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We study the long wavelength excitations in rotating QCD fluid in the presence of an external magnetic
field at finite vector and axial charge densities. We consider the fluctuations of vector and axial charge
currents coupled to energy and momentum fluctuations and compute the SOð3Þ covariant dispersion
relations of the six corresponding hydrodynamic modes. Among them, there are always two scalar chiral-
magnetic-vortical-heat (CMVH) waves; in the absence of a magnetic field (vorticity) these waves reduce to
chiral-vortical-heat (CVH) [chiral-magnetic-heat (CMH)] waves. While CMVH waves are a mixture of
CMH and CVH waves, they have generally different velocities compared to the sum of velocities of the
latter waves. The other four modes, which are made out of scalar-vector fluctuations, are mixed sound-
Alfvén waves. We show that when the magnetic field is parallel with the vorticity, these four modes are the
two ordinary sound modes together with two chiral Alfvén waves propagating along the common direction
of the magnetic field and vorticity.

DOI: 10.1103/PhysRevD.96.126002

I. INTRODUCTION

The phenomenon of chiral (or anomaly-induced) trans-
port was firstly studied in fermionic systems either weakly
coupled to the electromagnetic field [1] or in the presence
of rotation in the system [2]. Due to the presence of
anomalies in the chiral system, macroscopic currents may
be produced along the external magnetic field [chiral
magnetic effect (CME)] or along the vorticity of the system
[chiral vortical effect (CVE)]. The appearance of such
currents is the main feature of the chiral transport theory
which has been extensively studied in the literature. For
example, in the context of kinetic theory, a chiral theory has
been derived from the underlying quantum field theory
[3,4], in which the Berry monopole is responsible for the
CME and CVE [4,5]. The chiral magnetic effect has been
also studied numerically via lattice field theory [6–9].
In another direction, after the fluid-gravity duality showed

the possibility of the presence of the missed vorticity term
[10,11], the issue of chiral transport was taken under study in
hydrodynamics. At first sight, the parity breaking terms like
the magnetic field and the vorticity seem to be in contra-
diction with the existence of a positive divergence entropy
current in fluid dynamics; however, the necessity of the
second law of thermodynamics makes a relation between
these terms of the hydrodynamic currents with the under-
lying quantum anomalies [12].
In contrast to the coefficients of the dissipative transport,

the coefficients of the parity odd terms may be entirely fixed
in terms of both the anomaly coefficients and the thermo-
dynamic variables. The anomaly-induced transport is in fact
a nondissipative phenomenon and so the associated

coefficients are referred to as the so-called non-dissipative
transport coefficients [13]. This kind of hydrodynamic
transport has been used to effectively describe different
phenomena in physics, e.g., in neutron stars or supernovae in
astrophysics [14–16], in the study of the origin of the
magnetic fields in cosmology [17] and in the propagation
ofHelicons inWeyl semimetals in condensedmatter physics
[18]. (See also [19,20].)
It has been argued that in a hot plasma of chiral fermions,

e.g., the plasma of quarks and gluons produced in heavy ion
collisions, the combination of the chiral separation effect
(CSE) [21] and CME [22] gives rise to the propagation of a
new kind of gapless excitation through the hot plasma; it is
called the chiral magnetic wave (CMW) [23]. CMWs have
been exploited to predict the charge asymmetries in the
final state of a heavy ion collision [24]. Consistent with the
prediction of chiral transport, the charge asymmetries have
been actually detected in experiments at RHIC and LHC
[25,26]. Similar predictions have been made for the
propagation of chiral vortical wave (CVW) in heavy ion
plasma in [27].
The CMW found in [23] has been computed by

considering the fluctuations of vector and axial charge
densities, keeping the local energy and local momentum in
the plasma fixed. The same result has been found in the
context of chiral kinetic theory in [28]. As discussed in
[28], the assumption of getting the charge fluctuations
decoupled from the energy-momentum fluctuations might
be justifiable in a high-temperature low-density regime or
even in a high-density low-temperature regime for large N
theories. In this paper we compute the spectrum of the
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hydrodynamic excitations in the most general case in which
the vector and axial charges fluctuations are coupled to
fluctuations of energy and momentum, and we compute the
corresponding spectrum of the hydrodynamic excitations in
the magnetic field. We find the full spectrum of hydro-
dynamicmodes in the system, including six different waves.
As a result, in addition to the two scalar chiral magnetic-heat
waves (CMHWs), we find another four collective excita-
tions, each of them being a coherent perturbation of all six
hydrodynamic variables.Wewill show that these fourmodes
are mixed sound-Alfvén waves. In the direction of the
magnetic field, the latter four modes are identified with two
ordinary soundwaves togetherwith two chiralAlfvénwaves
(CAWs). The propagation of CAWs was first predicted
theoretically in a chiral fluidwith a single chirality [29,30] in
the Landau-Lifshitz frame. It has been shown that the linear
fluctuations of the vorticity may couple to the magnetic field
and produce a wave of momentum perturbations propagat-
ing parallel to the magnetic field. This wave, namely CAW,
might even propagate at zero density in the single chirality
fluid. We will show that for the propagation of the CAW in
QCD fluid, both the vector and axial chemical potentials are
needed to be nonzero.
We also repeat the above computations for the case of a

rotatingQCD type hot plasma. As a result we find two scalar
chiral-vortical-heat waves (CVHWs) together with four
mixed Sound-Coriolis waves. In the direction of vorticity,
the latter four modes are identified with two ordinary sound
waves together with two rigid rotation modes.
As amain part of the paper,we compute the hydrodynamic

excitations in a rotating hot plasma which is simultaneously
coupled to an externalmagnetic field. In this case theCMHW
and CVHWmix with each other and make chiral-magnetic-
vortical-heat waves (CMVHWs). It has been shown that in a
fluidwith turned off momentum perturbations the velocity of
mixed waves might be equal to the sum of the velocities of
individual waves when the magnetic field is parallel to the
vorticity [31,32]. However, we show that when taking into
account the momentum perturbations, even for the vorticity
being along the direction of themagnetic field, thevelocity of
mixed waves is not in general equal to the sum of the
velocities of the CMHW and CVHW.
Let us emphasize that all of our results in the paper are

SOð3Þ covariant. This means that not only propagation of
hydrodynamic modes whether parallel or perpendicular to
the magnetic filed and vorticity are studied here, but also
our results are able to explain the propagation of waves in
every other arbitrary direction with respect to the magnetic
field and the rotation axis.
The paper has been organized as follows. We begin with

a brief review of the hot chiral QCD plasma in Sec. II. The
content of Secs. III and IV is related to detailed compu-
tations of magnetic field and vorticity, respectively. In
Sec. V we consider the general case wherein both the
magnetic field and the vorticity are present. In Sec. VI, we

apply our theoretical results to the case of quark-gluon
plasma (QGP). In the same section, we study the effect of
dissipation on the hydrodynamic modes. We end with a
conclusion and mention some follow-up questions in
Sec. VII.

II. HYDRODYNAMICS OF A QCD-TYPE FLUID

Weconsider theQCDmatter in an externalmagnetic field.
In addition to the usual electric charge (with vector current
Jμ ¼ ψ̄γμψ), this matter carries a chiral charge (with chiral
current Jμ5 ¼ ψ̄γμγ5ψ). In the presence of a background
gauge field Aμ, the dynamical equations for this hot matter
are nothing but the following conservation equations:

∂μTμν ¼ FνλJλ

∂μJμ ¼ 0

∂μJ
μ
5 ¼ CEμBμ; ð1Þ

where Jμ ¼ JμR þ JμL and Jμ5 ¼ JμR − JμL and C is the chiral
anomaly coefficient. In the long-wavelength regime, when
the matter is in a local equilibrium state, the energy
momentum tensor Tμν, vector current Jμ, and the chiral
current Jμ5 may all be effectively expressed in terms of six
degrees of freedom: three components of the flowing matter
velocity uμ, energy density ϵ, vector charge density n, and
axial charge density n5. We may also define the electric and
magnetic fields in the rest frame of this fluid as Bμ ¼
1
2
ϵμναβuνFαβ and Eμ ¼ Fμνuν, respectively [12]. For small

deviations from the local equilibrium state, each of the
constitutive relations of the fluidmay be given in a derivative
expansion as follows:

Tμν ¼ ðϵþ pÞuμuν þ pημν þ τμν

Jμ ¼ nuμ þ νμ

Jμ5 ¼ n5uμ þ νμ5; ð2Þ
with τμν, νμ, and νμ5 as the derivative corrections to fluid
currents. In the Landau-Lifshitz frame where uμτμν ¼ 0,
uμνμ ¼ 0, and uμν

μ
5 ¼ 0 [33], up to first order in derivative

expansion we have

τμν ¼ −ηPμαPνβð∂αuβ þ ∂βuαÞ −
�
ζ −

2

3
η

�
Pμν∂:u ð3Þ

νμ ¼ −σTPμν∂ν

�
μ

T

�
þ σEμ þ ξωμ þ ξBBμ ð4Þ

νμ5 ¼ −σ5TPμν∂ν

�
μ

T

�
þ σ5Eμ þ ξ5ω

μ þ ξB5Bμ ð5Þ

with the vorticity defining as ωμ ¼ 1
2
ϵμναβuν∂αuβ. The

coefficients η, ζ, σ, and σ5 are dissipative transport coef-
ficients. In the followingwemainly study the nondissipative
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fluids. Thus, the only relevant coefficients are the anomalous
transport coefficients ξ and ξB corresponding to CVE and
CME [12,34–38],

ξ¼ 2C
�
μμ5−

nμ5
3w

ð3μ2þμ25Þ
�
−2D

nμ5
w

T2

ξ5 ¼ C
�
μ2þμ25−

2n5μ5
3w

ð3μ2þμ25Þ
�
þD

�
1−

2n5μ5
w

�
T2

ξB ¼ Cμ5

�
1−

nμ
w

�

ξ5B ¼ Cμ
�
1−

n5μ5
w

�
; ð6Þ

where the corresponding chiral anomaly and gravitational
anomaly coefficients are

C ¼ 1

2π2
; D ¼ 1

6
: ð7Þ

Hydrodynamic excitations are low-energy long-wavelength
excitations around the equilibrium state in fluid. To find their
dispersion relations, one has to firstly choose a set of
hydrodynamic variables and then linearize the equations
of motion in terms of their fluctuations around a thermo-
dynamic solution. It is conventional to consider the micro-
scopic conserved quantities and choose the hydrodynamic
variables associatively, such as

ϕa ¼ ðϵ; πi; n; n5Þ; a ¼ 1; 2;…; 6 ð8Þ

where ϵ, π, and n have microscopic definitions given by
T00ðxÞ, T0iðxÞ, and J0ðxÞ [39,40]. However, we prefer to
choose ϕa as it follows:

ϕa ¼ ðT; πi; μ; μ5Þ; a ¼ 1; 2;…; 6 ð9Þ

where πi ¼ wvi andw ¼ ϵþ p is the enthalpy density. This
special choice makes the computations simpler when find-
ing the hydrodynamic modes for a fluid with a general
equation of state. However, the QCD equation of state
obtained from the lattice calculations shows that, at high
enough temperatures, QCD plasma is thermodynamically
conformal. The nonconformality of QCD becomes serious
at and just above the critical temperature Tc [41]. Therefore,
the results found by using the conformality assumptions are
more quantitatively reliable when applied to data of LHC
than when applied to those of RHIC. In this paper, we focus
on QCD plasma at high enough temperatures with the
following equation of state:

ϵ ¼ 1

c2s
p;

�
cs ¼

1ffiffiffi
3

p
�
: ð10Þ

The thermodynamic solution in our system is given by [42]

uμ ¼ ð1;Ω × xÞ Ωr ≪ 1;

T ¼ Const; μ ¼ Const; μ5 ¼ Const:

B ¼ Const; ð11Þ

with r being the distance from the rotation axis. The pressure
p ¼ pðT; μ; μ5Þ satisfies

dp ¼ sdT þ ndμþ n5dμ5: ð12Þ

In this paper, we compute six hydrodynamic modes asso-
ciated with six hydrodynamic variables in three different
cases. Except in a subsection related to QCD fluid in quark-
gluon-plasma experiments, we always neglect the effect of
dissipation in our study. We first consider hydrodynamic
excitations in the equilibrium of theQCD fluid coupled to an
external magnetic field (B ≠ 0;Ω ¼ 0). We then turn off
the magnetic field and consider the hydrodynamic excita-
tions in the QCD matter rotating with a constant vorticity
(B ¼ 0;Ω ≠ 0). Finally in the most general case, the hydro-
dynamic modes are studied in a rotating QCD fluid coupled
to an external magnetic field. Let us mention that in the last
part of the paper, we take into account the effect of
dissipation in the special case where Ω ¼ 0 and μ5 ¼ 0.
Let us note that the effect of dissipation has been also
considered in [43] to study the induction of an axial current
in the direction of the electric field in thermal QED plasma.

III. QCD FLUID COUPLED TO EXTERNAL
MAGNETIC FIELD

In this section, we consider a QCD-type fluid coupled to
an external magnetic field and compute the spectrum of its
hydrodynamic excitations in detail. After deriving the
covariant linearized equations, we divide our computations
into two parts. First, we consider pure scalar perturbations,
and then in another subsection we take the mixed scalar-
vector perturbations under study. To be more complete and
clear, we also discuss the Riemann invariants of the fluid
and show which coherent combination of perturbations
corresponds to each hydrodynamic excitation.

A. Equations of motion linearized

Let us consider the hydrodynamic field defined in (9)
slightly deviated from its thermodynamic value as the
following:

ϕa þ δϕa ¼ ðT þ δT; 0þ π; μþ δμ; μ5 þ δμ5Þ: ð13Þ

To first order in δ variations, the equations of motion may
be covariantly written as

MB
abðk;ωÞδϕbðk;ωÞ ¼ 0 ð14Þ

with MB
ab given by (see A 2 for thermo coefficients)
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2
666666664

−iα1ω ikj −iα2ω −iα3ω

iα1v2ski −iωδij − i ξ
2w̄ ðB · kδij − BjkiÞ − n̄

w̄ ϵ
i
jlBl iα2v2ski iα3v2ski

−iβ1ωþ
�

∂ξB∂T
�
iB · k n̄

w̄ ikj −
ξB
w̄ iωBj −iβ2ωþ

�
∂ξB∂μ

�
iB · k −iβ3ωþ

�
∂ξB∂μ5

�
iB · k

−iγ1ωþ
�

∂ξ5B∂T
�
iB · k n̄5

w̄ ikj −
ξ5B
w̄ iωBj −iγ2ωþ

�
∂ξ5B∂μ

�
iB · k −iγ3ωþ

�
∂ξ5B∂μ5

�
iB · k

3
777777775
:

The superscript B on MB
ab here refers to this point that in

this section we are studying modes in the presence of an
external magnetic field. In the next two sections, we change
the superscripts to Ω and BΩ respectively. As can be
obviously seen above, none of the elements of matrix MB

ab
vanish in general. It means that each of the hydrodynamic
excitations in this system might be a coherent excitation of
all scalar and vector perturbations. Via computing the
Riemann invariants, however, one can exactly determine
the type of each propagating mode in the fluid [44].

B. Characteristics and Riemann invariants

Before starting to compute the hydrodynamic modes, let
us briefly review the notion of the characteristics and the
Riemann invariants in fluid dynamics. As is well-known, in
a fluid whose space of states is d-dimensional (in our case
d ¼ 6), there exist, in general, d characteristics or equiv-
alently d hydrodynamic waves. These characteristics
describe the different ways through which a small pertur-
bation in the state of fluid may propagate in the state-space.
For each of the characteristics, there is a corresponding
family of integral curves in the state-space. Those pertur-
bations that propagate only through the curves of one
characteristic family correspond to the Riemann invariants
[33]. Thus, the Riemann invariant Ri associated with the
hydrodynamic mode ωi satisfies the following equation:

ð∂t þ vi · ∇ÞRi ¼ 0; i ¼ 1;…; 6 ð15Þ

where vi is the velocity of ith mode, namely ωi.
In order to determine the Riemann invariants, one

assumes that the linear equations of perturbations may
be written as follows:

∂tδϕaðk; tÞ þDB
abðkÞδϕbðk; tÞ ¼ 0: ð16Þ

Firstly, it is needed to compute the eigenvalues of the
matrix DB as the characteristics or, equivalently, the
hydrodynamic modes. To this end one has to find
the roots of the determinants of the matrix MB, perturba-
tively order by order, in derivative expansion. The structure
of eigenmodes is as follows:

ωB
i ðk;BÞ ¼ ωBð1Þ

i ðk;BÞ þ ωBð2Þ
i ðk;BÞ þ � � � :

In the above equation, ωBð1Þ
i and ωBð2Þ

i , are the zero and first
order derivative parts of dispersion relation. More explic-
itly, if we get ϵf as the parameter which counts the number
of derivatives, we would have

ωBð1Þ
i ðϵfk; ϵfBÞ ¼ ϵfω

Bð1Þ
i ðk;BÞ

ωBð2Þ
i ðϵfk; ϵfBÞ ¼ ϵ2fω

Bð2Þ
i ðk;BÞ

� � � ¼ � � � : ð17Þ

The next step is to compute the eigenvectors of matrix
DB. Then the Riemann invariant associated with each of
these vectors is the special scalar combination of the
components of δϕa which remains invariant along the
integral curve generated by that eigenvector in the space-
state. It should be denoted that, in Fourier space, DB

ab ¼
MB

ab þ iωδab where MB
ab was defined in (14).

1. Eigenvectors

In general, a hydrodynamic mode with dispersion
relation ωi ¼ ωiðkÞ is characterized as a plane wave

δϕaiðt; xÞ ¼ δ ~ϕaie−iωiðkÞtþik:x ð18Þ

where the amplitude of the wave, namely δ ~ϕi, is referred to
as the ith eigenvector of the matrix MB. The basis for our
six-dimensional state-space is made out of δT, δπ, δμ, and
δμ5. Thus, a general eigenvector of the matrixMB takes the
following form in this basis:

δ ~ϕai¼ðδ ~ϕ1;δ ~ϕ2;3;4;δ ~ϕ5;δ ~ϕ6Þi≔ ðδ ~ϕT;δ ~ϕπ;δ ~ϕμ;δ ~ϕμ5Þi:
ð19Þ

2. Different sectors of the propagation

Depending on the type of perturbations carrying by a
mode, one can characterize the eigenvectors into the scalar,
vector, or mixed subsectors. As before, we use scalar and
vector terminologically for the representations of the SOð3Þ
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group orthogonal to the local velocity of the fluid at each
point. Therefore, the scalar modes are those that carry the
perturbations of the δT, δμ, or δμ5, while a vector mode
carries a combination of the momentum perturbations π’s.
It is clear that a mixed scalar-vector mode carries scalar
perturbations together with the vector perturbations.
Our computations show that in a general fluid with

two axial and vector currents, no pure vector type hydro-
dynamic mode propagates. We find that the six hydro-
dynamic modes of the fluid, obtained from the matrix MB

in Sec. III A, are divided into the following two sets:
(i) two scalar modes (22).

It turns out that these two modes vanish at zeroth
order, namely in ideal hydrodynamics, and appear
from the first order in derivative expansion,

ωB
1;2 ¼ 0þ ωBð2Þ

1;2 þOð∂3Þ: ð20Þ
(ii) four mixed scalar-vector modes (35) and (36).

These four modes are, in general, nonvanishing in
both zero and first orders of derivatives,

ωB
3;4;5;6 ¼ ωBð1Þ

3;4;5;6 þ ωBð2Þ
3;4;5;6 þOð∂3Þ: ð21Þ

In the following two subsections we give the
dispersion relations and also discuss the nature of
the above 1 and 2 sets separately.

C. Scalar sector: Chiral-magnetic-heat waves

Among the six eigenmodes, two modes vanish at ideal
(zero) order. The first nonvanishing contribution to their
dispersion relation comes from the first-order corrections of
constitutive relations. One finds

ωB
1;2ðkÞ ¼ −

A1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 −A2E
p

E
B · k ð22Þ

where the ωB
1 and ωB

2 refer toþ and − in front of the square
root, respectively. We call the velocity of these modes
vCMHW1 and vCMHW2. In the above formula, we have defined

E ¼ −ϵijkαiβjγk ðϵ123 ¼ 1Þ ð23Þ

with anomaly expressions [45]

A0 ¼
nμ
w

α½1γ2� þ
n5μ5
w

α½1β3� −
nμ5
w

α½1γ3� −
n5μ
w

α½1β2�;

ð24Þ

A1 ¼
C
2

�
α½3β1� þ α½2γ1� þ

2μμ5
w

E þA0

�
; ð25Þ

A2 ¼ C2α1

�
1 −

nμþ n5μ5
w

�

þ C2
μμ5
w

�
α½3β1� þ α½2γ1� þ

μμ5
w

E þA0

�
: ð26Þ

It is worth mentioning that, depending on the values of μ
and μ5, the overall sign of each mode in (22) might be either
positive or negative. The probable minus sign in the
dispersion relation means that in order to have positive
frequency, the wave has to propagate in the opposite
direction of a mode with positive sign. This relative
behavior can be clearly seen in Fig. 1. The same argument
goes on for other similar situations in this paper.
The eigenvectors associated with modes (22) are

δ ~ϕB
1;2 ¼

�
r
α2
α1

þ s
α3
α1

; 0;−r;−s
�
; ð27Þ

with r and s being arbitrary parameters. Let us mention that
these vectors have been given up to zero order in derivative

FIG. 1. The velocities of the nondegenerate CMHWs (red ¼ vCMHW1 and blue ¼ −vCMHW2) compared to the case μ5 ¼ 0 (green). In
both panels, we have taken k ∥B.
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expansion. The ambiguity in fully specifying these eigen-
vectors is related to the point that to this order, the modes
ωB
1;2 are degenerate, both with the eigenvalue being

zero. Thus, we have the freedom to choose any two
arbitrary vectors with the above form as the corresponding
eigenvectors. One can find two linearly independent
orthogonal eigenvectors δ ~ϕB

1;2 as follows. First we take
two vectors from the subspace spanned by (27) by choosing
r ¼ 1, s ¼ 0 and r ¼ 0, s ¼ 1,

nB1 ¼
�
α2
α1

; 0;−1; 0
�

ð28Þ

nB2 ¼
�
α3
α1

; 0;−1; 0
�
: ð29Þ

Now we project nB2 on the direction of nB1 and then subtract
the projection vector from nB2 . The resultant vector, nB3 , is
perpendicular to nB1 . Therefore, we can get this vector
together with nB1 as the two eigenvectors corresponding to
CMWVs,

δ ~ϕB
1 ¼ nB1 ¼

�
α2
α1

; 0;−1; 0
�

ð30Þ

δ ~ϕB
2 ¼ nB3 ¼

� α3
α1

1þ ðα2α1Þ2
; 0;

α3α2
α2
1

1þ ðα2α1Þ2
;−1

�
: ð31Þ

That the amplitude of these waves is spanned by δT, δn, and
δn5 in the 3-dimensional scalar subspace of state-space
means that these modes are scalar-type. Let us recall that by
using the standard thermodynamic transformations (see
Appendix A 1) one can alternatively express the eigenvec-
tors (27) in terms of another set of fluctuations, e.g., δϵ, δn,
and δn5. So the modes ωB

1;2 are in fact the coherent
perturbations of energy, vector, and axial charge currents.
Let us remind thatwhile thewell-knownCMWs [23] carry

exclusively the perturbations of axial and vector currents, the
waves found here carry the energy (temperature) perturba-
tions as well. For this reason, we refer to them as the chiral-
magnetic-heat wave (CMHW). In order to make clear the
feature of CMHWs, let us go back and consider the
eigenvectors (27). The thermodynamic coefficients α2 ¼∂ϵ=∂μ and α3 ¼ ∂ϵ=∂μ5 are nonvanishing at finite vector
and axial charge densities, so one would expect only at n ¼
n5 ¼ 0 [23], the temperature perturbation is not carried by
the CMHWs [see equation (27)]. In the latter limit, the
CMHW changes to CMW. Additionally, while both the left-
and right-moving CMWs in [23] are identified with one
velocity, the velocity of two CMHWs is not the same; one of
them in general moves faster than the other. It is in fact the
manifestation of the energy transport by the CMHWs.
Using the exact form of the equation of state, the above

discussion can be understood more quantitatively. In a

conformal fluid of noninteracting fermions with both vector
and axial charges, we have

ϵ ¼ 3p ¼ 7π2

60
T4 þ 1

2
ðμ2 þ μ25ÞT2

þ 1

4π2
ðμ4 þ 6μ2μ25 þ μ45Þ: ð32Þ

In the following, we study CMHWs found above in a fluid
with the above equation of state. In Figure 1, we have
plotted the dependence of the velocities of the fast and slow
CMHWs on μ

T, in two cases, each of which corresponded to
a special value of the μ5

T in equilibrium [46]. In each case,
we have also depicted the changes of CMHW at μ5 ¼ 0
with a green curve. Note that according to (22), CMHWs
are not dispersive and this means that the curves presented
in this figure are unique for CMHWs with each arbitrary
wavelength in the hydrodynamic regime.
As is observed in Fig. 1, for large values of μ5

T , the fast
and slow waves may propagate either in opposite or in the
same directions (panel a); it depends on the value of μ

T in a
fixed B

T2. In the smaller values of μ5
T , however, two CMHWs

always propagate opposite to each other (panel b). It should
be noted that in both panels, the difference between
velocities of the fast and slow CMHWs, is due to presence
of a finite axial charge density in the fluid; actually at
μ5 ¼ 0, the coefficient A1 in (22) vanishes and the
velocities of both waves become the same.
Another point with Fig. 1 is that each of the fast and slow

waves reaches to its maximum velocity when μ ¼ μ5 or
μ ¼ −μ5 [47]. Consequently, when μ5 ¼ 0, the velocities
of two waves become degenerate with a maximum at μ ¼
μ5 ¼ 0 (green curve).
As the last point regarding Fig. 1, we compare two

special limits with each other. First suppose n5 ¼ 0 while
n ≠ 0; in this case, as can be clearly seen by green curves
in figure, a degenerate CMHW does exist. In the opposite
limit when n5 ≠ 0 and n ¼ 0, again two degenerate
CMHWs propagate corresponding to the common v
intercept of the blue and red curves in the figure.
Before ending this subsection, let us emphasize that the

novelty of our results is not limited to the μ5 ≠ 0 case. Even
at μ5 ¼ 0, our results are novel since we have considered
the fluctuations of energy-momentum as well as the charge
fluctuations. To make this point clear, let us consider
equation (22). At μ5 ¼ 0 this equation simplifies to

ωB
1;2 ¼ � Bk

2π2χ

1 − μn
wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − μn
w − n

χw ð nc2s − χμÞ
q ð33Þ

with χ ¼ ∂n=∂μ. This result differs clearly from the CMW

ω ¼ � Bk
2π2χ

ð34Þ
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obtained in [13] by turned off energy-momentum
fluctuations [48].

D. Mixed scalar-vector sector

In addition to two scalar modes given in previous
subsection, matrix MB

ab has another four perturbative roots
corresponding to four different hydrodynamic modes. In

contrast to scalar sector modes, the four new modes
are present even in ideal (zero-order) hydrodynamics.
Up to first order in derivative correction of constitutive
relations, or equivalently up to second order in derivative

expansion of dispersion relations, we obtain ωB
3;4 ¼

ωBð1Þ
3;4 þ ωBð2Þ

3;4 with

ωBð1Þ
3;4 ¼ � 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2sk2 þ Ω2

L þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2sk2 þΩ2

LÞ2 − 4c2sk2Ω2
L cos

2 θ
qr

ωBð2Þ
3;4 ¼ −

Ω2
LððωBð1Þ

3;4 Þ2 − c2sk2 cos2 θÞ cos θ
ðc2sk2 þ Ω2

LÞðωBð1Þ
3;4 Þ2 − 2c2sk2Ω2

L cos
2 θ

�
ξB
2w

�
k ð35Þ

and ωB
5;6 ¼ ωBð1Þ

5;6 þ ωBð2Þ
5;6 with

ωBð1Þ
5;6 ¼ � 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2sk2 þ Ω2

L −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2sk2 þ Ω2

LÞ2 − 4c2sk2Ω2
L cos

2 θ
qr

ωBð2Þ
5;6 ¼ −

Ω2
LððωBð1Þ

5;6 Þ2 − c2sk2 cos2 θÞ cos θ
ðc2sk2 þΩ2

LÞðωBð1Þ
5;6 Þ2 − 2c2sk2Ω2

L cos
2 θ

�
ξB
2w

�
k ð36Þ

where cos θ ¼ B̂ · k̂. In the equations given above, ΩL is the Larmor frequency as being

ΩL ¼ nB
w

: ð37Þ

Considering (17), the outer square root in ωð1Þ
3;4;5;6 turns out to be of order Oð∂Þ. In the case of ωð2Þ

3;4;5;6 however, more
clarification is needed to understand why it is of orderOð∂2Þ. Note that under rescaling k → ϵfk and B → ϵfB, the fraction
part in these relations behaves as a zero-order object (fraction → ϵ0f fraction). Thus, the same as for ξBw k, the derivative order

of ωð2Þ
3;4;5;6 is Oð∂2Þ.

The eigenvectors corresponding to the above four modes are as the following:

δ ~ϕB
i ¼ ðδT; δπ; δμ; δμ5Þ

¼
�
1;−

wEωð1Þ
i k

C2k2
þ nEðiðωBð1Þ

i Þ2ðB × kÞ þ n
wω

Bð1Þ
i ðB · kÞB − n

wω
Bð1Þ
i ðB · k̂Þ2kÞ

C2ððωBð1Þ
i Þ2k2 − n2=w2ðB · kÞ2Þ

;
C1

C2

;
C3

C2

�
ð38Þ

with

C1 ¼ nα½1γ3� − n5α½1β3� − wβ½1γ3� ð39Þ

C2 ¼ nα½3γ2� − n5α½3β2� − wβ½3γ2� ð40Þ

C3 ¼ nα½2γ1� − n5α½2β1� − wβ½2γ1�: ð41Þ

Let us denote that the above eigenvectors have generally
nonvanishing scalar and vector components in the state-
space. For this reason, we refer to the current sector as the
scalar-vector sector.

At zero order in derivative expansion, each of these
modes is a mixture of the ordinary sound with Larmor
frequency, reminiscent of the magnetosonic waves in the
ideal magnetohydrodynamics [50]. At first order in deriva-
tive expansion, these four mixed modes get corrections
proportional to the magnetic field. The situation is actually
analogous to what appears in the dispersion relation of
chiral Alfvén waves (CAWs) in a chiral fluid of single
right-handed fermions [29,30]. As a result, one may refer to
the scalar-vector sector modes as the mixed sound-Alfvén
waves. In the following, it becomes more clear why this
terminology is used.
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In the special case of propagation in the direction of the
magnetic field, B ∥ k, the above scalar-vector modes
become distinguishable with the following velocities:

ωB
3;4 ¼ �csk → vB3;4 ¼ �cs ð42Þ

ωB
5;6 ¼ � nB

w
−

ξ

2w
B:k → vB5;6 ¼ −

ξ

2w
B: ð43Þ

Clearly the modes 5 and 6 are two gapped chiral waves
propagating parallel with the magnetic field. These are the
counterpart of CAWs in a chiral fluid with single chirality,
recently found in [29,30]. The terminology, choosing by
reference [29], might seem a little misleading; there are
some differences between CAWs and standard Alfvén
waves in magnetohydrodynamics (MHD). First, the
Alfvén waves in MHD are gapless while in Chiral fluids
they are gapped. Second and more important, it is the
dynamics of Maxwell fields which lead the Alfvén waves
to propagate in MHD, while in our case, a nondynamical
magnetic field is able to couple to the local fluctuations of
vorticity in the chiral fluid and excites a collective motion
parallel to itself, referred to as the chiral Alfvén wave in
[29]. Despite knowing these differences, since waves 5 and
6 propagate parallel to the magnetic field, we follow [29]
and call them the chiral Alfvén waves.
In another limit, when B⊥ k, we have only two gapped

plasmon modes [51],

ωB
3;4 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2sk2 þ Ω2

L

q
→ vB3;4 ¼ � csffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Ω2
L

c2sk2

q ð44Þ

ωB
5;6 ¼ 0: ð45Þ

As one naturally expects, analogous to the case of a chiral
fluid with single chirality [30], the anomaly effects cannot
be detected in the directions transverse to the magnetic field
here. The only modes propagating in transverse directions
are the magnetosonic waves. By magnetosonic waves here,
however, we do not mean exactly the familiar magneto-
sonic waves in the ideal magnetohydrodynamics. As is
well-known in magnetohydrodynamics, the pressure per-
turbations produced by Maxwell dynamics intensify the
fluid pressure perturbations, resulting in an excess in the
velocity of sound. While in the latter case, the pressure
perturbations are intensified due to the compression and
rarefaction of the magnetic field lines; in our case however,
a constant magnetic field exerts opposite external Lorentz
forces on momentum perturbations and decreases the
hydrodynamical pressure.
In summary,weobserve that themodes in the scalar-vector

sector are, in general, the coherent perturbation of all six
hydrodynamic fields. They are mixed-sound-Alfvén waves.
Before ending this section, let us separate the new results

of the paper in this part from their well-known counterparts
in the literature. To our knowledge, the hydrodynamic
excitations of a chiral fluid with both vector and axial

currents was studied only in the absence of momentum
perturbations before. In other words, the hydrodynamic
excitations had been computed only for a “Forced” QCD
fluid before. None of the six modes (22), (35), and (36)
were found in previous studies. In the case of CMHWs
(22), even at μ5 ¼ 0, our result, namely (33), was not well-
known before. Only at μ ¼ μ5 ¼ 0, in which the temper-
ature perturbations decouple from that of vector and axial
currents, does the result, namely (34), exist in the literature.
The latter is nothing but the well-known chiral magnetic
wave. In the case of mixed vector modes (35) and (36), the
novelty of our results is twofold; first, that our results are
covariant by this means that we have found the dispersion
relation for propagation in every arbitrary direction with
respect to the external magnetic field. Second, even in
B ∥ k, the gapped CAW (43) found in the current paper was
not found before, although in the case of single chirality
fluid such mode had been found firstly in [30] and
afterward in [52,53]. Furthermore, nowhere in the literature
have we seen the eigenvectors (27) and (38) associated with
hydrodynamic modes in a QCD type fluid.

IV. ROTATING QCD FLUID

In this part, we consider a QCD fluid, rotating with
constant vorticity Ω, in the absence of electromagnetic
fields, with the four-velocity

uμ ¼ γð1;Ω × xÞ: ð46Þ
In what follows, we consider the regimeΩr ≪ 1, where r is
the distance from the axis of the rotation. In this regime the
Lorentz factor may be expanded as γ ¼ 1þOððΩrÞ2Þ, so
the vorticity computed in equilibrium up to first order in
OðΩrÞ becomes

ωμ ¼ ð0;ΩÞ: ð47Þ

A. Equations of motion linearized

Let us take the small deviation of hydrodynamic fields
(9) away from their equilibrium values as follows:

δϕa ¼ ðδT; π; δμ; δμ5Þ: ð48Þ

In order to linearize the equations of motion, we have to
expand the equations (1) around the equilibrium state,

uμ ¼ ð1;Ω × xÞ Ωr ≪ 1;

T ¼ Const; μ ¼ Const; μ5 ¼ Const; ð49Þ
and keep the terms up to first order in δϕa fields. Among all
terms, there is a delicate point regarding the expansion of
the vorticity terms of (4) and (5) around equilibrium which
deserves to be explained in detail. Consider the velocity of a
fluid perturbed by δuμ ¼ ðδu0; δuÞ as
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uμ þ δuμ ¼ ð1þ δu0;Ω × xþ δuÞ: ð50Þ

Demanding the above velocity to satisfy the relativistic
normalization uμuμ ¼ −1, the zero component of the
perturbation is immediately fixed

δu0 ¼ ðΩ × xÞ · δu: ð51Þ

Thus, to first order in perturbations, the vorticity takes the
following form:

ωμþδωμ¼
�
ξ

w
ðδπ ·ΩÞ;Ωþ 1

2w
∇×δπ

�
; Ωr≪1: ð52Þ

Using the above expression, the linearized equations of
motion may be covariantly written as

MΩ
abðk;ωÞδϕbðk;ωÞ ¼ 0; ð53Þ

with MΩ
ab given by

2
666666664

−iα1ω ikj −iα2ω −iα3ω

iα1v2ski −iωδij − ϵijlΩl iα2v2ski iα3v2ski

−iβ1ωþ
�

∂ξ
∂T
�
iΩ · k n̄

w̄ ikj −
2ξ
w̄ iωΩj −iβ2ωþ

�
∂ξ
∂μ
�
iΩ · k −iβ3ωþ

�
∂ξ
∂μ5

�
iΩ · k

−iγ1ωþ
�

∂ξ5∂T
�
iΩ · k n̄5

w̄ ikj −
2ξ5
w̄ iωΩj −iγ2ωþ

�
∂ξ5∂μ

�
iΩ · k −iγ3ωþ

�
∂ξ5∂μ5

�
iΩ · k

3
777777775
:

At this moment, since all the components of the matrix
MΩ

ab are nonvanishing, one may think that each of the
characteristics of the fluid is a coherent perturbation of all
six scalar and vector hydrodynamic variables. Wewill show
in the following that, in fact, two of the characteristics are
scalar type, while the other four are mixed scalar-vector
perturbations.

B. Hydrodynamic modes

Computing the eigenvalues of matrix MΩ
ab þ ω1ab,

or equivalently the roots of detMΩ
ab ¼ 0, we find six

independent hydrodynamic modes of the fluid. Our com-
putations show that in the rotating fluid, two sets of
hydrodynamic modes are present:
(1) two scalar modes (56).

It turns out that these two modes vanish at zeroth
order, namely in ideal hydrodynamics, and just
appear from the first order in derivative expansion,

ωΩ
1;2 ¼ 0þ ωΩð2Þ

1;2 þOð∂3Þ: ð54Þ

(2) four scalar-vector modes (61) and (62).
In contrast to modes in the scalar sector, these four

modes are vanishing at first order, contributing at
zero order,

ωΩ
3;4;5;6 ¼ ωΩð1Þ

3;4;5;6 þ 0þOð∂3Þ: ð55Þ

In the following two subsections we give the
dispersion relations and also discuss the nature of
the above 1 and 2 sets separately.

1. Scalar sector: Chiral-vortical-heat Waves

Among the six eigenmodes, two modes vanish at ideal
(zero) order. The first nonvanishing contribution to their
dispersion relation comes from the first-order corrections of
the constitutive relations. One finds

ωΩ
1;2ðkÞ ¼ −

A3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

3 − EA4

p
E

Ω · kþOðk3Þ ð56Þ

where the ωΩ
1 and ωΩ

2 refer toþ and − in front of the square
root, respectively. We also call the velocity of these modes
vCVHW1 and vCVHW2, respectively. The coefficients A3 and
A4 may be written as polynomials of anomaly coefficients
as follows:

A3 ¼ Dx1 þ Cx2

A4 ¼ C2y1 þD2y2 þ CDy3 ð57Þ

with xis given in Appendix A 4 and yis given in
Appendix A 5.
The corresponding eigenvectors are

δ ~ϕΩ
1;2 ¼

�
r
α2
α1

þ s
α3
α1

; 0;−r;−s
�
; i ¼ 1; 2 ð58Þ

with r and s the arbitrary parameters. Note that we have the
freedom to choose any two arbitrary vectors with the above
form as the eigenvectors. Analogous to (30) and (31), we
can find two linearly independent orthogonal eigenvectors
as follows:
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δ ~ϕΩ
1 ¼

�
α2
α1

; 0;−1; 0
�

ð59Þ

δ ~ϕΩ
2 ¼

� α3
α1

1þ ðα2α1Þ2
; 0;

α3α2
α2
1

1þ ðα2α1Þ2
;−1

�
: ð60Þ

Since these two modes carry the perturbations of temper-
ature together with the vector and axial chemical potentials,
we call them chiral-vortical-heat waves [54]. Generally, one
of the CVHWs moves faster than the other. Only in the
special limit where the fluid is nonchiral, namely when

μ5 ¼ 0 and consequently A3 ¼ 0, do the velocities of two
CVHWs become the same, while definitely propagating in
opposite directions [27].
Using the equation of state given in (32), in Fig. 2 we

have plotted the dependence of the velocities of the fast and
slow CVHWs on μ

T for a special
μ5
T and Ω

T in equilibrium. We
have also depicted the changes of CVHW at μ5 ¼ 0 with a
green curve. This plot clearly shows that fast and slow
CVHWs do not necessarily propagate in the same direction.
As mentioned above, when μ5 ¼ 0, the velocity of these
two waves become equal to each other, independent of the
value of μ

T.
It is worth mentioning that the nature of CVHWs is

different from that of CMHWs in Fig. 1. Interestingly,
while CMHWs can propagate in fluid even at μ ¼ μ5 ¼ 0,
CVHWs cannot do so. In addition, the velocities of two
CMHWs become degenerate when either μ ¼ 0 or μ5 ¼ 0.
In contrary, CVHWs have the same velocities only when
μ5 ¼ 0. These observations simply reject the claim that the
results in a rotating fluid are similar to those in a fluid
coupled to a magnetic field. This difference is not limited to
the scalar sector. In the next subsection, we will see that the
scalar-vector modes in a rotating chiral fluid have remark-
able differences compared to those of a nonrotating chiral
fluid in a magnetic field.

2. Scalar-vector sector

In addition to the two scalar modes computed in the
previous subsection, there are another fourmodes as follows:

ωΩ
3;4 ¼ � 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2sk2 þ Ω2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2sk2 þ Ω2Þ2 − 4c2sk2Ω2 cos2 θ

qr
þOðk3Þ ð61Þ

ωΩ
5;6 ¼ � 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2sk2 þ Ω2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2sk2 þ Ω2Þ2 − 4c2sk2Ω2 cos2 θ

qr
þOðk3Þ ð62Þ

with cos θ ¼ Ω̂ · k̂.
Considering (17), the square root in all these four modes turns out to be of order Oð∂Þ and no second-order correction

contributes to the dispersion of these modes. Computing the eigenvectors of the matrix MΩ
ab, we find for i ¼ 3, 4, 5, 6:

δ ~ϕΩ
i ¼ ðδT; δπ; δμ; δμ5Þ

¼
�
1;−

wEωΩ
i k

C2k2
þ wEðiðωΩ

i Þ2ðΩ × kÞ þ ωΩ
i ðΩ · kÞΩ − ωΩ

i ðΩ · k̂Þ2kÞ
C2ððωΩ

i Þ2k2 − ðΩ · kÞ2Þ ;
C1

C2

;
C3

C2

�
ð63Þ

with C1, C2, and C3 given in (39), (40), and (41).
In the special case of propagation in the direction of

vorticity, Ω ∥ k, the above scalar-vector modes become
distinguishable from each other as follows:

ωΩ
3;4 ¼ �csk ð64Þ

ωΩ
5;6 ¼ �Ω: ð65Þ

Clearly modes 5 and 6 are two standing vortex modes. In
another limit when Ω⊥ k, we just obtain two sound waves
gapped out by the background vorticity,

FIG. 2. The velocities of the nondegenerate CVHWs
(red ¼ vCVHW1 and blue ¼ −vCVHW2) for μ5

T ¼ 2 and Ω
T ¼ 0.4

together with the case μ5 ¼ 0 (green). We have taken k ∥Ω.
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ωΩ
3;4 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2sk2 þ Ω2

L

q
→ vΩ3;4 ¼ � csffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Ω2
L

c2sk2

q ð66Þ

ωΩ
5;6 ¼ 0: ð67Þ

The only modes propagating in transverse directions are
ω3;4, the Coriolis-sound waves, analogous to the magneto-
sonic waves (44) in the presence of a transverse magnetic
field. Note that the anomaly effects cannot be detected in
directions transverse to the vorticity.
In summary, when the wave vector is neither parallel nor

transverse to the vorticity, the four scalar-vector modes
become mixed sound-Coriolis modes, which also disperse
when they propagate.
Before ending this section let us separate the new results

of the paper in this part from their well-known counterparts
in the literature. To our knowledge CVHWs (56) and their
corresponding eigenvectors (58) and (63) were not found in
previous studies.

V. ROTATING QCD FLUID COUPLED TO
MAGNETIC FIELD

In this section we consider the general case in which the
QCD fluid is both rotating and coupled to an external
magnetic field. The associated results are lengthy and
complicated, so we just limit ourselves to writing the
hydrodynamic eigenmodes formally with a number of
coefficients given in the related Appendix.

A. Equations of motion linearized

The thermodynamic equilibrium state of the fluid may be
given by

uμ ¼ ð1;Ω × xÞ Ωr ≪ 1;

T ¼ Const; μ ¼ Const; μ5 ¼ Const:

B ¼ Const: ð68Þ

If we slightly perturb the above state as

ϕa þ δϕa ¼ ðT þ δT; 0þ π; μþ δμ; μ5 þ δμ5Þ; ð69Þ

the linearized equations of motion take the following form

MBΩ
ab ðk;ωÞδϕaðk;ωÞ ¼ 0; ð70Þ

with MBΩ
ab given by (A8) in Appendix A 3.

As in the previous two sections, two scalar modes
together with four mixed scalar-vector modes constituted
the full spectrum of the hydrodynamic excitations. As we
will see, in the current subsection, the scalar sector include
the mixed CMWHWs, while in the scalar-vector sector
there exist mixed sound-Alfvén-Coriolis waves.

B. Hydrodynamic modes

The dispersion relations of the two scalar modes, namely
the CMVHWs, in this case are as follows:

ωBΩ
1;2 ¼ −

1

E
ðA1B · kþA3Ω · kÞ � 1

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA1B · kþA3Ω · kÞ2 − EðA1ðB · kÞ2 þA5ðB · kÞðΩ · kÞ þA4ðΩ · kÞ2Þ

q
þOðk3Þ

ð71Þ

where the new anomaly expression is

A5 ¼ C2z1 þ CDTz2 ð72Þ

with z1 and z2 given in Appendix A 6. These are in fact two
waves with different velocities. In the nonchiral limit where

A1 and A3 vanish, the velocities of the two modes become
the same.
In the case of the scalar-vector modes, the dispersion

relations are very complicated. We first give the dispersion
relation of each mode at zero order of hydrodynamic
constitutive currents,

ωBΩð1Þ
3;4;5;6 ¼

�1ffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
B
n
w
þΩ

�
2

þ c2sk2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��

B
n
w
þΩ

�
2

þ c2sk2
�

2

− 4c2s

�
k · B

n
w
þ k ·Ω

�
2

svuut : ð73Þ

By use of the above four zero-order expressions, one may write the dispersion relations up to first order for i ¼ 3, 4, 5, 6 as

ωBΩ
i ¼ ωBΩð1Þ

i þ ωBΩð2Þ
i with

ωBΩð2Þ
i ¼ −

1

E

ðPjajsjÞðωBΩð1Þ
i Þ4 þ ðibs7ÞðωBΩð1Þ

i Þ3 þ ðPj;kcj;ksjskÞðωBΩð1Þ
i Þ2 þP

j;k;ldj;k;lsjsksl

3ðωBΩð1Þ
i Þ4 − 2ðk2c2s þ ðΩþ n

wBÞ2ÞðωBΩð1Þ
i Þ2 þ c2sðΩ · kþ n

wB · kÞ2
: ð74Þ
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In Eq. (74), fsig is the set of scalars made out of three
independent vectors k, B, and Ω

s1 ¼ k2;

s2 ¼ B2; s3 ¼ B · k;

s4 ¼ Ω2; s5 ¼ Ω · k;

s6 ¼ B ·Ω; s7 ¼ k · B ×Ω: ð75Þ

We have also defined a scalar b (Appendix A 7), a vector aj
(Appendix A 8), symmetric tensor cj;k (Appendix A 10),

and tensor dj;k;l (Appendix A 9) in the seven-dimensional
space generated by the above scalars (see Appendix A 7).
All these objects are in terms of the components of the
susceptibility matrix and the anomaly coefficients.
Due to difficulties in working with Eq. (74), from now

on, we will focus on the special case wherein the
magnetic field is parallel to the vorticity and study the
propagation of waves along them. This case might be
more relevant to the QCD fluid produced in heavy ion
collisions. The dispersion relations of the modes in this
case are as follows:

ωBΩ
1;2 ¼ −

A1BþA3Ω�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA1BþA3ΩÞ2 − EðA2B2 þA5BΩþA4Ω2Þ

p
E

k ð76Þ

ωBΩ
3;4 ¼ �

�
n
w
Bþ Ω

�

−
�
C
�
μμ5 −

nμ5
3w

ð3μ2 þ μ25Þ
�
−D

nμ5
w

T2

�
B
w
k

ð77Þ

ωBΩ
5;6 ¼ �kcs: ð78Þ

What we observe in the scalar sector is the existence of two
CMVHWs. In Fig. 3, we have plotted the velocities of these
waves in two separate panels, the mode with a plus sign in
panel a and the mode with a minus sign in panel b. In each
panel we have also plotted with a blue curve the following
quantity:

vsum ≔ vCMHW þ vCVHW ¼ vCMVHW jΩ¼0 þ vCMVHW jB¼0:

ð79Þ

As the first point in the figure, the two CMVHWs neither
always propagate in the same direction nor have the same
velocities. More interestingly, one clearly sees that, in
general,

vCMVHW ≠ vsum: ð80Þ

It is simple to show that one of the situations in which
vCMVHW equates with vsum is within the quark-gluon
plasma produced in heavy ion collisions. In the latter case,
μ5 ¼ 0 and is equivalent to the limit μ

μ5
→ ∞. As it can be

observed in Figure 3, in this limit vCMVHW
vsum

→ 1.

FIG. 3. Velocity of mixed CMVHW, vCMVHW (red), compared to the sum of the velocities of the individual waves vCMHW þ vCVHW

(blue). In both panels μ5
T ¼ 2 and B

T2 ¼ Ω
T ¼ 0.5. We have used the equation of state (32).
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In the case of modes (77) and (78), one observes an
interesting separation between the sound modes and the
CAWs. CAWs in this case are pure and their propagation is
also accompanied with two oppositely polarizing vortices.
Before ending this subsection let us emphasize that to

our knowledge all of the results in this subsection are novel
and have not been found in previous studies.

VI. PHENOMENOLOGY

A. Application to quark-gluon plasma

In this part, we want to apply the new results found in
this paper to a real QCD-type fluid case, namely the QCD
fluid produced in heavy ion collision experiments. It has
been understood that the quark-gluon plasma produced in a
heavy ion collision is initially nonchiral, i.e., μ5 ¼ 0. In this
limit, we have β3 ¼ α3 ¼ 0 and the susceptibility matrix
takes the following form:

~χ ¼ ½~χij� ¼

2
66664

1
c2sT

ðw − μnÞ n
c2s

0

1
T

�
n
c2s
− χμ

�
χ 0

0 0 χ

3
77775:

As as result, the hydrodynamic modes given in (76),
(77), and (78) simplify to

ωQGP
1;2 ¼�C

Bk
χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~χ11 ~χ22

~χ11 ~χ22− ~χ12 ~χ21

s
�C

Ωμk
χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~χ11−DT

Cμ ~χ12

~χ11 ~χ22− ~χ12 ~χ21

s

ð81Þ

ωQGP
3;4 ¼ �ðΩL þ ΩÞ ð82Þ

ωQGP
5;6 ¼ �csk: ð83Þ

Among the three equations given above, (81) is one of our
main results regarding the QGP which deserves more
explanation. To proceed, we first compute (79) for the
current case, namely vQGP

sum . A simple calculation shows

that vQGP
sum is exactly the same as the velocity of mixed

CMVHWs obtained from (81),

vQGP
CMVHW ¼ vQGP

sum : ð84Þ
This result means that the μ5 ¼ 0 case is an especial case in
whichCMHWandCVHWlinearlymix tomakeCMVHWs;
remember that we showed in general, when μ ≠ 0 and
μ5 ≠ 0, this equality does not continue to hold.
Let us recall that the expressions given in front of the

square roots in (81) are nothing but the familiar chiral-
magnetic and chiral-vortical waves found in [23,27] with the
assumption of the energy andmomentumperturbations being
turned off. In [24,27], the induction of an electric quadrapole
moment, or equivalently the observation of the difference
between the elliptic flow of negative and positive charged
hadrons in QGP, has been pointed out as the sign for the
propagation of such waves, with the effect of CVWs being
weaker than that ofCMWs.Our computations show that even
in the presence of energy and momentum perturbations the
quadrapole moment would be induced too, while due to
appearance of the square root expressions in (81), the effect
might be predicted slightly differently compared to [24,27].
Another point with the hydrodynamic modes in QGP is

that CAWs do not propagate in the plasma [see (82)], and
the only propagating waves in the vector sector are two
ordinary sound waves.

B. Comments on dissipation in quark-gluon plasma

In the whole of this paper up to now, we have focused on
the propagation of waves in QCD-type chiral fluids in the
absence of dissipation. Considering the dissipative effects
makes the computations extremely complicated and itwould
be very hard to extract interesting physics from that. In this
subsection, we study such effects in the case of the QGP
fluid, with the simplifying point that there μ5 ¼ 0. For more
simplification, we neglect the effect of rotation in the plasma
and just compute the hydrodynamic excitations in the
magnetic field B. The set of six hydrodynamic modes are
then given by

ωQGP−diss
1;2 ¼ −iσk2

2T

�
T ~χ11 − μ~χ12

~χ11 ~χ22 − ~χ12 ~χ21

�

�
�
CBk
χ

�
2 ~χ11 ~χ22
~χ11 ~χ22 − ~χ12 ~χ21

−
�
σk2

2T

�
2
�

T ~χ11 þ μ~χ12
~χ11 ~χ22 − ~χ12 ~χ21

�
2

− 2
CBk
χ

iσ5k2

2T

�
T ~χ11 þ μ~χ12

~χ11 ~χ22 − ~χ12 ~χ21

�s
ð85Þ

ωQGP−diss
3;4 ¼ � nB

w
− i

k2ηþ B2σ

w
ð86Þ

ωQGP−diss
5;6 ¼ �csk −

2ik2η
3w

: ð87Þ

Obviously, the effect of the vector and chiral conductiv-
ities just appear in the first two modes. It is simple to see
that when σ ¼ σ5 ¼ 0, (85) gives the CMHWs in the first
term of (81). These two modes are the CMHWs which
dissipate due to the diffusion of vector and chiral charges.
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They are in fact dissipative CMHWs. The next two
modes, namely ωQGP−diss

3;4 , are two oppositely circulating
standing vortices which dissipate due to transverse shear
effects as well as ohmic effects induced by the magnetic
field. The same modes had been previously observed in
[30] in a chiral fluid with just one single chirality.
Finally, the last two modes (87) are the sound modes
dissipating by the momentum diffusion in the transverse
directions.

VII. CONCLUSION AND OUTLOOK

As a main part of this paper we have found the hydro-
dynamic excitations in a fluid carrying both vector and
axial charges. Neglecting the dissipative effects, none of
these excitations are entropy producing; they are either
adiabatic or anomalous waves in the fluid. In the latter case,
the chiral transport may be observed in the fluid when fluid
is coupled to an external magnetic field or is rotating
around an axis.
In this paper, we have considered a general case in

which the fluid is in the presence of a constant magnetic
field B and simultaneously is rotating with a constant
vorticity Ω. It has been shown that the full spectrum of
the collective excitations constitute six modes in general;
two of them are the coherent perturbations of the scalar
currents, namely JμEð¼ uνTνμÞ; Jμ; Jμ5, while another four
modes are made out of perturbations of all six scalar and
vector currents.
The scalar modes are the mixture of CMHWs and

CVHWs. There is an interesting point about Eq. (76).
We have found that vCMVHW is actually a function of both
D and C. This suggests that by studying the effect of the
chiral waves on the final spectrum of the charged particle in
QGP, it might be possible to investigate the presence of
gravitational anomalies. However, such observations
require more precise experiments at higher energies com-
pared to what currently is being done.
In the scalar-vector sector, we find four mixed

sound-Alfvén-Coriolis modes which are all dispersive
in general. When Ω ¼ 0, these modes become
the mixed sound-Alfvén modes. While analogous
[29,30], we have used the terminology of Alfvén here
although the Alfvén waves here are somewhat different
from the standard Alfvén waves in magnetohydrody-
namics. The main difference is that in the latter case
the magnetic field has to be dynamical; in the former
case, however, we have shown that chiral Alfvén waves
propagate in the presence of an external constant
magnetic field.
As mentioned above, the results in this paper have been

found in the presence of a nondynamical magnetic field. It
would be interesting to investigate how a dynamical
magnetic field coupled to the flowing matter may affect
the nature of the excitations [55]. To this end, one has to

find the full spectrum of the chiral magnetohydrodynamics.
We leave this issue for future studies.
It would be interesting to compute the full spectrum of the

hydrodynamic modes in a QCD type fluid, microscopically.
In the weak regime, using the recently developed chiral
kinetic theory, one may extend the computations of [32] to
the case in which the axial and vector charge fluctuations are
coupled to energy and momentum fluctuations. It should be
noted that the chiral kinetic theory computations are
basically done in the Laboratory frame. It would be
interesting to compare the results of the current paper in
the Landau-Lifshitz frame with the results of the
Laboratory frame.
In another direction, it would be of more interest to find

the spectrum of the hydrodynamic excitations propagating
on top of the expanding quark-gluon plasma [59]. Recently,
the authors of [61] have studied the linear fluctuations
around a Bjorken flow analytically although they neither
coupled the fluid to the magnetic field nor considered the
chiral transport in their work. It would be phenomenologi-
cally important to extend the subject of [61] to the chiral
QCD case.
Apart from the quark-gluon plasma, our results found in

this paper may be applied to other phenomena in physics as
well. A different place to explore is indeed the neutrino
matter at the core of the supernova star, wherein a gas of
noninteracting fermions is flowing [62]. It would be
interesting to see how the velocities of the hydrodynamic
waves change with the density there. We leave further study
on the issue to our future work.
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APPENDIX: SUSCEPTIBILITY MATRIX
AND ANOMALY COEFFICIENTS

1. Transforming from one thermodynamic
basis to another

Using the following thermodynamic relations, one can
express the hydrodynamic modes in terms of the coherent
excitations of a more physical set of variables, namely
fδϵ; δn; δn5g,

δT ¼
�∂T
∂ϵ

�
δϵþ

�∂T
∂n

�
δnþ

�∂T
∂n5

�
δn5 ðA1Þ
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δμ ¼
�∂μ
∂ϵ

�
δϵþ

�∂μ
∂n

�
δnþ

� ∂μ
∂n5

�
δn5 ðA2Þ

δμ5 ¼
�∂μ5
∂ϵ

�
δϵþ

�∂μ5
∂n

�
δnþ

�∂μ5
∂n5

�
δn5: ðA3Þ

2. Susceptibility Matrix and the Constraint Relations

In order to express the dynamical fields ϵ, n, and n5 in
terms of the variables (9), we consider the susceptibility
matrix as

~χ ¼

2
664
α1 ¼ ∂ϵ

∂T ; α2 ¼ ∂ϵ
∂μ ; α3 ¼ ∂ϵ

∂μ5
β1 ¼ ∂n

∂T ; β2 ¼ ∂n
∂μ ; β3 ¼ ∂n

∂μ5
γ1 ¼ ∂n5∂T ; γ2 ¼ ∂n5∂μ ; γ3 ¼ ∂n5∂μ5

3
775: ðA4Þ

Let us recall that the elements of this matrix are not
generally independent; using the thermodynamic relations,
one simply shows that

β1 ¼
1

c2s

n
T
− β2

μ

T
− γ2

μ5
T

ðA5Þ
β3 ¼ γ2 ðA6Þ

γ1 ¼
1

c2s

n5
T

− β3
μ

T
− γ3

μ5
T
: ðA7Þ

3. Matrix MBΩ
ab

The matrix MBΩ
ab is given by

2
666666666666666666666664

−iα1ω ikj −iα2ω −iα3ω

iα1v2ski
−iωδij − ϵijlΩl − n̄

w̄ ϵ
i
jlBl

−i ξ
2w̄ ðB · kδij − BjkiÞ

iα2v2ski

þ
�

∂ξ
∂μ
�
ðB × ΩÞi

iα3v2ski

þ
�

∂ξ
∂μ5

�
ðB × ΩÞi

−iβ1ω þ
�∂ξ
∂T

�
iΩ · k

þ
�∂ξB
∂T

�
iB · k

n̄
w̄
ikj −

2ξ

w̄
iωΩj

−
ξB
w̄

iωBj −
ξB
w̄
ðB × ΩÞj

−iβ2ω þ
�∂ξ
∂μ

�
iΩ · k

þ
�∂ξB
∂μ

�
iB · k

−iβ3ω þ
� ∂ξ
∂μ5

�
iΩ · k

þ
�∂ξB
∂μ5

�
iB · k

−iγ1ω þ
�∂ξ5
∂T

�
iΩ · k

þ
�∂ξ5B

∂T
�
iB · k

n̄5
w̄
ikj −

2ξ5
w̄

iωΩj

−
ξ5B
w̄

iωBj −
ξ5B
w̄

ðB × ΩÞj

−iγ2ω þ
�∂ξ5
∂μ

�
iΩ · k

þ
�∂ξ5B

∂μ
�
iB · k

−iγ3ωþ
�∂ξ5
∂μ5

�
iΩ·k

þ
�∂ξ5B
∂μ5

�
iB·k

3
777777777777777777777775

: ðA8Þ

An interesting point with this matrix is the appearance of the terms including both vorticity and the magnetic field.
However, these terms disappear when the magnetic field is parallel to the vorticity.

4. x1, x2 coefficients

The anomaly coefficients in the structure ofA3 andA4 in [(57)] are given by the following five expressions. The first two,
namely x1 and x2, are in the structure of A3:

Coefficient Structure

x1 T
�
α½2β3� þ

Tn5
w

α½2β1� −
Tn
w

α½2γ1� þ
n5μ5
w

α½3β2� −
nμ5
w

α½3γ2� þ
2μ5T
w

�
x2 1

w
ðn5α½2β1� − nα½2γ1�Þðμ2 þ μ25Þ þ

2μμ5
w

ðn5α½1β3� − nα½1γ3�Þ

−μðα½1β3� þ α½1γ2�Þ þ μ5ðα½1β2� þ α½1γ3�Þ þ
2μ5
w

�
μ2 þ μ25

3

�
E
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5. y1, y2, y3 coefficients

The anomaly coefficients in the structure of A4 in (57) are y1, y2, and y3,

Coefficient Structure

y1 4α1μ
2
�
1 −

μn
w

�
− 4α1μ

2
5

�
1 −

μ5n5
w

�
þ 4α1μμ5

w
ðμ5n − μn5Þ

−
4ðα½1β3� þ α½1γ2�Þμμ5

w

�
μ2 þ μ25

3

�
þ 4ðα½1β2� þ α½1γ3�Þμ25

w

�
μ2 þ μ25

3

�
þðα½2β1�n5 − α½2γ1�nÞ

16μ2μ35
3w2

þ 2ðα½1β3�n5 − α½1γ3�nÞ
4μμ25
w2

�
μ2 þ μ25

3

�
þðα½2β1�n5 − α½2γ1�nÞ

4μ5
w2

�
μ4 þ μ45

3

�
þ 4μ25

w2

�
μ2 þ μ25

3

�2

E

y2
4T3

�α2n
w

þ ðα½1γ2�n − α½1β2�n5Þ
μ5T
3w2

þ 2ðα½2γ3�n − α½2β3�n5Þ
μ25
w2

þ α½2β3�
μ5
w

þ μ25T
w2

E
�

y3 4Tððα3μ5 − α2μÞ
�
1 −

2μ5n5
w

�
þ α1ðμ5n5 − μnÞ T

w
þ α2ðμ2 − μ25Þ

n
w

þ
�
α½2β3�

μ5
w

þ 2μ25n
w2

α½2γ3� −
2μ25n5
w2

α½2β3�
��

μ2 þ μ25
3

�
þ ðα½1γ2�n − α½1β2�n5Þ

4μ3T
3w2

þððα½1β3�μ5 − α½1β2�μÞn5 þ ðα½1γ2�μ − α½1γ3�μ5ÞnÞ
2μμ5T
w2

þ
�
ðα½1β2�μ5 − α½1γ2�μÞ þ ðα½1γ3�μ5 − α½1β3�μÞÞ

μ5T
w

þ 2μ25T
w2

�
μ2 þ μ25

3

�
E
�

6. z1, z2 coefficients

The anomaly coefficients in the structure of A5 in (72), namely z1 and z2, are given by

Coefficient Structure

z1 2
�
3μ2μ25 þ

1

3
μ45

�
ðn5α½1β3� − nα½1γ3�Þ − 2

�4
3
μμ35 þ 2μ3μ5

�
ðn5α½1β2� − nα½1γ2�Þ

−2w
�
μ2μ5 þ

1

3
μ35

�
ðα½1β3� þ α½1γ2�Þ þ 2μμ25wðα½1β2� þ α½1γ3�Þ þ 4μμ25

�
μ2 þ μ25

3

�
E

−4α1μwðμnþ μ5n5 − wÞ
z2 −4μμ25ðn5α½2β3� − nα½2γ3�Þ þ 2μμ5wα½2γ3�

þ2μ25ðn5α½1β3� − nα½1γ3�Þ − 2μ5Twðα½1β3� þ α½1γ2�Þ − 4μμ5n5Tðn5α½1β2� − nα½1γ2�Þ
−2ðα1nT − α2ðμnþ 2μ5n5 − wÞ − α3μ5nÞwþ 4μμ25TE

7. b coefficient

The only scalar coefficient in (74) is b which given by

b
2C

n1
2
ðμ5β½1γ3� − μβ½1γ2�Þ þ

n
2w

�
β½1γ2� −

n
w
α½1γ2� þ

n5
w
α½1β2�

�
ðμ2 þ μ25Þ þ

μ

2w
ðnα½1γ2� − n5α½1β2�Þ

þ μ5
w

�μn
w

−
1

2

�
ðnα½1γ3� − n5α½1β3�Þ −

μμ5n
w

β½1γ3� þ
μ5n
2w2

�
c2s −

1

2

��
μ2 þ μ25

3

�
E þ μμ5

4w
E
o

2DT
nnT
2w

�
β½1γ2� −

n
w
α½1γ2� þ

n5
w
α½1β2�

�
þ nμ5

w

�
β½2γ3� −

n
w
α½2γ3� þ

n5
w
α½2β3�

�
þ μ5nT

2w2

�
c2s −

1

2

�
E
o
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8. aj coefficients

The non-vinishing components of the vector aj in (74) are a3 and a5 as the following:

Coefficient Structure

a3 C
n1
2
ðα½3β1� þ α½2γ1�Þ þ

�μ5n5
2w

α½1β3� −
μn5
2w

α½1β2� þ
μn
2w

α½1γ2� −
μ5n
2w

α½1γ3�
�

−
μ5n
w2

�
μ2 þ μ25

3

�
E þ 6μμ5

w
E
o
−D

nμ5nT2

w2

o
E

a5
2C

n1
2
ð−μα½1β3� þ μ5α½1β2� − μα½1γ2� þ μ5α½1γ3�Þ þ

μ5
w

�
μ2 þ μ25

3

�
E

þ
�
α½1γ2�

n
2w

− α½1β2�
n5
2w

�
ðμ2 þ μ25Þ þ ðα½1β3� − α½1γ3�Þ

μμ5n5
w

o
þ2DT

n1
2
α½2β3� þ

μ5
w
ðα½2γ3�n − α½2β3�n5Þ þ

T
2w

ðnα½1γ2� − n5α½1β2�Þ þ
μ5T
w

E
o

9. dj;k;l coefficients

The tensor dj;k;l in (74) is a fully symmetric rank-3 tensor with the following nonvanishing components:

Coefficient Structure

d3;3;3 C
nc2sn2
2w3

ðμnα½1γ2� − μ5nα½1γ3� − μn5α½1β2� þ μ5n5α½1β3�Þ −
c2sn2

2w2
ðα½1β3� þ α½1γ2�Þ þ

c2sμμ5n2

w3
E
o

d5;5;5 C
n
c2sμ5ðα½1β2� þ α½1γ3�Þ − c2sμðα½1β3� þ α½1γ2�Þ þ

2c2sμ5
w

�
μ2 þ μ25

3

�
−
c2s
w
ðn5α½1β2� − nα½1γ2�Þðμ2 þ μ25Þ þ

2c2sμμ5
w

ðn5α½1β3� − nα½1γ3�Þ
o

þDT
n
−
c2sT
w

ðn5α½1β2� − nα½1γ2�Þ −
2c2sμ5
w

ðn5α½2β3� − nα½2γ3�Þ þ c2sα½2β3� þ
2c2sμ5T

w
E
o

d3;3;5 C
n
−
c2sn2

w3
ðn5α½1β2� − nα½1γ2�Þðμ2 þ μ25Þ þ

2c2sμμ5n2

w3
ðn5α½1β3� − nα½1γ3�Þ

¼ d5;3;3 þ c2sn2

2w2
ðμ5ðα½1β2� − α½1γ3�Þ − μðα½1β3� − α½1γ2�ÞÞ þ

2c2sμ5n2

w3

�
μ2 þ μ25

3

�
E

¼ d3;5;3 þ c2sn5n
w2

ðμ5α½1β3� − μα½1β2�Þ −
c2sn
w

ðα½1β3� þ α½1γ2�Þ þ
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w2
E
o

−DT
nc2sn2T

w3
ððn5α½1β2� − nα½1γ2�Þ þ 4μ5ðn5α½2β3� − nα½2γ3�ÞÞ −

2c2sn2

w2
α½2β3� −

c2sμ5n2T2

w3
E
o
.

10. cj;k coefficients

The tensor cj;k in (74) is a symmetric tensor with the following nonvanishing components:

Coefficient Structure

c3;1 ¼ c1;3 C
nc2s
2
ðα½1β3� þ α½1γ2�Þ −

c2s
2w

ðμnα½1γ2� − μ5nα½1γ3� − μn5α½1β2� þ μ5n5α½1β3�Þ

þ c2sμ5n
w2

�
μ2 þ μ25

3

�
E −

3c2sμμ5
w

E
o
þDT

nc2sμ5nT2

w2
E
o

c5;2 ¼ c2;5
2C

n n
2w2

ððμn − μ5n5Þα½1β3� þ ðμn5 − μ5nÞα½1β2�Þ −
n2

2w2
β½1γ2�ðμ2 þ μ25Þ þ

μn
2w

β½1γ2�
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Table (Continued)

−
μ5n
2w

�
1 −

2μn
w

�
β½1γ3� −

μ5n2

w3

�c2s
2
þ 5

4

��
μ2 þ μ25

3

�
E þ μμ5n

4w2
E
o

þ2DT
n
−

n2

2w2
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w3

�c2s
2
þ 5

2

�
E
o

c5;6 ¼ c6;5 C
n
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n
w

�
β½1γ2� þ

n
w
α½1γ2� −

n5
w
α½1β2�

�
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w

�
β½1γ3� þ

n
w
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w
α½1β3�

�
þ 2n

w
ðμα½1β3� − μ5α½1β2�Þ þ

μμ5
2w

E

þ 1

w
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μ5n
w2

�
c2s þ

9

2

��
μ2 þ μ25

3

�
E
o

þ2DT
n
−
n
w
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nT
2w
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w
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�
−
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2
þ 9

4

�
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c5;4 ¼ c4;5 Cfμðα½1β3� þ α½1γ2�Þ − μ5ðα½1β2� þ α½1γ3�Þg

þDT
n1
w
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w
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n
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n
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