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We investigate charge relaxation in quantum wires of spinless disordered fermions (t-V model). Our
observable is the time-dependent density propagator Πεðx; tÞ, calculated in windows of different energy
density ε of the many-body Hamiltonian and at different disorder strengths W, not exceeding the critical
value Wc. The width ΔxεðtÞ of Πεðx; tÞ exhibits a behavior d lnΔxεðtÞ=d ln t ¼ βεðtÞ, where the exponent
function βεðtÞ≲ 1=2 is seen to depend strongly on L at all investigated parameter combinations. (i) We
confirm the existence of a region in phase space that exhibits subdiffusive dynamics in the sense that
βεðtÞ < 1=2 in a large window of times. However, subdiffusion might possibly be transient, only, finally
giving way to a conventional diffusive behavior with βε ¼ 1=2. (ii) We cannot confirm the existence of
many-body mobility edges even in regions of the phase diagram that have been reported to be deep in the
delocalized phase. (iii) (Transient) subdiffusion 0 < βεðtÞ≲ 1=2 coexists with an enhanced probability for
returning to the origin Πεð0; tÞ, decaying much slower than 1=ΔxεðtÞ. Correspondingly, the spatial decay of
Πεðx; tÞ is far from Gaussian, being exponential or even slower. On a phenomenological level, our findings
are broadly consistent with the effects of strong disorder and (fractal) Griffiths regions.
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Introduction.—The discovery of many-body localization
(MBL) has attracted considerable attention over recent
years and gave rise to a new research field [1–5]. An
analytical proof of MBL has been given with minimal
assumptions in spin chains with random local interactions
[6]. Such MBL phases are characterized by the absence of
transport and thermalization [7–10], which has been
attributed to a set of quasilocal integrals of motion
[11–14]. Anticipating that these integrals of motion adia-
batically connect to their noninteracting analogues, it is
perhaps natural to assume that there should be an adiabatic
connection between localized eigenstates as well [6,15].
The MBL phase is distinguished from another phase that

exhibits a degree of delocalization and which therefore is
believed to be (thermal) ergodic [7,16,17]. The correspond-
ing relaxation dynamics may not, however, reflect the
simple diffusive behavior familiar from conventional met-
als. Instead, a subdiffusive scaling of the (spin-) density
correlations has been reported [18–23] (though some
studies concluded differently [24,25]). It was understood
to indicate Griffiths effects [19,26–28] near the MBL
transition. Interestingly, it has been proposed that different
behavior within these phases may also exist that exhibit
diffusive relaxation of one conserved quantity (charge,
energy, or spin) and a subdiffusive behavior in another
[23,29]. Clearly, a coexistence of localized and delocalized
behavior would be incompatible with generic expectations
based on conventional mode-coupling ideas [30].
The phase transition between the MBL phase and the

delocalized phase is not yet well understood. For instance,

it has been shown that at very large values of the disorderW
all eigenstates of the many-body Hamiltonian ĤðWÞ are
localized [7,9,31–33], while with disorder dropping below
a critical value W < Wc a transition could occur below
which ĤðWÞ supports a delocalized spectral density
window [9,32,34–38]; see Fig. 1. At present, the width
of this window is a matter of controversy. Recent numerical
works on the random-field Heisenberg chain [9], the
disordered Ising chain [32], and recent work on the
Aubry-André model [39] were interpreted as giving evi-
dence for the existence of a many-body mobility edge

FIG. 1. A qualitative phase diagram of different dynamical
regions in the disorder energy-density plane of the t-V model. At
disorder strength W below the many-body localization transition
Wc, we propose a transient subdiffusive, weakly ergodic dynami-
cal regime with an anomalously slow decay of the return
probability.
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(MBME) that separates a band of delocalized states from
localized band edges. Later authors have argued, however,
that results can be significantly contaminated with finite
size effects unless carefully extrapolated. For instance,
the phase boundary as found in Ref. [9] should be shifted
to large disorder values as argued in Ref. [40]. In fact, the
very existence of MBME was called into question by
De Roeck et al., who suggested that the presence of a
delocalized spectral window should imply the possibility
for the formation of hot bubbles of electronic liquid that
destabilize localizing processes in all spectral density
windows [41].
In this work, we investigate the charge propagation

focusing on the delocalized region near the MBL transition.
A common description of relaxation dynamics employs
the density propagator Πðx; tÞ that takes a simple Gaussian
shape for diffusive systems: Πðx; tÞ ¼ e−

1
2
½x=ΔxðtÞ�2=ffiffiffiffiffiffi

2π
p

ΔxðtÞ;ΔxðtÞ ¼ ffiffiffiffiffiffi
Dt

p
, where D is the diffusion con-

stant. Aiming at mobility edges, we actually study a variant
of it, Πεðx; tÞ, that resolves the contribution to Πðx; tÞ
stemming from many-body states with energy densities ε.
We thus get access to the length scales relevant for the
crossover physics, which allow us to carefully monitor
finite size and finite time effects. In this way we go beyond
previous studies.
We outline our results. (i) Within our observation

window, Πεðx; tÞ exhibits a very pronounced non-
Gaussian spatial shape that decays in a (simple) exponential
fashion or even slower. It is tempting to associate this
finding with the stretched exponential behavior of corre-
lations that has recently been proposed to exist due to
fractal Griffiths regions in the localized phase near the
phase boundary [42]. (ii) Because of this peculiar shape of
Πεðx; tÞ, the time dependence of its width ΔxεðtÞ is very
sensitive to the system size, L. In order to highlight the
effects of finite size in the time evolution, we investigate
the exponent scaling function

βεðtÞ≡ d logΔxεðtÞ
d log t

; ð1Þ

which at long times quantifies the rate of growth of
ΔxεðtÞ ∝ tβεðt¼∞Þ, and for diffusive systems βε ¼ 1=2.
In the ergodic phase at intermediate times βεðtÞ grows in
a subdiffusive manner with values βεðtÞ < 1=2 consistent
with the earlier reports [18,19,21–23]. However with
increasing time, βεðtÞ becomes progressively L dependent.
At these longer times a similar tendency of growing βεðtÞ
(with L) is observed in all spectral windows—at low,
intermediate, and high energy density. This strong growths
prevents us from confirming the existence of genuine
subdiffusion that would exhibit a time-independent expo-
nent βε < 1=2. We detect a slow growth of βεðtÞ even in
those regions of the phase diagram that have been identified
previously as localized. Thus, the (delocalized) phase is

larger than reported previously, which is associated with a
very slow collective dynamics [43].
(iii) For the probability Πεð0; tÞ to return to the origin

one might have suspected Πεð0; tÞ ∝ 1=ΔxεðtÞ, suggesting
Πεð0; tÞ ∝ t−βεðt¼∞Þ. Instead, our data indicate that the
subdiffusive transients coexist with an elevated return
probability consistent with (possibly transient) weakly
ergodic subphases with fractal phenomenology, Πεð0; tÞ ∝
ΔxεðtÞ−αε and 0 ≤ αε < 1.
Model and method.—Like several works before

[9,17,18,34,35,44–46], we consider the t-V model

Ĥ ¼ −
th
2

XL=2−2

x¼−L=2
ĉ†xĉxþ1 þ H:c:þ

XL=2−1

x¼−L=2
μx

�

n̂x −
1

2

�

þ V
XL=2−2

x¼−L=2

�

n̂x −
1

2

��

n̂xþ1 −
1

2

�

; ð2Þ

where the summations are along an L-site wire,
x ¼ 1;…; L, with hopping (th ¼ 1) and interaction (V)
between nearest neighbors, only; the uncorrelated on-site
energies μx are being drawn from a box distribution
½−W;W�. We work at a half filling and with open boundary
conditions. For V ¼ 1.0, the MBL transition is believed to
be at Wc ≈ 3.5 [9]. The specific correlator Πεðx; tÞ that we
are interested in has not yet been investigated; it is defined
via its Fourier space representation [47]:

Πεðq; tÞ ¼ Φεðq; tÞ=Φεðq; t ¼ 0þÞ; ð3Þ

where the disorder average is denoted by the overline.
Φεðq; tÞ is the Fourier transform of the energy-projected
density relaxation functions

Φεðx; tÞ ¼ ½hn̂xðtÞn̂0iε − hn̂xiεhn̂0iε�ΘðtÞ: ð4Þ

The projection into a narrow spectral range near ε is
facilitated by taking the expectation value of an operator
hÔiε ¼ TrÔ ρ̂ðεÞ with

ρ̂ðεÞ ¼ N −1
Z

εþΔε=2

ε−Δε=2
dε0

XN

γ

jγiδðεγ − ε0Þhγj; ð5Þ

where jγi denotes the eigenstates of the Hamiltonian (2)
with energy-density εγ¼ðEγ−EminÞ=ðEmax−EminÞ, where
Eγ are the many-body energies and Emax;min denote the
extremal values of the energy spectrum. N represents the
number of states in the energy density window Δε, and
it is exponentially large inL. By definition,Πεðq ¼ 0; tÞ ¼ 1
and for a conventional diffusive system we have a
Gaussian shape, Πεðq; tÞ ¼ expf−½ΔxεðtÞq�2gΘðtÞ, with
ΔxεðtÞ ¼

ffiffiffiffiffiffiffi
Dεt

p
. For the time evolution, Eq. (4), we employ

a standard Chebyshev-polynomial propagation [48];
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traces over operators are performed stochastically as
averages over random state vectors. The approach owes
its efficiency to the fact that disorder averages converge
very rapidly with the number of random states. Details of
the calculations and performance tests we relegate to the
Supplemental Material [49].
Results.—We begin the analysis of the propagator

Πεðx; tÞ with its second moment in real space,

ΔxεðtÞ2 ¼ hx2iε − hxi2ε ; hxniε ¼
XL=2−1

x¼−L=2
xnΠεðx; tÞ:

Figures 2(a1)–2(a3) show the ΔxεðtÞ at W ¼ 2.5 for both
the interacting (V ¼ 1, dashed line) and noninteracting
(V ¼ 0, solid line) case for several values of energy
densities (ε ¼ 0.1, 0.5, 0.875). For these parameters
MBMEs have been reported near ε ≈ 0.2 and near 0.8
with a delocalized regime in between [9].
Figures 2(a1)–2(a3) carry several messages. (i) Finite

size effects are very strong: the system size L exceeds the

noninteracting standard deviation Δxð0Þε (saturation value in

time), by a factor of 10–15 (≈L=Δxð0Þε ), but nevertheless the
growth of ΔxεðtÞ changes with L by as much as 30%.
(ii) The interaction mediated delocalization process is very
slow. Even after a time that typically corresponds to 0.1%
of the inverse hopping t−1h the width of the wave packet has

grown by less than a factor of 2 as compared to Δxð0Þε .
(iii) Depending on the spectral window, the transient
dynamics is quite different. In particular, the spreading
of Πεðx; tÞ is enhanced by the interactions at low energy
densities while it is hindered at high densities as compared
to the noninteracting reference case.

Flowing exponent.—βεðtÞ.—To quantify the time
dependence of ΔxεðtÞ, we study the βεðtÞ as defined in
Eq. (1). Figures 2(b1)–2(b3) show the βε function as a

function of ΔxεðtÞ=Δxð0Þε . It very clearly highlights the fact
that beyond a certain transient time τε (set by the kink
position) a slow dynamics sets in which reveals itself by a
high degree of sensitivity to the system size L. Moreover, as
is seen in Figs. 2(b1)–2(b3) all traces of βεðtÞ experience a
kink with a position evolving with the energy density ε that

does not collapse after rescaling of the abscissa with Δxð0Þε .
While the range of L values available to us is not

sufficient to study the asymptotic limit (in L and t), our data
nevertheless give a nonvanishing lower bound for βεðtÞ
and, hence, indicate delocalization, at least near the band
center. With this caveat, we notice that the qualitative
behavior seen in all energy ranges is the same: With L
increasing, there is a pronounced trend for βεðtÞ to grow (at
fixed long time), see Figs. 2(b1)–2(b3) and inset. Strictly
speaking, we thus find no evidence for an upper bound to βε
below the diffusion limit 1=2, i.e., for genuine subdiffusion.
Moreover, the growth (with L) being similar in all energy
windows, we also find no evidence for the existence of a
many-body mobility edge at W ¼ 2.5. The picture is
similar for other choices of W (≲3.0) [49]. At larger
disorder and close to the transition, W ≈Wc, the situation
is numerically less conclusive due to residual statistical
noise. To account for this in Fig. 1, this region of the phase
diagram has been left uncolored (white).
Return probability.—Πεðx ¼ 0; tÞ.—In one-dimensional

diffusive systems the return probability associated with
a spreading wave packet relates to the variance Πεð0; tÞ∼
1=ΔxεðtÞ, merely stating that the wave packet is internally

FIG. 2. (a1)–(a3) The time evolution of ΔxεðtÞ at W ¼ 2.5 and V ¼ 1 near the lower band edge (upper row, ε ¼ 0.1) in the center
region (center row, 0.5) and near the upper band edge (lower row, 0.875) for system sizes L ¼ 16, 20, 24 (dashed traces blue, red, green).
Also shown are noninteracting reference traces for L ¼ 16, 20 (V ¼ 0, solid lines). (b1)–(b3) Replotting (a1)–(a3) as d lnΔxεðtÞ=d ln t
over ΔxεðtÞ=Δxð0Þε to highlight finite-size effects. Inset shows the enlargement of the (b3) data for better visibility of trends, including
system sizes L ¼ 16, 18, 20, 22, 24 (bottom to top). (c1)–(c3) Probability to return to the origin. The legends in this column also give the
three system sizes in units of the bare localization length. (In all calculations we fix the width of the energy window Δε ¼ 0.1 [49]).
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homogeneous. The data displayed in Figs. 2(c1)–2(c3) do
not adhere to this fundamental idea: Πεð0; tÞ is close to
stationary and therefore does not follow the 1=Δxε law,
most clearly seen in the low and high energy density regimes.
This observation finds a natural explanation adopting the
idea of strong disorder induced fractality. Indeed, it is well
known that in the presence of (multi-)fractality the return
probability can be enhanced, Πεð0; tÞ ∝ Δx−αεε , with 0 ≤
αε < 1 [50]. A very slowly decaying return probability can
therefore also indicate a fractal-type behavior, i.e., αε being
significantly smaller than unity. Unfortunately, it is very
challenging to extract αε reliably from our data, because our

observation window for ΔxεðtÞ=Δxð0Þε does not exceed a
factor 2–3.
Density propagator.—Πεðx; tÞ.—To understand the tran-

sient subdiffusive behavior further, here we look at the time
dependence of the full distribution function Πεðx; tÞ both in
real and q space. Figures 3(a1)–3(a3) displays a density-
propagator Πεðx; tÞ that is far from Gaussian. To highlight
its shape (curvature at small q, large x) we rewrite Πεðq; tÞ
employing an (inverse) memory kernel κεðq; tÞ,

Πεðq; tÞ ¼ ½1þ q2=κεðq; tÞ�−1; ð6Þ
where −∂2

qΠεðq; tÞjq¼0 ¼ 2=κεð0; tÞ ∼ ΔxεðtÞ2. A numeri-
cal example can be read off from Figs. 3(b) and 3(c). It
displays κε at three different energy densities at intermedi-
ate disorder strength W ¼ 2.5. Notice that the noninteract-

ing kernel, κð0Þε ðq; tÞ, is rapidly growing with wave number
q [see Figs. 3(b1)–3(b3)]. This behavior reflects the
presence of a short-distance cutoff a, such as the lattice
constant, terminating the long-distance, exponential tail.

It exists in a similar way also in the interacting kernels
κεðq; tÞ; see Figs. 3(c), 3(d) [51] [52].
Conclusions.—In this work, we have considered the full

space-time structure of the spectrally resolved density
correlator, Πεðx; tÞ, allowing us to monitor finite size
effects. (i) The processes that are characteristic of delocal-
ized behavior are very slow. Even at observation times of
order 103 (in units of inverse hopping t−1h ), Πεðx; tÞ has

spread over little more than the noninteracting length Δxð0Þε .

(ii) Although the system size exceeds Δxð0Þε by a large
factor, finite size effects are substantial, reflecting a spread-
ing of Πεðx; tÞ that is far from Gaussian, possibly
(stretched) exponential in the tails.
Because of strong finite-size effects, the exponents βεðtÞ

that describe the spreading dynamics of the variance of the
density propagator d lnΔxεðtÞ=d ln t ¼ βεðtÞ are hard to
quantify reliably. We are able to provide a lower bound
for βεðtÞ suggesting the absence of many-body mobility
gaps in the t-V model at values of W not too close to the
transition region—apparently consistent with recent ana-
lytical arguments [41]. Since we cannot provide an upper
bound for βεðtÞ < 1=2, we cannot confirm the existence of
genuine subdiffusive behavior in the asymptotic limit; a
logically possible alternative is a transient behavior with an
effectively growing exponent βεðtÞ that gradually con-
verges to the diffusion limit 1=2. Together with transient
subdiffusive behavior, we observe a drastically enhanced
return probability, which could be interpreted as Πεð0; tÞ ∝
Δx−αεε in accord with the assumptions of fractality induced
by strong-disorder physics.
Based on these findings we propose the following

scenario: There is a time scale τε beyond which a slow

FIG. 3. (a1)–(a3) The density propagator Πεðx; tÞ in the delocalized regime (ε ¼ 0.1, 0.5, 0.875, W ¼ 2.5, L ¼ 24) at two times
t ¼ 40, 100. The log-normal plot illustrates non-Gaussian shape. Solid line in (a3) shows a stretched exponential fit with an exponent
≈0.7. (b1)–(d3) The corresponding memory kernel κεðq; tÞ ¼ q2=½Π−1

ε ðq; tÞ − 1�, see also Eq. (6), for the case without (b1)–(b3) and
with interactions (c1)–(d3). The structure at larger wave numbers illustrates the (nonexponential) short-distance behavior. The absence

of effects in time (and system size, not shown) highlights the localized character of the noninteracting kernel κð0Þε . In contrast, the
evolution of the interacting kernel is the hallmark of delocalization. (d1)–(d3) The L dependence of κεðtÞ.
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dynamics kicks in together with diffusive behavior.
Approaching the MBL transition from the delocalized
side, this time scale diverges; simultaneously, βεðtÞ at
times t≲ τε is rapidly decreasing, which might suggest a
small value of βε at the MBL transition. In this scenario,
the critical fixed point would carry excited states that
exhibit phenomenological features reminiscent of (strong)
multifractality [53].
We conclude with two remarks relating our work to the

most recent literature. (a) Consistent with our findings, also
Serbyn, Papic, and Abanin observe very strong finite size
effects in their study of the Thouless energy [54]. Like us,
they interpret their results as indicating that the system sizes
are too short for observing the asymptotic thermalized
behavior. Unlike us, they go a step further proposing that
the numerical data at small system sizes (below L ¼ 20)
already reveal hydrodynamic properties of the critical fixed
point, such as multifractality. This conclusion for us is
difficult to draw, because one would expect system-size
independent exponents in the critical window, which we
do not observe. (b) Recent studies of Anderson localization
of random regular graphs (RRG) reveal a slow flow with
system size out of a (quasi-)multifractal into an ergodic
regime [55,56]. When interpreting ΔxεðtÞ as an effective
system size, then the transient subdiffusive behavior
observed by us finds a natural interpretation within the
RRG perspective.
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