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We determine the nonperturbative gluon condensate of four-dimensional SU(3) gauge theory in a model-
independent way. This is achieved by carefully subtracting high-order perturbation theory results from
nonperturbative lattice QCD determinations of the average plaquette. No indications of dimension-two
condensates are found. The value of the gluon condensate turns out to be of a similar size as the intrinsic
ambiguity inherent to its definition. We also determine the binding energy of a Bmeson in the heavy quark
mass limit.
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The operator product expansion (OPE) [1] is a funda-
mental tool for theoretical analyses in quantum field
theories. Its validity is only proven rigorously within
perturbation theory, to arbitrary finite orders [2]. The use
of the OPE in a nonperturbative framework was initiated by
the ITEP group [3] (see also the discussion in Ref. [4]),
which postulated that the OPE of a correlator could be
approximated by the following series:

correlatorðQÞ≃X
d

1

Qd CdðαÞhOdi; ð1Þ

where the expectation values of local operators Od are
suppressed by inverse powers of a large external momen-
tum Q ≫ ΛQCD, according to their dimensionality d. The
Wilson coefficients CdðαÞ encode the physics at momen-
tum scales larger than Q. These are well approximated by
perturbative expansions in the strong coupling parameter α.
The large-distance physics is described by the matrix
elements hOdi that usually have to be determined
nonperturbatively.
Almost all QCD predictions of relevance to particle

physics phenomenology are based on factorizations that are
generalizations of the above generic OPE.
For correlators where O0 ¼ 1, the first term of the OPE

expansion is a perturbative series in α. In pure gluody-
namics, the first nontrivial gauge-invariant local operator
has dimension four. Its expectation value is the so-called
nonperturbative gluon condensate

hOGi ¼ −
2

β0

�
Ω
���� βðαÞα

Ga
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����Ω
�

¼
�
Ω
����½1þOðαÞ� α

π
Ga

μνGa
μν

����Ω
�
: ð2Þ

This condensate plays a fundamental role in phenomenol-
ogy, in particular in sum rule analyses, as for many
observables it is the first nonperturbative OPE correction
to the purely perturbative result. In this Letter, we will
compute (and define) this object. For this purpose we use
the expectation value of the plaquette calculated in
Monte Carlo (MC) simulations in lattice regularization
with the standard Wilson gauge action [5]

hPiMC ¼ 1

N4

X
x∈ΛE

hPxi; ð3Þ

where ΛE is a Euclidean spacetime lattice and

Px;μν ¼ 1 −
1

6
TrðUx;μν þ U†

x;μνÞ: ð4Þ

For details on the notation see Ref. [6]. The corresponding
OPE reads

hPiMC ¼
X∞
n¼0

pnα
nþ1 þ π2

36
CGðαÞa4hOGi þOða6Þ; ð5Þ

where a denotes the lattice spacing.
The perturbative series is divergent due to renormalons

[7] and other, subleading, instabilities. This makes any
determination of hOGi ambiguous, unless we define how to
truncate or how to approximate the perturbative series. A
reasonable definition that is consistent with hOGi ∼ Λ4

QCD
can only be given if the asymptotic behavior of the
perturbative series is under control. This has only been
achieved recently [6], where the perturbative expansion of
the plaquette was computed up to Oðα35Þ. The observed
asymptotic behavior was in full compliance with renorma-
lon expectations, with successive contributions starting to
diverge for orders around α27–α30, within the range of
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couplings α typically employed in present-day lattice
simulations.
Extracting the gluon condensate from the average

plaquette was pioneered in Refs. [8–11], and many
attempts followed during the next decades; see, e.g.,
Refs. [12–21]. These suffered from insufficiently high
perturbative orders and, in some cases, also finite volume
effects. The failure to make contact to the asymptotic
regime prevented a reliable lattice determination of hOGi.
We solve this problem in this Letter.
Truncating the infinite sum at the order of the minimal

contribution provides one definition of the perturbative
series. Varying the truncation order will result in changes of
size Λ4

QCDa
4, where the dimension d ¼ 4 is determined by

that of the gluon condensate. We approximate the asymp-
totic series by the truncated sum

SPðαÞ≡ Sn0ðαÞ; where SnðαÞ ¼
Xn
j¼0

pjα
jþ1: ð6Þ

n0 ≡ n0ðαÞ is the order for which pn0α
n0þ1 is minimal. We

then obtain the gluon condensate from the relation

hOGi ¼
36C−1

G ðαÞ
π2a4ðαÞ ½hPiMCðαÞ − SPðαÞ� þOða2Λ2

QCDÞ:

ð7Þ

For the plaquette, the inverse Wilson coefficient

C−1
G ðαÞ¼−

2πβðαÞ
β0α

2

¼1þβ1
β0

α

4π
þβ2
β0

�
α

4π

�
2

þβ3
β0

�
α

4π

�
3

þOðα4Þ ð8Þ

is proportional to the β function [22,23]. For j ≤ 3, the
coefficients βj are known in the lattice scheme [see Eq. (25)
of Ref. [6]]. The corrections to CG ¼ 1 are small. However,
the Oðα2Þ and Oðα3Þ terms are of similar sizes. We will
account for this uncertainty in our error budget.
Integrating the β-function results in the following

dependence of the lattice spacing a on the coupling α:

a ¼ 1

Λlatt
exp

�
−
1

t
− b ln

t
2
þ s1bt − s2b2t2 þ � � �

�
; ð9Þ

where t¼αβ0=ð2πÞ, b¼β1=ð2β20Þ, s1 ¼ ðβ21 − β0β2Þ=
ð4bβ40Þ, and s2 ¼ ðβ31 − 2β0β1β2 þ β20β3Þ=ð16b2β60Þ.
Equation (9) is not accurate in the lattice scheme for
typical β values [β≡ 3=ð2παÞ] used in present-day simu-
lations. Instead, we employ the phenomenological para-
metrization of [24] (x ¼ β − 6)

a ¼ r0 exp ð−1.6804 − 1.7331xþ 0.7849x2 − 0.4428x3Þ;
ð10Þ

obtained by interpolating nonperturbative lattice simulation
results. Equation (10) was reported to be valid within an
accuracy varying from 0.5% up to 1% in the range [24]
5.7 ≤ β ≤ 6.92. We plot the ratio of the above two
equations r0Λlatt in Fig. 1, where we truncate Eq. (9) at
different orders. The green error band corresponds to [25]
r0 ¼ 0.0209ð17Þ=Λlatt ≃ 0.5 fm (ΛMS ≈ 28.809Λlatt). For
large β values, this ratio should approach a constant. Up to
β ≈ 6.7, this appears to be the case; however, for β > 6.7
the slope of the ratio starts to increase. This may indicate
violations of Eq. (10) for β > 6.7. Therefore, we will
restrict ourselves to the range β ∈ ½5.8; 6.65�, where aðβÞ
is given by Eq. (10). This corresponds to ða=r0Þ4 ∈
½3.1 × 10−5; 5.5 × 10−3�, covering more than 2 orders of
magnitude.
Following Eq. (7), we subtract the truncated sum SPðαÞ

calculated from the coefficients pn of Ref. [6] from the MC
data on hPiMCðαÞ of Ref. [26]. Multiplying this difference
by 36r40=ðπ2CGa4Þ, where r0=a is given by Eq. (10), gives
r40hOGi plus higher-order nonperturbative terms. We show
this combination in Fig. 2. The smaller error bars represent
the errors of the MC data, and the outer error bars (not
plotted for N ¼ 16) represent the total uncertainty, includ-
ing that of SP. This part of the error is correlated between
different β values. The MC data were obtained on volumes
N4 ¼ 164 and N4 ¼ 324. Towards large β values, the
physical volumes N4a4ðβÞ will become small, resulting
in transitions into the deconfined phase. For β < 6.3, we
find no significant differences between the N ¼ 16 and
N ¼ 32 results. In the analysis, we restrict ourselves to the
more precise N ¼ 32 data and, to keep finite size effects
under control, to β ≤ 6.65. We also limit ourselves to
β ≥ 5.8 to avoid large Oða2Þ corrections. At very large β
values, not only does the parametrization of Eq. (10) break
down but obtaining meaningful results becomes numeri-
cally challenging: the individual errors both of hPiMCðαÞ
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FIG. 1 (color online). Equation (10) over Eq. (9), truncated at
different orders. The green band corresponds to r0Λlatt ¼
0.0209ð17Þ [25].
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and of SPðαÞ somewhat decrease with increasing β.
However, there are strong cancellations between these
two terms, in particular at large β values, since this
difference decreases with a−4 ∼ Λ4

latt expð16π2β=33Þ on
dimensional grounds while hPiMC depends only logarith-
mically on a.
The coefficients pn of SPðαÞ were obtained in Ref. [6].

The pn values carry statistical errors, and successive orders
are correlated. With the use of the covariance matrix, also
obtained in Ref. [6], the statistical error of SPðαÞ can be
calculated. In that reference, coefficients pnðNÞ were first
computed on finite volumes of N4 sites and subsequently
extrapolated to their infinite volume limits pn. This
extrapolation is subject to parametric uncertainties that
need to be estimated. We follow Ref. [6] and add the
differences between determinations using N ≥ ν points for
ν ¼ 9 (the central values) and ν ¼ 7 as systematic errors to
our statistical errors.
The data in Fig. 2 show an approximately constant

behavior. (Note that n0 increases from 26 to 27 at β ¼ 5.85,
from 27 to 28 at β ¼ 6.1, and from 28 to 29 at β ¼ 6.55.
This quantization of n0 explains the visible jump at
β ¼ 6.1.) This indicates that, after subtracting SPðαÞ from
the corresponding MC values hPiMCðαÞ, the remainder
scales like a4. This can be seen more explicitly in Fig. 3,
where we plot this difference in lattice units against a4. The
result is consistent with a linear behavior, but a small
curvature seems to be present that can be parametrized as
an a6 correction. The rightmost point (β ¼ 5.8) corre-
sponds to a−1 ≃ 1.45 GeV while β ¼ 6.65 corresponds to
a−1 ≃ 5.3 GeV. Note that a2 terms are clearly ruled out.
We now determine the gluon condensate. We obtain the

central value and its statistical error hOGi ¼ 3.177ð36Þr−10
from averaging the N ¼ 32 data for 6.0 ≤ β ≤ 6.65. We
now estimate the systematic uncertainties. Different infinite

volume extrapolations of the pnðNÞ data [6] result in
changes of the prediction of about 6%. Another 6% error
is due to including an a6 term or not and varying the fit
range. Next there is a scale error of about 2.5%, translating
a4 into units of r0. The uncertainty of the perturbatively
determined Wilson coefficient CG is of a similar size. This
is estimated as the difference between evaluating Eq. (8) to
Oðα2Þ and to Oðα3Þ. Adding all these sources of uncer-
tainty in quadrature and using [25] ΛMS ¼ 0.602ð48Þr−10
yields

hOGi ¼ 3.18ð29Þr−40 ¼ 24.2ð8.0ÞΛ4

MS
: ð11Þ

The gluon condensate of Eq. (2) is independent of the
renormalization scale. However, hOGi was obtained
employing one particular prescription in terms of the
observable and our choice of how to truncate the pertur-
bative series within a given renormalization scheme.
Different (reasonable) prescriptions can, in principle, give
different results. One may, for instance, choose to truncate
the sum at orders n0ðαÞ �

ffiffiffiffiffiffiffiffiffiffiffi
n0ðαÞ

p
, and the result would

still scale like Λ4
QCD. We estimated this intrinsic ambiguity

of the definition of the gluon condensate in Ref. [6] as
δhOGi ¼ 36=ðπ2CGa4Þ ffiffiffiffiffi

n0
p

pn0α
n0þ1, i.e., as

ffiffiffiffiffiffiffiffiffiffiffi
n0ðαÞ

p
times

the contribution of the minimal term,

δhOGi ¼ 27ð11ÞΛ4

MS
: ð12Þ

Up to 1=n0 corrections, this definition is scheme and scale
independent and corresponds to the (ambiguous) imaginary
part of the Borel integral times

ffiffiffiffiffiffiffiffi
2=π

p
.

In QCD with sea quarks the OPE of the average
plaquette or of the Adler function will receive additional
contributions from the chiral condensate. For instance,
hOGi needs to be redefined, adding terms ∝ hγmðαÞmψ̄ψi
[27]. Because of this and the problem of setting a physical
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FIG. 2 (color online). Equation (7) evaluated using the N ¼ 16
and N ¼ 32 MC data of Ref. [26]. The N ¼ 32 outer error bars
include the error of SPðαÞ. The error band is our prediction for
hOGi, Eq. (11).
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scale in pure gluodynamics, it is difficult to assess the
precise numerical impact of including sea quarks onto our
estimates

hOGi≃ 0.077 GeV4; δhOGi≃ 0.087 GeV4; ð13Þ

which we obtain using r0 ≃ 0.5 fm [28]. While the
systematics of applying Eqs. (11)–(12) to full QCD are
unknown, our main observations should still extend to this
case. We remark that our prediction of the gluon condensate
of Eq. (13) is significantly bigger than values obtained in
one- and two-loop sum rule analyses, ranging from
0.01 GeV4 [3,29] up to 0.02 GeV4 [30,31]. However, these
numbers were not extracted in the asymptotic regime,
which for a d ¼ 4 renormalon we expect to set in at orders
n≳ 7 for the MS scheme. Moreover, we remark that in
schemes without a hard ultraviolet cutoff, such as dimen-
sional regularization, the extraction of hOGi can become
obscured by the possibility of ultraviolet renormalons.
Independent of these considerations, all these values are
smaller than the intrinsic prescription dependence
of Eq. (12).
Our analysis confirms the validity of the OPE beyond

perturbation theory for the case of the plaquette. Our a4

scaling clearly disfavors suggestions about the existence of
dimension-two condensates beyond the standard OPE
framework [16,32–35]. In fact, we can also explain why
an a2 contribution to the plaquette was found in Ref. [16].
In the log-log plot of Fig. 4, we subtract sums Sn, truncated
at different fixed orders αnþ1, from hPiMC. The scaling
continuously turns from ∼a0 at Oðα0Þ to ∼a4 around
Oðα30Þ. Note that truncating at an α-independent fixed
order is inconsistent, explaining why we never exactly
obtain an a4 slope. For n ∼ 9, we reproduce the a2 scaling
reported in Ref. [16] for a fixed order truncation at n ¼ 7.
In view of Fig. 4, we conclude that the observation of this
scaling power was accidental.

The methods used in this Letter can be applied to
other observables. As an example, we analyze the binding
energy Λ̄ ¼ EMCðαÞ − δmðαÞ [36–38] of heavy quark
effective theory. The perturbative expansion of aδmðαÞ ¼P

ncnα
nþ1 was obtained in Refs. [39,40] up to Oðα20Þ,

and its intrinsic ambiguity δΛ̄ ¼ ffiffiffiffiffi
n0

p
cn0α

n0þ1 ¼
0.748ð42ÞΛMS ¼ 0.450ð44Þr−10 was obtained in
Refs. [40,41]. MC data for the ground-state energy EMC
of a static-light meson with the Wilson gauge action can be
found in Refs. [42–44]. While for the gluon condensate we
expected an a4 scaling (see Fig. 3), for aEMCðαÞ − aδmðαÞ
we expect a scaling linear in a. Comforting enough, this is
what we find, up to aOðaÞ discretization corrections; see
Fig. 5. Subtracting the partial sum truncated at orders
n0ðαÞ ¼ 6 from the β ∈ ½5.9; 6.4� data, we obtain Λ̄ ¼
1.55ð8Þr−10 from such a linear plus quadratic fit, where we
only give the statistical uncertainty. The errors of the
perturbative coefficients are all tiny, which allows us to
transform the expansion aδmðαÞ into MS-like schemes and
to compute Λ̄ accordingly. We define the schemes MS2
and MS3 by truncating αMSða−1Þ ¼ αð1þ d1αþ d2α2 þ
� � �Þ exactly at Oðα3Þ and Oðα4Þ, respectively. The dj are
known for j ≤ 3 [40,41]. We typically find nMSi

0 ðαMSi
Þ ¼

2; 3 and obtain Λ̄ ∼ 2.17ð8Þr−10 and Λ̄ ∼ 1.89ð8Þr−10 , respec-
tively; see Fig. 5. We conclude that the changes due to these
resummations are indeed of the size δΛ̄ ∼ 0.5r−10 , adding
confidence that our definition of the ambiguity is neither a
gross overestimate nor an underestimate. For the plaquette,
where we expect nMS

0 ∼ 7, we cannot carry out a similar
analysis, due to the extremely high precision that is
required to resolve the differences between SPðαÞ and
hPiMCðαÞ, which largely cancel in Eq. (7).
In conclusion, for the first time ever, perturbative

expansions at orders where the asymptotic regime is
reached have been subtracted from nonperturbative MC
data of the static-light meson mass and of the plaquette,
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thereby validating the OPE beyond perturbation theory.
The scaling of the latter difference with the lattice spacing
confirms the dimension d ¼ 4. Dimension d < 4 slopes
appear only when subtracting the perturbative series
truncated at fixed preasymptotic orders: lower-dimensional
“condensates” discussed in the literature, see, e.g.,
Refs. [32–35], are just approximate parametrizations of
unaccounted perturbative effects, i.e., of the short-distance
behavior and, thus, observable dependent (unlike the non-
perturbative gluon condensate). Such simplified paramet-
rizations introduce unquantifiable errors and, therefore, are
of limited phenomenological use.
We have obtained an accurate value of the gluon

condensate in SU(3) gluodynamics, Eq. (11). It is of a
similar size as the intrinsic difference, Eq. (12), between
(reasonable) subtraction prescriptions. This result contra-
dicts the implicit assumption of sum rules analyses that the
renormalon ambiguity is much smaller than leading non-
perturbative corrections. The value of the gluon condensate
obtained with sum rules can vary significantly due to this
intrinsic, renormalization scheme-independent ambiguity,
if determined using different prescriptions or truncating at
different orders in perturbation theory. Clearly, the impact
of this, e.g., on determinations of αs from τ decays or from
lattice simulations needs to be assessed carefully.
Finally, the inherent ambiguity of (reasonable) defini-

tions of the static-light meson mass was estimated in
Refs. [40,41]. Here, in a combined analysis, this estimate
was confronted with MC data and confirmed.
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