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We present a detailed theoretical study of effective spin-orbit coupling (SOC) Hamiltonians for graphene-based
systems, covering global effects such as proximity to substrates and local SOC effects resulting, for example,
from dilute adsorbate functionalization. Our approach combines group theory and tight-binding descriptions. We
consider structures with global point group symmetries D6h, D3d , D3h, C6v , and C3v that represent, for example,
pristine graphene, graphene miniripple, planar boron nitride, graphene on a substrate, and free standing graphone,
respectively. The presence of certain spin-orbit coupling parameters is correlated with the absence of the specific
point group symmetries. Especially in the case of C6v—graphene on a substrate, or transverse electric field—we
point out the presence of a third SOC parameter, besides the conventional intrinsic and Rashba contributions,
thus far neglected in literature. For all global structures we provide effective SOC Hamiltonians both in the local
atomic and Bloch forms. Dilute adsorbate coverage results in the local point group symmetries C6v , C3v , and C2v ,
which represent the stable adsorption at hollow, top and bridge positions, respectively. For each configuration
we provide effective SOC Hamiltonians in the atomic orbital basis that respect local symmetries. In addition to
giving specific analytic expressions for model SOC Hamiltonians, we also present general (no-go) arguments
about the absence of certain SOC terms.
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I. INTRODUCTION

The ability to synthesize, manipulate, and functional-
ize 2D materials is an ultimate milestone in technological
development and current fundamental research, including
spintronics [1,2]. One of the major challenges is controlling,
engineering, and harvesting spin degrees of freedom for
faster data processing, storage, etc. Graphene seems to be a
promising material [3] for such applications due to its high
bipolar mobility [4], chemical and mechanical [5] stability,
“relativistic” band structure [6] with chiral electrons that are
highly insensitive to backscattering [7,8], and, importantly for
spintronics, weak intrinsic spin-orbit coupling (SOC) [9]. The
latter was theoretically estimated [10–14] to yield long spin
lifetimes—orders of microseconds—enough for harvesting
electron spins as “carriers of information.” However, exper-
iments carried out on graphene devices of the first generation
gave spin lifetimes three order of magnitudes smaller [15–21].
This vast discrepancy can be reliably explained assuming a
small amount (orders of ppm) of resonant magnetic scatters
[22–24] like for example hydrogen atoms [25,26] or vacancies
[26,27]. Related theoretical studies [28–30] confirmed that
magnetic moments, indeed, strongly affect spin dynamics and
can cause the ultra-fast spin relaxation. A recent experiment of
the Valenzuela group [31], analyzing graphene’s spin-lifetime
anisotropy, supports that view and convincingly rules out SOC
as a determining factor of the fast spin relaxation.

On the other hand, enhancing SOC in graphene is desirable
as well. Indeed, graphene with strong intrinsic SOC is
predicted to host the quantum spin Hall phase [32]. Therefore,
one of the current technological and theoretical challenges is to
tailor the strength of SOC of graphene in a controllable manner.
In fact, SOC can be significantly enhanced either by chemical
functionalization—coating of graphene with light [33–39] or
heavy [40–43] adatoms—accompanied by band gap opening,
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curvature as in the case of carbon nanotubes [44,45], or by a
variety of proximity effects resulting from substrates or due to
scaffolding of different 2D materials [46]. Tangible examples
are CVD graphene grown on Cu and Ni substrates [47–49],
or graphene placed on top of transition metal dichalcogenides
[50–53].

To further examine SOC effects in functionalized graphene
and also design device properties, one needs an effective model
that allows reliable simulations of the spin and charge transport
characteristics [28,54–68]. In this paper, we present a detailed
symmetry analysis focusing on effective SOC Hamiltonians in
a way that is complementary to Refs. [40,58,69]. Our findings
remain valid for any hexagonal (graphenelike) structure pos-
sessing π orbitals and are easily transferable to other systems.
The primary aim of this manuscript is to lift the curtain and
show practically how to derive the corresponding SOC Hamil-
tonians from the given pools of global or local symmetries.

We discuss two cases: global SOC Hamiltonians that
represent proximity induced phenomena or periodically func-
tionalized structures, and local SOC Hamiltonians that govern
spin dynamics in the vicinity of adsorbates. Starting with
pristine graphene, we step-by-step reduce the number of
global symmetries approaching structures such as graphene
miniripple, staggered graphene, planar boron nitride, silicene,
graphene on a substrate, graphone, etc. For each representative
case, which is classified by the associated subgroup of the full
hexagonal group, we derive an effective SOC Hamiltonian in
real and reciprocal spaces, respectively. Our analysis therefore
covers also quasimomenta that are not necessarily constrained
to the vicinity of Dirac points.

In the case of local impurities, we focus on the reduction
of local symmetries up to a certain spatial extent from the
adsorbate. The three representative adsorption positions are
hollow, top, and bridge and we provide here the local SOC
Hamiltonians in real space. Group arguments allow us to link
the presence or absence of certain symmetries to various spin-
orbit couplings that emerge in the effective SOC Hamiltonian.
For example, in the global case corresponding to point group
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C6v—graphene in a transverse electric field or deposited on a
substrate—we highlight the presence of a SOC term that have
not yet been considered. It appears along with the conventional
intrinsic and Rashba couplings and is related to the absence of
the principal mirror plane in the structure.

The paper is organized as follows. After recapitulating the
basic group theory related with the full hexagonal system and
its application to SOC matrix elements in Sec. II, we discuss
separately translational invariant systems, Sec. III, and systems
lacking that invariance (local adsorbates), Sec. IV. In sections
of III, we cover in detail SOC in pristine graphene, point
group D6h, and effective SOC Hamiltonians in systems that
are characterized by one of its subgroups: D3d , D3h, C6v ,
and C3v . Section IV is devoted to local SOC Hamiltonians
for the three stable adsorption positions—hollow, top, and
bridge, respectively. Summary and final remarks are provided
in Sec. V.

II. GROUP THEORY AND SOC: PRELIMINARIES

A convenient approach how the group theory enters
effective model building is a decomposition of the Hamiltonian
matrix elements associated with the problem into irreducible
representations (irreps). Those are well known and standardly
tabulated for all crystallographic point groups [70,71]. Consid-
ering spin and spin-orbit interaction the irrep analysis around
the high-symmetry points in the Brillouin zone becomes more
involved. This is because the associated double (also called
spinor) group representations should be appropriately taken
into account; the case of graphite is exhaustively discussed in
the thesis of Slonczewski [72]. For a general overview and
connection with the theory of group invariants, see the book
of Bir and Pikus [73], or Winkler [74].

Another possibility how to derive an effective SOC Hamil-
tonian is to employ the multi-orbital tight-binding approach
[75–78]. The group symmetry analysis on the orbital level
is straightforward and well described by the Koster-Slater
two-center approximation [79] and, consequently, SOC enters
as the intra-atomic LS interaction ξ� L̂ · Ŝ. The resulting multi-
orbital tight-binding Hamiltonian is then downfolded by means
of the Löwdin projection [80] to the states of interest—mostly
the low-energy states with respect to the Fermi level.

As an alternative to the invariant expansion and the multi-
orbital tight-binding method with the Löwdin projection, we
present here an effective tight-binding approach that employs
symmetries of local atomic orbitals. We focus particularly on
hexagonal lattice structures assuming the low-energy physics
near the Fermi level can be approximately well described by
π orbitals, i.e., carbon 2pz orbitals, or atomic orbitals n,� �=
0,m� = 0. For simplicity, we consider that each nodal atomic
site m contains one effective π -orbital state, |Xm〉 ≡ c

†
m|0〉.

When it is necessary to specify the sublattice X, we explicitly
write |Am〉 and |Bm〉 for the two atomic sites in a hexagonal
lattice. Including also electron spin, σ = {↑,↓} ≡ {+1,−1},
the effective one-particle Hilbert space is spanned by states
|Xmσ 〉 ≡ c

†
m,σ |0〉.

The structural point group of an ideal hexagonal lattice
is the symmetry group D6h—in international crystallographic
notation group 6/mmm. It contains 24 group elements which
can be expressed in terms of four group generators: identity
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FIG. 1. Panel (a) shows selected symmetry operations of point
group D6h. Combining the point group generators (blue symbols)—
horizontal �

xy

h , vertical �yz
v , and dihedral �̃d reflections, one can

built all the remaining group elements (black symbols). Lower panels
depict (b) sites’ labeling convention and axes orientation, and (c)
graphene unit cell together with the Bravais lattice vectors Rα (α =
1,2,3).

E and reflections �h ≡ �
xy

h ,�v ≡ �
yz
v ,�̃d , for visualization

see Fig. 1. Subscripts h, v, and d stand for the horizontal
(xy plane), vertical (yz plane), and dihedral (rotated xz plane)
reflections, respectively. When it is convenient to emphasize
the reflection planes explicitly, we employ the superscripts xz,
yz, and xy. Similarly, to specify the axis determining a spatial
rotation we use hat superscripts, such as x̂, ŷ, and ẑ. The
remaining elements of D6h are sixfold and threefold rotations,
Cẑ

6 = �̃d ◦ �v and Cẑ
3 = Cẑ

6 ◦ Cẑ
6, the xz-dihedral reflection

�d ≡ �xz
d = Cẑ

3 ◦ �̃d , the space inversion I = �h ◦ �d ◦ �v ,
the improper rotations Sẑ

6 = �h ◦ Cẑ
6, Sẑ

3 = �h ◦ Cẑ
3, and the

twofold rotations Cx̂
2 = �h ◦ �d , C

ŷ

2 = �h ◦ �v , and Cẑ
2 =

�v ◦ �d , see Fig. 1.
To construct an invariant SOC Hamiltonian, it is necessary

to know how the one-particle basis states |Xmσ 〉 transform
under the active action of D6h including the time reversal
symmetry T . While we are not dealing with the double group
irreps it is enough to focus on the action of selected group
elements: rotation Rẑ

� by an angle �, the horizontal, vertical,
and dihedral reflections �h, �v , and �d , respectively, the time
reversal T , and for completeness also the space inversion I
and the translation T�a by a lattice vector �a:

|Xmσ 〉 R�−→ e−iσ �
2
∣∣XR�(m)σ

〉
, (1a)

|Xmσ 〉 �
xy

h−−→ i(−1)
1+σ

2 |Xmσ 〉, (1b)

|Xmσ 〉 �
yz
v−−→ i

∣∣X�
yz
v (m)(−σ )

〉
, (1c)

|Xmσ 〉 �xz
d−−→ (−1)

1+σ
2

∣∣X�xz
d (m)(−σ )

〉
, (1d)
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|Xmσ 〉 T−→ (−1)
1−σ

2 |Xm(−σ )〉, (1e)

|Xmσ 〉 I−→ −|XI(m)σ 〉, (1f)

|Xmσ 〉 T�a−→ |Xm+�aσ 〉. (1g)

The action of the remaining D6h elements follow immediately
from the relations to the group generators. The action of T
affects only the spin component of |Xmσ 〉 = |Xm〉 ⊗ |σ 〉 since,
by convention, our orbital π states |Xm〉 are real-valued wave
functions.

An electron moving in an effective crystal field potential
V is affected by SOC interaction that is represented by
Hamiltonian,

Ĥso = h̄

4m2
ec2

(∇V × p̂) · ŝ. (2)

Here, me is the vacuum rest mass of the electron, c is the
speed of light, p̂ stands for the momentum operator, and
ŝ = (ŝx ,ŝy,ŝz) represents the array of Pauli matrices acting
on spin degrees of freedom. In reality, we do not know the
crystal field and so Ĥso exactly, but knowing the pool of
symmetries preserving V , and hence Ĥso, we can uniquely
detect which matrix elements 〈Xmσ |Ĥso|Xnσ

′〉 are nonzero
and thus important. If S is a system’s symmetry—precisely,
its unitary representation—then SĤso = ĤsoS and

〈S[Xmσ ]|Ĥso|S[Xnσ
′]〉 = 〈S[Xmσ ]|S[ĤsoXnσ

′]〉
= 〈Xmσ |Ĥso|Xnσ

′〉 (3)

for any two one-particle states |Xmσ 〉 and |Xnσ
′〉. In an

analogous way, we get for the antiunitary time reversal
symmetry, T Ĥso = ĤsoT , and self-adjoint Ĥso

〈T [Xmσ ]|Ĥso|T [Xnσ
′]〉 = 〈T [Xmσ ]|T [ĤsoXnσ

′]〉
= 〈Xmσ |Ĥso|Xnσ ′〉
= 〈Xnσ

′|Ĥso|Xmσ 〉. (4)

This gives us a practical relation connecting SOC matrix
elements with opposite spin projections:

〈Xmσ |Ĥso|Xnσ
′〉

(1e)= 〈(−1)−
1−σ

2 T [Xm(−σ )]|Ĥso|(−1)−
1−σ ′

2 T [Xn(−σ ′)]〉
= −(−1)

σ+σ ′
2 〈T [Xm(−σ )]|Ĥso|T [Xn(−σ ′)]〉

(4)= −(−1)
σ+σ ′

2 〈Xn(−σ ′)|Ĥso|Xm(−σ )〉. (5)

In practice, we focus only on the on-site, nearest neigh-
bors, and the next-nearest-neighbor SOC mediated hoppings
〈Xmσ |Ĥso|Xnσ

′〉. This is sufficient because the orbital over-
laps modulated by ∇V —dominant near the atomic cores—
decay rather fast with increasing distance. Therefore we
focus on SOC hoppings 〈Xmσ |Ĥso|Xnσ

′〉 inside one particular
elementary cell of the hexagonal lattice, see Fig. 1. All other
spin-resolved hoppings can be expressed by applying transla-
tions, rotations, reflections, or time reversal, see Eqs. (1).

In what follows we show how time reversal symmetry and
self-adjointness of Ĥso restrict 〈Xmσ |Ĥso|Xnσ

′〉. Particulary,
we argue that the spin-conserving hoppings 〈Xmσ |Ĥso|Xnσ 〉
are purely imaginary, and the on-site SOC resolved hoppings

〈Xmσ |Ĥso|Xmσ 〉 and 〈Xmσ |Ĥso|Xm(−σ )〉 vanish. First, note
that the SOC Hamiltonian Ĥso, Eq. (2), can be recast into the
form

Ĥso = L̂+ŝ− + L̂−ŝ+ + L̂zŝz, (6)

where ŝ± = 1
2 (ŝx ± iŝy) are spin raising and lowering oper-

ators (without h̄
2 ) and L̂’s act solely on the orbital part of

the wave function. It follows from the hermiticity of Ĥso

that L̂†
− = L̂+ and L̂z is self-adjoint. Also L’s transform

under the space and time reversal symmetries equally as
the standard angular momentum operators. However, for a
general crystal field potential V they do not obey the usual
SU(2)-commutation relations. Directly from Eq. (6) we have

〈Xmσ |Ĥso|Xnσ 〉 = −〈Xm(−σ )|Ĥso|Xn(−σ )〉. (7)

On the other side, the time reversal symmetry, Eq. (5), implies

〈Xm(−σ )|Ĥso|Xn(−σ )〉 (5)= 〈Xnσ |Ĥso|Xmσ 〉
= 〈Xmσ |Ĥso|Xnσ 〉. (8)

So comparing this and the above expression, we see that

〈Xmσ |Ĥso|Xnσ 〉 (9)

is a purely imaginary SOC matrix element for any two atomic
sites mediating a spin-conserving hopping. In the special case
m = n, the above Eqs. (5) and (7) give

〈Xmσ |Ĥso|Xmσ 〉 (5)= 〈Xm(−σ )|Ĥso|Xm(−σ )〉
(7)= −〈Xmσ |Ĥso|Xmσ 〉, (10)

so that we have shown that the on-site spin-conserving term
〈Xmσ |Ĥso|Xmσ 〉 equals zero for any site m. In a similar way
we get for its spin-flipping counterpart:

〈Xmσ |Ĥso|Xm(−σ )〉 (5)= −〈Xmσ |Ĥso|Xm(−σ )〉, (11)

so the on-site spin-flipping matrix element 〈Xmσ |Ĥso|
Xm(−σ )〉 is zero for any lattice site m. Therefore what matters
are the nearest- and next-nearest-neighbor SOC mediated
matrix elements, which we will examine in the forthcoming
sections.

III. TRANSLATIONAL INVARIANT SYSTEMS

A. Pristine graphene SOC Hamiltonian

The spin-orbit coupling Hamiltonian based on π states that
is translational invariant and possesses the full point group
symmetry D6h of the pristine graphene allows only one, the
so called intrinsic, SOC hopping λI. This was first discussed
by McClure and Yafet [81] when analyzing the g factor in a
“graphite single crystal.” Later Kane and Mele [32] revisited
this point when predicting the quantum spin Hall effect in
graphene. The magnitude of λI was found in the work of
Gmitra et al. [9], who showed that λI is too weak—about
12 μeV—to induce an experimentally detectable transition
into the quantum spin Hall phase. Furthermore, Gmitra et al.
[9] found that λI is due to the coupling of pz and d orbitals.
This was supported by multiorbital tight-binding calculations;
Konschuh et al. [75] showed that the intrinsic SOC hopping
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λI is significantly affected by the admixture of 3dxz ± i3dyz

orbitals, the fact anticipated already by Slonczewski [72].
The effective tight-binding Hamiltonian mediating the

SOC interaction among π states in graphene—or any planar
hexagonal system with one π -orbital per site—reads

HD6h
= iλI

3
√

3

∑
σ

∑
〈〈m,n〉〉

νm,n[ŝz]σσ |Xmσ 〉〈Xnσ |. (12)

The Hamiltonian HD6h
couples next-nearest neighbors (sum-

mation over 〈〈m,n〉〉) and allows only spin-conserving hop-
pings. Therefore, in accordance with Eq. (9), the underlying
coupling constant is purely imaginary. Using the configuration
shown at Fig. 1, the coupling iλI can be defined as

iλI

3
√

3
= 〈A3↑|Ĥso|A2↑〉 (7)= −〈A3↓|Ĥso|A2↓〉. (13a)

The numerical factor 1/3
√

3 is a matter of convention; adding
it here, the low-energy expansion of the Bloch transform of
HD6h

becomes simpler. In the above formula and also below,
we identify a lattice site m with a π state |Xm〉 residing on
it. Since each site hosts one π -orbital state, this assignment
is unique. Moreover, since |A2↑〉 = �xz

d |B3↓〉, and |A3↑〉 =
�xz

d |B2↓〉, see Fig. 1, we can write

iλI

3
√

3
= 〈A3↑|Ĥso|A2↑〉 (1d)= 〈

�xz
d [B2↓]

∣∣Ĥso

∣∣�xz
d [B3↓]

〉
(3)= 〈B2↓|Ĥso|B3↓〉 (7)= −〈B2↑|Ĥso|B3↑〉. (13b)

All the sublattice and spin related sign factors are captured
in the prefactor term νm,n[ŝz]σσ , i.e.,

〈Xmσ |Ĥso|Xnσ 〉 = νm,n[ŝz]σσ

iλI

3
√

3
. (14)

There, νm,n = +1(−1), if the next-nearest-neighbor hopping
n → m via a common neighbor on the opposite sublattice
is counter clockwise (clockwise), e.g., for A2 → (B1) → A3,
νA3A2 = +1, while for B3 → (A1) → B2, νB2B3 = −1, see
Fig. 1. The dependence on spin σ is governed by [ŝz]σσ ; as
defined [ŝz]±± = ±1.

To see the effect of the intrinsic SOC on the band structure
we transform HD6h

, Eq. (12), from the local atomic into the
Bloch basis, |Xmσ 〉 �→ |Xqσ 〉:

|Xqσ 〉 = 1√
N1N2

∑
Rm

eiq·Rm |Xmσ 〉. (15)

Here, X = {A,B} and σ = {↑,↓}, dependent on the sub-
lattice and spin degrees of freedom, respectively, q is the
quasimomentum measured from the center of the hexagonal
Brillouin zone (� point), N1N2 is the number of graphene unit
cells in the sample, and Rm is the lattice vector of the mth
cell that hosts the orbital |Xmσ 〉. Inserting the above unitary
transformation into Eq. (12), we transform HD6h

to the Bloch
form, HD6h

= ∑
q HD6h

(q), where

HD6h
(q) = λIfI(q)

∑
X,σ

[σ̂z]XX[ŝz]σσ |Xqσ 〉〈Xqσ |. (16)

Here, the Pauli matrix σ̂z acts in the space of sublattices—
[σ̂z]AA = 1 = −[σ̂z]BB , and [σ̂z]AB = 0 = [σ̂z]BA. The intrinsic

structural function fI(q) reads,

fI(q) = − 2

3
√

3
(sin q · R1 + sin q · R2 + sin q · R3). (17)

The lattice vectors Rα (α = 1,2,3) can be compactly expressed
in terms of the Levi-Civita antisymmetric ε symbol and the
position vectors of the lattice sites A1, A2, and A3 as displayed
at Fig. 1. Particularly,

Rα = 1

2
εαβγ

−−−→
Aγ Aβ = aL

(
cos

2π (α − 1)

3
, sin

2π (α − 1)

3

)
,

(18)

where aL is the lattice constant; in the case of graphene aL =
2.46 Å.

On the orbital level the electronic band structure of
graphene π orbitals is well described by the standard nearest-
neighbor Hamiltonian,

Horb = −t
∑

σ

∑
〈m,n〉

|Xmσ 〉〈Xnσ |, (19)

with t = 2.6 eV. Transforming it to the Bloch form, we arrive
at Horb = ∑

q Horb(q), where

Horb(q) = −t
∑

σ

forb(q)[ŝ0]σσ |Aqσ 〉〈Bqσ | + H.c., (20)

and the orbital structural function is given by

forb(q) = (1 + eiq·R2 + e−iq·R3 ); (21)

ŝ0 is the identity matrix in spin space.
In what follows, we focus on the low-energy physics near

the Dirac points,

±K = ± 4π

3aL
(1,0), (22)

i.e., we substitute for q = ±K + k and expand the relevant
q-dependent quantities in k keeping the first nonzero term.
For the above defined structural functions, we particularly get

fI(±K + k) � ±1 (23)

and

forb(±K + k) �
√

3aL

2
(∓kx − iky). (24)

Fixing the order {|Aq↑〉, |Aq↓〉,|Bq↑〉,|Bq↓〉} of the Bloch
basis, we arrive at the effective low-energy Hamiltonian in the
form

Heff(τK + k) = h̄vF (τkxσ̂x − kyσ̂y)ŝ0 + τλIσ̂zŝz. (25)

Here, τK = ±K is the shorthand for the Dirac valleys, σ̂x(y)

are Pauli matrices in the sublattice space, and vF = √
3aLt/2h̄

stands for the Fermi velocity; for example, for graphene vF ≈
106 m/s.

From the above Bloch representation, we see that σ̂0ŝz

commutes with Heff , and hence its eigenstates can be la-
beled by the spin ↑ and ↓ projections along the z spin
quantization axis independently of k. The eigenspectrum
of Heff , dependent on the quasimomentum k, band index
n = +/− = conduction/valence, and spin σ = {↑,↓}, reads

εn,σ (τK + k) = n

√
λ2

I + h̄2v2
F

(
k2
x + k2

y

)
. (26)
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FIG. 2. Electronic band structure of the typical graphenelike
system in the vicinity of the Dirac point (|k| = 0) with (solid line) and
without (dashed line) the intrinsic (D6h invariant) SOC Hamiltonian.
The spectral gap of 2λI and the parabolic shape near |k| = 0 are
typical imprints of the intrinsic SOC which does not spin-split the
bands.

The corresponding four eigenstates get grouped into pairs,
each pair comprising states with the opposite spins, e.g.,
directly at the τK points, we have two pairs {|AτK↑〉,|BτK↓〉}
and {|AτK↓〉,|BτK↑〉}, that are split in energy by the intrinsic
SOC; spin-orbit interaction opens a spectral gap at the Dirac
points. In the case of graphene, the intrinsic gap equals [9]
2λI � 24 μeV. The spectral effects of the intrinsic SOC that
are imprinted on the band structure are shown at Fig. 2.

B. No-go SOC matrix elements—lethal symmetries

In what follows, we shortly summarize no-go arguments
showing explicitly how certain SOC mediated matrix elements
become inhibited by specific structural symmetries. This
will on one hand prove why for pristine graphene only the
spin-conserving next-nearest-neighbor coupling λI is allowed.
On the other hand, by seeing the absence of a particular no-go
symmetry in the symmetry group of a reduced hexagonal
structure we can infer which additional coupling is allowed in
the corresponding effective SOC Hamiltonian. We will profit
from this insight in the forthcoming sections.

1. Inhibition of all spin-flip SOCs—horizontal reflection

Applying horizontal reflection �
xy

h to a general spin-flip
matrix element 〈Xmσ |Ĥso|Xn(−σ )〉 between two π states
localized on arbitrary lattice sites m and n, we get in
accordance with Eq. (1b),

〈Xmσ |Ĥso|Xn(−σ )〉
= 〈i(−1)

1−σ
2 �

xy

h [Xmσ ]|Ĥso

∣∣i(−1)
1+σ

2 �
xy

h [Xn(−σ )]
〉

= −〈
�

xy

h [Xmσ ]
∣∣Ĥso

∣∣�xy

h [Xn(−σ )]
〉

(3)= −〈Xmσ |Ĥso|Xn(−σ )〉, (27)

what implies that 〈Xmσ |Ĥso|Xn(−σ )〉 = 0. Hence we showed
that the presence of �

xy

h in the reduced point group inhibits
any spin-flip terms in the effective SOC Hamiltonian. If �

xy

h

would not be present, then we would have a weaker result as
discussed below.

2. Inhibition of the nearest-neighbor spin-flip
SOCs—space inversion, lattice translation, and time reversal

For concreteness, let us focus on the SOC matrix element
〈A2σ |Ĥso|B3(−σ )〉; see Fig. 1. Employing consecutively
space inversion I, Eq. (1f), unitarity, Eq. (3), and translation
by the lattice vector �a = −−−→

A3A2 = −−→
B2B3, Eq. (1g), we get

〈A2σ |Ĥso|B3(−σ )〉 = 〈−I[B2σ ]|Ĥso| − I[A3(−σ )]〉
= 〈I[B2σ ]|Ĥso|I[A3(−σ )]〉
(3)= 〈B2σ |Ĥso|A3(−σ )〉
= 〈T�a[B3σ ]|Ĥso|T�a[A2(−σ )]〉
(3)= 〈B3σ |Ĥso|A2(−σ )〉. (28a)

To proceed further, we use the time reversal symmetry, Eq. (5),

〈B3σ |Ĥso|A2(−σ )〉 (5)= −〈A2σ |Ĥso|B3(−σ )〉. (28b)

Combining Eqs. (28a) and (28b), we immediately see
that the nearest-neighbor SOC mediated spin-flip hopping
〈A2σ |Ĥso|B3(−σ )〉 = 0. Repeating the same for the remaining
neighboring lattice sites at Fig. 1 we inhibit—by the space
inversion I, lattice translation T�a and time reversal T —all
other nearest-neighbor spin-flip terms in the effective SOC
Hamiltonian.

3. Inhibition of the nearest-neighbor spin-conserving
SOCs—vertical reflection and lattice translation

By similar reasoning as above, we can show that the SOC
matrix element 〈A2σ |Ĥso|B3σ 〉 is zero whenever lattice trans-
lation T�a and vertical reflection �

yz
v are present. Translation

by the lattice vector �a = −−−→
A2A3 = −−→

B3B2 implies

〈A2σ |Ĥso|B3σ 〉 = 〈T�a[A3σ ]|Ĥso|T�a[B2σ ]〉
(3)= 〈A3σ |Ĥso|B2σ 〉. (29a)

Moreover, using the vertical reflection, Eq. (1c), we have
|A3σ 〉 = −i�

yz
v |A2(−σ )〉 and |B2σ 〉 = −i�

yz
v |B3(−σ )〉 and

therefore, by unitarity, Eq. (3), we arrive at

〈A3σ |Ĥso|B2σ 〉 = 〈A2(−σ )|Ĥso|B3(−σ )〉. (29b)

So the last two equations together with Eq. (7) imply

〈A2σ |Ĥso|B3σ 〉 = 〈A2(−σ )|Ĥso|B3(−σ )〉
(7)= −〈A2σ |Ĥso|B3σ 〉, (29c)

which means that the nearest-neighbor spin-conserving hop-
ping 〈A2σ |Ĥso|B3σ 〉 is zero. Repeating the same argumenta-
tion for the other neighboring sites we eliminate—by lattice
translation T�a and vertical reflection �

yz
v —all remaining

nearest-neighbor spin-conserving SOC terms.
The no-go arguments based on the horizontal and verti-

cal reflections �
xy

h ,�
yz
v ∈ D6h, see Eqs. (27) and (29), ex-

plain straightforwardly why the translationally invariant SOC
Hamiltonian HD6h

of pristine graphene, Eq. (12), allows only
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2

Σxz
d

C x̂
2

Σxy
h

D6h

{λI}

C ẑ
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FIG. 3. Point group D6h of pristine graphene (top), its maximal subgroups D3d , D3h, and C6v (second row), and the corresponding
symmetry operations (blue symbols). Subgroups D3d , D3h, and C6v are represented, for instance, by graphene mini-ripple, planar boron-nitride
and graphene exposed to a transverse external electric field, respectively. They share the common subgroup C3v (third row) what is, for
example, the symmetry group (left to right) of graphene mini-ripple in a transverse external electric field, mini-rippled boron-nitride, and
boron-nitride in a transverse external electric field. The successive reduction of the point group symmetry (top to bottom) enhances the number
of symmetry-allowed SOC parameters, those are summarized in brackets.

the next-nearest-neighbor spin-conserving hoppings. Pristine
graphene is an example of a hexagonal system with the highest
structural group symmetry. The topic for the next sections are
hexagonal systems with lower symmetries—subgroups of the
point group D6h. We will start with the maximal structural
subgroups D3d , D3h, and C6v—and explore step-by-step the
symmetry allowed spin-orbit couplings.

C. Subgroups of D6h—categorization of emergent SOCs

Any periodic modification of the pristine hexagonal sym-
metry reduces the unit cell point group symmetry D6h to one
of its subgroups and is manifested by the emergence of new
SOC mediated hoppings. The aim of this section is to show a
bottom line enabling their classification and categorization.

The minimal structural modifications we will discuss here
are (1) rippling, (2) sublattice asymmetry, and (3) transverse
electric field or substrate and their mutual combinations, see
Fig. 3. We call here a structural modification of the full
hexagonal lattice minimal, if the reduced point subgroup
of D6h experiences minimal modifications in terms of the

number of group elements. Such subgroups are usually called
maximal subgroups. In the case of D6h, there are in total
five maximal subgroups [70]. Each of them has 12 group
elements—group order 12—which is half of the order of
the original point group D6h. Three subgroups—D3d , D3h,
and C6v—will be relevant in the present context, while the
subgroups D6 and C6h are irrelevant for us. To be specific,
(1) rippling reduces D6h → D3d what constitutes the point
group of graphene miniripple, graphane [82], silicene, and
“germanene” [83,84], etc.; (2) sublattice inversion asymmetry
reduces D6h → D3h what is the point group of the planar boron
nitride, aluminum nitride, or any other planar system with two
nonequivalent interpenetrating triangular lattices A and B; (3)
transverse electric field reduces D6h → C6v what represents
the point group of pristine graphene in an external field or
graphene deposited on a substrate that is not breaking the
sublattice symmetry. For visualization, summary, and mutual
comparison see Fig. 3 and Table I.

It is worth to emphasize that an intersection of any two
of D3d , D3h, and C6v is isomorphic [70] to the smaller
non-Abelian subgroup C3v ⊂ D6h with group order 6. This
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TABLE I. Point group D6h and its maximal subgroups—D3d , D3h, C6v—including also their common intersection—the point group C3v .
For the visualization see Fig. 3. We shortened the notation in terms of the previous definitions: symbol 2Cẑ

6 means two sixfold rotations along
the z axis, namely, Rẑ

±π/3, symbol 3C ′
2 stands for three twofold rotations along the axis x, Rẑ

π/3x, and Rẑ
2π/3x, respectively, and similarly 3C ′′

2

stands for three twofold rotations along the y, Rẑ
π/3y, and Rẑ

2π/3y axis, respectively. By the same logic, 3�v stands for three mirror reflections
in yz, Rẑ

π/3yz, and Rẑ
2π/3yz planes, respectively, and so on. If the given set of operations is present/absent in the particular subgroup of D6h,

we employ the marker �/–.

Group/Operation E 2Cẑ
6 2Cẑ

3 Cẑ
2 3C ′

2 3C ′′
2 I �h 3�v 3�d 2Sẑ

3 2Sẑ
6

D6h � � � � � � � � � � � �
D3d � – � – � – � – � – – �
D3h � – � – – � – � � – � –
C6v � � � � – – – – � � – –
C3v � – � – – – – – � – – –

means that an arbitrary combination of two minimal structural
modifications leads to the same effective SOC Hamiltonian,
which possesses global C3v invariance. For concreteness,
graphene miniripple (or graphane, silicene, and germanene) in
a transverse electric field—D3d ∩ C6v—is from the effective
SOC point of view equivalent to a minirippled boron nitride
without the field or free standing graphone [85]—D3d ∩ D3h.

With respect to the structural minimality the point groups
D3d , D3h, and C6v can be considered as equivalent since they
are all maximal subgroups of D6h. Despite of that minimal
subgroup similarity, D3d , D3h, and C6v are different since they
result in different SOC phenomena.

1. D3d case: λI and λPIA couplings

Rippled structures such as graphane, silicene, and graphene
miniripple—point group D3d—remain invariant under the
space inversion I and time reversal T , and hence SOC can not
cause band spin splittings. The reasoning is finger counting
[2]; for any band index n, we have

εn,σ (k)
T= εn,−σ (−k)

I= εn,−σ (k). (30)

Space inversion I and vertical reflection �
yz
v belong to D3d ,

but the horizontal reflection �
xy

h does not. Then, according
to the no-go arguments presented in Sec. III B, the D3d

symmetric and time reversal invariant SOC Hamiltonian based
on π orbitals allows only next-nearest-neighbor hoppings. The
nearest-neighbor SOCs are inhibited—the spin-conserving
ones by �

yz
v and spin-flipping by I. Because I interchanges

sublattices, |Aiσ 〉 = −I|Biσ 〉, see Fig. 1 and Eq. (1f), the
next-nearest hoppings should not be sublattice resolved.
Indeed,

〈Aiσ |Ĥso|Ajσ
′〉 (3)= 〈Biσ |Ĥso|Bjσ

′〉. (31)

Similarly, T interchanges the spin components,

〈Xmσ |Ĥso|Xnσ
′〉

(5)= −(−1)
σ+σ ′

2 〈Xn(−σ ′)|Ĥso|Xm(−σ )〉, (32)

and hence there is only one purely imaginary spin-conserving
hopping, say, defined for σ ′ = σ = ↑, and one spin-flipping
hopping defined for σ ′ = −σ = ↓, respectively.

It is now a convention—by analogy with the plain
graphene—to call the spin-conserving next-nearest-neighbor
SOC matrix element intrinsic. Hence also in the D3d case we

adopt the term intrinsic SOC. We define intrinsic iλI by the
same prescription as already given by Eq. (13):

iλI

3
√

3
= 〈A3↑|Ĥso|A2↑〉 = 〈B2↓|Ĥso|B3↓〉. (33)

The related sublattice-spin sign factors are governed by the
prefactor νm,n[ŝz]σσ as discussed above.

There is no terminological consensus on how to call the
spin-flipping next-nearest-neighbor SOC matrix element. Such
a term already emerged in bilayer graphene [86], but that
time its group symmetry origin was not discussed. Later,
when studying SOC effects in semi-hydrogenated graphene
(graphone) the acronym PIA—a shorthand for the “pseudospin
inversion asymmetry” was proposed [34]. In that case, the
pseudospin was explicitly broken by the hydrogenation of
one sublattice resulting in the C3v invariant structure. Un-
fortunately, the pseudospin asymmetry is not supported by the
point group D3d which contains the space inversion I. So
the former PIA acronym is not fully appropriate in D3d case.
Alternatively, authors of Ref. [77] used the term “intrinsic
Rashba SOC.” This is also inappropriate, since normally the
Rashba [87] SOC causes band splittings and this is also not
the case in D3d invariant systems.

The emergence of the spin-flipping next-nearest-neighbor
SOC is related to the absence of the horizontal reflection �

xy

h

in the underlying point group (see also other cases discussed
below). Since the horizontal plane is a principal mirror plane of
the structure we can call it “principal plane mirror asymmetry”
induced SOC, preserving the subscript PIA (by explicitly
breaking with abbreviation rule). Thus the PIA spin-orbit
coupling λPIA can be defined as

2
3λPIA ≡ 〈A3↑|Ĥso|A2↓〉 (5)= −〈A2↑|Ĥso|A3↓〉. (34)

Again, the numerical prefactor 2/3 is a matter of convenience.
Employing the vertical reflection �

yz
v ∈ D3d we show that λPIA

is purely real

〈A3↑|Ĥso|A2↓〉 (1c)= 〈−i�yz
v [A2↓]

∣∣Ĥso

∣∣ − i�yz
v [A3↑]

〉
(3)= 〈A2↓|Ĥso|A3↑〉 = 〈A3↑|Ĥso|A2↓〉.

(35)
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As a consequence of the last two equations, we have the
practical identity:

2
3λPIA = 〈A3↑|Ĥso|A2↓〉 = −〈A3↓|Ĥso|A2↑〉. (36)

The remaining next-nearest-neighbor spin flipping SOCs on
the A-sublattice, see Fig. 1, can be connected with λPIA by
rotations Rẑ

± 2π
3

∈ D3d . In particular, we get

〈A1↑|Ĥso|A3↓〉 (1a)= e−i 2π
3
〈
Rẑ

2π
3

[A3↑]
∣∣Ĥso

∣∣Rẑ
2π
3

[A2↓]
〉

(3)= e
−i

2π
3 2

3λPIA, (37)

〈A2↑|Ĥso|A1↓〉 (1a)= ei 2π
3
〈
Rẑ

− 2π
3

[A3↑]
∣∣Ĥso

∣∣Rẑ

− 2π
3

[A2↓]
〉

(3)= e
i

2π
3 2

3λPIA. (38)

The SOC matrix elements on the sublattice B can be obtained
from the above A-sublattice formulas after employing the
space inversion. The spin-flipping next-nearest-neighbor SOC
elements for both sublattices can be compactly summarized
by the following formula1

〈Xmσ |Ĥso|Xnσ
′〉 = [σ̂z]XX[i ŝ × dm,n]σσ ′ 2

3λPIA, (39)

where dm,n = −→
mn /|−→mn | is the unit vector in the horizontal

(xy) plane pointing from the lattice site n to the next-nearest-
neighbor site m; ŝ stands for the array of Pauli matrices and
spin projections σ �= σ ′.

To summarize, the effective translationally invariant SOC
Hamiltonian based on π orbitals that respects D3d symmetry
and time reversal is given by

HD3d
= iλI

3
√

3

∑
σ

∑
〈〈m,n〉〉

νm,n[ŝz]σσ |Xmσ 〉〈Xnσ |

+ 2λPIA

3

∑
σ �=σ ′

∑
〈〈m,n〉〉

[σ̂z]XX[i ŝ×dm,n]σσ ′ |Xmσ 〉〈Xnσ
′|.

(40)

Transforming the above SOC Hamiltonian into the Bloch form,
HD3d

= ∑
q HD3d

(q), we arrive at

HD3d
(q) =

∑
X,σ,σ ′

[σ̂z]XX

{
λIfI(q)[ŝz]σσ ′ + λPIAfP(q)[ŝ+]σσ ′

+ λPIAfP(q)[ŝ−]σσ ′
}|Xqσ 〉〈Xqσ

′|, (41)

where the structural SOC function fI(q) is given by Eq. (17)
and fP(q) is defined as follows

fP(q) = 4i

3
(sin q · R1 + e−i 2π

3 sin q · R2 + e+i 2π
3 sin q · R3).

(42)

1Space inversion interchanges sublattices, [σ̂z]I(X)I(X) = −[σ̂z]XX,
and as well the orientation of connecting d-vector, dI(m),I(n) = −dm,n,
so in total both sign changes compensate in agreement with Eq. (31).

A direct inspection shows that the quasimomentum dependent
spin operator (in units of h̄/2)

Spin(q) = σ̂0

[
fP(q)ŝ+ + fP(q)ŝ− + λI

λPIA
fI(q)ŝz

]
(43)

commutes with HD3d
(q). Since the orbital Hamiltonian is

diagonal in spin space, the eigenstates of Horb(q) + HD3d
(q)

can be chosen as “spin-up” and “spin-down” states with respect
to the momentum dependent quantization axis specified by the
unit vector:

n(q) =
(
Re[fP(q)],−Im[fP(q)], λI

λPIA
fI(q)

)
√

|fP(q)|2 + λ2
I

λ2
PIA

|fI(q)|2
. (44)

Consequently, Spin(q) � σ̂0[n(q) · ŝ]. It is clear that at the
time-invariant momenta, i.e., at � and M points, n(q) is
not well-defined. Hence there is not a well-defined global
map from the full first Brillouin zone (2d torus) into the
2d sphere, q �→ n(q), and thus not a well-defined global
winding number. Expanding fP(q) around the Dirac points,
q = τK + k, keeping the first appearing nonzero terms, we
get

fP(τK + k) � −(ikx + ky)aL, (45)

where aL stands for the lattice constant. Then the effective
D3d -invariant low-energy Hamiltonian around τK valley that
includes both orbital and SOC terms is given by

Heff(τK + k) = h̄vF (τkxσ̂x − kyσ̂y)ŝ0 + τλIσ̂zŝz

+ λPIAσ̂z(kx ŝy − ky ŝx)aL. (46)

Correspondingly, the momentum dependent spin quantization
axis is aligned along the unit vector,

n(τK + k) =
(−kyaL,kxaL,τ λI

λPIA

)
√(

k2
x + k2

y

)
a2

L + λ2
I

λ2
PIA

. (47)

The eigenspectrum of Heff(τK + k)—labeled by quasimo-
mentum k, band index n = ± and spin σ with respect to
n(τK + k)—reads

εn,σ (τK + k) = n

√
λ2

I + (
h̄2v2

F + λ2
PIAa2

L

)(
k2
x + k2

y

)
, (48)

so the states are indeed spin degenerate as we already noticed
in Eq. (30). The effect of λPIA SOC is twofold. First, looking
at the eigenspectrum, λPIA effectively renormalizes the Fermi
velocity vF →

√
v2

F + λ2
PIAa2

L/h̄2, or equivalently in terms of
the orbital nearest-neighbor hopping t →

√
t2 + 4λ2

PIA/3. In
situations when the strength of orbital hopping t substantially
exceeds the strength of λPIA this effect is expected to be
marginal, e.g., in silicene [77] t � 1.1 eV and λPIA � 0.7 meV,
however, in germanene [77], t � 0.9 eV and λPIA � 10.7 meV
and hence the renormalization of the orbital hopping should
be more pronounced. Second, λPIA introduces a nontrivial
spin-orbit field in the k space, n(q) · ŝ, that gives rise to the in
plane component of the spin-expectation value, see Fig. 4.
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FIG. 4. Electronic band structure and spin-orbit field around
the K-point in the presence of D3d invariant SOC Hamiltonian.
(a) Electronic band structure for t = 2.6 eV, λI = 12 μeV, and λPIA =
0.1 eV (black dashed) and λPIA = 1 eV (blue solid), respectively,
showing the effect of renormalization of Fermi velocity. (b) D3d

spin-orbit field around the Dirac point along the circles with radius
10%, 30%, and 50% of KM-distance for t = 2.6 eV, λI = 12 μeV,
and λPIA = 60 μeV. The inset shows a top view of the spin-orbit field.
The circular low-energy symmetry changes to the triangular one and
the z component of the spin-orbit field becomes suppressed when
moving away from the Dirac point.

2. D3h case: λA
I and λB

I couplings

Hexagonal boron nitride is a prototype of a planar hexago-
nal structure that consists of two nonequivalent interpenetrat-
ing triangular lattices—in our particular example, composed
of borons and nitrogens, respectively. Since the horizontal
reflection �

xy

h belongs to D3h, spin-flipping SOC mediated
hoppings are not allowed according to the no-go argument (see
Sec. III B 1). Similarly, the vertical mirror reflection �

yz
v be-

longs to D3h and hence by the assertion (see Sec. III B 3) there
are neither spin-conserving nearest-neighbor SOCs. Therefore
we are left with the intrinsic—next-nearest-neighbor spin-
conserving SOC—terms only. The broken sublattice symmetry
can not further constrain the intrinsic SOCs and hence they
become sublattice dependent, i.e., λA

I �= λB
I . Motivated by the

previous analysis and knowing that they are purely imaginary
we define them via the formulas

iλA
I

3
√

3
= 〈A3↑|Ĥso|A2↑〉, (49)

iλB
I

3
√

3
= 〈B2↓|Ĥso|B3↓〉; (50)

for the atomic sites configuration see Fig. 1. In analogy with
Eq. (12), the D3h invariant SOC Hamiltonian reads

HD3h
= iλA

I

3
√

3

∑
σ

∑
〈〈m,n〉〉

νm,n[ŝz]σσ |Amσ 〉〈Anσ |

+ iλB
I

3
√

3

∑
σ

∑
〈〈m,n〉〉

νm,n[ŝz]σσ |Bmσ 〉〈Bnσ |. (51)

Contrary to the D6h case, the lack of space inversion symmetry
I in D3h—hence two different values of λA

I and λB
I —causes

spin splitting of the band structure, see Fig. 5.
The low-energy Bloch representation of Horb(τK + k) +

HD3h
(τK + k) can be easily deduced from Eq. (25) when

properly substituting λI by its sublattice resolved counterparts
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FIG. 5. Electronic band structure around the K-point in the
presence of D3h invariant SOC Hamiltonian without staggered
potential �: for t = 2.6 eV and λA

I = 12 μeV and (a) λB
I = −λA

I

and (b) λB
I = 3λA

I . Blue and red lines indicate bands with up and
down spin projections, respectively. Label A or B at the given band
indicates which sublattice is dominantly occupied by electronic states
at that band, assuming their momenta are close to the Dirac point.
For comparison, the black dashed lines display the energy dispersion
of the pristine graphene without SOC and the staggered �.

λA
I and λB

I . The result is as follows:

Heff(τK + k) = h̄vF (τkxσ̂x − kyσ̂y)ŝ0 + �σ̂zŝ0

+ τ

2

[
λA

I (σ̂z + σ̂0) + λB
I (σ̂z − σ̂0)

]
ŝz. (52)

Contrary to the previous cases, the broken sublattice symmetry
allows also a new term in the orbital Hamiltonian Horb—the
second term in the first line parameterized by the so called stag-
gered potential �. The two inequivalent sublattices can possess
different on-site energies and their difference equals 2�.
Similarly as in the D6h case, the spin operator σ̂0ŝz commutes
with Heff allowing us to label its eigenstates with the spin up
and spin down entries. The eigenspectrum of Heff(τK + k)—
labeled by the quasimomentum k, conduction/valence band
index n = +/− and spin σ = {↑,↓} = {+1,−1} with respect
to ŝz reads

εn,σ (τK + k) = σ

2

(
λA

I − λB
I

)

+ n

√[
� + σ

2

(
λA

I + λB
I

)]2

+ h̄2v2
F

(
k2
x + k2

y

)
.

(53)

The band structure visualization of the SOC induced splittings
in the presence of staggered � are displayed in Fig. 6. Direct
analysis of Eq. (53) shows that there are two distinct spectral
cases—an insulating (gapped) and a band-inverted (gapless)
one. The criteria to get spectral band-inversion are sign λA

I �=
sign λB

I and |�| < max(|λA
I |,|λB

I |).

3. C6v case: λI, λR, and λPIA couplings

Graphene in an external transverse electric field or graphene
disposed on a substrate is a prototype of the structure with
C6v structural symmetry. In this case the sublattices remain
equivalent—the rotation Rẑ

π/3 that interchanges them belongs
to the point group. However, we lose all the structural
symmetries flipping the orientation of the transverse z-axis.
According to the arguments in Sec. III B, lack of space
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FIG. 6. Electronic band structure around the K-point in the
presence of D3h invariant SOC Hamiltonian and staggered potential �
for t = 2.6 eV and λA

I = 12 μeV and (a) λB
I = −λA

I and � = 10 μeV,
(b) λB

I = 3λA
I and � = 10 μeV, (c) λB

I = −λA
I and � = 40 μeV, and

(d) λB
I = 3λA

I and � = 40 μeV, respectively. For signλA
I �= signλB

I ,
the increased value of the staggered potential drives the band-inverted
structure (a) to the insulating one (c). Blue and red lines indicate bands
with up and down spin projections, respectively, and the dashed lines
display the orbital band structure of pristine graphene. Label A or B
at the given band indicates which sublattice is dominantly occupied
by electronic states at that band, assuming their momenta are close
to the Dirac point.

inversion I and horizontal reflection �
xy

h can not prevent
the system from spin-flip SOC hoppings among nearest- and
next-nearest neighbors. Contrary to that, �

yz
v inhibits the

spin-conserving nearest-neighbor SOCs, but allows intrinsic—
next-nearest-neighbor—SOCs. From this finger counting sym-
metry analysis and the no-go arguments we know that the
C6v invariant SOC Hamiltonian would potentially host three
couplings: λI and λPIA—the terms analogous with the already
discussed D3d case, see Eq. (33) and (34)—and the new
spin-flipping term λR acting between the nearest neighbors.
Conventionally the latter is called Rashba SOC [88] and in
terms of a SOC matrix element it can be defined as follows,

2
3 iλR ≡ 〈A2↑|Ĥso|B3↓〉 (5)= −〈B3↑|Ĥso|A2↓〉 . (54)

In the above definition we have already employed the purely
imaginary character of the coupling. Applying the dihedral
reflection �xz

d to the defining matrix element we obtain,

〈A2↑|Ĥso|B3↓〉 = 〈�xz
d [B3↓]|Ĥso| − �xz

d [A2↑]〉
(3)= −〈B3↓|Ĥso|A2↑〉 = −〈A2↑|Ĥso|B3↓〉,

(55)

what is indeed what we wanted to show. In analogy with
Eq. (39) we can also write a compact formula for any
nearest-neighbor spin-flipping matrix element,

〈Xm σ |Ĥso|X′
n σ ′〉 = [ŝ × dm,n]σσ ′ 2

3 iλR, (56)

where, dm,n = −→
mn /|−→mn | is the unit vector in the horizontal

(xy) plane pointing from lattice site n to nearest-neighbor site
m and σ �= σ ′, and X and X′ refer to the opposite sublattices.

Let us emphasize that contrary to D3d case the point
group C6v lacks space inversion. Therefore the PIA analogs of
Eq. (31) in C6v case reads

〈Aiσ |Ĥso|Ajσ
′〉 (1a)= 〈ei π

2 σRẑ
π [Biσ ]|Ĥso|ei π

2 σ ′Rẑ
π [Bjσ

′]〉
(3)= ei π

2 (σ ′−σ )〈Biσ |Ĥso|Bjσ
′〉 = −〈Biσ |Ĥso|Bjσ

′〉, (57)

and the analog of (39) is as follows:

〈Xm σ |Ĥso|Xn σ ′〉 = [i ŝ × dm,n]σσ ′ 2
3 λPIA. (58)

So the general C6v invariant SOC Hamiltonian based on
π -states, time reversal and translational invariance reads,

HC6v
= iλI

3
√

3

∑
σ

∑
〈〈m,n〉〉

νm,n [ŝz]σσ |Xm σ 〉 〈Xn σ |

+ 2λPIA

3

∑
σ �=σ ′

∑
〈〈m,n〉〉

[i ŝ × dm,n]σσ ′ |Xm σ 〉 〈Xn σ ′|

+ 2iλR

3

∑
σ �=σ ′

∑
〈m,n〉

[ŝ × dm,n]σσ ′ |Xm σ 〉 〈Xn σ ′|. (59)

The first and the last term in HC6v
are the well known SOC

terms from the seminal papers of Kane and Mele [32,88].
However, the staggered potential � added and considered by
them in the orbital part [see Eq. (1) in Ref. [88]] is in fact
not compatible with the C6v symmetry, but rather the C3v

one discussed in the next section. What is more striking is
the presence of the second—λPIA SOC term—which seems to
be generally overseen by the community. Readers can easily
convince themselves that there are not enough symmetries in
C6v that can cancel its appearance in HC6v

. Indeed, to map
the real matrix element 〈A3↑|Ĥso|A2↓〉 ∼ λPIA, Eq. (34), to
“± itself” within the pool of C6v symmetries, one can use
respectively the vertical, �yz

v , and dihedral, �xz
d , reflections—

both flip spins—and accompany them by the rotation Rẑ
π ,

see Figs. 1 and 3. Since Rẑ
π = �

yz
v ◦ �xz

d , the composition
S = Rẑ

π ◦ �xz
d ◦ �

yz
v is the identity in the orbital and also in

the spin space and hence S : |Ai σ 〉 → |Ai σ 〉. So at the end
〈A3↑|Ĥso|A2↓〉 = +〈A3↑|Ĥso|A2↓〉 what gives no constraint
on λPIA.

The first (intrinsic) SOC term in HC6v
, Eq. (59)—as we

have discussed earlier—is not causing SOC splitting of the
electronic band structure. The band SOC splitting is solely due
to the space inversion breaking term—Rashba SOC λR, that is
accompanied by the principal-plane mirror asymmetry term—
PIA SOC λPIA. One can anticipate this fact either directly from
eigenspectrum (discussed below) or from the generally valid
argument of Bychkov and Rashba [87]. They showed that a
SOC induced band spin-splitting would appear in systems with
a single high-symmetry (at least three-fold) axis, in our case
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FIG. 7. Electronic band structure and spin-orbit field around the K-point in the presence of C6v invariant SOC Hamiltonian for fixed
t = 2.6 eV and λI = 12 μeV, and different values of λR and λPIA SOC parameters. In panel (a) λR = 6 μeV < λI (gapped) and λPIA = 0; in
panel (b) λR = 24 μeV > λI (gapless) and λPIA = 0. Panel (c) displays the spin-orbit field n(q) around K-point for the energy band ε−− in
figure (b), circles radii correspond to 10%, 30% and 50% of KM-distance. In panel (d) λR = 24 μeV > λI (gapless) and λPIA = 1 eV, a non-zero
value of λPIA renormalizes the Fermi velocities vF of different spin-split sub-bands εn,n′ (K + k). For � > 0, see Eq. (66), λPIA causes a band
crossing in the conduction (displayed case) or valence band. For comparison, the black dashed lines display the energy dispersion of the pristine
graphene without SOC.

the transverse z-axis, and an invariant vector along this axis, in
our case the transverse electric field or the outward direction
from the surface, what is exactly the case of C6v group and its
subgroups.

In what follows we transform the C6v-invariant SOC Hamil-
tonian into the Bloch form, HC6v

= ∑
q HC6v

(q). The intrinsic
term inHC6v

(q) is identical withHD6h
(q), see Eq. (16), the PIA

term entering HC6v
(q) can be deduced from the corresponding

term in HD3d
(q), Eq. (41), omitting there [σ̂z]XX. For that

reason we write here explicitly only the Rashba part

HR(q) = iλR

∑
σ,σ ′

∑
X,X′

{[σ̂+]XX′(fR(q) [ŝ+]σσ ′

+ fR(−q) [ŝ−]σσ ′) − [σ̂−]XX′(fR(q) [ŝ−]σσ ′

+ fR(−q) [ŝ+]σσ ′)}|Xq σ 〉〈X′
q σ ′|. (60)

The Rashba SOC structural function is given as follows,

fR(q) = 2
3 {1 + e−i 2π

3 e−iq·R3 + ei 2π
3 eiq·R2}, (61)

and the sublattice raising/lowering operators are defined by
σ̂± = 1

2 (σ̂x ± iσ̂y). In our sublattice convention we particulary
have [σ̂+]AB = 1 = [σ̂−]BA and [σ̂+]BA = 0 = [σ̂−]AB . It is
worth to mention that there does not exist a simple SOC field
n(q) · ŝ such that the operator σ̂0 [n(q) · ŝ] commutes with
HC6v

(q).
The low energy expansion fR(τK + k) to the first order in

k can be summarized by,

fR(τK + k) =
{

2 + i 2√
3
kyaL for + K,

− 1√
3
kxaL − i 1√

3
kyaL for − K.

(62)

Since Rashba SOC is off-diagonal in spin and sublattice
spaces, it is common to approximate fR(τK + k) by fR(τK).
Doing so we get the effective C6v-invariant low energy
Hamiltonian,

Heff(τK+k) = h̄vF (τkxσ̂x − kyσ̂y)ŝ0 + τλIσ̂zŝz

+λPIAσ̂0(kx ŝy −ky ŝx)aL−λR(τ σ̂x ŝy +σ̂y ŝx).

(63)

whose eigenspectrum labeled by n = ± and n′ = ± reads,

εn,n′ (τK + k)

= n′λR + n

√
(λI + n′λR)2 + (h̄vF − n′λPIAaL)2

(
k2
x + k2

y

)
.

(64)

Similarly as before, k is the quasi-momentum measured
with respect to the given τK-valley, n = ± stands for the
conduction and valence bands, respectively, and the index
n′ = ± stands for the spin polarization. The spin expectation
value—spin-orbit field n(q)—at the given q and the band
indices n and n′ can be computed from the normalized
eigenstates |q,n,n′〉 via n(q) = 〈q,n,n′|ŝ|q,n,n′〉. The general
formula is too complex and therefore we present only a result
for the low energy eigenstates |τK + k,n,n′〉 of Eq. (63)
around the τK-valley:⎛

⎝〈ŝx〉
〈ŝy〉
〈ŝz〉

⎞
⎠ = αn,n′ · βn′

⎛
⎝−n′ky/k

+n′kx/k

0

⎞
⎠. (65)

Here αn,n′ = sign(τλI + 2n′λR − εn,n′ ), βn′ = sign(h̄vF −
n′λPIAaL), k ≡

√
k2
x + k2

y , and εn,n′ stands as a shorthand for

eigenenergy εn,n′ (τK + k), see Eq. (64). For the visualization
of the band structure and the spin-orbit field texture see Fig. 7.
It is worth to emphasize that at the Dirac points the two eigen-
values out of four become always degenerate. For example,
for λI > λR > 0 we have ε−,−(τK) = ε−,+(τK) = −λI for the
valence bands, and ε+,∓(τK) = λI ∓ 2λR for conduction ones;
the spectrum possesses SOC induced gap with value 2(λI −
λR). For λR > λI > 0 we have ε−,+(τK) = ε+,−(τK) = −λI,
i.e. one valence and one conduction bands touch each other,
and hence the spectral gap closes, the two remaining bands
are starting from energies ε∓,−(τK) = ∓2λR + λI. The case
λI = λR > 0 is critical, the spectrum changes from the gaped
to gapless and we have a triple degeneracy ε−,−(τK) =
ε−,+(τK) = ε+,−(τK) = −λI. Moving away from the Dirac
points the PIA SOC starts to manifest, see Eq. (64). For
the given band index n the two spin split branches n′ = ±
with energies εn,±(τK + k) possess different Fermi velocities
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FIG. 8. Electronic band structure around the K-point in the presence of C3v invariant SOC Hamiltonian for fixed t = 2.6 eV, staggered
potential � = 0 and λA

I = 12 μeV, and different values of SOC parameters. In panel (a) λB
I = −λA

I and λR = 6 μeV, the band inversion from
Fig. 5(a) is lifted due to presence of finite Rashba SOC λR. In panels (b)–(d) λB

I = 3λA
I , gradually growing λR, 6 μeV <

√
2λA

I < 20 μeV,
drives the trivial band structure displayed at Fig. 5(b) from gapped (b) to gapless (c) and gapped again (d). For comparison, the black dashed
lines display the energy dispersion of the pristine graphene without SOC.

vF± =
√

v2
F ∓ λ2

PIAa2
L/h̄2. If �, defined as follows

�=1+2
λI

λR

λPIAaL

h̄vF

+
(

λPIAaL

h̄vF

)2

≈1+2
λI

λR

λPIAaL

h̄vF

, (66)

is greater then zero, the two spin-split bands εn,±(τK + k)
cross along a circle in k-space with a center at τK and radius

kcr =
∣∣∣∣ λR

λPIAaL

√
�

∣∣∣∣ ≈
∣∣∣∣ λR

λPIAaL
+ λI

h̄vF

∣∣∣∣. (67)

It depends on the relative signs of the entering SOC parameters
whether this crossing appears for the valence (n = −1) or
conduction bands (n = +1), see Fig. 7. However, for realistic
graphenelike values of orbital and SOC parameters kcr ≈ 1/aL,
what is far away from the Dirac valleys, and beyond the
applicability of linear approximation.

Let us conclude by comparing the spin-orbit characteristics
of systems with C6v and D3d point group symmetries. Both

of them host principal-plane mirror asymmetry induced SOC
coupling λPIA, but only D3d simultaneously contain space-
inversion symmetry I, see Fig. 3. This seems to be crucial
for answering the question whether PIA SOC causes spin
splitting. It does in the absence of the space inversion—C6v

case, Eq. (64)—however, it does not in D3d case, Eq. (48).

4. C3v case: sublattice resolved λI’s and λPIA’s couplings, and λR

The point group C3v = {E,2Cẑ
3,3�v} is a subgroup of all

three structural groups we have discussed earlier. For example,
compared to the previous C6v case, the point group C3v lacks
all the symmetries interchanging the sublattices. Hence the
translationally invariant SOC Hamiltonian based on π orbitals
with C3v and time reversal symmetries can be derived from the
Hamiltonian HC6v

, Eq. (59), making the next-nearest-neighbor
SOC hoppings iλI and λPIA sublattice dependent, i.e., iλI →
{iλA

I ,iλB
I } and λPIA → {λA

PIA,λB
PIA}:

HC3v
= iλA

I

3
√

3

∑
σ

∑
〈〈m,n〉〉

νm,n[ŝz]σσ |Amσ 〉〈Anσ | + iλB
I

3
√

3

∑
σ

∑
〈〈m,n〉〉

νm,n[ŝz]σσ |Bmσ 〉〈Bnσ |

+ 2λA
PIA

3

∑
σ �=σ ′

∑
〈〈m,n〉〉

[i ŝ × dm,n]σσ ′ |Amσ 〉〈Anσ
′| + 2λB

PIA

3

∑
σ �=σ ′

∑
〈〈m,n〉〉

[i ŝ × dm,n]σσ ′ |Bmσ 〉〈Bnσ
′| (68)

+ 2iλR

3

∑
σ �=σ ′

∑
〈m,n〉

[ŝ × dm,n]σσ ′ |Xmσ 〉〈Xnσ
′|.

This Hamiltonian governs SOC effects in systems with broken sublattice symmetry (an effective staggered potential) and the
fixed transverse direction (substrate or transverse electric field). Examples of such systems are semihydrogenated graphene [34]
(graphone), graphene/TMDC heterostructures [52,53], silicene on the substrate etc. For the visualization, see Fig. 8.

The Bloch form of the Hamiltonian HC3v
, Eq. (68), is straightforward since all the structural functions—fI(q), fP(q),

fR(q)—were already given. Instead of that we fix the order of the Bloch basis {|Aq↑〉, |Aq↓〉, |Bq↑〉, |Bq↓〉} and provide
the low-energy Hamiltonian around q = τK + k, including the orbital term with the staggered potential, Horb(τK + k) =
h̄vF (τkxσ̂x − kyσ̂y)ŝ0 + �σ̂zŝ0, in the matrix form

Heff(τK + k) =

⎛
⎜⎜⎜⎜⎜⎝

τλA
I + � −λA

PIA(ikx + ky)aL h̄vF (τkx + iky) 2iλRδτK,+K

−λA
PIA(−ikx + ky)aL −τλA

I + � 2iλRδτK,−K h̄vF (τkx + iky)

h̄vF (τkx − iky) −2iλRδτK,−K −τλB
I − � −λB

PIA(ikx + ky)aL

−2iλRδτK,+K h̄vF (τkx − iky) −λB
PIA(−ikx + ky)aL τλB

I − �

⎞
⎟⎟⎟⎟⎟⎠. (69)

165415-12



MODEL SPIN-ORBIT COUPLING HAMILTONIANS FOR . . . PHYSICAL REVIEW B 95, 165415 (2017)

IV. SYSTEMS IN ABSENCE OF TRANSLATIONAL
INVARIANCE—IMPURITY INDUCED SOC

HAMILTONIANS

In the forthcoming sections, we discuss effective SOC
Hamiltonians for hexagonal systems in the presence of locally
chemisorbed impurities focusing on light adatoms and simple
admolecules. The case of physisorbed heavy adelements is
discussed in Refs. [40,58]. Since translational invariance is
lost, the invariant expansion and decomposition into the irreps
at high-symmetry points in the Brillouin zone are not appli-
cable. However, the tight-binding-like methodology based on
the local atomic orbitals and their group symmetry properties
allows us to treat this problem very naturally. We assume a
dilute coverage by light adsorbates and hence it is enough
to investigate local SOC effects due to a single chemisorbed
impurity—cluster formation and interference SOC effects
among nearby impurity centers are therefore not discussed.

The electronic structure of an adatom and host (in most
cases graphene) and the underlying molecular dynamics de-
termine mainly three stable binding positions: the hollow, top,
and bridge one. Equivalently, we can distinguish those adatom
configurations through their local point group symmetries: C6v

for the hollow, C3v for the top, and C2v for the bridge one. For
simplicity, we treat the chemisorbed adelement as monovalent,
i.e., it bonds via a single effective orbital that is invariant
under the local point-group symmetries. This monovalency
assumption seems to be crude, though experience shows
that the effective single-orbital description works very well
[34–37]. However, an extension to the multiorbital case is
technically straightforward.

As already stated, we are interested in local effective
SOC Hamiltonians in the presence of an impurity, that are
invariant under the corresponding local point group symme-
tries. Those can be then added to the global translational
invariant Hamiltonians of the host systems as discussed in
the previous sections. Locality for us means hoppings up
to the next-nearest neighbors with respect to the adsorbed
element. In what follows, we will label the adatom by O

and the corresponding atomic orbital by |O〉. Similarly, the
adatom nearest-neighbor sites and orbitals will be denoted by
Yj and |Yj 〉, respectively, and the next-nearest ones by Zj and
|Zj 〉. The number of nearest and next-nearest carbon neighbors
may vary depending on the adsorption configuration—this is
indicated by the subscript j .

From the orbital point of view the minimal tight-binding
description of the adatom that chemisorbs with its nearest
neighbors is given by the Hamiltonian [25,34–37,89] Horb,
which is defined as

Horb = ω
∑

σ

∑
〈O,Yj 〉

|Oσ 〉〈Yjσ | + |Yjσ 〉〈Oσ |

+ ε
∑

σ

|Oσ 〉〈Oσ |. (70)

The first term describes a hybridization ω between the
adelement and its nearest neighbors (summation over 〈O,Yj 〉)
and the second represents the adatom’s on-site energy. For
the remaining orbitals, we assume in the minimal-model
scenario zero on-site contributions. The above orbital Hamil-
tonian is applicable to the hollow, top, and bridge configu-

TABLE II. Orbital tight-binding parameters for different adele-
ments: hydrogen, fluorine, methyl, and copper in top and bridge
position [34–37].

Adelement/model parameters (eV) ω ε

Hydrogen (top) [34] 7.50 0.16
Fluorine (top) [35] 5.50 −2.20
Methyl (top) [36] 7.60 −0.19
Copper (top) [37] 0.81 0.08
Copper (bridge) [37] 0.54 0.02

ration, respectively. The representative values of the orbital
model parameters for different adelements are summarized in
Table II.

A. Adatom in hollow position

Ab initio studies are unveiling that light metallic adatoms
[90] from groups I-III and also heavy transition metals
[40,90,91] favor to adsorb above the centers of graphene
hexagons, i.e., at the hollow positions. The same is true for light
admolecules like NH3, H2O, and NO2 [92]. The situation is
schematically shown in Fig. 9. The central adelement O has six
nearest carbon neighbors Yj and since the out-of plane position
of the adatom fixes the orientation of the perpendicular z axis
the structure is locally described by the point group C6v . We
will focus on a SOC Hamiltonian including the adatom orbital
|O〉 and the π -state carbon orbitals |Yj 〉 of its direct nearest
neighbors only. We first discuss the SOC mediated hoppings
among Y ’s sites and then we account for hoppings between the
adatom orbital |O〉 and its six neighboring orbitals |Yj 〉. Since
the translational symmetry is lost, we avoid using attributes
like intrinsic, Rashba, and so on for the local SOC mediated
hoppings. Instead we use the full taxonomy: spin-conserving
(next) nearest-neighbor hopping �(n)n

c and spin-flipping (next)
nearest-neighbor hopping �

(n)n
f , respectively, reserving for the

local SOC capital �.
The translationally invariant SOC Hamiltonian with C6v

symmetry was discussed in the preceding section, Eq. (59).
Making it local, the global terms—iλI, λPIA, and iλR—can
not diminish. They would be respectively recast into their
local analogs—i�nn

c , �nn
f , and i�n

f . Since all the Y ’s sites
are equivalent, there are not sublattice resolved partners of
those �’s. In addition, the lack of the translational invari-
ance allows now also the purely imaginary spin-conserving
nearest-neighbor hopping i�n

c � 〈Yiσ |Ĥso|Yi+1σ 〉; see no-go
arguments of Sec. III B. So finally, there are four independent

Y4
Y5

Y3

x

Σxz
dO

Y6 Y1

Y2

z

Cẑ
2 , Cẑ

3,6y

Σyz
v

FIG. 9. Adatom bonded in the hollow position: local point group
symmetry C6v—similar to graphene in the transverse external electric
field, atom labeling convention, axes orientations, and C6v group
operations as discussed in the text.
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SOC mediated hoppings among the Y ’s sites, which—in
analogy with the former analysis—can be defined as follows:

i�nn
c = 〈Y5↑|Ĥso|Y3↑〉, (71a)

�nn
f = 〈Y5↑|Ĥso|Y3↓〉, (71b)

i�n
f = 〈Y3↑|Ĥso|Y2↓〉, (71c)

i�n
c = 〈Y2↑|Ĥso|Y3↑〉; (71d)

for the labeling of atomic sites see Fig. 9. Here we no
longer use the numerical prefactors 1/3

√
3 and 2/3, which

were convenient for the low-energy k-space expansions. The
SOC mediated hoppings among the Y sites at different
configurations can be obtained by Eqs. (5), (14), and (56). For
i�n

c , we have in analogy with Eq. (14) the following identity
which holds for any two nearest neighbors Yj and Yk of the
adatom O:

〈Yjσ |Ĥso|Ykσ 〉 = ν̃Yj ,Yk
[ŝz]σσ i�n

c . (72)

Here, ν̃Yj ,Yk
= +1(−1) if the hopping from the site Yk to Yj

via a central adatom O is counter clockwise (clockwise).
Next, we examine SOC mediated hoppings between the

adatom orbital |O〉 and its neighbors |Yj 〉 along the hexagonal
ring. For that it is enough to look at matrix elements
〈O↑|Ĥso|Y1↑〉 and 〈O↑|Ĥso|Y1↓〉, respectively. Assuming
|O〉 is C6v and time reversal invariant—i.e., S|O〉 = |O〉
for any S ∈ C6v and T |O〉 = |O〉 as would be the case of
alkali metals—we can show that the first of the above matrix
elements is identically zero and the second is purely imaginary.
Particulary,

〈O↑|Ĥso|Y1↑〉 (1c)= 〈−i�yz
v [O↓]

∣∣Ĥso

∣∣ − i�yz
v [Y1↓]

〉
(3)= 〈O↓|Ĥso|Y1↓〉 (7)= −〈O↑|Ĥso|Y1↑〉.

(73)

For the spin-flip hopping, we get

〈O↑|Ĥso|Y1↓〉 (1c)= 〈−i�yz
v [O↓]

∣∣Ĥso

∣∣ − i�yz
v [Y1↑]

〉
(3)= 〈O↓|Ĥso|Y1↑〉 (5)= −〈O↑|Ĥso|Y1↓〉, (74)

what allows us to define the SOC term,

i�On
f = 〈O↑|Ĥso|Y1↓〉. (75)

Equivalent couplings can be specified by reflections, rotations
and time reversal, e.g., by applying Rẑ

π
3
, we get

〈O↑|Ĥso|Y2↓〉 = 〈
ei π

6 Rẑ
π
3
[O↑]

∣∣Ĥso

∣∣e−i π
6 Rẑ

π
3
[Y1↓]

〉
(3)= e−i π

3 〈O↑|Ĥso|Y1↓〉 (71)= e−i π
3 i�On

f , (76)

and in general, for any Yj and σ �= σ ′, we have

〈Oσ |Ĥso|Yjσ
′〉 = [ŝ × dO,Yj

]σσ ′ i�On
f , (77)

where the meaning of dO,Yj
is identical as before—a unit

vector in xy plane pointing from site Yj to O. The local
SOC Hamiltonian for the hollow position possesses five SOC
terms—i�n

c , i�nn
c , i�n

f , �nn
f , and i�On

f —and is given as

follows:

Hhol
so = i�n

c

∑
σ

∑
〈Yj ,Yk〉

ν̃Yj ,Yk
[ŝz]σσ |Yjσ 〉〈Ykσ |

+ i�nn
c

∑
σ

∑
〈〈Yj ,Yk〉〉

νYj ,Yk
[ŝz]σσ |Yjσ 〉〈Ykσ |

+ i�n
f

∑
σ �=σ ′

∑
〈Yj ,Yk〉

[ŝ × dYj ,Yk
]σσ ′ |Yjσ 〉〈Ykσ

′|

+ �nn
f

∑
σ �=σ ′

∑
〈〈Yj ,Yk〉〉

[i ŝ × dYj ,Yk
]σσ ′ |Yjσ 〉〈Ykσ

′|

+ i�On
f

∑
σ �=σ ′

∑
〈O,Yj 〉

[ŝ × dO,Yj
]σσ ′ |Oσ 〉〈Yjσ

′| + H.c..

(78)

Again, the summation over the nearest- and next-nearest
neighbors is specified by 〈,〉 and 〈〈,〉〉 brackets, respectively;
for the atomic configurations that enter ν, ν̃, and d see Fig. 9.

B. Adatom in top position

Adsorption in the top position seems to be favorable for light
atoms like hydrogen [34,93], fluorine [35,94,95] and copper
[37,96,97], the heavier gold atom [90,97], and, for example,
also the light methyl admolecule [36]. The model configuration
has a local C3v point group symmetry and is displayed in
Fig. 10—an adatom O binding on the top possesses one nearest
Y neighbor, three second-nearest Z neighbors, and six third-
nearest W neighbors. To compare the global and local C3v

cases, which have different centers of symmetry, we consider
also mutual SOC hoppings implementing the third-nearest W

neighbors.
The local C3v-invariant SOC Hamiltonian accounting for

SOC mediated hoppings among the Y , Z, and W carbon
sites—the SOC hoppings connecting the adatom will be
discussed later—can be naturally derived from the global C3v

Hamiltonian, Eq. (68). In analogy with the global iλA
I , iλB

I ,
λA

PIA, λB
PIA, and iλR couplings, we correspondingly have

i�YW
c = 〈Y↑|Ĥso|W3↑〉, (79a)

i�ZZ
c = 〈Z3↑|Ĥso|Z2↑〉, (79b)

�YW
f = 〈Y↑|Ĥso|W3↓〉, (79c)

x

y O

Y

Z1

Z3
Z2

W1

W2

W6

W3

W5
W4

Cẑ
3

Σyz
v

FIG. 10. Adatom bonded in the top position with a center of
symmetry on the bonding axis: the local point group symmetry C3v ,
atom labeling convention, axes orientations, and C3v group operations
as discussed in the main text.
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�ZZ
f = 〈Z3↑|Ĥso|Z2↓〉, (79d)

i�YZ
f = 〈Y↑|Ĥso|Z1↓〉. (79e)

Here, again the subscripts “c” and “f” stand for spin-
conserving and spin-flipping hoppings, respectively, and the
superscripts made from Y , Z, and W encode particular nearest-
or next-nearest-neighbor hoppings among the Y , Z, and W

carbon sites. For atomic configuration and labeling see Fig. 10.
Using Eq. (9), we see that i�YW

c and i�ZZ
c —local analogs

of iλA
I and iλB

I —are purely imaginary. Similarly, substituting
in Eq. (35) A2 by Z2 and A3 by Z3 unveils that �ZZ

f —a local
analog of λB

PIA—is purely real. Readapting the argumentation
used in Eq. (55) to the situation displayed at Fig. 10, we get

〈Y↑|Ĥso|Z1↓〉 = 〈−i�yz
v [Y↓]

∣∣Ĥso

∣∣ − i�yz
v [Z1↑]

〉
(3)= 〈Y↓|Ĥso|Z1↑〉 (5)= −〈Y↑|Ĥso|Z1↓〉, (80)

what confirms that i�YZ
f —a local analog of iλR—is purely

imaginary.
What differs from the global C3v case is the spin-flip

coupling �YW
f —an analog of λA

PIA. Since now the sites Y

and W are not interchangeable we cannot use the argument
analogous to Eq. (35) and hence �YW

f is in general complex.
This slightly affects the former phase-factor formula, Eq. (58),
which now read

〈Yσ |Ĥso|Wjσ
′〉 = [i ŝ × dY,Wj

]σσ ′
[
Re

(
�YW

f

)
+ iνY,Wj

Im
(
�YW

f

)]
. (81)

The meaning of dY,Wj
and νY,Wj

stays the same as before. The
spin-orbit mediated hoppings among the carbon atoms in the
vicinity of the impurity site O are now recapped.

In what follows, we discuss the SOC mediated hoppings
〈Oσ |Ĥso|Yσ ′〉 and 〈Oσ |Ĥso|Ziσ

′〉 that couple directly to the
adatom orbital |O〉—assuming it is C3v and time reversal
invariant. Repeating the discussion at the end of previous
section, see Eqs. (73) and (74), we immediately get

i�OZ
c = 〈O↑|Ĥso|Z1↑〉 ≡ 0, (82)

i�OZ
f = 〈O↑|Ĥso|Z1↓〉 �= 0. (83)

To show that 〈O↑|Ĥso|Y↑〉 and 〈O↑|Ĥso|Y↓〉 are zero one can
proceed as follows: for the first term, we have

〈O↑|Ĥso|Y↑〉 (7)= −〈O↓|Ĥso|Y↓〉
(1c)= −〈−i�yz

v [O↑]
∣∣Ĥso

∣∣ − i�yz
v [Y↑]

〉
(3)= −〈O↑|Ĥso|Y↑〉, (84)

which implies that 〈O↑|Ĥso|Y↑〉 ≡ 0. To show that
〈O↑|Ĥso|Y↓〉 is zero, we apply rotations Rẑ

± 2π
3

∈ C3v , then

〈O↑|Ĥso|Y↓〉 (1a)= 〈
e±i π

3 Rẑ

± 2π
3

[O↑]
∣∣Ĥso

∣∣e∓i π
3 Rẑ

± 2π
3

[Y↓]
〉

(3)= e∓i 2π
3 〈O↑|Ĥso|Y↓〉. (85)

The above relation can be fulfilled only by zero, therefore
〈O↑|Ĥso|Y↓〉 = 0.

Summarizing Eqs. (79) and (83), we have in total six spin-
orbit couplings—four purely imaginary i�YW

c , i�ZZ
c , i�YZ

f ,
and i�OZ

f , one purely real �ZZ
f , and one in general complex

�YW
f . The local SOC Hamiltonian with C3v symmetry that

corresponds to the impurity in the top position reads

Htop
so = i�YW

c

∑
σ

∑
〈〈Y,Wj 〉〉

νY,Wj
[ŝz]σσ |Yσ 〉〈Wjσ | + H.c.

+ i�ZZ
c

∑
σ

∑
〈〈Zj ,Zk〉〉

νZj ,Zk
[ŝz]σσ |Zjσ 〉〈Zkσ |

+
∑
σ �=σ ′

∑
〈〈Y,Wj 〉〉

[i ŝ × dY,Wj
]σσ ′

[
Re

(
�YW

f

)

+ iνY,Wj
Im

(
�YW

f

)]|Yσ 〉〈Wjσ
′| + H.c.

+ �ZZ
f

∑
σ �=σ ′

∑
〈〈Zj ,Zk〉〉

[i ŝ × dZj ,Zk
]σσ ′ |Zjσ 〉〈Zkσ

′|

+ i�YZ
f

∑
σ �=σ ′

∑
〈Y,Zj 〉

[ŝ × dY,Zj
]σσ ′ |Yσ 〉〈Zjσ

′| + H.c.

+ i�OZ
f

∑
σ �=σ ′

∑
〈O,Zj 〉

[ŝ × dO,Zj
]σσ ′ |Oσ 〉〈Zjσ

′| + H.c..

(86)

C. Adatom in bridge position

Oxygen and nitrogen are theoretically predicted to bond
in the bridge position [94]. However, also for impurities in
the top position like copper [37,96,97] and gold [90,97] the
energy difference between the top and bridge configurations is
relatively small and therefore their bridge realization becomes
quite probable. Similarly, the light admolecules like CO, NO
and NO2 prefer to adsorb [92] equally likely to the hollow
and bridge positions. For those reasons, we discuss in this
section an effective SOC Hamiltonian that works for light
adelements in the bridge configuration. Particulary, by bridge
we understand a configuration when the adatom O splits
a nearest-neighbor bond between two—Y1 and Y2—carbon
sites, see Fig. 11. Such a structure possesses C2v point group
symmetry, which comprises two nonequivalent reflection
planes �xz

d and �
yz
v , and C2 rotation around the axis of their

intersection; see Fig. 11. As the order of this group is lower
compared to the above cases we expect more SOC mediated
matrix elements which in general would be complex-valued.
Even within the approximation that keeps only nearest and
next-nearest-neighbor hoppings among O, Y , and Z sites, the

Y1Y2 Z1

Z2

Z4

Z3

O
x

y

Σxz
d

Cẑ
2

Σyz
v

FIG. 11. Adatom bonded in the bridge position with a center of
symmetry on the vertical axis passing the adatom: the local point
group symmetry C2v , atom labeling convention, axes orientations,
and C2v group operations as discussed in the main text.
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effective SOC Hamiltonian contains eight hoppings. Three of
them are spin-conserving (and hence purely imaginary) and
the remaining five are spin-flipping,

i�YZ
c = 〈Y2↑|Ĥso|Z4↑〉, (87a)

i�OZ
c = 〈O↑|Ĥso|Z4↑〉, (87b)

i�ZZ
c = 〈Z1↑|Ĥso|Z2↑〉, (87c)

i�OY
f = 〈O↑|Ĥso|Y1↓〉, (87d)

i�YY
f = 〈Y1↑|Ĥso|Y2↓〉, (87e)

Re
(
�YZ

f

) + i Im
(
�YZ

f

) = 〈Y2↑|Ĥso|Z4↓〉, (87f)

Re
(
�OZ

f

) + i Im
(
�OZ

f

) = 〈O↑|Ĥso|Z4↓〉, (87g)

�ZZ
f = 〈Z2↑|Ĥso|Z1↓〉. (87h)

Let us shortly comment on three of the above emerging
couplings—Eqs. (87a), (87f), and (87g). The absence of
the translational invariance allows spin-conserving hopping
i�YZ

c between the nearest-neighbor sites Y and Z—similar
coupling was encountered in the local C6v case for the
adatom in hollow position. For the same reason, there are
the spin-flip hoppings �YZ

f —among the nearest neighbors—
and �OZ

f —among the next-nearest neighbors and both are
complex-valued in general.

Altogether, we can write the local Hamiltonian for the local
C2v symmetric structure in a closed form, with the help of the
definitions that we introduced above, as follows:

Hbrid
so = i�YZ

c

∑
σ

∑
〈Yj ,Zk〉

νO,Zk
[ŝz]σσ |Yjσ 〉〈Zkσ | + H.c.

+ i�OZ
c

∑
σ

∑
〈〈O,Zk〉〉

νO,Zk
[ŝz]σσ |Oσ 〉〈Zkσ | + H.c.

+ i�ZZ
c

∑
σ

∑
〈〈Zj ,Zk〉〉

νZj ,Zk
[ŝz]σσ |Zjσ 〉〈Zkσ |

+ i�OY
f

∑
σ �=σ ′

∑
〈O,Yj 〉

[
ŝ × dO,Yj

]
σσ ′ |Oσ 〉〈Yjσ

′| + H.c.

+ i�YY
f

∑
σ �=σ ′

[
ŝ × dY1,Y2

]
σσ ′ |Y1σ 〉〈Y2σ

′| + H.c.

+
∑
σ �=σ ′

∑
〈Yj ,Zk〉

[
νO,Zk

[iŝy]σσ ′ Re
(
�YZ

f

) + i Im
(
�YZ

f

)]

× sgn
[
dO,Yj

· dY1,Y2

]|Yjσ 〉〈Zkσ
′| + H.c.

+
∑
σ �=σ ′

∑
〈〈O,Zj 〉〉

[
νO,Zj

[iŝy]σσ ′ Re
(
�OZ

f

) + i Im
(
�OZ

f

)]

× sgn
[
dO,Zj

· dY1,Y2

]|Oσ 〉〈Zjσ
′| + H.c.

+ �ZZ
f

∑
σ �=σ ′

∑
〈〈Zj ,Zk〉〉

[
i ŝ × dZj ,Zk

]
σσ ′ |Zjσ 〉〈Zkσ

′|.

(88)

In the first and sixth lines, in which we are summing over the
nearest neighbors 〈Yj ,Zk〉, the symbol νO,Zk

has the following
meaning; it equals 1 (−1) if the path Zk → Yj after extension

to the next-nearest-neighbor path Zk → Yj → O becomes
counter clockwise (clockwise).

V. FINAL REMARKS AND CONCLUSION

As already noted, the lower the symmetry, the more SOC
parameters enter the effective model Hamiltonians. Before
applying a particular model to spin-transport studies, two
issues should be resolved. First, figure out the realistic
strengths of SOC parameters and, second, reduce the number
of the parameters as much as possible. For that, one should
employ first-principles calculations together with physical
intuition and common sense.

To describe our strategy, we start with ab initio calculations
considering a large graphene supercell with one adelement
bonded in a given configuration. The larger the supercell, the
weaker are the interactions among the periodic images, and
the more representative the dilute coverage limit is realized.
Analyzing local DOS and its atomic orbital decomposition, we
directly test whether the system can be properly described by
the adequate Hamiltonian model, i.e., carbon π orbitals and an
effective adatom level. In all the cases yet analyzed—hydrogen
[34], fluorine [35], CH3 group [36], and copper [37] (both
in top and bridge configurations)—the effective models with
effective adatom orbitals work perfectly. For example, for
fluorine [35] the remaining 2p orbitals contribute to electronic
bands far below the Fermi level, and hence the low-energy
physics is dominated by 2pz orbital. Fitting the spin-orbit
induced band splittings would give us the strengths of the
sought SOC parameters. The aim is to find a minimal set
of best-fitting parameters to keep the model simple and
simultaneously capture the main features in SOC induced
band splittings. It might not be necessary to take into account
all the symmetry-allowed coupling parameters. For that some
intuition, experience and an input from the DFT are helpful,
e.g., the possibility to turn off in first-principles calculations
SOC interaction on the adatom, or shift away the Fermi level
Bloch states composed from the (un)wanted atomic orbitals
[98]. All that helps to trace the importance and interpretation
of the effective spin-orbit couplings. Table III summarizes
the relevant spin-orbit couplings including their strengths as
taken from Refs. [34–37]. The general tendency is obvious, the
heavier the adelement, the stronger are the local SOC param-
eters. Comparing their strengths with respect to the graphene
intrinsic SOC, we see that hydrogen and methyl enhance local
SOC by two orders of magnitude, fluorine by three orders, and
copper enhances local SOC by four orders of magnitude.

There have already been studies constructing model SOC
Hamiltonians induced by adatoms in graphene [40,58]. Our
approach to the Hamiltonian building is different from those,
so it is not surprising that the forms of the Hamiltonians
also differ. The analysis of Weeks et al. [40] focuses on
heavy adatoms adsorbed in hollow positions interacting with
graphene through three outer p-shell orbitals of the adatom.
The fine structure of these orbitals, due to the intra-atomic
spin-orbit coupling, gives rise, via hybridization with carbon
orbitals, to the induced SOC of the π band of graphene. The
procedure to integrate out (downfold) the adatom orbitals
starts from a fully functionalized graphene with global C6v

symmetry—adatoms are occupying each hexagon—but with
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TABLE III. Summary of local SOC strengths for different adelements: hydrogen, fluorine, methyl, and copper [34–37]. Let us emphasize
that compared to the referred manuscripts and notation used therein—�A

I , �B
I , �B

PIA, and �R—we renamed and also properly rescaled their
strengths to match the present convention. A translation between the new and old notations is as follows: �YW

c = �A
I /(3

√
3), �ZZ

c = �B
I /(3

√
3),

�ZZ
f = 2�B

PIA/3, and �YZ
f = 2�R/3.

Adelement/SOC (meV) �YW
c �ZZ

c �ZZ
f �YZ

f �YY
f �YZ

f �OZ
f

Hydrogen (top) [34] −0.04 – −0.51 0.22 – – –
Fluorine (top) [35] – 0.64 4.87 7.47 – – –
Methyl (top) [36] −0.15 0.03 −0.46 0.68 – – –
Copper (top) [37] – 1.73 31.6 20.1 – – –
Copper (bridge) [37] – – – – 41.0 −7.5 7.4+i8.4

no direct coupling between the orbitals on neighboring
adatoms. In contrast, our approach treats a single adatom,
so the system has only a local symmetry. Our Hamiltonian
for the hollow position thus differs from the one obtained
in Ref. [40]. In the work of Pachoud et al. [58], all three
relevant adatom configurations are considered, and the choice
of the adatom orbitals is not restricted. However, the form of
the Hamiltonians is limited to the spatial delta-function (at
the adatom site) multiplied by an 8 × 8 matrix to cover the
pseudospin, valley, and spin spaces. The local structure is thus
not preserved, which is not a problem in the continuum limit.
Our models instead keep all the local symmetries that adatoms
induce (or, rather, still preserve), by assigning pseudospin,
spin, and valley-dependent hopping elements in the close
neighborhood of the adatom site.

In summary, we have provided in full detail a derivation of
effective SOC Hamiltonians for hexagonal systems employing
group theory analysis. Our results cover several experimentally
relevant scenarios: (i) global SOC effects caused by the prox-
imity of substrates, such as transition metal dichalcogenides,

or metallic interfaces; and (ii) local SOC effects due to dilute
adatom or admolecule functionalization with emphasis on
hollow, top, and bridge adsorption positions. For both cases
(i) and (ii), we have explicitly shown which effective SOC
matrix elements are suppressed by the presence or absence
of particular symmetries and classified the SOC mediated
hoppings by the subgroups of the full hexagonal point group. In
general, our construction-oriented approach is easily transfer-
able to systems with other symmetries and allows one to derive
quickly a particular effective SOC Hamiltonian respecting the
given symmetries. Such effective SOC Hamiltonians serve
as useful ingredients for model calculations that investigate
transport, (quantum) spin Hall effect, spin relaxation and
dephasing, WL/WAL measurements, etc.
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