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We present lattice results for the isovector unpolarized parton distribution with nonperturbative
regularization-invariant momentum-subtraction scheme (RI/MOM) renormalization on the lattice. In
the framework of large-momentum effective field theory (LaMET), the full Bjorken-x dependence of a
momentum-dependent quasidistribution is calculated on the lattice and matched to the ordinary light cone
parton distribution at one-loop order, with power corrections included. The important step of RI/MOM
renormalization that connects the lattice and continuum matrix elements is detailed in this paper. A few
consequences of the results are also addressed here.
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I. INTRODUCTION

Parton distribution functions (PDFs) are probability
densities of quarks and gluons seen by an observer moving
at the speed of light relative to the hadron. They are
universal nonperturbative properties of the hadron. In a
global analysis the hard-scattering cross sections can be
factorized into the PDFs and the short-distance matrix
elements calculable in perturbation theory. Once known,
the PDFs can be used as inputs to predict cross sections
in high-energy scattering experiments, one of the major
successes of QCD. Today, multiple collaborations pro-
vide regular updates concerning the phenomenological
determination of the PDFs [1–6] using the latest exper-
imental results, either focusing on medium-energy QCD

experiments or high-energy ones such as those at the
LHC. After the past half century of theoretical and
experimental efforts, the precision needed in PDFs to
further test the standard model has increased significantly,
and experiments are planned to push further into unex-
plored or less known regions, such as sea-quark and
gluonic structure.
In this work, we continue the first-principles calcu-

lation of the PDFs using lattice QCD. In parton physics,
the PDFs are defined as the nucleon matrix elements of
quark or gluon correlation operators along the light cone
direction. For example, the unpolarized quark distribution
is defined as

qðx; μÞ≡
Z

dξ−

4π
e−ixP

þξ−hPjψ̄ðξ−ÞγþWðξ−; 0Þψð0ÞjPi;

ð1Þ

where μ is the renormalization scale in a given renormali-
zation scheme, such as the MS scheme, the nucleon
momentum Pμ ¼ ðP0; 0; 0; PzÞ, ξ� ¼ ðt� zÞ= ffiffiffi

2
p

are the
light cone coordinates, and the Wilson line
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Wðξ−; 0Þ ¼ exp

�
−ig

Z
ξ−

0

dη−Aþðη−Þ
�

ð2Þ

is inserted to ensure gauge invariance. The main obstacle in
directly computing PDFs from lattice QCD is their light
cone dependence. Since lattice QCD is formulated in
Euclidean space which maps the whole Minkowski light
cone to a single point, the ξ− dependence is completely lost.
Early lattice studies of PDFs used the operator product
expansion (OPE) to calculate their moments, which are
matrix elements of local gauge-invariant operators [7–10].
However, discretization error and operator mixing due to
the breaking of rotational symmetry on the lattice make it
hard to go beyond the first few moments. There exist
proposals for obtaining higher moments by using smeared
sources [11] or computing current-current correlators in
Euclidean space [12–15]. Recently, there is a lattice study
on the feasibility of computing pion DA with Euclidean
current correlators [16].
Recently, Ji [17,18] proposed a new approach for the

direct computation of parton physics, large-momentum
effective field theory (LaMET). According to this
approach, in order to get the normal PDF, one can start
by calculating a “quasi-PDF,” which is defined as a spatial
correlation of partons along, say the z direction, in a
moving nucleon,

~qðx; Pz; ~μÞ ¼
Z

∞

−∞

dz
4π

eixPzz ~hðz; Pz; ~μÞ;
~hðz; Pz; ~μÞ ¼ hPjOΓjPi; ð3Þ

where OΓ ¼ ψ̄ðzÞΓWzðz; 0Þψð0Þ with Γ ¼ γz or Pz
Pt
γt

[19–22], ~μ is the renormalization scale in a particular
scheme, and the spacelike Wilson line is

Wzðz; 0Þ ¼ exp

�
ig
Z

z

0

dz0Azðz0Þ
�
: ð4Þ

Unlike the definition in Eq. (1), which is invariant under a
Lorentz boost along the z direction, the quasi-PDF changes
dynamically under such a boost and depends nontrivially
on the nucleon momentum Pz. For a nucleon of mass MN
moving with finite but large momentum Pz ≫ MN;ΛQCD,
LaMET allows us to match the quasi-PDF to the PDF
through a factorization formula [17,18]:

~qðx; Pz; ~μÞ ¼
Z þ1

−1

dy
jyjC

�
x
y
;
~μ

Pz
;
μ

yPz

�
qðy; μÞ

þO
�
M2

N

P2
z
;
Λ2
QCD

P2
z

�
; ð5Þ

where C is the matching kernel, and the OðM2
N=P

2
z ;

Λ2
QCD=P

2
zÞ terms are power corrections suppressed by

the nucleon momentum. Here qðy; μÞ for negative y
corresponds to the antiquark contribution. The ~q and q
have the same infrared (IR) divergences, so the matching
kernel C depends on ultraviolet (UV) physics only and,
thus, can be calculated in perturbative QCD.
There has been rapid development following Ji’s pro-

posal. Lattice-QCD calculations of the proton isovector
quark distribution fu−d [23–26], including the unpolarized,
polarized, and transversity cases, as well as the pion
distribution amplitude [27], have been carried out within
the LaMET approach. The one-loop matching kernels were
calculated in the continuum theory for the isovector quark
distributions in a transverse-momentum cutoff scheme in
Ref. [19] and reproduced in Refs. [24,28]; the matching
for GPDs was addressed in Refs. [29,30]. Recently also
studies in lattice perturbation theory are available [31–33].
The nucleon-mass corrections to all orders in M2

N=P
2
z

have already been derived in Refs. [23,25] and included
in the lattice calculations [23,25], while the higher-
twist OðΛ2

QCD=P
2
zÞ correction was numerically removed

by fitting the results at different Pz with a polynomial of
1=P2

z and extrapolating to infinite momentum [23,25].
Despite many promising features in the previous lattice

calculation of PDFs [23–27], one important piece was
missing until recently to form a complete image: the lattice
renormalization of the quasi-PDFs. The UV transverse-
momentum cutoff scheme used in the one-loop matching
computation [19,28] is not the same regularization as used
on the discretized lattice. To reduce systematic uncertain-
ties from this mismatch, a proper renormalization of the
bare lattice matrix elements is required. An alternative
approach is to replace the lattice regularization by the
gradient flow and match the continuum extrapolated results
to the MS PDF [34], where the latter will be rather
complicated due to the new vertices introduced by the
gradient flow [35]. With larger statistics and the momen-
tum-smearing technique, which allows high momentum
with small statistical errors [36], the uncertainty of lattice
simulations will soon be dominated by the renormalization,
which, therefore, need to be properly addressed.
The renormalization of the quasi-PDF has been closely

studied from the perturbative point of view [19,28,37–42].
The bare quasi-PDF suffers from both logarithmic and
linear UV divergences [19,28]. The linear divergence
originates from the self-energy of the spacelike Wilson
line Wzðz; 0Þ and can be absorbed into an exponential
factor expðδmjzjÞ where δm has a mass dimension [43–45].
This linear divergence is not affected when the Wilson line
is inserted between two separated quark fields, so the
exponential factor is capable of removing the same diver-
gence in the quasi-PDF [38,39]. Since the remaining
divergences are logarithmic and can be subtracted by a
renormalization factor that only depends on the endpoints,
the quasi-PDF has been proven to be multiplicatively
renormalizable for ~hðz; Pz; ~μÞ at any individual z [41,42].
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This property makes it possible to carry out a non-
perturbative renormalization of the quasi-PDF in the
regularization-invariant momentum-subtraction scheme
(RI/MOM) [46] that has been widely used for quark
operators on the lattice. In the RI/MOM scheme, the UV
divergence in the quasi-PDF can be removed to all
orders in perturbation theory by the renormalization
constant determined nonperturbatively, leaving the theo-
retical uncertainty to how precisely one can match the
renormalized quasi-PDF onto the MS-renormalized
PDF. Since the RI/MOM scheme is regularization
independent, the matching kernel can be calculated
analytically in the continuum theory with dimensional
regularization (d ¼ 4 − 2ϵ), which is free of linear
divergence. The one-loop result has already been
obtained, and shows nicely convergent features for
Eq. (5), compared to the matching in the transverse-
momentum cutoff scheme [47].
In Ref. [40], the additional mixing due to the chiral

symmetry breaking on the lattice was first identified in the
1-loop perturbative calculation of Oγz , where Oγt can be
free of this problem. We will come back to this mixing
effect in the following sections. Note that Oγt is also a
feasible choice for the quasi-PDF in LaMETas it belongs to
the same universality class of Oγz [48]. In a recent new
proposal [22,49] Oγt is used to define an Ioffe-time or
pseudo distribution, which requires the same lattice setting
and similar factorization formula to extract out the
PDF [50].
In this work, we present lattice results for the non-

perturbatively renormalized quasi-PDF in RI/MOM
scheme for the isovector unpolarized case,1 and match
it to the MS PDF at one-loop order in perturbative
QCD. We demonstrate the procedure with the previously
calculated lattice quasi-PDF [23,25] using clover
valence fermions on Nf ¼ 2þ 1þ 1 (degenerate up/
down, strange and charm) flavors of highly improved
staggered quarks (HISQ) [52] generated by MILC
Collaboration [53] with lattice spacing a ¼ 0.12 fm,
box size L ≈ 3 fm and pion mass mπ ≈ 310 MeV. The
presentation of the paper is organized as follows: In
Sec. II, we provide the theoretical setup of the RI/MOM
renormalization and explain how to implement it on the
lattice. In Sec. III, we show the result of the renormali-
zation factor, and use it to renormalize our previous
quasi-PDF [23,25] obtained on the same lattice. We then
match the renormalized quasi-PDF in the RI/MOM
scheme to the PDF in MS scheme following the
procedure elaborated in Ref. [47]. In Sec. IV, we

summarize our results and discuss possible directions
for further studies.

II. RENORMALIZATION OF
WILSON-LINK OPERATORS

For continuum QCD, the renormalization of nonlocal
quark bilinear operators has been discussed since the
1980s [43–45,54], and the multiplicative renormalizability
of the operator has been proven [41,42]. Recent studies
based on one- and two-loop perturbative analysis [37–39]
also indicate that this property might be valid to all orders.
Under this assumption, operator mixing does not appear
for nonsinglet operators in renormalization. Here, we
address the situation in the lattice case, when certain
symmetries are broken.

A. Operator mixing

On the Euclidean lattice, QCD is invariant under
discrete symmetries, which include parity P, time reversal
T and charge conjugation C. The parity and time-reversal
operation are generalized into any direction in the
Euclidean space. Because there is no distinction between
time and spatial directions, we call the generalized parity
and time-reversal operations Pμ and T μ, respectively. We
investigate the transformation properties of the nonlocal
operator OΓðzÞ and as some of the discrete transformation
can flip the sign of z, it is convenient to define the
combinations [55]

OΓ�ðzÞ ¼
1

2
½ψ̄ðzÞΓWzðz; 0Þψð0Þ

� ψ̄ð0ÞΓWzð0; zÞψðzÞ�: ð6Þ

The operator OΓ�ðzÞ is Hermitian or anti-Hermitian,
depending on Γ. For Γ ¼ γz, Oγzþð−ÞðzÞ is anti-
Hermitian (Hermitian). The transformation properties of
C, Pμ and T μ prohibit OγzðzÞ from mixing with other
operators except for OIðzÞ, where I is the identity matrix.
In the zero quark mass limit, we have chiral symmetry
(a continuous symmetry), which eliminates the mixing
between OγzðzÞ and OIðzÞ. Some lattice fermions, such as
Wilson-type fermions, explicitly break chiral symmetry
and introduce a mixing between OγzðzÞ and OIðzÞ. The
situation for the other vector operators, Γ ¼ γx; γy and γt,
is different. Discrete symmetries alone prohibit their
mixing with other Γ’s even if chiral symmetry is broken.
The same discussion can also be applied to pseudoscalar,

axial vector, and tensor operators [55]. Our analysis is
consistent with what was found in one-loop lattice pertur-
bation theory [40,51].
Therefore, the renormalization of the nonlocal vector

operators for lattice fermions without chiral symmetry can
be schematically presented as

1While this paper was being finalized, another paper [51]
on the nonperturbative renormalization of the quasi-PDF ap-
peared, where the authors discuss a similar renormalization
prescription.
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�
OγzðzÞ
OIðzÞ

�
¼ ~Z ×

�
OR

γzðzÞ
OR

I ðzÞ

�
;

¼
�
Z11ðzÞ Z12ðzÞ
Z21ðzÞ Z22ðzÞ

��
OR

γzðzÞ
OR

I ðzÞ

�
; ð7Þ

Oγi≠zðzÞ ¼ Z−1
Vi
ðzÞOR

γi≠zðzÞ; ð8Þ

where all Z’s are complex functions. For the dia-
gonal elements, Re½Z11ð22ÞðzÞ� ¼ Re½Z11ð22Þð−zÞ� and
Im½Z11ð22ÞðzÞ� ¼ −Im½Z11ð22Þð−zÞ�. For the off-diagonal
ones, Re½Z12ð21ÞðzÞ� ¼ −Re½Z12ð21Þð−zÞ� and ½Z12ð21ÞðzÞ� ¼
Im½Z12ð21Þð−zÞ�.
In the past, Γ ¼ γz has been chosen for the unpola-

rized quark distributions. As we discussed above, the
renormalization for this operator involves mixing with
the scalar operator, whose signal is generally worse in
lattice simulations. Alternatively, as pointed out in
Ref. [19], one can choose Γ ¼ γt instead of Γ ¼ γz to
define the unpolarized quasi-PDF. This choice also
approaches the normal PDF in the infinite-momentum
limit and has the advantage of avoiding the mixing
problem. However, the matching kernel, which involves
vectors in the z and t directions, becomes much more
complicated in this case. Therefore, we leave it for
future investigation, and concentrate in this work on
Γ ¼ γz and will estimate the mixing effect from scalar
operator nonperturbatively.

B. Nonperturbative renormalization of the OγzðzÞ
operator in the RI/MOM scheme

The renormalization matrix elements of Eq. (7) will be
computed on the lattice as the amputated Green’s function
of OΓðzÞ in an off-shell quark state jpi under the Landau
gauge condition,

Λðp; z;ΓÞ ¼ SðpÞ−1
�X

w

γ5S†ðp;wþ znÞγ5ΓWz

× ðwþ zn; wÞSðp;wÞ
�
· SðpÞ−1; ð9Þ

where nμ ¼ ð0; 0; 0; 1Þ is the unit vector along the z
direction and the summation is over all lattice sites w.
The quark propagators are defined as

Sðp;xÞ ¼
X
y

eipyhψ̄ðxÞψðyÞi; SðpÞ ¼
X
x

e−ipxSðp;xÞ:

ð10Þ

and two γ5 are inserted to the both side of S†ðp;wþ znÞ
in Eq. (9) to get the necessary propagator

P
ye

−ipy×
hψ̄ðyÞψðwþ znÞi.

By imposing the RI/MOM renormalization condition,

Tr½pΛðp; z; γzÞ�R
Tr½pΛðp; z; γzÞtree�

����
p2¼μ2R;pz¼Pz

¼ 1;

Tr½Λðp; z; IÞ�R
Tr½Λðp; z;IÞtree�

����
p2¼μ2R;pz¼Pz

¼ 1;

Tr½½pΛðp; z; IÞ�Rp2¼μ2R;pz¼Pz
¼ 0;

Tr½Λðp; z; γzÞ�Rp2¼μ2R;pz¼Pz
¼ 0; ð11Þ

where the superscriptR denotes a renormalized quantity, and
μR is the renormalization scale. Note that the vertex functions
are projected with ~Γ ¼ p=pz to avoid the ambiguity arising
from additional operator mixing in the off-shell matrix
elements [47], and the prescription of equating the proton
momentum Pz to the quark momentum pz is used. The
renormalization matrix Zðz; pz; a; μRÞ with lattice spacing a
is inverse of ~Z in Eq. (7), which can be extracted via

Zðz; pz; a; μRÞ ¼ ~Z−1ðz; pz; a; μRÞ ð12Þ
~Zðz;pz;a;μRÞ

≡
�
Z11 Z12

Z21 Z22

�
ðz;pz;a;μRÞ

¼ 1

12e−ipzz

×

�
Tr½ ~ΓΛðp;z;γzÞ� Tr½ ~ΓΛðp;z;IÞ�
Tr½Λðp;z;γzÞ� Tr½Λðp;z;IÞ�

�
p2¼μ2R;pz¼Pz

:

ð13Þ

We drop the renormalization of the quark self energy, since it
only contributes to the overall constant factor, which can
eventually be determined by normalizing

R
qðx; μÞdx to

unity. It is equivalent to normalize the vector charge to unity.
Such a strategyhave been used inmany recent nucleonmatrix
elements calculations likeRefs. [56–58], and the origin of this
idea can be traced to the original reference of the RI/MOM
scheme, which used the discrete conserved vector current to
define the renormalization constant of the quark self-
energy [46].
Next, the renormalized proton matrix element of OR

γzðzÞ
is computed by:

~hRðz; Pz; μRÞ ¼ ZVVhPjOγzðzÞjPi þ ZSVhPjOIðzÞjPi

ZVV ¼ 1

Detð ~ZÞZ22ðz; Pz; a; μRÞ

ZSV ¼ −
1

Detð ~ZÞZ12ðz; Pz; a; μRÞ ð14Þ

where Detð ~ZÞ is the determinant of the renormalization
matrix ~Z. The a dependence on the right-hand side cancels
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up to discretization errors of order OðaPz; aμRÞ. The
renormalized quasi-PDF ~qRðx; Pz; μRÞ in the RI/MOM
scheme can be obtained by a Fourier transform:

~qRðx; Pz; μRÞ ¼
Z

∞

−∞

dz
2π

eixPzz ~hRðz; Pz; μRÞ: ð15Þ

In the next section, we apply the RI/MOM scheme to the
renormalization of quasi-PDF on the lattice, and eventually
extract the MS PDF through a sequence of systematic
corrections.

III. LATTICE CALCULATIONS

The results of our lattice calculations are presented in
two parts: The first part is the nonperturbative renormali-
zation constants in RI/MOM scheme, the second part is the
result of the isovector unpolarized PDF. The bare quasi-
PDF is renormalized using the renormalization in the first
part, and then matched to the PDF using the one-loop
matching formula after the power corrections in Pz are
applied. The final result is the isovector unpolarized PDF of
the proton in the MS scheme.

A. Renormalization constants in the RI/MOM scheme

For the renormalization calculation, we used 33 con-
figurations on the L3 × Lt ¼ 243 × 64 lattice [53] used for
the previous quasi-PDF calculation [23,25]. We connected
the ends of the quasi-PDF operator to the sinks of the
momentum-source quark propagators with p ¼ 2πð3=L;
2=L; 3=L; 8=LtÞ, which enables us to take the volume
average of the operator position as in Eq. (9), which
improves the signal-to-noise ratio. This treatment allows
us to access all the operators with different Wilson-link
lengths, although we must repeat the calculation for dif-
ferent momenta.
The pz ¼ 6π=L computation used p ¼ 2πð3=L; 2=L;

3=L; 8=LtÞ while the pz ¼ 4π=L computation uses
p ¼ 2πð3=L; 3=L; 2=L; 8=LtÞ. To make the RI/MOM
scheme μ2R ¼ p2 to be the same, we use the same p for
the latter case as the former one but change the operator to
ψ̄ðyÞγyWyðy; 0Þψð0Þ. In both cases, μ2R ¼ 5.74 GeV2. In
the renormalization procedure, there is an arbitrariness to
define the renormalization constant as long as it subtracts
all the UV divergences. In our case, the renormalization
constant should depend on how we choose μR and pz, and
pz ¼ Pz is just one of the choices that we can make. This
Pz dependence shall be cancelled in the matching, as the
RI/MOM scheme dependence must be cancelled in our
matching up to Oðα2sÞ and the discretization effects. The
discretization effect introduced by this choice can be
eliminated eventually when the simulation with the same
pz (in the physical unit) are repeated at smaller lattice
spacings and the continuum extrapolation are applied on
the renormalized results with different lattice spacings.

A comparison of the signals between the point source
and the momentum source for the pz ¼ 6π=L case is given
in Fig. 1. It is obvious that with the same configurations, the
signal with the momentum source can be much better than
that with the point source, while the central values are
consistent with each other.
Figure 2 shows both the renormalization factor and the

mixing with the scalar quasi-PDF operator OIðzÞ for the
pz ¼ 6π=L case. We would estimate the systematic uncer-
tainty from ignoring the mixing by assuming OIðzÞ ∼
iOγzðzÞwith the overall factor i from the wick rotation, then
hRðzÞ will not change at z ¼ 0, but it will change about
∼8% at z ¼ 6 and ∼15% at z ¼ 12 respectively, which is
smaller than the present statistical uncertainties.

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-2 -1  0  1  2
z

Re[ZVV]-1,      pt
Im[ZVV]   ,      pt
Re[ZVV]-1, mom
Im[ZVV]   , mom

FIG. 1. Comparison between the renormalization constants
obtained with the point source and the momentum source for
z ≤ 2, taking the pz ¼ 6π=L case as an example. The values are
normalized by the central value of the renormalization constant at
z ¼ 0 and the real parts are subtracted by unity for a better
comparison. It is obvious that with the same configurations, the
signal from the momentum source can be much better than that
from the point source, while the values are consistent with
each other.

 0

 5

10

15

20

-10 -5  0  5  10
z

Re[ZVV]
Im[ZVV]

Re[-ZSV]
Im[-ZSV]

FIG. 2. The renormalization constant of the quasi-PDF operator
OγzðzÞ (red boxes) and the mixing with the scalar quasi-PDF
operator OI ðzÞ (blue dots) with the momentum along the Wilson
link being 6π=L ¼ 1.29 GeV and μ2R ¼ p2 ¼ 5.74 GeV2. The
size of the mixing coefficient is about an order of magnitude
smaller than the renormalization factor in the large-z region.
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In order to check the μR dependence, we repeated the
renormalization calculations on two more momenta, p ¼
2πð5=L; 2=L; 3=L; 10=LtÞ and p ¼ 2πð6=L; 2=L; 3=L;
13=LtÞ. Since the matching from quasi-PDF to PDF will
be processed in the space of the momentum fractions,
we will check the μR dependence on the final distributions
instead of that on the effective MS renormalization
constants.

B. From quasi-PDF to PDF: Numerical results
and discussion

In this subsection, we present our results for the
unpolarized isovector quark distribution. We first calculate
the time-independent, nonlocal correlator of a nucleon with
finite Pz

hΓðz; μ; PzÞ ¼ hP⃗jψ̄ðzÞΓ
�Y

n

UzðnẑÞ
�
ψð0ÞjP⃗i; ð16Þ

where Uz is the gauge link pointing from nẑ to ðnþ 1Þẑ,
and P⃗ ¼ ð0; 0; PzÞ is the momentum of the nucleon. We
calculate the bare lattice nucleon matrix elements hγz and
hI at Pz ¼ f1; 2; 3g2π=L, which are 0.43, 0.86 and
1.29 GeV, respectively. As observed in Refs. [25,27], the
correction terms for the smallest-momentum distribution is

less well-behaved; thus, we drop it in the rest of this work.
We then renormalize the bare matrix elements with the RI/
MOM renormalization factors defined in the previous
section:

hR ≃ ZVVhγz ; ð17Þ

where the mixing with hI turns out to be numerically
negligible because hI=hγz ≃M=Pz and jZSV=ZVV j ≪ 1. In
Fig. 3, we show the bare (hγz) and renormalized (hR) matrix
elements for Pz ¼ f2; 3g2π=L. In the renormalized matrix
elements the mixing effect is temporarily ignored. We note
that in both cases, the bare matrix elements vanish within
error bands when the link length reaches 10a–12a. After
renormalization, the error bands become much broader at
large z due to an exponential increase of the renormaliza-
tion factor, and consistent with 0 within error bands.
Next, we Fourier transform Eq. (15) to convert the lattice

matrix elements as functions of spatial link length z into the
quasi-PDF with μR the RI/MOM renormalization scale.
Then we take the one-loop RI/MOM-to-MS matching
calculated in Ref. [47] and mass corrections for the
renormalized quasi-PDF. We invert Eq. (5) to obtain the
PDF in the MS scheme,

qðx; μÞ ¼ ~qMðx; Pz; μRÞ −
αsCF

2π

Z þ∞

−∞

dy
jyjC

ð1Þ
�
x
y
;
μR
Pz

;
μ

jyjPz

�
~qMðy; Pz; μRÞ þO

�Λ2
QCD

P2
z

; α2s

�
; ð18Þ

FIG. 3. The bare ~hγzðz; Pz; μRÞ (blue) and renormalized ~hRðz; Pz; μRÞ (red) for Pz ¼ 4π=L (upper row) and 6π=L (lower row) with the
renormalization scale μR ¼ 2.4 GeV. The left and right panels show the real and imaginary parts, respectively.

JIUNN-WEI CHEN et al. PHYS. REV. D 97, 014505 (2018)

014505-6



where Cð1Þ has been computed in Ref. [47],

Cð1Þ
�
ξ;
μR
pz
R
;
μ

pz

�
¼ Cð1Þ

τ¼0

�
ξ;
μR
pz
R
;
μ

pz

�
þ ð1 − τÞCð1Þ

τ

�
ξ;
μR
pz
R
;
μ

pz

�
; ð19Þ

where

Cð1Þ
τ¼0

�
ξ;
μR
pz
R
;
μ

pz

�
ð20Þ

¼

8>>>>><
>>>>>:

h
1þξ2

1−ξ ln
ξ

ξ−1 −
2ð1þξ2Þ−rR
ð1−ξÞ ffiffiffiffiffiffiffiffi

rR−1
p arctan

ffiffiffiffiffiffiffiffi
rR−1

p
2ξ−1 þ rR

4ξðξ−1ÞþrR

i
⊕

ξ > 1

h
1þξ2

1−ξ ln
4ðpzÞ2
μ2

þ 1þξ2

1−ξ ln ½ξð1 − ξÞ� þ ð2 − ξÞ − 2 arctan
ffiffiffiffiffiffiffiffi
rR−1

pffiffiffiffiffiffiffiffi
rR−1

p
n
1þξ2

1−ξ − rR
2ð1−ξÞ

oi
þ

0 < ξ < 1

h
1þξ2

1−ξ ln
ξ−1
ξ þ 2ffiffiffiffiffiffiffiffi

rR−1
p

h
1þξ2

1−ξ − rR
2ð1−ξÞ

i
arctan

ffiffiffiffiffiffiffiffi
rR−1

p
2ξ−1 − rR

4ξðξ−1ÞþrR

i
⊖ ξ < 0

; ð21Þ

and

Cð1Þ
τ

�
ξ;
μR
pz
R
;
μ

pz

�
¼

8>>>>><
>>>>>:

�
ð1−2ξÞ
2ð1−ξÞ

r2R
½rRþ4ξðξ−1Þ�2

	
⊕

ξ > 1

�
− ð1−2ξÞ

2ð1−ξÞ
	
þ

0 < ξ < 1

�
− ð1−2ξÞ

2ð1−ξÞ
r2R

½rRþ4ξðξ−1Þ�2
	
⊖ ξ < 0

; ð22Þ

with rR ¼ μ2R=ðpz
RÞ2, and the Feynman and Landau gauges correspond to τ ¼ 1 and 0 respectively. pz

R is the momentum
used in the RI/MOM renormalization condition, whereas pz is the parton momentum for the matching. In our calculation,
we choose pz

R ¼ Pz, and pz has to be jyjPz in the factorization theorem of Eq. (18). “⊕, þ, and ⊖” denote plus functions
whose definitions are given in [47].
The ~qMðx; Pz; μRÞ in the above equation is the quasi-PDF in the RI/MOM scheme with the nucleon mass correction

removed [23,25],

~qMðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ c

p X∞
n¼0

ϵnc
fþ



ð1þ ð−1ÞnÞ ~q

�
fþx
2ϵnc

�
þ ð1 − ð−1ÞnÞ ~q

�
−fþx
2ϵnc

��
; ð23Þ

where c ¼ M2
N=P

2
z , fþ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ c
p þ 1 and ϵc ≡ c=f2þ < 1

for any Pz. The remaining Λ2
QCD=P

2
z correction will be

removed by a parametrization, as was done in Ref. [25].
The μR dependence on the right-hand side should cancel
modulo residual Oða2μ2R;α2sÞ corrections. The case with
Pz ¼ 6π=L and three difference μR is illustrated in Fig. 4.
As in the figure, the residual Oða2μ2R; α2sÞ dependence are
smaller than the statistical uncertainties.
The final results are shown in Fig. 5. In contrast to the

previous result in Ref. [25], the sea flavor asymmetry is
hardly visible, mainly due to the rapid increase of the
renormalization factor with distance, which amplifies the
error. The peak in the positive-x region is shifted slightly to
the left. This is expected since the renormalization enhances
the long-range correlation, and thereby enhancing the
contribution in the small x region when Fourier transformed
to momentum space. After renormalization the unphysical
dip near x ¼ 0 in the previous result also vanishes. This is
because the linear divergence is removed and, therefore, the
RI/MOM matching kernel has a smoother form than the
matching used to relate bare PDFs.

Another observation concerning our renormalized dis-
tribution is an oscillating behavior in negative-x (antiquark)
region, which is absent from the previous bare-PDF results.
This is likely because the bare matrix element ~hðzÞ decays
very fast with the distance z, so the long-range correlation
plays a less important role. However, the long-range
correlation becomes more important in the renormalized
distributions due to the exponential increase in the renorm-
alization factor at large distance. In such a case, the cut-off
on z will introduce large truncation errors by Fourier
transforming the ~hðzÞ into ~qðxÞ [59]. To examine this
hypothesis, we apply the reverse matching and mass
corrections procedure to the central values of one of the
global fitted of PDF, “CJ15” (from the CTEQ-JLab
Collaboration [60]), to make a direct comparison with
our renormalized function hðzÞ. Note that the PDF com-
munity fits xqðxÞ and has larger uncertainty near x ¼ 0, so
their hðzÞ will also have large uncertainties at very large z.
The result is shown in Fig. 6. The renormalized ~hðzÞ at
310-MeV pion mass and a relatively small lattice
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(L ¼ 2.9 fm) has a narrower peak around zpz ¼ 0 and
differs significantly from the Fourier transform of the CJ15
result at large values of zpz. Further studies on removing
the higher-twist contribution at large z in the RI/MOM
renormalization will be carried out in the future.
Finally, we have several comments regarding ourRI/MOM

treatment. The first one is the possible gauge dependence
induced by taking the external quarks off-shell in the non-
perturbative renormalization. The gauge dependence should
be canceled by thematching kernel, but the cancellation is not
complete, since the kernel is only computed at one loop. It is
encouraging that the one-loop matching effect is numerically
small inLandaugauge thatwe employed.Whether the higher-
loop contributions will remain small requires further study.
The secondone is treatingpz of the off-shell quark the sameas
the proton Pz. Numerically, the renormalization factor is
rather insensitive to pz and μR, so we do not expect this
treatment to cause a big error.

IV. SUMMARY

We have carried out a nonperturbative renormalization of
the quasi-PDF in the RI/MOM scheme in lattice QCD.
Based on the renormalized quasi-PDF, we have updated the
lattice result of the unpolarized isovector quark distri-
bution from previous studies by some of the authors.
The RI/MOM renormalization of the quasi-PDF is per-
formed for each individual z, where it has been shown to be
multiplicatively renormalizable. All the UV divergences,
including the linear and logarithmic divergences, are
subtracted nonperturbatively by the renormalization con-
stant. Meanwhile, due to chiral symmetry breaking from
the lattice fermion action we used, there is a mixing
between the isovector quasi-PDF and a scalar operator.
The mixing is estimated to be a ∼10% effect and is left for
future investigation.
It is possible that an alternative process is needed in the

large z region. But the errors there are still too large to
conclude. Nevertheless, there is an alternative renormali-
zation method used in Refs. [41,61] which is worth

FIG. 4. The renormalized unpolarized isovector quark distri-
bution after one-loop matching and mass correction at the
renormalization scale μ2 ¼ 5.76 GeV2 in the MS scheme, with
Pz ¼ 6π=L and three different RI/MOM renormalization scales
μR. Three distributions agree with each other within the statistical
uncertainties, it shows the μR dependence is almost cancelled
numerically. The negative-x part is related to the antiquark
distribution via ūðxÞ − d̄ðxÞ ¼ −uð−xÞ þ dð−xÞ for x > 0.

FIG. 5. The renormalized unpolarized isovector quark distri-
bution after one-loop matching and mass correction at the
renormalization scale μ2 ¼ 5.76 GeV2 in the MS scheme. The
negative-x part is related to the antiquark distribution via ūðxÞ −
d̄ðxÞ ¼ −uð−xÞ þ dð−xÞ for x > 0.

FIG. 6. Comparison of the renormalized function ~hRðzÞ of this work (dashed lines) and from a Fourier transform of phenomenological
PDFs into the function of the Ioffe time zPz. All the values are converted to μ2 ¼ 5.76 GeV2 in the MS scheme. The solid lines are the
Fourier transform of the corresponding CJ15 PDF (blue), after matching and mass corrections (green and red). The left and right panels
show the real and imaginary parts, respectively.
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investigating. Also, two methods to reduce the weighting of
the long range correlation are also discussed in Ref. [59].
Clearly more efforts on this issue in the future are needed.
Compared to the previous results on bare PDFs, our

present result is free of the unphysical dip at x ¼ 0 due to
the smooth matching kernel. However, we end up with a
large uncertainty band that makes it difficult to evaluate
whether an improvement has been achieved. The reason
behind the large uncertainty band is that the RI/MOM
renormalization constant which grows exponentially at
large z significantly amplifies the error in the nucleon
matrix element of the quasi-PDF. Future work involving
higher momentum, larger volume, lighter pion mass, and
finer lattice spacing (such that the higher nucleon boosted
momenta Pz can be used without the additional ðPzaÞn
systematics) or other renormalization conditions may
resolve some of the issues we see in this paper.
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