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Building upon our recent study [G. S. Bali et al., Eur. Phys. J. C 78, 217 (2018)], we investigate the
feasibility of calculating the pion distribution amplitude from suitably chosen Euclidean correlation
functions at large momentum. We demonstrate in this work the advantage of analyzing several correlation
functions simultaneously and extracting the pion distribution amplitude from a global fit. This approach
also allows us to study higher-twist corrections, which are a major source of systematic error. Our result for
the higher-twist parameter δπ2 is in good agreement with estimates from QCD sum rules. Another novel
element is the use of all-to-all propagators, calculated using stochastic estimators, which enables an
additional volume average of the correlation functions, thereby reducing statistical errors.
DOI: 10.1103/PhysRevD.98.094507

I. INTRODUCTION

The lattice approach to QCD enables the computation of
a multitude of hadronic parameters with high precision
from first principles. Since the inception of this method, the
list of quantities amenable to lattice simulation has been
ever increasing. As the scientific focus moves on to ever
larger classes of quark-gluon correlations, the need for high
precision lattice simulations to complement experimental
data becomes ever more urgent. Hadronic contributions to
the muon anomalous magnetic moment, which is on the
verge of becoming a sensitive probe of physics beyond the
Standard Model, constitute one such prominent example.
In particular, lattice calculations of the hadronic “light-by-
light” scattering contribution [1,2] are set to become more
precise than inferring this quantity from experimental
measurements; see, e.g., Refs. [3,4] and references therein.
Another venue which currently attracts a lot of attention is
how lattice QCD may contribute to the determination of
parton (i.e., quark and gluon) distributions in hadrons [5],
which are scale-dependent nonperturbative quantities that

enter the description of “hard” processes via QCD factori-
zation theorems.
The possibility of calculating parton distributions from

Euclidean correlation functions has been discussed for
decades. For early work, see, e.g., Refs. [6–8]. Recently,
with the work by Ji [9] in which it was strongly emphasized
that nothing prevents one from accessing light-cone
dynamics starting from Euclidean space, such approaches
gained prominence. Several proposals exist that differ in
detail but share the same general strategy: the parton
distributions are not calculated directly but extracted from
suitable Euclidean correlation functions (“lattice cross
sections” in the terminology of Ref. [10]; we prefer to
use the term “Euclidean correlation functions” in this
context because cross sections, in general, do not have a
simple path-integral representation). After taking the con-
tinuum and other appropriate limits, these can be expressed
in terms of parton distributions in the framework of QCD
factorization in continuum theory, in analogy to the
extraction of parton distributions from fits to experimen-
tally measured structure functions. In other words, the role
of lattice QCD can be to provide a complementary set of
observables from which parton distributions can be
extracted, ideally, employing global fits combining lattice
input with experimental data on hard reactions.
Such calculations are at an exploratory stage. At present,

the main task is to develop specific techniques that
will eventually allow one to control all systematic errors.
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The pion light-cone distribution amplitude (DA) is the
simplest parton function of this kind and offers itself as a
laboratory where many of the relevant issues can be
investigated. It also allows one to compare the strengths
and weaknesses of the existing methods. Moreover, the
pion DA is interesting in its own right as the main
nonperturbative input to studies of hard exclusive reac-
tions with energetic pions in the final state, e.g., the
γ�γ → π transition form factor and weak B-meson decays
B → πlνl, B → ππ, etc.
In our recent publication [11], we have showcased the

position space approach proposed in Ref. [12], and we will
be using the same framework here. The new contribution of
this work is to illustrate the advantages of considering
several correlation functions simultaneously. Such a multi-
channel approach not only leads to better statistics but
also, most importantly, allows one to control and estimate
higher-twist corrections which otherwise lead to large
systematic errors. The possibility of constraining higher-
twist corrections from the studies of lattice correlation
functions is interesting within a much more general context
and can have important applications. For the case at hand,
we find that the higher-twist corrections extracted from
lattice simulations agree very well with earlier estimates
based on QCD sum rules and the phenomenology of hard
exclusive reactions.
This article is organized as follows. Starting in Sec. II

with a brief discussion of our approach and relating it to
other methods used in the literature, we proceed in Sec. III
to formulate the collinear factorization of correlation
functions in position space, including one-loop results
for the investigated current combinations. In Sec. IV, we
detail the methods used in our lattice computation. We
present our results in Sec. V, before we conclude.

II. HEURISTIC DISCUSSION

Here, we discuss a simple example for how the infor-
mation on parton distributions at lightlike separations can
be extracted from the study of Euclidean correlation
functions. We start from the pion transition form factor
Fπγγðq21; q22Þ of the reaction π0ðpÞ → γ�ðq1Þ þ γ�ðq2Þ,
which can be obtained from the matrix element of the
product of two electromagnetic currents,

Z
d4zeiðq1−q2Þ·z=2h0jT

�
jμ

�
z
2

�
jν

�
−
z
2

��
jπ0ðpÞi

¼ ie2ϵμναβqα1q
β
2Fπγγðq21; q22Þ; ð1Þ

where e is the electric charge and p ¼ q1 þ q2 is the pion
momentum. The form factor Fπγγðq21; q22Þ can be measured
experimentally, at least in principle. If at least one of the
photon virtualities is large, the form factor can also be calcu-
lated in QCD in terms of a single nonperturbative function
describing the quarkmomentum fraction distribution u in the
pion at small transverse separation, the pion DA. For the
heuristic discussion in this section, we consider the leading
contribution shown in Fig. 1; the corrections are discussed
in the next section. To this accuracy, one obtains [13]

Fπγγðq21; q22Þ ¼ −
2

3
Fπ

Z
1

0

duϕπðuÞ
uq21 þ ð1 − uÞq22

; ð2Þ

where Fπ ≃ 92 MeV is the pion decay constant. If the form
factor is measured for a wide range of photon virtualities, the
pion DA ϕπðuÞ can be extracted from this relation (up to
various higher order correction terms). In practice, suchmea-
surements are very difficult, and experimental information
is only available for kinematical situations where one virtu-
ality is large and the second is close to zero [14,15], which is
not sufficient to map out the complete u-dependence.
The integral

R
d4z of (1) receives contributions from both

spacelike and timelike separations. Spacelike correlation
functions can readily be accessed in lattice simulations.
However, addressing timelike distances is not at all
straightforward. The central observation at the root of
the recent development is that timelike contributions are
not needed (in the present context) as the complete
information on the pion DA in principle is already con-
tained in the spacelike correlator.
Indeed, to the same accuracy as above,

h0jT
�
jμ

�
z
2

�
jν

�
−
z
2

��
jπ0ðpÞi

¼ 2iFπ

3π2z4
ϵμναβpαzβΦπðp · zÞ; ð3Þ

(a) (b) (c)

FIG. 1. The leading-twist (a) and higher-twist (b), (c) leading order contributions to the pion transition form factor.
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where

Φπðp · zÞ ¼
Z

1

0

dueiðu−1=2Þp·zϕπðuÞ ð4Þ

is the pion DA in longitudinal position space, which is
analogous to the Ioffe-time parton distribution in deep-
inelastic lepton-hadron scattering [16,17]. The correlation
function in Eq. (3) can be calculated on the lattice for
spacelike separations z2 < 0 and in principle arbitrarily
large values of the scalar product p · z. In this way,
Φπðp · zÞ can be directly measured [12].
Before going into details, we discuss the structure of the

position space DA at a qualitative level to understand what
kind of information can be obtained from such a meas-
urement. Note that in the limit of exact isospin symmetry
the equality ϕπðuÞ ¼ ϕπð1 − uÞ holds. As a consequence
Φπðp · zÞ is a real function, Φπðp · zÞ ¼ Φπð−p · zÞ, with
the normalization conditionΦπð0Þ ¼ 1. The second deriva-
tive at the origin, Φ00

πð0Þ, is related to the first nontrivial
moment of ϕπðuÞ, which is usually denoted as hξ2i and
referred to as the second Mellin moment in the DA
literature,

Φ00
πð0Þ ¼ −

1

4

Z
1

0

duð2u − 1Þ2ϕπðuÞ≡ −
1

4
hξ2i; ð5Þ

where ξ ¼ 2u − 1. This moment can be obtained on the
lattice using conventional techniques [18–21] as the matrix
element of a local operator that contains two covariant
derivatives. Higher derivatives of Φπ at the origin are
sensitive to higher moments. It has become standard to
write the pion DA as a series expansion in orthogonal
(Gegenbauer) polynomials,

ϕπðu; μÞ ¼ 6uð1 − uÞ
X∞
n¼0

aπnðμÞC3=2
n ð2u − 1Þ; ð6Þ

where aπ0 ¼ 1. Note that to one-loop accuracy the coef-
ficients aπnðμÞ do not mix under evolution of the scale μ.
Moments of the DA can be written in terms of the
coefficients in the Gegenbauer expansion, e.g.,

hξ2i ¼ 1

5
þ 12

35
aπ2: ð7Þ

The corresponding expansion of the DA in position space is
in terms of Bessel functions (conformal partial waves [12])

Φπðp · z; μÞ ¼
X∞
n¼0

aπnðμÞF nðp · z=2Þ; ð8Þ

where

F nðρÞ ¼
3

4
in

ffiffiffiffiffiffi
2π

p
ðnþ 1Þðnþ 2Þρ−3

2Jnþ3
2
ðρÞ: ð9Þ

The first few conformal partial waves F nðp · z=2Þ, n ¼ 0,
2, 4, are shown in Fig. 2. Since F nðρÞ ∼ ρn for ρ → 0, the
sum in (8) for fixed p · z is converging very rapidly; only
the first few Gegenbauer moments give a sizeable con-
tribution. Conversely, this means that, aiming to extract the
information on the pion DA beyond the first few moments,
one has to include measurements at large p · z [12].
To view this from a somewhat different perspective,

consider, for illustrative purposes, the one-parameter class
of models

ϕðαÞ
π ðuÞ ¼ Γð2ðαþ 1ÞÞ

Γðαþ 1Þ2 ½uð1 − uÞ�α; ð10Þ

at the reference scale μ0 ¼ 2 GeV. Three particular
choices,

ϕð1Þ
π ðuÞ ¼ 6uð1 − uÞ;

ϕð1=2Þ
π ðuÞ ¼ 8

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð1 − uÞ

p
;

ϕð0Þ
π ðuÞ ¼ 1; ð11Þ

cover a wide range of shapes that appear to be phenom-
enologically acceptable. These longitudinal momentum
fraction space DAs and the corresponding position space
DAs Φπðp · zÞ are plotted in Fig. 3. The differences
between the models increase with p · z. However, as
demonstrated in Fig. 2, in the range accessible with
present-day lattice calculations (jp · zj≲ 5), the differences
are almost entirely due to the variation of the second
Gegenbauer moment: aπ2ðμ0Þ ¼ 0.389, 0.146, 0 for the
three above models, respectively.
So far, we have discussed the situation at tree level.

Taking into account QCD corrections, the position space

FIG. 2. The first three conformal partial waves (9) in the
expansion (8) of the pion DA in position space.
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pion DA Φπðp · zÞ in Eq. (3) will be substituted by a
function of both scalar invariants, z2 and p · z, of the form

ΦVV
π ðp · z; z2Þ ¼ CVV

2 ðp · z; z2; u; μFÞ ⊗ ϕð2Þ
π ðu; μFÞ

þ z2CVV
4 ðp · z; z2; u; μFÞ ⊗ ϕð4Þ

π ðu; μFÞ
þOðz4Þ; ð12Þ

where ϕð2Þ
π ≡ ϕπ is the twist-2 DA. The CVV

n are coefficient
functions that depend at most logarithmically on z2 and are
calculable in perturbation theory, while μF is the factori-
zation scale. We will tacitly assume using dimensional
regularization and the modified minimal subtraction (MS)
scheme. The superscript VV indicates the dependence of
the coefficient functions on the choice of the correlation
function used to define the position space DA—two vector
currents for the present example, Eq. (3). The leading- (and
higher-)twist pion DAs are universal nonperturbative func-
tions and independent of this choice. The power-suppressed
Oðz2Þ correction terms correspond to higher-twist pion

DAs, like ϕð4Þ
π . The factorization scale μF should be chosen

similar in size to 2=
ffiffiffiffiffiffiffiffi
−z2

p
to prevent large logarithms from

appearing in the coefficient functions.

The function ΦVV
π ðp · z; z2Þ, and/or similar correlation

functions with different choices of currents, can be calcu-
lated on the lattice within certain ranges of the two argu-
ments. Different strategies have been suggested as to
how useful information can be extracted from such lattice
data. In this work, we follow the proposal of Ref. [12]
as well as our work [11], carrying out the complete
analysis in position space. We keep the distance between
the currents sufficiently small to suppress higher-twist
effects and to enable the perturbative evaluation of the
coefficient functions at the scale μF ∼ 2=

ffiffiffiffiffiffiffiffi
−z2

p
≥ 1 GeV,

i.e.,
ffiffiffiffiffiffiffiffi
−z2

p ≲0.4 fm. At the same time,
ffiffiffiffiffiffiffiffi
−z2

p
should be

much larger than the lattice spacing, in this work
a ≈ 0.071 fm, to tame discretization effects.
In the literature, it has also been suggested to carry out a

one-dimensional Fourier transformation of the lattice data
in order to define new observables that are closer in spirit to
the initial DA in longitudinal momentum fraction space,
e.g., a quasidistribution [22–33],

ϕqu
π ðwÞ ∼

Z
∞

0

dλ
2π

e−iðw−1=2Þλp·zΦXY
π ðλp · z; λ2z2Þ; ð13Þ

or a pseudodistribution [34–36],

ϕps
π ðwÞ ∼

Z
∞

0

dλ
2π

e−iðw−1=2Þλp·zΦXY
π ðλp · z; z2Þ: ð14Þ

Both expressions are designed in such a way that, to
leading-twist accuracy, they reproduce the pion DA at tree
level. In the existing calculations which employ the above
methods, two spatially separated quark fields are connected
with a Wilson line. Equivalently, this construction can be
viewed as a correlation function involving two bilinear
currents with an auxiliary “heavy” quark field [37–39]
rather than the light quark field we use in Eq. (3). Apart
from employing a Wilson line [22–36,40] or an auxiliary
light quark propagator [11,12,41], other obvious choices
for connecting the two positions include a scalar propagator
[7,8] or a heavy quark propagator [42] or just employing
Coulomb gauge [43].
Another technical difference of the quasidistribution

work relative to our approach is the use of the large-
momentum factorization scheme at an intermediate step
(large momentum effective theory [44,45]) to emphasize
that, for a large pion momentum and at a fixed quark
momentum fraction, large-distance (i.e., higher-twist) con-
tributions are suppressed.

III. QCD FACTORIZATION

A. Collinear factorization in position space

A general approach to implement collinear factorization
of QCD amplitudes in position space is provided by the
light-ray operator product expansion (OPE) [46–51]. For a
generic current product, one writes

FIG. 3. Three models for the pion distribution amplitude (11) in
momentum fraction (upper panel) and position space (lower
panel). Note that Φπð−p · zÞ ¼ Φπðp · zÞ.
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J1ðz1ÞJ2ðz2Þ ¼ Z1Z2

Z
1

0

dα
Z

1

0

dβC12ðz12; α; β; μFÞ

× ΠμF
l:t:½q̄ðzðαÞ12 Þ=z12γ5qðzðβÞ21 Þ� þ � � � ; ð15Þ

where

z12 ¼ z1 − z2; zðαÞ12 ¼ ð1 − αÞz1 þ αz2; ð16Þ

while Zk are the renormalization factors for the currents,
ΠμF

l:t:½…� is the leading-twist projection operator, C12 is
the coefficient function, and the ellipses stand for higher-
twist contributions. For simplicity, we disregard the
flavor structure, showing only the contribution of flavor-
nonsinglet axial-vector operators that will be important for
this work. The corresponding expression for the product of
quark and antiquark fields connected by a Wilson line is
exactly the same, with Z1, Z2 substituted by the quark field
renormalization factors in spacelike axial gauge.
The leading-twist projection of a nonlocal quark-

antiquark operator is defined as the generating function
of renormalized local leading-twist operators (traceless and
symmetrized over all indices), e.g.,

ΠμF
l:t:½q̄ðz1Þ=z12γ5qðz2Þ�

¼
X∞
n¼1

Xn−1
k¼0

zμ112…zμn12ð−1Þk
2n−1k!ðn − k − 1Þ!O

n;k
μ1…μnðzÞ; ð17Þ

where z ¼ ðz1 þ z2Þ=2 and

On;k
μ1…μnðzÞ ¼ q̄ðzÞγðμ1D⃖μ2…D⃖μkþ1

D⃗μkþ2
…D⃗μnÞγ5qðzÞ: ð18Þ

Here and below, we indicate trace subtraction and sym-
metrization by enclosing the involved Lorentz indices in
parentheses, e.g., OðμνÞ ¼ 1

2
ðOμν þOνμÞ − 1

4
gμνOλ

λ.
The light-ray OPE differs from the usual Wilson expan-

sion in local operators by imposing a different power
counting. In the latter case, one assumes that the distance
between the currents is small, jz12j ∼ ηΛ−1

QCD with η → 0,
and the operator matrix elements are of order unity in this
limit, hOn;k

μ1…μni ∼ Λn
QCD. In this case, only a finite number

of local operators on the r.h.s. of Eq. (17) has to be kept,
and also the higher-twist operators must be added pro-
gressing to higher powers of η: The relevant expansion
parameter is the operator dimension, not the twist. The
light-ray OPE assumes instead that hOn;k

μ1…μni ∼ η−nΛn
QCD so

that zμ112…zμn12hOn;k
μ1…μni ¼ Oð1Þ, and in this case, the series

(17) must be resummed to all orders. Such a situation
occurs if the hadron has large momentum, jpj ¼ Oðη−1Þ
and hence p · z12 ¼ Oð1Þ, since for generic hadronic
matrix elements

hH0ðpÞjOn;k
μ1…μn jHðpÞi ∼ pðμ1…pμnÞhhOn;kii; ð19Þ

where the reduced matrix element ⟪On;k⟫ ¼ Oð1Þ.
Higher-twist operators of the same dimension have smaller
spin (by definition). As a consequence, their matrix
elements involve lower powers of the large momentum
and are suppressed. At the amplitude level, expanding in
powers of the large momentum corresponds to the classi-
fication in terms of the so-called collinear twist; see, e.g.,
Refs. [51,52].
Note that the above power counting is applicable both in

Minkowski and Euclidean space. In Minkowski space, one
can employ a reference frame where all components of the
momentum are small and simultaneously the separation
between the currents is almost lightlike, jzμj ¼ Oð1Þ,
z2 ¼ Oðη2Þ → 0. In this way, the usual interpretation as
the light-cone expansion arises.
The light-ray OPE provides a technique to deal with

leading-twist projected operators (17) as a whole, avoiding
the local expansion. These can be viewed as analytic
operator functions of the separation between the currents
(all short-distance and light-cone singularities are sub-
tracted) and satisfy the equation [48]

□z12Π
μF
l:t:½q̄ðz1Þ=z12γ5qðz2Þ� ¼ 0: ð20Þ

Explicit expressions for the projection operator ΠμF
l:t: can be

found in Refs. [48,51–53]. This technique combined with
the background field method has proven to be very efficient
and has found many applications, e.g., in light-cone sum
rules [54] for the calculation of higher-twist contributions
and for the derivation of the evolution equations for off-
forward parton distributions [55,56].
Hadronic matrix elements of the operator (17) define

leading-twist parton distributions. Specializing to our case,
the pion DA is defined via

h0jΠμF
l:t:

�
q̄

�
z
2

�
=zγ5q

�
−
z
2

��
jπ0ðpÞi

¼ iFπ

Z
1

0

duΠl:t:½ðp · zÞeiðu−1=2Þp·z�ϕπðu; μFÞ; ð21Þ

where [50]

Πl:t:½ðp · zÞeiðu−1=2Þp·z�

¼
�
ðp · zÞ − i

8
ð2u − 1Þm2

πz2
�
eiðu−1=2Þp·z þOðz4Þ: ð22Þ

The second term in the last line is the (twist-4) pion mass
correction, which is analogous to the Nachtmann target
mass correction in deep-inelastic scattering.

B. Choice of currents and one-loop results

In this work, we perform a lattice study of the set of
correlation functions
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TXYðp · z; z2Þ ¼ h0jJ†X
�
z
2

�
JY

�
−
z
2

�
jπ0ðpÞi; ð23Þ

where the currents JX ≡ q̄ΓXu are defined as

JS ¼ q̄u; JP ¼ q̄γ5u;

JμV ¼ q̄γμu≡ JVμ ; JμA ¼ q̄γμγ5u≡ JAμ ð24Þ

and contain an up quark u and an auxiliary quark field q. In
this study, we assume that the auxiliary quark has different
flavor than (q ≠ u, d), but the same mass (mq ¼ mu) as the
light quarks. For convenience and better readability, we
invoke the obvious notation Tμν

VA ≡ TVμAν , etc.
We do not consider the correlation functions of S(P) with

V(A) currents because they are dominated by (chiral odd)
higher-twist DAs. For the correlators with two Lorentz
indices, the most general invariant decomposition reads

Tμν
VV ¼ iεμνρσpρzσ

p · z
TVV; Tμν

AA ¼ iεμνρσpρzσ
p · z

TAA; ð25aÞ

Tμν
VA ¼ pμzν þ zμpν − gμνp · z

p · z
Tð1Þ
VA þ pμzν − zμpν

p · z
Tð2Þ
VA

þ 2zμzν − gμνz2

z2
Tð3Þ
VA þ 2pμpν − gμνp2

p2
Tð4Þ
VA

þ gμνTð5Þ
VA; ð25bÞ

where the prefactors are by construction invariant
under rescaling of z and all invariant functions TXY ≡
TXYðp · z; z2Þ have the same mass dimension. The Lorentz
decomposition for Tμν

AV is obtained from the one for Tμν
VA by

replacing V ↔ A. One can show that TVA ≡ Tð1Þ
VA is the

only invariant function in the VA correlator that receives
contributions from the leading-twist DA at leading order in
perturbation theory, so that we only consider this structure
in what follows. The projection needed to isolate it is
specified in Appendix A. Finally, TSP and TPS are scalar
functions which we write below as TSP and TPS, respec-
tively, to unify the notation.
Separating a common overall prefactor, it is convenient

to write the correlation functions in the form

TXYðp · z; z2Þ ¼ Fπ
p · z
2π2z4

ΦXY
π ðp · z; z2Þ; ð26Þ

where to tree-level accuracy and neglecting higher-twist
correctionsΦXY

π ðp · z; z2Þ ¼ Φπðp · zÞ is the position space
pion DA of Eq. (4). We further separate the leading-twist
(LT) contribution from the higher-twist (HT) part,

ΦXY
π ðp · z; z2Þ ¼ ΦXY

π;LTðp · z; z2Þ þΦXY
π;HTðp · z; z2Þ; ð27Þ

where the higher-twist contributions are of Oðz2Þ,
cf. Eq. (12). The calculation of the one-loop, i.e., OðαsÞ,
correction at leading twist is relatively straightforward.
Using the Gegenbauer expansion of the pion DA, Eqs. (6)
and (8), the result can be written as

ΦXY
π;LT ¼

X∞
n¼0

HXY
n ðp · z; μÞaπnðμÞ: ð28Þ

Setting the renormalization and factorization scales to the
same value μ ¼ μF, we obtain, to OðαsÞ accuracy,

HSP
n ¼ HPS

n ¼
�
1þ αsCF

4π
ð7η − 11Þ

�
F nðρÞ −

αsCF

π

Z1

0

dsF nðsρÞ
�
ðη − 4Þ sinðs̄ρÞ

2ρ
þ
�
ðη − 2Þ s

s̄
þ lnðs̄Þ

s̄

�
þ
cosðs̄ρÞ

�
;

ð29aÞ

HVA
n ¼HAV

n ¼
�
1þαsCF

4π
ðη− 5Þ

�
F nðρÞ−

αsCF

π

Z1

0

dsF nðsρÞ
�
ðη− 2Þ sinðs̄ρÞ

2ρ
þ
���

η−
1

2

�
s
s̄
þ lnðs̄Þ

s̄

�
þ
−
1

2

�
cosðs̄ρÞ

�
;

ð29bÞ

HVV
n ¼ HAA

n ¼
�
1þ αsCF

4π
ðη − 5Þ

�
F nðρÞ −

αsCF

π

Z1

0

dsF nðsρÞ
�
ðη − 2Þ sinðs̄ρÞ

2ρ
þ
��

η −
1

2

�
s
s̄
þ lnðs̄Þ

s̄

�
þ
cosðs̄ρÞ

�
;

ð29cÞ

where αs ¼ αsðμÞ, the functions F n are defined in Eq. (9), ρ ¼ p · z=2, CF ¼ 4
3
, η ¼ 1þ 2γE þ lnð−z2μ2=4Þ, s̄ ¼ 1 − s.
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In the following, we will choose μ≡ 2=
ffiffiffiffiffiffiffiffi
−z2

p
. The plus

prescription is defined as usual:

Z
1

0

dsfðsÞ½gðsÞ�þ ≡
Z

1

0

ds½fðsÞ − fð1Þ�gðsÞ: ð30Þ

The sum in (28) converges very rapidly since

F nðρÞ ≃
ρ→0 3

8
in
�
ρ

2

�
n

ffiffiffi
π

p ðnþ 1Þðnþ 2Þ
Γðnþ 5=2Þ ; ð31Þ

cf. Fig. 2, so that for moderate p · z only the first few
Gegenbauer moments give a sizeable contribution [12].

The two-loop corrections Oðα2sÞ are known for the VV
correlator [12] but not for other cases, so we do not include
them in this study.
The leading Oðz2Þ higher-twist contribution can be

estimated using models for the twist-4 pion DAs derived
in Refs. [57,58]; see also Appendix B. One obtains

ΦXY
π;HT ¼ z2

4

Z1

0

du cos

��
u −

1

2

�
p · z

�
fXYðuÞ þOðz4Þ;

ð32Þ
where

fSP ¼ ðfPSÞ� ¼ −20δπ2u2ū2 þm2
πuūþm2

π

2
u2ū2½14uū − 5þ 6aπ2ð3 − 10uūÞ� þ im2

π

2ðp · zÞ ; ð33aÞ

fVA ¼ fAV ¼ −
20

3
δπ2uūð1 − 6uūÞ þm2

π

12
uūð19 − 18aπ2Þ þ

m2
π

2
u2ū2½7uū − 8þ 18aπ2ð2 − 5uūÞ�; ð33bÞ

fVV ¼ 80

3
δπ2u

2ū2 þm2
π

12
u2ū2½42uū − 13þ 18aπ2ð7 − 30uūÞ�; ð33cÞ

fAA ¼ 80

3
δπ2u

2ū2 þm2
π

12
u2ū2½42uū − 13þ 18aπ2ð7 − 30uūÞ� þ 2m2

πuū: ð33dÞ

The parameter δπ2 is defined in Eq. (B10). QCD sum rule
estimates yield δπ2 ≃ 0.2 GeV2 at the scale μ ¼ 1 GeV
[57–59]. In comparison, the Oðm2

πÞ terms are rather small.
For reasons that will be explained in Sec. IV B, we

choose to analyze linear combinations of correlation
functions, PSþ SP, VAþ AV, and VVþ AA, to which
the leading quark mass correction originating from the
chiral odd part of the auxiliary quark propagator does
not contribute. In this sum, e.g., the imaginary parts of the
SP and PS correlators cancel each other and drop out. For
the VAþ AV case, the terms linear in the quark mass mq

drop out completely after applying the projection onto the
invariant function of interest as described in Appendix A.
Note that the entire difference between fVV and fAA is due
to this quark mass correction, which is converted into an
Oðm2

πÞ term using the axial Ward identity and mq ¼ mu.
As observed already in Ref. [12], the higher-twist

correction in the VV channel has opposite sign compared
to the leading-twist term. We find a similar behavior for the
AV channel. In contrast, the twist-4 correction for the SP
correlation function has the same sign as the leading-twist
contribution. Numerically, the higher-twist corrections turn
out to be approximately the same size as the leading
perturbative correction at

ffiffiffiffiffiffiffiffi
−z2

p
=2 ∼ 0.2 fm ≃ 1 GeV−1

and become gradually less important for smaller distances.
At the lowest scale considered in this study, 1 GeV, and
at p · z ¼ 0, the combined one-loop and higher-twist

correction yields approximately −40%, −20%, and þ50%
for the VV, VA, and SP channels, respectively. We will find
that these estimates are strongly supported by our lattice
data, cf. Sec. V.

IV. LATTICE CALCULATION

We employ the same gauge ensemble as in Ref. [11]
(ensemble IV of Ref. [60], generated by the QCDSF and
RQCD collaborations), which allows a direct comparison
between the sequential source method [61] (used in
Ref. [11]) and the stochastic method (applied in this work)
for the scalar-pseudoscalar channel. We employ the Wilson
gluon action with two mass-degenerate flavors of non-
perturbatively order a improved Sheikholeslami-Wohlert
[62] (i.e., clover) Wilson fermions. The lattice consists of
323 × 64 points with periodic boundary conditions (anti-
periodic in time for the fermion fields). The inverse gauge
coupling parameter reads β ¼ 5.29, and the hopping
parameter value is κ ¼ 0.13632. This corresponds to the
lattice spacing a ≈ 0.071 fm ¼ ð2.76 GeVÞ−1 [63] and a
pion mass mπ ¼ 0.10675ð59Þ=a ≈ 295 MeV [64]. To
reduce autocorrelations, we have used a bin size Nbin ¼
20 for the Nconf ¼ 2000 configurations we have analyzed,
cf. Table I. In order to improve the overlap between the
interpolating current at the source and the pion state at large
momentum, we employ the momentum smearing technique
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of Ref. [65] (see also Ref. [21]) with APE-smeared spatial
gauge links [66].
The operator renormalization is performed as described

in Ref. [67]: The renormalization factors are calculated
nonperturbatively within the RI0-MOM scheme [68,69]
(along with a subtraction of lattice artifacts in one-loop
lattice perturbation theory). These are then converted to the
MS scheme using three-loop (continuum) perturbation
theory. The corresponding factors for the MS scale μ ¼
2 GeV can be found in Table III of Ref. [64]. To be
consistent, we employ the Nf ¼ 2 specific running of αs in
all perturbative calculations. To this end, we combine the
results of Refs. [63,70] to obtain a value of αs at
1000=a ≈ 2.76 TeV. From there, we evolve it downward
using five-loop running [71]. The pseudoscalar and scalar
currents are evolved to other scales using the four-loop
mass anomalous dimension, which is consistent with the
order used in Ref. [67]. The numerical values of theNf ¼ 2

coefficients are summarized, e.g., in Ref. [72], which also
includes the five-loop calculation.
Disconnected quark line diagrams have proven to be

notoriously challenging in lattice simulations. They can be
avoided by implementing an appropriate flavor structure of
our currents: we pretend that the auxiliary quark field q of
Eq. (23) is of a different flavor but shares its mass with the
light quarks: mq ¼ mu ¼ md. This does not present any
limitation as the perturbative matching is carried out using
the same conventions.
In the following sections, we use boldface letters for the

space components of the distance and momentum, ðzμÞ ¼
ð0; zÞ and ðpμÞ ¼ ðEp;pÞ. In the actual lattice calculation,
we evaluate the three-point functions using currents posi-
tioned at z, relative to our origin 0. These are “shifted”
afterward to the symmetric locations as in Eq. (23) by
multiplication with the appropriate phase.

A. Stochastic estimation of correlation functions

We wish to compute the correlation functions, Eq. (23).
The corresponding three-point functions for different Γ
structures are depicted in Fig. 4, where the straight
lines correspond to quark propagators. The momentum-
smeared, momentum-projected pion source is located at the
Euclidean time slice 0. Translational invariance of the
correlation function implies that z and 0 can be shifted to
the positions z=2 and −z=2, respectively, by multiplication
with the phase eip·z=2. Previously, in Ref. [11], we com-
puted propagators, starting from a point source at the
position ðt; 0Þ, smeared the resulting propagator at the time
slice t ¼ 0 and computed a sequential propagator [61] from
there. This propagator and the original propagator were
then contracted with the ΓX structure at ðt; zÞ, making use
of γ5-Hermiticity of the propagator G, i.e., Gxy ¼ γ5G

†
yxγ5.

In order to increase the statistics, ideally one would
average over different spatial positions y of the current JY,

placing JX at positions y þ z, keeping the relative distance
vector fixed. It turns out that this is indeed possible,
introducing stochastic propagators [73], albeit at the cost
of additional (but small) stochastic noise.
Therefore, our new approach is to start from a momen-

tum-smeared pion source at t ¼ tsrc and compute stochastic
forward propagators from there, using the “one-end trick”
[74]. As with the sequential method adopted by us
previously, the external momentum is fixed at the source.
Since we need to keep the distance z between the local
currents JX and JY at the sink fixed, volume averaging
would not be possible if we created a sequential propagator
at the sink. Instead, we use a second stochastic volume
source at tsink to connect these two currents. In order to
reduce the associated stochastic noise, we utilize the
hopping parameter expansion in the way suggested in
Refs. [75,76] (see also Refs. [77,78] for related work) to
block out the dominant short-distance noise contributions
when connecting the two currents with a stochastic
propagator. Below, we describe our implementation in
detail.
We define the momentum smearing operator Fp ¼ Φn

ðζpÞ
with n smearing iterations (n ¼ 200 in our calculation).
This is diagonal in spin and constructed on the time slice
tsrc, iteratively applying the operation

ðΦðkÞqÞx ¼ 1

1þ 6ε

�
qx þ ε

X�3

j¼�1

Ux;je−ik·ĵqxþaĵ

�
; ð34Þ

where Ux;j is an APE-smeared [66] spatial gauge link
connecting the lattice points ðtsrc;xÞ and ðtsrc;xþ aĵÞ; for
details, see Refs. [21,65]. In practice, this smearing is
implemented by multiplying the spatial connectors within
the time slice in question by the appropriate phases,

FIG. 4. The relevant triangle diagram, with a smeared inter-
polating current for the pion at t ¼ 0. The Fourier transform
corresponds to an incoming pion with momentum p (for t > 0) or
an outgoing pion with momentum −p (if t < 0).
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Ux;j ↦ e−iakjUx;j, where k ¼ ζp. We choose ζ ¼ 0.8
and ϵ ¼ 0.25.
We write the Wilson-Dirac operator as

D ¼ 1

2aκ
ð1 −HÞ: ð35Þ

We also define the time, spin, and color diagonal momen-
tum projection operator φp with the components

ðφpÞxy ¼ e−ip·xδxy: ð36Þ

Note that Fp ¼ F†
p ¼ F⊺

−p is self-adjoint, while φp ¼ φ⊺
p ¼

φ†
−p and D ¼ γ5D†γ5 are not. We start from a stochastic

Z2 ⊗ iZ2 wall source ξ with ξi;αðt;xÞ ¼ ð�1� iÞ= ffiffiffi
2

p
δttsrc ,

where i and α denote the color and spin indices, respec-
tively. We then solve

aDχ ¼ F−pφ−pξ; aDχ̃ ¼ Fpξ; ð37Þ

where χ and χ̃ (as well as ξ) are Dirac vectors with color,
spin, and spacetime components. Above, we have sup-
pressed these indices for enhanced readability. In our
conventions ξ, χ, and χ̃ (as well as η and s, which will
be introduced below) are dimensionless.
We define a momentum-smeared interpolator that, when

applied to the vacuum, will create states with the quantum
numbers of a π0 carrying the (spatial) momentum p,

O†
pðtÞ ¼ a3

X
x

eip·xO†
πðxÞ;

O†
πðxÞ ¼ ½ūF−p�xγ5½Fpu�x − ðu → dÞ; ð38Þ

and a local isovector current Jv ¼ ðūΓu − d̄ΓdÞ=2 with an
arbitrary Dirac structure Γ. In the following, we assume, for
the sake of readability, that all sources have been shifted to
tsrc ¼ 0 (exploiting translational invariance) and denote the
source-sink distance as t. We can now obtain the average
over the spatial volume V3 of smeared-local two-point
functions

Cðp; tÞ ¼ h0jJvðt; 0ÞO†
pð0Þj0i

¼ a6

V3

X
x;y

eip·ðx−yÞh0jJvðt; yÞO†
πð0;xÞj0i ð39Þ

as an inner product over color, spin, and (three-
dimensional) space:

Cðp; tÞ ¼ −a6

2V3

htrγ5Fp
⎴u0ūt Γφp

⎴utū0 F−pφ−pi þ ðu → dÞ

¼ −1
a2V3

hðξ; γ5FpD−1
0t ΓφpD−1

t0 F−pφ−pξÞi

¼ −1
V3

hðχ̃t;φpγ5ΓχtÞi: ð40Þ

Here, we have suppressed all unnecessary indices. The
disconnected contractions drop out since we have exact
isospin symmetry. The minus sign in the first line is due
to fermion anticommutation. Within the scalar product
ðA;BÞ ¼ A†B, we sum over all indices that are not
displayed on either side, in this case spatial position,
color, and spin. In the second line, we used a−4D−1

0t ¼
⎴q0q̄t for q ∈ fu; dg. In the last step, we made use of
the orthonormality of the noise vectors when averagedP

XYhξ�YAYXξXi ¼ hPXAXXi, where X, Y represent multi-
indices, and of the γ5-Hermiticity of the propagator.
Inserting a complete set of states in Eq. (39) and

choosing an axial-vector current at the sink with
Γ ¼ γ0γ5 gives

C2ptðp; tÞ ¼
X
n

h0jAv
0ð0ÞjnðpÞi

e−EnðpÞt

2EnðpÞ
hnðpÞjO†

πð0Þj0i

→ ZπðpÞ
e−EπðpÞt

2EπðpÞ
h0jAv

0ð0Þjπ0ðpÞi ðt → ∞Þ:

ð41Þ
The overlap factor ZπðpÞ ¼ hπ0ðpÞjO†

πð0Þj0i depends on
the (momentum-smeared) interpolator, while

h0jAv
μð0Þjπ0ðpÞi ¼ iFπpμ ð42Þ

defines the pion decay constant.
To construct the desired three-point function, we use

additional spin-partitioned [79] (also referred to as spin
explicit or “diluted” in the literature) stochastic sources
ηðk;αÞ, k ¼ 1;…; nst, and α ¼ 1;…; 4, with the components

ηðk;αÞi;βðt;xÞ ¼ rðkÞix δαβδttsink . The random variables rðkÞix take the

values ð�1� iÞ= ffiffiffi
2

p
. We then solve

aDsðk;αÞ ¼ ηðk;αÞ ð43Þ
for each value of k and α to obtain sðk;αÞ. The lattice
propagator G ¼ a−4D−1 from ðt; yÞ to ðt; y þ zÞ can now
be estimated as

Gðt;yþzÞðt;yÞ ≈
1

a3nst

X
k;α

sðk;αÞðt;yþzÞη
ðk;αÞ†
ðt;yÞ ; ð44Þ

up to a stochastic error that decreases ∝ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nconfnst

p
,

where Nconf is the number of gauge configurations and
nst ¼ 10 is the number of spin-partitioned stochastic
sources.
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The operatorH in Eq. (35) only couples nearest neighbors
for the action we use. Employing the geometric series

a3G ¼ ðaDÞ−1 ¼ 2κð1 −HÞ−1 ¼ 2κ
X
j≥0

Hj

¼ 2κ
XmðzÞ−1

j¼0

Hj þ 2κ
X

j≥mðzÞ
Hj

¼ 2κ
XmðzÞ−1

j¼0

Hj þHmðzÞa3G; ð45Þ

where

mðzÞ ¼
X3
i¼1

min

�jzij
a

;
L − jzij

a

�
; ð46Þ

we can split up the propagator into the first sum in Eq. (45)
that does not contribute at distances z (and distances that are
separated by a larger number of hops) and a part that
contributes. In the stochastic estimation, the first part still
adds to thenoise.This undesirable effect canbe removed, left
multiplying the solution with HmðzÞ [75,76].
Looping over momenta and times, we define temporary

scalar fields

Kðm;k;αÞ
X ðyÞ ¼ χ̃†ðt;yÞγ5ΓXHmsðk;αÞðt;yÞ ; ð47Þ

Kðk;αÞ
Y ðyÞ ¼ e−ip·yηðk;αÞ†ðt;yÞ ΓYχðt;yÞ ð48Þ

for m ≤ 10 and all currents of interest. These fields
implicitly depend on p and t. Also note that the solutions
χ and χ̃ of Eq. (37) depend on the momentum p. The three-
point correlation functions can now readily be obtained by
replacing Jvðt; yÞ ↦ J†Xðt; z=2ÞJYðt;−z=2Þ in Eq. (39)
(cf. Fig. 4). The result reads

C3pt
XYðp; t; zÞ ¼

−ei
2
p·z

a3V3nst

X
y;k;α

hKðm;k;αÞ
X ðy þ zÞKðk;αÞ

Y ðyÞi;

ð49Þ
where the value of m ≤ mðzÞ used within the set of

precomputed fields Kðm;k;αÞ
X is selected as large as possible

for each distance. Note that we have already shifted the
above correlation function to the symmetric position. In our
study, we limit ourselves to the range jzij ≤ 5a.
With the previous sequential source method, first one

propagator (12 solves) had to be computed. Then, for
each additional momentum and time separation, two
smearing operations were required as well as an additional
propagator (12 solves). In our implementation of the new
method, we vary the distance between the pion source
and the sink by changing the time slice where the pion
source is placed, enabling us to reuse the stochastic

solutions Hmsðk;αÞ and sources ηðk;αÞ of Eqs. (47) and
(48). This part requires 4nst ¼ 40 solves with a minimal
overhead from applying the hopping parameter expansion.
For each momentum and time separation, a new pion
source is seeded, necessitating only two additional smear-
ing operations and two additional solves.
In total, not even taking into account that there is an

additional gain from the two possibilities of connecting the
valence quark propagators with the stochastic propagator of
the auxiliary field (giving us for each momentum p the
momentum −p almost for free), the new method does not
only allow for a volume average, thereby reducing stat-
istical errors, but turns out to be cheaper by about a factor of
2 in terms of the total computer time.
The three-point function C3pt

XY admits the same spectral
decomposition, Eq. (41), as the two-point function
C2pt. Just the matrix element needs to be replaced:
h0jAv

0ð0Þjπ0ðpÞi↦ h0jJ†Xð0;z=2ÞJYð0;−z=2Þjπ0ðpÞi. The
overlap factor ZπðpÞ and the exponential decay cancel
when taking the ratio of these two functions. Therefore, in
the limit of large Euclidean times, where excited state
contributions are exponentially suppressed, the ratio can be
related to the matrix element of interest,

TXYðp · z; z2Þ
Fπ

¼ ZXðμÞZYðμÞ
ZA

C3pt
XYðp; t; zÞ
C2ptðp; tÞ iEπðpÞ; ð50Þ

where ZX is the renormalization factor of the local current
JX with respect to the MS scheme [67]. For the scalar
and the pseudoscalar currents, the renormalization fac-
tors acquire a scale dependence due to their anomalous
dimension.

B. Reducing discretization effects

In the continuum, the chiral even part (∝ =z) of the
propagator connecting the two local currents gives the most
important contribution, while the chiral odd part (∝ 1) is
suppressed by a factor m

ffiffiffiffiffiffiffiffi
−z2

p
and, thus, can be set to zero

in a first approximation. However, with Wilson fermions,
the situation is completely different. We find that the
contribution from the chiral odd part, which suppresses
the doublers and breaks chiral symmetry, can be of the
same order of magnitude as the leading contribution,
cf. Fig. 5. The “jumping” of the points nicely demonstrates
the strong dependence of the lattice artifacts on the chosen
direction. In particular, the points along the axes [e.g.,
(1,0,0)], corresponding to the crosses in Fig. 5, exhibit the
largest discretization effects, while the points along the
diagonal [e.g., (1,1,1)] are much better behaved. This fits in
with earlier observations for correlation functions [80–82]
and quark propagators in momentum space [83]. The large
contribution of the chiral odd part of the propagator is a
peculiarity of using Wilson fermions, while large discre-
tization effects at short distances are probably a general
feature of all position space methods.
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The appearance of large contributions from the chiral
odd part of the propagator would lead to huge lattice
artifacts in the correlator. Therefore, we construct linear
combinations of the correlation functions defined in
Eqs. (25) where the chiral odd part of the propagator drops
out to leading order in perturbation theory:

1

2
ðTSP þ TPSÞ;

1

2
ðTVA þ TAVÞ;

1

2
ðTVV þ TAAÞ: ð51Þ

For the scalar-pseudoscalar correlator with a pion, this is
equivalent to taking the real part (cf. Ref. [11]).
The discretization effects in the chiral even part of the

propagator (these correspond to the blue points in Fig. 5)
are addressed as follows: we discard data points where the
free field discretization effect exceeds 10%. This cut mainly
excludes very short distances (jzj≲ 2a) and directions
close to the lattice axes. For the remaining data points,
we define a correction factor ccorrðzÞ such that the corrected
propagator

Gcorr
latt ðzÞ≡ ccorrðzÞGlattðzÞ ð52Þ

satisfies the condition

trf=zGcorr
latt ðzÞg ¼! trf=zGcontðzÞg; ð53Þ

where the trace runs over spin and color indices. To zeroth
order accuracy in αs (where Glatt ¼ Gfree

latt is the free
propagator), this leads to

ccorrðzÞ ¼
�
trDf=zGfree

latt ðzÞg
z2π2

2

�
−1 ð−m2z2Þ

2
K2ðm

ffiffiffiffiffiffiffiffi
−z2

p
Þ:

ð54Þ

This corresponds to multiplying the blue data points of
Fig. 5 by factors so that in the noninteracting case the
continuum result is retrieved. One should note that this
procedure can only tame distance-dependent discretization
effects. However, there are also momentum-dependent
discretization effects, which are not taken into account.
It is therefore no surprise that we still find particularly large
discretization effects for the high momentum data at small
distances. We have therefore decided to include only data
points with jzj ≥ 3a ≈ 0.21 fm, which, setting the scale to
μ ¼ 2=jzj, corresponds to μ ≲ 1.84 GeV.
Finally, we remark that the pseudoscalar and scalar

currents are (up to small mass-dependent effects) auto-
matically order a improved. In principle, we could also
have order a improved the axialvector and the vector
currents. However, the improvement of γμγ5 and of γμ
would have required us to compute three-point functions
with two currents situated at nonequal times (as well as a
tensor current in the latter case).

V. RESULTS

A. Parameter choices and first data survey

Our analysis includes six different pion momenta (12, if
one counts �p separately) with absolute values up to
jpj ¼ 2.03 GeV, cf. Table I. For the largest momentum, we
have analyzed two different directions to increase statistics.
Reaching such a large hadron momentum is quite chal-
lenging and was achieved by the combination of the
momentum smearing technique, which enhances the over-
lap of the interpolating current with hadrons at large
momenta, and the use of stochastic estimators described
in Sec. IVA, which allows us to take a volume average at
the cost of additional stochastic noise. The latter trade-off
turns out to be very advantageous and yields a significant
reduction of the statistical errors compared to the sequential
source method used in Ref. [11].
Since the lattice data are analyzed using QCD factori-

zation in the continuum, we are bound to using sufficiently
small separations between the currents to ensure that
the coefficient functions are perturbatively calculable.

FIG. 5. The (free field) discretization effects of the Wilson
propagator compared to the continuum expectation (full lines) for
the different Dirac structures. The points marked with a cross
correspond to directions along a lattice axis. The shaded area
marks the distances that are actually used in the analysis, where
the upper limit comes from the constraint μ ¼ 2=jzj > 1 GeV. It
is clear that smaller lattice spacings will improve the situation
considerably.

TABLE I. The lattice momenta used in the analysis, where
p ¼ 2π

L np. Nconf is the number of analyzed configurations, and
Nbin is the bin size used to reduce autocorrelations. Note that
for the smallest momentum we have used only every tenth
configuration.

np jpj Nconf Nbin

�ð1; 0; 0Þ 0.54 GeV 200 2
�ð2; 0; 0Þ 1.08 GeV 2000 20
�ð2; 2; 0Þ 1.53 GeV 2000 20
�ð2; 2; 2Þ 1.88 GeV 2000 20
�ð3; 2; 1Þ 2.03 GeV 2000 20
�ð2;−1; 3Þ 2.03 GeV 2000 20

PION DISTRIBUTION AMPLITUDE FROM EUCLIDEAN … PHYS. REV. D 98, 094507 (2018)

094507-11



Together with the requirement of controllable discreti-
zation effects (see the previous section), this leaves us
with the relatively narrow range of possible distances
0.21 fm≲ jzj≲ 0.39 fm, or 3a ≤ jzj ≤ 5.5a in units of

the lattice spacing a ≃ 0.07 fm. Since the direction of z is
arbitrary, this constraint still allows for a large data set with
ten different values for jzj.
First, however, we should check if the ratios of three-point

over two-point functions (50) approach their asymptotic
limits. We demonstrate this for the combination ðTVV þ
TAAÞ=2 for different momenta and distances in Fig. 6.
Clearly, the momentum smearing was extremely successful
in removing excited state contributions. Moreover, these
seem to affect the two-point function in a similar way as the
three-point functions, enabling additional cancellations to
take place. The other channels exhibit a very similar
behavior so that we can confidently fit to extended plateaus.
Next, in Fig. 7, we compare our results at two typical

distances for two different channels with the expecta-
tion obtained using the second Gegenbauer coefficient
aπ2ð2 GeVÞ ¼ 0.1364 that has been determined in Ref. [20]
with the moment method. The leading-twist position space
DA (central solid line) is universal for all channels. The
dashed lines include our one-loop perturbative corrections,
while the solid lines also include higher-twist effects
using the QCD sum rule estimate δπ2ð2GeVÞ¼0.17GeV2

[57–59]. Unsurprisingly, toward the larger distance jzj, both
correction terms become more significant. The sign and
magnitude of the predicted splitting are in good agreement
with our data. However, there are quantitative differences:
our data still show residual discretization effects, the models
for the leading-twist and higher-twist DAs may not be
correct, and there will be two-loop perturbative corrections
as well. For the distances shown, the corrections to the
leading order leading-twist DA are about 25% in size, while
even at jp · zj ¼ 4, the differences between the models
plotted in Fig. 3 only amount to about 10%; i.e., within
our range of z2 and p · z values, we are more sensitive to
higher-twist effects and perturbative corrections than we are
to the shape of the leading-twist DA. This is also expected
from Fig. 2 and the discussion of Sec. II.

FIG. 6. The ratio (50) for the example of the VVþ AA
combination of currents for different distances and momenta,
together with our fitted results.

FIG. 7. Data for the position space DA at two distances compared with expectations obtained using the second Gegenbauer coefficient
aπ2ð2 GeVÞ ¼ 0.1364 determined in Ref. [20] with the moment method. The central solid curve corresponds to the (channel-
independent) tree-level result at leading twist. The dashed lines include one-loop perturbative corrections for the two channels, and the
outer solid lines also include higher-twist contributions [obtained using the QCD sum rule estimate δπ2ð2 GeVÞ ¼ 0.17 GeV2 for the
higher-twist normalization constant]. The upper data (green) are SPþ PS, and the lower data (blue) are VVþ AA.
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The data points in Fig. 7 as well as in Figs. 8–10 below
are obtained by performing a weighted average over all
possible combinations of the distance z ¼ ðz1; z2; z3Þ and
momentum p ¼ ðp1; p2; p3Þ that give the same values for

FIG. 9. The same as in Fig. 8, but for the VVþ AA correlation
function.

FIG. 8. The SPþ PS correlator as a function of p · z for four
different separations between the currents. The turquoise, orange,
and red bands correspond to fits using the parametrizations A, B,
and C explained in the text, cf. Table II. The dashed lines are
obtained by subtracting the higher-twist contributions from the
parametrizations.
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the scalar product jp · zj and the same z2. The markers
indicate how many different momenta from Table I con-
tribute to the average: dot ¼̂ 1, cross ¼̂ 2, triangle ¼̂ 3,
square ¼̂ 4, pentagon ¼̂ 5, hexagon ¼̂ 6. The VVþ AA

channel yields the best signal by far, since in this case only
one invariant structure that is consistent with the sym-
metries exists, and one can make use of an additional
average over the open Lorentz indices, cf. Appendix A.
This averaging is not possible in the VAþ AV channel
since in this case one needs to project onto the specific
leading-twist Lorentz structure Eq. (A1b). This projection
entails a strong dependence of the signal-to-noise ratio on
the momentum direction, and for some data points, none of
the analyzed momenta yields a good signal. This explains
the outliers with extremely large statistical errors in the
figures below. Finally, the SPþ PS channel, albeit slightly
inferior to VVþ AA, also gives small statistical errors.

B. Extraction of distribution amplitude parameters

We are now in a position to analyze the whole data set
and attempt to extract the pion DA, carrying out a global fit
to all correlation functions using the expressions collected
in Sec. III B. In Figs. 8–10, we show our data for four
distances, along with such fits. The fits A (turquoise),
B (orange), and C (red) correspond to different para-
metrizations of the leading-twist pion DA. Ansatz A
corresponds to using the power-law parametrization (10)
with a free fit parameter α, while B and C use the
Gegenbauer expansion (6) truncated at orders n ¼ 2 and
n ¼ 4, respectively. All input parameters are taken at the
reference scale μ0 ¼ 2 GeV and are evolved to μ ¼ 2=jzj
using two-loop evolution equations, apart from the higher-
twist parameter δπ2, where the scale dependence is taken
into account at one-loop order. This means fits A and B
have two free parameters—α, δπ2 (A) and a

π
2 , δ

π
2 (B)—while

fit C has three parameters: aπ2 , a
π
4 , δ

π
2 . The results are shown

in Table II for different fit ranges in 2=jzj. The numbers in
parentheses are the statistical errors, which turn out to be
surprisingly small for aπ2 and also for δπ2. The Gegenbauer
coefficient aπ4 cannot be constrained from our data, and
including this contribution (Ansatz C compared to B) does
not lead to a distinct improvement of the fit quality. The
reason is obvious from Fig. 2, as the n ¼ 4 partial wave
gives a negligible contribution to the correlation functions
in the p · z range accessible in our study.
The small statistical errors for aπ2 and δ

π
2 are encouraging

and allow us to analyze the (dominant) systematic errors. In
order to gain some insight, we have performed the complete
analysis for multiple fit ranges in the distance between the
currents. A dependence on the lower bound in the distance
(corresponding to larger scales) can indicate discretization
effects, while a dependence on the upper bound shows the
necessity to calculate higher-order corrections to the
coefficient functions and, possibly, even higher-twist cor-
rections. Such effects are clearly visible, cf. Table II. As a
second method to estimate the systematic uncertainty, one
may assume that not-yet-calculated higher order pertu-
rbative effects are of the size of ∼50% of the one-loop
correction. Both error estimation methods lead to the

FIG. 10. The same as in Fig. 8, but for the VAþ AV
correlation function.
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conclusion that, for the time being, one has to assign a
systematic error of at least 30%–50% to the given numbers
for aπ2 and δπ2, especially since other systematic uncertain-
ties originating from an unphysically large pion mass as
well as finite volume and lattice spacing corrections have
not been addressed in this study.

C. Discussion

Within the present range of distances and momenta, our
data appear to be very sensitive to higher-twist corrections.
These corrections can be quantified within our approach,
and the corresponding parameter δπ2 proves to be only
weakly correlated with the shape parameters of the pion
DA. This can be explained as follows.
First, it is crucial that perturbative and higher-twist

corrections for the VVþ AA and PSþ SP correlators have
similar magnitude and opposite sign, cf. Fig. 7. The higher-
twist corrections contribute mostly to the difference of
these two correlation functions, and much less to their sum.
The effect of adding the aπ2 parameter to the leading-twist

pion DA is just the opposite; i.e., it affects both VVþ AA
and PSþ SP correlators in a similar way. Second, writing
the correlation functions ΦXY

π ðp · z; z2Þ as an expansion in
conformal partial waves similar to Eq. (8) for the DA, one
can include higher-twist terms as contributionsOðz2Þ to the
Gegenbauer coefficients; see Ref. [12] for details. It turns
out that this correction is largest for the leading term
aπ0 ↦ aπ0ðz2Þ ¼ aπ0 þ cδπ2z

2 þ � � � and affects aπ2 and higher
coefficients rather weakly. As a consequence, the higher-
twist parameter δπ2 can be extracted from position space
correlators at small values of jp · zj, which explains its
small statistical error.
Note, however, that the obtained value is tied to using

first order perturbative corrections OðαsÞ to the correlators
and will likely decrease if further terms are taken into
account. This ambiguity is conceptual. It is related to the
fact that matrix elements of twist-4 operators have quad-
ratic power divergences already in the continuum theory
and at the same time the perturbative series in leading twist
in the minimal subtraction scheme suffers from factorial
divergences (renormalons). One can show [84] that these
two deficiencies are related and are cured in the sum of
perturbative (leading-twist) and nonperturbative (higher-
twist) effects. The higher-twist contribution, strictly speak-
ing, should be viewed as an effective parametrization of the
sum of the uncalculated higher orders of perturbation
theory and “genuine” higher-twist effects; their separation
requires additional regularization and is not necessary in
the present context.

TABLE II. Fit results for the Gegenbauer coefficients aπ2 and a
π
4

as well as the higher-twist normalization constant δπ2 . We consider
three different DA parametrizations (which are all defined at the
reference scale 2 GeV) and various fit ranges in μ ¼ 2=jzj. Ansatz
A corresponds to assuming the shape (10), while B and C use the
expansion of the DAs in terms of Gegenbauer polynomials,
Eq. (6), truncated at n ¼ 2 and n ¼ 4. The numbers in paren-
theses give the statistical error. As discussed in the main text, a
rather generous systematic uncertainty of 30%–50% should be
assigned to these results, and the values for aπ4 from Ansatz A and
B are meaningless. The fit range corresponding to the curves
plotted in Figs. 8–10 is bolded.

Ansatz aπ2 aπ4 δπ2½GeV2�
0.9 GeV < μ < 1.8 GeV

I A 0.29(2) 0.16(2) 0.202(3) α ¼ 0.17ð5Þ
B 0.28(2) 0.0 0.202(3)
C 0.28(4) 0.0(0.6) 0.202(4)

1.0 GeV<μ<1.8 GeV
II A 0.31(3) 0.17(2) 0.223(4) α ¼ 0.13ð5Þ

B 0.30(3) 0.0 0.223(4)
C 0.26(5) −1.1ð0.9Þ 0.225(4)

1.1 GeV < μ < 1.8 GeV
III A 0.36(3) 0.22(3) 0.242(4) α ¼ 0.05ð5Þ

B 0.35(3) 0.0 0.242(4)
C 0.29(6) −1.6ð1.2Þ 0.244(4)

1.0 GeV < μ < 1.5 GeV
IV A 0.30(3) 0.17(2) 0.218(4) α ¼ 0.15ð5Þ

B 0.30(3) 0.0 0.219(4)
C 0.22(5) −1.7ð0.9Þ 0.222(4)

1.0 GeV < μ < 1.3 GeV
V A 0.26(3) 0.14(2) 0.202(4) α ¼ 0.22ð6Þ

B 0.26(3) 0.0 0.202(4)
C 0.09(5) −3.6ð0.9Þ 0.209(4)

FIG. 11. The turquoise and orange bands correspond to DAs at
a reference scale μ0 ¼ 2 GeV obtained from the fits to para-
metrizations A and B for fit range II, cf. Table II. Both DAs lead
to an equally good description of our data because they have a
similar second Gegenbauer coefficient aπ2 , which is the only
physically relevant information needed from the DA at the
available range of p · z. Note that the error only includes the
statistical error for the used fit range and that the systematic
uncertainty is considerably larger. For comparison, we have also
included a result obtained using the quasidistribution approach
(dashed line) taken from Ref. [28].
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Our result for aπ2 has good statistical accuracy, and all
parametrizations of the DA lead to similar values that are
somewhat larger than the result from the direct calculation
of the second moment in Ref. [20], aπ2 ¼ 0.1364ð154Þð145Þ
(at 2 GeV). This should not be viewed as a contradiction as
the systematic errors in the present study are not yet under
control. They will decrease significantly in the future,
especially if one could reach values of jp · zj≳ 5, which
would also allow us to start probing the next Gegenbauer
coefficient, aπ4 .
The leading-twist DAs obtained from Ansätze A and B

with fit range II are plotted in Fig. 11. Note that the error
bands only show the statistical error and that the system-
atic uncertainty (cf. fit range variation in Table II) is
considerably larger. Both DAs shown in Fig. 11 are in
perfect agreement with our data since they yield similar
values for aπ2, which is, as discussed above, the only
parameter that is relevant for the description of the data
within the range of p · z that is currently available. In
order to distinguish these DAs from each other, one would
need data at larger jp · zj values that are sensitive to higher
Gegenbauer coefficients. Our results favor DAs that, at a
scale of 2 GeV, are considerably broader than the
asymptotic DA.

VI. CONCLUSION AND OUTLOOK

In this work, we demonstrate that the method proposed
in Ref. [12] for the determination of collinear parton
distributions does not only lead to qualitatively appealing
results (see our first article on the topic [11]) but is indeed
capable of producing quantitative results with surprisingly
small statistical errors. The latter is possible due to the
combination of momentum smearing (improving the signal
for hadrons with large momentum) with stochastic estima-
tion. A main characteristic of our approach is that we use an
equal-time correlation function of two local currents,
connected by a light quark propagator, instead of a nonlocal
operator, connected by a Wilson line gauge transporter.
This has multiple advantages:
(1) We circumvent problems originating from the re-

normalization of nonlocal operators entirely, since
the local currents we use can be renormalized using
well-tested standard methods.

(2) Using a quark propagator easily allows us to
evaluate distances that are not aligned with a lattice
axis. While this is also possible when using a
smeared Wilson line [31], the latter may interfere
with the renormalization. On-axis separations are
actually the worst-case scenario as we find discre-
tization effects to be largest for these directions,
cf. Fig. 5. A restriction to the axes also implies a
considerable reduction of the data set; in Figs. 8–10,
this would correspond to having only one data point
per momentum per plot.

(3) We can evaluate multiple channels, which gives us
an additional handle on the systematic error. It is
crucial that higher-twist corrections for different
correlation functions are related and can have
opposite sign. The channels we have analyzed lead
to consistent results and can be used in a global
analysis to obtain values for the leading Gegenbauer
coefficient of the leading-twist DA and for the
higher-twist normalization constant. Note that it
should be possible to include data from the Wilson
line approach as an additional channel in such a
global analysis.

(4) Using two local currents instead of one nonlocal
current has the nice feature that one can in principle
apply the usual operator improvement within the
Symanzik improvement program to remove OðaÞ
effects.

(5) For the matrix element with two local operators,
finite volume effects have been calculated in
Ref. [85]. The results therein show that, even for
an intermediate lattice size with mπL ¼ 4 (in our
case mπL ≈ 3.4), one has to expect large volume
effects (∼10%) once the distance between the two
currents approaches half of the lattice extent, i.e., if
jzj ≈ 0.5L. In this respect, it is helpful that our
analysis method is restricted to relatively small
distances jzj ≤ 5.5a ≈ 0.2L where perturbative
QCD is applicable, meaning that these volume
effects are under control.

Another important feature of our analysis method is that we
match the perturbative QCD calculation and the lattice data
directly in position space. Note that such a position space
analysis is not tied to using a light quark propagator but can
also be performed within the Wilson line approach (see,
e.g., Refs. [34,35]). The obvious advantage over a quasi-
distribution-type analysis is that one can directly see on the
data level (in Figs. 8–10) whether the perturbative matching
between the off–light-cone correlation function one calcu-
lates and the light-cone quantities one is interested in
actually works.
From a global fit to our data, we obtain values for aπ2 and

δπ2 with unexpectedly small statistical errors. An analysis of
the fit range dependence showed that we have reached an
accuracy where the systematic uncertainties by far domi-
nate. Nevertheless, one can say that the value obtained for
aπ2 indicates a DA that, at 2 GeV, is considerably broader
than the asymptotic one. The value we obtain for the
higher-twist matrix element (B10),

0.2 GeV2 ≲ δπ2 ≲ 0.25 GeV2; ð55Þ

is only slightly larger than sum rule estimates, which lie at
approximately δπ2 ¼ 0.17 GeV2 at a scale of 2 GeV. To our
knowledge, this is the first determination of δπ2 from
lattice QCD.
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We find that, restricting the analysis to distances where
perturbation theory is applicable, even our largest momen-
tum (with jpj ¼ 2.03 GeV) is still slightly too small for the
data to be sensitive to aπ4 . However, it is clear that this
situation will improve dramatically if one could reach
values of jpj > 2.5 GeV.
Having reached small statistical errors only to find a

large systematic uncertainty may seem a bit unsettling at
first. In fact, the opposite is the case, since all main
problems we have identified can be solved by systemati-
cally improving the analysis and provide us with some
guidance toward the next necessary steps. On the lattice
side of the calculation, we find discretization effects to be
the gravest issue (despite all efforts to tame them described
in Sec. IV B). We plan to address this problem with a
twofold strategy, both by drastically reducing the lattice
spacing and, in the long run, by implementing OðaÞ
improvement. To reduce the systematic uncertainty from
the perturbative side of the calculation, our results clearly
call for a two-loop analysis and a more systematic study of
higher-twist effects.
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APPENDIX A: LORENTZ-PROJECTION
OPERATORS

In order to project onto TXY defined in Eq. (25), we can
use the projection matrices

PVV
μν ¼ εμνρσpρzσp · z

2iððp · zÞ2 − p2z2Þ ; ðA1aÞ

PVA
μν ¼ p · z

2ððp · zÞ2 −p2z2Þ2 ½ð2ðp · zÞ2 þp2z2Þðpμzν þ zμpνÞ

− 3p · zðz2pμpν þp2zμzνÞ
−p · zððp · zÞ2 −p2z2Þgμν�; ðA1bÞ

PAA
μν ¼ PVV

μν ; PAV
μν ¼ PVA

μν ; ðA1cÞ

such that TXY ¼ PXY
μν T

μν
XY. For the vector–axial-vector

channel, this projection is the only possibility to obtain

TVA. In the case of the vector–vector channel (and the
axial-vector–axial-vector channel), however, one can
obtain TVV (or TAA) from any channel with two fixed
indices μ and ν as long as εμνρσpρzσ ≠ 0:

TVV ¼ Tμν
VV

−ip · z
εμνρσpρzσ

: ðA2Þ

In our final analysis, we use a weighted average of the
individual channels, where the weight is defined as the
inverse standard deviation squared of the respective chan-
nel. This yields a much better signal than the projection
with (A1a), which basically averages over all vector–
vector/axial-vector–axial-vector channels.

APPENDIX B: HIGHER-TWIST CORRECTIONS

In this Appendix, we provide some details on the
calculation of the higher-twist corrections. First of all,
for nonvanishing quark masses, also the chiral odd twist-3
pion DAs have to be taken into account:

h0jūðzÞiγ5½z;−z�uð−zÞjπ0ðpÞi

¼ Fπm2
π

2mu

Z
1

0

dueið2u−1Þp·zϕp
3 ðuÞ þOðz2Þ;

h0jūðzÞσαβγ5½z;−z�uð−zÞjπ0ðpÞi

¼ −
i
3

Fπm2
π

2mu
ðpαzβ − pβzαÞ

Z
1

0

dueið2u−1Þp·zϕσ
3ðuÞ

þOðz2Þ: ðB1Þ

They enter our calculation multiplied by the quark mass
and become part of the pion mass correction. Since these
contributions are small, we have used the simplest asymp-
totic expressions,

ϕp
3 ðuÞ ¼ 1; ϕσ

3ðuÞ ¼ 6uð1 − uÞ; ðB2Þ

and omitted corrections due to the three-particle
quark-antiquark gluon DA [57]. Complete expressions
for the twist-3 matrix elements can be found in
Refs. [57,58].
To twist-4 accuracy Oðz2Þ and omitting contributions of

four-particle operators with two gluon fields and/or an extra
quark-antiquark pair (which are expected to have very
small matrix elements), one needs to consider two con-
tributions shown schematically in Figs. 1(b) and 1(c). The
first of them is calculated using the background field
expansion of the quark propagator [48],
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⎴qðzÞq̄ ð−zÞ ¼ i
16π2

=z
z4
½z;−z� − 1

32π2z2

Z1

−1

dv½z; vz�
�
izρgG̃ρσðvzÞγσγ5 þ vzηgGηρðvzÞγρ

�
½vz;−z�

−
mq

16π2
1
z2

−
i
4
mq

Z
d4k
ð2πÞ4

e−2ik·z

k4

Z1

−1

dv½z; vz�gGμνðvzÞσμν½vz;−z� þ…; ðB3Þ

where ½z1; z2� is the straight-line ordered Wilson line
connecting the point z1 to z2, while G (G̃) denotes the
(dual) field strength tensor. The last shown term is IR
divergent and has to be regularized. It turns out, however,
that this term does not contribute to our correlation
functions and can be dropped.
The necessary matrix elements can be parametrized in

terms of the four higher-twist DAs [57],

h0jūðzÞγμγ5gGαβðvzÞuð−zÞjπ0ðpÞi

¼ pμðpαzβ − pβzαÞ
1

p · z
FπΦ4;πðv; p · zÞ

þ ðpβg⊥αμ − pαg⊥βμÞFπΨ4;πðv; p · zÞ þ…; ðB4Þ

h0jūðzÞγμigG̃αβðvzÞuð−zÞjπ0ðpÞi

¼ pμðpαzβ − pβzαÞ
1

p · z
FπΦ̃4;πðv; p · zÞ

þ ðpβg⊥αμ − pαg⊥βμÞFπΨ̃4;πðv; p · zÞ þ � � � ; ðB5Þ

with the short-hand notation

F ðv; p · zÞ ¼
Z

Dαeiðα1−α2−vα3Þp·zF ðαÞ; ðB6Þ

where α ¼ fα1; α2; α3g is the set of the quark, gluon, and
antiquark momentum fractions and

Z
Dα ¼

Z
1

0

dα1dα2dα3δðα1 þ α2 þ α3 − 1Þ: ðB7Þ

C-parity implies that the DAs Φ and Ψ are antisymmetric
under the interchange of the quark momenta, α1 ↔ α2,
whereas Φ̃ and Ψ̃ are symmetric.
Taking into account contributions of the lowest and the

next-to-lowest conformal spin, one obtains [57]

Φ4;πðαÞ ¼ 120α1α2α3ϕ1;πðα1 − α2Þ;
Φ̃4;πðαÞ ¼ 120α1α2α3½ϕ̃0;π þ ϕ̃2;πð3α3 − 1Þ�;

Ψ̃4;πðαÞ ¼ −30α23

�
ψ0;πð1− α3Þ þψ1;πðα3ð1− α3Þ− 6α1α2Þ

þψ2;π

�
α3ð1− α3Þ−

3

2
ðα21 þ α22Þ

��
;

Ψ4;πðαÞ ¼ −30α23ðα1 − α2Þ

×

�
ψ0;π þ ψ1;πα3 þ

1

2
ψ2;πð5α3 − 3Þ

�
: ðB8Þ

Omitting terms involving the twist-3 quark-antiquark-
gluon coupling muf3π , which are negligible, the coeffi-
cients are given by the following expressions,

ϕ̃0;π ¼ ψ0;π ¼ −
1

3
δπ2;

ϕ̃2;π ¼
21

8
δπ2ω4π;

ϕ1;π ¼
21

8

�
δπ2ω4π þ

2

45
m2

π

�
1 −

18

7
aπ2

��
;

ψ1;π ¼
7

4

�
δπ2ω4π þ

1

45
m2

π

�
1 −

18

7
aπ2

��
;

ψ2;π ¼
7

4

�
2δπ2ω4π −

1

45
m2

π

�
1 −

18

7
aπ2

��
; ðB9Þ

where δπ2 and ω4π are higher-twist parameters. The former
is defined as the local matrix element

h0jūγρigG̃ρμujπ0ðpÞi ¼ pμFπδ
π
2: ðB10Þ

Its scale dependence is given by

δπ2ðμÞ ¼ L32=ð9β0Þδπ2ðμ0Þ; ðB11Þ

where L ¼ αsðμÞ=αsðμ0Þ. It is interesting to note that,
although ω4π terms appear in individual contributions, they
will cancel in the final results for all current correlations
in Eqs. (33).
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In the diagram in Fig. 1(c), the quark propagator connecting the gluon emission point with the current gets contracted to a
point, and this contribution is expressed in terms of the two-particle higher-twist DAs which are related to the three-particle
DAs defined above by QCD equations of motion. The relevant techniques are explained, e.g., in Refs. [57,58]. One defines
two-particle twist-4 DAs as

h0jūðzÞ½z;−z�γμγ5uð−zÞjπ0ðpÞi ¼ iFπpμ

Z
1

0

dueið2u−1Þp·z
�
ϕ2πðuÞ þ

z2

4
ϕ4πðuÞ þOðz4Þ

�

þ i
2
Fπ

1

p · z
zμ

Z
1

0

dueið2u−1Þp·z½ψ4πðuÞ þOðz2Þ�: ðB12Þ

Note that this equation is nothing but the light-ray OPE (15) at tree level for the two quark fields connected by the Wilson
line where we retain twist-4 terms; the pion mass corrections arising from the application of the leading-twist projection
operator to the exponential factor as in (22) are included in ϕ4ðuÞ. Neglecting, as above, three-particle twist-3 contributions
∼muf3π , one obtains [90]

ψ4πðuÞ ¼ ψ twist
4π ðuÞ þm2

πψ
mass
4π ðuÞ ðB13Þ

with

ψmass
4π ðuÞ ¼ 17

12
− 19uūþ 105

2
u2ū2 þ aπ2

�
3

2
− 54uūþ 225u2ū2

�
;

ψ twist
4π ðuÞ ¼ 20

3
δπ2C

1=2
2 ð2u − 1Þ; ðB14Þ

and similarly

ϕ4πðuÞ ¼ ϕtwist
4π ðuÞ þm2

πϕ
mass
4π ðuÞ; ðB15Þ

where

ϕtwist
4π ðuÞ ¼ 200

3
δπ2u

2ū2 þ 21δπ2ω4πfuūð2þ 13uūÞ þ 2½u3ð10 − 15uþ 6u2Þ ln uþ ðu ↔ ūÞ�g;

ϕmass
4π ðuÞ ¼ uū

�
88

15
þ 39

5
uūþ 14u2ū2

�
− aπ2uū

�
24

5
−
54

5
uūþ 180u2ū2

�

þ
�
28

15
−
24

5
aπ2

�
× ½u3ð10 − 15uþ 6u2Þ ln uþ ðu ↔ ūÞ�: ðB16Þ

Using these expressions, one arrives after some algebra at the results for the higher-twist contributions to the correlations
functions that are collected in the text.
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