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1 Introduction

Spin waves are the collective excitations of magnetically ordered systems. Their respec-
tive quasi particle — the magnon — is name-giving for a rapidly evolving research area
called magnonics. The field aims to exploit spin waves to carry, process, and store infor-
mation [1]. Potentially small wavelengths in the nanometer range [2], high frequencies in
the terahertz regime [3], and Joule-heat-free transport [4] are promising features for such
applications. Underlining the growing interest in magnonics and related subjects, a whole
bouquet of review articles has been published in the last decade [5, 6, 7, 8, 9].

Accompanying the technological motivation, spin waves have been the subject of fun-
damental research giving valuable insights in Bose-Einstein condensation [10], spin wave
tunneling [11], and artificial [9] or natural magnonic crystals [12, 13]. General wave prop-
erties shared with e.g. light waves or sound waves led to the study of spin wave analogs
to diffraction [14, 15], interference [16, 17, 18], or the Doppler effect [19, 20]. In partic-
ular, the anisotropic nature of spin wave propagation [21] — even in isotropic magnetic
media — and its comparatively easy manipulation by external magnetic fields or electrical
currents [22] allows for rich physics to be discovered and exploited.
To this end, this thesis focuses on the experimental investigation of spin wave reflection

and refraction in the magnetostatic regime. In particular, the transmission of plane waves
through an interface of two Ni80Fe20 (permalloy, Py) films of different thickness is studied
by means of time resolved scanning Kerr microscopy (TRMOKE). This optical technique
allows to directly image wave fronts of incident, reflected, and refracted waves thus provid-
ing information on their wavelength, angular dependence, and attenuation. Their relation
is explained by incorporating the anisotropic dispersion relation, which enables us to for-
mulate Snell’s law for spin waves [23]. Especially the use of a thickness step from a thick to
a thin film as an interface for the refraction process provides an efficient way of spin wave
steering and wavelength reduction [24] — two problems that are actively investigated in
magnonics [25, 26, 27, 28, 29].
With the same technique, the reflection of plane spin waves at the edge of a Py film is

examined. We observe that the phase of the reflected wave exhibits a shift with respect to
the incident wave that depends on the wave vector component along the interface. Such
a phase shift for a plane wave is known to lead to a spatial shift for a beam [30]. These
are called Goos-Hänchen (GH) shifts and were experimentally first observed in optics [31].
Recently, they have been proposed for spin waves in different wave vector regimes and
geometries [32, 33, 34, 35]. Since our experimental results are not covered by these pre-
dictions, a numerical model is developed that provides insights into the physics governing
the shift. We can show that dipolar interactions naturally cause GH-like phase shifts for
plane spin waves in our wavelength regime and consequently expect GH beam shifts for
spin waves [36].
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1 Introduction

This thesis is divided into two parts. Part I starts with an introduction to the theory of
spin waves in the dipole-exchange regime that covers wavelengths in the range of nanome-
ter to millimeter. Chapter 2 includes their analytic description within the framework of
micromagnetism, the derivation of dispersion relations, and their excitation by means of
microwave antennas. In Chapter 3, the methods utilized in this thesis are reviewed. In
particular, numerical methods to obtain the spin wave spectrum in a full film (Sec. 3.2.1)
and a stripe (Sec. 3.2.2) are described. Thereafter, an overview of the TRMOKE setup will
be given. Part I concludes with Chapter 4, which gives insight into the unique properties
of spin wave propagation by combining numerical methods, analytic dispersion relations,
and first experimental results. In particular, the surface character of spin waves and spin
wave caustics are discussed. The analytic dispersion relation is verified with the help of
the numerical model.

Part II is dedicated to reflection and refraction experiments. Since all of these are con-
ducted on similar samples, Chapter 5 introduces their general design and the coordinate
system used. In Chapter 6, we describe our experimental results on Snell’s law for spin
waves. This includes a characterization of samples with the help of the analytic dispersion
relation, a discussion on the phenomenon of spin wave bending, as well as the comparison
to Snell’s law in optics. Chapter 7 summarizes the dependence of the refraction process on
the thickness. Finally, Chapter 8, deals with the experiments on the GH-like phase shift of
spin waves. After a review of the connection to beams, the experimental results are com-
pared to numerical simulations to reveal the connection of the GH shift to magnetostatic
interactions.
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Part I

Preliminaries





2 Theory of Dipole-Exchange Spin Waves

Spin waves can be understood as a propagating phase of neighboring, precessing magnetic
moments with defined wave vector k. They are closely related to ferromagnetic resonance
(FMR) [37, 38], the resonant absorption of electromagnetic energy by a ferromagnet. FMR
constitutes the special case of uniform precession, i.e. a wave vector magnitude k = 0. Spin
waves with k = 0 and k 6= 0 are sketched in Fig. 2.1. Depending on the magnitude k, the
propagation is governed by either magnetic dipolar (k < 10 µm−1) or exchange interactions
(k > 100 µm−1). The intermediate regime is called dipole-exchange spectrum, where both
contributions need to be considered.

Spin waves were first described by Bloch [39] in 1930 within a microscopic theory that
explained the temperature dependence of the saturation magnetization. This microscopic
description is reasonable for wavelengths on the order of atomic distances and consequently
describes exchange spin waves [40]. Landau and Lifshitz [41] developed a macroscopic
description of ferromagnets by obtaining the equation of motion for the magnetization, a
continuous vector field that averages magnetic moments of individual atoms. Nowadays,
this approach is called micromagnetism [42]. It triggered the study of spin waves in the
long wavelength limit: Walker [43] and others [44, 45] simultaneously solved Maxwell’s
equations and Landau and Lifhsitz’s equation in bounded ferromagnets. The solutions
were called magnetostatic modes or dipolar spin waves.

These classical magnetostatic modes are name-giving for the main geometries in which
spin waves are typically classified. Usually, one considers a propagating spin wave with
wave vector k in the plane of a ferromagnetic film. Depending on the direction of magneti-

Figure 2.1: Sketch of a snapshot in time of two spin waves with k = 0 and k 6= 0 in a and b,
respectively. Blue denotes either the spin or the magnetization, precessing around its equilibrium. The
green arrows in b depict one component of the precession amplitude, which changes harmonically in
space, as indicated by the sine-like green curve connecting the arrows.
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2 Theory of Dipole-Exchange Spin Waves

Figure 2.2: Main geometries of in-plane propagating spin waves. a Damon-Eshbach, b backward
volume, and c forward volume modes.

zation M, the modes are either called Damon-Eshbach (DE) or surface spin waves (M ⊥ k,
M in the plane), backward volume (BV) spin waves (M ‖ k, M in the plane), and forward
volume (FV) spin waves (M perpendicular to the plane), see Fig. 2.2. All three modes
have unique dispersion relations, which smoothly merge into one another for arbitrary
directions of M and k. Especially the spin wave manifold for both the magnetization as
well as the wave vector in the sample plane will be investigated in this thesis.

In addition to an in-plane propagating wave vector, all modes can exhibit a standing
wave pattern across the thickness of the ferromagnetic film due to confinement in this
direction. These modes are called perpendicular standing spin waves (PSSW). In general,
they are not purely harmonic, i.e. they do not exhibit a defined wave vector, and crucially
depend on the imposed boundary conditions at the top and bottom of the film. The
simultaneous treatment of both exchange boundary conditions [46, 47] as well as electro-
magnetic boundary conditions led to the development of the so called Green’s function
formalism [21, 48, 49, 50]. It is applicable for the full dipole-exchange spin wave spectrum
and contains both dipolar as well as exchange spin waves as limits. Following this ap-
proach and Ref. [51], in the subsequent theoretical sections, the dispersion relation for all
main modes are derived analytically for the lowest energy PSSW. Higher energy PSSWs
are numerically investigated in Sec. 3.2.1.

Experimentally, this thesis discusses magnetostatic modes (with M in the plane), which
are more easily accessible than exchange spin waves. Wavelengths are large enough (mi-
crometer – millimeter) to be spatially resolved by magneto-optical imaging techniques
such as TRMOKE [52] and Brillouin light scattering (BLS) [53, 54]. Together with the
all-electrical propagating spin wave spectroscopy (PSWS) [55], they comprise the main
measurement techniques for this wave vector regime.

This chapter starts by shortly formulating a theoretical basis within the framework of
micromagnetism following Refs. [42, 56, 57, 58]. As already done in this introduction,
we will denote vectors with bold symbols and their magnitudes with the respective italic
symbol. In addition, tensors are also denoted with bold symbols. Unit vectors are denoted
with ei, where the subscript i gives their direction.
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2.1 Micromagnetism

2.1 Micromagnetism

The basis of micromagnetism is the description of the magnetization M(r, t), which is
a smooth, continuous vector field, defined on length scales well above the atomic scale,
where the discrete nature of atoms can be neglected. This is true in both space r and time
t [42, 58]. It can be defined as the sum of individual magnetic moments µ per volume V

M(r, t) =
∑
V µ

V
.

The vector field exists up to a material dependent Curie temperature TC. This continuum
approach enables a classical treatment of ferromagnetism, although magnetism must be
regarded as a quantum mechanical phenomenon. The existence of magnetic moments µ
is closely connected to the spin. The long range ordering of individual µ in ferromagnets
— which allows us to define M(r, t) — has its roots in the exchange interaction. Both
are fundamentally of quantum mechanical nature, but their macroscopic influence can be
grasped within the theory of micromagnetism.
At temperatures below TC the magnetization vector is assumed to have a defined length

MS everywhere in space. This material parameter is called the saturation magnetization.
The ground state of M is found by accounting for relevant magnetic field contributions
Heff . These are usually derived from the free energy density F via [57]

Heff = − 1
µ0

δF

δM , (2.1)

with µ0 = 4π× 10−7 VsA−1m−1 the permeability of vacuum. Then, the so called Brown’s
equation [42]

M×Heff = 0 (2.2)

defines the equilibrium position of M — aligned parallel to Heff . In this work, three energy
density contributions are considered for the derivation of Heff [58]:

• The Zeeman energy density

Fzee = −µ0M ·Hext , (2.3)

which describes the action of an external field Hext on the magnetization. It is
obviously favorable if the magnetization is aligned parallel to Hext.

• The exchange energy density

Fexc = A

M2
S

(
(∇ ·Mx)2 + (∇ ·My)2 + (∇ ·Mz)2

)
, (2.4)

which tends to uniformly align the magnetization. Here, A is called the exchange
stiffness constant.
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2 Theory of Dipole-Exchange Spin Waves

• The demagnetizing energy density

Fdem = −1
2µ0M ·Hdem , (2.5)

which stems from long-ranged magnetic dipole interactions and depends on the given
sample geometry. The demagnetizing field Hdem describes this interaction and is the
dominant contribution for spin waves discussed experimentally in this thesis.

The last two energy contributions that lead to non-local fields also define a characteristic
exchange length [57]

lexc =
√

2A
µ0M2

S
(2.6)

that defines a scale, where exchange is dominant and the magnetization can thus be
assumed as uniform. The sum of all contributions F = Fdem + Fzee + Fexc defines the
effective field via Eq. (2.1). It is given by Heff = Hext + Hdem + Hexc with

Hexc = l2exc∆M . (2.7)

Typically, it is not trivial to calculate Hdem for arbitrary sample shapes. To this end,
Sec. 2.3 is devoted to derive this field from magnetostatic Maxwell’s equations. Alter-
natively, one could obtain Hdem by considering the microscopic dipolar fields originating
from individual µ. Owing to these different points of view, Hdem is interchangeably called
dipolar field, stray field (outside the sample) or magnetostatic field in the literature. Fur-
ther contributions, e.g. magnetocrystalline anisotropy, anisotropic exchange, or strain are
not discussed here, as they only play a minor role in our experiments.

2.2 Magnetization Dynamics
In a non equilibrium situation, where M is not aligned parallel with Heff , a torque acts
on the magnetization resulting in a precessional motion of the magnetization around Heff .
The temporal and spatial evolution of M is described by the Landau-Lifshitz-Gilbert
equation (LLG) [41]

∂M
∂t

= −γµ0(M×Heff)︸ ︷︷ ︸
precession

+ α

MS

(
M× ∂M

∂t

)
︸ ︷︷ ︸

damping

, (2.8)

with γ = | ge2me
| the gyromagnetic ratio, e the electron charge, me the mass of the electron,

and g the Landé factor. The strength of the damping term is accounted for by a dimen-
sionless material parameter, the damping constant α. This equation preserves the length
of M and the trajectory of the magnetization spirals towards equilibrium if there is no
external stimulus, e.g. a driving field that preserves the precession. The two torque terms
— precession and damping — are depicted in Fig. 2.3.
To solve the LLG, we will assume a harmonic time dependence with angular frequency

ω = 2πf . Thereafter, the magnetization is divided in a space and time dependent, dynamic

12



2.2 Magnetization Dynamics

Figure 2.3: a The magnetization (blue) follows
a precessional trajectory driven by the torque
−γµ0(M×Heff) (green arrow). b The dissipa-
tion of energy is accounted for by the torque
α

MS

(
M× ∂M

∂t
)
(orange arrow). The resulting

motion is a spiral towards the equilibrium po-
sition (transparent blue) given by the direction
of Heff .

part m(r, t) = m0(r)exp(iωt) and a static, uniform part Meq. It is further assumed that
the precession angle is small, such that the magnitudes fulfill m � Meq and Meq = MS.
We choose a coordinate system attached to the magnetization as depicted in Fig. 2.4. In
this coordinate system, the magnetization can therefore be written as

M(r, t) =

 mx

MS
mz

 .

Likewise, the field is separated into a dynamic part h and and a static part H, such that
Heff = Hey + (hxex + hzez).

Put into Eq. (2.8) and neglecting non-linear terms of h and m, the result is called the
linearized LLG (

imxω
imzω

)
=
(
−γµ0 (−Hmz +MShz) + iαmzω
−γµ0 (Hmx −MShx)− iαmxω

)
. (2.9)

For completeness, the linearized LLG excluding damping is obtained for α = 0 and writes(
imxω
imzω

)
=
(
−γµ0 (−Hmz +MShz)
−γµ0 (Hmx −MShx)

)
. (2.10)

The latter is the main equation solved in this thesis, as it allows for the derivation of disper-
sion relations of (linear) spin waves. For this reason, expressions for H and h are needed.
In the following, the necessary steps towards their analytical form in certain circumstances
are given. In Sec. 3.2, techniques to solve Eq. (2.10) numerically are described.

For the discussion of spin waves in the experimentally accessible k-vector range, the
demagnetizing energy and associated fields dictate the dispersion relation. Due to their
non-local, dipolar nature, these are typically the most demanding to derive. The following
section shall therefore give a formal basis for their understanding within the framework of
magnetostatics. Afterwards, H and h are derived from the important energies in Secs. 2.4
and 2.5, which finally allows to derive the full film dispersion relations.
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2 Theory of Dipole-Exchange Spin Waves

Figure 2.4: Coordinate system xyz . The (har-
monic) dynamic magnetization components are
mx and mz and the static, not-time-dependent
magnetization Meq will always be aligned par-
allel with y . It holds true that m � Meq and
Meq = MS.

2.3 Magnetostatics

In the absence of currents, Maxwell’s equations for ferromagnetic media in the magneto-
static limit [42, 56, 59] read

∇×H = 0 ,
∇ ·B = µ0∇ · (H + M) = 0 . (2.11)

The first equation implies the existence of a scalar potential function φM that fulfills

H = −∇φM . (2.12)

Together with the second Maxwell equation,

∇2φM = ∇ ·M = −ρM (2.13)

defines the magnetic charge density ρM in reminiscence on the electrostatic potential and
respective electric charge density. The field defined by Eq. (2.12) is called the demagnetiz-
ing field Hdem, which originates from ρM and therefore M. The usual procedure to obtain
Hdem is to find solutions for φM and then simply take the gradient of the potential. To
do so, the Green’s function G for the Laplace operator defined by

∇2G(r) = δ(r)

is used, where δ refers to the Dirac delta distribution. In three dimensions, this function
is known to be

G(r) = − 1
4π|r| . (2.14)

It follows that the solution to Eq. (2.13) can be directly obtained as a convolution of G
and ρM in a finite volume V ′ via

φM (r) = − 1
4π

∫
V ′

d3r′∇
′ ·M(r′)
|r− r′| .
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2.3 Magnetostatics

Here, the primed coordinate system represents the source of the potential, i.e. a finite
magnetization. If V ′ is large enough such that it fully contains the region where M is not
zero, an integration by parts yields

φM (r) = 1
4π

∫
V ′

d3r′∇′
( 1
|r− r′|

)
·M(r′) , (2.15)

since the surface integral vanishes. Note that far away from a region with a total magnetic
moment µ =

∫
V ′ M

′ , the potential has the form of a dipole potential r·µ
4π r3 [59], which

further illustrates the terminology dipolar field.
In the literature, an equivalent definition of the potential is often used: after the diver-

gence theorem is applied, φM is separated into a surface and a volume part. This approach
then defines the magnetic surface charge density σS = nM, with the outward normal n.
The concept of magnetic surface charges as sources of magnetic field Hdem often helps
as an intuitive model to understand processes involving magnetostatic interactions. As
the generation of Hdem is associated with an increase in energy (cf. Eq. (2.5)), systems
avoid the creation of charges. A simple example is the magnetization lying in-plane in an
infinitely extended thin film in the absence of anisotropies. In this case, no surface charges
are created as nM vanishes, which constitutes the energetic minimum. Mathematically,
there is no need to define a surface, as long as boundaries to non-magnetic materials are
regarded as rapid, but smooth variations of M to zero [42, 59].

The spatial average of the demagnetizing field in a volume V is finally obtained from
Eqs. (2.15) and (2.12) as

< Hdem >V = − 1
4π V

∫
V

d3r
∫
V ′

d3r′∇∇′
( 1
|r− r′|

)
·M(r′) . (2.16)

Note that the averaging of the field is important in many practical applications, for instance
if mean fields over some sample dimensions are considered. In numerical simulations, space
is usually discretized in finite volumes and the above averaging is mandatory for a correct
description of Hdem. Besides, it prevents non-physical singularities which can in principle
arise at sample boundaries.

The kernel of the above expression is sometimes called Green’s function tensor [51]
defined as

Γ(r− r′) = −∇∇′ 1
4π|r− r′| .

In Cartesian coordinates, Γ is a 3× 3 matrix with elements

Γij = − ∂

∂ri

∂

∂r′j

1
4π|r− r′| , (2.17)

where i, j are either of the three spatial coordinates. Some properties of the original
Green’s function, Eq. (2.14), are inherited, e.g. by using

∇′
( 1
|r− r′|

)
= −∇

( 1
|r− r′|

)
, (2.18)
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2 Theory of Dipole-Exchange Spin Waves

the trace of Γ is
tr(Γ) = −∇2G(r− r′) = −δ(r− r′) . (2.19)

Due to interchangeable derivatives, Γ has symmetric character i.e.,

Γij = Γji . (2.20)

For any body with uniform magnetization (innately true for ellipsoids), the integral in
Eq. (2.16) can be evaluated independently of M [60]. This implies the existence of a
geometric demagnetizing tensor N (e.g. Refs. [61, 42]) that directly links the magnetization
with its associated field via

Hdem = −N ·M . (2.21)

The components of the demagnetizing tensor Nij are in general positive, accounting for
the name-giving property of Hdem that its direction is opposite to M, hence demagnetizing
the sample. From Eqs. (2.19) and (2.20), we obtain that [62]

tr(N) = 1 and Nij = Nji ,

while the first condition is only true if the field is evaluated in the same volume as the
magnetization (self-demagnetizing). For arbitrary sample geometries, the demagnetizing
tensor is not easily calculated [63, 64] as the magnetization is generally non-uniform. To
obtain magnetization patterns in these geometries, one usually resorts to simulations which
subdivide the magnetic medium in small cells where M can be regarded uniform. Then,
Eq. (2.21) holds and the problem is reduced to finding an appropriate demagnetizing tensor
N, which also accounts for the case where the volume of magnetization does not coincide
with the volume of the field (mutual-demagnetizing). In that case, it follows tr(N) = 0.
The concept of demagnetizing tensors can be applied to static and dynamic parts of Hdem
and is explained in the following two sections in more detail. We will denote the static
demagnetizing tensor by N and the dynamic demagnetizing tensor by n.

2.4 Static Field and Coordinate Systems

For the following derivations, we introduce a new Cartesian coordinate system with co-
ordinates u, v, and w, attached to the laboratory frame. We define two transformation
matrices

Ru =

1 0 0
0 cos (θ) − sin (θ)
0 sin (θ) cos (θ)

 , Rw =

cos (φ) − sin (φ) 0
sin (φ) cos (φ) 0

0 0 1

 , (2.22)

which link the laboratory frame with the magnetization frame via a rotation around the
axes w and u with angles φ and θ, respectively. The two coordinate systems with the
definitions of the angles are depicted in Fig. 2.5 a. A vector rxyz and ruvw in xyz and uvw

16



2.4 Static Field and Coordinate Systems

Figure 2.5: Definition of coordinate systems. a shows the definition of angles φ and θ that connect
the coordinate systems uvw and xyz . The former is defined with respect to the sample with thickness
L. The vector ev will later be chosen as spin wave propagation direction. xyz is attached to the
magnetization system and, as defined in Fig. 2.4, Meq is directed along y -direction. In b, a coordinate
system yHzH is similarly defined as xyz with the external field Hext always pointing along yH .

coordinate systems, respectively, is therefore transformed by

rxyz = Ru ·Rw · ruvw = R · ruvw ,
ruvw = RT

w ·RT
u · rxyz = RT · rxyz .

The superscript T denotes a transposed matrix.
As pointed out in Section 2.1, three energy densities contribute to Heff and have to

be considered for both static and dynamic fields. In the following, we will restrict the
discussion to the case where the static part of magnetization and field are considered
uniform in space. Then, the exchange interaction does not influence H as the gradient
of M vanishes. It remains to discuss the fields associated with the demagnetizing and
Zeeman energies.
For thin films, the demagnetizing tensor is particularly simple, since only the demagne-

tizing tensor component Nww = 1 is different from zero [56, 65]. Then, the demagnetizing
energy density takes the form Fdem = µ0

2 M
2
w such that the whole static energy is given by

F = µ0
2 M

2
w − µ0HextM .

As mentioned before, a finite component Mw would lead to an increase in energy. There-
fore, without additional energy contributions, the magnetization will always be in-plane
for thin films. If an external field is applied in the film plane, the magnetization will be
aligned parallel to this field and the internal field strength verifies H = Hext. By contrast,
for an out-of-plane biased film, the effective field strength H has to be deduced from the
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2 Theory of Dipole-Exchange Spin Waves

energy. In xyz, F reads

F = µ0
2 (−My sin (θ) +Mz cos (θ))2 − µ0HextM ,

with the external field Hext in the uvw frame as

Huvw
ext =

 0
Hextcos (θH)
−Hextsin (θH)

 .

The angle θH is the analogon to θ with respect to a coordinate system yHzH defined as
shown in Fig. 2.5 b. There, Hext is pointing in yH -direction. Equation (2.1) yields for the
effective static field

Hxyz = − 1
µ0

∇MF =

 Hext,x
Hext,y + (−My sin (θ) +Mz cos (θ)) sin (θ)
Hext,z − (−My sin (θ) +Mz cos (θ)) cos (θ)

 . (2.23)

To be compatible with this equation, the external field is transformed into xyz to read

Hxyz
ext = RT

u ·Huvw
ext =

 0
Hextcos (θ − θH)
Hextsin (θ − θH)

 .

By applying the premise that M and H point in y-direction, i.e. formally utilizing Eq. (2.2),
the effective field is obtained from Eq. (2.23) as

H =

 0
H
0

 =

 0
Hextcos (θ − θH)−MS sin (θ) sin (θ)
Hextsin (θ − θH) +MS sin (θ) cos (θ)

 . (2.24)

The y and z-components define two equations that determine the angle of magnetization
θ and the magnitude of the effective field H for a given direction and magnitude of the
external field θH and Hext. In the experiments presented in this thesis, exclusively the
case θ = θH = 0 is discussed, which simplifies the situation to H = Hext. Additionally, the
case θH = 90° is investigated analytically and numerically, since it represents the FV spin
wave geometry and should therefore be considered for completeness. In this case, θ = 90°
holds and

H = Hext −MS

as long as Hext > MS.

2.5 Dynamic Field

If the LLG is solved for its eigenmodes, one does not consider external driving fields.
Hence, exchange and demagnetizing fields are sufficient to describe the dynamic field h.

First, we will seek the dynamic demagnetizing fields hdem, induced by the dynamic
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2.5 Dynamic Field

magnetization m. From Eq. (2.16), we obtain

< hdem >V = 1
V

∫
V

d3r
∫
V ′

d3r′ Γ(r− r′) ·m . (2.25)

In order to derive the dynamic fields, it is most convenient to use the uvw reference frame,
as the demagnetizing fields depend on the sample geometry. In this frame, the components
of the Green’s function tensor, Eq. (2.17), are given by

Γij = − ∂

∂ri

∂

∂r′j

1
4π|r− r′| , i, j ∈ {u, v,w} . (2.26)

Since the dynamic fields are induced by spin waves with a defined wave vector k, it is
advantageous to evaluate the kernel in Fourier space. We utilize the Fourier representation
of the rightmost part of the above equation [59, 51], i.e.

1
|r− r′| = 1

2π2

∫
d3keik(r−r′)

k2 .

Using the residuum theorem, this expression can be integrated over the out-of-plane com-
ponent kw yielding a dependence on the 2D in-plane wave vector kip = kueu + kvev and
on an in-plane space vector rip

1
|r− r′| = 1

2π

∫
d2keikip(rip−r′ip)e−|w−w′| kip

kip
.

This step is performed as we are interested in spin waves traveling in the plane. Differ-
entiation in r and r′ in Eq. (2.26) yields the different components of the Green’s function
tensor in real space

Γij(r, r′) = − 1
8π2

∫
d2k kikj

kip
e−|w−w′| kipeikip(rip−r′ip), i, j 6= w ,

Γwj(r, r′) = −sign(w − w′) i
8π2

∫
d2k kje−|w−w

′| kipeikip(rip−r′ip), j 6= w ,

Γww(r, r′) = 1
8π2

∫
d2k kipe−|w−w′| kipeikip(rip−r′ip) − δ(r− r′) . (2.27)

For the last component, condition Eq. (2.19) has been used. As already indicated in the
definitions of the coordinate systems, Fig 2.5, without loss of generality, ev is chosen as
propagation direction, i.e. kip = kvev and kip = |kv|. We therefore seek for solutions of
the magnetization in the form of plane waves

m(t, r) = m0(w)ei(ωt−k0v) , (2.28)

with a wave vector component k0, that can be either positive or negative. Note that
kv denotes a variable in Fourier space, while k0 is the wave vector component of the
propagating spin wave. Equation 2.28 implies that neither the dynamic magnetization
nor the dynamic field depend on the second in-plane dimension u. The integration in
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2 Theory of Dipole-Exchange Spin Waves

Eq. (2.25) can therefore be directly absorbed into the tensor via

Γ(v,w, v′,w′) = lim
Lu→∞

1
2Lu

∫ Lu

−Lu
du
∫ Lu

−Lu
du′ Γ(r, r′) .

Without prefactors, the integration reads

lim
Lu→∞

∫ Lu

−Lu
du
∫ Lu

−Lu
du′ e−i(u−u′)ku = lim

Lu→∞
4sin2 (kuLu)

k2
u

.

This expression can be identified as Dirac delta distribution 4πLuδ(ku) [51]. Hence, inte-
grals over ku in Eq. (2.27) are readily obtained. Afterwards, ku can be set to zero, as we
allow only for one finite component kv. It follows that Γuj = Γiu = 0 as they depend on
ku. The tensor becomes effectively two dimensional and as an example

Γvv(v,w, v′,w′) = − 1
2π

∫
dkv
|kv|
2 e−|w−w′| |kv |eikv(v−v′) .

The expression on the right hand side coincides with the definition of an inverse Fourier
transform of Γvv with respect to the pair kv and ṽ = v − v′. The respective Fourier
components Γ̂ij read

Γ̂vv(kv,w,w′) = −|kv|2 e−|kv | |w−w′| ,

Γ̂vw(kv,w,w′) = Γ̂wv(kv,w,w′) = −i sign(w − w′) kv2 e−|kv | |w−w′| ,

Γ̂ww(kv,w,w′) = −δ(w − w′)− Γ̂vv . (2.29)

These functions were used in Ref. [21, 50] to derive the full spin wave spectrum of a
ferromagnetic film1. They can be utilized to elegantly rewrite the convolution defined in
Eq. (2.25) as multiplication in kv-space since the inner integration can be rewritten as

hdem = FT−1(Γ̂ · m̂) . (2.30)

As we only allow for waves with wave vector k0, it holds m̂(kv) = m0δ(kv − k0). Then,
the inverse Fourier transform can be directly obtained and one integration is remaining in
the out-of-plane direction w

< hdem >=
∫

dw
∫

dw′ Γ̂(k0,w,w′) ·m0(w′) ei(ωt−k0v). (2.31)

From the definitions of Γ̂ij , only the off-diagonal components exhibit dependencies on
the sign of k0 and the sign of (w − w′). These components, that effectively mix in-
plane and out-of-plane components of magnetization and field are therefore responsible
for non-reciprocal phenomena of spin wave propagation. In particular, this includes the
surface character of spin waves in Damon-Eshbach geometry. A numerical discussion of

1According to Refs. [48, 49], the original derivation of the functions (2.29), are found in Chartorizhskii’s
candidate’s thesis. He is one of the authors of Refs. [48, 49].
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2.6 Full Film Dispersion Relations in Thin Film Approximation

this phenomenon is presented in Section 4.1.
Finally, the dynamic field associated with the exchange interaction can be straightfor-

wardly derived from Eq. (2.7). It is given by

hexc(w) = l2exc∆m = l2exc

(
∂

∂w2 − k0
2
)

m0(w) ei(ωt−k0v), (2.32)

where lexc was defined in Eq. (2.6).

2.6 Full Film Dispersion Relations in Thin Film Approximation

In this work, we are mainly concerned with spin waves propagating in comparably thin
films with thickness L not too large with respect to lexc. Then, thin implies a negligible
dependence of the magnetization profile on the coordinate w, since exchange locks the
magnetization in this direction. An assumption of a constant magnetization across the
thickness is called the thin film approximation [66]. Consequently, any contributions of
PSSWs are automatically disregarded. This approach will be quantitatively justified by
numerically solving for the full spin wave spectrum including PSSWs in Section 4.1.
In thin film approximation, the gradient in w vanishes and therefore, by Eq. (2.32),

hexc = −l2exck
2
0 m .

Since m is assumed to not depend on w, the integration in Eq. (2.31) can be performed
on the Green’s functions tensor across the thickness L such that

Γ̂TF = 1
L

∫ L
2

−L2
dw

∫ L
2

−L2
dw′ Γ̂ .

This double integral without prefactors can be solved explicitly as∫ L
2

−L2
dw

∫ L
2

−L2
dw′ e−|k0| |w−w′| = 2L

k0
f(|k0L|) (2.33)

with the function f defined by

f(x) = 1− (1− e−x)
x

. (2.34)

Due to their antisymmetric structure, the off-diagonal elements of Γ̂TF vanish in thin film
approximation and finally, the tensor can be identified as the negative dynamic demagne-
tizing tensor

n = −Γ̂TF =

 0 0 0
0 nvv 0
0 0 nww

 (2.35)

21



2 Theory of Dipole-Exchange Spin Waves

introduced in Section 2.3, with

nvv = f(|k0L|) ,
nww = 1− f(|k0L|) . (2.36)

Here, we have switched the terminology from Γ to n, since nij can be considered simple
geometric factors that are directly utilized to obtain dynamic fields via

hdem = −
(
nvv 0
0 nww

)
m .

In passing, it can be observed that they also fulfill the usual condition tr(n) = 1, since
source and destination of this field coincide. In addition, there are no components remain-
ing that depend on the sign of k0. We will therefore drop the subscript in the following,
since k = |k0| = |k|.

Now that we have obtained all dynamic fields in linear relation to m, we are prepared
to solve the linearized LLG, Eq. (2.10), defined in the xyz frame for its eigenmodes. All
fields and in particular the demagnetizing field can be transformed into this frame by

hxyzdem = −R · n ·RT ·mxyz .

Note that in order to perform this rotation, n needs to be three dimensional. Demagnetiz-
ing, exchange, and external fields are used in the following two subsections to derive the
dispersion relations ω(k) in the main geometries. When the damped LLG, Eq. (2.9), is
used, the dispersion becomes complex and the imaginary part =(ω) = 1

τ can be identified
as the reciprocal of a characteristic damping time τ . Its relation to the attenuation length
Latt of a propagating spin wave is defined as [56]

Latt = vGτ , (2.37)

with vG = ∂ω
∂k the group velocity. These important parameters will also be quantitatively

discussed after their derivation. We distinguish between the initially mentioned main ge-
ometries Damon Eshbach (DE), backward volume (BV), and forward volume (FV), which
are depicted in Fig. 2.2. DE and BV modes are described by a shared dispersion relation
for the in-plane geometry in the following. Even though FV modes are not discussed
experimentally, we will shortly mention their main features for completeness.

In-plane Geometry

Since θ = 0 holds, Rw is enough to describe the in-plane spectrum with the angle φ =
0 and φ = ±π

2 corresponding to BV and DE, respectively. Then, the non-vanishing
demagnetizing fields read

hxyzdem =
(
hx
hz

)
= −

(
nvv sin2(φ)mx

nwwmz

)
.
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2.6 Full Film Dispersion Relations in Thin Film Approximation

Put into the linearized LLG, Eq. (2.10), and solving the corresponding system of equa-
tions yields the in-plane dispersion relation for dipole exchange spin waves in thin film
approximation

ω2 = (γµ0)2
(
H +MSl

2
exck

2 + nvvMS sin2(φ)
) (
H +MSl

2
exck

2 + nwwMS
)

. (2.38)

In case of finite damping, Eq. (2.9), the real part of ω will recover Eq. (2.38) while the
imaginary part writes

=(ω) = 1
τ

=αγµ0
2

(
nwwMS + nvvMSsin2(φ) + 2H + 2MSl

2
exck

2
)

, (2.39)

when terms quadratic in α are ignored.

General expressions for the group velocity and attenuation length can be derived from
these, but can be quite cumbersome. If |kL| � 1, however, exchange can be neglected and
components nij are expanded as

nvv ≈
|kL|

2 and nww ≈ 1− |kL|2 . (2.40)

Then, one can obtain expressions for group velocities of main directions to

vDE
G = γ2µ2

0M
2
SL

4ω (1− |kL|) ,

vBV
G = −γ

2µ2
0MSL

4ω H

and consequently the attenuation lengths to

LDE
att = vDE

G · 2
αγµ0(2H +MS) , (2.41)

LBV
att = vBV

G · 2
αγµ0(2H +MS −MS

|kL|
2 )

.

With the approximations Eq. (2.40), the expressions for the in-plane dispersion relation
will be used in Sec. 6.2. The attenuation length of spin waves is used in Chapter 7. Note
that the main contribution to the dependence of Latt on the field H stems from the group
velocity and hardly from the decay time.

If general expressions for group velocity and attenuation length are needed, they are
computed numerically from (2.38) and (2.39). Nevertheless, it is important to note, that
the radial part of the gradient, ∂ω

∂φ ∝ sin(2φ), vanishes at the symmetry points corre-
sponding to BV and DE modes. Therefore, the group velocity vector and wave vector
will be aligned anti-parallel and parallel, respectively. In between, there is a finite radial
component and therefore, vG and k are not pointing in the same direction. Since the
group velocity defines the direction of energy flow [67, 56] this has to be kept in mind
when conducting refraction experiments that change the direction of k with respect to M.
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2 Theory of Dipole-Exchange Spin Waves

Out-of-plane Geometry
In the out-of-plane geometry, θ = π

2 , the dispersion is isotropic and reads

ω2 = (γµ0)2
(
H +MSl

2
exck

2
) (
H +MSl

2
exck

2 + nvvMS
)

for FV modes. Note that H = Hext −MS as discussed in Sec. 2.4. The imaginary part is
given by

=(ω) = 1
τ

= αγµ0
2

(
nvvMS + 2H + 2MSl

2
exck

2
)

.

The group velocity and attenuation length are therefore derived to

vFV
G = γ2µ2

0MSL

4ω H

and
Latt = vFV

G · 2
αγµ0(MS

|kL|
2 + 2H)

,

respectively, by the same approximations as above.

Discussion of the Dispersion Relation for Py
Figure 2.6 shows all three main dispersion relations and respective group velocities for
typical values of Permalloy with L = 30nm and a constant internal field H. In the
out-of-plane case the external field Hext must therefore be large enough to overcome the
static demagnetizing field. In plane, H = Hext holds. Here and henceforth, typical
values, which are used for both analytical and numerical calculations, mean µ0MS = 1T,
γ = 185 GHz T−1, A = 13 pJm−1, and α = 0.008, resulting in lexc = 5.7 nm .
The blue shaded part marks the range that is accessible (for in-plane spin waves) with

the current setup described in Sec. 3.3. FV waves are not directly accessible since they lack
our experimental observable — a dynamic out-of-plane component of the magnetization.
The outstanding feature of the BV dispersion is the name-giving region of negative

group velocity. Here, k and vG are opposed to each other. By increasing the angle φ, the
dispersion smoothly transforms to the DE modes. There, the group velocity is largest and
k and vG are aligned parallel. The full in-plane spin wave manifold is depicted in Fig. 2.7
a. The anisotropy of the propagation direction can be visualized in terms of iso-frequency
plots in k-space. Figure 2.7 b shows such a contour with constant frequency of f = 8GHz,
corresponding to the blue plane in a. It is noteworthy that DE modes have the smallest
wave vector magnitude of all in-plane modes. Group velocities are plotted as pink arrows.
It can be shown that these are always perpendicular to the iso-frequency curve [67, 68, 69].
The anisotropy gets smaller with larger wave vector until the dispersion becomes elliptic
in the exchange regime, where the k2 term dominates for all modes. The true BV modes,
i.e. modes with negative group velocity, are not excitable for this combination of field and
frequency, but rather exchange coupled spin waves with positive group velocity. Although
the names of the modes originate from purely magnetostatic calculations, they nowadays
describe modes that share the original geometry of k and M. The FV dispersion is innately
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Figure 2.6: a Dispersion and b group velocity of the three main spin wave modes DE, BV, and FV. The
curves are plotted for an internal field µ0H = 45mT and a thickness L = 30 nm. All other values are the
standard values of Permalloy mentioned in the main text. Group velocities are calculated numerically
from the dispersion.
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Figure 2.7: a In-plane spin wave manifold and b iso-frequency contour at f = 8GHz. Pink arrows
give the direction of group velocity, which is always perpendicular to the iso-frequency curve and only
parallel to k along DE and BV direction. The graphs are plotted for the same values as in Fig. 2.6.
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Figure 2.8: a Decay time τ and b attenuation length Latt of the three main spin wave modes DE,
BV, and FV. The graphs are plotted for the same values as in Fig. 2.6. A negative attenuation length
reflects the fact that group velocity and wave vector are opposed to each other.

isotropic since the respective dynamic components are subject to the same dynamic fields.
In this figure, the iso-frequency curve would therefore resemble a circle with k roughly as
big as in BV direction.
The decay times and attenuation lengths are shown in Fig. 2.8. Here it seems that

despite a larger group velocity, FV modes are superior in terms of traveling time and
attenuation length. However, from an experimental point of view it is more useful to
compare the dependence of waves on the field H at constant frequency. Figure 2.9 a and
b shows k and Latt, both vs. H, respectively. As noted, DE modes have the smallest k
and are for small frequencies only excitable in a small field range. Still, DE modes have a
larger attenuation length by a factor of approximately 3 for f = 8GHz in Permalloy. This
characteristic makes them attractive from an experimental point of view, since imaging is
greatly facilitated. The same holds true for modes with angles close to the DE geometry.

2.7 Excitation of Propagating Spin Waves

So far, we have only considered the dispersion of spin waves without touching on the
possibilities of spin wave generation. In most schemes, this is done by means of a high
frequency magnetic field provided by a waveguide connected to a microwave generator.
Besides thermal excitation, additional possibilities include spin Hall nanooscillators [70,
71, 72], the use of magnetic textures such as domain walls [73] or vortices [74], and optical
excitation [75, 76].
In the conducted experiments of this thesis, a high frequency generator is attached to

a microstructured coplanar wave guide (CPW), which acts as an antenna. The current
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Figure 2.9: a Wave vector magnitude k and b attenuation length Latt of the three main spin wave
modes vs. the internal field H. The curves are plotted for a constant frequency of f = 8GHz. All
other values are identical to the ones in Fig. 2.6. To obtain the values in a, they have to be calculated
implicitly from Eq. (2.38). A negative attenuation length reflects the fact that group velocity and wave
vector are opposed to each other.

through the CPW induces a spatially inhomogenous magnetic field that can couple to
the magnetization. A sketch of this situation is given in Fig. 2.10. If a spin wave is
excited depends on two requisites: First, the structure of the CPW has to provide spatial
frequencies in a range that matches the k vector of desired spin waves. This implies that
its extent roughly defines the order of magnitude of the wavelength of the spin wave.
Secondly, the frequency and — if applied, the static external field Hext — have to be
chosen such that the dispersion relation can be fulfilled with a finite k vector. In other
words, the propagation characteristics are determined by the dispersion relation, i.e. the
properties of the magnetic film, while the excitation efficiency is mainly determined by
the structure of the antenna.
In the following, CPWs consist of two ground lines and a signal line in the micrometer

range. A typical case is a signal line with width 2 µm framed by two ground lines of width
1 µm. Each ground line is separated by 1 µm from the signal line. The CPW is 100 nm
thick and consists of gold. It can be assumed to be infinitely extended in the direction of
current flow.
In order to obtain an estimate of the induced field of such a structure, the 2D Biot

Savart’s law [65, 77]

µ0hext = 1
2π

I× r
r2

can be used. Here, I is the current assumed to flow in u-direction and, consequently, the
v and w components are finite. An antenna structure can be discretized into individual
current paths and their contributions to hext can be summed up. If the array consisting of
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Figure 2.10: Sketch of the excitation of spin
waves by a coplanar wave guide consisting of
one signal (S) and two ground lines (G). This
(yellow) structure acts as an antenna when at-
tached to a high frequency generator. The so
applied current through the CPW (black ar-
rows) induces a high frequency field (orange ar-
rows) that in turn generates spin waves (blue,
k-vectors in green) to either side of the antenna
in the magnetic medium. The figure is published
in similar form in Ref. [78].
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Figure 2.11: a Excitation field h of an antenna versus in-plane dimension v . Yellow rectangles mark
the position of signal line (S) and ground lines (G) of the antenna. b The corresponding absolute of the
fast Fourier transform (FFT) of the in-plane component, corresponding to |ĥx |. The gray line marks
the maximal magnitude.

ground-signal-ground line is arranged in v-direction on top of a sample, the components are
the in-plane and out-of-plane excitation field. Figure 2.11 a shows these versus v for the
structure mentioned above and for a constant current distribution. In general, the current
distribution is not uniform and its correct shape could be obtained numerically [77]. The
fast Fourier transform of the in-plane component is shown in subplot b. It corresponds
to the excitation efficiency for the spatial frequencies in v-direction, i.e. the wave vector
components kv that the antenna is in principle capable of exciting. The maximal efficiency
corresponds to a wave with wavelength λ equal to the ground-to-ground distance of the
antenna — in this case 5 µm.

In w-direction, the excitation field hext decreases on length scales of µm and can therefore
be regarded constant for magnetic films of 60 nm thickness. In principle, however, the
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Figure 2.12: Real and imaginary part of the dynamic out-of-plane magnetization originating from an
antenna structure as shown in Fig. 2.11 centered around v = 0 (yellow rectangles). Calculations are
done in thin film approximation for standard values of Permalloy, for an external field of µ0H = 40mT,
f = 8GHz, and L = 60 nm. By comparing mz at v = −10 µm and v = +10 µm (green vertical lines)
the excitation non-reciprocity gets visible. The external field points into the image plane.

same arguments will apply for the excitation of PSSWs. For the u-component, hext is by
definition translational invariant, hence a plane wave with phase fronts along this direction
(ku = 0) will be generated on either side of the CPW.2 These two waves will have different
amplitudes, which is known as excitation non-reciprocity. The reason lies in the structure
of hext. The in-plane component is symmetric with respect to the middle of the antenna,
while the out-of-plane component is antisymmetric. Roughly speaking, on one side, the
precession of the magnetization is favored while on the other side it is suppressed. A
quantitative discussion of this phenomenon can be conducted with the help of dynamic
susceptibilities [79, 16, 80, 81, 82]. To this end, hext has to be introduced into the LLG,
Eq. (2.10). Then, the corresponding systems of equations are most easily solved in kv
space since the integral in Eq. (2.30) is not directly solvable in real space if the structure
of m is not a priori known. The resulting system of equations can be written as

m̂ = χ̂ · ĥext ,

which defines the complex susceptibility tensor in Fourier space as χ̂. It contains all
information on the magnetic film’s response to an external stimulus. Usually, one is
interested in the real space representation of m which is given by

m = FT−1(χ̂ · ĥext) .

This implies that, although ĥext might drop to zero as depicted in Fig. 2.11, the respective
modes can still be excited due to the finite extent of χ in kv-space.
For the antenna discussed above, the out-of-plane magnetization is depicted in Fig. 2.12.

From this calculation, the non-reciprocity can be determined to

2The wavelength of photons in this frequency range is very large compared to the dimensions of the CPW
such that no phase is added from this end.
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m0(v = 10 µm)
m0(v = −10 µm) ≈ 1.7

for the given values. In addition, few micrometers away from the CPW, the statement
that spin waves are traveling with k0 determined by the dispersion relation already holds.
Still, for a full understanding of the excitation characteristics, it would be necessary to
take the combined dynamics of film and antenna into account [83]. In many situations —
including this thesis — this is not of importance and such a discussion is waived.
In addition to the targeted excitation of plane waves with an antenna, spin waves can be

excited in uniform dynamic external fields. When the CPWmeets the edge of the magnetic
film, the translational invariance in u is broken and therefore finite k-vector components
ku can be excited. The consequences of this behavior are investigated experimentally in
Chapter 4. It is noteworthy, that this excitation mechanism can be exploited to generate
spin waves without resorting to microstructured antennas [84, 69, 85]. It is therefore useful
to influence the phase of spin waves by modulating the edges of the film [86, 87].
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3 Methods
This Chapter starts with the description of the numerical methods, since these are closely
related to the analytical formulas derived in the previous chapter. Afterwards, the exper-
imental setup is described in Sec. 3.3.
Nowadays, micromagnetic simulations routinely accompany experimental research, since

they allow to uncover and visualize physical processes or verify assumptions for analytical
models in the relevant range of time (ps - ns) and length scales (nm – µm) for many
experiments. In particular, they are used to solve the full LLG equation in space and
time. There exist a collection of freely available solvers, e.g. [88, 89], but especially the
fast GPU-based architecture and the ease of use led to a wide application of the software
mumax3 [90]. We will shortly cover the important aspects of such solvers in Sec. 3.1.

Since length scales in our experiments tend to become large (>20 µm), the general 3D
solution of the magnetization trajectory by full micromagnetic solvers becomes impractical.
We therefore develop a more specialized solver based on the linearized LLG equation in
Sec. 3.2. During the course of this thesis, a detailed paper was published that thoroughly
describes this technique [91] and together with Refs. [92, 93] coined the name dynamic
matrix approach that we have adapted. Large parts of the notation and especially the
dynamic fields for a stripe were used from there. However, our version of the full film
approach was developed separately and follows roughly the coordinate system and formulas
provided in [21]. In contrast to [91], we assume a constant static magnetization and define
boundary conditions that include pinning of the magnetization for the full film solver and
periodic boundary conditions for the stripe solver. The general technique is described in
standard numerics textbooks [94] and was for instance used to solve Maxwell’s equation
for its eigenmodes, e.g. [95]. In this context it is usually referred to as finite difference
frequency domain (FDFD). The results of our version of the dynamic matrix method was
compared thoroughly to both analytical dispersion relations and numerical calculations
found in the literature [96, 21, 97, 98, 91, 99].

3.1 Full Micromagnetic Simulations
In a typical micromagnetic simulation, the time evolution is taken into account by starting
from a given magnetization pattern and using ordinary differential equation solvers like
the Runge-Kutta algorithm. In most cases [88, 90] a finite difference scheme is adapted
to discretize space, i.e. the magnetic medium is subdivided into a regular grid of cuboid
cells. The LLG is solved by assuming a magnetization vector in the center of each cell
and considering the interaction between the cells. There exist finite element solvers [89],
but especially the implementation of dipolar fields heavily favors the use of a regular
grid. The calculation of Hdem is the most time consuming, since it depends on the whole
magnetic sample and changes with the magnetization at every time step. Within the finite

31



3 Methods

difference scheme, Hdem can be written as a convolution of a demagnetizing kernel with
the magnetization. This can be implemented by exploiting the fast Fourier transform
(FFT) algorithm. In Fourier space, the convolution is transformed to a multiplication,
which can be rapidly calculated. FFT and the parallel calculation of the time evolution
in many cells are tasks that favor the use of graphics processing units (GPU). Their use
allow for a drastic increase in speed as compared to CPU based solvers.
In this work, the open source software mumax3 was used. Details of the implementation

for the various field contributions can be found in Ref. [90]. Within the context of this
thesis, mumax3 was mainly used to obtain static magnetization patterns as described in
Sec. 6.3. For this task, the energy for a given sample structure has to be minimized.
In mumax3, this is implemented by the relax() method that finds the minimum by
ignoring the precession torque in the LLG, such that only the damping term prevails.
By definition, the damping torque points towards the position of lowest energy (for every
cell). This minimum is then found by propagating the system in time until the torque is
small enough to cut into the noise floor of the simulation. Beyond this task, mumax3 was
used as a general tool to visualize dynamic processes or confirm analytical models.

3.2 Dynamic Matrix Method

The dynamic matrix method aims at the numerical investigation of the equations devel-
oped in the previous chapter. In particular, the linearized LLG, Eq. (2.10), is solved in
the xyz coordinate system. As shown there, all dynamic fields h in this equation can be
expressed as linear combination of components of m, which is equivalent to

h = C ·m ,

with a 2× 2 matrix C. Then, the LLG can be written as an eigenvalue equation

ω

(
m0,x
m0,z

)
= iγµ0

(
MSCzx −H +MSCzz

H −MSCxx −MSCxz

)
·
(
m0,x
m0,z

)
,

with the unknowns ω and m0. To take non-local fields into account, the dynamic magne-
tization is discretized in N cells with a finite cell size, where the magnetization is assumed
to reside in the middle of the cells. In the following two subsections, we will consider both
a discretization of an infinite film along its thickness as well as of an infinite stripe along
its lateral, finite axis. In every cell, the LLG is solved, resulting in a system of equations
represented by a 2N × 2N matrix D:

ω



m
(1)
0,x

m
(1)
0,z
...

m
(N)
0,x

m
(N)
0,z


=



D11
xx D11

xz · · · D1N
xx D1N

xz

D11
zx D11

zz · · · D1N
zx D1N

zz

...
... . . . ...

...

DN1
xx DN1

xz · · · DNN
xx DNN

xz

DN1
zx DN1

zz · · · DNN
zx DNN

zz


·



m
(1)
0,x

m
(1)
0,z
...

m
(N)
0,x

m
(N)
0,z


.
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The superscript letter of the magnetization components indicates the cell index α =
1 . . . N . The 2 × 2 block diagonal components Dαα represent local interactions within
a single cell, while off-diagonal components Dαβ represent coupling between individual
cells. The parameter β denotes the source cell of the respective interaction. The coupling
strength is determined by the constants Cij that include linear combinations of relevant
energy contributions. They have to be determined as described in the following subsec-
tions. Then, D consists of numeric values and there exists a range of algorithms to solve
such numerical eigenvalue problems. In the present case, algorithms provided through the
package numpy in the python programming language have been used. Sample scripts can
be found in Appendix B.
This procedure results in 2N eigenvalue/eigenvector pairs representing the frequencies

and modal profiles of the normal modes of spin waves for the respective geometry. Note
that in general one obtains N positive ω and N negative ω with normally the same
absolute values. Since the magnetization is implicitly assumed to have the form m =
m0exp(i (ωt− k0v)), positive (negative) ω represent waves traveling in positive (negative)
v-direction. Note that in this thesis we will only consider the modes with ω > 0. Each
unique pair (ω, m0) represents one eigenmode of the system calculated for a given in-plane
k0. In the case of the full film, these are the PSSWs and in the case of a stripe, the standing
waves across the stripe width. It should be pointed out that m0 is in general complex
but in all cases considered here, m0,x is purely real and m0,z is purely imaginary. In the
following, we will therefore omit an explicit mentioning of real and imaginary parts. The
full time and space evolution can be obtained by taking the real or imaginary part of m.

3.2.1 Full Film

This section aims to give the recipe to write a solver for the full dispersion relation for
spin waves traveling in the plane of an infinitely extended film. We will use the same
coordinate systems as in the previous chapter: The wave is always traveling along v in the
laboratory frame, while the magnetization is attached to the xyz system, see Fig. 3.1 a.
The full film of thickness L is discretized in laterally infinite slabs of finite thickness dw as
shown in b.
As mentioned in Sec. 2.4, the static magnetization is not necessarily aligned parallel

with the external field Hext. To find the equilibrium position — which is assumed to be
the same in every cell — the two equations

H = Hextcos (θ − θH)−MS sin2 (θ) ,
0 = Hextsin (θ − θH) +MS sin (θ) cos (θ)

defined in Eq. (2.24) are numerically solved for a given field angle and strength by a
standard solver. As a result, we obtain θ and H, where the former will be used to
transform the dynamic fields into the correct coordinate system, while the latter directly
contributes to Dαα. The dynamic fields that have to be considered are the same as for
the analytical derivations, namely exchange and demagnetizing fields.
In order to discretize the differential operator, Eq. (2.32), one usually only includes the
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Figure 3.1: Coordinate system used for the dynamic matrix method. a shows the transformation
between magnetization coordinate system xyz and wave coordinate system uvw , as introduced in
Sec. 2.4. In b, the full film with thickness L is discretized into laterally infinitely extended slabs with
thickness dw . The index β denotes a source cell and α denotes a destination cell.

nearest neighbor cells, i.e. β = α−1, and α+ 1 in the usual finite difference way [100, 94]
such that

h(α)
exc = l2exc∇2m(r) = (−k2

0l
2
exc + l2exc

∂2

∂w2 )m0ei(ωt−k0v)

= −k2
0l

2
excm(α) + l2exc

d2
w

(m(α−1) − 2m(α) + m(α+1))

and, therefore, e.g.

Cααxx = −k2
0l

2
exc −

2l2exc
d2
w

and Cα,α−1
xx = l2exc

d2
w

.

Obviously, at the boundaries, α = 1 and α = N , there is a need for defined exchange
boundary conditions. They are cast in the form of so called Rado-Wertmann type and
described in the following subsection.

The demagnetizing fields can be separated into mutual and self interacting terms. The
former denotes interactions where cell α 6= β and the latter where α = β. The self interac-
tion term has been previously obtained: We assume a constant magnetization within one
slab. Hence, the propagation corresponds directly to the thin film approximation derived
in Sec. 2.6. One can directly use the tensor n, see Eq. (2.35), and transform it into the
xyz coordinate system by

h(α)
dem,self = −RnRTm(β=α) .
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3.2 Dynamic Matrix Method

The mutual interaction between cells of distance dαβ = i ·dw, with an integer i 6= 0, can be
taken into account by adjusting the integral limits in Eq. (2.31) to cover a source different
from the destination and can be calculated analytically as

nvv(dαβ) =
∫ dw

2

− dw2
dw

∫ dw
2 +dαβ

− dw2 +dαβ
dw′e−|k0| |w−w′| = −

2sinh2
(
|k0|dw

2

)
|k0| dw

e−|k0| |dαβ | .

Here the non-diagonal components do not vanish and the evaluation of the corresponding
integrals yield the mutual tensor

nαβmut(k0, dα,β) =

 0 0 0
0 nvv −i sign(dαβ) sign(k0)nvv
0 −i sign(dαβ) sign(k0)nvv −nvv

 . (3.1)

Finally the demagnetizing field in cell α can be written as

h(α)
dem = −RnRTm(β=α) −

N∑
β=1

RnmutRTm(β 6=α) .

Exemplary,
Cααxx = (RnRT)xx and Cαβxx = (Rnmut(dαβ)RT)xx .

The respective interaction constants C from exchange and demagnetizing fields (and po-
tentially other fields) can be summed up and the matrix D is complete. An evaluation of
D yields the frequency spectrum for one value of k0. If D is recalculated for different k0,
the full film dispersion relation for in-plane propagating spin waves can be obtained for a
given geometry of M and k. Usually, only the lowest PSSW modes are of interest due to
their moderate frequencies. An example is given in Fig. 3.2 a, where the DE dispersion
relation for a Py film of thickness L = 30 nm is shown. The corresponding modal profiles
across the thickness depicted in b are close to sine/cosine like standing waves and are
accordingly numbered with an integer n. This is straightforwardly possible in cases where
the modes are well separated in energy. By contrast, especially for larger thicknesses, the
modes may hybridize. Such a case will be investigated in Sec. 4.1.

Discretization of Boundary Conditions

From the definiton of hexc it is obvious that at α = 1 and α = N boundary conditions are
needed. The generally accepted way [100, 91] is the use of unpinned boundary conditions
of the form

∂m
∂w

= 0 . (3.2)

Alternatively, sometimes pinned boundary conditions are applied:

m = 0 . (3.3)
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Figure 3.2: Example for the full film dynamic matrix method. a shows the dispersion relation for a
Py film with thickness L = 30 nm in DE geometry for µ0H = 50 mT. It is discretized into 100 cells
yielding cell sizes well below the exchange length. The dynamic out-of-plane magnetization in these
cells is shown in b for the three crossing points of the vertical black line in a.

If cell sizes are small enough, it is a good approximation to absorb these boundary condi-
tions directly into the cells at the boundary, e.g.

h(1)
ex = −k2

0l
2
exm(1) + l2ex

d2
w

(
m(2) −m(1)

)
,

which directly implies that the derivative towards an imaginary cell with index 0 is zero,
thus fulfilling Eq. (3.2). For a pinned magnetization, m(1) can be forced to zero by setting
the two boundary matrices D11 and DNN to zero.

The more sound approach is the use of a pinning parameter dpin that can vary the degree
of pinning between these two extreme cases. The pinning parameter for the exchange
boundary conditions was introduced for a static out-of-plane magnetization by Rado and
Wertmann [46] and generalized for arbitrary directions of magnetization by Soohoo [47]. In
the literature, the name Rado-Wertmann boundary conditions is customary. In Refs. [46,
47], the pinning is induced by a uniaxial anisotropy that can arise due to oxidation of the
surface. In our coordinate system, they read for the bottom surface

∂mx

∂w
− d(0)

pin sin2(θ)mx = 0, ∂mz

∂w
+ d

(0)
pin cos2(2θ)mz = 0 at w = 0 (3.4)

and for the top surface

∂mx

∂w
+ d

(L)
pin sin2(θ)mx = 0, ∂mz

∂w
− d(L)

pin cos2(2θ)mz = 0 at w = L . (3.5)
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3.2 Dynamic Matrix Method

The pinning parameters are defined by

dpin = −Kuni
A

and can account for different anisotropy constants Kuni at the top and bottom surface. If
the boundary conditions are cast in this form, the anisotropy axis is assumed to be parallel
to the film normal. If Kuni > 0, the anisotropy is of the easy axis type, while Kuni < 0
has a hard axis along the sample normal and therefore an easy plane in the plane of the
sample surface. It is noteworthy that expressions of the form

∂m
∂w

+ dpinm = 0

can also be derived to account for magnetostatic interactions at the lateral boundaries of
stripes [101, 102].
In the discretized model, we absorb the boundary conditions into the exchange operator

l2ex∇2 for α = 1 and α = N by following the approach in [103]: We directly assume the
boundary condition to apply at the film boundary and therefore at the cell boundary.
At the bottom surface, the operator in cell α = 1 is discretized via a series of Taylor
expansions to

∂2mx

∂w2 ≈
1

2d2
w (dwdpin + 3) (−13dwdpin − 10)m(1)

x

+ (6dwdpin + 12)m(2)
x + (−dwdpin − 2)m(3)

x . (3.6)

The steps towards this equation are given in Appendix A.
If applied to a Py film of thickness L = 60nm, which is magnetized out-of-plane by

an external field of µ0Hext = 1.05T, the modal profiles of the first PSSW mode with
k0 = 1 µm−1 will change as shown in Fig. 3.3. At the boundaries, both magnetization
components change gradually from zero slope (unpinned boundary condition) to zero am-
plitude (pinned boundary condition).

3.2.2 In-plane Magnetized Stripe

The dynamic matrix approach for a stripe differs in the arrangement of discretization.
Here, the cells are chosen as shown in Fig. 3.4. In contrast to the previous section, two
choices are made that directly aim at utilizing this method more appropriately for the
experimental circumstances described in Chapter 8. First, a coordinate system is chosen
where the uvw frame is aligned with the xyz magnetization frame, i.e. θ = φ = 0. The
derivation of the different contributions can therefore be directly carried out in the xyz
magnetization frame and there are no static demagnetizing effects, such that H = Hext
in every cell. As a consequence, the wave is traveling along y-direction, ky = k0, and
also the static magnetization is pointing in y-direction. Within a cell, we assume that the
magnetization is constant in x and z-directions. Second, we take advantage of the linear
dependence of H on m and choose H as eigenvalue for the following discussion. This is
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Figure 3.3: Dynamic in-plane magnetization components m0,x and m0,z are shown in subplots a and
b, respectively. Different shades of blue illustrate different pinning parameters dpin as indicated with the
colorbar on the right. The profiles are calculated for a Py film of thickness L = 60 nm in FV geometry
with k0 = 1 µm−1, N = 100, and an internal field of µ0H = 50 mT.

done by rewriting the LLG with the field separated to the left as

H ·
(
m0,x
m0,z

)
=

 MSCxx −i ω
µ0γ

+MSCxz

i ω
µ0γ

+MSCzx MSCzz

 · ( m0,x
m0,z

)
, (3.7)

which changes the order within a sub-matrix Dαβ. This allows us to choose a fixed value
of ω and get all possible values of H in a single evaluation of D, which resembles our
experiments, where usually ω is constant and H is varied. Note that this might yield
negative values of H without physical meaning, since H is defined as the magnitude of a
vector.
In contrast to the previous section, magnetic charges exist in all directions, so no compo-

nent of the demagnetizing tensor is in general zero. Nevertheless, if the cells are arranged
in a one dimensional array, it follows nxz = nzx = nyz = nzy = 0. This is due to the
implicit thin film approximation in this geometry. In addition, components nyy, nxy, and
nyx can be excluded from the discussion, since hy and my are zero by definition of the co-
ordinate system. The remaining components nxx and nzz cannot be calculated explicitly,
but have to be obtained by numerical integration. In Ref. [91], the respective integrals are
given in Eqs. (38) – (41)1. As described there, their numeric values can be obtained by
numerical integration using the vegas algorithm [104] provided for python in Ref. [105].

Exchange can be accounted for in the same manner as in the full film approach, with
the discretization of the exchange operator along x-direction. An example evaluation for
the stripe is shown in Fig. 3.5. One evaluation of a matrix yields all fields shown in a
and the corresponding modal profiles in b. The profiles resemble standing waves in DE

1 nxx and nzz and are called nww and nvv, respectively, in their coordinate system.
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3.2 Dynamic Matrix Method

Figure 3.4: Discretization of cells in
the DM approach for a stripe with finite
width Lx and finite thickness L. The
cells are arranged in x -direction and re-
semble rectangular bars, infinitely ex-
tended in y -direction and with finite
width dx . The vector ey is the direc-
tion of (implicit) wave propagation and
also the direction of the static magne-
tization. As in Fig. 3.1, the index β
denotes a source cell and α denotes a
destination cell.
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Figure 3.5: Example of the dynamic matrix method for a Py stripe of width Lx = 2 µm and thickness
L = 20 nm. It is discretized as shown in Fig. 3.4 into N = 400 cells with a wave with ky = 10 µm−1

propagating in y -direction. a shows the fields associated with the different modes for a constant
frequency of f = 8GHz. They are ordered with a mode-number n corresponding to the close-to-
harmonic profiles shown in b.
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geometry across the stripe width, while they are traveling in BV geometry along y.

Boundary Conditions

In the dynamic matrix approach for a stripe, we employ free exchange boundary conditions
along the lateral edges. As described above, they are taken into account by rewriting the
exchange operator in the zeroth cell as

h(1)
ex = −k2

yl
2
exm(1) + l2ex

d2
x

(m(2) −m(1)) ,

and correspondingly for cell α = N . It is also possible to use periodic boundary conditions
in the x-direction. It is straightforward to rewrite the exchange field in the first cell as

h(1)
ex = −k2

yl
2
exm(1) + l2ex

d2
w

(m(N) − 2m(1) + m(2))

and in the last cell as

h(N)
ex = −k2

yl
2
exm(N) + l2ex

d2
w

(m(N−1) − 2m(N) + m(1)) .

Thus, the exchange is wrapped around the stripe.
The demagnetizing fields can also be cast in periodic form. One assumes that the stripe

is extended in ±x. In each direction, another array ofN cells (with indices β = −N+1 . . . 0
and β = N + 1 . . . 2N) is appended. If these new “stripes” have the same modal structure
m(x) as the original stripe, one can treat their influence by a linear combination of a
set of demagnetizing factors with m(x). Obviously, the demagnetizing factors need to
be calculated with the appropriate distance to the original stripe. Afterwards, the sum
of fields originating from inside and outside of the simulation domain give the dynamic
demagnetizing fields

h(α)
dem = −nm(β=α) −

N∑
β=1

nαβmutm(β 6=α) −
0∑

β=−N+1
nmutm(β 6=α) −

2N∑
β=N+1

nmutm(β 6=α) .

In order to achieve “true” PBC, one would need to add fields from even further away,
yielding an infinite series of demagnetizing fields. But since Lx � Lz in the simulations
considered here, the demagnetizing factors decrease rapidly with distance and the series
can be used in the above form in good approximation.
Applied to the same values as for normal boundary conditions, the dispersion and

corresponding modal profiles are shown in Fig. 3.6. Since x is periodically continued,
the zeroth mode is now constant. The traveling wave along y implicitly assumed in the
calculations corresponds to the pure BV case. For mode numbers n > 0, the profiles
exhibit sine and cosine like standing waves that are pairwise degenerate, since they share
the same wave vector component kx. If dynamic fields are calculated for ky → 0, these
profiles would be the DE modes in thin film approximation. For these limiting cases (and
for arbitrary wave vector components) the associated field H could also be obtained by the
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Figure 3.6: Example of the dynamic matrix method for a Py stripe with periodic boundary conditions
in x -direction. The values for the calculations are the same as in Fig. 3.5. a shows the fields associated
with the different modes for a constant frequency of f = 8GHz. The first three modes are shown in b
versus x .

analytical dispersion relation deduced in Section 2.6. Since both analytical and numerical
model share the thin film approximation, they should coincide up to numeric accuracy,
which is usually given by the errors caused by the integration of the dynamic demagnetizing
factors. The comparison of the two was therefore used to verify the model. Note that in
a real film, kx can be continuous, but the PBC in the exchange and demagnetizing fields
prohibit non-smooth m between cell 1 and cell N , thus only allowing kx = νπL−1

x with
an integer ν.

3.3 Time Resolved Scanning Kerr Microscopy
The time resolved scanning Kerr microscope has been widely used to study magnetization
dynamics and in particular spin waves [52, 106, 107, 16, 108]. TRMOKE is an optical
pump-probe technique. In our setup, the pump is a microwave source with angular fre-
quency ω = 2π f that is connected to a micro-structured antenna (cf. Sec. 2.7) thereby
exciting coherent spin waves with the same frequency f in the GHz range. The repetition
rate of the probing laser pulses frep has a constant phase with respect to f and with the
help of the polar magneto-optic Kerr effect, the out-of-plane component of the magneti-
zation can be probed. Since the duration of one laser pulse is very short with respect to
one period of the excitation, the magnetization is only probed at one distinct phase. Since
we are able to actively change (and stabilize) this phase, the technique more accurately
allows for a phase resolution rather then a time resolution. It also implies, that f is lim-
ited to multiples of frep = 80MHz, since only then the phase can be constant. During
the preparation of this thesis, there were attempts to overcome this restriction with the
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help of a technique called either undersampling or super-Nyquist sampling [109]. Since
the experimental results in the following sections were not obtained with this technique,
it will be only shortly described in Appendix C.
Two similar setups are used, which only differ in the wavelength of the probing laser light

and the mechanical parts. Although there are slight deviations, e.g. in the penetration
depth into the magnetic material and magneto-optical constants between the wavelengths,
these can be neglected in Py, as long as one is not interested in an absolute signal. For
this reason, only the setup with λ ≈ 400 nm is described in the following sections. Similar
descriptions can be found in previous theses [110, 111, 112, 113]. Before the technical
details of the setup are described, a short introduction to the magneto optical Kerr effect
is given following Refs. [114, 115, 65].

3.3.1 Magneto-Optical Kerr Effect

The magneto-optical Kerr effect (MOKE) describes the interaction of light with a ferro-
magnetic medium upon reflection and is closely related to the Faraday effect that describes
the interaction during transmission. Its dependence on the direction of magnetization with
respect to the direction of light klight allows the determination of hysteresis loops in in-
and out-of-plane configurations of M. For this reason, the MOKE is usually classified into
polar (M ‖ klight ‖ n, with n the sample normal), longitudinal (M ‖ klight,ip, with M in the
sample plane and klight,ip the in-plane projection of klight), and transverse (M ⊥ klight,ip,
with M in the sample plane). The first two are characterized by a change of polarization
from linearly to elliptically polarized, with the main axis of the ellipse rotated with re-
spect to the polarization axis of the incident light. The transverse MOKE influences the
intensity of light.

In this thesis, exclusively the polar MOKE is exploited. Both the rotation of the main
axis of polarization and the ellipticity depend linearly on the magnitude of out-of-plane
magnetization. Especially the former is easy to measure by means of crossed polarizes or a
Wollaston prism, the latter detailed in the next subsection. Besides, at normal incidence,
transverse and longitudinal effects vanish and a pure out-of-plane sensitivity is reached.
In all other configurations, a mixture of these effects is measured.
The MOKE can be macroscopically understood with the help of the permittivity tensor

ε that describes the response of a medium to an external electric field, in this case light. It
exhibits off-diagonal elements in the presence of spin-orbit coupling. For a magnetization
pointing out-of-plane [65], it writes

ε = ε0εr

 1 iQ 0
−iQ 1 0

0 0 1

 ,

with Q the magneto-optic parameter. The existence of these off-diagonal components
is characteristic for a material exhibiting the MOKE. They lead to different complex
refractive indices n for left (+) and right (−) circularly polarized light, i.e.

n± ∝ 1± 1
2Q .
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As a consequence, the absorption of light is also different for + and − modes. When
linearly polarized light — a superposition of circularly polarized light — is reflected from
such a medium, one mode gets suppressed and elliptically polarized light will be detected.

3.3.2 Scanning Microscope

The optical components used to probe the MOKE are shown in Fig. 3.7. The main
light source is a Mira 900 mode locked Ti:Sa laser that emits laser pulses with a center
wavelength of around 800 nm and a pulse length of around 120 fs with a repetition rate of
80MHz. It is pumped by a Laser quantum finesse Nd:YAG laser. With a pump power of
10 W, a meanMira output power of 1–2 W can be achieved. Further details of the dynamic
part of this setup are given in the next section. The pulses are frequency doubled with the
help of a barium borate crystal (BBO) that allows for conversion efficiencies of around 10%.
The blue part of the resulting beam is filtered out and scaled to an appropriate power,
usually few mW. Then, its diameter is adjusted with the help of a telescope before it enters
the microscope via a periscope. After a polarizer, a pellicle (transmission ~92%) is used
to reflect a small portion of the light onto an objective lens. The latter focuses the beam
onto the sample. After reflection from the sample, the polarization has changed due to the
polar MOKE, given a finite out-of-plane component of magnetization. The beam passes
the pellicle again and the high transmission of the pellicle is now advantageous since most
of the light carrying the magnetic information is transmitted. The latter is investigated
with the help of a Wollaston prism, that splits the beam into two parts with perpendicular
polarization. The optical axis of the prism is rotated by 45° with respect to the axis of the
polarizer. Therefore, if the sample has not caused a change in polarization, the two beams
after the Wollaston prism have the same intensity. A rotation of polarization is detected
as the difference of intensity of the two beams, recorded by two photodiodes. In our
experiments, this difference is the main measurement quantity called the Kerr signal. It
is directly proportional to the out-of-plane component of the magnetization. In addition,
the sum of the two diodes gives a measure of the reflectivity of the sample and is therefore
used to normalize the Kerr signal.
The sample is mounted onto a piezostage that allows the scanning of the sample un-

derneath the focus of the laser beam. This enables to scan up to 100 µm in each lateral
dimension and 10 µm in out-of-plane (w) direction with a resolution in the nanometer
range. The w-axis is usually only used to keep the focus plane of the laser constant,
which will be detailed below. For distances in the range of millimeters, the piezostage is
mounted on a mechanical uv-stage and the objective lens onto a w stage. By scanning
with the piezostage, images of the Kerr signal and simultaneously the reflectivity are ac-
quired. The first are the primary data investigated in Chapters 4 – 8. The latter are used
to localize differences in material, such as edges of microstructered magnetic films or the
antenna. We therefore refer to this image as topography. These images are typically tens
of micrometers in size and have around 10000 pixels.
As indicated by the sketch, there is a second, red beam path in the microscope origi-

nating from an LED. It passes the same components but is focused such that it creates a
far field image of the sample. Blue and red beam paths are separated with the help of a
dichroic mirror and the red image is recorded with a CCD camera. It is used as a reference
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Figure 3.7: Sketch of the
optical components of the
TRMOKE setup. Starting
from the top left, green depicts
the pump laser, red shows
the infrared pulses and blue
the frequency doubled pulses.
There is a second light source,
a red LED, that shares the
beam path with the blue light
in purple regions.

 

 

for focus and position of the sample. This is especially important as thermal drift can
change the position of the piezostage relative to the laser beam on timescales of few hours.
To prevent this, the image is fed to a PC and before a measurement scan, a reference
image with the correct position of the focused laser is saved. In between measurements
(that usually take approximately 1 h), the stage is actively adjusted such that the current
image from the CCD is the same as the reference image. This procedure utilizes an image
pattern recognition algorithm provided by the Vision and motion module in the LabView
programming language.
The sample is located in between the pole shoes of a magnet. It provides external in-

plane fields of up to µ0Hext = 250mT and is rotatable. This allows to externally adjust
the angle φ. Both magnitude and angle can be controlled by a computer.

3.3.3 Synchronization and Modulation

At the heart of the time resolution of the TRMOKE setup is the synchronization of laser
pulse repetition rate with the high excitation frequency, which drives the magnetization
precession. In particular, it is challenging to keep the phase between both as their fre-
quencies differ widely (80 MHz vs. ≈ 8 GHz).

Figure 3.8 shows the components necessary to achieve this goal. A synchrolock accompa-
nying the Mira 900 is used to actively stabilize the repetition frequency to exactly 80 MHz.
A diode behind the output coupler provides a measure of the current repetition rate and
a feedback loop adjusts the laser cavity via a piezotube mounted mirror. At present, the
internal quartz of the synchrolock is the master clock of the setup. Its 10 MHz reference
is fed to the high frequency generator, which is connected to the sample and in particular
to the micro-structured spin wave antenna. In between, there is a PC-controlled phase
shifter. Since the phase of the output of our frequency generator drifts with respect to
the 10 MHz reference (on the order of minutes), we actively stabilize the relative phase
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Figure 3.8: Phase stabilization circuitry of the TRMOKE setup. Red depicts the beam path originating
from the laser. Black arrows represent electrical connections between the components.

between laser and frequency generator: An additional diode is used to trigger a high fre-
quency sampling scope whose input is connected to the output of the signal generator.
The resulting sine is fitted on the PC and its phase can be manually set and kept constant
by continuously shifting the reference of the signal generator. Note, that the phase that is
obtained from the sine fit cannot be identified as absolute phase of the microwave at the
antenna as arbitrary phases can be introduced by all microwave components. However,
it has been shown that these arbitrary phases can be regarded as constant in time. The
active feedback loop of the phase extends its stability up to several days, thus allowing
for long measurements. It also provides an estimate of the phase error that is usually
considerably less than 10°.

In order to increase the signal-to-noise ratio of the setup, lock-in technique is used.
In between signal generator and sample, a microwave chopper is introduced as shown in
Fig. 3.9. The frequency of this on/off-modulation in the kHz regime is provided by a low
frequency generator. Its reference, as well as the Kerr Signal — which is now modulated
— is fed to a Zurich instruments HF2LI Lock-in. The X-channel of the lock-in gives a
signal proportional to the out-of-plane component of the magnetization.
Instead of a microwave chopper, a mixer can be introduced into the circuit. When fed

with a square modulation signal, this effectively shifts the phase of the magnetization
by π. The resulting signals are depicted in Fig. 3.10 in a similar manner as in Fig. 3.9.
Most importantly, the signal at the lock-in (sketched in Fig. 3.10 c) is twice as large as
compared to an on/off modulation. For this reason, the technique was preferentially used
in the experiments.
Next to an increased signal-to-noise ratio, both modulation techniques assure, that the

signal only stems from dynamic contributions to the magnetization. This means that an
out-of-plane tilt of the static magnetization (e.g. at sample edges or due to out-of-plane
anisotropies) is not observed, which can be advantageous when investigating dynamics.
Note that in these active modulation techniques, the transient of the magnetization oscil-
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Figure 3.9: a Modulation circuitry of the TRMOKE setup if a microwave chopper is used. b – d show
the signal after the hf generator, the signal that is fed to the sample, and the signal that is expected at
the lock-in, respectively. Red vertical arrows are the laser pulses that are phase locked to the microwave
excitation (blue lines). Blue dots show the current value of the magnetization when probed by a laser
pulse. The time scales (except for the laser pulses) are not representative for a real measurement.

Figure 3.10: Signals as defined in Fig. 3.9
if a mixer instead of a microwave chopper is
used.
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3.3 Time Resolved Scanning Kerr Microscopy

lation is ignored, which is a good approximation since this process is in the nanosecond
range while the modulation is in the 100 µs range.
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4 Propagation Characteristics

This chapter aims at giving a first impression of spin wave propagation in thin films and
is therefore a transition to the experiments in the following chapters. In Sec. 4.1, the
numerical methods derived previously are applied to verify the thin film approximation
used in the analytical dispersion relation. In addition, the modal profiles of zeroth and
higher PSSWs are investigated numerically. In particular, the classically expected surface
character of spin waves for φ 6= 0 is examined. After this verification, in the following
section first experimental results — recorded by TRMOKE — are shown. The analytical
dispersion relation is used to explain the unique propagation characteristics of spin waves
in thin films. In particular, the excitation of plane waves and caustics is discussed. The
latter correspond to beams that form due to regions in iso-frequency curves with zero
curvature [116, 117, 118].
In this chapter spin waves propagate in Py films with a nominal thickness of L = 60nm.

Samples have been prepared by standard lithography and thin film deposition techniques
as described in [113]. The values for Py on page 24 are used for both analytical and
numerical calculations.

4.1 Applicability of the Thin Film Approximation and Surface
Character of Spin Waves

As described in Section 2.6, the thin film approximation assumes a constant modal profile
across the thickness of the film. The reason is exchange interaction that locks the magne-
tization along the w-coordinate. The length scale, where exchange is dominant, is defined
by the exchange length lexc, which is around 5 nm in Py. In contrast to this length, the film
thickness in our experiments is rather large (60 nm), which raises questions about the ap-
plicability of the thin film approach for the dispersion relation. As described in Sec. 3.2.1,
the dynamic matrix approach for full films is suitable to study the modal profile across
the film thickness and is used here to verify the analytical dispersion relation. In order to
do so, cases relevant in the experiments are discussed in the following.
A Py film of thickness L = 60 nm is discretized into N = 100 cells resulting in a

cell size of dw = 0.6 nm. Since this is far below the exchange length, it allows for an
accurate description even for higher order standing modes. No pinning is present at the
boundaries. The dispersion relation of spin waves propagating at φ = 90° (i.e. DE modes)
and φ = 30° are shown in Fig. 4.1 a. For both angles, two modes are visible, the zeroth
propagating spin wave mode (close to the red lines) and the first PSSW. The latter are
basically dispersionless and hardly affected by the direction of static magnetization. At
the crossing points of the dispersion branches near k0 = 5 µm−1, mode hybridization —
and therefore avoided crossings — are observed. These are indications for interaction of
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Figure 4.1: Dispersion relations for the two lowest PSSWmodes with in-plane wave vector k0, calculated
by the dynamic matrix approach. a shows two different angles φ in a field of µ0H = 50mT, while
b shows two different fields at an angle of φ = 90°. The blue dots represent the same data in both
graphs.
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Figure 4.2: a In-plane and b out-of-plane dynamic magnetization component versus coordinate w ,
calculated by the full film dynamic matrix approach. Different fields H and angles φ between field and
k are investigated as indicated by the legend. The modes correspond to the points at f = 8GHz in
Fig. 4.1.
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the zeroth and first mode. The analytical thin film dispersion defined in Eq. (2.38) is
plotted in red. It obviously does not account for higher order modes and therefore also
fails near points of hybridization. In addition, for smaller angles between magnetization
and k, it deviates from the numerical points at comparatively small frequencies.
Figure 4.1 b compares two dispersion relations for different fields at the same angle

φ = 90°. The dispersion is shifted downwards with lower fields as is directly expected
from the dispersion relation. Again, near points of hybridization, the analytical disper-
sion starts to deviate from numerical calculations. Experiments are usually conducted at
8 GHz, corresponding to the horizontal black line in both subplots. There, the analytical
dispersion is less reliable for both smaller angles φ and smaller fields H. However, the
deviation at 8GHz never exceeds 1%, which makes the thin film approximation applicable
within the experimental error.
Figure 4.2 shows the modal profiles for the different configurations discussed. They cor-

respond to the points being closest to the 8 GHz line in Fig. 4.1. A stronger non-uniformity
of modes across the thickness coordinate w can be made responsible for the deviations.
It is also interesting to inspect the surface character of the profiles. In particular x and
z-component, shown in a and b, respectively, have larger amplitudes on different sides of
the film. This implies a change of ellipticity of the magnetization precession across the
thickness of the stripe. In the classical DE picture, this is not expected. By contrast, the
wave should exhibit an exponentially decaying profile with the same decay constant for
both components of m. The localization side is defined where the inward normal n verifies
[56, 98]

k
k

= n× M
M

. (4.1)

In the coordinate system discussed here, this is equivalent to the top side for 0 > φ ≥ −180°
and the bottom side for 0 < φ < 180°. However, the modal profiles deviate from an
exponential due to the exchange boundary conditions that are not considered in the DE
approach. In addition, the localization condition Eq. (4.1) is only true for the out-of-plane
component1 cf. Fig. 4.2 b. However, the in-plane component m0,x and also the magnitude
of precession m0 is localized on the top side.

These “unexpected” modal profiles have been proposed and found for the pure DE
geometry, φ = 90° [97, 98, 99]. In these references, the hybridization of zeroth and first
PSSW is made responsible. Since for the cases of φ 6= 0°, 90°, to our knowledge no
studies have been published, this effect is qualitatively accessed for our case in Fig. 4.3.
Modal profiles for different wave vector magnitudes k are shown for the three different
cases discussed in Figures 4.1 and 4.2. They correspond to every second individual dot in
Fig. 4.1 up to 5 µm−1 for each lowest energy mode.
With increasing k, the profiles in a and c exhibit a sign change thus indicating their

smooth transition towards the first standing mode. However, in b, the profiles hardly
change and even in the upper k limit clear signs of hybridization are lacking. This is
expected, since in the BV geometry, φ = 0°, the interaction between modes of different
symmetry should vanish [21]. There, the profiles are perfectly symmetric and antisym-

1We therefore expect this condition to be satisfied in our experiments, where we are only sensitive to the
out-of-plane component.
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Figure 4.3: In-plane magnetization m0,x vs. thickness coordinate w of the lowest energy modes for
different wave vector magnitudes k. These profiles are calculated by the full film dynamic matrix
approach. a, b, and c discuss the three different cases µ0H = 50mT φ = 90°, µ0H = 50mT φ = 30°,
and µ0H = 20mT φ = 90°, respectively. These correspond to every second individual dot in Fig. 4.1.

metric. Based on this reasoning, it is astonishing that the mode with φ = 30° still has
a stronger localization in Fig. 4.2. We suspect that the non-reciprocal components of
dynamic fields, i.e. the dynamic demagnetization component nvw in combination with the
exchange boundary conditions are responsible for this behavior. These ingredients were
found to dictate the hybridization between different dispersion branches [21, 97, 98].
Concluding this section, it is noted that analytical and numerical evaluations of the

dispersion relation agree very well, especially for larger fields and angles around φ = 90°.
It is therefore reasonable to use the analytical dispersion relation in thin film approxima-
tion to extract magnetic parameters of a Py film. A correct understanding of the spin
wave localization can be obtained by solving the relevant equations in dynamic matrix
approach. With decreasing angle between propagation direction and static magnetization,
the localization rises until it eventually vanishes for φ = 0.

4.2 Plane Waves and Caustics

The anisotropic nature of the demagnetizing fields causes interesting features of spin wave
propagation. Usually, these are assessed with the help of iso-frequency curves derived
from the dispersion relation [68, 69]. In this subsection, the first experimental results
are presented together with corresponding iso-frequency curves to give a first qualitative
understanding of these features.
Figure 4.4 a shows an overview image of the propagation of a plane spin wave in a

60 nm thick Py film recorded by TRMOKE. The image was stitched from a series of
40 µm×40 µm images with a step size of 300 nm. On the right side, the contrast sharply
vanishes because no further images where taken there. Note that the same color code is
used for all following images and is therefore often omitted.

The wave is generated by a microwave antenna (depicted as light yellow rectangle),
which defines the direction of the wave vector to be perpendicular (phase fronts parallel)
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b Figure 4.4: a Experimental
data of plane wave propaga-
tion in a Py film of 60 nm
thickness. The excitation
frequency is 8 GHz and the
external field (red arrow) is
µ0Hext = 48 mT. Only the
right side of the CPW (light
yellow rectangle) is investi-
gated. b Corresponding iso-
frequency curve (blue) with
the main k vector excited by
the antenna in green. k with
larger angles are shown in or-
ange. In a and in b, the pink
arrows are the directions of
group velocities of caustics.

to it for most of the image. The external field is applied in the direction of the red arrow,
which corresponds to the DE geometry. A wave differing to the first one only by its
amplitude is also excited to the left of the antenna, and the excitation non-reciprocity is
noticeable as discussed in Sec. 2.7. Notably, although of different origin, the excitation
asymmetry favors the propagation direction defined in Eq. (4.1), where n denotes the
inward normal for the side of the film, where the antenna is placed.
The black horizontal lines mark the edges of the Py film. There, the wave cannot be

regarded as plane anymore and beam-like patterns with slightly higher intensity form.
The latter mark the boundary of the plane wave (outer pink arrows). Similar textures can
be found near y = 28 µm (inner pink arrows).

An iso-frequency curve of the Py film for the given external field and kx > 0 is shown in
subplot b as a blue line. The expected wave vector of the main wave (green arrow) can be
found at the intersection of a line perpendicular to the antenna (along x-direction) and the
iso-frequency curve. It corresponds to the case φ = 90°. The group velocity and, therefore,
the direction of energy flow is shown as a pink arrow which is parallel to the k-vector.
For angles φ 6= 90°, this is not necessarily the case as shown by the orange k-vectors and
corresponding group velocities. In addition, in a wide range of angles, the iso-frequency
curve has almost zero curvature and the group velocities are therefore pointing in the same
direction. If a broad spectrum of waves is excited in this region in k-space, so called spin
wave caustics are formed. They propagate in the form of beams with small divergence
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Figure 4.5: a and c: Experimental data of the interference pattern in a 20 µm wide Py stripe for
µ0Hext = 54mT and φ = −90° and φ = −45°, respectively. b and d: Corresponding iso-frequency
curves. The color code is the same as in Fig. 4.4. In addition, teal arrows show the direction of reflected
caustics for the bottom left of the antenna.

and their direction of propagation is defined by the group velocity.
The aforementioned regions of higher intensity in the experimental data can now be

identified as such caustic beams. They form due to the broad excitation spectrum of the
antenna (along x-direction), as well as of the edge (along y-direction) as shortly mentioned
at the end of Sec. 2.7. The beam diameter corresponds to the projection of the lateral
dimension, where a finite excitation field of the antenna exists.
The smaller beams (inner pink arrows) are caused by a structural defect in the sample

(observable in the reflection image, not shown), which can also act as an emitter of spin
waves due to a local change of the dynamic fields that provides a broad excitation spectrum
in all directions. Therefore, the beam diameter is given by the dimension of this defect
and is of the order of few hundred nanometers. In Ref. [119], point defects as emitter of
caustics have been investigated in more detail.
Since the direction of the main axis of the iso-frequency curve depends on the direction

of the static magnetization, it can be easily influenced by the external field. In addition,
if the antenna is structured at an angle to the Py film, one can suppress (or force) the
creation of caustics near the edge. Figure 4.5 a and c show experimental data for a 20 µm
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Figure 4.6: Experimental data for the angular dependence of the interference pattern in a 20 µm wide
Py stripe for µ0Hext = 54mT. The respective angles of the external field φ are indicated by the red
arrows and the numbers in the top right. They are given with respect to the main plane wave excited
by the antenna and traveling towards the bottom left.

wide Py stripe, while b and d depict the respective iso-frequency curves. The antenna is
at an angle of 45° to the Py edge.
In a, the main wave is again excited in the DE geometry, i.e. the static field is parallel

to the antenna, perpendicular to the main k-vector (|φ| = 90°). Four main caustics can
be identified (pink arrows) and their directions can be understood by the four caustic
directions of the iso-frequency curve in subplot b. For the interference pattern on the left
side of the antenna, also a secondary, reflected caustic (teal arrow) is highlighted. Since
the caustics mark the border of the plane wave, the triangle built by the edge of the film,
the teal arrow and the antenna give the region where the reflection interference is due to
plane waves. The quantitative investigation of this interference pattern of plane waves is
one of the main topics in the following experimental chapters.
In c, the external field is applied parallel to the stripe and therefore |φ| = 45°. The

k-vector of the main wave is larger, which can be understood by the rotation of the iso-
frequency curve with respect to the antenna (subplot d). Still, there is a region where
phase fronts are parallel to the antenna and the wave can be regarded as plane. Note that
wave reflected from the top side of the Py film propagates back towards the antenna and
can therefore potentially influence the interference pattern in the aforementioned triangle
on the bottom. In order to prevent this, the film width has to be large compared to the
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attenuation length.
Fig. 4.6 gives an overview of the angular dependence. As can be seen from subplot a

and i, upon reversal of the external field only the amplitude (and phase) of the interference
pattern on either side is influenced, but the pattern itself remains unchanged. It is therefore
enough to consider the interval from −90° to 90◦ for the following discussion. On a side
note, the amplitude in a is considerably more asymmetric than in i. Neither excitation
non-reciprocity nor the classical modal profile non-reciprocity can explain this behavior
as both depend on the direction of M. One candidate could be a stronger pinning of
the magnetization on the top of the film, that causes an additional non-reciprocity that
depends on the sample geometry and not on the magnetization.
For angles between −90◦ and −25◦ (a – d) the “plane wave triangle” gets smaller. At

φ = −25°, plane waves are hardly excited anymore, since the angle of the caustics ap-
proach the angle of the antenna and, in addition, the excitation efficiency of the antenna
for the particular k-vector dictated by the dispersion relation vanishes. Consequently, in
BV geometry, φ = 0, the caustics are only faintly visible and there is no plane wave. With
increasing positive angle, there exist plane waves that have the same wave vector as their
negative counterparts (apart from a minor misalignment of the external field with respect
to the antenna), since the dispersion is symmetric around the axis of φ = 0. More impor-
tantly, in sharp contrast to the negative angles, there is no reflection of the plane wave
from the bottom edge at y = 1 µm. This is due to the fact that the group velocities point
in different directions as can be directly seen from the caustics or could be quantitatively
found from the iso-frequency curves.

In conclusion, it is noteworthy that a wide range of angles exists outside of the inter-
val −25° < φ < 25° of the external field which allows for the excitation of plane waves.
On which side of the film a plane wave reflection is observable, depends on a combination
of the angle between antenna and edge — so in general of the patterning of the sample —
and the direction of the external field.
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5 Sample Design, Coordinate System, and
Field Direction

The reflection and refraction of spin waves at thickness steps and edges will be quantita-
tively investigated in Chapters 6 – 8. A brief introduction to the sample design and the
coordinate system used there is given in this chapter.
As has been shown in the previous chapter, different field directions have great influence

on how (and if) a wave will propagate towards an interface and if reflection and refraction
is observed at all. At the end of this chapter, we will therefore qualitatively discuss
the influences of the field direction on a sample with a large angle between antenna and
interface.
Fig 5.1 a shows a sketch of the general layout. For convenience, we will use a coordinate

system, where x and y denote the image axis and z is pointing out-of-plane. The y-
direction is always aligned with the thickness step, i.e. the interface of the refraction. To
avoid confusion with the magnetization coordinate system, the direction of the external

Figure 5.1: a Sketch of the sample geometry. Spin waves with wave vector kin impinge on the interface
at ϕin, the latter determined by the orientation of the patterned antenna whose dimensions are shown
in the inset. In this particular case, it holds ϕin = 30°. The blue cross marks the interface and interface
normal between the thick (shaded red) and thin (shaded blue) Permalloy films. Note that there are
also samples where Lthin = 0, i.e. there is only reflection taking place. b 3D sketch of the same sample,
the z-axis is not drawn to scale. The thickness step acts as an interface for the refraction process.
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field, i.e the static magnetization will always be marked in experimental data by a red
arrow. For simplicity, wave vector components will as well be denoted in this reference
frame.

The sample fabrication was done at the University of Kyoto in the group of Prof. Dr. Teruo
Ono. Firstly, using rf magnetron sputtering, a Py film is deposited with thickness Lthin on
an oxidized Si substrate. Secondly, a region on top (shaded red in Fig. 5.1 a) is structured
by electron beam lithography, Py sputtering and lift-off process such that this part has
Lthick = 60 nm. Therefore, an abrupt change of Py thickness is reached and this thick-
ness step works as a boundary of different media in the experiments, see b. Thirdly, the
final sample dimensions (red and blue parts in a) are patterned by electron beam lithog-
raphy. With Ar+ milling, the surrounding Py is removed. Afterwards, a multilayer of
SiO2(63 nm)/Ti(5 nm)/Au(100 nm) is sputtered. Finally, a CPW is fabricated from this
last Au layer (shown yellow) on top of the thick Py film. It consists of a 2-µm-width
signal line and two 1-µm-width ground lines which are separated from the signal line by
1 µm. Such an antenna was studied in Sec. 2.7. Again, electron beam lithography and
Ar+ milling is used for this structuring. The SiO2 layer remains and isolates the antenna
from the conducting Py. It also protects the magnetic film from oxidation.
The antenna will generate a spin wave to either side, where the wave vector to the

right is denoted kin. Note that in all following experiments, spin waves are excited in
a film with Lthick = 60nm. Here, the wave traveling to the left of the antenna is not
of importance. At the interface, we expect a reflected and a transmitted (refracted)
wave with wave vectors kref and ktra, respectively. Since we want to study the angular
dependence of refraction processes for spin waves, an angle ϕ is introduced to account for
the propagation direction of the spin waves with respect to the interface normal. As the
angle ϕin can only be influenced by different sample structuring, we will use ϕin = ϕ to
denote different samples. In addition, we distinguish them with the thickness Lthin. Note
that there are also samples with Lthin = 0 such that only reflection is observable. With
one structuring process, a chip that features samples with one thickness Lthin but many
(typically four) angles ϕ is produced. In the following experiments, a total of six samples
with incident angles ϕin from 10° to 60° is studied. The general structure of these does
not differ from the one shown in Fig. 5.1, i.e. as ϕin increases, the Py film to the left of the
antenna is still structured perpendicularly to it. Obviously, the distance from the bottom
part of the antenna to the interface is thereby increased. The general dimensions are large
enough (100 µm) with respect to the attenuation lengths (≈ 10 µm) such that secondary
reflections or caustics do not disturb the plane wave interference pattern.
In order to obtain reflection and refraction, one has to make sure that there are com-

ponents of the group velocity pointing towards the interface. As shown in the previous
section, this can be achieved with the correct combination of external field angle φ and
incident angle ϕ. This is analyzed qualitatively in Fig. 5.2, where the “extreme” case of
ϕin = 60° is depicted. In this sample, Lthin = 0 and there is no second medium where
refraction can take place. The interface is marked by the vertical gray line. a shows data,
where the external field (red arrow) is aligned at an angle φ = −80° with respect to kin.
The wave does not hit the interface since the group velocity is almost parallel to it. In DE
geometry, see subplot b, there already appear ripples on top of the main wave that exhibit
a much larger wave vector magnitude than kin. These can be identified as the reflected
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Figure 5.2: Experimental data for the angular field dependence of a sample with ϕin = 60°. The
external field is µ0Hext = 50mT. The angle of the external field is indicated by the red arrow, φ
denotes the angle between external field and main k-vector of the antenna. The color code in h is
magnified by a factor of 5.

wave and, with increasing absolute angle, see subplots c – h, their wave vector magnitude
kref decreases in comparison to kin. The latter is increasing, due to a tilt away from DE
geometry that exhibits the smallest wave vector of in-plane spin waves. Consequently, the
amplitude drops because the excitation efficiency of the antenna decreases for larger kin.
In addition, Latt is smaller for these angles. Still, for an angle up to φ = −150° (parallel to
the interface) some components of the group velocity are directed towards the interface,
although the reflected wave can not be resolved without raising the pixel density. The
quantitative relation between φ, ϕ, and k for all waves is the subject of the following
chapters.
In a – c, near the edge of the film, the phase fronts of the main wave are not straight

lines but slightly curved towards the top. This feature is the so called bending of spin
waves [33], which originates from static dipolar interactions. Near the edge of the film,
the internal field is decreased and the magnetization tilts away from the external field to
avoid the generation of surface charges. Thus, the k-vector adjusts to this new dispersion,
such that the phase fronts are not constant anymore. This behavior is reminiscent of light
propagation in media with graded index of refraction and therefore linked to the mirage
effect. It is quantitatively investigated in Sec. 6.3. When the external field is applied
along the edge or interface (subplot h), these static effects are suppressed and a plane
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wave propagation is expected.

In conclusion, for large incident angles, reflection is observed for the range of angles from
DE geometry (b) to the case where the field orientation is pointing parallel to the edge (h).
These cases will be quantitatively discussed in Chapter 6 and Chapters 7, 8, respectively.
Due to large sample dimensions, the caustics do not disturb the interference pattern in
this case and the plane wave model is applicable, except in regions close to the edge where
bending is present.
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6 Snell’s Law for Spin Waves

Snell’s law describes the refraction of waves at the transition between two media with
different indices of refraction. The prototypical example is a light beam that gets refracted
at the transition through a water or glass surface. The dispersion relation of light is in
general isotropic and thus the relation between the incident and refracted angles is solely
determined by the ratio of the refractive indices. In contrast, for spin waves we have
shown in the previous chapters that the dispersion relation is inherently anisotropic in the
dipolar regime and thus deviations from Snell’s law in optics are expected.
In Refs. [120, 121, 122, 123], Snell’s law has been investigated for exchange dominated

spin waves, where dynamic dipolar interactions are negligible and the iso-frequency curves
are circular or elliptic. Refs. [120, 121] consider two unbounded media with arbitrary
parameters. In Ref. [122], the two media represent regions where the equilibrium position
of M differs due to anisotropies and Ref. [123] considers an interface between a YIG and
a Py film. In addition, there exist experimental works that either focus on reflection [124]
or refraction [125, 126], but none of these consider both in a single experiment.
Thickness steps have been investigated experimentally [125, 127, 128] and numerically

[129]. In Refs. [127, 129], their potential use as wavelength converters is mentioned, but a
detailed analysis of the refraction and reflection process is lacking.
In the experiments presented in this chapter, we use a thickness step from Lthick = 60nm

to Lthin = 30nm to realize the transition between two magnetic media with different dis-
persion relations for propagating spin waves. As can be seen in Fig. 6.1, after the transition

Figure 6.1: Overview of the experiment with
exemplary data acquired by TRMOKE on a
sample with ϕ = 20°. The green arrows show
the wave vectors kin, ktra, and kref relevant for
the analysis. ϕin, ϕtra, and ϕref denote the an-
gles of the wave vectors with respect to the in-
terface normal, while φin, φtra, and φref denote
the angles with respect to the external field.
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6 Snell’s Law for Spin Waves

at the interface (blue vertical line) both wave vector and angle change considerably. The
angle and k-vector definitions are overlaid on the experimental data. Parts of the present
chapter have been published in Ref. [23] and contain the first experimental results on the
angular dependence of reflected and refracted waves in the dipolar regime, by measuring
samples with different ϕ. The external field is always applied such that the incoming wave
propagates in DE geometry. The excitation frequency is set to f = 8 GHz. A spin wave
lens based on the refraction laws at a thickness step has meanwhile been published [130].

6.1 Quantitative Assessment of Wave and Sample
Characteristics

So far, all experimental data has been only qualitatively discussed and dispersion relations
were plotted with standard material parameters of Py. Although this has been shown to
make many features accessible, a complementary quantitative discussion is mandatory.
To access spin waves characteristics, the data is fitted in 2D. The model function is

defined as a single plane wave in the xy-plane as

f(x, y) = A sin(k cos(β)x+ k sin(β) y + p) e−
cos(β) x
Latt

− sin(β) y
Latt (6.1)

in regions where only one wave is expected. Here, the independent parameters that are
fitted are the amplitude A, the phase p, the wave vector magnitude k, the attenuation
length Latt, and an angle of propagation β defined with respect to the image axis. In
regions where more than one wave is propagating — typically the incoming and reflected
wave — a superposition of two functions f(x, y) is used, yielding twice as many fitting
parameters. A subset of data of a full image is obtained by truncating the data to that
contained in a predefined polygon [131]. Here and henceforth this polygon represents the
area where a wave is fitted and is marked with a white box in the images. This subset
of data is then used to minimize the residual to the model function with respect to the
independent parameters [132].
Figure 6.2 shows data (a – c) and corresponding fits (d – f) for a sample with ϕin = 20°

and the external field applied in DE geometry, φin = −90°, for three different field strengths
H. The position of the interface, as determined from topography data, is marked with a
gray vertical line.
The parameters determined from such a field dependence can be used to further inves-

tigate the sample with the help of the analytical dispersion relation Eq. (2.38). Figure 6.3
a shows k and b shows β versus the field H. Within the error, β does not depend on
the external field, while k shows an almost linear dependence. It is therefore possible to
calculate φ directly from the mean of β. Then, the representation k(H), Eq. (6.3), defined
in the next section, can be straightforwardly used1 to obtain the parameters MS and L
for all three waves. Roughly speaking, MS determines the slope, while L determines the
axis intersection.
This fit is shown in the graph and the parameters from the different fits are presented in

c. The quantity Lthick is the mean value obtained from both incoming and reflected wave
1Alternatively, the more accurate dispersion relation Eq. (2.38) can be used to fit the data implicitly.
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Figure 6.2: a – c Experimental data for different external field strengths µ0Hext indicated in the figures
for a sample with ϕin = 20° and Lthin = 30 nm. d – f Corresponding fits determined as described in
the main text. The white rectangle to the left of the edge (gray vertical line) is fitted with two waves,
while the rectangle to the right (thin part) is fitted with one wave. The direction of the external field
is indicated by the red arrow. The light yellow rectangle marks the position of the antenna.

andMS is the mean value from all three waves. The individual parameters agree within the
error. Note that we fixed the gyromagnetic ratio to the standard value γ = 185GHzT−1,
because an independent access to both γ andMS is not possible in this wave vector regime.
Notably, MS agrees well with the expected value for Py and the thicknesses are within
10% error of the nominal values.

6.2 Analytical Formulation

To predict refraction and reflection angles, we have to incorporate the anisotropic disper-
sion relation for spin waves in thin films into Snell’s law. At first, we consider the case
of a plane dipolar spin wave impinging on an arbitrary interface between two isotropic
magnetic media. The continuity of the tangential component of the wave vector k of any
wave, when experiencing reflection or when being transmitted to a different medium, can
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Figure 6.3: Summary of the field dependence on the sample with ϕin = 20°. a shows the wave vector
amplitude k and b the angle of propagation with respect to the image axis β. The data points are
obtained from fits as shown in Fig. 6.2. in, tra, and ref denote the incoming, transmitted, and reflected
wave, respectively. c summarizes the structural parameters of Py as determined by a fit to the dispersion
relation.

be regarded as Snell’s law, namely

sin(ϕin) = kref,tra
kin

sin(ϕref,tra) . (6.2)

In optics, this reduces to the well known Snell’s law for refracted waves, where kref,tra can
be substituted by the respective refractive indices due to isotropic and linear dispersion
relations in most materials. For the same reasons, it simply follows ϕin = ϕtra for a
reflected wave since it remains in the same medium. By contrast, the wave vector of
spin waves in thin films depends on the angle φ between the propagation direction with
respect to the direction of the externally applied field Hext. This has been extensively
discussed and can be quantitatively evaluated with the dispersion relation in thin film
approximation, Eq. (2.38). Since the waves discussed experimentally verify kL� 1 2 and
exchange can be neglected, it can be rewritten as k(φ,H) and reads

k =

(
−
√(

(H +MS) sin2(φ) +H
)2 − (2 sin(φ) ω

µ0γ

)2
+ (H +MS) sin2(φ)−H

)
LMS · sin2(φ) . (6.3)

This expression for the wave vector magnitude can be inserted into Eq. (6.2) to obtain
Snell’s law for spin waves.
In this chapter, the external field is always aligned parallel to the CPW. Therefore, DE

spin waves, φ = −90°, get excited by the antenna. As has been shown in Sec. 2.6, they
exhibit the largest attenuation length of all modes, which favors imaging. It remains to

2The difference between Eqs. (6.3) and (2.38) is below 10% at a wave vector magnitude of k = 6 µm−1

— the largest wave vector investigated.
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Figure 6.4: Iso-frequency curves for the refraction of DE spin waves (blue arrow) at an interface
between a Py film of Lthick = 60 nm (blue curve) to a film of Lthin = 30 nm (orange curve). a – c show
three different samples with ϕin = 20°, 40°, and 60°, respectively. The interface is directed along y .
The field direction is shown as red arrow, refracted and reflected wave are shown as orange and green
arrows, respectively.

identify the magnetic angle φ with the angle to the interface normal ϕ as φtra= (90° +
ϕtra − ϕin), see Fig. 6.1. Besides the known material and experimental parameters, the
resulting implicit equation only depends on ϕtra and can therefore be used to predict
refraction angles for spin waves for a given ϕin. Similarly, the angle of reflection can be
determined by identifying φref = 90°−ϕref −ϕin. Feeding the calculated angles back into
Eq. (6.3) allows calculating the wave vector amplitudes. The formalism is not limited to
experiments where different media are modeled with a different thickness of the film; it
can also be used for interfaces consisting of different magnetic materials.
The above formalism can be illustrated with the use of iso-frequency curves defined by

Eq. (6.3) and is depicted in Fig. 6.4 for thick (blue) and thin (orange) Py films. The
values to calculate them are taken from the previous section. Each subplot shows a
different sample, i.e. different ϕ. The incoming wave is just the DE wave in the thick film
(blue arrow). Snell’s law, Eq. (6.2), demands the continuity of the tangential component
of the wave vector ky. Transmitted and reflected wave vectors can therefore be found
by the intersection of the gray line (that visualizes this component) with the respective
iso-frequency curve [68]: blue for reflection and orange for transmission. By comparing a
– c, one expects a non-linear increase of ktra and kref with increasing ϕ (and constant kin).
One should note, that the angular dependence of the refracted wave depends crucially
on the orientation of the external magnetic field, while its magnitude is negligible. By
contrast, the wave vector amplitude is influenced substantially by the magnitude of the
external field. This has already been experimentally observed in the previous section.
In the trivial case of spin waves impinging at normal incidence onto the thickness step,

i.e. φ = 90°, ϕ = 0° for all waves, it is straightforward to define an angle-independent
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Figure 6.5: a Simulated magnetization profile along x -direction (perpendicular to the interface) for a
sample with ϕ = 30°. This corresponds to an angle of the external field of 60° with respect to the
x -axis. Its magnitude amounts to µ0Hext = 54mT. b Corresponding in-plane deviation of the direction
of the magnetization from the direction of the external field.

relative refractive index: since k ∝ 1
L , the expression

ktra
kin

in Eq. (6.2) reduces to Lthick
Lthin

= 2
and likewise to respective ratios in Chapter 7. This relative refractive index is later used
when the experiments are compared to Snell’s law in optics.

6.3 Bending of Spin Waves

In Chapter. 5, we have shortly touched on the topic of bending near the interface due to
static dipolar effects. It is obvious that the inconstant wave fronts do not allow to use the
plane wave fitting procedure described in Sec. 6.1.
To quantify the influence of the dipolar effects arising at the thickness step, we use

mumax3 described in Sec. 3.1. The static magnetization is simulated on a grid of 16384×
16×16 cells and dimensions of 80000 nm×80 nm×60 nm with periodic boundaries along the
y-direction assuming a standard xyz-coordinate system. The step is located at x = 40 µm
and is eight cells (30 nm) high. An external field of 54mT is applied and the energy
minimum is found via the built-in relax() function. After saving the magnetization and
the effective field, the field is rotated and the procedure starts again. This is performed
for a range of angles between ϕ = 5° and 70°. From the magnetization, we calculate
the deviation of the in-plane angle from the direction of the external field by ∆ϕ =
90°−ϕ−arctan

(
My

Mx

)
. Magnetization profile and deviation from the external field direction

∆ϕ are depicted in Fig. 6.5 for ϕ = 30°. One can observe a tilt of the magnetization near
the edge, such that it is pointing more along the direction of the edge for the thick film,
while in the thin film the component perpendicular to the edge becomes larger. Both
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the interface, for thin and thick part, respectively. b and d: Results for the effective field at different
distances from the interface, for thin and thick part, respectively. All simulations where performed at
µ0Hext = 54mT.

effects can be understood by the charge avoidance at the thickness step.
In addition to this tilt of magnetization, the effective field is also influenced by the

charge avoidance. In the thick film, it reduces the effective field due to its demagnetizing
nature, while in the thin part, it enhances the effective field due to the stray field of
the step. Both tilt and field contributions affect the dispersion relation and therefore the
propagation of spin waves. Their influence is shown for different angles ϕ in Fig. 6.6. Here,
subplot a and b show the thin film, while c and d are plotted for the thick film. As can be
seen, the effects are stronger closer to the interface and amount to almost µ0∆H = 10mT
and ∆ϕ = 5°. When compared to the experimental results in the previous section, these
deviations are certainly strong enough to change the dispersion relation near the interface.
We use these results to determine the change in k according to the procedure in Ref. [34].

As a first step, we calculate the wave vector magnitude kin in the homogeneous region
xeval = 15 µm away from the interface by using the dispersion relation Eq. (2.38). The
components are determined to ky = −kin sin(ϕ) and kx,0 = kin · cos(ϕin).
According to Snell’s law, ky (the component along the interface) should be fixed in the

entire sample. We evaluate the iso-frequency curves of the dispersion relation on a grid
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Figure 6.7: a and b: Wave vector component kx versus distance from the interface for an external
field angle of 20° and 60°, respectively. The latter corresponds to the results for the largest incident
angle studied experimentally. Here, the effect of spin wave bending is the largest.

with cell size dx = 25nm along the x-direction from xeval to the interface and take into
account the changing magnetization direction and the effective magnetic field. From these
calculations we obtain different values of kx for every grid point. We repeat the same
procedure for the reflected wave. The results are presented in Fig. 6.7 for two different
angles. In case of ϕ = 20°, the wave is hardly affected by the bending. By contrast,
for large incident angles and, in particular, for ϕ = 60°, the bending can be strong near
the interface. It is therefore mandatory to evaluate points sufficiently far away from the
interface when analyzing experimental data. This is in conflict with the short attenuation
lengths expected for the reflected waves. Since we are mainly interested in ϕref and (as we
surely know ϕ) the change of kref,x can be used as reference for the starting point of fits —
i.e. where the wave can be regarded as a plane wave. From b it is determined to at least
1 µm away from the interface for the reflected wave. Since kin,x is more heavily influenced
by the bending, we accept fitting errors for the parameters of the incoming wave since it
cannot be easily disentangled from the reflected wave in an interference pattern. On the
upside, the more important values for the reflected wave are still trustworthy.
The bending can also be observed for the refracted wave. Similar calculations show

that the effect is of the same order, therefore the above discussion applies as well for the
transmitted wave and for ϕ = 60° the fitting should start at least 1 µm away from the
interface.
One should note that these calculations provide an upper bound of the change in k since

this approach assumes an adiabatic change of spin wave characteristics with the variation
of the effective field [34]. However, this is not true as the wavelength is much larger than
the area where these demagnetizing effects are effective.
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6.4 Angular Dependence of Snell’s Law for Spin Waves
In total, six different samples with varying angle of incidence ϕin between 10° and 60° in
steps of 10° were measured at a fixed excitation frequency of ω = 2π · 8GHz. Examples
of the raw Kerr data are shown in Fig. 6.8 a – d. In the data, we recognize the incoming
wave in the thick film (left of the grey line) and the refracted wave in the thin film (right
of the grey line). When accurately analyzing the dynamic magnetic contrast in medium
1, a reflected wave can be observed as well. To emphasize the reflected waves, we show
linescans along the wave fronts of the incoming waves in Fig. 6.8 i – l, corresponding to
the blue lines in the images.
As clearly seen in the images, k is significantly enhanced behind the thickness step.

This means that the natural limit for short wavelength spin wave generation given by the
geometrical constraint of the CPW can be elegantly overcome. Furthermore, near the
interface the signal in the thin part of the Py film is substantially larger than in the thick
part. This is counter-intuitive at first, since the refracted wave is induced by the incoming
wave. However, the combined action of exchange and dipolar interactions leads to an
increased excursion angle. To avoid dynamic magnetic charges, purely dipolar coupling
would lead to a doubling of the excursion angle (since the thickness ratio of the two media
is 2:1). At the same time, exchange prefers reducing the tilt angle between the precessing
magnetic moments in both media. As a result, the Kerr signal increases by a factor of 1.5
– 1.7. Note that an increased demagnetizing field in the thin film also contributes to the
deviation from the factor of two. The enhancement of the amplitude is an important point
and means that we can in fact boost the signal some distance from the excitation, thus
counteracting natural attenuation by damping. This is a local effect, since the attenuation
length in the thin part becomes shorter mainly due to the reduction of the group velocity
that scales linearly with thickness. The attenuation length is further reduced since k
increases and since the propagation direction tilts away from the DE geometry. However,
a net boost of the signal can clearly be observed some micrometers away from the interface.
To further analyze the experiments, we fit the data for the refracted waves to obtain

the quantities of interest, namely wave vector amplitudes ktra and the angles of refraction
ϕtra. Additionally, amplitude, phase, and attenuation length are included in this model
as described in Sec. 6.1. The thick part is fitted with a superposition of incoming and
reflected wave yielding kref and ϕref . The fits are displayed in Fig. 6.8 e – h. Care is taken
that bending near the interface and caustics from defects (e.g. in d) are not disturbing
the fits.
The results extracted from the data are presented in Fig. 6.9. They are compared to

the expectations for Snell’s law in optics (green lines), i.e. for a wave propagating in an
isotropic medium with a relative refractive index of 2 between the two media. The orange
line is determined as described in Sec. 6.2. As already anticipated from the iso-frequency
curves, a significant deviation from Snell’s law in optics is observed for incidence angles
ϕin > 25◦ in the case of refraction and ϕin > 10◦ in the case of reflection.
One of the important results that we conclude from our experiments is that the wave

vector can be very efficiently enhanced for incidence angles ϕin > 25◦. We observe that,
while the refracted angle starts decreasing again for ϕin > 40◦, ktra keeps increasing due
to the anisotropic dispersion relation (in the case of reflection, a decrease is observed for
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Figure 6.8: Experimental results and fits for four samples. Columns show experimental data (first
row), 2D fits (second row), and line scans of both data and fit (third row) for samples with ϕin = 10°,
20°, 40° and 60°. In the images, the gray line marks the step between thick (on the left) and thin (on
the right) Py. The white box indicates the area of the fit. The data is recorded at a fixed frequency
of f = 8GHz and an external field of µ0Hext = 54mT directed along the wave fronts of the incoming
wave (red arrows). The color-scale in c and d is cropped to enhance the contrast in the areas with
lower signal. To emphasize the reflected waves, i – l show line scans along the blue lines in e – h.
The blue dots are interpolated from the data, the red lines are extracted from the fits. The quantity l
denotes the distance from the lower left to the upper right of the blue lines.
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Figure 6.9: a Refracted angle ϕtra b refracted wave vector magnitude ktra c reflected angle ϕref and
d reflected wave vector kref , all shown versus incident angle ϕin. In all graphs, the blue dots are
experimental values. The green line shows Snell’s law for an isotropic dispersion relation and the
orange curves Snell’s law for spin waves. The latter are calculated with the help of Snell’s law and
the anisotropic dispersion relation, Eqs. (6.2) and (2.38), as described in the main text. The data was
recorded at an external field of µ0Hext = 54mT and an excitation frequency of 8GHz. The error bars
are the result of least square fitting.
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6 Snell’s Law for Spin Waves

ϕin > 25◦) . Essentially, to match the condition of Snell’s law and the dispersion relation
at the same time, the wave vector needs to increase considerably for dipolar spin waves:
on an iso-frequency curve, DE spin waves have the lowest k. This allows reducing the
wavelength efficiently. By contrast, in an isotropic system — where the wave vector is
solely determined by the refractive index, which is generally not angle dependent — it
would stay constant. In addition, we qualitatively found an increase of Kerr signal behind
the thickness step, effectively boosting the wave. We expect this feature to increase with
smaller Lthin, which will be further investigated in the following chapter.

We conclude that Snell’s law for spin waves in the dipolar regime can be predicted with
high accuracy. Our experiments can be fully reproduced by incorporating the anisotropic
dispersion relation. We find efficient spin wave steering due to the step interface while
at the same time the wavelength of the spin waves can be reduced. In the vicinity of
the interface, a signal boost is observed that we attribute to dynamic dipolar coupling.
Our findings are of relevance in the field of magnonics, where efficient spin wave steer-
ing remains a problem to be solved. Note that Snell’s law in the form presented here,
should also hold for hetero-interfaces composed of different magnetic materials. In this
case, the material parameters (e.g. saturation magnetization and gyromagnetic ratio) of
the different regions have to be inserted in Eq. (6.3).
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7 Thickness Dependence of Refraction

Parts of the present chapter are published in Ref. [24].
The targeted generation of coherent spin waves with small wavelengths is challenging,

since the standard way of generating spin waves is linked to using microwave antennas
whose dimensions put a natural limit on the wavelength, as discussed in Sec. 2.7. Over-
coming this limit is a field of research in magnonics: Demidov et al. injected spin waves
into a tapered Py stripe and observed that, as the internal field gradually decreases the
wave vector magnitude increases [25]. Yu and coworkers made use of the so called grating
coupler effect, where an array of ferromagnetic disks is structured on top of an insulating
ferrimagnetic YIG film [26, 2]. There, modes that match the periodicity of these arrays
are resonantly enhanced in excitation efficiency. Approaches that circumvent the use of
an antenna are pursued as well: they include spin torque nano-oscillators [70, 133] or the
use of magnetic textures like vortices [74] and domain walls [134, 73].
In this chapter, we will further analyze the refraction at thickness steps with a stronger

emphasis on the wavelength conversion and its efficiency. To prevent the static bending
that might lead to an inaccurate description of the incident waves, we will direct the field
along the interface. Samples with three different thicknesses Lthin (10 nm, 15 nm, and
20 nm) and three different angles ϕ (10°, 20°, and 30°) are investigated.

7.1 Fitting and Characterization
In contrast to Sec. 6.4, we use different fitting functions. Instead of two independent fits
for thin and thick part, we fit both regions (again marked with a white polygon) within a
single step. This allows us to make direct use of Snell’s law for spin waves by fixing the
tangential component of the k-vector directly in the fit for all three waves. As has been
shown in the previous section, Snell’s law holds and we can therefore reduce the number
of independent variables. This will be especially useful in the definition of reflection and
transmission coefficients as well as phase shifts between waves.
The knowledge about a possible rotation of the sample axis with respect to the image

axis is mandatory for this goal. We call this angle ϕoff and it is determined by the
topography image, where the two thicknesses have different contrast. The angle ϕoff is
positive when the sample is rotated counter-clockwise with respect to the image axis. This
situation is depicted in Fig. 7.1. The angle β — defined as propagation direction with
respect to the image axis — can then be expressed as

βin = −ϕin + ϕoff ,
βtra = −ϕtra + ϕoff ,
βref = ϕref + ϕoff − π .
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7 Thickness Dependence of Refraction

Figure 7.1: Relation of the different angles ϕoff , β, and ϕ, that are used in the main text. Gray lines are
the image axis. Blue lines mark the interface and interface normal. The situation differs for incoming
and reflected wave as shown in a and b respectively. All angles have a positive sign if the arrow points
counter-clockwise and a negative sign if the arrow points clockwise.

The fitting function Eq. (6.1) can be utilized again for the thin part, while the superposition
of two such functions can be used for the thick part. Within the fitting function, we can
then reduce the number of parameters by calculating two out of three angles ϕ by

ϕref,tra = arcsin
(

kin
kref,tra

sin(ϕin)
)

and a single attenuation length

Lref,tra
att = Lin

att
sin(ϕref,tra)

sin(ϕin) .

In a single step, the residual of both thin and thick part is minimized to yield amplitude,
phase, and wave vector for each of the three waves. Additionally, one attenuation length
Lin

att and one angle βin are obtained, from which all other attenuation lengths and angles
can be calculated by the above equations. This procedure is equivalent to demanding
the conservation of both real and imaginary part of the wave vector component along the
interface.

To illustrate the process of the characterization, we show the values obtained for a sample
with nominal thickness of the thin film Lthin = 15 nm and the incident angle ϕ = 30◦ in
Fig. 7.2 a. As in the preceding chapter, the wave vector shows a linear dependence on H.
The reflected wave almost perfectly matches the wave vector magnitude of the incoming
wave, since the angle of external field with the propagation direction is equal in both
cases. This field sweep is used for an implicit fit to the dispersion relation Eq. (2.38).
With a fixed gyromagnetic ratio γ = 185 GHz T−1, we retain the parameters saturation
magnetization µ0MS = 1.02 ± 0.01 T, Lthick = 62 ± 2 nm, and Lthin = 14 ± 1 nm, using a
single set of parameters for incoming, reflected, and refracted wave. The errors correspond
to one standard deviation of the fitting.
Fig. 7.2 b shows the field dependence of the attenuation length. The result is a rather

flat dependence of the attenuation length on the external field. This is expected from
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Figure 7.2: a Dependence of wave vector magnitudes k and b the attenuation lengths Latt on the
external magnetic field for a sample with ϕ = 30° and Lthin = 15 nm. Dots are experimental data and
red lines correspond to fits to the dispersion relation as described in the main text. c shows the values
obtained by the fit.

Eq. (2.41), i.e.

Latt = vG ·
2

αγµ0(2H +MS) ,

since 2H is significantly smaller than MS in the sum in the denominator and vG only
weakly depends on H. To fit the data, we make use of the parameters obtained for the
field dependence of the wave vector. The vector vG is then calculated for the waves and
projected onto the direction of the wave vector. Again, the data for all three waves is used
to fit to a single parameter α = 0.0074 ± 0.0002. As shown in Sec. 2.6, the dependence
of τ on the direction of the static magnetization for the in-plane configuration is rather
weak and therefore neglected.
All values obtained in this section are close to standard values of Py and reflect the

nominal thicknesses of the individual films (within the error). Similar field-sweeps for
the other thicknesses Lthin give comparable results. A proper quality of Py films is thus
ensured and allows for comparison between the samples.

7.2 Main Results
Figure 7.3 shows the experimental data on the thickness dependence of the wave refraction.
It is taken on a sample with ϕ =30° and an external field of 50mT. The magnitude of
H is chosen slightly off the maximum of antenna excitation efficiency to allow for the
identification of the transmitted wave. For smaller fields, ktra increases and the wave
becomes harder to spot, although it is still possible to fit the parameter.
Figure 7.4 summarizes the parameters obtained by the data in Fig. 7.3. The wave

vector magnitude k (a), the attenuation length Latt (b), and the angle with respect to the
interface normal ϕ (c) remain constant within the error for incoming and reflected wave, as
expected for an external field applied along the interface. The quantity ktra increases non-
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Figure 7.3: a – c Data recorded at f = 8GHz and µ0Hext = 50mT for an incident angle of ϕ = 30°
for thicknesses of 10 nm, 15 nm, and 20 nm, respectively. d – f Corresponding fit obtained as described
in the main text. Note, that the color code is clipped in order to facilitate the recognition of the spin
wave in the thin part.

linearly with decreasing thickness, reflecting the dependence k ∝ L−1 in Eq. (6.3). Note
that this dependence does not hold for all angles, since ϕtra also depends on Lthin, as seen
in subplot c and also in the raw data (Fig. 7.3). The attenuation length of the transmitted
wave increases linearly due to a linear dependence of the group velocity on the thickness.
In d, a transmission coefficient T , defined as the ratio of amplitudes of transmitted versus
incoming wave at the interface, is plotted in green. Likewise, a reflection coefficient R is
defined as the ratio of amplitudes between reflected and incoming wave (orange data). The
latter will be investigated further in the following chapter and is plotted for completeness.
As reported in the previous chapter, a transmission coefficient T > 1 is possible. This

finding is confirmed for Lthin = 20nm. However, for lower thicknesses of the thin film,
the transmission ratio drops linearly — in contrast to the expectancy in the previous
chapter. Other incident angles show qualitatively similar behaviors. It is noteworthy, that
we have a finite optical penetration depth of roughly 15 nm in Py [135], which complicates
the interpretation of T . For all except the 10 nm film this should be negligible, since we
always probe the same top part of the films. In the case of Lthin = 10nm, the value given
is therefore underestimated as less light contributes to the Kerr signal.
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Figure 7.4: Summary of thickness dependence for an incident angle of ϕ = 30◦ at an external field of
µ0Hext = 50mT. The values are directly obtained from the fits in Fig. 7.3. a – cWave vector magnitude
k, attenuation length Latt, and angle with respect to the interface normal ϕ, respectively. in, ref, and
tra denote incoming, reflected, and transmitted waves. d Transmission coefficient T (and the reflection
coefficient R), defined as the amplitude ratio between transmitted (reflected) and incoming wave —
evaluated at the interface.
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Figure 7.5: Angular dependence of a the wave vector magnitudes, b the attenuation lengths, c the
wave vector angles with respect to the interface normal, and d the transmission coefficient. The data
is recorded at an external field of µ0Hext =50mT and Lthin = 20 nm. The legend is as in Fig. 7.4.

From the data presented here and in the previous chapter, we expect a particular thick-
ness ratio, that maximizes T . A theory that predicts T would be desirable to effectively
calculate this sweet spot of thickness ratios for the refraction process. The complicated
part in formulating such a (quasi-) analytical theory is the 3-dimensionality of the problem:
besides the obvious dependence on x and y in our comparably thick 60 nm film, the sur-
face character of spin waves might already play a role. Even if the problem can be treated
in thin film approximation, the combined (non-local) demagnetizing fields of incoming,
refracted, and reflected wave have to be taken into account. One route towards this goal
might be the utilization of dynamic magnetic susceptibilities introduced in Sec. 2.7. With
their help, the magnetic response of the thin film to dynamic stray and exchange fields of
the thick film could be studied. Experimentally, these may be verified by introducing a
small gap between thin and thick film, thus prohibiting an influence of exchange. Similar
numerical calculations as in Sec. 3.2.2 might provide additional insight into the refraction
process.
To further verify such a model, the angular dependence for Lthin = 20 nm is depicted

in Fig. 7.5. The wave vector magnitudes of incoming and reflected waves, shown in a,
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7.2 Main Results

decrease with smaller incident angle as the dispersion approaches the minimum of k with
respect to the angle of the external field. The minimum of the incoming wave vector
magnitude is reached for a wave traveling along x-direction (ϕin = 0°). Note, that this
propagation is perpendicular to the static magnetization, i.e. the DE configuration. This
can be also seen in b, where the respective attenuation lengths increase by lowering ϕin,
since the DE geometry also has the highest group velocity. As ϕin tends to zero the ratio
of transmitted k (ktra) to incoming k (kin) approaches the ratio of Lthick

Lthin
= 3, because the

dispersion of DE spin waves only contains dependencies of k · L. In Fig. 7.5 c, the angles
of reflection and refraction are shown. The incoming angle, shown in blue, matches the
angle of reflection, as the corresponding k-vectors share the same angle with the static
magnetization. Subplot d shows the transmission coefficient. Within the error, there is
only a small difference between the values obtained for different incident angles with a
slight increase of T with increasing angle. As a result, the efficiency of the transmission
process seems to be slightly favoring larger angles investigated here.

In conclusion, we examined the transmission of spin waves through different thickness
steps. To gain insight into the magnetic film properties as well as the refraction process,
we also studied the dependence on the external magnetic field and the incident angle,
respectively. The increase in the wave vector magnitude scales with the thickness of the
film and can be seamlessly tuned to produce a desired wave vector in the sub-micrometer
range. The downside of the up-conversion of wave vectors is the enhanced wave atten-
uation, which is mainly due to a reduced group velocity in thinner films. However, the
reduced group velocity is a characteristic of the dispersion relation and is therefore shared
by all wavelength-conversion techniques that aim to inject waves in such a film.

As shown in our experiments, a conversion with a factor of 3–4 is achieved with a
high transmission efficiency. In this range of wave vectors, the use of a thickness step is
attractive from a technological viewpoint, especially because the main alternative — the
grating-coupler technique [26, 2] — can reach even lower wavelengths but only allows for
conversion efficiencies of approximately 0.2 between fundamental and higher-order modes.
Care must be taken when designing devices that feature these large wave vectors. If the
dispersion is increasingly influenced by the exchange interaction, the k ratio no longer
matches the thickness ratio.

81





8 Goos-Hänchen-Like Phase Shift for Spin
Waves

Parts of the present chapter have been published in Ref. [36].
In optics, a light beam experiences a spatial shift in the beam plane upon total internal

reflection, which is usually referred to as the Goos-Hänchen (GH) shift [31, 136]. Recently,
it has been proposed for spin waves for different geometries of wave vector k and static
magnetization [32, 33, 34, 35]. Depending on the geometry and wave vector magnitude k,
it is expected to be useful in characterizing interfaces [32, 34] or to reveal Berry curvature
effects in the dispersion of spin waves [35]. It is also related to the so called spin wave
bending [33] investigated in Sec. 6.3. Owing to these different sources, the GH shift should
be observable over many orders of magnitude of k. In the context of magnonics it therefore
needs to be considered in any scheme that involves the reflection of spin wave beams [137].

In the dipolar regime, it is not straightforward to realize coherent, non-diffracting spin
wave beams [118, 138] and to directly observe a GH shift. However, according to the
so-called stationary phase method [30] discussed in the following section, a phase shift
between an incident and its reflected plane wave is the basis of the GH shift of beams, as

Figure 8.1: Sketch of the experiment: A spin wave hits the edge of a Py film. Upon reflection, the
side the spin wave is traveling on is switched from top to bottom, and a phase shift ∆ is observed.
Brown and green curves mark the cut lines of incoming and reflected wave with the sample edge. The
shift ∆ can be defined as the distance between two maxima. A static external field is applied along the
edge in y -direction and f = 8GHz.
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8 Goos-Hänchen-Like Phase Shift for Spin Waves

long as it depends on the wave vector component along the interface. The study of this
phase shift reveals all physics governing the GH shift and it can therefore be regarded as
the fundamental quantity.

By using the sample design as presented in Chapter 5 with Lthin = 0, the reflected
wave is studied to investigate this phase shift. An overview of the experiment is given in
Fig. 8.1. As in the previous chapter, the static external field is applied along y-direction
such that no static demagnetizing fields arise. After reflection, the wave will change the
side it is traveling on and by evaluating fits to the interference pattern, the phase shift
∆ can be obtained. The results for different external field magnitudes are presented in
Sec. 8.2. Note, that this switch of sides can cause a shift between the observed waves
of the order of the film thickness Lthick = 60nm. As will be evident later, this effect is
negligible compared to the shift we observe.
Different samples with angles ϕ will be investigated to prove a dependence on ky in

Sec. 8.4. To explain our results, we employ numerical simulations in Sec. 8.3, as no
prediction covers our experimental findings. References [32, 33, 34, 139] mostly consider
exchange dominated spin waves. There, the main contribution to the phase shift are
either surface anisotropies or the exchange coupling to a second film. Both influence the
exchange boundary conditions. Since the effect of exchange is weak in our wave vector
regime, we seek for explanations involving dipolar interactions. In Refs. [140, 34], boundary
conditions for magnetostatic spin waves are derived. In these articles, only the case of the
static magnetization pointing perpendicular to the edge is considered and therefore the
dynamic magnetization does not have components perpendicular to the interface, which
would create dynamic charges. As a result, the effect is dominated by static bending of
spin waves. Ref. [35] predicts a GH shift for the magnetization pointing out-of-plane. The
proposed Berry curvature effect that is responsible for this shift is claimed to vanish for
the magnetization in the plane [141, 142, 143]. In the experimental works [144, 145], a
phase jump for standing spin waves is proposed — which is equivalent to a phase shift for
spin waves upon reflection — but not quantitatively examined. A theory that accounts
for dipolar effects at boundaries was developed by Guslienko et al. [101, 102]. There, only
the special case ky = 0 is investigated.
In Sec. 8.3, we utilize the numerical model described in Sec. 3.2.2, which allows for finite

ky to describe the experimentally observed phase shift. Finally, this chapter concludes with
the experimental results of the angular dependence of the phase shift, which are compared
to the numerical investigations.

8.1 Stationary Phase Method

The so called stationary phase method was developed by Artmann [30]. It gives quick
insight on the influence of a phase shift between an incoming and reflected plane wave
for a beam. Since a beam is laterally confined, it can be understood as a superposition
of (possibly infinitely many) elementary plane waves with different amplitudes. Mathe-
matically, the Fourier transform provides these amplitudes. Artmann’s method revolves
around these elementary waves for the description of the Goos-Hänchen shift.
We consider a plane wave with an amplitude of unity incident onto an reflecting surface,
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8.2 Field Dependence of Reflection

infinitely extended along y-direction. It can be described by Ψin = ei(−kyy) on a particular
cut parallel to the interface in a coordinate system like the one described in the previous
chapters. The reflected wave is Ψref = ei(−kyy+Φ) with a phase shift Φ with respect to the
incident wave. A second elementary wave Ψ(2)

in with neighboring wave vector component
ky + δky will in general cause a reflected wave Ψ(2)

ref with a phase shift Φ + δΦ. The
interference of both reflected waves will exhibit a beating with its maxima at

−δkyy + δΦ = 2πν ,

with an integer ν. If Φ does not depend on the wave number, then δΦ = 0. The distance
between the maxima of a reflection with and without dependence on k can be calculated
as

Y = y(δΦ)− y(δΦ = 0) = δΦ
δky

and considering the limit δky → 0, we obain

YGH = ∂Φ
∂ky

, (8.1)

where YGH is the Goos-Hänchen shift along y-direction expected for beams. This equation
has been used in Refs. [140, 33, 34, 139] to describe GH shifts for spin waves. It is also
clear that the same derivation could have been carried out for a “time-like” phase, causing
a time delay of waves upon reflection, when Φ depends on t [140]. Difficulties usually arise
in the derivation of Φ which is the quantity that will depend on the nature of the wave
propagation and therefore differs for different kinds of waves.

8.2 Field Dependence of Reflection
To determine a phase shift at the interface, it is obviously crucial to accurately determine
the position of the edge. For this purpose, we use the topography data that is recorded
simultaneously with the Kerr data. An example of such an image is given in Fig. 8.2 a for
a ϕ =30° sample. The exact position of the edge as well as a possible tilt ϕoff with respect
to the image axis is determined by a fit to this topography data. Figures 8.2 b and c show
a line scan at y = 20 µm and its gradient, respectively. The latter is fitted with a general
2D elliptical Gaussian function with infinitely extended width along the direction of the
edge. The width perpendicular to the edge is a measure of the focus of our laser beam.
We determine it to about 400 nm full-width half-maximum in the given experiments. In
all three graphs, the so-determined-edge is marked by a gray line, the red line in c is one
line cut of the fit.
The Kerr signal of the same measurement can be found in Fig. 8.3 a, for an external

field of 45mT. A shift between Kerr and reflection data is avoided by scanning the sample
in a meander like path. In c, the field is reversed with the most obvious consequence
being that the dynamic contrast is larger to the left of the antenna due to the excitation
non-reciprocity. By further comparing the two images, it seems that the checkerboard-
like interference pattern is slightly more pronounced in c. Additionally, the wave neither
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Figure 8.2: a Reflectivity of a sample with ϕ = 30°. A line scan at y = 20 µm (white line in a)
is shown in b and its gradient c is fitted with a Gaussian (red line) to determine the position of the
step (gray line in all figures). Note that the whole image contributes to the fit and the red line only
represents a single line cut.
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Figure 8.3: a and c: Typical experimental data, recorded at µ0Hext = 42.5mT on a sample with
incident angle of ϕ =30°. They differ by the direction of the external field (red arrow). The interference
pattern is fitted in the white box. Green and brown lines correspond to the so-determined phase fronts
of incoming and reflected waves, respectively. b and d show the respective fits evaluated along the
interface. The phase difference in real space ∆ is evaluated as the distance between the horizontal red
lines. The reflection coefficient R can be calculated from the ratio of the amplitudes of both waves,
corresponding to the dashed lines in b and d.
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8.2 Field Dependence of Reflection

exhibits a maximum nor a minimum at the edge, which corresponds to partially pinned
boundary conditions.
To quantify these impressions, the data is fitted with a superposition of two plane

waves in the area indicated by the white box. Wave fronts of incident and reflected waves
are highlighted by brown and green lines, respectively. As described in Sec. 7.1, the
tangential components of the incident and reflected complex wave vectors share a single
fitting parameter, i.e. kin

y = kref
y and Lin

att,y = Lref
att,y. Errors are calculated with the help

of a bootstrap analysis. We take twice the standard deviation of the residual of the fit
and generate normal distributed random data with this standard deviation. Afterwards,
the fit and calculation of the parameters is repeated. An uncertainty of the position of
the edge is also included (100 nm), as this is a crucial part in the determination of a shift
and dominates the error in most cases. After repeating these steps 100 times, twice the
standard deviation of the set of resulting parameters yields a 95% confidence interval of
each fitted or calculated parameter. The error bars in the following figures delimit this
interval.
In the next step, the fit is evaluated along the edge. Incident and reflected waves

are plotted separately in Fig. 8.3 b and likewise for the reversed field in d. The red
dots indicate the position of two nearest minima of the waves. We define the absolute
shift ∆ as the distance between the two red horizontal lines. The reflection coefficient
R is the ratio of amplitudes of the reflected wave and the incoming wave (dashed lines).
The quantities ∆ and R together with the wave vectors of both waves are the primary
parameters extracted from the raw data.

For further calculations, we normalize ∆ to a phase shift in units of radians by defining
Φ = −∆ · ky. From the definition of the shift, it is also clear that we can access Φ only
up to translation by integer multiples of 2π. By convention, we choose the shift to be in
the interval −π to π. Zero shift corresponds to an in-phase reflection, i.e. the interference
pattern of incident and reflected waves has a maximum at the edge. This corresponds to
unpinned boundary conditions. By contrast, a phase shift of ±π implies a trough of the
interference pattern, i.e. the dynamic magnetization is pinned at the interface. Note that
ky is negative and ∆ is positive in the given coordinate system.

Similar images are recorded for different external fields and both the reflection coefficient
and the phase shift are obtained as described above. In Fig. 8.4 a the dependence of R
on the external field is shown. Since an increase of H causes a linear decrease of the wave
vector of incoming and reflected waves, k (as determined from the fit) is indicated on the
top axes labels. The wave vector magnitudes of incoming and reflected waves agree very
well, as expected in the geometry, where the external magnetic field is directed along the
edge. For this reason, k is referring to either wave vector magnitude.
For positive (negative) fields, R is smaller (larger) than unity. Naively, one would

expect a reflection coefficient of exactly unity, corresponding to a lossless process. This
discrepancy can be explained with the aforementioned surface character of spin waves. The
laser penetrates the sample from the top, therefore our measurements are more sensitive
on this side. After reflection, the wave changes the side it is traveling on and the fitted
amplitude drops or increases accordingly. By changing the direction of the external field,
the initial traveling side is switched. The geometric mean of both directions then gives the
real reflection coefficient (gray circles), which is in good agreement unity, corresponding
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Figure 8.4: a and b: reflection coefficient R and phase shift Φ, respectively, recorded on the 30°
sample for different external fields. Both field directions (positive and negative y -direction) together
with their geometric mean are shown. k indicated on the top axes reflects its linear dependence on
H (see e.g. Fig. 7.2). It is determined from the fit and agrees well for both field directions and both
incident and reflected wave. All four data sets were used to create this scale.

to the anticipated lossless reflection. For larger magnetic fields, k approaches zero, i.e. the
sample is in ferromagnetic resonance. There, the profile is constant, hence R will approach
unity for both field directions. This method therefore enables an estimation of the modal
profile across z for the wave. Together with simulations of the full film dispersion relation
across the thickness, cf. Sec. 3.2.1, it might be possible to access the pinning parameter
and its associated anisotropy constant. This is, however, not further pursued in this thesis,
since the focus is centered on the phase shift.
In Fig. 8.4 b, Φ is plotted for the same measurements. It can be observed that a reversal

of the external field yields basically the same values. This experimentally verifies that the
the surface character and the side the wave is traveling on do not influence the phase shift
between the waves substantially. We deduce that the thin film approximation is suitable
to investigate the phase shift further. This will be done numerically in the subsequent
section. The data also shows that the shift is neither zero nor π, so the magnetization is
neither fully pinned nor unpinned at the interface. In addition, we find a small dependence
on the external field, hence on the wave vector.

8.3 Numerical Evaluations

To describe the reflection of spin waves, the numerical model for a stripe, cf. Sec. 3.2.2, is
directly utilized. As described there, the result of the simulation is standing waves along
x-direction for the dynamic magnetization m and associated external fields H at which
they are excited. Since m can be interpreted as a superposition of traveling incoming
and reflected waves, the model is well suited to describe reflections: in the middle of
the stripe, they exhibit defined wave vector components kx and −|kx|, respectively. An
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Figure 8.5: Dynamic matrix approach for a stripe. The simulation parameters are given in the main
text with ky = 1 µm−1. a shows the x -component of the standing wave, corresponding to mode n = 10
and kx = 0.68 µm−1 with an eigenvalue of µ0H = 60mT. In b the standing wave is expanded in
y -direction by considering the implicit harmonic dependence.

example of one mode obtained by such a simulation is given in Fig. 8.5 a. Here and for
the following simulations, we once again use standard values of Py, see page 24. The
excitation frequency f = 8GHz is chosen as in the experiment. The cell size in x-direction
is 5 nm and in z-direction 60 nm, corresponding to the thickness of the film. A number of
N = 10000 cells is used corresponding to a stripe width Lw = 50 µm. It is noteworthy, that
the magnetization is not fully pinned at the interface, thus resembling the experimental
observations.
Together with the implicit harmonic y-dependence, an interference pattern similar as

in the experiments — without damping — can be constructed, as shown in Fig. 8.5 b.
The angle of incidence can be deduced from kx and ky, where the former is obtained by
fitting the standing wave in the middle of the stripe. In the present situation, it roughly
amounts to 60° as indicated by the antenna drawn on top.

A verification of the model is done by means of the full film dispersion relation Eq. (2.38).
Here, we employ periodic boundary conditions and compare H obtained from the analyt-
ical dispersion relation with H obtained as eigenvalue for the corresponding (fitted) wave
vector component kx. Only few of the eigenvalue-eigenvector pairs are useful, as there
is a lower bound of kx limited by the stripe width w. An upper bound is given by the
dispersion relation: with increasing wave vector, H decreases, until there is no field to
fulfill the LLG. Next, it is verified that the edges do not influence the modal profiles in
the middle significantly by comparing the eigenvalues H of these simulations to the PBC
simulations. All three methods agree very well as depicted in Fig. 8.6. A comparison
between PBC and analytical values yields an idea of the accuracy of this method, which
is in the range of 10−5, roughly corresponding to the error which is introduced when n is
computed and consequently translates to the error of the eigenvalues and modal profiles.
To make sure that the plane wave model is applicable in the middle, modes with mode
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Figure 8.6: Comparison between simulations
with different boundary conditions (stripe and
PBC) and the analytical dispersion Eq. (2.38).
For the simulations, kx is obtained by fitting the
standing waves in the middle of the stripe with
a sine function. ky is implicitly fixed to 1 µm−1.
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number n < 10 are disregarded in the following discussion.
By default, exchange is taken into account, but it hardly influences the wave profiles

or eigenvalues H in the wave vector regime of interest. Nevertheless, it is favorable to
calculate profiles with exchange, since it adds numerical stability by suppressing high
spatial frequencies in the simulation.

The numerical model allows to take a closer look at the dynamic modes near the edge,
in order to investigate the physical origins of the shift. Figure 8.7 shows the dynamic
in-plane component mx near the (right) edge of the simulation. As stated, in the bulk
the wave follows a harmonic x-dependence with a defined k-vector. Crests (troughs) of
the wave correspond to the dynamic magnetization pointing to the right (left) at this
snapshot in time. Dynamic magnetic volume charges σ = −∇m are present and govern
the propagation by creating dynamic dipolar fields. The charges at the edge, which are
drawn as red “−”-symbols, are not sufficiently compensated for as they are missing their
respective counterparts. As a result, a deviation from the plane wave is observed. We
interpret this modal profile as a superposition of a harmonic wave and an evanescent
wave. The harmonic part can be fitted far away from the edge (red line). By subtracting
this fit from the numerical data, the residual reveals the evanescent part (orange line) in
the enlarged image. This mode arises to compensate for the missing dynamic charges and
as a result of the charge avoidance at the interface to the non-magnetic capping material.

Finally, we evaluate the phase shift exactly as in the experiment, by fitting a 2D plane
wave on the simulation grid. This is done for various values of kx and ky, where the values
in between are interpolated linearly. Figure 8.8 a summarizes these numerical results.
In general, the shift is closer to π for larger values of ky. Following the argument in
Ref. [91], essentially the dynamic charges along y start to get dense and compensate each
other, rendering the evanescent wave unnecessary. The four solid lines correspond to the
four angles that we are investigating experimentally in the following section. The dashed
lines correspond to constant wave vector magnitude, shown in b. They allow to make
predictions for beams by means of the stationary phase method. The dependence of Φ
on ky is immediately obvious. With Eq. (8.1), the small negative slope results in a small
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Figure 8.7: Dynamic in-plane magnetization for ky = 1 µm−1 near the right edge of the stripe. The
vector m points to the left (right) as indicated by the arrows below; in between, positive (negative)
dynamic magnetic charges occur. The inset magnifies the region close to the edge. A plane wave is
fitted far away from the edge and is shown in red. By comparing to the simulation, an evanescent
wave, shown in orange, is revealed. It accounts for the uncompensated dynamic charges at the edge
(red “−”).
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Figure 8.8: Summary of the numerical results. a shows the phase shift Φ as a map of wave vector
components kx and ky . Blue, orange, green, and violet lines correspond to constant angles ϕ = 10°,
20°, 30°, and 60°. Teal, pink, gray, and yellow lines represent a constant wave vector magnitude k.
Their line cuts are shown versus ky in b.
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Figure 8.9: a and c: Typical experimental data, recorded at µ0H = 52.5mT on samples with incident
angle of 10° and 60°, respectively. b and d: Evaluations of the respective fits along the interface. The
color code and structure of this figure is the same as in Fig. 8.3. Images on the 60° sample have a
three times larger lock-in integration time to increase the signal-to-noise ratio.

positive shift in y-direction for negative ky of the order of some tens of nanometers. For
larger |ky|, i.e. larger incident angles, the shift is in negative y-direction and of the order
of a hundred nanometer. Hence, the observed phase shift would indeed result in a true
lateral shift of spin wave beams, which depends on and can be tuned with the wave vector.

8.4 Angular Dependence of Reflection
As already shown in the previous chapters, the use of different incident angles allows to
probe reflection effects for a range of wave vector components. Additionally, it allows
independent measurements that confirm a dependence of the phase shift on the wave
vector and not on the external field. The corresponding experimental data for ϕ = 10°
and ϕ = 60° are shown in Fig. 8.9 a and c, respectively. Again, b and d show the evaluation
of the fit along the interface. In passing, we observe that the amplitudes of incident and
reflected waves do not differ significantly for ϕ = 10°. For larger incident angles (see also
Fig. 8.3 a) the difference increases substantially. This behavior was already numerically
discussed in Sec. 4.1.
Figure 8.10 a summarizes the results on Φ obtained on the four samples and with

different fields plotted versus the component along the interface. In b, the region for
0 < ky < 1 µm−1 is magnified in order to better visualize the dependence for smaller
angles. The lines are the numerically obtained shifts from Sec. 8.3. Within the error, they
agree well with the experiment. Note, that the error bars include an uncertainty connected
to the position of the edge. For instance, a shift of the edge position of about 90 nm — far
below the optical resolution of the microscope — would be enough to sufficiently account
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Figure 8.10: Summary of the results on the phase shift for all samples and fields. Every point cor-
responds to an image similar to the ones in Fig. 8.9. The external field is along +y . The solid lines
are the numerical calculations presented in Fig. 8.8 with the same color code. b magnifies the gray
rectangle in a.

for the systematic error of the ϕ = 20° sample. For this reason, we can also exclude a
dominant contribution of other pinning mechanisms like surface anisotropies. Besides, the
latter should not contribute significantly, since the exchange energy is negligible compared
to the dipolar energy in our wave vector regime. We therefore conclude that dipolar
interactions cause the GH-like phase shift that we observe in our experiments.
At the end of this chapter, we want to shortly comment on the possibility of a phase shift

for refracted waves motivated by Ref. [139], where a shift of a refracted spin wave beam is
found at the interface between two ferromagnets. The experimental results presented in
Chapter 7 have therefore been reevaluated. Within the error, we could not detect a phase
shift between incoming and transmitted wave for any thickness ratio or angle of incidence.

In conclusion, we have studied the field and angular dependence of the reflection pro-
cess of a plane wave at an edge of a Py film. We observe a phase shift between the
waves, which exhibits a non-trivial dependence on the wave vector component along the
interface. A numerical model reveals an evanescent wave, which arises due to dynamic
magnetic charge avoidance at the Py edge. It also allows us to predict a GH shift for spin
wave beams in this geometry. This shift might either be in negative or positive direction,
depending on the angle of incidence and the wave vector. With the experiments presented
here, we add a representative of GH-like shifts to the ones previously predicted for spin
waves [140, 32, 33, 34, 139, 35] and provide a universal route to discover similar effects
with the help of plane waves.
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9 Summary

In this thesis, wave effects associated with the refraction and reflection of plane, dipolar
spin waves are investigated. All measurements are conducted with time-resolved scanning
Kerr microscopy. This magneto-optical technique allows for imaging of phase-resolved
magnetization dynamics in real space, thereby providing a direct access to wave charac-
teristics: By fitting their interference pattern, wave vector, phase, and attenuation length
can be quantified.
The anisotropic dispersion relation in the dipolar regime depends on the thickness of

a ferromagnetic film. Therefore, a thickness step acts as a boundary between two media
of different indices of refraction. In two related experiments, the refraction and reflec-
tion of spin waves at the interface between a thick Ni80Fe20 (Py) film and a thin Py film
are investigated. In addition, the reflection of spin waves from an edge of a Py film is
studied. In all experiments, spin waves are excited by means of a coplanar wave guide in
a 60 nm Py film. Their dispersion is tuned by direction and magnitude of the external field.

The first experiment emphasizes the angular dependence of refraction. We are able to
analytically state and experimentally confirm Snell’s law for spin waves. In contrast to
optics, the index of refraction considerably depends on the angle of propagation of the in-
cident wave. As a result, with larger incident angles, a non-linear increase in wave vector
magnitude and a decrease of the angle of refraction with respect to the interface normal
is observed. As a side effect, spin wave bending, i.e. non-constant wave fronts near the
interface, is investigated. The refraction process is efficient, since the amplitude of spin
waves after the step is about 1.6 times larger than in the thick film.

In a second series of experiments, this is further explored by studying different thicknesses
of the thin film. The large transmission coefficient does not persist for lower thicknesses
and decreases linearly to about 0.6 for a film thickness of 10 nm. Still, these steps are at-
tractive as wave vector converters, since the ratio of wavelengths of refracted and incident
wave follows the ratio of film thicknesses and can therefore be easily tuned.

In a third experiment, we focus on spin wave reflection at the edge of a Py film. In
particular, we find a phase shift between incoming and reflected plane waves, which shows
a non-trivial dependence on the wave vector component along the interface. A numerical
model, based on the dynamic matrix approach, reveals that dipolar interactions are re-
sponsible for this phase shift and also cause an evanescent magnetization wave inside the
Py film. With the help of the stationary phase method, the model further allows us to
predict a Goos-Hänchen shift for spin wave beams. This shift can be up to about 100 nm
large and might be either negative or positive, depending on the incident angle of the spin
wave beam.
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9 Summary

All three experiments provide valuable insight into the refraction and reflection of spin
waves. Especially the study of refraction is interesting in the context of magnonics, where
concepts to efficiently reduce wavelengths and steer spin waves are actively searched for.
Besides these technological aspects, Snell’s law and the Goos-Hänchen shift are fundamen-
tal wave effects which appear in various contexts throughout physics.
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Appendix





A Discretization of Boundary Conditions
We closely follow the steps in Ref. [103] to obtain discretized boundary conditions like
the ones in Sec. 3.2. The following procedure is formulated for the bottom boundary but
an analogous one can be used for the top boundary. We denote the cells at the bottom
with indices 1, 2, 3 and respective magnetization components m(1), m(2), and m(3). At
the interface between cell 1 and 2, we introduce an index 1.5 and at the real boundary —
half a cellsize to the bottom of cell 1 — we equip the position with index b. There, the
boundary conditions, Eq. (3.4) are effective.
As a first step, an expression for one magnetization component at position 1.5 is found

by tayloring the expression of the magnetization in cell 2 at position −0.5dw:

m(1.5) = m(2) + m(3) −m(1)

2dw

(
−dw2

)
+ 1

2
m(3) +m(1) − 2m(2)

d2
w

(
−dw2

)
2. (A.1)

Second, an expression for ∂m(b)

∂w is derived by tayloring the derivative in cell 1 at position
−0.5dw:

∂m(b)

∂w
= m(1.5) −m(b)

dw
+ 4m

(b) +m(1.5) − 2m(1)

d2
w

(
−dw2

)
.

Both expressions are then put into the real boundary conditions, e.g.

∂m
(b)
x

∂w
− dm(b)

x = 0

for the component mx with d = d
(0)
pin sin2(θ), and solved for m(b). For the second dynamic

component mz, the procedure can be applied accordingly. Then,

m(b) = 29m1 − 6m2 +m3

8dwd+ 24 (A.2)

and finally an expression for the second derivative, which appears in the expression of the
exchange operator in cell 1, can be found to

∂2m(1)

∂w2 = 4m
(b) +m(1.5) − 2m(1)

d2
w

.

The identities Eqs. (A.1) and (A.2) can be plugged in the latter equality, which yields
Eq. (3.6), where the boundary conditions are correctly absorbed in the exchange operator.
The result depends only on m(1), m(2), and m(3) and can therefore be directly utilized in
the matrix D.
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B Implementation of the Dynamic Matrix
Method

In this chapter, some sample codes are given to build the dynamic matrix D and solve
it for its eigenvalues as described in Secs. 3.2. The necessary packages in python can be
loaded via

1 import numpy as np
2 import scipy. optimize

B.1 Full Film
In the case of a full film, first the equilibrium position and internal field, i.e. H and θ have
to be found for a given Hext and θH . For this reason, a function equ() can be defined
that is numerically solved for the latter via fsolve():

1 def equ(p,Hext ,thetaH ,Ms):
2 H,theta = p
3 e1 = Hext*np.cos(theta - thetaH )-Ms*np.sin(theta)**2-H
4 e2 = Hext*np.sin(theta - thetaH ) + Ms * np.sin(theta)*np.cos(theta)
5 return e1 ,e2
6
7 H,theta = optimize . fsolve (equ ,[1 ,0] , args=(He ,thetaH ,Ms))

The contributions to D are separated into D_demag, D_zeeman and D_exc (shown in List-
ings B.1 – B.3, respectively) according to their interaction. First, these 2N × 2N arrays
are initialized and afterwards filled via for-loops.

Listing B.1: Calculation of the demag interaction. R and a RT correspond to the rotational matrix and
its transposed defined in Eq. (2.22), respectively. G_self and G_mut are defined as the negative of the
demag tensors in Eqs. (3.1) and (2.35). dw is the cell thickness and wm is defined as µ0γMS.

1 D_demag = np.zeros ([2*N ,2*N],dtype = complex )
2
3 for i in range(N):
4 for j in range(N):
5 if i-j == 0: # self - demagnetizing
6 nvv_self = 1-(1-np.exp(-abs(k)*dw))/abs(k)/dw
7
8 G_self = np.array ([[0 ,0 ,0] ,[0 , nvv_self ,0] ,[0 ,0 ,1 - nvv_self ]])
9 Gxyz_self = np.dot(np.dot(R, G_self ),RT)

10 Gxx = Gxyz_self [0 ,0]
11 Gxz = Gxyz_self [0 ,2]
12 Gzx = Gxyz_self [2 ,0]
13 Gzz = Gxyz_self [2 ,2]
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14
15 D_demag [2*i ,2*j] = -Gzx # contributes to hz # sign change bc h=\

-G*m
16 D_demag [2*i+1 ,2*j] = Gxx # contributes to hx
17 D_demag [2*i ,2*j+1] = -Gzz # contributes to hz
18 D_demag [2*i+1 ,2*j+1] = Gxz # contributes to hx
19
20 else:
21 nvv_mut = 2*np.sinh(k*dw /2) **2/ abs(k)/dw*np.exp(-abs(k*(i-j)*\

dw))
22 G_mut = np.array ([[0 ,0 ,0] ,[0 , nvv_mut ,-1j*np.sign(i-j)*np.sign(\

k)* nvv_mut ],[0,-1j*np.sign(i-j)*np.sign(k)*nvv_mut ,-\
nvv_mut ]])

23 Gxyz_mut = np.dot(np.dot(R,G_mut),RT)
24 Gxx = Gxyz_mut [0 ,0]
25 Gxz = Gxyz_mut [0 ,2]
26 Gzx = Gxyz_mut [2 ,0]
27 Gzz = Gxyz_mut [2 ,2]
28 D_demag [2*i ,2*j] = -Gzx # contributes to hz
29 D_demag [2*i+1 ,2*j] = Gxx # contributes to hx
30 D_demag [2*i ,2*j+1] = -Gzz # contributes to hz
31 D_demag [2*i+1 ,2*j+1] = Gxz # contributes to hx
32
33 D_demag *= wm

Listing B.2: Calculation of the Zeeman interaction. wh is defined as µ0γH.
1 D_zeeman = np.zeros ([2*N ,2*N])
2
3 for i in range(N):
4 j = i # zeeman acts locally
5 D_zeeman [2*i ,2*j+1] = -wh
6 D_zeeman [2*i+1 ,2*j] = wh

Listing B.3: Calculation of the exchange interaction with different pinning paramters at top (dtop)
and bottom (dbot). The exchange boundary conditions are discretized according to Chapter A. lex is
the exchange length defined in Eq. (2.6).

1 D_exc = np.zeros ([2*N ,2*N],dtype = complex )
2
3 dx_top = dtop * np.sin(theta)**2
4 dx_bot = dbot * np.sin(theta)**2
5
6 dz_top = dtop * np.cos (2* theta)
7 dz_bot = dbot * np.cos (2* theta)
8
9 for i in range(N): # exchange fields :

10 j = i
11
12 if i==0: #bot boundary
13 D_exc [2*i ,2*j+1] += 1/(2*( dz_bot *dw - 3))*( -13* dz_bot *dw +10) #hz
14 D_exc [2*i+1 ,2*j] -= 1/(2*( dx_bot *dw + 3))*( -13* dx_bot *dw -10) #hx
15
16 D_exc [2*i ,2*(j+1) +1] += 1/(2*( dz_bot *dw - 3))*(6* dz_bot *dw -12)
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17 D_exc [2*i+1 ,2*(j+1)] -= 1/(2*( dx_bot *dw + 3))*(6* dx_bot *dw +12)
18
19 D_exc [2*i ,2*(j+2) +1] += 1/(2*( dz_bot *dw - 3))*(- dz_bot *dw +2)
20 D_exc [2*i+1 ,2*(j+2)] -= 1/(2*( dx_bot *dw + 3))*(- dx_bot *dw -2)
21
22 else: #top boundary
23 if i==N -1:
24 D_exc [2*i ,2*j+1] += 1/(2*( dz_top *dw - 3))*( -13* dz_top *dw +10) #\

hz
25 D_exc [2*i+1 ,2*j] -= 1/(2*( dx_top *dw + 3))*( -13* dx_top *dw -10) \

#hx
26
27 D_exc [2*i ,2*(j -1) +1] += 1/(2*( dz_top *dw - 3))*(6* dz_top *dw -12)
28 D_exc [2*i+1 ,2*(j -1)] -= 1/(2*( dx_top *dw + 3))*(6* dx_top *dw +12)
29
30 D_exc [2*i ,2*(j -2) +1] += 1/(2*( dz_top *dw - 3))*(- dz_top *dw +2)
31 D_exc [2*i+1 ,2*(j -2)] -= 1/(2*( dx_top *dw + 3))*(- dx_top *dw -2)
32
33 else: #in the middle
34 D_exc [2*i ,2*j+1] += -2 #hz
35 D_exc [2*i+1 ,2*j] -= -2 #hx
36 D_exc [2*i ,2*(j+1) +1] += 1
37 D_exc [2*i+1 ,2*(j+1)] -= 1
38 D_exc [2*i ,2*(j -1) +1] += 1
39 D_exc [2*i+1 ,2*(j -1)] -= 1
40
41 D_exc [2*i ,2*j+1] += -k**2* dw **2 #hz dw gets canceled below
42 D_exc [2*i+1 ,2*j] += k**2* dw **2 #hx
43
44 D_exc = lex **2/ dw **2* wm * D_exc

Finally, the contributions are added up and the matrix is numerically solved via the
linalg.eig() method to receive eigenvalues w and eigenvectors v:

1 D = 1j*( D_zeeman + D_demag +D_exc)
2 w, v = np. linalg .eig(D)

Due to the structure of D, the dynamic componentmx,0 can be recovered as v[::2] (every
second entry) and mz,0 as v[1::2] (every second entry starting from the second) for a
particular ω (w).

B.2 Stripe
The structure of D in a stripe is similar to the one for the full film. They differ mainly
in the arrangement of different field contributions, such that the previous section can
be used as a basic recipe. Since dynamic demagnetizing factors nxx and nzz cannot be
calculated analytically anymore, they are numerically integrated. As detailed in [91], self
interaction and interactions with neighboring cells might exhibit (integrable) singularities
and therefore a Monte Carlo method, i.e. the vegas algorithm provided through the vegas
python package [105], yields good results. The integration converged with an acceptable
error in the range of 10−6 for 10 iterations of the algorithm, each sampling the integrand
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107 times. For demagnetizing interactions further than one cell apart, the faster method
nquad() provided by the scipy.integrate module was used.
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C Undersampling

When a time harmonic signal with frequency f gets sampled at a constant frequency
frep < f , there appear aliases at lower frequencies. Especially, when f = νfrep +fmod with
an integer ν, there will be aliases at integer multiples of fmod.

In particular, a precessing magnetization at frequency f 6= νfrep, which is detected by
laser pulses with a repetition rate frep = 80 MHz will cause an alias at fmod < 80 MHz.
This alias enables a reconstruction of the signal. A lock-in amplifier can be used to lock
to fmod and determine its phase and amplitude, which essentially allow for a detection of
phase and amplitude of the precessing magnetization as θ and R channel of the lock-in
without a need of a phase shifter or active modulation as in setup described in Sec. 3.3.
In addition, it permits almost arbitrary frequency steps as opposed to the limitation
f = νfrep. In Ref. [109], this technique was dubbed super Nyquist sampling.
The components necessary are depicted in Fig. C.1 a. The time-domain representation

of the sampling is depicted in b: A signal (in blue) is sampled with a repetition rate
of 80 MHz (red vertical lines). As a result, an alias at much lower frequency will be
recognized by the detector and fed to the lock-in. Since the sampling scope cannot be
utilized for phase stabilization as described in Sec. 3.3, f is mixed with fmod to get a
signal that is a multiple of frep and whose phase can be displayed by the oscilloscope.
If this phase drifts in time, it can be added to the phase θ determined by the lock-in.

Figure C.1: Undersampling technique. a shows the components necessary. b and c show the signal
expected at the sample and the sampled signal, respectively. The time scale is chosen such that one
period of the harmonic alias with frequency fmod is visible in c. The lock-in needs to lock to this
frequency to retain the signal. See Figs. 3.9 and 3.10 for comparison to the techniques used for the
experiments in this thesis.
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C Undersampling

Unfortunately, the phase stabilization was not stable enough to considerably extend the
measurement time beyond 1 minute. This corresponds to the time where the output
of the hf generator can be considered phase-stable with respect to the reference of the
synchrolock (i.e. the laser pulses). This is probably due to the mixing of the output of the
lock-in with the high frequency signal, which might not be phase conserving. Of course,
this only applies to the correct determination of θ — the R channel should be unaffected
by the phase. This would prevent a detection of spin waves, but is certainly a possibility
for local ferromagnetic resonance measurements, where usually only the resonance position
and not its phase is important.
Lock-in and photodiodes need to have a bandwidth of preferably 0.5frep. This guar-

antees access to the whole frequency spectrum f , since there is always an alias in the
frequency interval −0.5frep < 0.5frep. The respective components were integrated into
the current setup. To make the undersampling technique competitive for longer mea-
surements, the hf generator, laser pulses, and the lock-in need to have a constant phase
relation. In the author’s opinion, the missing piece to solve this problem is a hf genera-
tor with a stable phase relation with respect to its reference input, such that an active
phase stabilization is superfluous. First measurements showed that such a setup would
provide a considerable boost in signal-to-noise ratio and therefore decreased measurement
times. Additionally, in contrast to standard TRMOKE experiments, it allows to measure
with very high frequency resolution. In situations where the experiment demands a fixed
external field, e.g. at skyrmion resonances, this may be in particular useful.
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