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Abstract: Glioblastoma remains a fatal diagnosis. Previous research has shown that metformin,
which is an inhibitor of complex I of the respiratory chain, may inhibit some brain tumor initiating
cells (BTICs), albeit at dosages that are too high for clinical use. Here, we explored whether a combined
treatment of metformin and diclofenac, which is a non-steroidal anti-inflammatory drug (NSAID)
shown to inhibit glycolysis by interfering with lactate efflux, may lead to additive or even synergistic
effects on BTICs (BTIC-8, -11, -13 and -18) and tumor cell lines (TCs, U87, and HTZ349). Therefore,
we investigated the functional effects, including proliferation and migration, metabolic effects
including oxygen consumption and extracellular lactate levels, and effects on the protein level,
including signaling pathways. Functional investigation revealed synergistic anti-migratory and
anti-proliferative effects of the combined treatment with metformin and diclofenac on BTICs and
TCs. Signaling pathways did not sufficiently explain synergistic effects. However, we observed
that metformin inhibited cellular oxygen consumption and increased extracellular lactate levels,
indicating glycolytic rescue mechanisms. Combined treatment inhibited metformin-induced lactate
increase. The combination of metformin and diclofenac may represent a promising new strategy
in the treatment of glioblastoma. Combined treatment may reduce the effective doses of the single
agents and prevent metabolic rescue mechanisms. Further studies are needed in order to determine
possible side effects in humans.
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1. Introduction

Gliomas are primary brain tumors derived from glial cells or glial precursor cells. The 2016
World Health Organization (WHO) Classification of Tumors of the Central Nervous System
differentiates between several entities and four different malignancy grades according to histological
and molecular criteria [1]. High-grade gliomas, especially glioblastomas (GBMs, WHO grade IV), rank
among the most common and malignant primary brain tumors. GBMs are associated with a poor
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prognosis. Less than 5% of patients survive five years after being diagnosed; overall survival ranges
between 14.6–26.3 months in patients treated within clinical studies [2].

Brain tumor initiating cells (BTICs) represent cancer stem-like progenitor cells, which are
characterized by self-renewal, clonogenicity, pluripotency, and the ability to form new tumors after
orthotopic implantation [3]. BTICs are not only involved in tumor initiation, they are also involved in
progression and recurrence [4–6].

Metformin (1,1-dimethylbiguanide hydrochloride, https://www.drugs.com/metformin.html)
is the most frequently prescribed drug in the treatment of type-2 diabetes (T2DM) [7]. Besides its
anti-diabetic and indirect hypoglycemic effects, it was found that the biguanide drug has antineoplastic
effects, and may reduce the risk of several cancer types in diabetic patients [8]. In vitro studies disclosed
anti-proliferative and anti-migratory effects not only on human glioblastoma (GBM) lines [9], but also
glioma-initiating cells [10,11]. Metformin unfolds its action by the inhibition of complex I of the
respiratory chain [12]. The adenosin monophosphate/adenosine triphosphate-ratio (AMP/ATP)
increases, and AMP-kinase is activated [13,14], whereas the mammalian target of rapamycin (mTOR)
is inhibited [10]. In response, rescue mechanisms such as increased glycolysis, and thereby lactate
production, are activated [15]. However, most BTICs only respond to high dosages of metformin [16].
The use of metformin in the treatment of T2DM is not significantly associated with a reduced risk of
glioma, as recently described by Seliger et al. [17]. Therapeutic effects, including anti-proliferative as
well as anti-migratory effects on tumor cells, may underlie different mechanisms of action, and thus
have to be distinguished from the questionable protective effects on glioma incidence.

Diclofenac, a non-steroidal anti-inflammatory drug, which is mainly known for its analgesic
effects, may inhibit the glycolysis of tumor cells [18]. Epidemiological studies have revealed that the
risk of cancer types associated with chronic inflammatory processes may be reduced partly by COX-2
inhibitors [19–23]. In addition to different COX-dependent and independent mechanisms of action,
diclofenac is studied as a possible inhibitor of the outward transport of lactate [24]. As a consequence,
glucose uptake is reduced, and mitochondrial as well as glycolytic ATP production is inhibited [24–26].

The primary aim of our study was to investigate if a combined impairment of mitochondrial
respiration and glycolysis by metformin and diclofenac could lead to increased inhibitory effects on
BTICs (Figure S1).

2. Results

2.1. Stem Cell-Like BTICs Express Nestin and SOX

Using immunocytochemistry, we showed the expression of cancer stem cell markers Nestin and
SOX on BTICs. Nestin, which is often expressed in combination with SOX and other stem cell markers,
was shown to be expressed on the initiating cells of different tumor types, and was supposed to be a marker
for stem cell features such as their self-renewal capacity and tumorigenicity [27,28]. Whereas BTIC-18 was
tested positive for Nestin and SOX, BTIC-13 mainly expressed Nestin (Figure S2).

2.2. Combined Treatment of Metformin and Diclofenac Impairs Cell Proliferation and Migration

The effects of metformin, diclofenac, and both agents combined with proliferation were
investigated using crystal violet staining at 48-h (data not shown) and 96-h time points. Spheroid assays
were used to analyze the anti-migratory effects at 24-h (data not shown) and 48-h time points. The early
time point was performed to avoid confounding due to excessive proliferation. Metformin was
dissolved in medium, whereas diclofenac was dissolved in dimethyl sulfoxide (DMSO), so we
performed medium and DMSO controls. Neither control exerted anti-proliferative or anti-migratory
effects (Figure S3). After the confirmation of previously described anti-proliferative and anti-migratory
effects of high-dose metformin (10 mM, data not shown) and diclofenac (0.2 mM) [11,29],
we investigated whether similar effects might be obtained at lower doses by combining both agents.
Therefore, we performed proliferation and migration assays applying different doses of metformin
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(3 × 0.01 mM/day, 0.1 mM, 1 mM) in combination with increasing doses of diclofenac (0.05 mM,
0.1 mM, 0.2 mM, as shown in Figure S4). Compared to DMSO control, the combination of 1 mM of
metformin and 0.2 mM of diclofenac significantly reduced cell proliferation in all cells. Comparing
the combination to sole metformin treatment, significant effects were observed for both BTICs and
TCs. In BTIC-13, BTIC-11, and U87, the anti-proliferative effects of the combined treatment were
comparable to high-dosed metformin treatment (10 mM) or treatment that was even more pronounced
(Figure S5). Compared to diclofenac treatment, the combined treatment showed a significant reduction
of proliferation in BTIC-11 and BTIC-13 (Figure 1). The combination of metformin and diclofenac
showed significant anti-migratory effects in all BTIC and TC lines. In BTIC-11, BTIC-18, and BTIC-8,
migration was reduced significantly compared to sole metformin as well as to sole diclofenac treatment.
In U87 and BTIC-13, the combined treatment led to a slight reduction of migration compared even to
high-dosed metformin treatment (Figure 2 and Figure S5), but not compared to diclofenac treatment.
Although HTZ349 showed a reduced anti-migratory response upon combined treatment versus
0.2 mM of diclofenac alone in this analysis, the calculation of the combination index (CI) indicated
overall synergistic effects. We calculated the CI using CompuSyn software according to the program’s
recommendations. Thereby, CI < 1 indicates synergistic effects, CI = 1 additive effects, and CI > 1
indicates antagonistic effects. In the calculation of the combination index, we included all of the tested
dosage combinations of diclofenac and metformin. Even though (especially in BTICs) low dosages of
metformin and diclofenac didn’t significantly affect proliferation and migration (Figure S4), synergistic
effects on proliferation were reached in all of the TC lines (HTZ349 0.83 and U87 0.79) as well as all of
the BTICs (BTIC-13 0.95, BTIC-18 0.77, BTIC-11 0.99, and BTIC-8 0.74), according to Ting Chao Chou’s
combination index. Regarding migration, synergistic effects were calculated in all of the tested cells
except BTIC-13 (HTZ349 0.38, U87 0.56, BTIC-13 >1, BTIC-18 0.68, BTIC-11 0.62, and BTIC-8 0.17,
as shown in Table 1).

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  3 of 16 

 

Therefore, we performed proliferation and migration assays applying different doses of metformin 
(3 × 0.01 mM/day, 0.1 mM, 1 mM) in combination with increasing doses of diclofenac (0.05 mM, 0.1 
mM, 0.2 mM, as shown in Figure S4). Compared to DMSO control, the combination of 1 mM of 
metformin and 0.2 mM of diclofenac significantly reduced cell proliferation in all cells. Comparing 
the combination to sole metformin treatment, significant effects were observed for both BTICs and 
TCs. In BTIC-13, BTIC-11, and U87, the anti-proliferative effects of the combined treatment were 
comparable to high-dosed metformin treatment (10 mM) or treatment that was even more 
pronounced (Figure S5). Compared to diclofenac treatment, the combined treatment showed a 
significant reduction of proliferation in BTIC-11 and BTIC-13 (Figure 1). The combination of 
metformin and diclofenac showed significant anti-migratory effects in all BTIC and TC lines. In BTIC-
11, BTIC-18, and BTIC-8, migration was reduced significantly compared to sole metformin as well as 
to sole diclofenac treatment. In U87 and BTIC-13, the combined treatment led to a slight reduction of 
migration compared even to high-dosed metformin treatment (Figures 2 and S5), but not compared 
to diclofenac treatment. Although HTZ349 showed a reduced anti-migratory response upon 
combined treatment versus 0.2 mM of diclofenac alone in this analysis, the calculation of the 
combination index (CI) indicated overall synergistic effects. We calculated the CI using CompuSyn 
software according to the program’s recommendations. Thereby, CI < 1 indicates synergistic effects, 
CI = 1 additive effects, and CI > 1 indicates antagonistic effects. In the calculation of the combination 
index, we included all of the tested dosage combinations of diclofenac and metformin. Even though 
(especially in BTICs) low dosages of metformin and diclofenac didn’t significantly affect proliferation 
and migration (Figure S4), synergistic effects on proliferation were reached in all of the TC lines 
(HTZ349 0.83 and U87 0.79) as well as all of the BTICs (BTIC-13 0.95, BTIC-18 0.77, BTIC-11 0.99, and 
BTIC-8 0.74), according to Ting Chao Chou’s combination index. Regarding migration, synergistic 
effects were calculated in all of the tested cells except BTIC-13 (HTZ349 0.38, U87 0.56, BTIC-13 >1, 
BTIC-18 0.68, BTIC-11 0.62, and BTIC-8 0.17, as shown in Table 1). 

 
Figure 1. The effects of metformin, diclofenac, and both agents on proliferation were investigated 
using crystal violet staining at a 96-h time point. Results are expressed as mean ± SD, and were 
analyzed by two-way ANOVA, p = 0.0332 (*), p = 0.0021 (**), p = 0.0002 (***), p ≤ 0.0001 (****) compared 
pairwise, i.e., the metformin-treated versus metformin and diclofenac conditions. 

Proliferation of HTZ349 after 
96h treatment (crystal violet)

DM
SO

dic
lo

fe
nac

 0
.2

m
M

 

m
et

fo
rm

in
 1

m
M

 

m
et

fo
rm

in
 1

m
M

+ 

dic
lo

fe
nac

 0
.2

m
M

 

0

2

4

6

8

no
rm

al
iz

ed
 p

ro
lif

er
at

io
n

****
****

****ns
ns

Proliferation of  BTIC-11 after 
96h treatment (crystal violet)

DM
SO

dic
lo

fe
nac

 0
.2

m
M

 

m
et

fo
rm

in
 1

m
M

m
et

fo
rm

in
 1

m
M

 +

dic
lo

fe
nac

 0
.2

m
M

 

0

1

2

3

4

5

no
rm

al
iz

ed
 p

ro
lif

er
at

io
n 

****

**** ****
****

****

Proliferation of  BTIC-13 after 
96h treatment (crystal violet)

DM
SO

dic
lo

fe
nac

 0
.2

m
M

 

m
et

fo
rm

in
 1

m
M

m
et

fo
rm

in
 1

m
M

 +

dic
lo

fe
nac

 0
.2

m
M

 

0

2

4

6

no
rm

al
iz

ed
 p

ro
lif

er
at

io
n 

****
**** *** ***

Proliferation of U87 after 
96h treatment (crystal violet)

DM
SO

dic
lo

fe
nac

 0
.2

m
M

 

m
et

fo
rm

in
 1

m
M

 

m
et

fo
rm

in
 1

m
M

 +

dic
lo

fe
nac

 0
.2

m
M

 

0

2

4

6

8

no
rm

al
iz

ed
 p

ro
lif

er
at

io
n

****
****

****ns
ns

DM
SO

dic
lo

fe
nac

 0
.2

m
M

 

m
et

fo
rm

in
 1

m
M

 

m
et

fo
rm

in
 1

m
M

 +

dic
lo

fe
nac

 0
.2

m
M

 

0

2

4

6

8

no
rm

al
iz

ed
 p

ro
lif

er
at

io
n

Proliferation of BTIC-18 after 
96h treatment (crystal violet)

*
**

**ns
ns

Figure 1. The effects of metformin, diclofenac, and both agents on proliferation were investigated using
crystal violet staining at a 96-h time point. Results are expressed as mean ± SD, and were analyzed by
two-way ANOVA, p = 0.0332 (*), p = 0.0021 (**), p = 0.0002 (***), p ≤ 0.0001 (****) compared pairwise,
i.e., the metformin-treated versus metformin and diclofenac conditions.
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Figure 2. (A,B) Spheroid assays were used to analyze the anti-migratory effects at a 48-h time
point. Results are expressed as mean ± SD and were analyzed by two-way ANOVA, p = 0.0332 (*),
p = 0.0021 (**), p = 0.0002 (***), and p ≤ 0.0001 (****) compared pairwise, i.e., the metformin-treated
versus metformin and diclofenac condition.

Table 1. Combination index (CI) using CompuSyn software. Thereby, CI < 1 indicates synergistic
effects, CI = 1 additive effects, and CI > 1 antagonistic effects.

CI-Proliferation CI-Migration Effect-Proliferation Effect-Migration

HTZ 349-laminin 0.83699 0.38254 synergistic synergistic
BTIC-13-laminin 0.95719 >1 synergistic antagonistic
BTIC-18-laminin 0.77451 0.68924 synergistic synergistic

U87-aminin 0.7953 0.56451 synergistic synergistic
BTIC-11-laminin 0.99912 0.62748 synergistic synergistic
BTIC-8-laminin 0.74232 0.17014 synergistic synergistic

2.3. Metformin, Diclofenac, and Combined Treatment at Low Doses Do Not Increase Cell Death

Measuring cell proliferation using crystal violet staining includes possible confounding by cell
attachment and cell death, because several washing steps may lead to the loss of non-adherent cells.
Therefore, we performed crystal violet staining on all cell lines with and without laminin coating of
the flasks, and added a cell cytotoxicity assay. Laminin is an extracellular matrix glycoprotein and
one of the main components of basal lamina that is known to support adhesion and cell proliferation.
When seeded with laminin, the treatment response was less efficient, indicating that cell attachment
also has an impact on treatment sensitivity, especially in BTICs. As BTIC-8 tends to grow only in
spheres, proliferation could only be investigated with laminin coating (Figure S6). However, laminin
coating itself may also change pivotal cell characteristics such as progenitor features in BTICs, and the
artificial monolayer of cells normally growing fully or partly in spheres may influence cellular programs
for proliferation, migration, and adhesion.

To rule out cytotoxic treatment effects, we afterwards performed a lactate dehydrogenase (LDH)
cytotoxicity assay. Compared to medium and the DMSO control, no significant increase in LDH
activity was measured after 48 h of treatment (Figure S7). We concluded that metformin, diclofenac,
and the drug combination might reduce the cells’ attachment ability without causing cell death.
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2.4. Combined Treatment of Metformin and Diclofenac Reduces Extracellular Lactate Levels Compared to
Metformin Treatment. Effects on Oxygen Consumption Differ between Cell Lines

Using the PreSens assay®, we were able to confirm that high-dosed metformin (10 mM) decreased
oxygen consumption in BTIC and TC cell lines before any obvious alterations in proliferation
(Figure S8). Extracellular lactate levels were between 2.5–10 times higher after 48 h of exposure
to 10 mM of metformin (Figure S9). Furthermore, extracellular lactate levels were tested at an early
time point (24 h). Compared to the control, extracellular lactate levels were four times higher after 24 h
of treatment with a low dose of metformin (1 mM). Then, we investigated the changes in extracellular
lactate levels and oxygen consumption after exposure to diclofenac and the combination of both drugs.
Compared to the DMSO control, diclofenac treatment (24 h) caused a non-significant reduction of
extracellular lactate levels. The combination of metformin and diclofenac counteracted the lactate
increase in extracellular lactate and concomitant drop in pH that had been observed under the sole
treatment with metformin (Figure 3A, Figure S9 exemplarily shown for U87).

Regarding oxygen consumption, the effects of single and combined treatment were heterogeneous.
After 20 h, metformin decreased oxygen consumption in BTICs as well as TCs compared to the DMSO
control; dose-dependent effects could be shown. Dependent on the individual BTICs or TCs, diclofenac
either decreased (BTIC-11) or increased oxygen consumption (U87, slight time-dependent decrease in
BTIC-13), or did not show any alteration (BTIC-18, HTZ349). Combined treatment led to decreased
oxygen consumption in HTZ349, U87, BTIC-13, and BTIC-11. After 20 h, oxygen levels were similar
to those after the single treatment. An additive inhibitory effect on cell respiration after combined
treatment could not be shown. In BTIC-18, a lower oxygen concentration compared to DMSO was
measured, indicating an increase in oxygen consumption (Figure 3B, SL8). Those findings suggest the
individual cell rescue mechanisms of each cell line after combined treatment.
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Figure 3. (A) Extracellular lactate levels after 24 h of treatment; (B) Oxygen concentration in
the cell cultures were measured using the SDR SensorDish Reader (PreSens Precision Sensing,
Regensburg, Germany) for 20 h. Cells were seeded considering their stereotypic oxygen consumption
in different amounts. Measurements were performed in 60-s intervals. Results are expressed as
mean ± SD and were analyzed by two-way ANOVA, p = 0.0332 (*), p = 0.0021 (**), compared pairwise,
i.e., the metformin-treated versus metformin and diclofenac condition.
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2.5. Combined Treatment Doesn’t Lead to Additive Effects on MTor or STAT3 (Signal Transducer and Activator
of Transcription 3) Signaling Pathways

Furthermore, we performed Western blots of the signaling pathways known to be affected
by metformin or diclofenac. Seliger et al. and others before were able to show that metformin
treatment results in a dose-dependent activation of AMPK, which is an AMP-dependent kinase that
is involved in the enzymatic regulation of cellular energy shortages [16]. Subsequently, but also
independently, the serine/threonine-kinase mTOR, which is known to be suppressed by AMPK,
is inhibited. As previously shown, STAT3 (Signal Transducer and Activator of Transcription 3) is
inhibited in a dose-dependent manner after exposure to metformin [30]. Leidgens et al. found that
(at least in TCs) STAT3 is also inactivated by diclofenac treatment [29].

The dose-dependent deactivation of mTOR and STAT3 by metformin could be reproduced in
TCs as well as in BTICs (Figure 4). Diclofenac treatment did not show any influences on mTOR
activation. Regarding the combined treatment with both agents, pmTOR levels were similar to those
of treatment with 1 mM of metformin, whereas in BTIC-13, the decrease of pmTOR was comparable to
the effect of high-dosed metformin (10 mM, Figure 4). In U87, diclofenac reduced the activation of
STAT3 (phosphorylation), whereas in the other tested cells, pSTAT3 levels did not show any significant
alterations compared to the DMSO control. In U87, BTIC-13, and BTIC-18, combined treatment with
metformin and diclofenac led to the deactivation of STAT3 without reaching significance. Compared to
single treatment with metformin and diclofenac, no additive effects were shown.
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Figure 4. (A) Protein levels of the (phosphorylated) mammalian target of rapamycin (p)mTOR,
(phosphorylated) signal transducer and activator of transcription 3 (p)STAT3 and GAPDH
(glyceraldehyde-3-phosphate dehydrogenase) were investigated using Western blot analysis with
specific monoclonal antibodies for STAT3, phosphorylated STAT3 (pSTAT3), mTOR, phosphorylated
mTOR (pmTOR) (all Cell Signaling, New England Biolabs GmbH, Frankfurt, Germany), and GAPDH2
(Santa Cruz Biotechnology, Heidelberg, Germany) in dry milk (1%) overnight at 4 ◦C. Expression was
measured by chemoluminescence. (B) The intensity of protein bands was determined using ImageJ
software, and the protein regulation of at least two replicates was calculated by normalization to
loading control and treatment control. Results are expressed as mean ± SD and were analyzed by
two-way ANOVA, p = 0.0332 (*), p = 0.0021 (**), compared pairwise, i.e., the metformin-treated versus
metformin and diclofenac condition.
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3. Discussion

For the first time, we showed that metformin in combination with diclofenac reduced migration
and proliferation in primary human brain tumor initiating cells, as well as in human glioma cells.
The effects on BTICs were weaker after coating with laminin. Besides a possible cell attachment effect,
laminin is also known to modify the stem-cell characteristics of cancer stem cells. For instance, Qin et al.
reviewed the role of the extracellular matrix protein as a regulator of cancer stem cell properties such
as epithelial–mesenchymal transition, dedifferentiation, and metastatic potential [31]. According to
that, we showed that the proliferation of U87 and HTZ349 as differentiated glioma cells was inhibited,
regardless of laminin addition.

As LDH activity was not increased after the treatment, we ruled out cytotoxic effects and the
possibility that stronger treatment response without laminin coating might be due to cell death and
thereby a loss of adherence.

We were able to confirm that metformin treatment reduced oxygen consumption and increased
extracellular lactate levels, indicating intensified energy generation via glycolysis, whereas diclofenac
only slightly reduced lactate. The reduction of extracellular lactate levels by diclofenac was less
pronounced in comparison with previous publications exploring the inhibition of cellular lactate
production by NSAIDs. This might be because BTICs especially frequently rely on mitochondrial ATP
production in an oxygen-rich cell culture environment. Regarding the different BTICs used in this study,
particularly untreated BTIC-18 consumed high amounts of oxygen. In accordance, metformin treatment
led to a strong inhibition of oxygen consumption, whereas diclofenac did not alter extracellular lactate
levels significantly. The combination of both drugs reduced extracellular lactate levels compared
to single metformin treatment. Regarding cell-signaling pathways, the combined treatment led to
a reduction of activated (phosphorylated) STAT3 in U87, whereas in BTICs, the combination did
not alter phosphorylated STAT3 (pSTAT3) levels compared to the single treatment with metformin
or diclofenac.

A large number of epidemiological studies revealed that exposure to metformin was associated
with a reduction of the risk of different cancer types such as liver, colorectal, pancreatic, stomach,
and esophageal cancer [8]. However, there were also numerous malignancies that did not benefit
from metformin exposure. Seliger et al. showed that metformin treatment did not significantly
reduce the risk of glioma [17]. Besides epidemiological associations between metformin and the
risk of cancer, the drug’s antineoplastic effects have been observed in many in vitro and in vivo
studies. Regarding brain tumor initiating cells, metformin inhibited migration [32] and proliferation
by inducing apoptosis, autophagy, and differentiation [10,11,13,33,34]. Würth et al. demonstrated that
metformin exerts its anti-proliferative effects, especially on CD 133-expressing BTICs, without causing
cell death up to 10 mM [10]. In addition, metformin showed anticancer effects in many in vivo
experiments. More than 15 years ago, Owen et al. were able to show that metformin inhibited
the mitochondrial respiratory chain, and thereby restrained gluconeogenesis in a time-dependent
manner [12]. In BTICs, impaired proliferation and migration was also due to an inhibition of complex
I of the respiratory chain [9,16]. In order to survive, malignant cells need to activate alternative ways
of ATP production, similar to increased glycolysis resulting in dropping pH values in the cell culture
medium [33]. The activation of metabolic rescue mechanisms, the differentiation of progenitor cell-like
brain tumor initiating cells into non-tumorigenic cells, as well as the suppression of inflammatory
response, are exerted through the activation of AMP-dependent kinase (AMPK) [7,10,13,14,35,36] and
the downstream inhibition of mTOR [9,11,16]. Furthermore, metformin treatment exerts its effects
partly through the deactivation of STAT3 [30]. STAT3 has been shown to be essential to maintain the
tumor-initiating capacity, invasion capacity, cell survival, and cell cycle progression [37,38]. Metformin
subsequently induces apoptosis and autophagy, and blocks tumor progression [39–41]. That the
use of metformin in the treatment of T2DM did not show protective effects on glioma incidence
might be explained by different underlying molecular mechanisms compared to therapeutic use in
cancer treatment.
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In daily T2DM treatment, a drug dose of up to 2550 mg metformin/day is recommended
by the Federal Drug Administration (FDA) (https://www.accessdata.fda.gov/drugsatfda_docs/
label/2017/020357s037s039,021202s021s023lbl.pdf), and with those doses, drug levels of around
40 µM can be measured in the portal vein and cerebrospinal fluid, and 10 µM can be measured
in brain tissue, whereas in mouse models with long-term metformin use and intensified dosages,
metformin concentrations of up to 5 mM could be reached in the serum, which extended the lifespan
of mice [42–44]. Although in most of the prior in vitro studies (among others, Gritti et al.) metformin
was used in even higher dosages [34], some authors have argued that metformin may have several
effects that are individually small but collectively effective at achieving the desired effect. To reduce the
individual drug doses, metformin is currently combined with different pharmacological partners or
used in combination with classical chemotherapeutics in order to reduce drug doses and possibly side
effects by maintaining anticancer effects. Metformin and temozolomide, which is an alkylating agent
used in the treatment of WHO grade IV glioma according to the Stupp protocol [45], synergistically
inhibited the proliferation of brain tumor-initiating and differentiated glioma cells in vitro and in vivo.
Recently, Valtorta et al. showed that the combined treatment of metformin and temozolomide
helped to overcome resistance in glioblastoma multiforme [46]. According to Aldea et al., metformin
in combination with sorafenib exerted selective anti-proliferative effects in BTICs and non-stem
glioblastoma cells, whereby sorafenib also affected the proliferation of normal cells [47]. Several studies
showed that anti-proliferative effects on different types of cancer could be potentiated by combining
metformin with classic chemotherapeutic drugs. For example, Zhu et al. treated cholangiocarcinoma
cells with metformin and gemcitabine or cisplatin, Peng et al. used the biguanide in combination with
gefitinib on bladder cancer cells, and Harada et al. demonstrated that metformin in combination with
5-FU (fluorouracil) suppressed tumor progression in squamous cell carcinoma [48–50]. We used a dose
of 1 mM of metformin in most of our assays, which can still be considered as high, because complex
1 in hepatocytes was started to be inhibited at doses as low as 50–100 µM of metformin [12,51].
Furthermore, in recent experiments, 1 mM of metformin has been shown to be associated with
increased cell apoptosis in HUVEC (human umbilical vein endothelial cells) [52].

In 1956, Otto Warburg revealed that cancer cells provided their energy mainly by upregulating
glycolysis despite sufficient oxygen supply in the tumor microenvironment [53]. Today, this metabolic
switch from the oxidative to the glycolytic pathway is known as the Warburg effect. As metformin
promotes glycolysis and in consequence lactate production as a rescue mechanism, glycolysis-blocking
agents seem to be suitable pharmacological partners. Saber et al. showed that metformin in
combination with 5-aminosalicylacid decreased the proliferation of colorectal cancer and in melanoma,
the combination of metformin and oxamate, known as an inhibitor of LDH and thereby glycolysis,
retarded tumor progression in mice [54,55].

In this study, we considered the frequently used NSAID diclofenac as a promising combination
partner. Besides its anti-inflammatory and analgesic capacities (www.drugs.com/pro/diclofenac.html),
diclofenac and other NSAIDs have been shown to exert antineoplastic effects by COX-dependent
and independent mechanisms [22,56–58]. Among others, Cha and Taketo reviewed the important
role of COX-2 and its product PGE2 in tumorigenesis, including angiogenesis, migration, invasion,
tumor progression, the inhibition of apoptosis, and in consequence, the inhibitory effects of
NSAIDs [20,21,59–61]. Chirasani et al. demonstrated in a murine glioma model that diclofenac
inhibited lactate formation beginning at a dosage of 0.1 mM [18]. According to Gottfried et al.,
diclofenac may affect glucose uptake and lactate secretion not only by reducing the gene expression of
responsible transporters via MYC, but also by inhibiting lactate efflux [24]. Sasaki et al. demonstrated
that out of the four tested NSAIDs, diclofenac was the most potent inhibitor of glycolysis [62].

Constant lactate efflux is essential to avoid intracellular acidification and guarantee continuous
ATP production via glycolysis relying on a concentration gradient of lactate and protons between the
intracellular compartment and the tumor microenvironment [63].

https://www.accessdata.fda.gov/drugsatfda_docs/ label/2017/020357s037s039,021202s021s023lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/ label/2017/020357s037s039,021202s021s023lbl.pdf
www.drugs.com/pro/diclofenac.html
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In summary, we provide data that suggest that a combination of increased intracellular lactate
levels due to the inhibition of mitochondrial respiration and a blockage of glycolysis exerts additive
anti-proliferative and anti-migratory effects of metformin and diclofenac in BTIC and glioma cell lines.
These effects are not explained by the direct effects of metformin on candidate signaling pathways.
As diclofenac is assumed to reduce extracellular lactate levels not only by the direct inhibition of
outward transport, but also by influencing gene expression, further studies are needed to investigate
the possible additive effects on those signal pathways.

As especially anti-migratory effects were shown, it might be interesting to observe how signal
pathways that are involved in migration and metastasis formation, i.e., NF-kappaB (Nuclear Factor
kappa B) or SMAD, are affected by the combined treatment. Furthermore, in vivo, BTICs can be
differed into a proliferative and migrative subtypes [64]. Those different subtypes might react in
different ways to the combined treatment used in this study. Human mesenchymal stem cells isolated
from the umbilical cord only showed a 20% reduction of viability after being treated with 50 mM
of metformin, but we don’t know how healthy cells are affected by the combined treatment [10].
Impairing mitochondrial respiration and glycolysis might affect other cells beyond cancer cells. Control
cell lines, i.e. astrocytes, are needed, as a therapy used in cancer treatment is expected to be active on
pathological cells while not affecting normal cells. Furthermore, metformin, especially in combination
with diclofenac, doesn’t exert its effects on the human body only by impairing a single biochemical
pathway. Used in therapeutic dosages, the risk of causing a lactic acid crisis might be more relevant
than in diabetic treatment. Besides, the effects of metformin may vary according to short-term or
long-term exposure, which we did not further check in our experimental setting [65,66]. In order to
investigate not only the exact mechanism of a combination of metformin and diclofenac, but also its
effects on the tumor microenvironment, including angiogenesis and the immune system, as well as
the whole (human) body, in vivo models are needed. If these models can substantiate the effects we
show here, future clinical trials may investigate metformin in combination with diclofenac in patients
with glioblastoma.

4. Materials and Methods

4.1. Ethics Statement

The local neuropathology department determined the patients’ diagnoses and WHO grade,
and routine histopathology was accompanied by testing for IDH1 mutation (by Sanger or
Pyrosequencing) and MGMT promoter methylation status (by MethyQESD [67]). Clinical parameters
such as age, gender, type of treatment, and overall survival (according to the RANO criteria) were
available for all patients. The ethics committee of the University of Regensburg, Regensburg, Germany
(No◦ 11-103-0182) approved the study, and all of the patients gave written informed consent.

4.2. Tumor Cell Lines

BTIC-8, -11, -13, and -18 are primary tumor cell cultures derived from the same human
glioblastoma, as described before [11,29]. For the enrichment of BTICs, tumor specimens were
mechanically or enzymatically dissociated, washed with PBS (Phosphate-buffered saline), and passed
through a cell strainer with a 30-µm pore size to obtain a single cell suspension. After isolation,
BTICs were frozen and used at different time points in passages 12–25. BTICs were maintained
in RHB-A-based serum-free culture media supplemented with 20 ng/mL of the mitogens EGF
(Epidermal Growth Factor) and FGF (Fibroblast Growth Factor) (both Miltenyi Biotech, Bergisch
Gladbach, Germany), at 37 ◦C, 5% CO2, 95% humidity in a standard tissue culture incubator.
The progenitor features of BTIC lines were verified by clonogenicity assays, and partly by tumor
take assays in an immunocompromised mouse model.

Human high-grade glioma cell line U87 was obtained from the American Type Culture Collection
(Manassas, VA, USA). HTZ349 is a primary tumor cell culture derived from the resection of
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a human glioblastoma established at the university clinic in Würzburg, Germany, as described
before [68]. Tumor cells were maintained as monolayer cultures in Dulbecco’s Modified Eagles
Medium (DMEM with 1 g/L of glucose; Sigma-Aldrich, Taufkirchen, Germany), supplemented with
10% fetal calf serum (FCS; Biochrom, Berlin, Germany) at 37 ◦C, 5% CO2, 95% humidity in a standard
tissue culture incubator. All of the experiments were performed using Dulbecco’s Modified Eagles
Medium, supplemented with 10% fetal calf serum for TCs, 2% of B27, and 0.01% of EGF and FGF
for BTICs.

4.3. Proliferation Assay

Proliferation was assessed using crystal violet staining. Briefly, cells were seeded at densities of
2.5 × 103 cells/mL in a 200 µL/well. In addition, proliferation was also assessed with laminin coating.
Therefore, non-adherent as well as adherent cells were seeded on laminin-coated wells and incubated
for at least 2 h. After 48 h to 72 h, the media was renewed, and cells (at least five replicates) were
treated with specific concentrations of metformin, diclofenac, a combination of both, or control media.
Proliferation was measured at 0 h, 48 h, and 96 h, respectively. Medium was exchanged with 0.5%
of crystal violet in a 20% methanol solution, and cells were stained for 10 min. After washing and
drying, the crystal violet was diluted into a homogenous solution by the addition of 0.1 M sodium
citrate in 50% ethanol, and measured at 550 nm (VarioSkan Flash Multimode Reader, Thermo Scientific,
Waltham, MA, USA). For all of the assays, background fluorescence was subtracted, and values were
normalized to the 0 h values. Assays were performed in five or six replicates and repeated twice.

4.4. Migration Assay

Tumor spheroids were generated by seeding 2.5× 103 cells onto agarose-coated wells (1% agarose
in 1 × PBS), as described [11,29]. Cells were cultured for 48 h to allow spheroid formation.
Mature spheroids were transferred into non-coated 96-well plates containing the corresponding drugs.
Cell migration was monitored at 0 h, 24 h, and 48 h, taking into account the earliest time point when
migration was measurable to prevent the dilution of results by proliferation effects. The area covered by
cells was measured by tracing the covered area manually (freehand selection module, ImageJ software,
version 1.50i, NIH, USA). Assays were performed in five to six replicates and repeated twice.

4.5. Protein Isolation and Western Blot

To investigate the protein levels of (p)mTOR, (p)STAT3, and GAPDH, whole-cell lysates were
prepared with RIPA buffer (radioimmunoprecipitation assay buffer). For Western blot analysis,
30 µg of total cell lysates were diluted in Laemmli buffer, separated on a 10% SDS-PAGE gel,
and transferred to nitrocellulose membranes by semi-dry blotting or wet blotting. The membranes
were blocked with 5% milk powder or 5% BSA (bovine serum albumin) in 0.02% Tween in TBS
(Tris-buffered saline) for 1 h. Membranes were incubated with specific monoclonal antibodies for
STAT3 (#9145), phosphorylated STAT3 (#4904) (pSTAT3) (#9145), mTOR (#2983), phosphorylated
mTOR (pmTOR) (#5536) (all Cell Signaling, New England Biolabs GmbH, Germany), and GAPDH2
(sc-48167) (Santa Cruz Biotechnology, Heidelberg, Germany) in dry milk (1%) overnight at 4 ◦C.
For U87 and BTIC-18, we used different membranes for phosphorylated and unphosphorylated
proteins. For BTIC-13, the same membrane was used for (p)mTOR and (p)STAT3. After incubation
with the first antibody (phosphorylated), expression was measured; afterwards, the membranes were
stripped and incubated with the secondary antibody (unphosphorylated). Expression was measured
by chemoluminescence (ECL Western Blot Bright, Biozym, Germany). Intensities of protein bands were
measured with ImageJ software using the gel analyze module, and protein regulation of two or three
Western blots each was calculated by normalization to loading and treatment control using GraphPad
Prism software (Version 6 and 7, GraphPad Software, La Jolla, CA, USA).
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4.6. LDH Activity Measurement

To check for LDH enzyme activity, the LDH cytotoxicity assay (Promega, Mannheim, Germany)
was performed. The assay is based on an enzymatic coupling reaction: LDH oxidizes lactate in order to
generate NADH, which then reacts with pyruvate and a dye to generate a yellow color. LDH activity
was quantified with a plate reader (VarioSkan Flash Multimode Reader, Thermo Scientific, USA) at
490-nm absorption. In summary, cells were seeded 24 h prior to treatment with 2.5 × 103 cells/well in
200 µL of serum-free media/well, and incubated with either the indicated concentrations of metformin,
diclofenac, or a combination of both; NaOxamat (25 mM) was used as a positive control. Then, 24 h and
48 h later, LDH activity was measured.

4.7. Online Measurement of Oxygen Concentration and PH Levels in Cell Culture

The SDR SensorDish Reader (PreSens Precision Sensing, Regensburg, Germany) is a 24-channel
oxygen and pH meter. Therefore, luminescent dyes integrated at the bottom of a 24-well multidish
function as sensors. The lifetime of those dyes depends on the oxygen concentration in each well.
Depending on the pH levels, the fluorescent dyes change their intensity over time.

The signals are read out non-invasively by the SensorDish Reader and converted using calibration
parameters stored in the software. Cells were seeded considering their stereotypic oxygen consumption
in different amounts, i.e., 1.5 (BTIC-18) or 3 × 105 (BTIC-11, BTIC-13, BTIC-8, U87, and HTZ349)
cells/well and incubated in 1 mL of medium. After 24 h, medium was exchanged and cells were
treated with metformin, diclofenac, or a combination of both agents. Afterwards, the SensorDish
Reader was used in the incubator for the whole duration of the 24-h treatment period.

4.8. Extracellular Lactate Levels

Extracellular lactate was measured using mass spectrometry, as described [69].

4.9. Combination Index

Ting Chao Chou’s combination index was automatically calculated using CompuSyn software
(www.combosyn.com). The combination index allows differing between additive, synergistic, or
antagonistic effects of a drug combination using the dose-effect curve for each drug and the combined
treatment. Therefore, the dose-effect parameters of each drug alone, as well as in combination, are
needed in order to determine the CI value.

Four data points of 3 × 0.01 mM, 0.1 mM, 1 mM, and 10 mM, and three data points of 0.05 mM,
0.1 mM, and 0.2 mM were used to determine the dose-effect curve of metformin and diclofenac.
Furthermore, 3 × 0.01 + 0.05, 3 × 0.01 + 0.1, 3 × 0.01 + 0.2, 0.1 + 0.05, 0.1 + 0.1, + 0.2, 1 + 0.05, 1 + 0.1,
and 1 + 0.2 were used in combination analysis.

Detailed procedures of automated dose-effect analysis for the quantification/simulation of
synergism or antagonism are given in the User’s Guide for CompuSyn [70].

4.10. Immunocytochemistry

For the staining of DAPI (4′,6-Diamidin-2-phenylindol), Nestin and SOX 2–5 × 105

(U87: 5–10 × 103) cells/well were seeded in laminin-coated coverslips. Supernatants were removed
48 h after treatment, and cells were fixed with 4% paraformaldehyde (441244, Sigma-Aldrich,
Taufkirchen, Germany) for 10 min. After threefold washing with PBS and blocking with
blocking buffer (PBS, 10% donkey serum #S30-100, Merck-Millipore, Darmstadt, Germany, 1% BSA
#82-100-6, Merck-Millipore, Darmstadt, Germany, 0.1% Triton X-100 #T8787, Sigma Aldrich,
Taufkirchen, Germany) for 2 h, coverslips were incubated with primary antibodies diluted in blocking
buffer (mouse anti-Nestin #MAB5326, Merck-Millipore, Darmstadt, Germany ,1:500; goat anti-sox-2
#sc-17320, Santa Cruz, Dallas, TX, USA, 1:500; mouse anti-MCT-1 #sc-365501, Santa Cruz, Dallas,
TX, USA, 1:50; rabbit anti-MCT-4 #sc-50329, Santa Cruz, Dallas, TX, USA, 1:50) at 4 ◦C overnight,

www.combosyn.com
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washed with blocking buffer three times before incubation with secondary antibodies (Alexa Fluor®

568 donkey anti mouse #A-10037, Life technologies, Darmstadt, Germany, 1:500; Alexa Fluor® 488
donkey anti-rabbit #A-21206, Life technologies, Darmstadt, Germany, 1:1000; Alexa Fluor® 488 donkey
anti-goat #A-11055, Life technologies, Darmstadt, Germany, 1:1000), and DAPI (#D9542, Sigma-Aldrich,
1:1000) for nuclear staining for 1 h. Coverslips were also washed three times with blocking buffer and
PBS, respectively, before they were mounted with Prolong Gold (# P96930 , Invitrogen, Carlsbad,
CA, USA) and dried overnight. Fluorescence microscopy was performed using the Zeiss Axio
Observer.Z1 microscope (Zeiss Axio Observer.Z1, Visitron Systems GmbH, Puchheim, Germany).

4.11. Statistics

Analyses of significant differences between treatment groups (mean values and SDs) were
performed by two-way ANOVA with Tukey’s multiple comparisons test with a 95% confidence
interval, p = 0.0332 (*), p = 0.0021 (**), p = 0.0002 (***), p ≤ 0.0001 (****). After being normalized,
every treatment/control was compared to every other treatment/control. Data were analyzed using
GraphPad Prism software (version 6 and 7, GraphPad Software, USA).

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/19/9/2586/
s1, Figure S1: Graphical abstract summarizing the expected mechanism of action of combined metformin and
diclofenac treatment, Figure S2: Immunocytochemical expression of cancer stem cell-markers Nestin and SOX,
Figure S3: (A) The effects of medium control and DMSO on proliferation were investigated using crystal violet
staining at a 96 h time point. (B) Spheroid assays were used to analyze anti-migratory effects at a 48 h time
point, Figure S4: Cell proliferation of HTZ349 and BTIC-13 after 96 h treatment with different dosages of
metformin, diclofenac and both agents was investigated using crystal violet staining, Figure S5: The effects of
metformin, diclofenac and both agents on proliferation were investigated applying crystal violet staining at a 96-h
time point, Figure S6: The effects of metformin, diclofenac and both agents on proliferation were investigated
applying crystal violet staining at a 96 h time point after laminin coating, Figure S7: To measure LDH enzyme
activity, the LDH-cytotoxicity assay was performed, Figure S8: Oxygen concentration in the cell cultures was
measured using the SDR SensorDish Reader (PreSens Precision Sensing, Regensburg, Germany) for 24 h, Figure S9:
(A) Extracellular lactate levels after 48 h of treatment with high and low dose metformin. (B) pH-levels after
metformin and diclofenac treatment (exemplarily shown for U87).
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