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We analyze two-dimensional nonlinear sigma models at nonzero chemical potentials, which are
governed by a complex action. In the spirit of contour deformations (thimbles), we extend the fields into the
complex plane, which allows us to incorporate the chemical potentials μ as twisted boundary conditions.
We write down the equations of motion and find exact BPS-like solutions in terms of pairs of (anti)
holomorphic functions, in particular generalizations of unit charge and fractional instantons to generic μ.
The decay of these solutions is controlled by the imaginary part of μ and a vanishing imaginary part causes
jumps in the action. We analyze how the total charge is distributed into localized objects and to what extent
these are characterized by topology.
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I. INTRODUCTION

Two-dimensional nonlinear sigma models have been
known for a long time to share nontrivial properties—such
as asymptotic freedom, dynamical mass generation, topolo-
gy, supersymmetric extensions, etc.—with four-dimensional
non-Abelian gauge theories; see, e.g., [1]. More recent
research has focussed on refined similarities between these
models: instanton constituents on compactified space-times
[2–6], with which the asymptotic perturbation theorymay be
tamed (trans-series/renormalons) [7]; ’t Hooft anomalies
[8–10]; and the sign problem at nonzero density.
Indeed, we will analyze (purely bosonic) sigma models at

nonzero chemical potentials μ. Since the action becomes
complex, numerical simulations are hampered severely.
Purely imaginary μ’s do not cause such a problem and will
be an exceptional case in most of what we discuss. At real μ
(only) dualizing the lattice theory has been shown to solve the
sign problem [11]. When the chemical potential equals
the mass gap, the system undergoes a quantum phase
transition [12].
When treating these systems by stochastic quantization

(Langevin dynamics, in the original field representation),
the drift from the complex action immediately drives the
field configurations into the complex plane. The thimble
method1 relies on field manifolds with a constant phase of

the (path) integral weights, which cannot be realized on real
fields either. Complexifying the fields has actually a long
history in sigma models: the large N proof of the sigma
model mass gap relies on a complex saddle of the Lagrange
multiplier [14,15].
Our work is motivated by the continuum trans-series

description, for which sigma models serve as a showcase
[7,16–18]. This approach requires the knowledge of
classical solutions—typically with topological features—
that could possibly be combined into neutral molecules to
contribute to the vacuum sector, etc. As we have argued, for
generic μ’s it is natural to seek classical solutions in the
complexified fields. Note that the powerful Bogomol’nyi-
Prasad-Sommerfield (BPS) bound [19,20], that reduces the
order of the differential equations which are then easily
solved by (anti)holomorphic fields, relies on a completed
square and loses its power for complex numbers. We will
nonetheless be able to solve the equation of motion, after
having pushed the chemical potential into the boundary
conditions. The latter equivalence has been utilized in
sigma models with twisted boundary conditions [2–6],
which could be seen as a purely imaginary chemical
potential applied in the spatial direction.2

The objects presented here are to our knowledge the first
complex solutions of a field theory complexified in this
way. In the sine-Gordon-like quantum mechanics that
results from dimensionally reducing (supersymmetric)
sigma models (at μ ¼ 0), complex saddles and bions have
been discussed in [21]. We focus on the derivation and
description of complex BPS-like solutions at complex μ.
Many of the nice properties of sigma models are modified
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1The thimble and Langevin method not only share the same
saddles, but were empirically found to concentrate around similar
complex configurations [13].

2For bosons, twisted boundary conditions in space and time are
interchangeable (when exchanging length and inverse temper-
ature); only fermions can distinguish between space and time.
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during the complexification of the fields; therefore, we will
repeat them in detail to emphasize which are crucially
changed in the complex setting. For instance, the most
useful representations of these models (with respect to
solutions) are already complex, such that the “complex-
ification” of these representations has to be done with care.
The obtained solutions consist again of (anti)holomor-

phic functions; however, we have to specify twice as many
functions for the doubled degrees of freedom (d.o.f.). These
objects are (anti-)self-dual in the sense that their action
density equals (minus) the topological density. The latter is
still a total derivative and given in terms of the Laplacian of
a logarithm, but the meaning of the complex total topo-
logical charge as a winding number is more intricate, as are
the symmetries of the complexified system.
As examples we analyze analogues of fractional constitu-

ents and unit charge instantons in theOð3Þ ≅ CPð1Þmodel at
generic μ. Their densities turn out to be analytic continua-
tions of the corresponding densities from imaginary μ (i.e.,
from twisted solutions) to generic μ. This has important
consequences for the decay of these densities and thus the
total actions/charges of these objects. The fractional instan-
tons, for instance, have finite action only when an imaginary
part ofμ is present. From theviewpoint of real μ, therefore, an
imaginary μ might be viewed as a “regulator.” The limit of
vanishing imaginary part of μ, however, produces an imagi-
nary jump in the total action/charge, similar to lateral Borel
resummations of sign-coherent series. Technically, these
jumps appear at branch cuts of the square root function.
This also holds for the analogue of the unit charge instantons,
where the imaginary part of the total action/charge jumps at a
vanishing imaginary part of μ and a complementary μ̄,
between which the topological charge is unity.
This work is organized into two main parts, one about

the O(3) model and its specific realizations and one about
the more general CP(N-1) models. In both parts, we first
discuss (conventional) BPS solutions, the global sym-
metries to which chemical potentials couple, the method
of pushing the latter into twisted boundary conditions, and
the resulting complexity issue. Then we perform the field
complexification doubling the d.o.f. and write down the
complex field equations and their solutions in general. At
the end of each part we discuss basic examples, fractional
constituents, and unit charge instantons. Section IV con-
tains our summary and outlook.

II. O(3) MODEL

There are (at least) three ways to parametrize the
O(3) field, and for reasons of illustration we will discuss
them in parallel. The defining parametrization uses a real
three-vector field η⃗ðxÞ normalized to 1, η⃗2ðxÞ ¼ 1. In the
following we will omit arguments x and the vector
arrow on η. Polar angle fields θ ∈ ½0; π�, ϕ ∈ ½0; 2π� can
be introduced via η1 ¼ sin θ cosϕ, etc., and a complex
stereographic field via

u ¼ η1 þ iη2
1 − η3

¼ cot
θ

2
eiϕ: ð1Þ

The Lagrangian without chemical potential reads

2L0 ¼

8>><
>>:

ð∂νηÞ2; ð2aÞ
ð∂νθÞ2 þ sin2θð∂νϕÞ2; ð2bÞ
4 ∂νu∂νu�
ð1þjuj2Þ2 : ð2cÞ

The interesting features of this system are caused by its
nonlinearity, which is manifest in the latter two para-
metrizations; in the η-parametrization it is caused by the
constraint.

A. Preparation: BPS solutions, symmetries,
chemical potential, and twisted fields

A famous tool to obtain classical solutions is the
Bogomol’nyi bound, in which the Lagrangian is split into
an (absolute) square plus (or minus) a topological term.
This is most transparent in the u-picture:

L0ðuÞ ¼ 4
j∂uj2 þ j∂�uj2
ð1þ juj2Þ2 ð3Þ

¼8

� j∂�uj
1þjuj2

�
2

þ4πq¼8

� j∂uj
1þjuj2

�
2

−4πq; ð4Þ

where we introduced complex coordinates and derivatives

zð�Þ ¼ x1 � ix2; ∂ð�Þ ¼ ð∂1 ∓ i∂2Þ=2; ð5Þ

and the topological charge density

q ¼ 1

π

j∂uj2 − j∂�uj2
ð1þ juj2Þ2 ; ð6Þ

which is a total derivative [see, e.g., Eqs. (23) and (24)
below with v ¼ u].
Consequently, configurations with L0 ¼ �4πq possess

minimal action in a given topological sector and thus also
solve the equations of motion. For these BPS solutions, the
argument of the square must vanish, which means a first
order differential equation that can immediately be solved:
u ¼ uðzð�ÞÞ are (anti)meromorphic functions for positive
(negative) topological charge. Poles in u are admissible as
they represent the north pole η ¼ ð0; 0; 1ÞT (zeros of u
represent the south pole).
For BPS solutions, a compact formula for the topological

charge density applies, q ¼ �1=4π · Δ logð1þ juj2Þ with
the Laplacian Δ ¼ 4∂∂�.
From now on we will consider a nonzero temperature

T ¼ 1=β represented by periodic boundary conditions of
the fields under x2 → x2 þ β. Compatible BPS solutions
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are naturally analyzed through a Fourier expansion [5] in
the (anti)holomorphic coordinate 2π=β · zð�Þ.
One of the three global O(3) symmetry rotations

shifts ϕ → ϕþ α and manifests itself as O(2) rotations
of the first two components of η⃗ and U(1) multiplications
u → u expðiαÞ, respectively. Coupling a chemical potential
to the corresponding conserved charge, the Lagrangian
changes according to

Lμ ¼L0with

8<
:
∂2η→ ð∂2− iμT3Þη; ð7aÞ
∂2ϕ→ ∂2ϕþ iμ; ð7bÞ
∂2u→ ð∂2−μÞu;∂2u� → ð∂2þμÞu�; ð7cÞ

where ðT3Þab ¼ ϵ3ab (is antisymmetric). For real μ, the time
derivative of ϕ receives an imaginary part, while in the
other two versions ∂2 receives a Hermitian part, which
makes the action complex.
In all three cases one could try to revert the new

Lagrangian Lμ to the original L0 without chemical poten-
tial by redefining the fields compensating the modifications
in Eq. (7), e.g., defining ∂2ϕþ iμ≕ ∂2ϕt. To be precise, we
define “twisted fields” as

ηt ≔ e−iμT
3x2η; ð8aÞ

ϕt ≔ iμx2 þ ϕ; θt ¼ θ; ð8bÞ

ut ≔ e−μx2u; u�t ≔ eμx2u� ðimaginary μÞ; ð8cÞ

such that the Lagrangian indeed obeys

LμðΦÞ ¼ Lμ¼0ðΦtÞ; Φ ∈ fη; ðθ;ϕÞ; ug: ð9Þ

This relation means in particular that if the periodic fieldsΦ
extremize Lμ, then the twisted fieldsΦt extremize Lμ¼0 and
vice versa. Thus, properly periodic solutions at nonzero μ
can be obtained from twisted solutions at μ ¼ 0. These
fields are called twisted since they obey

ηtðx2 þ βÞ ¼ e−iμT
3βηtðx2Þ; ð10aÞ

ϕtðx2þβÞ¼ iμβþϕtðx2Þ; θtðx2þβÞ¼ θtðx2Þ; ð10bÞ

uð�Þt ðx2 þ βÞ ¼ e∓μβuð�Þt ðx2Þ ðimaginary μÞ; ð10cÞ

and we seem to have absorbed the chemical potential
completely in these boundary conditions.
For generic μ, however, the definitions of twisted fields

and boundary conditions conflict with the nature of the
fields: the rotation in Eq. (8a) does not belong to O(2), the
additional term in Eq. (8b) is not real, and Eq. (8c) is not
compatible with complex conjugation. While for purely
imaginary μ, these problems do not occur and this method
has been used to write down classical solutions (see below),

for generic μ we will first complexify the fields properly;
see Sec. II B.3

With the help of twisted fields, BPS solutions can be
extended to the case of purely imaginary chemical poten-
tial, say,

μ ¼ −2πiω=β; ω ∈ ½0; 1�; ð11Þ

where ω is a real twist [2–6], since the twisted boundary
condition (10c) is now compatible with complex conjuga-
tion. This boundary condition can easily be satisfied by an
additional (anti)holomorphic factor expð2πωzð�Þ=βÞ multi-
plying an (anti)holomorphic periodic function. In this
setting the total topological charge can be integer for “full
instantons” or fractional with fractional part �ω, when
including “instanton constituents.” The analogy to these
solutions will help us to solve the case of general μ below.

B. Complexification

We have already argued that the action (7) is complex for
generic chemical potentials. The boundary conditions (10)
for the first two parametrizations suggest to use complexi-
fied fields ðη1; η2Þt and ϕt for solutions of the equations of
motion. We will also promote η3;t and θt to complex fields,
because they couple to the former. In this way we have
doubled the two real d.o.f. in the angle representation.
Keeping the equivalence of the three parametrizations,

e.g., ηt;1 ¼ sin θt cosϕt, etc., means that ηt becomes a
complex vector with4

η2t ¼ 1; ηt ∈ C3: ð12Þ

This relation does not contain a complex conjugate on the
left-hand side, so it represents two real constraints for three
complex fields. Thus also the number of real d.o.f. in ηt has
doubled from two to four.
These complexified fields are required to obey the

twisted boundary conditions (10a) and (10b). We will
use the same functional forms of the Lagrangian, (7a)
and (7b), in terms of these complex fields which, therefore,
is a holomorphic function of them (in other words, the
complex conjugate fields do not appear) and again, Eq. (9)
will relate solutions of these complex twisted fields to
complex solutions at nonzero μ.
Since the stereographic coordinate ut is complex from

the beginning, the “complexification” of it needs to be
done carefully. One way to achieve it is to complexify the
real d.o.f. contained in it; see also [21]. For that write
ut ¼ rt þ ist with rt ¼ cot θt

2
cosϕt and st ¼ cot θt

2
sinϕt

3As will be shown there, Eqs. (8a), (8b), (10a), and (10b) will
remain valid at generic μ with complex fields, whereas Eqs. (8c)
and (10c) will be replaced by Eqs. (13) and (15).

4To obtain (12), one uses relations like sin2ð…Þþcos2ð…Þ¼1,
etc., which remain valid for complex arguments.
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[see (1)] and insert complexified angles on the right-hand
sides, which automatically complexify the formerly real
variables (rt, st) on the left-hand sides.
An equivalent5 complexification is to treat ut and its

complex conjugate as independent, renaming u�t → v�t :

ut ¼ cot
θt
2
eiϕt ¼ ηt;1 þ iηt;2

1 − ηt;3
; ð13aÞ

v�t ¼ cot
θt
2
e−iϕt ¼ ηt;1 − iηt;2

1 − ηt;3
: ð13bÞ

The reverse transformation is

θt ¼ 2arccot
ffiffiffiffiffiffiffiffiffi
utv�t

p
; ϕt ¼ −

i
2
log

ut
v�t

: ð14Þ

From these representations one can derive the correspond-
ing twisted boundary conditions for ut and v�t ,

utðx2 þ βÞ ¼ e−μβutðx2Þ; ð15aÞ

v�t ðx2 þ βÞ ¼ eμβv�t ðx2Þ; ð15bÞ

as well as their Lagrangian,

L0ðut; v�t Þ ¼ 4
∂νut∂νv�t
ð1þ utv�t Þ2

: ð16Þ

Note that for generic chemical potential, ϕt is complex and
vt ≠ ut; for purely imaginary chemical potential, ϕt stays
real and vt ¼ ut [which is why we defined v�t in Eq. (13b)].
Again, due to the analogue of Eq. (9), Lμðu; v�Þ ¼

L0ðut; v�t Þ, the untwisted fields u ¼ eμx2ut, v� ¼ e−μx2v�t
are periodic and (complex) solutions at nonzero μ.

C. Complex solutions

Complex coordinates and derivatives will again be useful
to write the Lagrangian with complexified fields as

L0ðut; v�t Þ ¼ 4
∂ut∂�v�t þ ∂�ut∂v�t

ð1þ utv�t Þ2
: ð17Þ

The equations of motion can be derived from it straight-
forwardly,

∂∂�ut ¼
2v�t

1þ utv�t
∂ut∂�ut; ð18aÞ

∂∂�v�t ¼
2ut

1þ utv�t
∂v�t ∂�v�t : ð18bÞ

Although still second order differential equations, they
can in fact easily be solved in a BPS-like manner:

ut ¼ utðzÞ; v�t ¼ v�t ðz�Þ ðL0 ¼ þ4πqÞ; ð19aÞ

ut ¼ utðz�Þ; v�t ¼ v�t ðzÞ ðL0 ¼ −4πqÞ; ð19bÞ

or

ut ¼ utðzÞ; v�t ¼ v�t ðzÞ ðL0 ¼ 0 ¼ qÞ; ð20aÞ

ut ¼ utðz�Þ; v�t ¼ v�t ðz�Þ ðL0 ¼ 0 ¼ qÞ: ð20bÞ

In the limit of purely imaginary μ including μ → 0,
where we have argued that real solutions vt ¼ ut exist,
the first set of solutions (19) becomes a single holomorphic/
antiholomorphic BPS solution, respectively [since vt ¼
vtðzÞ and vt ¼ vtðz�Þ, respectively]. The second set of
solutions (20) can only become constants in this limit.
Consistently, the solutions (20) possess vanishing action.
It is therefore tempting to see what became of the

topological properties for these complex solutions. The
formal equivalent of the topological density,

q ¼ 1

π

∂ut∂�v�t − ∂�ut∂v�t
ð1þ utv�t Þ2

; ð21Þ

appears in the analogue of the BPS relation,

L0 ¼ 8
∂�ut∂v�t

ð1þ utv�t Þ2
þ 4πq ¼ 8

∂ut∂�v�t
ð1þ utv�t Þ2

− 4πq: ð22Þ

The first set of solutions (19) has L0 ¼ �4πq (as in their
μ → 0 BPS limit), whereas for the second set of solutions
not only the Lagrangian vanishes but also the topological
density.
The topological density q is still a total derivative:

q ¼ i
2π

ð∂̄A − ∂ĀÞ; ð23Þ

where ∂̄ ¼ ∂� and

A
ð−Þ

¼ i
∂ð−Þ logðut=v�t Þ
1þ utv�t

: ð24Þ

We postpone the meaning of topology in the complex
setting to the corresponding discussion in the CP(N-1)
framework in Sec. III C.

D. Remark on O(N) models

The (real) O(3)model can be trivially embedded into higher
O(N) models, through ξ⃗ ¼ ð0;…; η1; η2; η3;…; 0ÞT ∈ RN ,

5The transformation between the two complexifications is
linear, namely, ðut; v�t Þ ¼ ðrt þ ist; rt − istÞ.
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jξ⃗j ¼ 1, which preserves both the global symmetry—
including associated twist and chemical potential—and the
(second order) equations of motion for the nonvanishing
components. Embedding O(3) BPS solutions, one therefore
still obtains classical solutions for O(N). These so-called
unitons [18] are no longer protected by topology [since the
relevant homotopy group π2ðSN−1Þ is trivial for N > 3]. For
our complexification of O(3) instantons, however, this topo-
logical protection was not essential, and the procedure should
straightforwardly carry over to O(N) models at nonzero
chemical potential, yielding “complexified unitons” as the
corresponding solutions.

E. Example: Constituent

As an example we consider the simplest solutions of
Eq. (19a),

ut ¼ eiμðz−zð1ÞÞ; v�t ¼ eiμðz−zð2ÞÞ� ; ð25Þ

that obey the boundary conditions (15), since ut∼
expð−μx2Þ, v�t ∼ expðμx2Þ. As we will see, these are the
analogues of instanton constituents at purely imaginary μ
discussed around Eq. (11).
The product

utv�t ¼ e2iμðx1−Δx1Þ; Δx1 ¼
zð1Þ þ zð2Þ

2
ð26Þ

is static and so is θt according to (14). In this way it obeys its
periodic boundary condition (10b); nonetheless, θt is com-
plex (unless μ is purely imaginary). The second angle ϕt is
proportional to the logarithm of the ratio ut=v�t [see Eq. (14)]
and thus x1-independent, ϕt ¼ iμðx2 − ½zð1Þ − zð2Þ��=2iÞ.
This linear dependence on x2 is the simplest way of picking
up a factor iμβ in the boundary condition (10b), and ϕt is
generically complex, as expected.
For the action and topological density we use that

∂ut∂�v�t ¼ −μ2utv�t is static, too, as is

L0 ¼ −
μ2

cos2ðμðx1 þ Δx1ÞÞ
¼ 4πq; ð27Þ

which agrees with the analytic continuation of the corre-
sponding formula in the twisted case [4] up to the fact that
the shift Δx1 can also take complex values. However, to
achieve ut ¼ vt in the limit of purely imaginary μ, the
parameters must fulfil zð1Þ ¼ zð2Þ, and Δx1 is real.
Figure 1 shows the behavior of this density for a complex

μ as a function of x1, which is oscillatory and decays
exponentially with the imaginary part of μ.
In expression (27) for q, the argument of the cosine

describes a contour in the complex plane, in the direction of
μ and parametrized by x1. The corresponding integral can
be analyzed by deforming the contour; see Fig. 2. In any

case, for the topological charge and action to be finite, the
term 1= cos2 needs a decaying part along this direction; i.e.,
μ must possess an imaginary part. Further note that—as an
unavoidable consequence of the complexification of the

FIG. 1. Logarithmic plot of �Re q (orange/blue) and �Im q
(red/green) of the charge density (27) with Δx1 ¼ 0 and
μ ¼ 2.5þ i, compared to the density at purely imaginary
μ0 ¼ i [i.e., proportional to 1=cosh2ðx1Þ, dashed grey, multiplied
by jμj2]. The strong dips mark zeros (of just the real or imaginary
part) at which the corresponding signs (and thus colors) change.

FIG. 2. Evaluation of the density (27) as a contour integral of
cosðzÞ−2 along the tilted real line zðx1Þ ¼ μx1, for μ ¼ 2.5� i
(black/red) and Δx1 ¼ 0. As the infinite arcs do not contribute,
the contours can be closed with the imaginary axis, however, with
different orientations for Im μ ≶ 0, causing the jump in the total
charge (29). The latter has a singularity at Im μ ¼ 0, when the
integrand is purely oscillatory and the contour traverses the poles
at z ¼ ð2nþ 1Þπ.
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theory—there exist “prohibited” values of Δx1 for any
given μ, for which the denominator in (27) vanishes
(at some x1) and the topological density is singular
(i.e., the contour in Fig. 2 crosses a pole). For any other
choice, the total topological charge (and the total action
S ¼ 4πQ) can be evaluated as

ReQ ¼ β

2π
jIm μj; ð28aÞ

ImQ ¼ β

2π
Re μ · signðIm μÞ ðIm μ ≠ 0Þ; ð28bÞ

as visualized in Fig. 3, or, in a more condensed way,

Q ¼ −
iμβ
2π

signðIm μÞ ¼ β

2π

ffiffiffiffiffiffiffiffi
−μ2

q
ðIm μ ≠ 0Þ; ð29Þ

where we have made use of the branch cut of the square
root function at negative arguments. This again agrees with
the twisted case of Eq. (11). As the topological charge of
these solutions is fractional, we will refer to these solutions
as constituents. In the CP(N-1) framework we will discuss
more general solutions, including full instantons made out
of such a constituent and another one with a complemen-
tary charge; see Sec. III D.

Naively extending the notion of covering to complex
target spaces, we can give an interpretation of the complex
fractional charge: as x2 ∈ ½0; β� and x1 ∈ ð−∞;∞Þ, the
angles ϕt and θt cover the intervals ½0; iμβ� (“fractional”)
and ½0; π� (“full”), where the direction of the latter depends
on Im μ giving the sign of Q.
For a purely real μ, the topological and action

densities of these constituent solutions do not decay
in space and for Δx1 ∈ R even possess infinitely many
poles, such that the total topological charge and action
integrals are both nonconvergent. One may “regularize”
this singularity by extending the chemical potential into
the complex plane, where, as we have shown, the
topological charge and action of such solutions become
finite indeed, and then returning to real chemical
potentials (such a strategy—in a complex coupling—
is followed in attempts to define nonalternating series
through lateral Borel resummations, which generically
produce imaginary parts and jumps, too). The resulting
topological charge and action depend on the way the
original real μ is approached: they receive imaginary
parts that are different on both sides of the real line and
as the imaginary part of μ tends to zero, the charge and
action are just these imaginary jumps. In the integral of
the corresponding densities (27), one may understand
this as a reversed orientation of the integration contour
when crossing the poles; see Fig. 2.
Other constituent solutions can easily be shown to

contain jumps in Q at shifted Im μ. Consider twisted
solutions with additional Fourier components periodic in
x2

6: ut0 ¼ ut · expð2πrz=βÞ and v�0t ¼ v�t · expð2πrz�=βÞ
with r ∈ Z. This amounts to shifting the chemical poten-
tial, ðut; v�t Þ0 ¼ ðut; v�t Þμ→μþ2πir=β, and thus all properties
discussed so far apply upon shifting the imaginary part of
μβ by a multiple of 2π.
Finally, note that in our solution ϕt ¼ iμx2 þ const and

θtðx1Þ, such that the untwisted angles (8b)—and hence all
field representations—are completely x2-independent.
Actually, constant ϕ’s drop from the Lagrangian, which
reduces to 2Lμ ¼ ð∂x1θÞ2 − μ2sin2θ. This is the sine-
Gordon quantum mechanics analyzed in [16,21], but with
a complex prefactor in the potential term, and θðx1Þ is a
(complex) kink.

III. CP(N-1) MODELS

For the family of CP(N-1) models with chemical
potential, we can repeat the steps done in the O(3) model:
incorporating the chemical potential into twisted boundary
conditions, complexifying the twisted fields, and looking
for BPS-like complex solutions.

FIG. 3. Real (top) and imaginary part (bottom) of the total
charge Q of a constituent solution as a function of μβ [Eqs. (28)
and (29)]: ImQ jumps at Im μ ¼ 0.

6See also the discussion of Fourier components below
Eq. (65).
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A. Preparation: BPS solutions, symmetries,
chemical potential, and twisted fields

The CP(N-1) field n is an N-dimensional complex vector
with n†n ¼ 1. Contact between the lowest nontrivial model
CP(1) and the O(3) model, to which it is equivalent, can be
made by the transformation ηa ¼ n†σan with σ1;2;3 the
Pauli matrices.
The Lagrangian (at μ ¼ 0) can be written down most

conveniently by virtue of an auxiliary gauge field:

L0¼ðDνnÞ†Dνn; Dν¼ ∂νþ iAν; n†n¼ 1: ð30Þ

Since Aν enters the Lagrangian quadratically, its equation
of motion Aν ¼ in†∂νn can be used at any point in the
calculation, e.g., to arrive at an action quartic in n,7 but Aν

can also be treated as an additional field to be path
integrated over. This gauge field represents a U(1) gauge
invariance n → eiΛðxÞn (with the same phase Λ for all
n-components) under which Aν → Aν − ∂νΛ. One of the
2N − 1 real d.o.f. in the normalized field can thus be
gauged.
Searching for classical solutions we can again make use

of the BPS formalism. Defining complex gauge fields and
covariant derivatives,

A
ð−Þ

¼ ðA1 ∓ iA2Þ=2; D
ð−Þ

¼ ðD1 ∓ iD2Þ=2; ð31Þ

the Lagrangian can be written as

L0 ¼ 2ðjDnj2 þ jD̄nj2Þ ð32Þ

¼ 4jD
ð−Þ

nj2 ∓ 2πq; ð33Þ
with topological density

q ¼ 1

π
ðjDnj2 − jD̄nj2Þ; ð34Þ

that is proportional to the curl of the gauge field and thus a
total derivative [see Eq. (56) below]. The action thus
becomes minimal if

D
ð−Þ

na ¼ 0 ∀ a; ð35Þ

or, for unconstrained fields n ¼ v=jvj, if

∂ð�Þva ¼ 0 ∀ a: ð36Þ

The latter are again solved by (anti)holomorphic functions.

The global U(N) symmetry n → Vn with V ∈ UðNÞ
can be used to define N − 1 independent conserved charges
and chemical potentials. As in the O(3) model, the chemical
potentials enter as Hermitian terms next to the time
derivative,

Lμ ¼ L0with
∂2na → ð∂2 − μaÞna
∂2n�a → ð∂2 þ μaÞn�a

a ¼ 1;…; N: ð37Þ

A chemical potential that is the same for all components
amounts to a rotation in the U(1) gauge symmetry and
therefore has no effect.
We collect the chemical potentials into a diagonal matrix,

M ¼ diagðμ1;…; μNÞ; ð38Þ

and again define twisted fields,

nt ≔ e−Mx2n; ð39aÞ

n†t ≔ n†eMx2 ðimaginary μÞ; ð39bÞ

that obey twisted boundary conditions,

ntðx2 þ βÞ ¼ e−Mβntðx2Þ; ð40aÞ

n†t ðx2 þ βÞ ¼ n†t ðx2ÞeMβ ðimaginary μÞ: ð40bÞ

The same relation between Lagrangians with and with-
out μ applies as before in Eq. (9),

LμðnÞ ¼ Lμ¼0ðntÞ: ð41Þ

However, the problem encountered in the O(3) model
also occurs here: for generic μ the definitions in Eq. (39)
and consequently the boundary conditions Eq. (40) are not
compatible with complex conjugation, unless μ is purely
imaginary. For the latter, solutions can be obtained by
means very similar to those in O(3).

B. Complexification and complex solutions

Looking for saddles at nonzero chemical potential,
we first have to complexify the fields. As in the O(3)
model we do this by treating the field nt and its conjugate as
independent, renaming n†t → m†

t , these fields are subject to
the constraint

m†
t nt ¼ 1; ð42Þ

and to twisted boundary conditions

ntðx2 þ βÞ ¼ e−Mβntðx2Þ; ð43aÞ

m†
t ðx2 þ βÞ ¼ m†

t ðx2ÞeMβ: ð43bÞ

7Starting with the quartic CP(1) action and using ηa ¼ n†σan,
one obtains half the O(3) action (2a), which explains the factor of
2 between the bound 2πq in Eq. (54) below and the O(3) bound
4πq in Eq. (4).
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For the new Lagrangian generalizing (30), one may
allow for an independent auxiliary gauge field in the
derivative of m†

t , but by its equation of motion it equals
the complex conjugate of Aν. Eventually we find

L0ðmt; ntÞ ¼ ½Dνmt�†Dνnt; Dν ¼ ∂ν þ iA�
ν ð44Þ

¼ −m†
tD

2
νnt; ð45Þ

where the auxiliary gauge field

Aν ¼ im†
t ∂νnt; ð46Þ

is now complex as well (and periodic). It is related to a
complexified gauge symmetry GLð1;CÞ

nt → eiΞðxÞnt; m†
t →m†

t e
−iΞðxÞ; Aν→Aν−∂νΞ ð47Þ

with Ξ a complex number (field). This and the complex
constraint (42) remove four of the 4N real d.o.f., which are
therefore twice the 2N − 2 real d.o.f. of the real case.
In the same way the global symmetry is extended to

GLðN;CÞ,

nt → Vnt; m†
t → m†

t V−1; V ∈ GLðN;CÞ: ð48Þ

The complex nature of the gauge field also requires a
modified definition of the complexified covariant derivative
[completing (31)]:

D
ð−Þ

¼ ðD1 ∓ iD2Þ=2 ¼ ∂ð−Þ þ i A
ð−Þ

; ð49aÞ

D ¼ ðD1 − iD2Þ=2 ¼ ∂ þ iĀ�; ð49bÞ

D̄ ¼ ðD1 þ iD2Þ=2 ¼ ∂̄ þ iA�; ð49cÞ

where ∂̄ ¼ ∂� [see (5)], but in the gauge field we have to
distinguish between combinations of A1 and iA2 denoted
by a bar and complex conjugation denoted by an asterisk.
To be fully clear we list all four quantities:

A ¼ ðA1 − iA2Þ=2; Ā ¼ ðA1 þ iA2Þ=2; ð50Þ

A� ¼ ðA�
1 þ iA�

2Þ=2; Ā� ¼ ðA�
1 − iA�

2Þ=2: ð51Þ

Only for real A1;2 one has A� ¼ Ā and Ā� ¼ A and D ¼ D
(and Dν ¼ Dν). The modified covariant derivatives satisfy
D† ¼ −D̄ and D̄† ¼ −D. With these definitions, the
Lagrangian is conveniently written as

L0 ¼ 2ð½Dmt�†Dnt þ ½D̄mt�†D̄ntÞ ð52Þ

¼ −2m†
t ðD̄DþDD̄Þnt; ð53Þ

and rewritten as

L0 ¼
�
4½D̄mt�†D̄nt þ 2πq

4½Dmt�†Dnt − 2πq;
ð54Þ

with “topological density”

q ¼ 1

π
ð½Dmt�†Dnt − ½D̄mt�†D̄ntÞ: ð55Þ

These formulas are the analogues of the real case expres-
sions (32)–(34) (which they become for mt → nt and
D → D). The topological density,8

q ¼ 1

π
½D; D̄� ¼ i

2π
½D1; D2� ¼

1

2π
ϵμν∂νAμ; ð56Þ

is now generically complex—precluding the application of
the conventional BPS argument—but still a total deriva-
tive.9 As such, it does not contribute to the equations of
motion for m†

t and nt, which are derived in the usual way,
incorporating the constraint (42) by a Lagrange multiplier,
resulting in

DD̄nt − ½m†
t ðDD̄ntÞ�nt ¼ 0; ð57aÞ

ðDD̄mtÞ† − ½ðDD̄mtÞ†nt�m†
t ¼ 0: ð57bÞ

Note that in these equations one may commuteDwith D̄
and D with D̄ (in both terms simultaneously10). These
equations are again easily solved by vanishing complex

covariant derivatives, D
ð−Þ

nt ¼ 0 and D
ð−Þ

mt ¼ 0, for all
components.
Furthermore, the variational principle implies that, for

stationary points,11 all complex covariant derivatives must
vanish at the spatial boundaries, i.e.,

jx1j → ∞∶ jD
ð−Þ

ntj → 0; jD
ð−Þ

mtj → 0; ð58Þ

forcing the fields to assume the asymptotic forms (modulo
a gauge transformation)

8The operator ½D; D̄� in (55) was originally sandwiched
between m†

t and nt, but since it is a scalar, it is just a product
with m†

t nt ¼ 1. The analogous commutator ½D; D̄� relates q� to
the curl of A�.

9The topological density is also GLðN;CÞ invariant and
periodic.

10Since the commutators are scalars and drop out of the
particular projectors in the equations of motion.

11For the real model, this follows from a finite action require-
ment for all configurations. This no longer holds in the com-
plexified theory.
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x1 → �∞∶ nt → eiΞ�ðx2Þn�;

m†
t → e−iΞ�ðx2Þm†

�; ð59Þ

i.e., an x2-dependent element of the GLð1;CÞ gauge
symmetry (times a constant vector), individually for each
boundary [the derivation is analogous to that for the real CP
(N-1) model; see, e.g., [22]]. This establishes an asymptotic
relation between the a priori independent fields m† and n
and provides the basis for our topological discussions
below (Sec. III C).
We can again construct unconstrained fields as

nt ¼
vtffiffiffiffiffiffiffiffiffi
w†
t vt

q ; m†
t ¼

w†
tffiffiffiffiffiffiffiffiffi

w†
t vt

q ; ð60Þ

such that m†
t nt ¼ 1 indeed. The action density in these

unconstrained variables is

L0 ¼
∂νw

†
tffiffiffiffiffiffiffiffiffi

w†
t vt

q P
∂νvtffiffiffiffiffiffiffiffiffi
w†
t vt

q ; P ¼
�
1N −

vtw
†
t

w†
t vt

�
; ð61Þ

where P is a projector perpendicular to vt and
w†
t ∶ Pvt ¼ 0 ¼ wtP.
Again, the equations of motion (57) are fulfilled, if the

BPS-like conditions ∂ð�Þvt ¼ 0 and ∂ð�Þwt ¼ 0 are obeyed
[as in (36), but separately for vt and wt]. The four sets of
solutions then amount to

vt ¼ vtðzÞ wt ¼ wtðzÞ ðL0 ¼ þ2πqÞ; ð62aÞ
vt ¼ vtðz�Þ wt ¼ wtðz�Þ ðL0 ¼ −2πqÞ; ð62bÞ

or

vt ¼ vtðzÞ wt ¼ wtðz�Þ ðL0 ¼ 0 ¼ qÞ; ð63aÞ
vt ¼ vtðz�Þ wt ¼ wtðzÞ ðL0 ¼ 0 ¼ qÞ; ð63bÞ

as in the O(3) model, Eqs. (19) and (20). For these BPS-like
solutions, gauge fields and charge density only depend on
derivatives of logðw†

t vtÞ:

A
ð−Þ

¼ � i
2
∂ð−Þ logðw†

t vtÞ; q ¼ � 1

4π
Δ logðw†

t vtÞ; ð64Þ

analogous to the well-known real case.
A generic (anti)holomorphic solution satisfying the

boundary condition (43) is specified by two Fourier series,

vtðzð�ÞÞ ¼ e�iMzð�Þ
Xrþ
r¼r−

aðrÞe
2π
β rz

ð�Þ ð65aÞ

wtðzð�ÞÞ ¼ e∓iM†zð�Þ
Xsþ
s¼s−

bðsÞe
2π
β sz

ð�Þ
; ð65bÞ

with vector valued coefficients aðrÞ, bðsÞ ∈ CN . Despite the
general ansatz, these expansions are not independent, as

shown in the following. Without loss of generality12 we can
restrict Im μa ∈ ð−2π=β; 0�. The asymptotic form of (65)
for the (exemplary) holomorphic case at x1 → �∞ then
reads

vtðzÞ → eiMzaðr�Þe
2π
β r�z; ð66aÞ

w†
t ðz�Þ → ðbðs�ÞÞ†eiMz�e

2π
β s�z

�
: ð66bÞ

The term e−ImMx1 projects onto some direction a� and
b�, respectively, determined by the imaginary parts of the
eigenvalues μa. The dominating μ’s at x1 → �∞ are
denoted by μ�. Then,

w†
t vtðx1; x2Þ
→ ðb†�a�Þ · e

2π
β ðr�þs�þiμ�β=πÞx1 · ei

2π
β ðr�−s�Þx2 : ð67Þ

Demanding finite fundamental fields nt, m
†
t , one needs to

impose w†
t vt ≠ 0, according to the parametrization (60).

This establishes a necessary (but not sufficient) condition
for the powers in the expansions (65): since w†

t vtðx1; x2Þ is
periodic in x2, the (integer) quantity

Kðx1Þ ≔
−i
2π

Z
β

0

∂2 logw
†
t vtdx2 ð68Þ

counts the winding of w†
t vt around the origin, for any fixed

x1. It jumps if (and only if) w†
t vt crosses the origin.

Avoiding a divergence of nt, m†
t in the bulk therefore

requires a constant Kðx1Þ ¼ K ∈ Z. Comparison with the
asymptotics (67) yields

Kðx1 → �∞Þ ¼ r� − s� ð69Þ
and thus rþ − sþ ¼ r− − s−, or

rþ − r− ¼ sþ − s−: ð70Þ
This condition effectively equates the dimensions of the
moduli spaces of the two “partial solutions” v and w†.
Furthermore, the vectors aðr�Þ and bðs�Þ must be chosen
such that b†�a� ≠ 0 in (67). If additionally one requires the
fields to belong to the original (not complexified) field
manifold in the limit of purely imaginary (or vanishing) μ,

all coefficients in (65) must be chosen identical, aðrÞa ¼ bðrÞa .

C. Topology

The topological charge, as defined in Eq. (56) in analogy
to the real case, is directly related to the difference
ΔΞ ≔ Ξþ − Ξ−:

12Any solution for μa is equivalent to a solution for
μ0a ¼ μa − i 2πβ ka, ka ∈ Z with a different periodic part, obtained

by shifting the coefficients aðrÞa → aðr�kaÞ
a and bðsÞa → bðs�kaÞ

a , for
the (anti)holomorphic cases, respectively.
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2πQ ¼ −
Z
∂ðR×SβÞ

Aνdσν ¼ −
Z

β

0

dx2A2jx1→þ∞
x1→−∞ ð71aÞ

¼ ΔΞðβÞ − ΔΞð0Þ; ð71bÞ

where we have used the periodicity of the gauge field and
its asymptotic form defined by Eqs. (59) and (46). The real
part of Q, corresponding to the compact direction of
GLð1;CÞ, retains its interpretation as a winding number
from the real model. In particular, nontwisted solutions of
the complexified model, which must satisfy ΔΞðβÞ ¼
ΔΞð0Þ þ 2πk, still exhibit an integer charge Q ¼ k, asso-
ciated now with π1ðGLð1;CÞÞ ¼ Z. Any fractional (real)
and/or imaginary contribution to Q must therefore be
rooted entirely in the twist, i.e., in the chemical potential.
For that we combine the asymptotic behavior (59) with the
twisted boundary condition (43) to eiΞ�ðβÞ · n� ¼ eiΞ�ð0Þ ·
e−Mβn� and similarly for m� (as m†

�n� ¼ 1). Seen as a
vector equation, this implies that n� are eigenvectors of
e−Mβ. The corresponding eigenvalues are of the form e−μ�β,
where μ� ∈ fμ1;…μNg, and which eigenvalue is assumed
is determined by the asymptotics of n [see also below (66b)
for BPS-like solutions]. It follows that Ξ�ðβÞ − Ξ�ð0Þ ¼
iμ�β modulo 2π and with Δμ ≔ μþ − μ− the topological
charge becomes

Q ¼ kþ i
β

2π
Δμ ¼

�
k −

β

2π
ImΔμ

�
þ i

β

2π
ReΔμ: ð72Þ

If μþ ¼ μ−, the charge is again integer. This is the case in
particular if nþ ¼ n−; in turn, a noninteger charge requires
the solution to interpolate between different field compo-
nents. The reverse is only true for mutually distinct μa.
The topological interpretation of a complex charge can

be illustrated nicely by virtue of the Polyakov line

Wðx1Þ ¼ exp

�
i
Z

β

0

dx2A2ðx1; x2Þ
�

∈ GLð1;CÞ: ð73Þ

Then Q ¼ i½logW�x1→þ∞
x1→−∞ has the interpretation of an

accumulated change of W as x1 goes from −∞ to þ∞.
Figure 4 shows both the fractional covering of the compact
direction of the gauge group—reflected in a fractional (real)
contribution toQ—as well as the extension of the trajectory
to a noncompact dimension, resulting in an imaginary
contribution to Q when ReΔμ ≠ 0.

D. Example: Full instanton

As an example we will now discuss a full instanton at
generic μ, which—roughly speaking—consists of two
constituents of the form discussed in Sec. II E, rendering
it time dependent. We follow and slightly extend the
approach in [5] and restrict ourselves to CP(1); similar
discussions apply to higher CP(N-1)’s. With the choice of
chemical potentials μ2 ¼ −μ1 ¼ −μ=2, where μ is the

chemical potential discussed in the O(3) model [and a
constant offset in μ2 and μ1 has no effect as discussed below
(37)], particular solutions read

vtðzÞ ¼
�
e−i

μ
2
z½1þ λ2e2πz=β�

ei
μ
2
zλ1

�
; ð74aÞ

w†
t ðz�Þ ¼ ðe−iμ2z� ½1þ λ�2e

2πz�=β�; eiμ2z�λ�1Þ: ð74bÞ

They are of the BPS-like form of Eq. (62a) and do obey
the required boundary conditions (43). Moreover, the
Fourier coefficients a and b in (65) have been chosen
identical. The absence of the expð2πzð�Þ=βÞ term in the
second component amounts to a choice of gauge. The
parameters λ1;2 are moduli of the solution, among which
λ2 > 0 can be achieved by shifting x2 accordingly.
Using formula (64), the action/topological density is the

Laplacian of the logarithm of13

FIG. 4. Top: Polyakov line (73) of the full instanton solution
from Sec. III D, for μβ ¼ 2πð0.5þ 0.2iÞ [similar to case (b) in
Figs. 6–8]. ReQ and ImQ are given by the difference of the
asymptotic values (as x1 → �∞) of its angular (compact) and
radial (noncompact) component, respectively. Two constituents
can be recognized, where Wðx1Þ changes rapidly. Only the left
one contributes to ImQ, while the right one has charge Q ¼ 1
(W essentially winds around the cylinder once). Bottom: Poly-
akov line for purely imaginary μβ ¼ 2π · 0.2i. The constituents
are still visible, but the radial component of W is constant.

13Up to a common prefactor eiμx1, which corresponds to a
gauge transformation and drops out after taking the Laplacian.
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w†
t vt ¼ e0·x1 þ 2λ2 cosð2πx2=βÞe2π=β·x1 þ λ22e

4π=β·x1

þ jλ1j2e2iReμx1e−2Imμ·x1 ; ð75Þ

where we have emphasized four x1 exponents. The inter-
pretation of such a solution relies on the fact that if one of
the exponents dominates, then the logarithm becomes a
linear function in x1 and q vanishes. Therefore, the
topological charge is concentrated near points where two
of the four terms above intersect (see below). From the
same formula it follows that the charge of these lumps is
given by the difference of the slopes of intersecting graphs.
Note that this statement concerns the full complex charge/
action: once the real parts of the exponents have determined
the dominating terms/graphs, the full (complex) prefactor
of x1 from the dominating exponent enters logðw†

t vtÞ and
thus the charge. Likewise, the total topological charge is
given as the difference of the dominating exponents for
x1 → �∞ [see also Eq. (71)].
In this example, we focus on the effect of a varying

chemical potential μ on this solution. The first three terms
in (75) are thus considered fixed in this context. Among
them, the first, constant term dominates at x1 → −∞, while
the third term dominates at x1 → þ∞, which would
determine a total charge Q ¼ ð4π − 0Þ=4π ¼ 1. The sec-
ond term gives rise to an x2 dependence in the charge
density, localized at the single common intersection
point x1 ¼ −β=2π · log λ2.
The slope −2Im μ of the fourth contribution can now

compete with 0 or 4π=β and thus affect both the asymptotic
behavior and number/location(s) of intersection points: for
intermediate Im μ ∈ ð−2π=β; 0Þ, the total charge remains
Q ¼ 1; see also Fig. 5. For purely imaginary μ (with
ω ∈ ½0; 1�), this is the case discussed in [5]. Depending on
the prefactors, there are one or two intersection points; i.e.,
the topological density comes in one (time-dependent) or
two lumps (“constituents”) [see the cases (d) vs (e) below].
For Im μ > 0, the behavior at x1 → −∞ is changed

and the total charge becomes Q ¼ ð4π − 2iβμÞ=4π; like-
wise for Im μ < −2π=β, the behavior at x1 → þ∞ is
changed and Q ¼ ð2iβμ − 0Þ=4π. This qualitative differ-
ence is also reflected in the asymptotic form of the fields
themselves and the corresponding eigenvalues μ� of M
(cf. Sec. III C):

8>>>>>>>><
>>>>>>>>:

nþ¼
�
1

0

�
; n−¼

�
0

1

�
; μ�¼�μ

2
for Imμβ<−2π;

n�¼
�
1

0

�
; μ�¼−μ

2
else;

nþ¼
�
0

1

�
; n−¼

�
1

0

�
; μ�¼∓ μ

2
for Imμβ>0;

ð76Þ

(and similar for m†
t ). Only in the first and last case, where

nþ ≠ n−, can there exist a noninteger contribution to the
total charge, which can be summarized as

Q ¼ i
β

2π
ðμΘð−Im μÞ þ μ̄Θð−Im μ̄ÞÞ ð77Þ

¼

8>><
>>:

i μβ
2π for Im μβ < −2π;
1 else;

i μ̄β
2π

�
¼ 1 − i μβ

2π

�
for Imμβ > 0;

ð78Þ

with Θ the Heaviside function and

FIG. 5. Real (top) and imaginary part (bottom) of the total
charge Q of the full instanton solution [Eqs. (77), (78), or (80)]
as a function of μβ. In the region Im μβ ∈ ð−2π; 0Þ, the charge
is constant, Q ¼ 1, while at its boundaries, ImQ is disconti-
nuous. Note the similarities to Fig. 3. The specific values
(a) to (f), Im μβ ¼ 2π × f0.4; 0.2; 0;−0.3;−0.7;−1.2g and
Re μβ ¼ 0.8π, correspond to the cases depicted locally in
Figs. 6–8 below.
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μ̄ ≔ −i
2π

β
− μ ð79Þ

playing the role of a complementary chemical potential (for
this solution).14 In a condensed way,

Q ¼ 1

2
þ β

4π

� ffiffiffiffiffiffiffiffi
−μ2

q
þ

ffiffiffiffiffiffiffiffi
−μ̄2

q �
: ð80Þ

Here and in (77), the total charge of this solution can be
recognized as the sum of two constituents from the lowest
Oð3Þ ¼ CPð1Þ model; cf. Sec. II E and in particular
Eq. (29) with μ and μ̄, respectively. Note, however, that

(a) (b) (c)

(d) (e) (f)

FIG. 6. Intersection picture for the topological charge q of the full instanton solution (74): log jw†
t vtj given in (75) (plotted

here for fixed x2 ¼ β=2) has piecewise dominating exponents and consequently q is localized in lumps at the intersection points of their
(linear) graphs. Their number and location(s) vary with Im μ, from (a) to (f): Im μβ ¼ 2π × f0.4; 0.2; 0;−0.3;−0.7;−1.2g and Re μβ ¼
0.8π (as in Fig. 5) with common parameters λ1 ¼ 10−1, λ2 ¼ 10−4. Charges of these lumps are either integer Q ¼ 1 or fractional

Q ¼ �i μ
ð−Þ

times β=2π (the latter factor is neglected in the figure labels). At Im μβ ¼ 0 [transition (b) ↔ (d) at (c)] and Im μβ ¼ −2π
[transition (e) ↔ (f)], intersection points and the corresponding topological lumps (dis)appear at x1=β ¼∓ ∞. The strong dips
associated with the unit charged instanton in (a)–(c) are due to the time-dependent contribution in (75) (which is maximally negative
for x2 ¼ β=2).

FIG. 7. Logarithmic plot of Re qðx1; x2Þ (cut off at jRe qj ¼ e−5) for the full instanton solution (74) corresponding to Fig. 6. The
colors encode signs (orange: Re q > 0, blue: Re q < 0). In (a) and (b) (Im μ > 0), the density comes in a time-dependent lump with
Q ¼ 1 on the right and a fractional (almost static) lump with Q ¼ −μβ=2π on the left. Directly at Im μ ¼ 0 [(c)], the latter becomes
entirely delocalized (i.e., purely oscillatory), resulting in a nonconverging total charge. Note that, going from (a) to (c), the unit charged
peak becomes less sharp and more extended (see insets). For Im μβ ∈ ð−2π; 0Þ [(d) and (e)], it splits up into two (almost static)
constituents, of which only the left one remains as Im μβ < −2π (f).

14For purely imaginary μ, Eq. (11), this definition is compat-
ible with the complementary twist ω̄ ¼ 1 − ω defined in [4].
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the Heaviside function in (77) differs from the sign function
in (29) and that the square roots in (80) come with half the
prefactor and an additional “interaction” term 1=2. As a
result, Q in (78) is either the charge of one constituent
or unity.
This constituent picture will essentially be validated now,

looking at the behavior of the topological density. In
particular, the jumps in the total charge coincide with
constituents (dis)appearing at spatial infinity.
We analyze the topological density Δ logðEq: ð75ÞÞ=4π

fixing the parameters λ1;2 and Re μβ ¼ 0.8π, while walking
with the imaginary part of the chemical potential,
Im μβ ∈ 2π × ½0.4;−1.2�, through the jumps. Figure 6
visualizes the intersections in the logarithm, whereas the
real and imaginary parts of the corresponding charge
profiles are shown in Figs. 7 and 8. In (a) of each figure,
μβ ¼ 2πð0.4þ 0.4iÞ, and the charge density is split into a
sharply peaked unit charged instanton (right) and a frac-
tional constituent (left), carrying the remaining charge
Q ¼ 0 − iμβ=2π ¼ 0.4–0.5i. As Im μ → 0, the latter is
pushed towards x1 ¼ −∞, while the former becomes less
acute and more extended (but still maintaining unit charge)
in (b). Directly at Im μ ¼ 0 in (c), two zero exponents
dominate as x1 → −∞, among them the one with the
oscillatory part expð2iRe μx1Þ. As a consequence, the
density behaves asymptotically (at the corresponding
end) as an inverse squared cosine, which is exactly the
same nonintegrability as for a single constituent discussed
in Sec. II E. As Im μ decreases further in (d) and (e), the
remaining unit instanton is split again into two consti-
tuents with charges proportional to iμ (left) and iμ̄ (right).

As Im μβ → −2π ðIm μ̄β → 0Þ, the latter is pushed to
x1 ¼ þ∞ and only one lump with Q ¼ μ survives for
Im μβ < −2π in (f), whose imaginary part is no longer
compensated by the other constituent. (At Im μβ ¼ −2π, q
is oscillatory again, this time at x1 → þ∞.)

IV. SUMMARY AND OUTLOOK

We have analyzed the equations of motion from the
complex action of two-dimensional sigma models at
nonzero chemical potential. By complexifying the
fields, we were able to push the chemical potential into
properly twisted boundary conditions and to solve these
equations.
In a BPS manner, the solutions are provided by hol-

omorphic and antiholomorphic solutions. Due to the
doubled d.o.f., each solution is given by a pair of functions
in O(3) [Eqs. (19) and (20)] or more generally a pair of
vectors in CP(N-1) [Eqs. (62) and (63)]. These become
identical in the limit of purely imaginary (or vanishing)
chemical potential, where the action and the saddles are
real. At generic μ, these objects have no meaning in
isolation and thus bear certain similarities to quarks and
antiquarks: combinations of holomorphic and antiholomor-
phic vectors result in zero action and topological charge,
like quarks and antiquarks combine into light mesons of
vanishing baryon number. Combinations of just holomor-
phic vectors result in a nontrivial action proportional to
the topological charge (on the level of densities), while
combinations of antiholomorphic vectors result in a non-
trivial action proportional to minus the topological charge,

FIG. 8. Logarithmic plot of Im qðx1; x2Þ (orange: Im q > 0, green: Im q < 0, cut off at jIm qj ¼ e−5) corresponding to Figs. 6 and 7.
In (a)–(c), the imaginary contribution to Q essentially comes from the fractional constituent on the left. The sharp peaks (which are
absent for purely imaginary μ) at the location of the unit charge instanton (right) appear because for x2=β ≈ 1=2 [where
cosð2πx2=βÞ ¼ −1], the μ-dependent term in (75) briefly dominates around x1=β ¼ − log λ2=2π. However, these integrate to zero
(see also the insets) and thus do not yield an imaginary contribution to the total charge. Likewise, the imaginary density of the instanton
in (d) cancels and the imaginary lumps of the two constituents in (e) compensate each other, giving a total ImQ ¼ 0. At the transition to
(f), the right one disappears at x1 → ∞, leaving a residual ImQ ¼ Re μβ=2π.
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similar to (anti)quarks forming heavy (anti)baryons.15

Moreover, the Fourier series of these functions are tightly
linked: they must span an equal range of Fourier summands
and, therefore, their moduli spaces must be of equal
dimension (see the discussion at the end of Sec. III B).
The existence of singularities in the topological density for
specific values of the moduli parameters [as discussed for
the O(3) model in Sec. II E] hints at an even deeper
structure within the moduli space left to future research.
One might think of looking for these objects numerically

on the lattice, as was done for real twisted solutions through
cooling in [5]. Any method relying on minimizing the
action, however, cannot be applied to the complex action.
What could work is an evolution in Langevin time without
noise, such that the complex drift drives the fields to the
complex saddles.
It would be interesting to understand the role of these

paired functions in approximate superpositions, which are
needed for trans-series in (close to) neutral sectors. In some

parameter space of the full instanton, the solutions seem to
be extremely fine-tuned, giving strong action density peaks,
whose imaginary parts fluctuate and cancel.
The coupling of fermions to these objects seems

straightforward. Other desirable quantities of these solu-
tions that are important for physical applications are the
moduli space metric and the fluctuation operator eigen-
modes, the latter giving a first hint at the thimbles
surrounding these saddles. For both, a certain amount of
technicalities from purely imaginary μ should survive. The
(anti)holomorphic formalism should also help to write
down (twisted) doubly periodic solutions for sigma models
compactified in space as well. The ultimate physical goal
would be to understand how the dynamical mass gap at
μ ¼ m (at low temperatures) shows up in a framework
using such solutions.
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