samples #A and #C
as a function of € = w/w, are presented in Fig. 20 (b) and (c), respectively. In

both cases well pronounced TIRO are visible, showing all the characteristics
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Figure 20: (a) Sketch of the aperture on top of the sample from top view and side
view, cut trough the sample center. Photoconductivity Ao as a function of € obtained
at T = 4.2 K with a radiation frequency f = 0,69 THz on sample #A and sample
#C, presented in panel (a) and (b), respectively.

discussed in Sec. 4.1. Also traces of SAH oscillations are present. The results
on the large area samples are consistent with the ones of the small Corbino
samples investigated in Sec. 4.1, showing a much stronger exponential decay
for sample #C than for sample #A. Both results contain a slightly stronger
but still rather weak helicity dependence, with larger oscillation amplitudes for
right-handed polarized radiation, which is to be expected since the results for

positive magnetic field are presented.

After measuring TIRO without edge illumination, the contacts are now illu-
minated selectively by scanning the beam outwards from the middle of the
sample, where no contacts are, towards the contact region. Therefore, another
mask is used, which allows to scan the laser spot from the sample middle
towards the edge. This movement of the laser spot along the y-direction from
the non-contact area to the contact area of sample #A is illustrated by the
inset of Fig. 21. In steps of 0.5 cm the photoconductivity is measured between
B =04T and B = 0.75T revealing TIRO with ¢ = 3 and ¢ = 5. The normed
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Figure 21: Normed TIRO amplitudes Aso/A30mar and Ao /A40ma, for the
third and fourth harmonic, represented by black squares and red dots, respectively.
The green line represents the parallel measured transmittance signal normed to its
maximum. The variable x represents the positions, were the oscillations, from which
the amplitudes are extracted, are measured. The positions are illustrated in respect

to the setup geometry by the inset.

amplitudes of the respective oscillations A0 /A 04, extracted from the pho-
toconductivity measurements, are presented in respect to the beam position y
in Fig. 21. Additionally, the transmitted intensity is detected by a large scale
Golay cell. Both, the transmission and photoconductivity data are normed to
their respective maximum values in order to make it easier to compare their
shapes. The presented results are achieved on the large sized sample #A at
T = 4.2 K excited by radiation of the frequency f = 0.69 THz and an intensity
I of about 110 mW /cm?.

The oscillation amplitudes as well as the transmittance signal decrease as the
spot moves over the contact edge. The shapes of the three compared datasets

are congruent in the limit of the measurement precision.
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4.2.2 Discussion

The results presented above approach the question of MIRO origin from two
sides. On the one hand photoconductivity is measured with an aperture that
prevents edge illumination, and on the other the edge area between sample and
contact is selectively irradiated. The first measurement shows, that MIRO must
contain a bulk contribution, because the oscillations are well resolved. The

stronger helicity dependence for the larger samples are discussed in Sec. 4.3.

With the second experiment a significant edge contribution can be ruled out.
If there would be an edge contribution, it would show in a maximum signal
when the maximum intensity of the laser spot illuminates the edges. Due to
the Gaussian profile of the laser beam, the maximum intensity irradiates the
contact edge at x ~ 4cm. In this region no significant increase of amplitude
is obtained. In general, the oscillation amplitude follows the transmittance
signal closely. The transmittance, in turn, is a measure of the intensity [
with which the 2DEG is illuminated. The intensity is reduced strongly, due
to reflection of the incident radiation by the AuGe contact areas. The linear
intensity dependence in the intensity range applied here is discussed in Sec. 4.1.
Hence it is not surprising that the normed TIRO amplitudes fit well together

with the normed transmittance.

Both experiments separately, but even more in combination show that TIRO
is a bulk effect. The two mechanisms describing the phenomenon in that
manner are the displacement mechanism, proposed by Ryzhii [59] and the
inelastic mechanism, proposed by Dmitriev et. al [41, 42]. A phenomenological
description of both of them is given in the following oriented on Ref. [10]. For

a more detailed discussion of both mechanism see Refs. [10, 61, 62].

Within the theory of the displacement and inelastic mechanism the photocon-

ductivity oscillations are given by [62]

2mw

Acjo=—nPSy (76)

Y
We

where the dimensionless radiation power P and the circular polarization’s
helicity dependent factor Si are given by
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£ 2 (L w/w)? (78)
The screening factor |sy| = |EL|?/E? takes into account the reduction of the

THz field’s intensity | E'+|? acting on the 2D electrons compared to the incoming
radiation’s intensity £2. The determination of the THz field acting on the 2DEG
for the experiments presented in this thesis is presented in the supplementary
materials of Ref. [66]. It is based on the analysis of the transmission data
separately obtained for each probed sample and takes into account the Fabry-
Perot interference due to multiple reflections [65] and superradiant decay [67].
The transmission coefficient 7' = [t|?, with ¢ being the transmittance amplitude,

is used as the fitting function and given by,

7+
[72 + (v +T)2] cos? ¢ + [A2y2 + (Ay + ['/n)2] sin® ¢ — (7 — n~1)gl sin 2¢°

T, =

-1
=14+ ,ﬁ:ﬁi;—

(79)

€&

The exact derivation of T" can be found in the supplementary materials of

Ref. [66]. Two parameters strongly influencing the screening are

v = 1/wT, (80)

which represents the momentum relaxation in the 2DEG and

I = e*n,/2epem’*w, (81)
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which represents the superradiant decay. Here ¢ is the vacuum permittivity, ¢
the vacuum speed of light, and m* the effective mass. Whether the Fabry-Perot
interference is constructive or destructive, is described by the interference
parameter ¢ = nkw. Here, n = 3.6 is the refractive index of the GaAs
substrate, k = w/c is the vacuum wave vector and w the distance between
the sample surfaces. The parameter ¢ can be obtained from the fit of the
transmission data. The data for sample #A , which has the carrier density
ne = 1.25 x 102 cm™2 and the mobility u = 82 x 10*cm?/Vs, corresponding
to I' = 0.19 and v = 0.0065, is presented in Fig. 15 (a). Since ¢ enters only
in trigonometric functions, just the fractional part ¢ = ¢/¢ — |¢/¢] is taken
into account. The fit to the data in Fig.15 (a) then gives ¢ = —0.04 and
Bop = 1.85T.

The screening factor entering Eq. (76), can be expressed as a function of T,

given by

|8i|2 = |Ei|2/EZ = T:t(COSQ o+ n~2sin® ®). (82)

It is shown in Ref. [66] that, for small magnetic field values B and v,I" < 1,
which is valid for the experimental conditions in this thesis, the intensity
reduction can vary between |s + |* = 1 for constructive interference and
|s + 1% ~ 0.02 for destructive interference. The strength of the reduction,

depends on the factors:

The factor n = n'"+74 in Eq. (76) consists of the 2DEG parameters, influencing
how strongly the inelastic and displacement mechanism respectively contribute

to the observed oscillations. The inelastic contribution, given by

i 2Tin 2h’n,

2 )
Tp m7, 1"

includes 7,,' oc T2, the rate of inelastic electron-electron collisions. In contrast,
elastic scattering fully determines the rate % of the displacement contribution.

It is highly sensible to the correlation properties of disorder and its maximum
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dis

s = 3/2 is obtained when the momentum relaxation is dominated by

value 7

large angle scattering from short-range impurities.

Comparing the empirical fit to Ao/o, presented in Eq.(74) in Sec.4.1 to
Eq. (76), can relate the fitting parameters to the factors introduced by the

microscopic models as follows

Ac =2mnPSL, (84)
2

a="T, (85)
CUTq

The fact, that the damping coefficient « is smaller for both, larger 7, and w
as well, explains why the observed oscillations are well resolved up to high
¢, although the amplitude is reported to scale with w* [14, 26]. It has to be
addressed here, that the quantum lifetime 7, extracted from o = 0.97 for
sample #A is smaller than the quantum lifetime extracted from the transport
data for the identical sample by a factor of 3. A deviation of 7, for those two
methods is also reported in Ref. [26] and attributed to long-range potential
fluctuations which lead to an additional damping of the SdH oscillations but
have no influence on the MIRO amplitude [10].

In theory, the magnetic field enters the amplitude A, via the factor € = w/w,
in Eq. (78). For small magnetic field values B, however, ¢ > 1 and hence the
amplitude becomes B-independent. It can be replaced by A%P = A.|. .. Note
that together with the B-dependence also the polarization dependence vanishes
for € > 1. Figure 18 shows, that the data collected for sample #A can be
perfectly fitted by Eq. (78) for € > 3.

For Sample #A the amplitude A, can be estimated using Eq. (84), which gives

(27h)3e*n? B2

th _ ~
AL =2mnP S AT T2t

(86)

Here, for ¢ = —0.04 and for I' = 0.19 the polarization factor is Soo = Si|wsw. S

1, i.e. there is almost no screening away from Bgg. From Bogr = 1.84, which



Sample | T(K) | Beg (T) | de a | 103 ASP [ 103 AD | §
#A 4.2 1.84 -0.09 | 1 o6 40 -0.04
#B 9.4 1.8 -0.09 | 0.6 1.3 1.7 -0.1
#C 15 1.8 0.09 | 2.6 - 5 0.15
#D 15 1.9 0.01 | 1.6 24 8 -0.07
#E 4.2 1.8 -0.05 | 1.2 20 9 -0.1

Table 2: The CR magnetic field position B¢, the additional phase de, the damping
coefficient «, and the oscillation amplitude A¢*P extracted from fitting of the photo-
conductivity oscillations after Eq. (74) and the measurement temperature 7. A¢P
for sample # C could not be reliably extracted, due to the small number of resolved
oscillations. Added to that are the theoretically predicted amplitude Agh and the

interference parameter d~> The amplitudes AZ" and A™ are in good agreement.

is extracted from the period of the oscillations one obtains m = 0.074my, and
together with 7' = 4.2 K n'® ~ 12 is identified. The displacement contribution
n¥s < 3/2 < 12 can, hence, be neglected.

The estimated amplitude A" ~ 0.04 coincides with the empirical amplitude
AP = 0.056 very well. The data for the empirical and the estimated amplitudes,
determined separately for every sample is presented in Tab. 2 together with the

fractional part ¢ of ¢.

4.3 Circularly Polarized Terahertz Radiation Induced

Resistivity Oscillations

The previous section revealed, that the observed oscillations are well described
by the inelastic mechanism. This mechanism is supposed to be strongly de-
pendent on the helicity of circularly polarized radiation, see Sec.2.2.4. In the
following TIRO are probed with right- and left-handed circularly polarized radi-
ation and the results are analyzed in accordance of the microscopic mechanisms

presented in Sec. 2.2.4.
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Figure 22: (a) Magneto-oscillations of the photoconductivity induced by circularly
right- (red lines) and left-handed polarized radiation of the frequency f = 0.6 THz
obtained at T" = 4.2 K. Transmittance showing CR active behavior for circularly
right-handed polarization (blue) and CR inactive behavior for left-handed polarization.
The transmittance data is collected parallel to the photoconductivity and, hence also
at f =0.69 THz and T = 4.2 K.

4.3.1 Results

The influence of right- or left-handed circularly polarized radiation on the
photoconductivity signal is shown in Fig. 22 (a), obtained at 7' = 4.2 K and
induced by radiation of the frequency f = 0.69 THz. The data, obtained for
right-handed circular polarization is represented by the red solid line, the data
for left-handed circular polarization is presented as blue dashed line. TIRO are
observed for both polarizations and also both magnetic field directions, as well
as traces of the SdH oscillations. For magnetic fields up to B = |1| T there’s
rarely any helicity dependence present, whereas the obtained data defers slightly
for the two polarization states at fields between B ~ [1| T and B ~ |2.5| T.

For the investigation of helicity dependent effects in this section, the photo-
conductivity data are supplemented by transmittance data which are recorded
simultaneously. The additionally obtained transmittance data presented in
Fig. 15 (a) in Sec. 4.1 is shown again in Fig. 22 (b) for easier comparison to the

photoconductivity data. Since both, photoconductivity and transmission are
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recorded during the same measurement, the experimental conditions are exactly
the same for both results. Only transmittance data for positive magnetic
field B > 0 are shown. The data for the CRI regime, for positive magnetic
field induced by left-handed helicity, represented by blue squares is roughly
constant over the whole range of the measurement, whereas for CRA, induced
by right-handed polarization, marked by red circles, the transmittance signal
drops down to nearly zero at B = 1.88T. The magnetic field position Bog of
the CR and its higher harmonics are marked by vertical arrows in Fig. 22 (b).
The red and blue solid lines represent fits, which is discussed in the following
subsection. Data obtained from the fits are the basis of the approach to explain

the weak helicity dependence.

4.3.2 Discussion

The presence of a strong sensitivity of the transmittance signal to the CR in
Fig. 22 (b) shows, that the quality of circular polarization is very high at the
2DEG. The transmission data is well fitted by the transmission coefficient T,
see Eq. (79), taking into account screening due to multiple surface reflexions

and superradiant decay. There, the helicity comes in by the factor .

The screening function |s4|?, which enters the description of TIRO in Eq. (76),
also includes T'. Therefore, TIRO are expected to depend strongly on the
helicity in the range w ~ w.. The observed helicity dependence of the photo-
conductivity signal, however, is much weaker. A closer look at Egs. (79), (82),
and (78) reveals, that the minimum ratio of the TIRO signal for CRA and CRI

configurations is expected in the case of constructive interference, when

1

Se = T +7)2+ (1+w/w)

cos® ¢ = 1. (87)

If a positive magnetic field is taken into account and considering that v < I

the ratio is given by

ASRA _ (14 we/w)? +T? (8)
ACRI (1 —we/w)2+T2%
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Figure 23: The ratio ASRA/ACTA of the TIRO amplitude measured for CR active
and inactive polarization in respect to € for samples from five different wavers. The
index L marks samples with large Corbino structures (r; = 0.25mm, r, = 4.25 mm).
Fits after Eq. (88) for I' = 0.19 and T" = 0.36, which are the respective values for
samples #A and #D.

Though T" reduces the difference between CRA and CRI, there’s still a strong
difference present between the predicted and measured ratio for CRA and CRI
for all probed samples. This is shown in Fig. 23. Even for sample #D, which
has the largest n, = 2.4 x 10'2 cm~2 and hence, the largest I' ~ 0.36, the
theoretical value at € = 1,2, 3 is by far larger than observed in experiment. For
lower densities n, or for ¢ differing more from zero value, the ratio can only

mcrease.

The inelastic and displacement mechanisms describe the experimental observed
data well for high harmonics at w > w,., for low harmonics, however the
behavior can not be explained by any existing theory. A saturation effect can
also be ruled out since the amplitudes of the absorbed oscillations scale linearly
in intensity, as shown in Fig. 16. A more comprehensive analysis of the intensity
dependence of TIRO is presented in the following section, applying a high
power THz laser.
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4.4 High Intensity Terahertz Radiation Induced

Resistivity Oscillations

So far all presented results have been obtained by irradiation with intensities
around / = 110 mW /cm?. The only exception is the observation for f = 1.62,
where due to the unsteady background only a qualitative analysis is possible.
As previously shown in Sec. 4.1 MIRO amplitudes scale linearly with power
in this range. For much higher intensities, however, very interesting physics
is predicted to happen [10, 35]. Due to the lack of powerful sources in the
microwave range, by now not much work is done in this field [29, 35|. The
utilization of a high power line-tunable molecular THz laser pumped by a
pulsed TEA CO, laser allows to reach intensities up to I = 10* W/cm?, which
is five orders of magnitude higher than the intensity achieved on the cw-system.
Applying such high powers holds several benefits. Despite MIRO amplitudes
being predicted to strongly decrease with growing frequency f, TIRO are
obtained and analyzed by irradiation with frequencies up to f = 1.07 THz in
the following section. Moreover, TIRO are observed on samples cooled down
and probed in complete darkness, although illumination with visible light was
considered mandatory for the observation of MIRO to the day [14]. All data

presented in this section are obtained at T'= 4.2 K.

4.4.1 Results

The photoconductivity Ao in respect to the magnetic field B is presented in
Fig. 24 (a) and (b) for the samples #B and #A, respectively. In Fig. 24 (a)
Ao is induced by radiation of the frequency f = 1.07 THz and the intensity
I =70W/cm?. Strong oscillations are observed in the region between |B| &~
0.3T and |B| ~ 3T, having the same amplitudes for both right- and left-
handed circularly polarized radiation. Figure 24 (b) shows photoconductivity
oscillations ranging form |B| ~ 0.3 T to |B| ~ 2T induced by radiation of the
frequency f = 0.60 THz, an intensity of I = 0.6kW /cm?, and right-handed
circular polarization. Starting from |B| ~ 1T a second class of oscillations is

observed in both samples.
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Figure 24: Photoconductivity Ao as a function of the magnetic field, induced by
pulsed THz radiation. Panel (a) shows data of sample #B induced by radiation of the
frequency f = 1.07 THz and an intensity I = 70 W/cm?. Red lines represent circularly
right-handed and blue lines left-handed polarized radiation. Data for f = 0.6 THz
and I = 600 W/cm? is presented in panel (b).

As shown in Sec.4.1, an analysis of the 1/B-periodicity can be observed easily,
when the photoconductivity data is presented as a function of ¢, see Fig. 25.
The normed photoconductivity Ao /o measured on samples #B, #D, and #E,
induced by high intensity radiation is shown in this figure. Strong oscillations
are observed, whose extrema are found symmetrically offset around integer
values of €. All samples show a background, that is nearly B-independent and a
decrease in oscillation amplitude with growing e. A significant influence of the
radiation’s helicity couldn’t be observed in either of the probed samples. The
oscillations shown in Fig. 25 (a) are slightly different to the oscillations observed
on the other samples. The 4th harmonic has a larger amplitude than usual and
the 5th a smaller one, which is in line with the low-intensity observations and

seems to be present only in this specific sample.

Especially beneficial for this work is the fact that, starting from a very high
initial intensity, the sample can be irradiated by radiation over a large range
of intensities by simply putting attenuators into the beam path. Figure 26
shows the normed photoconductivities Ao /o as a function of € for five different
intensities, ranging from I = 7W/cm? to I = 2500 W/cm?. Despite this

particular sample demonstrating a somewhat irregular shape of MIRO, this
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Figure 25: Photoconductivity Ao normed to dark conductivity o as a function
of ¢, induced by pulsed THz radiation. Red lines represent circularly right-handed
and blue lines left-handed polarized radiation. Panel (a) shows data of sample #D
induced by radiation of the frequency f = 1.07 THz and an intensity I = 40 W /cm?.
Data for f = 1.07 THz and I = 150 W/cm? is presented in panel (b). Panel (c) shows
Ao /o obtained in sample #A for f = 0.6 THz and I = 600 W /cm?.

shape is well reproduced for all intensities. The position of the minima and
maxima as well as the relative magnitude of all features is preserved and only
the amplitude is sensitive to radiation power. A comprehensive analysis of the

intensity dependence is given in the following subsection.

In order to probe the Corbino geometry’s influence that is discussed in Sec. 3,
the photoconductivity of three samples from the same waver, but with different
inner Corbino radii r;, has been measured. The outer Corbino radius is the
same for all three samples. Figure 27 (a) shows the detected voltage drop on
the load resistor for the three samples. The signals are bigger for larger r;.
The photoconductivity, presented in Fig. 27 (b), however takes into account the

geometrical factor for Corbino disc samples 1/(27)In(r,/r;) shows almost the
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Figure 26: Normalized photoconductivity Ao /o as a function of e for sample #B
induced by radiation with the frequency f = 1.07 THz for five different intensities
varying between I = 7W/cm? and I = 2500 W /cm?, color coded according to the
legend.

same dependence for all three samples. Only for the sample with the largest
r; = 2.5mm the signals are a bit smaller. This can be attributed to a decrease
of incident radiation intensity, which is analyzed in detail in Sec.4.2. The
intensity reduction in this case originates from the larger area of the sample
which is covered by the non-transparent gold film of the central contact.

In Sec. 4.2 it is demonstrated, that for intensities in the range of I ~ 110 mW /cm?

TIRO originate from the bulk. In the case that bulk- and boundary conditions
are present at the same time, but dominated for low I, one can expect that
the bulk effects saturate earlier and hence, a strong edge or contact effect is
observed at high /. The illumination of the sample edges with high power THz
radiation, is presented in Fig.28. The red dots in Fig. 28 (b) represent the
oscillation amplitude A30,orm for the third harmonic, € = 3, extracted from
photoconductivity measurements at the positions of the laser on the sample,
indicated on the abscissa of the figure normed to the maximum value of the
oscillation amplitude A30,,4,. In which way x is defined by the laser spot
position in relation to the sample is illustrated by the scheme in Fig. 28 (a).
The red line represents the calculated power of the laser spot passing the gold

Corbino contact areas of the samples used in this work. For this calculation
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Figure 27: Photo induced voltage drop signal AU (a) and the photoconductivity
Ao (b) as a function of B, both normalized to the radiation intensity I. Samples
are processed with different inner Corbino radii r; = 0.5mm, r; = 1.5mm, and
r; = 2.5mm, represented by blue, green, and red lines, respectively. The outer

Corbino radius r, = 4.25 mm is identical for all three samples.

the laser beam profile is assumed to be perfectly Gaussian with a full width
at half maximum of 40 mm, which is realistic, compared to the experimental
parameters presented in Sec. 3. The data follow the calculated intensity very
well. This observation confirms that also for very high intensities the boundaries

do not contribute to the generation of TIRO.

Previous works on MIRO are carried out in most cases at very low temperatures
T < 4.2K and after illumination with visible light. The second requirement is
considered to be mandatory in order to obtain sufficiently high carrier densities
ne ~ 10" em™2 together with high enough mobilities > 10% cm? /Vs to observe
MIRO [14]. In Fig. 29 (a) the photoconductivity Ao in respect to the magnetic
field B is shown for two experimental conditions: the blue line represents the
photoconductivity signal induced into sample #B that is cooled down in a
cryostat with windows, which are closed with a black PE sheet, absorbing
the visible light but transmitting the THz radiation. Before the measurement,
however, the sheet is removed to illuminate the sample with visible light. The
orange line, in contrast, is measured on the same sample, but without any
illumination by visible light. Whereas for the illuminated sample pronounced

TIRO are observed, for the sample in the dark only weak traces of oscillations at
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Figure 28: (a) Sketch of the laser spot scanning over the Corbino disc sample. (b)
Normed photoconductivity amplitude A3cm,0rm as a function the laser spot position
on the sample, represented by the red dots. The red line represents the calculated
power which is irradiated on the 2DEG, taking into account the reflection at the

AuGe contacts of the sample.

low € are present. Considering the complete absence of MIRO in the microwave
range under these conditions, however, the observation of even these small
traces is already surprising. The photoconductivity data is supplemented by
the results of magnetotransport measurements for both experimental conditions.
While the general slope is quite similar for both, indicating that the mobility
of the sample does not change much, the positions of SdH-oscillation extrema

shift, indicating a rise of carrier density n. induced by visible light.

4.4.2 Discussion

Datasets for three different samples irradiated by high intensity THz radiation
are presented in Fig.24. In all of them, two types of oscillations occur. Com-
parison to the magnetotransport data allows to attribute the oscillations at
higher magnetic field to the traces of SAH oscillations, which appear due to
electron gas heating, see Sec. 2.2.2. The second oscillation type reminds one
on the MIRO-like oscillations analyzed for lower intensity cw radiation in the
previous sections. Their e-periodic nature becomes clear in Fig. 25, as well as

the strong damping for higher e. A closer look at Fig. 24 also reveals that, due
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Figure 29: (a) Photoconductivity Ao as a function of magnetic field strength B
induced by radiation with f = 1.07THz at T'= 4.2 K. The data represented by the
blue line is obtained while the sample is illuminated by room light. The orange
line represents data, for which the sample is cooled down and probed without any
illumination with visible light. Panel (b) shows magnetotransport data obtained
under the same conditions, except for THz irradiation. The color coding is identical

to panel (a).

to € = w/w,, the oscillations positions are at higher B for higher frequencies.
The helicity dependence for all probed samples is even less pronounced than
for the low power excitation data. In fact, it is completely hidden by the noise
in the high intensity data, which is larger in the pulsed regime, since here each
pulse has its individual, sub-nanosecond intensity structure, which yields a
strong deviation of maximum intensity for every single pulse. Though each
single pulse’s intensity is corrected by the intensity obtained from a reference
detector, the deviation can not be completely compensated. The absence of a
helicity dependence at high intensities, however, is not as surprising, since one
would expect possible saturation effects to suppress the helicity dependence

also in the case of a more pronounced helicity dependent photo-response at low

1.

The oscillation amplitude A, and the damping parameter o can be taken from

the data shown in Fig. 25, similarly to the procedure in Sec. 4.1 by fitting with
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Figure 30: Normed photoconductivity Ao /o data (red lines) and fits (green lines)
after Eq. (74) in respect to € for sample #A at T' = 4.2 K. The data are induced by
radiation of the frequency f = 0.69 THz and the intensity I = 0.11 W/cm? in panel
(a), and f = 0.6 THz and I = 600 W /cm? in panel (b).

Eq. (74). Figure30 (a) and (b) allows to compare directly the e-dependent
normed photoconductivity Ao /o of sample #A for cw-excitation in (a) with
f=0.69THz and I = 0.11 W/cm? | to the one exited by pulsed radiation with
f =0.6THz and I = 600 W/cm? in panel (b). The red lines here represent the
measured data, whereas the green ones represent the fit according to Eq. (74).
Note that the constant background is removed for easier fitting. The fits give
the exactly identical values for the damping parameter « in both cases, leaving
no doubt that the observed effects for both excitation intensities are MIRO.
Note that also the phase ¢ = +1/4, which describes the positions of MIRO
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minima (+) and maxima (-) is conserved up to I = 600 W/cm?. This is
insofar surprising, as there are reports on a reduced phase for high intensities
in the microwave range |29, 42, 68]. Also the additional oscillating features
reported earlier for high I microwave excitation [21, 35, 69-74] are not present
in the THz induced photoconductivity. Both features are also absent in the
photoconductivity in respect to € which is presented for different intensities up
to I = 2.5kW/cm? in Fig.26. The only factor in both figures, that depends
on [ is the oscillation amplitude. However for the highest intensities applied,
I > 125W/cm?, the amplitude does not grow as strongly as for lower I. The
differences between the high-power THz and microwave responses suggest

distinct mechanisms of the nonlinearity.

A detailed analysis of the intensity dependence of the oscillation amplitude can
be achieved by separating Ao /o into two contributions Ao = Aoy + Aoy,

with Ao, being the oscillatory and Aoy, being the nearly B-independent part.

To analyze the amplitude’s intensity dependence in more detail the difference
between maximum and minimum values of Ao, around a node at e = N is
extracted. It is denoted as the amplitude Ayo at this certain position. In
Fig.31 (a) Ago is presented in respect to the radiation’s intensity I. The
data, represented by the black dots show, that the oscillation amplitude grows
linearly at low intensities and saturates at high ones. The dashed line represents
a linear fit, Aso o I, whereas the solid line corresponds to a saturation of
Azo. To quantify this saturation behavior the intensity range of the analysis is
extended in Fig. 31 (b) by presenting the data on a double-logarithmic scale.
The normalization of the photoconductivity Ao to the intensity I allows to
easily compare MIRO magnitudes for different radiation frequencies. In Fig. 31
(b) the reduced amplitude Aso /I induced to sample #B by radiation with three
different frequencies is presented. The solid lines represent the fits following

the empirical equation

1

Aol = g

(89)

describing the saturation of the reduced amplitudes. The fitting parameter 5 ~

1.3 is very similar for all three frequencies while the saturation intensity Is grows
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Figure 31: (a) Intensity dependence of the oscillation amplitude Aso at the oscilla-
tion order € = 3 for sample #B. The data is presented in a linear-linear plot. The solid
line corresponds to a fit using Azo oc I/(1+ I/I5)*3 and the dashed line corresponds
to a linear fit Azo o< I. (b) Intensity dependence of the reduced oscillation amplitude
Aso /I . The hexagon presents the result obtained using low power cw laser operating
at f = 0.69 THz, see Sec. 4.1. Other data points correspond to excitation by THz laser
pulses at three different frequencies. Solid lines are fits using Ago/I oc (1 +I/I5)~13.
Saturation intensities used for the fits are indicated by arrows and are given by
Is =15 W/ecm? (f = 0.6 THz), I, = 45 W/cm? (f = 0.78 THz), and I, = 85 W /cm?
(f =1.07 THz).

with the radiation frequency. In the linear regime a strong frequency dependence
is present, but as the intensity increases the saturated photo-response becomes
virtually frequency independent. For comparison, an additional data point
is shown, representing the amplitude extracted from the low power cw laser
experiments at f = 0.69 THz presented in Fig. 31 (a), corresponding well to
the high intensity data.

The intensity dependence described by Eq. (89) also holds for different samples,
e. g. shown for sample #A in Fig.32 (b). However, the saturation intensity
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Figure 32: Intensity dependence of the oscillation amplitude normed to the intensity
Apna/I. Solid lines are fits using Azo /T o< (14 1/I,)75. Panel (a) shows Ayo/I for
different oscillation orders, N =3, 4, and 5, measured on sample #B under illumination
with f = 1.07 THz. The solid line is the fit using 3 = 1.3 and I, = 85 W/cm?. Panel
(b) presents Azo/I measured on sample #A under f = 0.78 and 1.07 THz radiation.
The solid lines are fits using 8 = 1 and saturation intensities Iy = 30 (190) W /cm?
for f =0.78 (1.07) THz.

Is for sample #A is several times larger than for sample #B. The description
is furthermore valid for all €, see Fig.32 (a), where Ayo of sample #B is
presented for N = 3,4,5. Actually, the same fitting parameters, including Iy
can be applied to the data for all € of sample #B.

As addressed above, the background can be extracted as a nearly smooth line,
which connects the oscillation’s nodes at integer € in the normed photoconduc-
tivity Ao /o. The background photoconductivity Ay,,/I normed to the intensity
I, extracted in the vicinity of € = 3, corresponding to B = Bog/3 is shown in
Fig.33. The background is also sublinear. However, the nonlinearity sets in at
lower I, compared to TIRO. At high intensities Aoy, scales proportional to I¢
with 0 < ¢ <0.2.

In the following, an analysis of the intensity dependence presented in the Figs. 31
and 32 is given, concluding that in the THz range the major source of saturation
in an irradiated sample is electron gas heating. One of the main reasons for this
is, that the absorption of radiation responsible for heating is proportional to the
inverse square of the radiation frequency f~2, while the MIRO amplitude scales
as f74, see e.g. Ref. [10]. The value of the amplitude A, is modulated by the

higher electron temperature T, (I) in this case. The phase and shape, however,
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Figure 33: The background part Aoy, of the photoconductivity normalized to the
radiation intensity I measured on sample #B for three radiation frequencies. Dashed

lines are guide for the eye.

are unaffected since sin(27e) contains no quantities which are sensitive to T..
The estimates below, using both microscopic models of MIRO and the results
of low-intensity THz illumination from Sec. 4.1, support the heating approach.
They show that the nonlinearities found in the microwave range would require
much higher intensities in the THz range, and may even become out of reach
in the presence of strong heating. Within the nonlinearity mechanism based on
heating, not only the amplitude A(I) but also the low-B damping parameter «
can have an implicit intensity dependence through 7,(7). Such a nonlinearity
in o was identified before in the microwave range and was attributed there to
the thermal broadening of Landau levels [29]. Here, however, the parameter «
in the empirical expression in Eq. (74) does not depend on the intensity, see
also Fig. 30. It agrees well with the values a = 1/w7, ~ 1 extracted for low

intensities in Sec. 4.3.2.

In order to show that the thermal broadening of Landau levels is indeed
negligible in the presented observations, the rate of inelastic electron-electron
collisions, 7, ~ hep/ Tf , where e is the Fermi energy, has to be estimated.
This gives 7, ~ 0.2 ns for sample #A and 7, ~ 0.15 ns for sample #B at
T. = Ty = 4.2 K. The associated high-power correction to a can be estimated [46,
62] as
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a(l) — a(0) = 1/wrin(T,) — 1/wnn(To) = a(T? )17 — 1), (90)

whith @ = 1/wr, (T, = Tp). Since the resulting a < 1072 at f = 1.07 THz is
relatively small (@ ~ 4.7 x 1073 and for sample #A and a ~ 6.2 x 1073 sample
#B) it is no longer surprising that no changes in « at the applied intensity is
detected. Note that, according to the above estimation, the heating effect on «
would become noticeable at higher intensities, for temperatures reaching values
T. 2 10 Ty. This suggests that, despite the wide intensity range in the nonlinear
regime of the presented experiments, this temperature is still not reached here.
The observed situation is feasible, since heating is usually strongly nonlinear. In
order to be compatible with the observed o ~ const(/) ~ 1 and the estimated
a ~ 1072 above, the electron temperature should grow as T, o /I or slower in

the nonlinear regime of heating.

Analysis of the data above shows that the intensity dependence of the amplitude
of MIRO is well described by A(I) ~ c¢I(1+1/I,)~" with 8 ~ 1. In the previous
experiments, see Sec. 4.3, corresponding to I < I, and thus, to A(I) = ¢,
a good agreement is found between the measured values of the amplitude A
and its estimates obtained within inelastic mechanism [41, 46]. Under the
assumption, that the inelastic mechanism also governs the nonlinear response,
it can be figured out whether the observed intensity dependence is compatible
with the temperature dependence of the parameters entering the theory. This
theory predicts A o< Tjn(Te)Tp_2. Here 7, !'is the momentum relaxation rate
and 7', as addressed above, describes the thermalization rate which balances
the changes in the energy distribution of electrons induced by radiation of the
intensity I. Taking 7, to be T.-independent, the saturation of A(I) < I/T? at
I > I, requires T, o< I%/2 ~ /T in this regime. While generally, the sublinear
dependence of the electron temperature on radiation intensity is well established
for low-dimensional semiconductor systems at low temperatures [55, 7579,
the feasibility of the particular dependence T, o< v/ requires additional study

which is out of scope of this thesis.

It has to be noted, that generally, it can not be excluded that the momentum

relaxation rate 7, 1 also becomes I-dependent at high intensities. For instance,
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this could be due to non-equilibrium phonon effects. An inclusion of such effects
into the theory is not straightforward, in particular if typical phonon energies
become comparable to w.. On a qualitative level, however, it is reasonable
to expect that the non-elasticity of scattering processes may only reduce the
amplitude of non-equilibrium oscillations in the distribution function responsible
for MIRO. Furthermore, 7, may only decrease with the increase of I which
would lead to an increase of A. Assuming 7, oc /=" with n > 0 at highest I,
one obtains from A(I) ~ const(I), that T, oc I/~ which results in a slower

increase of heating at high intensities.



5 Conclusion

This thesis reports on the observation and analysis of MIRO induced by THz
laser radiation in GaAs heterostructures. By selective excitation of the bulk
and boundaries of the GaAs 2DEG samples, the study demonstrates that
MIRO are caused in the bulk for all applied frequencies in the THz range
[66]. The oscillations are analyzed in the framework of the inelastic and the
displacement mechanism |10, 46]. It is shown furthermore, that the dependence
of the oscillations’ magnitude on the polarization’s helicity is weaker than
theoretically expected [66]. Lastly, the work demonstrates that MIRO are
very robust even for illumination with high power radiation. The intensity
dependence of the oscillations” amplitude is intensively studied, revealing that
electron gas heating is the dominant mechanism causing saturation in this

frequency range [80].

THz photoconductivity experiments presented in this thesis show pronounced
oscillations, induced by different THz frequencies. The oscillations are robust
for frequencies up to 1.62 THz and temperatures up to 15 K. They are clearly
identified to be MIRO. Additionally, it is demonstrated that by application of
THz illumination, MIRO are observed on samples with mobilities much lower,
than in samples for any reported observation of MIRO in the microwave range,
see Sec. 4.1. Selective excitation of the sample’s boundaries and the irradiation
of solely the bulk by applying an aperture on top of the sample, as presented in
Sec. 4.2, demonstrates that the oscillations originate from the whole bulk and not
only the edges of the 2DEG. Consequently, the inelastic and the displacement
mechanism [10, 46| are used to analyze the observed oscillations. In this thesis
MIRO, excited by circularly right- and left-handed polarized radiation are also
observed and studied in Sec. 4.3. The observed behavior can be described
well by the inelastic and displacement mechanism for high harmonics, however
the polarization dependence for low harmonics can not be explained by any
existing theory. In Sec. 4.4, high radiation intensities in the kW range are
applied to the 2DEG. The observed photoconductivity data reveal, that the
oscillations preserve their properties even at high intensity irradiation. However,

a saturation of the oscillation amplitude at high intensities is observed. By
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analyzing the data, it is demonstrated that saturation is attributed to electron

gas heating.

To conclude, the study allowed to answer some of the most intriguing, open
questions in the field of MIRO. Furthermore, they enable further research on
the topic. For instance, it is demonstrated, that MIRO can be studied on
lower mobility samples if irradiated by THz radiation instead of microwaves.
This helps to investigated MIRO on new material systems. Lately this has
already been reported on HgTe quantum wells [81]. Concerning the polarization
dependence of MIRO, experiments with varying linear polarization can provide
new insights to the underlying mechanisms, especially if those experiments are
performed for several temperatures. This could allow to separately observe
oscillations that are dominated by either the displacement or the inelastic
mechanism. To distinguish between the two mechanisms, also samples could

be produced whose material properties selectively enhance one of the effects.
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Zoth, Christoph Drexler, Sebastian Stachel, Susi Candussio, Stefan Hubmann,
Maximilian Otteneder, Hannelore Lanz, Christian Schneider und Toni Humbs
danke ich sehr fiir die schone Zeit die wir zusammen verbracht und die gute

Arbeit die wir geleistet haben. Den zahllosen Master- und Bachelorstudenten



die wihrend meiner Zeit hier Teil unseres Teams waren danke ich fir all die

schénen Erinnerungen die wir zusammen gesammelt haben.

Zu guter letzt danke ich meiner Familie. Danke Mama und Papa, dass Thr mich
zu dem gemacht habt, der ich bin und mich immer auf meinem Weg unterstiitzt
habt. Danke Max, du bist der beste Bruder den man sich wiinschen kann. Ich
danke allen Freunden die die letzen Jahre an meiner Seite waren, insbesondere
dir Andi, fiir die ausserordentliche Freundschaft die uns verbindet, du bist wie
ein Bruder fiir mich. Ich danke auch meinen Schwiegereltern, die ihr Haus und
ihr Leben mit uns teilen und es uns so erst ermoglichen Familie und Beruf
unter einen Hut zu bringen. Zum Abschlufs danke ich meinem wunderbaren
Sohn Leo und meiner grofsartigen Frau Marina, die mich jede Stunde meines

Lebens gliicklich machen.



