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Zusammenfassung 

Das Ziel dieser Promotionsarbeit ist es, einige Beiträge zu dem Thema der Differentialdiagnose 

der Narkolepsie zu leisten. Gemäß der dritten Edition der ICSD (International Classification of 

Sleep Disorders) ist die Narkolepsie in zwei Untergruppen, Typ 1 und Typ 2, unterteilt. Während 

Narkolepsie Typ 1 pathophysiologisch auf den Untergang Hypocretin-freisetzender Neuronen im 

Hypothalamus zurückzuführen ist und klinisch häufig durch das Auftreten von Kataplexie leicht 

zu identifizieren ist, beruht die Diagnose der Narkolepsie Typ 2 fast ausschließlich auf den 

Ergebnissen des Multiplen Schlaflatenztests (MSLT). Dadurch gestaltet sich die 

differentialdiagnostische Abgrenzung der Narkolepsie Typ 2 von der Idiopathischen Hypersomnie 

als sehr schwierig. 

Im Rahmen dieser Doktorarbeit werden verschiedene statistische Methoden eingesetzt, um diese 

Probleme und ihren Zusammenhang zu den bestehenden diagnostischen Kriterien näher zu 

beleuchten. Für diese Fragestellung wird ein Datensatz des Schlafmedizinischen Zentrums 

Regensburg mit insgesamt 141 Fällen von Narkolepsie oder Idiopathischer Hypersomnie 

herangezogen. Ferner stehen 73 MSLT-Messungen von gesunden Kontrollpersonen zur 

Verfügung. 

Zunächst wird im Rahmen einer linearen Regressionsanalyse die Korrelation zwischen der 

Häufigkeit von SOREM (sleep onset REM) – Episoden und der MSLT-Schlaflatenz genauer 

untersucht. Hier stellt sich ein negativer affin-linearer Zusammenhang für beide Narkolepsie-

Typen und gesunde Kontrollen heraus. Für den kürzlich von Pizza et al. vorgeschlagenen 

Parameter Delta, der die Zeit vom ersten Einschlafen bis zum konsolidierten Einschlafen misst, ist 

sowohl für Narkolepsie als auch für Idiopathische Hypersomnie eine schwache positive 

Korrelation zur üblichen Einschlaflatenz zu verzeichnen. 

Die im Anschluss durchgeführte Hauptkomponentenanalyse erfüllt zwei wesentliche Funktionen 

im Rahmen der Zielsetzungen dieser Doktorarbeit. Einerseits zeigt die resultierende dominante 

Hauptkomponente, dass die typischen MSLT- und Polysomnographie-Parameter, die zur 

Beschreibung und Unterscheidung von Narkolepsie und Idiopathischer Hypersomnie angewendet 

werden, in der Tat eine wichtige beschreibende Achse darstellen, an der sich die größten 

Unterschiede im Datensatz aufschlüsseln lassen. Andererseits dienen die erhaltenen 
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Hauptkomponenten als Grundlage, um algorithmisch einen geeigneten Variablensatz für die 

Clusteranalysen zu gewinnen. 

Für die Clusteranalysen selbst werden drei verschiedene Methoden angewandt. Entsprechend ihrer 

unterschiedlichen Konzepte zeigen sich deutliche Unterschiede zwischen den erhaltenen 

Clusterlösungen. Dennoch fallen einige Gemeinsamkeiten auf. So finden alle Clusteralgorithmen 

stets zwei klinisch relevante Cluster, wobei alle Methoden ähnlich zusammengesetzte Clusterpaare 

identifizieren. Insbesondere fällt auf, dass die Narkolepsie Typ 2-Fälle algorithmisch in weitgehend 

konsistenter Weise teilweise der Narkolepsie Typ 1 und teilweise der Idiopathischen Hypersomnie 

zugeordnet werden. Verschiedene Erklärungen für diese Beobachtung werden angeboten. 

Einerseits kann auf Phänomene wie einem verzögerten Einsetzen von Kataplexie bei Narkolepsie 

hingewiesen werden, andererseits können methodische Schwächen des MSLT die Trennschärfe 

zwischen Narkolepsie Typ 2 und Idiopathischer Hypersomnie reduzieren.  

Zuletzt wird ein Interpretationsansatz weiter ausgeführt, der entsprechend den Ergebnissen der 

Clusteranalysen zwei statt drei diagnostische Gruppen für den Datensatz vorschlägt, wobei diese 

beiden Gruppen entstehen, indem die Narkolepsie Typ 2-Fälle in der beobachteten Weise der 

Narkolepsie (ohne Subtypen) bzw. der Idiopathischen Hypersomnie zugeschrieben werden. Im 

direkten Vergleich zeigt sich diese alternative diagnostische Einteilung gut hinsichtlich der 

Clustervariablen nachvollziehbar. Diese Arbeit endet mit dem Vorschlag eines aus der dominanten 

Hauptkomponente abgeleiteten diagnostischen Scores, der die Differentialdiagnose insbesondere 

dieser neuen Kategorien zu erleichtern scheint. 
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Narcolepsy vs. idiopathic hypersomnia: 
Differentiating groups using cluster analysis 
 

1. Introduction 

Narcolepsy is a disabling sleep disorder, which – despite its relative rarity – has always attracted 

the interest of many sleep medicine researchers. Much progress has been made in understanding 

the etiology and pathophysiology of this condition. In case of narcolepsy type 1 a specific loss of 

certain neurons in the hypothalamus has been found to be the morphologic correlate of this disease1. 

However, until today, no curative treatment option is available, but the majority of patients show 

significant improvement under the recommended medication. 

Some cases of narcolepsy are easily diagnosed due to very suggestive MSLT (multiple sleep 

latency test) results or a clear-cut history of cataplexy. For a significant number of patients, 

however, diagnosis is a much more challenging task. One of the main issues in these situations is 

the distinction between patients with narcolepsy type 2, who by definition do not show cataplexy, 

and patients with idiopathic hypersomnia (IH). Until today, despite the recent update of the ICSD 

(International Classification of Sleep Disorders), the definition and diagnostic criteria of these 

conditions are heavily discussed. Additionally, patients subsumed under the diagnosis of IH show 

high clinical variance and heterogeneity2, 3. Furthermore, in terms of clinical presentation, a 

distinction between narcolepsy and IH is often not possible. Due to the absence of biomarkers, the 

diagnosis and differential diagnoses are based on the results of the MSLT. Since the MSLT is 

known to have several methodical weaknesses, scientists and clinicians remain in an unsatisfactory 

situation.  

This thesis addresses some of the issues listed above. Using linear regression analysis, the 

correlation between different MSLT parameters is examined. Emphasis is put on two main aspects: 

On the one hand, the correlation between the SOREM (sleep onset REM) count and the mean sleep 

latency is investigated. On the other hand, focus lies on the sustained sleep latency and its possible 

diagnostic purpose, for example via the parameter Delta which has recently been suggested by 

Pizza4. 
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The core of this thesis consists of a principal component analysis and subsequent cluster analyses. 

Using these descriptive statistical tools, the diagnostic and differential diagnostic value of several 

sleep medical parameters is addressed. Furthermore, the cluster analysis results serve as foundation 

for the discussion, whether the current diagnostic entities, i.e. the narcolepsy subtypes and IH, 

actually form separate clusters and whether the results of this thesis justify the current classification 

system. Three entirely different cluster algorithms are employed, yielding three different cluster 

solutions. In order to illustrate and quantify both similarities and differences between these 

solutions, various methods for cluster validation and interpretation are presented. 

In the final chapter of this thesis, all results of the different methodical approaches are summarized. 

The general discussion further examines the question, whether the conventional classification into 

three groups as stated in the ICSD-3 should be challenged by the consistent finding of two essential 

groups reported by the cluster analyses. Eventually, a linear score is introduced as a suggestion on 

how the differential diagnostic process could be refined. 
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2. Hypersomnolence and EDS: Definition and diagnostic concepts 

According to the ICSD-3, hypersomnolence is the occurrence of excessive sleepiness5. The 

conditions that are discussed in this thesis are usually accompanied by excessive daytime sleepiness 

(EDS), which is defined as “ […] the inability to stay awake and alert during the major waking 

episodes of the day, resulting in periods of irrepressible need for sleep or unintended lapses into 

drowsiness or sleep”5. On the contrary, the term hypersomnia should only be used to describe 

conditions that may cause hypersomnolence/excessive sleepiness. 

Excessive sleepiness and EDS should be treated as multidimensional concepts6–8, which cannot be 

properly detected and quantified by a single diagnostic procedure. Both subjective and objective 

assessments of EDS are important in the clinical context. In the following, all diagnostic tools that 

are of further relevance for this thesis will be described. 

2.1. The ESS: A subjective measurement of EDS 

The Epworth Sleepiness Scale (ESS) is a self-administered questionnaire that was introduced in 

1991 by Johns9. According to Johns, the MSLT merely allows an estimation of a very specific 

situational sleep propensity for the MSLT setting without addressing the general condition of 

EDS/sleep propensity10. In contrast to the other diagnostic tools discussed below, the ESS was 

designed to measure the general sleep propensity by explicitly exploring different situations in 

which sleepiness might occur.  

The ESS consists of eight items, which represent different situations in everyday life (e.g., 

“watching TV”). For each item, the patient estimates the likeliness to fall asleep or to doze off in 

the given situation using the numbers 0 to 3. A score of 0 means that the patient never dozes off or 

falls asleep, whereas 3 represents a high chance of doing so. The individual item scores are added, 

resulting in a total score ranging between 0 and 249.  

In the original publication by Johns, the scores of healthy controls ranged from 2 to 10 with an 

average value of 5,9 , whereas all IH and narcolepsy patients in this study showed ESS scores 

higher than 12, sometimes reaching values of 20 or more9. A normative study regarding the German 

version of the ESS found an average value of 6,6 and recommended regarding ESS scores higher 

than 10 as “clinically suspicious” and scores higher than 12 as “clinically relevant”11. 
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The ESS has been validated well for different language versions12–14, for which also the matter of 

internal consistency has been investigated12, 15. Indeed, high levels of consistency have been found, 

indicating that all items do address the same theoretic construct. Factor analysis showed the 

existence of one dominant factor which was interpreted as general sleep propensity by Johns15. 

Furthermore, most studies found an acceptable test-retest reliability12, 13, although a low reliability 

has been reported in a population being evaluated for sleep-related breathing disorders16. 

Due to its simplicity, the ESS is widely established in clinical practice. However, its diagnostic and 

differential diagnostic value has been subject of discussion. A brief overview of this topic will be 

given in section 3.3.3. . 

2.2. Objective measurements of EDS 

2.2.1. EDS and vigilance tests 

Vigilance can be defined as “more careful attention, especially in order to notice  

possible danger“17 and is therefore not directly linked to EDS. However, vigilance is needed in 

many tasks of everyday life, e.g. work or traffic. It is to be expected that patients suffering from 

severe EDS may also have an impaired vigilance, so it is reasonable to measure vigilance in 

hypersomnia patients.  

In this thesis the term vigilance test will always refer to the Quatember-Maly test. This test, which 

is included in the test collection Wiener Testystem18, 19, is a digitalized version of the clock-test, 

which has initially been designed by Mackworth20.   

In the Quatember-Maly test the patient is instructed to follow a light source which is moving along 

a circle, like the second hand of a clock. In irregular intervals a wider jump of the light source 

occurs, which the patient has to report as quickly as possible. As test results, among other 

parameters, the number of correct reactions, the number of false reactions (i.e. a jump is reported 

that has not occurred) and the average reaction time for correct reports are obtained.  

According to the test manual the number of correct reactions is the most direct measure for visual 

vigilance, whereas many false reactions indicate that the patient did not comprehend the test 

instructions or did not take the test serious21.  

 

http://dictionary.cambridge.org/de/worterbuch/englisch/careful
http://dictionary.cambridge.org/de/worterbuch/englisch/attention
http://dictionary.cambridge.org/de/worterbuch/englisch/order
http://dictionary.cambridge.org/de/worterbuch/englisch/notice
http://dictionary.cambridge.org/de/worterbuch/englisch/possible
http://dictionary.cambridge.org/de/worterbuch/englisch/danger
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2.2.2. EDS evaluation using polysomnography (PSG) 

According to the ICSD-3 criteria for IH and narcolepsy, the results of the nocturnal PSG serve two 

important diagnostic purposes. Mainly, the PSG is needed for the exclusion of other causes of 

hypersomnolence22, e.g. sleep related breathing disorders. Furthermore, if a REM sleep episode 

occurs in the first 15 minutes of the PSG, it is treated as an equivalent to a SOREM (sleep onset 

REM) episode in the MSLT, including all implications for the (differential) diagnostic process.  

However, some publications indicate that there might be PSG parameters that could be of 

additional use for the diagnosis and differential diagnoses of IH and narcolepsy. These parameters 

will be discussed further in section 3.3. . 

Regarding this thesis, several PSG parameters will be included in the upcoming analyses: Any 

SOREM episodes during the PSG are taken into account indirectly by the (PSG) REM latency. The 

sleep efficiency index, which is defined as the fraction of the total time in bed that is spent asleep, 

is also included. As a measure of sleep quality, the fraction of the total amount of sleep that is spent 

in sleep stage N3 is considered. Furthermore, the arousal index, which does not differentiate 

different causes of nocturnal arousals, is used as an estimate of sleep fragmentation. 

2.2.3. The MSLT 

The MSLT was designed as a tool for objective measurement of sleepiness in a standardized 

environment. In principle, the MSLT is based on the findings of Rechtschaffen and Kales, who 

were able to define EEG criteria for the human sleep architecture23. Before that, sleepiness could 

only be measured by observing subjects directly or by employing subjective questionnaires.  

According to Arrand et al.24 in the seventies of the 20th century several studies were performed 

investigating the sleep behavior of subjects in a 90 minute day25–27, i.e. 60 minutes of activity and 

30 minutes of rest using EEG criteria discovered by Rechtschaffen and Kales. It was found that the 

subjective sleepiness measured by the SSS (Stanford Sleepiness Scale) showed a strong correlation 

with the sleep latency of these subjects. Therefore, it was concluded that in a situation like the 

MSLT test environment, which does not allow any alerting stimuli, the physiological sleep 

tendency is unmasked and can be objectively measured using these sleep latencies28. 

In 1977, the MSLT was first used to assess sleepiness in  an experimental setting29. In 1979, the 

MSLT was used for the first time to detect REM episodes in narcolepsy patients30.  
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The guidelines formulated by Carskadon et al. in 198631 and more recently by Littner et al.32 

describe in a precise manner how the MSLT should be performed. Table 2.1 summarizes these 

guidelines. 

 

Table 2.1: Essential guidelines for the multiple sleep latency test (MSLT) according to Carskadon et al.31 and Littner et 

al.32 

General considerations 

- Performance of the MSLT on the day following a NPSG, no MSLT if the total sleep time was less than 6 hours 

- Sleep diaries 1-2 weeks preceding the MSLT 

- Consideration of drug intake; withdrawal two weeks before the MSLT 

o Drugs affecting sleep latency: stimulants, hypnotics, sedatives, antihistamines 

o Drugs affecting REM latency: tricyclic antidepressants, MAO inhibitors, amphetamines 

Test settings 

- Five nap opportunities in 2-hour intervals, beginning 1,5 to 3 hours after the end of nocturnal sleep 

- Quiet bedroom, constant and low light level, constant room temperature 

- No ingestion of alcohol or caffeine during the whole day 

- Between the naps, patients should be out of bed and prevented from sleeping. 

Test procedure 

- Recording of EEG (C3-A2, C4-A1, O1-A2, O2-A1 derivations), left and right eye electrooculograms, mental or 

submental EMG and ECG; bio-calibrations preceding each nap 

- Each nap opportunity starts with the instruction “Please lie quietly, assume a comfortable position, keep your eyes 

closed and try to fall asleep.” Then, the lights are turned off. 

- Each nap session is terminated after 20 minutes if no sleep occurs. In this case, a sleep latency of 20 minutes is noted. 

- If the patient falls asleep within the first 20 minutes, the nap session continues for another 15 minutes starting from 

the first sleep epoch. 

 

 

The main diagnostic results of a MSLT test are several different sleep latencies which have been 

calculated as the average value of the five sleep opportunities. For each sleep opportunity, the sleep 

latency is defined as the timespan starting from the closing of the eyes until the first episode of a 

prespecified sleep stage is recorded. Most of the time and in the ICSD-3 criteria for narcolepsy and 

IH, sleep latency refers to the timespan until the first episode of sleep stage N1 occurs. 

Apart from the usual sleep latencies the concept of the sustained sleep latency will become relevant 

in this thesis. According to Pizza et al.4 sustained sleep latency is defined as the timespan until 

unequivocal sleep is reached, which is defined as at least three consecutive periods of sleep or one 



 

13 

 

period of a sleep stage different than N1. In the same publication the parameter Delta has also been 

introduced, which is defined as the difference between the sustained sleep latency and the 

conventional sleep latency to stage N14. Furthermore, the total sleep time in all five sleep 

opportunities will be considered as an important parameter later on.  

 

Diagram 2.1: Sleep latency, sustained sleep latency and Delta 

The arrows below demonstrate the sleep latency to sleep stage N1, the sustained sleep 

latency and Delta for a single MSLT nap opportunity. As final test results, the average 

values with respect to all five nap opportunities are considered. 

 

 

 

Apart from the sleep latencies, the MSLT also allows an estimation of REM proneness using the 

SOREM (sleep onset REM) count. SOREM episodes are defined as REM sleep episodes occurring 

during the first 15 minutes after sleep onset33. For the SOREM count the number of sleep 

opportunities that have shown a SOREM episode are added up. Therefore, the SOREM count value 

can range from zero to five. 

In this thesis, data obtained by a modified version of the MSLT, the MSLT30, will be evaluated. 

Compared to the standard procedure, the only difference is the rule that all five nap opportunities 

terminate exactly after 30 minutes, regardless of the observed sleep pattern. The major advantage 

of this test variant is that no real-time assessment of sleep stages is necessary. Further details 

regarding the MSLT30 can be found in the publications of Geisler et al.34, 35. 

Sleep latency to sleep stage N1  Sustained sleep latency  Delta 
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As it is reflected in the current diagnostic criteria, the MSLT has become an essential tool in the 

diagnosis of narcolepsy and IH. Richardson et al. found in 1978 that narcolepsy patients tended to 

fall asleep much earlier than healthy controls36, which was an early justification for using the MSLT 

in the diagnostic process. Both Drake et al. and Chen et al. report an “excellent” inter- and intrarater 

reliability of the MSLT37, 38. There are some studies that indicate a problematic test-retest reliability 

of the MSLT39, 40, which will be discussed later in further detail. 

Caution is needed for the interpretation of MSLT results, since it is only useful when combined 

with clinical findings or other diagnostic results32, 41. It is important to consider the age dependence 

of both the sleep latency and the SOREM frequency. Geisler et al. reported a quadratic dependence 

of the former from the age of the subject, reaching its minimum in middle-aged subjects35, whereas 

Dauvilliers et al. found an age-dependent decrease in the SOREM frequency42.  

According to the review of Arand et al., the MSLT is thought to measure the physiological sleep 

tendency in the absence of alerting factors24. However, some concern has been raised if this is 

indeed the case. For example, Harrison et al. discuss a certain group of individuals showing low 

sleep latencies but no other signs of subjective or objective sleepiness43. This phenomenon is called 

“high ‘sleepability’ without sleepiness” by the authors, raising the concern that the attribute 

quantified by the MSLT is merely the sleepability of the patients.  

Johns, who initially introduced the ESS into clinical practice, discussed the terms “general vs 

situational sleep propensity”, stating that the MSLT just measures the latter in a very specific 

situation44. A recent critical comment of Mayer et al.45 on a study by Goldbart et al.40 discusses the 

question if the MSLT is indeed a suitable tool for the differential diagnosis of EDS. The authors 

raise the provocative question if the MSLT, often reporting unclear or inconclusive results, might 

be the very reason because of which the category narcolepsy without cataplexy/type 2 might have 

been introduced.  

These findings highlight the fact that "pathological MSLT results" by themselves do not justify any 

diagnosis but have to be interpreted in the context of the clinical symptoms. Further issues 

regarding subtleties in diagnosis and differential diagnosis of narcolepsy and IH will be discussed 

below.  
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3. Narcolepsy and idiopathic hypersomnia 

Before discussing the actual statistical methods and results of this thesis, a brief overview of the 

diseases addressed in this thesis will be given. After that, current issues in their diagnosis and 

differential diagnosis will be discussed, which will eventually lead to the motivation of the central 

aims of this thesis. 

 

3.1. Narcolepsy 

The term “narcolepsy” derives from the classical Greek words νάρκη (nárkē) and λῆψις (lepsis) 

and can be translated to “attack of numbness”. It has first been used by the French physician Jean-

Baptiste-Édouard Gélineau46, who has published one of the first articles about narcolepsy in 1881. 

Four years before that, Karl Friedrich Otto Westphal had published two case reports about patients 

showing typical symptoms of narcolepsy47, 48. More than 130 years later, having learned about 

SOREM episodes49, HLA genotypes50 and hypocretin51, our understanding has vastly increased. 

However, until today, narcolepsy can most easily be characterized by the narcoleptic tetrad, 

consisting of hypnagogic hallucinations, sleep paralysis, excessive daytime sleepiness (EDS) and 

cataplexy33. 

 

Hence, the typical patient suffering from narcolepsy shows a severe urge to go to sleep during 

daytime, which often cannot be resisted. During the transition from wakefulness to sleep, he 

encounters hallucinations. Furthermore, having awakened from sleep, these patients often 

experience an inability to move, which usually vanishes after some minutes. Finally, if these 

patients are exposed to certain emotional stimuli, a sudden loss of muscle tonus occurs, leading to 

a sudden fall. However, there are several patients suffering from most of these symptoms but 

cataplexy, which has led to the definition of two subgroups of narcolepsy: narcolepsy with and 

Table 3.1: The narcoleptic tetrad 

Symptoms Description/Comment 

Hypnagogic hallucinations Hallucinations during the transition from wakefulness to sleep 

Sleep paralysis Paralysis for a brief time after awakening 

Excessive daytime sleepiness Often leading to an irresistible urge to go to sleep 

Cataplexy Sudden loss of muscle tone after exposure to emotional triggers; not present in 

narcolepsy type 2/without cataplexy  
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without cataplexy according to the ICSD-252, or almost equivalently narcolepsy type 1 and type 2 

according to the ICSD-35. 

3.1.1. Epidemiology 

Narcolepsy is a rare sleep medical disease. Its prevalence varies greatly between different ethnics. 

The highest prevalence of 0,16 % has been observed in Japan53, whereas in Israel, only 0,0002 % 

of the population are affected33, 54. In European countries narcolepsy has an intermediate prevalence 

value. According to Akintomide et al.33 it varies between 0,02 % and 0,05 %, which complies with 

a prevalence of 0,047 % reported by Ohayon et al.55. For Olmstedt County in Minnesota, USA a 

prevalence of 0,0563 % was reported by Silber et al56. The incidence for the latter population was 

1,37/100000 per year56.  

The incidence rate is highest in the second life decade, with a mean age of onset of about 24 years 

as reported by Dauvilliers et al.57. However, in this reference two age peaks for narcolepsy onset 

have been found, one around the age of 14,7 years, the second one at the age of 35. Also, narcolepsy 

has been found to be more common in men33. Another interesting finding is that the narcolepsy 

onset is strongly seasonal, reaching its maximum in April to July in Beijing in China, as reported 

by Han et al. .58 In this article it was also found that the incidence of narcolepsy was – with a delay 

of 5-7 months –  correlated to the occurrence of upper airway infections and the H1N1 pandemic 

in China in 2009. Also, the month of birth seems to affect the individual risk for developing 

narcolepsy: Dauvilliers et al. found an odd ratio of 1,45 for a birth in March and 0,63 for persons 

born in September59. 

Common comorbidities of narcolepsy are PLMS (periodic limb movement in sleep), sleep talking, 

REM sleep behavior disorders and depression60. 

3.1.2. Hypocretin, HLA DQB1-0602 and the etiology of narcolepsy 

In recent years, a convincing body of evidence has been collected suggesting that the primary cause 

of the narcoleptic symptoms is a hypocretin deficiency in the human brain. 

Hypocretins or orexins are neuropeptides that are physiologically produced by a group of neurons 

in the lateral hypothalamus60. As Peyron et al. showed in an immunohistochemical study of rat 

brains, these neurons have very widespread projections across the brain and are involved in the 

regulation of food intake, blood pressure, body temperature and also the sleep-wake-cycle61. The 
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latter aspect was more highlighted by the findings of Chemelli et al. in 1999, who demonstrated 

that orexin knockout mice suffered from symptoms which are very similar to narcolepsy 62. 

Furthermore, the results of Lin et al. in 1999 indicated that the canine version of narcolepsy is 

caused by an altered hypocretin receptor gene 63. 

Motivated by these results, Nishino et al. examined the cerebrospinal fluid of nine patients with 

narcolepsy type 1. In seven out of nine patients, no hypocretin could be detected, whereas all 

control patients had hypocretin levels above 250 pg/ml in their cerebrospinal fluid (CSF)51. 

Thannickal et al. conducted a post-mortem brain tissue study of four narcolepsy patients (three of 

which had shown cataplexy) and found a 85-95% reduction in the number of hypocretin releasing 

neurons in the hypothalamus1. Furthermore, gliosis was detected in the corresponding 

hypothalamic regions, indicating a degenerative process which may have caused the loss of 

neurons. Additionally, as Thannickal was able to demonstrate in another study,  at least some cases 

of narcolepsy without cataplexy are associated with a more localized and less severe loss of 

hypocretin neurons, which did not affect neurons in the anterior hypothalamus64. Further studies 

confirmed the high specifity of undetectable low CSF levels for narcolepsy with cataplexy65, 66, but 

also pointed out that there are other causes that might explain reduced CSF hypocretin levels such 

as central nervous system (CNS) inflammation, trauma and Guillain-Barré-Syndrome33, 67, 68. 

Whereas the connection between narcolepsy type 1/with cataplexy and hypocretin deficiency is 

well established, empiric evidence hints at a more complex situation for narcolepsy type 2/without 

cataplexy. Krahn et al. reported that considering the total average, narcolepsy without cataplexy 

patients also show lowered CSF hypocretin levels. These levels however are significantly higher 

than those in narcolepsy with cataplexy. In this study, patients were also tested for the HLA 

DQB1*0602 allele, which revealed that only the HLA positive subgroup of narcolepsy without 

cataplexy had significantly lowered hypocretin levels66. Similarly, Mignot et al. found that only 

few patients diagnosed with narcolepsy without cataplexy had reduced hypocretin levels69.  

This apparent heterogeneity of narcolepsy type 2/without cataplexy was further investigated by 

Andlauer et al., who found lowered hypocretin levels in 24% of patients in a large collective of 

narcolepsy without cataplexy patients. They also observed that a delayed onset of cataplexy almost 

exclusively occurred in this subgroup70. 
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Even before these discoveries regarding hypocretin, a lot of evidence had been gathered showing 

that most narcolepsy patients had a HLA DQB1*0602 genotype. Conversely, being positive for 

HLA DQB1*0602 turned out to be a major risk factor for developing narcolepsy71. Again, a higher 

correlation was reported for narcolepsy with cataplexy33, 72. In patients with narcolepsy without 

cataplexy HLA DQB1*0602 can only be found in 40-60%60 and being positive for HLA 

DQB1*0602 also correlates with reduced CSF hypocretin levels70.  

While according to Aran et al. HLA DQB1*0602 is beneficial in the situation of  a septic shock 

due to a streptococcus infection73, there is some evidence indicating that precisely this improved 

protection against an acute streptococcus infection might also be involved in the pathogenesis of 

narcolepsy: Aran found that anti-streptococcal antibodies are elevated in DBQ1*0602 positive 

narcolepsy patients73, whereas Koepsell et al. published data which suggests that in patients having 

a history of a strep throat before the age of 21, narcolepsy is more than five times more common74. 

The connection to upper airway infection was also discussed by Han et al., who reported a time-

delayed correlation between infection frequency and narcolepsy incidence58. Other environmental 

factors have been discussed, such as H1N1 vaccinations, head trauma or exposure to toxic agents33. 

In conclusion, the current knowledge about the etiology and pathogenesis of narcolepsy could be 

summarized like this: Environmental factors, which have not been certainly identified, lead to an 

autoimmune reaction, which especially affects hypocretin positive neurons in the hypothalamus60. 

Individuals who are positive for HLA DQB1*0602 are more likely to develop this reaction75, which 

eventually leads to the degeneration of the involved neurons. As a result, hypocretin is lacking in 

many areas of the brains, which causes the typical symptoms of narcolepsy60.  

However, this model is far from comprehensive. There are some patients suffering from narcolepsy 

with cataplexy, who do not have lowered CSF hypocretin levels65. In reality more complex genetic 

interaction are thought to be responsible for the development of narcolepsy76. 

Various other findings have been published showing other abnormal findings in narcolepsy 

patients. Several amino acids concentrations seem to be altered in the CSF of narcolepsy patients77. 

The COMT genotype of patients has an impact on the disease severity78. Histamine neurons are 

increased in patients having narcolepsy with cataplexy79, whereas the histamine CSF concentration 

is lowered80. The hippocampal volume is reduced in narcolepsy patients81. Other genetical factors 

have been identified, for example the T-cell receptor alpha polymorphism82. These results indicate 
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that despite some major breakthroughs there is still no comprehensive pathophysiological model 

which could explain all cases of narcolepsy, especially those without cataplexy. 

It is important to consider that the symptoms of narcolepsy can also be caused by other CNS 

pathologies. For an example, brain lesions due to tumors, inflammation or ischemia may cause 

secondary narcolepsy60. Interestingly, lesions in the hypothalamus lead to the complete phenotype 

of narcolepsy, whereas pathologies in non-hypothalamic regions are more likely to cause cataplexy 

without the other symptoms of the narcolepsy tetrade83. Also Niemann-Pick disease of type C and 

muscular dystrophies can induce symptomatic narcolepsy60. 

 

3.1.3. Clinical aspects  

Before discussing the current diagnostic criteria, a brief overview of the typical symptoms of 

narcolepsy will be given. Both the variety at which the four core symptoms of narcolepsy may 

present themselves, and the fact that not in all patients the whole narcoleptic tetrad can be 

observed84, 85 contribute to the persisting issues in diagnosis and differential diagnosis. 

3.1.3.1. Cataplexy 

Cataplexy can be defined as “rapid eye movement (REM) sleep atony occurring at an inopportune 

moment”, as it is stated by Overeem et al.86. In principal, all striated muscles can be affected by 

cataplexy, with the diaphragm being the only exception60. The most typical forms of cataplexy are 

sagging of the jaw and trembling of knees.87 Using video recording, Rubboli et al. could identify 

three phases of cataplexy: The initial phase, the falling phase and the atonic phase. In particular, 

these findings suggest that apart from the negative atonic component of cataplexy there also seem 

to be positive motoric phenomena, possibly reflecting different aspects of motoric signs of REM 

sleep.88  

Common triggers of cataplexy are joy, happiness, surprise and anger, in rare cases attacks of 

cataplexy are also triggered by sports, sudden noises and tickling87. Sturzenegger et al. have also 

noted that the presence of persons known to the patients increase the frequency of cataplectic 

attacks87.  Cataplexy usually lasts from less than one second up to several minutes. Some patients 

encounter less than one episode per year, whereas others suffer from cataplexy many times each 
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day.60 Poryazova et al. have described a special variant of “rebound” cataplexy occurring most 

often on withdrawal from the antidepressant fluoxetine which acts anticataplectic89. 

While cataplexy is thought to be specific for narcolepsy, cataplexy-like symptoms can also occur 

in non-narcoleptic individuals. According to Sturzenegger et al. these symptoms are more atypical 

regarding the affected muscle groups and less pronounced than attacks of clear cut cataplexy. 

Additionally, they are more frequently observed in patients with hypersomnolence87. 

Knudsen et al. report that a hypocretin deficiency leads to more pronounced cataplectic 

symptoms90. Combined with the findings of Heier et al.65, who reported a strong association 

between HLA DQB1*0602, cataplexy and low hypocretin levels, one may conclude that cataplexy 

is most likely and most severe in “typical narcolepsy patients” and that cataplexy – possibly with 

a delayed onset – is a direct consequence of the pathophysiological pathway described above. 

3.1.3.2. EDS, Hypnagogic hallucinations and sleep paralysis 

Compared to cataplexy, the occurrence of excessive daytime sleepiness is much less specific for 

narcolepsy. On the contrary, a lot of conditions can be responsible for this common symptom91. 

However, there are some features of EDS which help to simplify the differential diagnosis. 

Typically, EDS resulting from narcolepsy leads to an almost irresistible urge to nap60, 87. The 

resulting naps are usually short and tend to be refreshing for the patients92. For some narcolepsy 

type 2 patients, spontaneous improvement of EDS has been observed93. 

Hypnagogic hallucinations are defined as hallucinations occurring during sleep onset. Despite of 

being part of the narcolepsy tetrad, they are also not uncommon in healthy individuals94. Usually, 

they are of visual or auditory nature95, but can also include physical sensations60. 

Sturzenegger et al. report that sleep paralysis occurs in about 50 % of narcolepsy patients87. 

Episodes of sleep paralysis usually last for a few seconds but can also persist for some minutes60. 

Often, sleep paralysis occurs together with hypnagogic hallucinations95. Sleep paralysis is also not 

specific for narcolepsy and may also occur isolated in an otherwise healthy population as a study 

by Bell et al. indicates96. Furthermore, Knudsen et al. pointed out that sleep paralysis and 

hypnagogic hallucinations are typical properties of both narcolepsy type 1 and type 2, suggesting 

neuronal pathways that are not affected by hypocretin may be involved in these symptoms90. 
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3.1.3.3. Other symptoms of narcolepsy 

Another typical symptom of narcolepsy is automatic behavior during daytime, which has been 

hypothesized to be caused by microsleep episodes60, 97. Furthermore, despite the severe EDS of 

many narcolepsy patients, their night sleep is often disrupted by many awakenings60. 

Akintomide et al. describe various minor symptoms of narcolepsy such as blurry vision and loss of 

concentration and memory33. It has also been observed that narcolepsy patients have an increased 

BMI on average98. 

Other symptoms of narcolepsy patients may stem from the various comorbidities that have been 

described. Empirical evidence suggests that narcolepsy is often associated with PLMS60, REM 

behavior disorders99, sleep-related breathing disorders84 and depression100.   

 

3.1.4. Diagnosis 

According to the ICSD-3 narcolepsy can be diagnosed considering the following aspects: 

Anamnesis should reveal some history of an irresistible urge to sleep or, consequently, episodes of 

unwillingly falling asleep. Then, for narcolepsy type 1 cataplexy is major diagnostic factor, 

whereas the diagnostic criteria for narcolepsy type 2 list cataplexy as an exclusion criterion. In 

order to objectively measure the EDS, the MSLT must be used for the definite diagnosis. 

The third edition of the ICSD-3 includes another procedure for diagnosing narcolepsy type 1: The 

measurement of CSF concentration of hypocretin-15. This new criterion takes into account the 

nowadays widely accepted concept that narcolepsy type 1 is caused by hypocretin deficiency101. 

The CSF hypocretin concentration is measured by using a radioimmunoassay. A hypocretin 

concentration below 110 ng/ml or below one third of the average concentration in the general 

population is thought to be highly specific for narcolepsy5. However, as Knudsen et al. have 

remarked, measuring the CSF concentration of hypocretin-1 is of limited use in practice, since 

hypocretin deficient narcoleptics usually show a very severe phenotype, which allows an easy 

diagnosis even without referring to CSF hypocretin concentrations90. 
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Comparing the two tables, it becomes clear that narcolepsy type 2 is diagnosed by ruling out type 

1 and other diseases which may cause similar symptoms. Furthermore, being deprived of both CSF 

measurement and cataplexy as positive diagnostic criteria, the diagnosis of narcolepsy type 2 

heavily relies on clinical assessment. On the contrary, it is quite easy to follow the diagnostic 

criteria for narcolepsy type 1 and therefore to decide if a patient really has narcolepsy type 1.  

The diagnostic uncertainty for narcolepsy type 2 is a major aspect of this thesis, and further 

complications arise if one has to consider the differential diagnosis of idiopathic hypersomnia. 

 

3.1.5. Treatment and prognosis 

Until today no curative treatment option is available for narcolepsy. Therefore, the therapy of 

narcolepsy aims at minimizing and controlling the main symptoms. There are several 

pharmacological treatment options that target different core symptoms of narcolepsy. In general, 

stimulants are used to treat narcoleptic EDS, whereas antidepressants show some effect on 

cataplexy and sodium oxybate affects both EDS and cataplexy.  

Table 3.2: Diagnostic criteria for narcolepsy type 1 according to the ICSD-35 

Both criteria A and B must be true. 

A History of daily periods of irresistible need to sleep or actual lapses to sleep for at least three months. 

B At least one statement of the following two has to be true. 

 B1 Occurrence of cataplexy and a mean sleep latency less than 8 minutes in the MSLT and at least two SOREM episodes 

in the MSLT. One SOREM episode can be replaced by one found in the preceding NPSG. 

 B2 The CSF concentration of hypocretin-1 is either below 110 pg/ml or less than a third of the average values obtained 

from control subjects using the same standardized assay. 

Table 3.3: Diagnostic criteria for narcolepsy type 2 according to the ICSD-35 

All criteria A to E must be met. 

A History of daily periods of irresistible need to sleep or actual lapses to sleep for at least three months. 

B A mean sleep latency less than 8 minutes in the MSLT and at least two SOREM episodes in the MSLT. One SOREM 

episode can be replaced by one found in the preceding NPSG. 

C Cataplexy is absent. 

D The CSF concentration of hypocretin-1 has not been measured or is either above 110 pg/ml or higher than one third of the 

average values obtained from control subjects using the same standardized assay. 

E The hypersomnolence and MSLT results are not better explained by other causes. 
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Apart from that, several other drugs have also been used: Selegiline, a selective irreversible MAO-

B inhibitor, proved some efficacy in the treatment of EDS and cataplexy102, but is only 

recommended as an “option” in the treatment of narcolepsy due to possible diet and drug 

interactions. Pemoline has been a treatment option for narcoleptic EDS103, but has fallen into 

disrepute since liver toxicity has been shown to be a rare but potentially lethal side effect104. 

Furthermore, there is class II evidence suggesting that mazindol has a beneficial effect on 

sleepiness of narcoleptics105. Finally, the 5HT2 antagonist ritanserin is also regarded as a treatment 

option104, acknowledging the results of two studies which indicate a beneficial effect on subjective 

sleepiness106 and sleep quality107. 

Stimulants 

The standard drug used for the treatment of EDS in narcolepsy is the stimulant modafinil60. While 

the precise mechanism of action is still unknown, it is believed that modafinil affects neuronal 

pathways of the neurotransmitters histamine, noradrenalin and dopamine33. The efficacy of 

modafinil, administered at a dose of 200-400 mg/d, has been shown in several studies. Billard et 

al. provide a summary of the most important results108, whereas Golicki et al. have conducted a 

meta-analysis including 1054 patients in total109. In the latter, significant improvements are 

reported regarding EDS measured by the MSLT, the MWT (maintenance of wakefulness test) and 

the Epworth sleepiness scale. Improvements in the quality of life in terms of the SF-36 have also 

been observed. There are also some positive results regarding the treatment with armodafinil, the 

R-enantiomer of the racemate modafinil.110 It is important to remark that modafinil does not seem 

to affect frequency or severity of cataplexy. The main side effects of modafinil include headaches, 

dryness of the mouth, insomnia and nausea33, whereas only a low potential for abuse has been 

observed60.  

Other stimulants like amphetamines, methamphetamines and methylphenidate are valid 

alternatives to modafinil104, but Littner et al. point out that their benefit-risk-ratio is difficult to 

estimate due to the small numbers of patients that have been included in the respective clinical 

trials103. 

Sodium oxybate 

In cases where stimulants cannot be used or do not yield a significant effect, sodium oxybate, which 

is also referred to as GHB (gamma-hydroxy-butyrate), is a treatment option for EDS. GHB is a 
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natural neurotransmitter which interacts with the GABA-B receptor108.  A crucial advantage of 

sodium oxybate is that it improves many symptoms of narcolepsy. As a study of Lammers et al.111 

indicates, GHB reduces the frequency of hypnagogic hallucinations and daytime sleep attacks 

significantly as well as the subjective daytime sleepiness. Several studies also highlight the 

significant, dose-dependent effect of a regular intake of GHB on the frequency of cataplectic 

attacks112, 113. GHB also improves sleep quality by reducing night-time awakenings114. 

While it has been shown to be equally effective (compared to modafinil) in the treatment of EDS 

(measured using the MWT) and to provide an additive effect when combined with modafinil in a 

multicenter study by Black et al.115, the drug remains problematic mainly due to its potential for 

abuse. GHB has been used by athletes for enhancing the release of growth hormone and is also 

frequently used as a “date rape” drug108. Possibly side effects of GHB are nausea, nocturnal 

enuresis, confusional arousals and headaches.108 

Antidepressants 

Furthermore, several classes of antidepressants (tricyclic antidepressants, SSRI, SSNRI) are also 

used as anticataplectic medication. Among the TCA, mainly clomipramine has been used to treat 

cataplexy108, 116. Although this is only supported by expert consensus, venlafaxine is often 

employed to reduce the frequency of cataplectic attacks105. 

Regarding SSRIs, among others, fluoxetine and escitalopram have been shown to improve 

cataplexy117–119. The dosage for anticataplectic therapy may greatly differ from antidepressant 

doses120. 

Tricyclic antidepressants, SSRIs and venlafaxine are also considered an optional treatment option 

for hypnagogic hallucinations and sleep paralysis104. 

Possible future treatment options 

Recently, pitolisant has been emerging as a new treatment option for narcoleptic EDS105. The 

effectiveness of this inverse H3 antagonist has already been proven in several clinical trials121. 

Other substance are being tested for their effectiveness on the symptoms of narcolepsy, such as 

JZP-100, which has been shown to significantly reduce EDS (measured by ESS score and MWT 

latency) in narcolepsy patients122. 
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The discovery of the involvement of hypocretin in the pathophysiology of narcolepsy has led to 

various efforts aiming to correct the hypocretin deficiency and thereby to provide a causal treatment 

for narcolepsy. Animal models have proven that this is indeed a valid treatment principle123, but 

both peripheral and intranasal application of hypocretin have failed to meet the expectations124. 

Regarding other ways of substituting hypocretin, hypocretin cell transplantation using pluripotent 

stem cells as well as hypocretin gene therapy has been discussed105.  

Scheduled naps 

Apart from pharmacological interventions, certain lifestyle recommendations have been made to 

narcoleptic patients. Since narcolepsy is often characterized by an irresistible urge to sleep, it has 

been suggested that scheduled naps might reduce sleep pressure and therefore contribute to less 

frequent and less severe sleep attacks. Rogers et al. as well as Mullington et al. provided some 

evidence that scheduled naps might be a therapeutic option for narcolepsy125, 126. However, Littner 

et al. state that in most cases, scheduling daytime naps is not sufficiently effective to be used as 

primary therapy103. In conclusion, scheduled naps are widely employed as an addition to 

pharmacological therapy and have shown to be beneficial especially for patients showing persisting 

severe daytime sleepiness under stimulant therapy127. 

Prognosis and burden of narcolepsy 

For narcolepsy patients pharmacological treatment reduces the disabling symptoms of narcolepsy 

and improves the health related quality of life128. Nevertheless, since no curative treatment is 

available yet, life-long medication is often required to keep the symptoms at bay. But even in 

patients receiving medication, the impact of the condition on the quality of life is severe: Daniels 

et al. report reduced scores in all domains of the SF-36, especially in “physical, energy/vitality, and 

social functioning”129. Narcolepsy with cataplexy is associated with significantly lower scores than 

narcolepsy without cataplexy130. Beck Depression Inventory (BDI) scores indicate that more than 

half of all narcolepsy patients show signs of depression129 and Kales et al. found higher levels of 

psychopathology as  a consequence of narcolepsy131. Unfortunately, it is not unusual that 

narcolepsy is diagnosed years after the onset of the first symptoms84, which further worsens the 

psychosocial implications of the condition. 
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3.2. Idiopathic hypersomnia 

In many ways idiopathic hypersomnia is associated with the same clinical difficulties as narcolepsy 

type 2: Until today the pathophysiology of the condition is unknown. Furthermore, due to the 

absence of a specific symptom like cataplexy for narcolepsy type 1, no reliable diagnosis is possible 

that is based merely on clinical grounds. Furthermore, no biomarker has been identified yet which 

could be used to confirm or reject the diagnosis of IH. Finally, as with narcolepsy type 2, diagnosis 

essentially relies on the MSLT and is therefore prone to several methodical weaknesses. 

The recognition of IH as a distinct condition began in 1956, when - more than 70 years after the 

first description of narcolepsy - Roth reported cases of hypersomnolent patients suffering from 

sleep drunkenness while wakening up132. Roth also noticed that a significant fraction of 

hypersomnolent patients could be distinguished from typical narcolepsy cases by clinical 

observation133. Dement et al. remarked in 1966 that some patients showing hypersomnolence 

similar to narcolepsy did neither suffer from cataplexy nor from sleep paralysis134. Additionally, 

no early REM episodes usually occurred in these patients. Berti-Ceroni et al. as well as Passouant 

et al. reported similar findings in the following years135, 136. Many of the typical clinical features of 

IH like (compared to narcolepsy) longer lasting but unrefreshing naps and prolonged instead of 

fragmented night sleep were described by Rechtschaffen et al. in 1969137. 

In the 1970s, the continuing research efforts of Roth regarding different kinds of central 

hypersomnias138, 139 eventually led to the introduction of the term “idiopathic hypersomnia” in 

1976, when Roth published a classification of 642 cases of hypersomnolent patients140. Roth also 

suggested the notion of a polysymptomatic and a monosymptomatic form of IH. The latter was 

mainly characterized by EDS, which, however, was not as irresistible as in narcolepsy. The former 

additionally included a prolonged night sleep and great difficulties in awakening in the morning.  

This proposed subdivision of IH remained extensively discussed. Bassetti et al., on the one hand, 

distinguished three different subgroups, which were called “classic”, “narcoleptic-like” and 

“mixed”2. On the other hand, Billiard et al. described a complete and an incomplete phenotype of 

IH, essentially following the original suggestion by Roth141. In the ICSD-2, two forms of IH were 

included: IH with and without long sleep time52. Both subgroups could only be diagnosed if the 

MSLT yielded a sleep latency below 8 minutes. However, a study by Anderson et al. found no 

specific symptom for either subgroup of IH as described in the ICSD-2 as well as the somewhat 
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paradox result that several IH patients did not fulfill the 8 minute criterion142. Eventually, the 

diagnostic subgroups of IH were formally abandoned with the introduction of the ICSD-3101, when 

a major revision of the diagnostic criteria for the IH was done. As it will be pointed out later the 

IH subgroups as proposed by Roth are still implicitly acknowledged in the diagnostic criteria.  

3.2.1. Epidemiology, etiology and pathophysiology 

IH is a rare disease and seems to be even less frequent than narcolepsy. Roth reported a relative 

prevalence of 47%140, but more recently lower values were reported by Bassetti2 (16%) and 

Dauvilliers130(5%). Similar to narcolepsy, IH onset usually occurs in adolescents or young adults2, 

143. According to some studies women show a slightly higher prevalence of IH2, 144. 

Little is known about the etiology and pathophysiology of IH. About 30 % of cases have a positive 

family anamnesis142. Also, a correlation of IH with head traumas, viral illnesses and general 

anesthesia has been reported143, but it remains unknown if and how these factors might be involved 

in the disease onset.  It has been shown that IH patients have normal hypocretin CSF levels145. It 

has been suggested that CSF histamine might serve as a biomarker for hypersomnias of central 

origin146, but according to the results of Dauvilliers et al., significant differences in CSF histamine 

levels exist neither between different groups of hypersomnia nor between hypersomnolent patients 

and controls147. Other findings indicated an involvement of GABA-related pathways148, but again 

these results could not be reproduced149. Hence, until today no neurochemical diagnostic procedure 

is available which allows the confirmation or exclusion of the diagnosis IH. 

One of the most promising recent results was contributed by Lippert et al., who demonstrated that 

a dysregulation of the circadian clock might be involved in the pathogenesis of IH: More precisely, 

dermal fibroblasts of IH patients showed a reduced amplitude of the periodical expression of 

several circadian clock genes150.  

Billiard et al. also mention possible genetical and immunological aspects in the pathogenesis of 

IH143, but the current state of knowledge does not allow to deduce a comprehensive 

pathophysiological model for IH. 
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3.2.2. Clinical aspects 

IH lacks specific clinical features like cataplexy that might simplify the diagnosis. Like other 

hypersomnias, IH is also characterized by EDS. Typically, this EDS does not cause an urge to go 

to sleep so irresistible as in narcolepsy, and if naps are taken, they tend to be of a longer duration 

and less refreshing143. 

Sleep drunkenness, also known as sleep inertia151, is another typical, but not specific symptom of 

IH. Roth describes this symptom as inertia in the process of waking up, which is associated by 

confusion, disorientation and bad motoric coordination. Consequently, sleep drunken patients show 

severe difficulties in reaching complete wakefulness and tend to fall asleep again for several 

times139. Despite the abandonment of different IH subgroups in the ICSD-3, sleep drunkenness is 

still used to describe the clinical heterogeneity in IH. In their review from 2016, Dauvilliers et al. 

distinguish between IH with and without prolonged night sleep. The former group shows sleep 

drunkenness, EDS resulting in long, unrefreshing naps and more than 10 hours of night-sleep, 

which usually is of good quality93. IH without prolonged night sleep on the other hand, lacks sleep 

inertia, shows a normal amount of night-sleep and is mainly characterized by EDS, which results 

in short and refreshing naps93. 

Also, signs of autonomic dysfunction like headaches, palpitations and digestive problems can occur 

in IH143. In contrast to narcolepsy type 1, spontaneous remission of the IH has been reported2, 141, 

152.  

3.2.3. Diagnosis 

Like narcolepsy type 2, IH is essentially diagnosed by exclusion, which is reflected by the fact that 

four of the six ICSD-3 criteria listed below are designed to rule out other causes of 

hypersomnolence. Considering both the MSLT and the NPSG, not more than one SOREM episode 

is allowed to occur, since otherwise REM-sleep related disorders would be more likely. As it has 

been discussed before, the ICSD-3 does not explicitly acknowledge two subtypes of IH. Criterion 

D however takes the undisputable heterogeneity of IH into account: A sleep latency of less than 8 

minutes is not required for the diagnosis of IH if more than 11 hours of sleep in 24 hours have been 

measured by actigraphy or PSG. Hence, IH patients that have been assigned to the former IH with 

long sleep time subgroup could be diagnosed with IH even without fulfilling the MSLT sleep 

latency threshold. For patients suffering from IH without long sleep type, who usually do not 



 

29 

 

complain about the typical sleep drunkenness, a sleep latency below 8 minutes is required as an 

objectively measurable correlate of the EDS. 

 

 

3.2.4. Treatment and prognosis 

Due to its similarity to narcolepsy almost all treatment options for narcolepsy have been 

“borrowed” for the treatment of IH143. Bassetti summarizes that  the majority of IH patients 

improve under treatment with stimulants, but some cases show a better response to 

antidepressants2. 

For modafinil, which is the first line therapy option for narcolepsy, a large body of evidence 

suggests its efficacy for EDS in IH104, 142, 144, 153, 154. Furthermore, methylphenidate has been shown 

to significantly improve daytime sleepiness2, 144. In treatment resistant cases, amphetamines and 

pitolisant have been recommended93. Sodium oxybate yields an improvement in ESS similar to its 

effect on narcolepsy patients, and has also demonstrated some improvement in sleep inertia155, 

which in general is very hard to treat93. Finally, mazindol is an option if other drugs have failed to 

show significant improvement156. 

As in most cases of IH daytime naps are not refreshing, planned naps are less effective in IH than 

in narcolepsy93. IH has an impairing effect on the quality of life  that is comparable to the effect of 

narcolepsy type 2157. However, most patients respond well to treatments with stimulants142 and 

prognosis is further improved by the chance of spontaneous remission. 

 

Table 3.4: Diagnostic criteria for idiopathic hypersomnia according to the ICSD-35 

Criteria A-F must be true. 

A History of daily periods of irresistible need to sleep or actual lapses to sleep for at least three months. 

B Cataplexy is absent. 

C Less than two SOREM episodes in the MSLT  

- If the REM latency in the preceding NPSG was less than 15 minutes, no SOREM in the MSLT is allowed. 

D At least one of the following criteria is true. 

 D1 The sleep latency in the MSLT is less than 8 minutes. 

 D2 24-hour PSG or wrist actigraphy combined with a sleep log show a 24h sleep time of more than 660 minutes. 

E Insufficient sleep syndrome has been ruled out. 

F The symptoms are not better explained by another sleep or medical disorder, or by the intake of drugs or medication.  
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3.3. Challenges in diagnosis and differential diagnosis of narcolepsy and IH 

Having introduced the three illnesses that are relevant for this thesis, in this section several issues 

that are encountered in clinical practice will be highlighted. For each diagnostic tool, current 

problems that typically arise in diagnosis and differential diagnosis will be discussed. 

It should be noted that the summary below is by no means comprehensive. Other hypersomnias of 

central origin (i.e. the Kleine-Levin-Syndrome, hypersomnia due to a medical condition, 

hypersomnia due to substance abuse or drug intake and hypersomnia caused by a psychiatric 

condition93) will not be discussed in further detail. Differential diagnostic considerations will be 

restricted to the comparison between IH and the two subtypes of narcolepsy.  

 

3.3.1. Clinical aspects 

Excessive daytime sleepiness (EDS) 

Obviously, EDS is not specific for IH or narcolepsy. Indeed, for patients presenting themselves 

with EDS, several causes more common than hypersomnias of central origin have to be considered. 

A study in the European population found an overall prevalence of EDS of 15% in the general 

population. 1,6 % of the subject randomly selected for this study reported having two or more naps 

each day55. Guilleminault lists several important causes for EDS, the most common being 

insufficient sleep, which may be caused by self-chosen behavior or social necessities91.  

But even if there is no lack of quantity, insufficient sleep quality can deteriorate daytime 

wakefulness. Typically, night sleep is fragmented due to various disturbing factors. A very 

common cause of fragmented night sleep are sleep related breathing disorders91.  Restless leg 

syndrome and periodic limb movements are other widespread causes of sleep fragmentation. 

Furthermore, several internal conditions may lead to a disturbed night sleep, such as nocturnal 

angina, gastrointestinal diseases and urinary dysfunction.158   

Regarding the comparison between IH and narcolepsy, EDS in narcolepsy is usually described to 

be more severe, leading to an irresistible urge to nap. These naps are assumed to be short and 

refreshing, in contrast to IH associated daytime naps, which do not lead to temporary refreshment 

and are usually longer in duration92, 143, 152, 159. This dichotomy may be useful for describing typical 

patients with IH or narcolepsy, but several results hint at a more complex reality. Vernet et al. have 
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reported narcolepsy patients, whose naps are unrefreshing and whose night sleep is prolonged like 

in some patients with IH160. On the other hand, in a recent review from 2017 by Dauvilliers et al., 

IH without prolonged nighttime sleep is also characterized by short and refreshing daytime naps93. 

In conclusion, EDS remains a highly unspecific symptom, and the classically reported differences 

in nap duration and quality should not be overestimated regarding the diagnostic usefulness. 

Other symptoms of narcolepsy 

Despite being part of the classic narcoleptic tetrad, sleep paralysis is not a specific symptom of 

narcolepsy. A study on Afro-American individuals found a prevalence of more than 20 % for at 

least one episode per month, and a more frequent occurrence was associated with elevated stress 

levels and the occurrence of panic disorder96. Aldrich found that sleep paralysis as well as sleep 

hallucinations occur equally common in IH and narcolepsy without cataplexy161. As, on the other 

hand, only 50% of all narcolepsy patients show the symptom of sleep paralysis87, one may conclude 

that neither its presence nor its absence can be used for diagnostic purposes.  

A similar conclusion can be reached for sleep hallucinations that are often associated with sleep 

paralysis95, since they are also relatively frequent in the general population94 and only occur in 

about two third of all narcoleptic patients87. 

Even the most specific symptom of narcolepsy, cataplexy, can lead to a diagnostic pitfall if 

cataplexy-like symptoms, that may also occur in non-narcoleptic individuals162, are not taken into 

account. Anic-Labat et al. suggest that “real” cataplexy is most easily identified by the typical 

trigger situations162 and Sturzenegger et al. have found that cataplexy-like muscle weaknesses are 

usually less pronounced and often lack the typical jaw sagging in clear-cut cataplectic attacks87. 

Finally, if CSF hypocretin levels are not determined, the possibility remains that narcolepsy type 2 

patients have to be relabeled as narcolepsy type 1 after a delayed onset of cataplexy. 

Regarding sleep inertia in IH and narcolepsy, not much comparative data is available.  Both 

narcolepsy and OSA are also known to lead to an increased sleep inertia151. Sturzenegger et al 

found a prevalence of 40 % in “non-narcoleptic” hypersomnia compared to 24 % in narcolepsy and 

10 % in healthy controls87. It should be noted that these differences did not reach the level of 

significance. Similarly, Martinez-Rodriguez et al. report no significant difference in terms of sleep 

drunkenness between narcolepsy with cataplexy, narcolepsy without cataplexy and IH92. In 
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conclusion, sleep inertia is neither specific for hypersomnias of central origin nor suitable for 

differential diagnostic purposes between IH and narcolepsy. 

 

3.3.2. The MSLT 

3.3.2.1. (Sustained) sleep latency 

According to the current diagnostic criteria, the gold standard tool to assess daytime sleepiness is 

the MSLT. The ICSD-3 postulates a sleep latency under 8 minutes for the diagnosis of both 

narcolepsy and IH (when no 24h-PSG or wrist actigraphy is used). Considering the clinical 

observation, that daytime sleepiness and the urge for daytime naps is usually more imperative in 

narcoleptics than in IH patients, it seems counterintuitive at first glance to set the diagnostic 

threshold at the same level for both diseases. Indeed, whereas the 8-minutes threshold for 

narcolepsy was chosen as a compromise between sensitivity, specifity and predictive values (as it 

is discussed by, e.g. Aldrich et al.41), the cutoff for IH has been set on the same level only for the 

sake of simplicity83. 

Littner et al. published data of a control population without sleep medical diseases, in which the 

average sleep latency was 11,6 minutes with an empirical standard deviation (SD) of 5,2 minutes32. 

Assuming normal distribution in this population, more than 15 percent of healthy controls would 

fulfill the 8 minute-criterion. For the modified version of the MSLT, the MSLT30, Geisler et al. 

found an quadratic age dependence of sleep latency in normal subjects, with a minimum for middle-

aged subjects42. Hence especially middle-aged subjects are expected to drop below the 8-minute 

threshold, possibly leading to false positive diagnosis. Goldbart et al. used data of the Wisconsin 

Sleep Cohort to demonstrate that a positive MSLT, i.e. at least two SOREMs and a sleep latency 

under 8 minutes, occurs in 3,4 % of the normal population, with shift work and short sleep being 

strong positive predictors40.  Arand et al. conclude, that due to the high standard deviations as well 

as floor and ceiling effects, the MSLT  does not distinguish reliably between sleep disorder patients 

and healthy controls24. 

Focusing on the sleep latencies of IH and narcolepsy patients, some differences between the 

diseases have been found. According to Vernet3, IH patients have an average sleep latency of 7,8 

minutes (SD 0,5 minutes), suggesting that quite a significant fraction does not fulfill the 8 minutes 

criterion. Vernet et al. also distinguished between the two subtypes of IH. Whereas patients with 
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IH without long sleep time had a low sleep latency of 5,6 minutes (SD 0,3 minutes), in the IH with 

long sleep time population the mean sleep latency was 9,6 minutes (SD 0,7 minutes). Regarding 

the narcolepsy subtypes, Sturzenegger et al. found the lowest sleep latencies (mean 1,6 minutes) in 

narcolepsy patients with confirmed hypocretin deficiency. Slightly higher values were found in 

patients with clinically confirmed cataplexy, whereas patients having “probably” cataplexy had a 

mean sleep latency of 3,7 minutes87. Šonka et al. report a mean sleep latency of 4,5 minutes for 

narcolepsy without cataplexy and 2,8 minutes for narcolepsy with cataplexy163.  

In conclusion, the lowest sleep latencies are to be expected from narcolepsy type 1/with cataplexy 

patients, followed by narcolepsy without cataplexy patients. In total, IH patients also show reduced 

sleep latencies, which tend to be higher than those in narcolepsy. If one distinguishes the two 

clinical subtypes of IH, IH patients with long night sleep usually do not fulfill the 8 minutes 

criterion, but could be diagnosed by confirming a total sleep time of more than 660 minutes per 

day using PSG or actigraphy. Hence, although in principle the MSLT could be useful in the 

differential diagnosis of narcolepsy and IH, its actual value in clinical practice is limited by the 

considerable standard deviations reported for each group. 

In order to further enhance the value of sleep latencies as a differential diagnostic tool Pizza et al.4 

suggested considering the sustained sleep latency instead, which is defined as the amount of time 

until the patient reaches a deeper sleep stage than stage 1 or three consecutive epochs of sleep. 

Pizza et al. found that the difference between the sustained sleep latency and the conventional sleep 

latency allows to distinguish IH from both narcolepsy types. Whereas high values of this difference, 

which is referred to as “Delta” by Pizza et. al, suggest the physiological “waxing and waning” 

occurring during the transition from wakefulness to sleep in IH patients, low values of Delta reflect 

a sudden and complete sleep onset, which was found to be typical for narcolepsy4.  

3.3.2.2. SOREM episodes 

According to the ICSD-3, the count of SOREM episodes during a MSLT allows the discrimination 

between the “REM-sleep-disorder” narcolepsy and idiopathic hypersomnia. However, like the 

sleep latency, the SOREM count can be affected by various aspects. Shift work and insufficient 

sleep can increase the chance that a healthy individual has two or more SOREM in a MSLT40. 

Other factors that are associated with an increased SOREM count are the intake of non REM-

suppressing antidepressants and a positive HLA DQB1*0602 status (which, however, also 
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increases the risk for developing narcolepsy)164. Furthermore, depression can reduce the REM 

latency33 and hence produce more REM and even SOREM episodes, although Mignot et al. found 

no association between depression and the SOREM count165. Apart from that there is increasing 

evidence that REM sleep regulation differs heavily between the sexes with a reported odds ratio of 

2,62 for at least two SOREMS in men compared to women165. OSAS (obstructive sleep apnea 

syndrome) is also increasing the occurrence of SOREMs. This effect is more significant if the 

patients have a more severe nocturnal oxygen desaturation166. Great variance can be found in the 

empirically observed prevalence of two or more SOREMs. Singh et al. report a prevalence of 3,9 

% in a population based sample167. Allen et al. calculated a prevalence of 13,1 % for men and 5,6 

% for woman, whereas  5,9 % of men and 1,1 % of women would meet both the MSLT criteria for 

narcolepsy type 2164. 

In the review article of Arand et al. the finding of at least two SOREM has been calculated to have 

a sensitivity of only 0,78 , compared to a rather high specifity of 0,93 for the diagnosis of 

narcolepsy24. Hence, one can expect that most individuals not suffering from narcolepsy will yield 

less than two SOREMs in the MSLT. Conversely, approximately only three out of four narcolepsy 

patients will actually fulfill the SOREM criterion when an MSLT is performed. 

On average, IH patients have been reported to have 0,37 SOREMs168. Equivalently, about a third 

of IH patients has exactly one SOREM. While the occurrence of one SOREM (compared to none) 

does not change the ICSD-3 diagnosis of these patients, Bozluolcay et al. have shown that 

regarding sleep and REM latency there are significant differences between IH patients with one 

and no SOREM episode in the MSLT. The authors concluded that this “intermediate” group 

defined by one SOREM in the MSLT might actually be closer to narcolepsy type 2 than to “0-

SOREM-IH”169. This finding might be explained by the reported limitations regarding test-retest-

reliability of the MSLT: Trotti et al. examined a population of IH and narcolepsy without cataplexy 

patients and found that after having repeated the MSLT,  in 31% of all cases diagnosis had to be 

revised due to a changed SOREM count39. Thus, especially in the situation of one or two SOREMs 

in the MSLT, a second MSLT run might lead to a switch of the diagnosis from IH to narcolepsy 

type 2 or vice versa. 
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3.3.3. The Epworth Sleepiness Scale 

The Epworth Sleepiness Scale (ESS) is widely employed for estimating the subjective sleepiness 

of patients. However, its resulting score does not explicitly appear in the ICSD-3 criteria for 

narcolepsy or IH. Johns reported ESS score ranging from 2 to 10 for healthy controls, 12-24 for 

idiopathic hypersomnia and 13-23 for narcolepsy9. More recent evidence confirms that healthy 

subjects usually score less than 10 points11, whereas IH and narcolepsy patients have significantly 

higher scores163.  

There are inconclusive results regarding differences of the ESS score between the conditions. Pizza 

et al. report the surprising fact that narcolepsy without cataplexy is associated with lower ESS 

scores than narcolepsy with cataplexy and IH, whereas the latter two conditions do not significantly 

differ4. One other study found similar ESS scores in narcolepsy type 1 and type 2170. Anderson et 

al. calculated a mean initial ESS score of 16,3 for IH and a significantly higher score of 18,6 for 

narcolepsy with cataplexy142 with a standard deviation of 3,3 for each group.  

Overall, the ESS allows a reliable distinction between healthy controls and narcolepsy/IH patients. 

On average, ESS scores of IH patients seem to be slightly below scores for narcolepsy, but the 

standard deviations for each disease are too high to justify differential diagnostic decisions. 

3.3.4. PSG parameters 

The nocturnal PSG is important for the diagnosis of narcolepsy and IH in many ways. Obviously, 

common differential diagnoses like sleep related breathing disorders have to be ruled out as a cause 

of EDS. Furthermore, SOREMs occurring in the NPSG are effectively added to the SOREMs in 

the MSLT. Therefore, for the diagnosis of IH, no more than one SOREM, either in the MSLT or 

the NPSG may be observed. Regarding narcolepsy, if the preceding PSG yields a SOREM, one 

additional SOREM in the MSLT suffices for the fulfillment of the diagnostic criteria.  

On average, 77 % of narcolepsy patients show a SOREM in their NPSG, compared to 1,7% of IH 

patients171. Closely related to this finding are the differences in REM latency, which directly 

influences the occurrence of SOREMs: Various comparative studies report a shorter REM latency 

for narcolepsy than for IH168, 171, 172. However, IH patients show REM latencies that do not 

significantly differ from healthy controls3. 
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There are other clinical differences regarding night sleep between narcolepsy and IH patients: 

Night sleep in narcolepsy tends to be shallow, disrupted and fragmented33, 92, whereas IH patients 

usually have deep, undisturbed night sleep172, 172. This observation is reflected by the differences 

that have been reported regarding arousals and sleep efficiency. 

Martínez-Rodríguez et al. found no significant differences in sleep efficiency and arousal index but 

nevertheless report a gradient ranging between the conditions. Sleep efficiency is highest, and the 

arousal index is lowest for IH, whereas the most pathological findings occur in patients with 

narcolepsy with cataplexy. Intermediate values are observed for narcolepsy without cataplexy92. 

Regarding sleep efficiency, these results are confirmed in most other studies142, 168, 172, 173. 

Furthermore, the sleep efficiency in IH seems to be even higher than in healthy controls3. However, 

contrary results have also been published, indicating that sleep efficiency might be equal171 or even 

higher in narcolepsy than in IH168. Additionally, the shallow night sleep in narcolepsy also affects 

the relative duration of the different sleep stages: Typically, sleep stage 1 is increased in narcolepsy, 

whereas sleep stage 2 shows an decreased duration and the time in sleep stage 3 might be reduced 

or normal173. In comparison, IH patients do not differ from healthy controls regarding sleep stages 

1 and 2. The percentage of sleep stage 3 seems to be reduced, but not the absolute time in stage 33. 

Bassetti et al. found no significant difference for the REM sleep fraction of IH and narcolepsy 

patients2. 

In conclusion, the clinical differences that have been observed between IH and narcolepsy 

transform to some degree to differences in the PSG parameters. Their differential diagnostic value 

has not been investigated in detail yet. 

3.3.5. Vigilance tests 

Impairment of vigilance is a dimension of sleepiness that cannot be measured by the MSLT174. 

Schulz et al. have summarized the performance results of narcolepsy patients in several 

neuropsychological tests. They concluded that, whereas narcoleptics usually perform well in short 

and challenging tasks, significantly worse (compared to healthy controls) results are observed in 

monotonous tasks that stretch over an extended period of time. The reason for these specific 

cognitive limitations is assumed to be hypovigilance175. 
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Several vigilance tests are available, such as the sustain attention to response test (SART), the steer 

clear test, the Oxford sleep resistance test (OSLER) , the psychomotor vigilance task (PVT)174 and 

the Mackworth Clock Test, whose computerized version has been used for the dataset of this thesis.  

One study by van Schie et al. found that vigilance as measured by the  SART test is similarly 

deteriorated in narcolepsy as in other causes of EDS176. Findley et al., however, found significant 

differences between sleep apnea patients and narcoleptics in the Steer Clear test: Compared to 

control subjects, whose performance did not decrease over time, narcolepsy patients showed a clear 

linear vigilance decrement. For sleep apnea patients, only a “trend” towards a vigilance decrement 

was observed177. Comparative studies regarding the performance of narcolepsy or IH patients could 

not be identified.  

In conclusion, vigilance is an important dimension of sleep- and wakefulness, whose importance 

for the diagnosis and differential diagnosis of narcolepsy and IH remains to be explored in further 

detail. 

3.4. Aims of this thesis 

After having summarized both the conditions and the diagnostic tools at hand, a perspective has 

been reached that allows the statement of the central aims of this thesis. 

 

I. Given the MSLT as an objective tool for measuring sleepiness: To what degree are the 

different MSLT parameters like sleep latency, SOREM count and the recently 

suggested parameter Delta redundant? Is it justified to treat them as separate diagnostic 

measures or are they equally influenced by the hidden common factor “sleepiness”?  

 

II. Motivated by the shortcomings of the current diagnostic criteria and the resulting 

entities: Can certain variables, which would allow a clearer classification of 

hypersomnolent patients in the dataset, be identified? Are there diagnostic parameters 

that naturally subdivide patients with narcolepsy and IH? 
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III. Having identified suitable variables for the classification or clustering of the dataset: 

What groups do emerge if the given dataset is explored with respect to the cluster 

variables and how are these groups related to the current diagnostic concepts?”. 

 

IV. Reflecting the current diagnostic groups and the algorithmically obtained clusters: Are 

there ways to improve the diagnostic criteria or to refine the given concepts of 

narcolepsy and IH ?  

These questions will structure the remaining parts of this thesis. First, linear regression analysis 

will be used to address the correlation between the different MSLT parameters. Next, a set of 

“important” variables will be determined by calculating the principal components of the dataset. 

These variables will serve as cluster variables for the central part of this thesis, which comprises 

three different cluster analyses. The cluster analyses will yield three different partitions of the 

dataset and allow valuable insights into the structure of the dataset. The thesis will end with a 

summarizing discussion of all results and the possibility of alternative diagnostic classifications. 
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4. The Dataset 

All patient data was obtained at the Center for Sleep Medicine Regensburg. Each patient gave a 

written consent to a scientific evaluation of his/her anonymized data.  All patients whose MSLT 

had been performed between January 1st 1996 and December 31st 2015, were considered. 

Eventually, only patients who strictly fulfilled the diagnostic criteria of the ICSD-3 for narcolepsy 

type 1, narcolepsy type 2 or idiopathic hypersomnia were included. No 24h-PSG or actigraphy was 

used for the diagnosis of IH, hence all patients labeled with IH had sleep latencies below 8 minutes. 

Also, no CSF hypocretin levels were determined, so all narcolepsy type 1 cases had a history of 

cataplexy. Furthermore, data of 83 healthy individuals who had participated in the normative 

MSLT study by Geisler et al.35 were included as a control group.  

Diagram 4.1: The dataset 

 

 

 

 

Sleep Medicine Center Regensburg  

143 Patients fulfilling the ICSD-3 criteria for narcolepsy type 1/2 or idiopathic hypersomnia 

83 healthy controls 

226 cases in total 

 

214 cases 

 

12 cases removed 

- 1 case: Technical problems during nocturnal PS 

- 1 case: incomplete documentation 

- 10 controls: electronic data loss, software errors 

 

42 cases of Idiopathic Hypersomnia 

 73 healthy controls 

only used in linear regression analysis 

 

58 cases of Narcolepsy type 2 

 

41 cases of Narcolepsy type 1 
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The dataset initially comprised 226 cases. Two patient cases had to be removed due to technical 

problems during the nocturnal PSG and incomplete documentation of PSG results. Another ten 

healthy controls were omitted because software errors had caused the loss of important parameter 

values. In total, a dataset consisting of 141 patients was obtained. In the end, 214 cases (including 

73 controls) were included.  

Several patients were also suffering from sleep medical comorbidities, with the most frequent 

diagnoses being OSAS and PLMS. As it explicitly stated in the diagnostic criteria for narcolepsy 

type 2 and idiopathic hypersomnia, OSAS had to be ruled out as an exclusive explanation for the 

hypersomnolence. Hence, all patients also diagnosed with OSAS were stable and under sufficient 

treatment regarding their breathing disorder. 

Table 4.1: Frequent comorbidities 

OSAS: Obstructive sleep apnoea syndrome; RLS: Restless legs snydrom; PLMS: Periodic limb movement in sleep 

 OSAS RLS Depression PLMS Parasomnias 

narcolepsy type 2   7 2 8 8 0 

narcolepsy type 1  4 1 2 10 0 

idiopathic hypersomnia  4 1 3 2 2 

total 15 4 13 20 2 

 

Since only MSLT results had been obtained from the healthy individuals, in the cluster analyses 

and the preliminary principal component analysis only the aforementioned 141 patients could be 

included. Table 4.2 lists all variables that will be considered for the remainder of this thesis.  

Table 4.2: Considered variables 

From healthy controls only MSLT30 results were obtained; measurement units are given in the square brackets. 

If not specified otherwise, the values of the (unstandardized) values will always be given in these units 

MSLT30:  

- mean sleep latency to stage 1  [min]  (SL1) 

- mean sleep latency to stage 2  [min]  (SL2) 

- mean sustained sleep latency  [min]  (susSL) 

- SOREM count    [0,..,5]  (#SOREM) 

- sum of sleep time   [min]  (TST) 

- Delta [=susSL – SL1]  [min]  (Delta) 

 

Epworth Sleepiness Scale Score  [0,…,24]  (ESS)  
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Vigilance test (Quatember-Maly):  

- number of correct reactions    (VigCorr) 

- number of false reaction     (VigFalse) 

- mean reaction time in correct reactions [sec]  (VigRT) 

 

Nocturnal 12h-PSG:  

- sleep efficiency    [%]  (PSG_SEI) 

- sleep stage 3 fraction of TST  [%]  (PSG_N3_TST) 

- REM latency    [minutes]  (PSG_REML)  

- arousal index    [1/h]  (PSG_AI) 

 

History of cataplexy  [0 / 1]  (CATAP) 

 

The tables 4.3 and 4.4 list the descriptive statistics of all considered variables. For the sake of 

completeness, also age and sex ratio are mentioned here. 

Table 4.3: Descriptive statistics for the categorical variables 

 
narcolepsy type 2 

N=58 

narcolepsy type 1 

N=41 

idiopathic hypersomnia 

N=42 

controls 

N=73 

CATAP  0/58 41/41 0/42 0/73 

Sex  (m/f) 23/30 18/23 10/32 44/29 

 

As it has been mentioned above, a modification of the MSLT, the MSLT30 was used for this thesis. 

Apart from the changed termination rule, the guidelines for the MSLT in table 2.1 were followed. 

In most cases, the PSG was conducted in the night preceding the MSLT. In the remaining cases, 

the PSG took place few days before the MSLT. 
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Table 4.4: Descriptive statistics for the continuous variables 

 
narcolepsy type 2 

N=58 

narcolepsy type 1 

N=41 

idiopathic hypersomnia 

N=42 

controls 

N=73 

 Mean SD Mean SD Mean SD Mean SD 

Age  [years] 29,9 11,0 31,5 11,2 35,4 12,4 42,9 11,3 

MSLT 

SL1   4,39 2,21 2,43 1,42 5,45 1,67 13,2 6,96 

SL2   7,89 3,34 5,69 3,25 10,7 3,52 20,3 6,64 

susSL   4,98 2,49 2,87 1,69 7,01 2,89 15,8 7,36 

#SOREM  2,79 0,932 3,95 1,02 0,190 0,397 0,233 0,566 

TST  120 14,9 131 11,0 108 17,3 63,3 34,7 

Delta  0,585 0,723 0,439 0,974 1,56 1,97 2,64 2,30 

ESS  15,6 4,16 16,3 3,10 15,0 3,72  

Vigilance test 

VigCorr 83,8 22,2 87,7 14,6 85,0 17,1 

 VigFalse 3,62 4,94 3,98 5,57 2,29 2,85 

VigRT 0,560 0,124 0,557 0,111 0,573 0,118 

PSG  

PSG_SEI 91,7 5,57 86,7 7,31 89,6 6,56 

 

PSG_N3_TST 15,2 9,58 11,7 8,39 15,3 9,17 

PSG_REML 65,2 40,4 48,9 56,6 95,6 54,4 

PSG_AI 7,30 8,31 9,00 12,5 6,43 7,47 
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5. Correlation and linear dependence of MSLT parameters: Sleep 

latencies and SOREMs 

Addressing the first question that has been raised above, this section will further investigate the 

intercorrelation of three different variables: The sleep latency to stage I (SL1), the SOREM count 

(#SOREM) and the parameter Delta. Linear regression analysis will serve as the central statistical 

tool for this task. This chapter starts with a brief methodical overview, which will closely follow 

the introduction by Dougherty178. After that, two different linear models will be introduced and 

investigated by linear regression. 

At the end of this chapter it will have become clear, if and to what degree the different MSLT 

parameters are correlated to each other and how their linear relationship can be described. These 

insights will be obtained separately for each diagnostic group, which might support a deeper 

characterization of narcolepsy and IH based on the typical MSLT results. 

5.1. Methodical considerations 

Linear regression analysis aims to investigate whether a linear relationship exists between several 

random variables. More precisely, one assumes that a dependent variable 𝑌 is related to one or 

several explanatory variables 𝑋1, 𝑋2, … , 𝑋𝑛 in the following way: 

𝑌 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2+. . . +𝑏𝑛𝑋𝑛 + 𝑢. 

Here, 𝑢 denotes a disturbance term, which is assumed to be normally distributed with mean value 

0. Linear regression analysis uses the information of 𝑚 (in the situation of this thesis, 𝑚 is the 

number of patients/controls that are included in the analysis) observed corresponding values of 𝑌 

and 𝑋1, 𝑋2, … , 𝑋𝑛 to estimate the coefficients 𝑏0, 𝑏1, … , 𝑏𝑛. For each observation, a different 

disturbance term 𝑢 affects the value measured for 𝑌, thereby potentially hiding the assumed linear 

relationship. Mathematically, one obtains the estimates 𝛽0, 𝛽1, … , 𝛽𝑛 for 𝑏0, 𝑏1, … , 𝑏𝑛  based on the 

principle of minimizing the sum of squared residuals (RSS). Here, the difference between the 

observed value of 𝑌 and the predicted value of Y based on the observed values of 𝑋1, 𝑋2, … , 𝑋𝑛 is 

defined as residual 𝑒: 
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𝑒𝑗 = 𝑌𝑗 − (𝛽0 + 𝛽1𝑋1𝑗 + 𝛽1𝑋1𝑗 + ⋯ + 𝛽𝑛𝑋𝑛𝑗), 

𝑅𝑆𝑆 = 𝑒1
2 + 𝑒2

2+. . . +𝑒𝑚
2 . 

Estimating the regression coefficients in this manner does not always yield optimal results. 

However, it can be shown that four conditions, the Gauss-Markov conditions, guarantee that the 

estimates are unbiased and as efficient as possible178.  

These conditions are related to various properties of the disturbance terms 𝑢1, 𝑢2, … , 𝑢𝑚. Not all 

conditions will be discussed in detail, but it is important to acknowledge the most critical one 

regarding this dataset: The second Gauss-Markov condition postulates that all disturbance terms 

(corresponding to the different observations) have the same constant variance. This situation is also 

called homoscedasticity. If it is not fulfilled, i.e. in the situation of heteroscedasticity, the 

coefficient estimates remain unbiased nevertheless. However, all error estimates regarding the 

significance of the obtained results, i.e. confidence intervals, p-values and so on, will be invalid. 

Hence, in this thesis, the dataset will be tested for the occurrence of heteroscedasticity using the 

Koenker test179. If the test indicates that heteroscedasticity may be present, adjusted error estimates 

using the heteroscedasticity-consistent standard error estimators by Hayes180 will be employed. 

More precisely, the RLM macro that was released in a recent publication by Darlington and 

Hayes181 will be used for calculating the adjusted standard errors. 

Dummy variables 

If linear regression has to be performed on different groups, as it is the case in this thesis, dummy 

variables can be employed. These artificial explanatory variables take into account possible 

differences between the diagnostic groups in slope and intercept coefficients that might occur. 

Therefore, for every group other than the reference group, two dummy variables have to be 

introduced for each explanatory variable178. The main advantage of the usage of dummy variables 

over just performing separate regression analyses for each subgroup is the additional information 

regarding the possibly significant differences of the regression coefficients between the distinct 

groups. 

Variable inclusion 

Due to the inclusion of dummy variables, every regression analysis in this thesis will be a 

multivariable regression analysis, i.e. more than one explanatory variable will be assumed. In such 
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cases, it is very likely that at least some a priori assumed explanatory variables will turn out to not 

significantly contribute to the model. In practice, this would be reflected by small corresponding 

regression coefficients and high associated p-values. In order to avoid an unnecessarily 

complicated linear model, there are several approaches that remove such “insignificant” 

explanatory variables. Here, the “stepwise” approach was chosen, in which independent variables 

are included successively and possibly excluded again, if their corresponding p-values are below 

predefined thresholds182. In this case, the SPSS defaults of p=0,05 for inclusion and p=0,1 for 

exclusion were used.  

Reported parameters in linear regression 

Several different parameters will be reported for each linear regression. Each regression coefficient 

will have a corresponding p-value that represents the hypothetical probability that this coefficient 

is a consequence of pure chance. A low p-value therefore minimizes the danger that the regression 

coefficient at hand is merely a statistical artifact that has been caused by unlikely coinciding 

disturbance terms. 

Confidence intervals for each coefficient are interval estimators for the true coefficient. That means 

that with a high probability (which is set as 95 % for this thesis), the “true coefficient” is included 

in the estimated interval. 

Additionally, the F-value will be reported for each model. This value corresponds to the null 

hypothesis, that the dependent variable is not depending on any of the explanatory values at all (or 

equivalently, all “real” coefficients 𝑏𝑖 are zero except for 𝑏0). The F-value is closely related to the 

𝑅2-value, which can be interpreted as the fraction of the dependent variable variance that can be 

explained by the explanatory variables. Hence, a high F-value is associated to a high 𝑅2-value, 

indicating that the suggested linear model does indeed explain a lot of the dependent variable 

variance. 

Furthermore, the Durbin-Watson test for autocorrelation will be employed. Autocorrelation 

describes the correlation between the disturbance terms for each measurement (or in this case, 

patient). This also leads to an autocorrelation of the residuals, which are directly accessible and can 

therefore be tested for this phenomenon. The coefficient point estimates are not affected by 

autocorrelation, but an underestimation of the p-values (and an overestimation of the confidence 

intervals) would occur178. If the Durbin-Watson statistic yields values close to 2, one can conclude 
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that no significant autocorrelation is present. Savin et al. have provided a table of critical values of 

the Durbin-Watson test. If the test statistics yield values above the upper limit, the null hypothesis 

stating that no autocorrelation is present will be accepted183. 

Finally, the tolerances for each regression coefficient will be mentioned. Low levels of tolerance 

indicate multicollinearity, which means that the given explanatory variable is itself explainable by 

the remaining explanatory variables. This phenomenon does not deteriorate the actual point 

estimates of the regression coefficients but increases confidence interval and equivalently the 

corresponding p-value.  The occurrence of a low tolerance (usually, values below 0,2 are 

interpreted as severe multicollinearity184) will be mentioned in the interpretation of the different 

regression results. 

All linear regression analyses were performed using SPSS, Version 23.0.0.0185 .  

5.2. SOREMs and sleep latencies 

This first linear regression analysis will investigate the relationship between the sleep latency and 

the SOREM count in the MSLT. If one agrees that the MSLT sleep latency is an objective measure 

for sleepiness and the number of SOREM episodes is a correlate of dysregulated REM sleep, the 

question can be raised whether REM sleep dysregulation (which is assumed to lead to cataplectic 

attacks) and daytime sleepiness are symptoms that are related to each other in any way. In terms of 

the dataset variables, this transforms into investigating the correlation between the SOREM 

frequency and the mean sleep latency. 

Despite the discovery of the central role of hypocretin in the pathophysiology of narcolepsy, several 

theories regarding the narcoleptic symptoms are still being discussed186. Although the similarity of 

cataplexy and REM sleep atony suggests that an impairment of REM sleep regulation might be the 

primary cause of the narcolepsy phenotype, it has also been considered that controlling instances 

between sleep and wakefulness or various components of sleep regulation itself might be affected. 

Of course, these theories should not be understood as exclusive and significant differences have to 

be expected between the narcolepsy subtypes, and in particular between narcolepsy and IH. The 

results of this regression analysis will give some insight into the interdependence of the sleep 

latency and the occurrence of SOREMs. 
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5.2.1. Modeling assumptions 

In order to justify a linear regression analysis for the issue at hand, one postulates a linear 

relationship of the following form: 

𝑆𝐿1 = 𝑏0 + 𝑏1 ∙ 𝑆𝑂𝑅𝐸𝑀 + 𝑢 

However, since there are three different diagnoses to consider (and the additional control group) it 

is unreasonable to assume that – even if this linear relationship is a valid assumption-  all groups 

have the same regression coefficients. Therefore, as it has been remarked above, dummy variables 

are employed which model the differences in slope and intercept coefficients between the 

diagnostic groups.  

Additionally, one has to take into account that by definition, narcolepsy patients show at least two 

SOREMs, whereas IH patients can have a maximum of one SOREM in a MSLT. Therefore, the 

dummy variables would be artificially correlated with the SOREM count, essentially leading to 

multicollinearity and unprecise coefficient estimates. Also, with respect to the above model no 

reasonable direct comparison is possible between IH and narcolepsy since these conditions cover 

different intervals regarding the SOREM count. 

 This issue can be resolved by splitting the analysis into two subgroups: One analysis will be 

restricted to the narcolepsy subtypes; the other analysis will comprise IH patients and healthy 

controls. Thereby, the unwanted collinearity effects are avoided, and more precise coefficient 

estimates are possible. Because of this approach, three healthy controls had to be excluded from 

the analysis due to their increased SOREM count. These cases are listed in Table 5.1. 

 

 

 

In conclusion, the following two models will be investigated: 

On the one hand 

𝑆𝐿1 = 𝑏0 + 𝑏1 ∙ 𝑆𝑂𝑅𝐸𝑀 + 𝛿𝐼𝐻 ∙ 𝐼𝐻 + 𝜆𝐼𝐻 ∙ 𝑆𝐼𝐻 + 𝑢 

Table 5.1: Omitted healthy controls  

SOREM count Sleep latency [min] 

2 7,5 

3 2,1 

2 10,3 
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for the subgroup of IH patients and healthy controls. The two dummy variables are 𝐼𝐻 and 𝑆𝐼𝐻, 

representing possible differences in the intercept and slope coefficient, respectively. 𝐼𝐻 and 𝑆𝐼𝐻 

will be zero for controls, whereas in IH patients one defines 𝐼𝐻 as 1 and 𝑆𝐼𝐻 equal to the SOREM 

count of the case. As it is explained in detail by Dougherty178, this approach effectively treats 𝛿𝐼𝐻 

as a coefficient regarding differences in the intercept and 𝜆𝐼𝐻 as a coefficient which encodes 

differences in the slope. 

On the other hand, the equation 

𝑆𝐿1 = 𝑏0 + 𝑏1 ∙ 𝑆𝑂𝑅𝐸𝑀 + 𝛿𝑇𝑌𝑃𝐸1 ∙ 𝑇𝑌𝑃𝐸1 + 𝜆𝑇𝑌𝑃𝐸1 ∙ 𝑆𝑇𝑌𝑃𝐸1 + 𝑢, 

when narcolepsy patients are considered as the dataset. Here, narcolepsy type II patients represent 

the reference case where both dummy variables are defined as zero. 𝑇𝑌𝑃𝐸1 and 𝑆𝑇𝑌𝑃𝐸1 are 

defined analogously to 𝐼𝐻 and 𝑆𝐼𝐻. 

5.2.2. Results 

5.2.2.1. Controls and IH patients 

By stepwise multiple regression, all a priori hypothesized variables entered the final model. Table 

5.2 depicts the unstandardized coefficients as well as the 95 % confidence intervals, p-values and 

tolerances. The order of the independent variables is the order of inclusion into the model.  

Table 5.2: Regressions coefficients, confidence intervals and p-values 

70 healthy controls and 42 IH patients were included 

The 95 %- confidence intervals (CI) were adjusted using Hayes’ HC3 algorithm 

Coefficients CI: lower limit CI: upper limit p-values 

Constant 14,3 12,5 16,1 <0,001 

IH -8,84 -10,7 -6,99 0,005 

#SOREM -5,87 -9,90 -1,84 <0,001 

SIH 5,89 1,58 10,2 0,008 

 

A F-value of 30,6 (df=111) and a corrected 𝑅2=0,369 were reported. The Durbin-Watson test did 

not reveal significant autocorrelation of the residuals (Durbin-Watson statistic 1,87). The lowest 

tolerance value (0,497) of all explanatory variables was reported for SIH, hence the absence of 

severe collinearity can be assumed. 
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Plotting the standardized residuals against the standardized predicted values raised the suspicion 

of significant heteroscedasticity. This observation was confirmed by a highly significant result of 

the Koenker test (value=17,8, p<0,001). Hence, the RLM macro was used to obtain 

heteroscedasticity adjusted standard errors and confidence intervals. 

Translating this multiple regression model into two separate models for healthy controls and IH 

patients, the following two models were obtained: 

• For healthy controls: 

𝑆𝐿1 = 14,3 𝑚𝑖𝑛 − 5,87 𝑚𝑖𝑛 ∙ #𝑆𝑂𝑅𝐸𝑀 

• For IH patients: 

𝑆𝐿1 = 5,46 𝑚𝑖𝑛 + 0,02 𝑚𝑖𝑛 ∙ #𝑆𝑂𝑅𝐸𝑀 

 

5.2.2.2. Narcolepsy patients 

The stepwise multiple regression of the narcolepsy patients did not include the TYPE1 variable 

into the model. Table 5.3 shows the regression coefficients.  

Table 5.3: Regression coefficients, confidence intervals and p-values 

41 cases of narcolepsy type 1 and 58 cases of narcolepsy type 2 were included 

The confidence intervals and p-values were adjusted using Hayes’ HC3 algorithm 

Coefficients CI: lower limit CI: upper limit p-values 

Constant 5,66 4,12 7,21 <0,001 

STYPE1 -0,319 -0,620 -0,017 0,039 

#SOREM -0,478 -1,07 0,118 0,115 

 

A F-Value of F=22,8 (p<0,001) and an adjusted 𝑅2=0,243 were reported. Again, the Durbin-

Watson test (statistic: 1,76) gave no hint for significant autocorrelation. The Koenker test 

(value=14,9, p=0,001) led to the rejection of the assumption of homoscedasticity, so again the RLM 

macro was used. The coefficient corresponding to #SOREM was kept in the model, since its 

unadjusted p-value was below the cutoff of 0,1 for the stepwise exclusion. All tolerance values 

were reported to be higher than 0,5 , hence no severe collinearity had to be assumed. 
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In conclusion, the following linear models were obtained: 

• For narcolepsy type 2: 

𝑆𝐿1 = 5,66 𝑚𝑖𝑛 − 0,478 𝑚𝑖𝑛 ∙ #𝑆𝑂𝑅𝐸𝑀 

• For narcolepsy type 1: 

𝑆𝐿1 = 5,66𝑚𝑖𝑛 − 0,797 𝑚𝑖𝑛 ∙ #𝑆𝑂𝑅𝐸𝑀 

 

5.3. Delta and sleep latencies 

The third linear regression of this thesis will address the possibility that an additional parameter 

apart from SOREM count and regular sleep latency to stage 1 might have a diagnostic and 

differential diagnostic purpose. Pizza et al. recently emphasized the possible value of Delta, which 

is defined as the difference between the sustained sleep latency and the usual sleep latency to stage 

1 (SL1). It was pointed out that whereas healthy controls as well as IH patients show the 

physiological “waxing and waning” during the transition from wakefulness to sleep (hence having 

normal values of Delta), narcolepsy patients usually have significantly smaller values of Delta, 

reflecting a quick and direct onset of sleep without intermittent periods of wakefulness4. 

This observation raises the question whether Delta should be regarded as an additional parameter 

for the diagnosis and differential diagnosis of narcolepsy. To be of additive use in the diagnostic 

process, Delta should be “independent” from the existing parameters, especially #SOREM and 

SL1.  

In the following linear regression analysis, the diagnostic value of Delta is addressed in a more 

precise manner. The linear model explained below suggests that Delta is merely a linear function 

depending on the sleep latency. Hence, low values of Delta could be merely a consequence of a 

high sleep pressure as represented by low sleep latencies. This approach can be further illustrated 

by the following graphical considerations. 
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Diagram 5.1: Motivation for the linear model 

 

 

As the diagram illustrates a higher sleep pressure might by itself reduce the physiological “waxing 

and waning” process during the transition to sleep. If this were the case, differences in Delta would 

mostly be caused by differences in sleep latencies and no additional diagnostic benefit could be 

gained from Delta. If, in contrast to the explanation suggested above, Delta shows no direct 

dependence from the sleep latency, it might yield additional information regarding sleep onset in 

hypersomnolent patients. 

5.3.1. Modeling assumptions 

The considerations above can be summarized in the following short equation: 

𝐷𝑒𝑙𝑡𝑎 = 𝑏0 + 𝑏1 ∙ 𝑆𝐿1 + 𝑢 

This arguably very simple model proposes a linear relationship between Delta and the sleep latency 

SL1. However, in order to take into account Pizza’s recent results, possible differences regarding 

intercept and slope coefficients for each diagnostic group should also be included. At this point a 

subtle methodical issue occurs. Healthy controls have sleep latencies ranging from zero to 30 

minutes (the upper limit is due to the MSLT30 protocol), whereas both IH and narcolepsy patients 

must have sleep latencies under 8 minutes. Therefore, every data point with SL1 greater than 8 

minutes will be contributed by a healthy individual. Hence, the regression line for IH and 
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narcolepsy patients would extrapolate into the situation of sleep latencies above the 8-minutes 

cutoff, without allowing a reasonable interpretation.   

These issues have been solved by splitting the linear regression into two groups again, this time 

into the patient and the control subgroup. For the healthy controls, one assumes the above model 

and estimates slope and intercept parameters based on the whole range of zero to 30 minutes. The 

remaining cases of the dataset will be used in a second linear regression, where again dummy 

variables will allow a differentiation between the diagnoses. This time, however, one defines IH as 

“reference group”, so only four dummy variables representing both narcolepsy subtypes will 

appear in the model: 

𝐷𝑒𝑙𝑡𝑎 = 𝑏0 + 𝑏1 ∙ 𝑆𝐿1 + 𝛿𝑁1 ∙ 𝑁1 + 𝜆𝑁1 ∙ 𝑆𝑁1 + 𝛿𝑁2 ∙ 𝑁2 + 𝜆𝑁2 ∙ 𝑆𝑁2 + 𝑢 

 

For IH patients, every dummy variable will be zero. The following linear regressions were 

performed completely analogous to the previous analyses. By setting IH as reference group, the 

significance of the narcolepsy dummy variables will always reflect the difference between IH and 

the narcolepsy subgroup at hand. 

 

5.3.2. Results 

5.3.2.1. Healthy controls 

The following coefficients were obtained:  

Table 5.4: Regressions coefficients, confidence intervals and p-values 

73 control cases were included 

No heteroscedasticity adjustment was needed 

Coefficients CI: lower limit CI: upper limit p-values 

Constant 2,58 1,42 3,74 <0,001 

SL1 0,004 -0,074 0,083 0,909 

 

The correlation coefficient between Delta and SL1 was reported to be 0,014. Consequently, the 

𝑅2-value was smaller than 0,001. The Durbin-Watson statistic was 2,05 and therefore not pointing 

towards significant autocorrelation. The Koenker test statistic yielded 1,43 (p=0,232), so the 

assumption of homoscedasticity was not refuted. An F-value of 0,013 with a corresponding p-value 
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of 0,909 led to the conclusion, that the linear model using the coefficients has most likely emerged 

due to pure chance. In such cases, the constant model should be preferred. It should be noted that 

both coefficients were computed by minimizing the squared residuals. Therefore, the intercept 

coefficient is not the arithmetical average of all Delta values, which was 2,64 minutes.  

5.3.2.2. IH and narcolepsy 

The stepwise method excluded both intercept dummy variables, leading to the following model.  

Table 5.5: Regressions coefficients, confidence intervals and p-values 

All 141 patient cases were included 

The confidence intervals and p-values were adjusted using Hayes’ HC3 algorithm 

Coefficients CI: lower limit CI: upper limit p-values 

Constant 0,303 -0,37 0,643 0,08 

SL1 0,236 0,099 0,372 0,001 

SN2 -0,168 -0,289 -0,048 0,006 

SN1 -0,200 -0,333 -0,067 0,004 

 

The Durbin-Watson statistic was 2,13 , indicating no significant autocorrelation. A highly 

significant F-value of 4,13 (p=0,006) was reported. The corresponding 𝑅2-value was 0,147. All 

regression coefficients had tolerances above 0,7 , hence collinearity did not severely affect the 

results. The Koenker test statistic was 12,67 (p=0,005), therefore the heteroscedasticity adjusted 

errors had to be considered. 

Hence, the following equations were obtained for the different diagnoses: 

• For IH:  

𝐷𝑒𝑙𝑡𝑎 = 0,303 𝑚𝑖𝑛 + 0,236 ∙ 𝑆𝐿1 

• For narcolepsy type 1: 

𝐷𝑒𝑙𝑡𝑎 = 0,303 𝑚𝑖𝑛 + 0,036 ∙ 𝑆𝐿1 

• For narcolepsy type 2: 

𝐷𝑒𝑙𝑡𝑎 = 0,303 𝑚𝑖𝑛 + 0,068 ∙ 𝑆𝐿1 
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5.4. Discussion 

5.4.1. Sleep latencies and SOREMs 

Diagram 5.2: Regression line for IH patients and healthy controls 

See table 5.2 for the regression coefficients. 

 

 

Diagram 5.2 illustrates the regression lines for IH patients and healthy controls. Healthy controls, 

who do not show any SOREM in the MSLT, have a mean sleep latency of 14,3 minutes, quite 

significantly above the 8-minute-threshold for IH and narcolepsy. In healthy controls who have a 

SOREM episode in one of the five MSLT sleep opportunities, an average of 8,84 minutes is found. 

Regardless of the SOREM count, the average sleep latency for IH patients is about 5,5 minutes.  

As all cases of this analysis have at most one SOREM in the MSLT, the extrapolation of the 

regression lines towards the right end of the diagram is merely an extrapolation. Nevertheless, 

following the lines to the right highlights a central problem in the diagnosis of narcolepsy and 

idiopathic hypersomnia: Healthy controls who have one or even more SOREMs in the MSLT, 

possibly due to shift work, insufficient sleep etc., cannot easily be distinguished from IH and 

narcolepsy patients, at least not by referring solely to the 8-minute criterion for the mean sleep 

latency. It is important to remember that three healthy controls were excluded from the analysis 

due to their SOREM counts. Two of them had sleep latencies below 8 minutes (see table 5.1). This 
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as well as the extrapolated regression line suggests that for healthy individuals who show two 

SOREMs in the MSLT, sleep latencies can be expected to drop regularly below 8 minutes. 

In conclusion, these results confirm that healthy individuals may show MSLT results, which could 

easily mimic typical MSLT findings for IH or narcolepsy. These observations correspond well to 

the findings of Allen et al., who reported that 13,1 % of men and 5,6 % of women in the general 

population show two or more SOREMs in the MSLT. In the same study it was found that 5,9 % of 

men and 1,1 % of women even fulfill both MSLT criteria that are requested for narcolepsy164. 

Regarding the IH patients one obtains the surprising result that the sleep latency in these patients 

is almost completely unaffected by the SOREM count. This finding will be further discussed after 

the regression results for the narcolepsy subgroups have been considered. 

The reported corrected 𝑅2-value was 0,369. As Dougherty178 explains, this value can be interpreted 

as the fraction of the variance of the dependent variable that is explained by the independent 

variables. Therefore, only a third of the total variance in sleep latency can be associated with the 

SOREM count and differences between the diagnostic groups. Furthermore, as the scatterplot 

above indicates, the precision of the slope coefficient estimates might be compromised by the small 

number of data points with one SOREM. 

Diagram 5.3: Regression line for patients with narcolepsy type 1 or 2 

See table 5.3 for the regression coefficients 
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Looking at the second linear regression (corresponding to table 5.3), one notices an even lower 𝑅2-

value of 0,243. This suggests that only a quarter of the total variance in the sleep latency of 

narcolepsy patients is explained by #SOREM and STYPE1. Of the two dummy variables regarding 

narcolepsy type 1, only the slope variable proved to be significant enough for inclusion. Hence, 

one observes an identical intercept of both regression lines. 

The negative slope coefficients for both subtypes represent the expected result: Patients with more 

SOREMs have on average a lower sleep latency. This effect is more pronounced in narcolepsy type 

1 patients, who, as diagram 5.3 illustrates, tend to have a more severe narcolepsy phenotype. 

However, it should be recalled at this point that adjusting the regression analysis for the observed 

heteroskedasticity led to a p-value higher than 0,1. Therefore, if the assumed linear model would 

actually be wrong, the observed regression coefficient for #SOREM could still emerge by change, 

with a probability higher than 10 %. 

The two regression analyses have yielded a negative linear relationship between sleep latencies 

and SOREM count for healthy controls and both narcoleptic subgroups. On the other hand, sleep 

latencies for IH are almost unaffected by the SOREM count. 

It is important to consider that linear regression analysis is based on the calculation of the 

correlation coefficient. Therefore, in a strict sense, only conclusions regarding the correlation 

between independent and dependent variables can be drawn. Consequently, there is no way to 

decide whether an increase in SOREM count causes a reduced sleep latency (or/and vice versa) or 

if the correlation should be explained by a common hidden factor that affects both variables in the 

observed manner. 

The negative linear dependence of sleep latencies from the SOREM count in healthy controls 

suggests that these two parameters are physiologically connected. It remains unclear whether one 

of the parameters highlights a primary attribute that consequently influences the other parameter 

or if SOREM count and sleep latency are affected by a hidden factor.  

Considering the fact that an increased SOREM count occurs frequently in insufficient sleep 

syndrome and shift workers, a simple model would be the assumption of a common factor called 

“sleepiness”. In healthy controls who have an increased sleepiness, this could cause both the 

reduced sleep latency and the increased SOREM count. 
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As it has been mentioned above, several theories about the pathogenesis of narcolepsy exist. The 

theoretical considerations above somewhat reappraise the different approaches as listed by 

Dauvilliers et al.186. If, at its core, narcolepsy is primary a disease causing increased sleepiness, the 

decreased sleep latencies and increased SOREM count can be explained as different aspects of 

hypersomnolence. More severe cases would suffer from greater sleepiness, which then would lead 

to extremely high SOREM counts and sleep latencies well below the 8-minute threshold. If, on the 

other hand, narcolepsy is mainly a REM sleep disorder (as the occurrence of cataplexy suggests), 

one would assume that the decreased sleep latencies are a consequence of the REM sleep 

dysregulation. 

However, the regression results for IH discourage the concept of  a common factor “sleepiness” 

which causes the reduced sleep latencies and increased SOREM counts. At least in IH, 

hypersomnolence, as measured by the MSLT, is not correlated with the SOREM count. Hence, if 

one assumes mediating mechanisms between sleepiness (as measured by the MSLT) and REM 

proneness (as measured by the SOREM count) in the situation of healthy individuals as well as 

narcolepsy patients, these mechanisms do not seem to be effective in the case of IH. 

These heterogeneous results allow the following conclusion. In general, sleep latencies and 

SOREM count should be treated as independent diagnostic parameters. The highest obtained 𝑅2-

value was 0,369, so almost two third of the variance in sleep latencies remain unexplained by the 

linear models above. However, for healthy controls and narcolepsy highly significant regression 

coefficients hint to a correlation between SOREM count and sleep latency that should not be 

neglected. The precise nature of this correlation and the existence of a direct causal relationship 

cannot be determined by the employed methods.  

5.4.2. Delta and sleep latencies 

The linear regression for the healthy controls is the only linear regression in this thesis which did 

not reach a significant F-value. The F-statistic is designed to investigate whether the obtained linear 

model might have emerged only by chance. The null hypothesis corresponding to this statistic is 

the constant model, where no linear dependence from any regressors exists.  

In this case a slope coefficient close to zero was estimated together with an extremely unprecise 

confidence interval (compared to the coefficient value of 0,04). The p-value suggests, that if no 

linear relationship would be present, there is a chance of more than 90 % that a coefficient of 0,04 
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(or with a less extreme absolute value) would be estimated. Hence, in this situation the only sensible 

decision is to accept the null hypothesis and reject the assumption of a linear dependence between 

Delta and the sleep latency. Diagram 5.4 further illustrates this result. 

 

Diagram 5.4: No correlation between SL1 and Delta in healthy controls 

 

 

Correspondingly, the Pearson correlation coefficient is R=0,014, which represents almost perfectly 

uncorrelated variables. 

Regarding the IH and narcolepsy patients a small but significant correlation was found. The highest 

slope coefficient was obtained for IH (see table 5.5), allowing the interesting observation that an 

IH patient with a borderline sleep latency of about 8 minutes is expected to have a Delta value of 

𝐷𝑒𝑙𝑡𝑎 = 0,303 𝑚𝑖𝑛 + 0,236 ∙ 𝑆𝐿1 = 2,4 𝑚𝑖𝑛, 

which is rather close to the average Delta value in healthy controls (2,64 minutes). Hence in IH 

patients with unclear or inconclusive MSLT results, one should expect an almost normal Delta 

value and therefore not use Delta for diagnostic purposes. More clear-cut cases of IH on the other 

hand (i.e. patients having lower sleep latencies) show Delta values comparable to those of 

narcolepsy patients. Geometrically, this is reflected by the fact that IH and narcolepsy do only 

differ with respect to the slope coefficient, but not with respect to the intercept. Hence, differences 

between the groups regarding Delta diminish with decreasing sleep latency.  
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Continuing with the situation for narcolepsy patients, one notices that the slope dummy variables 

almost cancel out the regression coefficient for SL1 for both narcolepsy subgroups, thus a 

significant linear dependence between Delta and SL1 remains doubtful for narcolepsy as well. The 

point estimates for the regression variables suggest that a narcolepsy patient having a borderline 

sleep latency of 8 minutes will be expected to show a Delta value of less than 0,6 minutes for 

narcolepsy type 1 and less than 0,9 minutes for narcolepsy type 2.  

Therefore, one can draw the following conclusion: In the case of healthy individuals and narcolepsy 

patients no significant dependency of Delta from SL1 became apparent. The expected Delta values 

of narcolepsy patients are below 1 minute regardless of their sleep latency, whereas healthy 

individuals show a Delta of about 2,6 minutes on average, although with great variance. For IH 

patients however, each additional minute of sleep latency raises Delta about 0,236 minutes, which 

leads to almost normal Delta values in cases with borderline normal sleep latencies and to Delta 

values close to those of narcoleptic patients for IH patients with severely reduced sleep latency. 

Finally, it is important to take the low 𝑅2-value of 0,147 into account. Conversely, more than  

85 % of the variance in Delta remains unexplained by linear dependence from sleep latency and 

diagnosis, suggesting that treating Delta as an independent parameter is justified from the 

perspective of linear regression analysis. 

On average, analogous to the sleep latencies, the Delta values of IH patients lie between those of 

healthy individuals and those of narcolepsy patients. Thus, one reaches the conclusion that although 

no high correlation between Delta and the sleep latency could be found, regarding the average 

values the typical hierarchy “healthy controls > IH > narcolepsy type 2 > narcolepsy type 1”, that 

has been observed for the sleep latency163, is also preserved in the parameter Delta (see diagram 

5.5). 
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Diagram 5.5: Delta values and sleep latencies for controls, IH and narcolepsy patients 

Error bars: Standard errors of the mean  

 

 

5.5. Conclusion 

Having performed the regression analysis, question I stated in 3.4. has been addressed. Informally 

speaking, the following results have been obtained. 

1. For healthy controls and both narcolepsy subgroups, a significant linear dependence of 

sleep latencies from the SOREM count has been found. In healthy controls, individuals 

showing one SOREM in the MSLT have an expected sleep latency that is almost six 

minutes below healthy controls who have not presented a SOREM in the MSLT. In both 

cases, the average sleep latency remains above the 8 minutes threshold, although especially 

some of the healthy individuals with one or more SOREM episodes will drop below 8 

minutes. In both narcolepsy subgroups there is a negative linear dependence of the sleep 

latencies from Delta. For each additional SOREM in the MSLT, sleep latency shows a 

steeper decline in narcolepsy type 1 than in type 2. Remarkably, no significant linear 

dependence between SL1 and SOREM count appeared in IH patients. Some interpretations 

involving the concept of general sleepiness have been suggested to explain this unexpected 

result. 

2. The second regression analysis addressed a possible dependence of Delta from the sleep 

latency. No strong relationship between Delta and SL1 could be shown for IH patients. 
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Nevertheless, the obtained coefficients hint at Delta values close to those of narcolepsy 

patients if sleep latencies are low, but at almost normal values if sleep latencies get close to 

8 minutes. In healthy controls, Delta and SL1 proved to be almost perfectly uncorrelated, 

whereas for both narcolepsy subgroups only a weak positive linear correlation could be 

observed. The low correlation values that have been reported for this analysis indicate a 

possible independent value of Delta for the diagnostic and differential diagnostic process. 
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6. Identifying important variables: Principal component analysis 

Apart from anamnesis, the occurrence of cataplexy and the exclusion of other conditions, only the 

MSLT sleep latency, the MSLT SOREM count and the REM latency in the nocturnal PSG are 

considered in the current diagnostic criteria of IH and narcolepsy.  

Aim II of this thesis therefore addresses the question if any additional parameters might be useful 

for distinguishing different groups in the given dataset of IH and narcolepsy patients and if the 

parameters listed above are indeed the most suitable ones for this task.  

A priori, two requirements for a set of “important” variables seem reasonable: First, all relevant 

aspects of the variance in the dataset should be depicted in these variables, or – in other words – 

no important diagnostic dimension should be ruled out. Second, redundancy should be kept at a 

minimum. If two variables essentially provide the same information about the dataset, the inclusion 

of both would overemphasize their (differential) diagnostic impact. 

In this chapter a mathematical method called principal component analysis (PCA) will be presented 

that allows the identification of such suitable variables by transparent algorithmical decisions. PCA 

will yield a set of principal components (PCs), which essentially comprise the combinations of 

parameters that can explain most of the variance in the dataset without being too correlated to each 

other. First, the number of PCs that are needed to essentially grasp the dataset will be determined. 

Then, the PCs will provide the information needed to erase non-essential variables from the initial 

set of 14 parameters such that only variables suitable for cluster analysis remain. Due to the 

mathematical nature of PCA, both requirements discussed above will be considered during this 

process. 

Apart from finding a set of suitable cluster variables, PCA will also contribute to this thesis in 

another distinct manner. Interpreting the most important PCs will allow additional insights into the 

structure of the dataset and its most important diagnostic axes. 
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6.1. PCA: An introduction 

In terms of mathematics, principal components are the eigenvectors of the correlation matrix. 

Intuitively they are linear combinations of the given variables with certain beneficial properties. 

Diagram 6.1 demonstrates a low-dimensional example. 

Diagram 6.1: Principal components: a two-dimensional 

example 

 

 

As one can see, neither variable I or II are optimal in the way that they allow an easy identification 

of the two groups (or clusters) in the dataset. Performing a PCA on this simple dataset will yield 

two principal components, which are better suited to explain the dataset.  

Each principle component has a corresponding “eigenvalue”, which reflects the importance or 

significance of the principal component. One always obtains the same number of principal 

components as variables have been used as input for the PCA. These principal components are then 

usually sorted by their eigenvalues, which are always non-negative, in descending order. The PCs 

corresponding to the highest eigenvalues explain most of the dataset variance: Clearly, in the 

example of diagram 6.1, PC1 is the most important axis for distinguishing the two clusters. Usually 

only the first few principal components are considered, which effectively reduces the dimension of 

the dataset and simplifies further analysis. Therefore, PCA is sometimes referred to as a tool for 

dimensional reduction. 

However, this procedure cannot differentiate between variance due to “real” groups or clusters and 

variance due to imprecise measurements or just random distribution. Therefore, the results of PCA 
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should be treated with care and a priori knowledge about the dataset should be used to discuss the 

validity of the obtained principal components. 

As explained before, every PC is defined as a linear combination of the input variables 𝑥1,…, 𝑥𝑛: 

𝑃𝐶 = 𝜆1𝑥1 +  … + 𝜆𝑛𝑥𝑛 . 

The real-valued coefficients 𝜆1, … , 𝜆𝑛 determine how the given PC can be constructed as a weighed 

sum of the input variables. These coefficients are often also called loadings of the PC with respect 

to the variable at hand.  High absolute coefficient values indicate a high impact of the corresponding 

variable to the PC. The input variable yielding the highest (absolute) coefficient value will also be 

called the dominant variable of the given PC. 

6.2. The PCA algorithm and the total variance criterion 

The PCA was applied to the dataset of all IH or narcolepsy patients (141 individuals in total). All 

acquired variables were used except susSL. The reason for this exclusion is that susSL is defined 

as SL1+Delta, hence its inclusion would not contribute additional information to the dataset but 

only add redundancy. Hence, 14 variables in total were included into the PCA, which consequently 

yielded 14 PCs. 

Furthermore, the algorithm relied on the correlation matrix (which can be found in the appendix) 

with respect to the 14 input variables. In contrast to the alternative, the covariance matrix, all 

variables are implicitly standardized. This eliminates unwanted weighing of the variables due to 

the different measurement units. Otherwise, variables allowing high absolute values with respect 

to their measurement unit would have an increased impact on the calculation of the PCs.  

For the consecutive cluster variable selection, one must agree on the number of needed principal 

components. As Jolliffe explains in detail, several criteria have been elaborated allowing a 

standardized way of defining this number. In this thesis, the total variance criterion is used, which 

states that starting from the first PC as many PCs are included as needed to explain a certain fraction 

of the total variance in the dataset187. Here, a total variance of 80 % was defined as the threshold 

fraction. 

The PCA was performed using the FACTOR syntax command of SPSS 23.0.0.0182. 
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6.3. Cluster variable selection 

While it is certainly possible to use the first few PCs directly for cluster analysis, a method will be 

discussed in the following, which relies on the PCs to choose suitable cluster variables. Jolliffe187 

lists several different methods for variable selection. Most methods share a common principle: 

Replacing each PC with its dominant variable. Highly correlated variables are likely to have 

similarly high loadings (in absolute terms) on the same PC. Hence, only one dominant variable of 

each significant PC should be chosen for further analysis, since otherwise there is the risk of 

including two variables that are highly correlated. Similarly, if one relies on the omitted PCs to 

select variables that are not to be included in the cluster analysis, it is reasonable to rule out the 

dominant variables of the most insignificant PCs.  

In this thesis, a standard procedure recommended by Jolliffe was chosen, that has been 

demonstrated to yield sensible variable selections in simulated data188. Table 6.1 describes the 

precise algorithm, which uses the least significant PCs to find variables that can be left out without 

risking too much loss of information. 

Table 6.1: The cluster variable selection algorithm187 

Given n variables (and therefore n PCs), k cluster variables have to be selected 

- Sort the PCs by their eigenvalue in descending order 

- VarSet is defined as the set of all given n variables 

- Repeat the following steps for the last n-k PCs, in ascending order (starting with the nth PC) 

o For the selected PC, sort all n variable by the absolute value of their coefficient for this PC, in descending 

order 

o Identify the first variable which is still included in VarSet 

o Remove this variable from VarSet 

o Select the preceding PC; repeat the steps above 

- After n-k PCs considered, k variables remain in VarSet 

- Use the remaining k variables in VarSet as cluster variables 

 

6.4. Results 

Applying the 80%-variance criterion, the first seven principal components had to be included. For 

a more detailed look on the first seven PCs, a recommendation by Jolliffe was followed: In each 

column, “++” indicated the dominant variable of the PC, whereas other important contribution are 

marked by “+” or “-“, depending on the sign of their loading coefficient.  
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Starting with all 14 input variables, the algorithm for variable selection as it is described in table 

6.1 was applied. For the principal components 14 to 10 as well as 8 their dominant variable could 

be removed. In the case of PC9 the second most important variable (CATAP) was chosen since its 

dominant variable #SOREM had been removed when considering PC 12.  

Hence, after the removal of the variables TST, SL2, #SOREM, VigCorr, VigRT, CATAP and 

PSG_N3_TST the following variables remained for the cluster analyses: ESS, PSG_AI, VigFalse, 

Delta, SL1, PSG_REML, PSG_SEI. 

 

6.5. Discussion 

6.5.1. The selection of cluster variables 

Although the variable selection was done in a purely algorithmical manner, the choice of cluster 

variables seems very sensible. From the group of highly correlated (see table A.1 in the appendix) 

Table 6.2: The first seven principle components 

++ : dominant variable, i.e. highest absolute loading 

+/- :  coefficient with an absolute value of 50% or more compared to the dominant variable;  

(+)/(-):  absolute value between 50% and 25% 

 1 2 3 4 5 6 7 

TST ++   (+)   (+) (-)   

SL2 -           (-) 

SL1 -         (+) - 

#SOREM +       (-) (+)   

CATAP + (+) (-) (-) -   (+) 

Delta -   - (+) (-) (+) + 

PSG_REML -     -   - + 

VigCorr   ++ (+)         

VigRT   - -   (+) (-) (+) 

VigFalse   - - -   ++   

PSG_N3_TST   (-) ++     + ++ 

ESS     - ++ - (-)   

PSG_SEI   (-) + + (+) (+)   

PSG_AI   + -   ++ (+) (+) 

Eigenvalue 4,1 1,9 1,6 1,2 0,9 0,86 0,73 

Cumulative 

explained 

Variance 

28,9 % 42,6 % 54 % 62,6 % 69,1 % 75,2 % 80,4 % 
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variables SL1, SL2 and TST, only one has been included as a marker of objective sleepiness. 

VigFalse represents the vigilance test performance of the patients whereas PSG_AI takes the 

fragmentation of the night sleep into account. Subjective sleepiness is considered by the inclusion 

of the ESS score. Remarkably, Delta also emerged as an important variable, which highlights its 

possible further use. Although the MSLT SOREM count is essential for the differential diagnosis 

between IH and narcolepsy, it has not been selected as cluster variable, but is indirectly represented 

by the PSG REM latency. Another interesting observation is that despite its diagnostic significance, 

the occurrence of cataplexy (CATAP) is not included. 

At this point one could argue that a more sensible way of choosing cluster variables is the 

“arbitrary” way by relying on clinical experience and other cluster analyses in the field of sleep 

medicine. However, the selection procedure based on PCs can easily be reproduced for other 

datasets and transformed to other sleep medical questions. Furthermore, being a tool for explorative 

data analysis, cluster analysis suffers inherently by the fact that several parameters of each analysis 

must be set by “try and error”. By agreeing on objective selection methods, one ensures that at least 

the variable selection process is reproducible and based on objective calculations, which 

strengthens the validity of the cluster solutions. 

6.5.2. The selected principal components 

Seven principal components were needed to explain 80 % of the dataset variance. Before discussing 

the seven most important PCs in more detail, another main feature of the PCs will be demonstrated: 

Their ability to reduce the dimension of the dataset with only a minimized loss of information. One 

can therefore use the first three PCs to plot three two-dimensional projections of the dataset, which 

are more suitable than the input variables for visualizing the variance in dataset. 
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Diagram 6.2: The dataset projected onto the first three principal components 
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Several interesting observations can be made in these diagrams. All diagrams show a homogeneous 

cloud of data points with several outliers on each side. No obvious clusters become apparent at first 

sight. Regarding the different diagnoses, PC1 seems to be able to separate narcolepsy type 1 from 

IH patients, whereas narcolepsy type 2 patients lie in between these groups. This reflects the 

clinical observation, that narcolepsy type 2 patients usually have a less pronounced phenotype and 

are much harder to distinguish from IH than narcolepsy type 1 patients. PC2 and PC3 do not show 

a similar property, neither do they suggest an alternative clear-cut clustering of the data. Judging 

from these diagrams, diagnosis of IH and narcolepsy seems to happen mainly with respect to the 

variables incorporated in PC1, although a substantial overlap can be observed. As it will become 

apparent later, PC1 is indeed closely related to the current diagnostic procedure for narcolepsy and 

IH. 

Additionally, the diagram above does not bolster the present ICSD-3 diagnostic groups, since it 

suggests that the patients in the dataset form a continuum of cases which cannot be easily separated 

with respect to the considered parameters. 

Hence, from a methodical point of view, no very consistent and precise cluster results should be 

expected. More likely, the different cluster methods that are presented below will produce quite 

different results, which might be very vulnerable to the variation of the clustering parameters. 

Next, the first seven PCs are discussed in more detail. The dominant variable as well as all other 

variables that have been marked without brackets in table 6.2 will be listed, allowing a direct 

interpretation of the significant variable contributions. Here, most PCs will receive a descriptive 

name which characterizes one of the contrasted phenotypes. It is important to acknowledge that for 

each typical phenotype, its direct opposite is equally well represented on the “opposite end” of the 

given PC. 

PC 1: IH vs. narcolepsy phenotype 

TST #SOREM CATAP SL2 SL1 Delta PSG_REML 

++ + + - - - - 

 

As diagram 6.2 indicates, the by far most dominant PC (with a corresponding eigenvalue of 4) 

manages to split up the different diagnostic subgroups. Looking at the coefficients of PC1, one can 
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easily see why. On the one end of the PC1 axis one finds patients who quickly fall asleep in the 

MSLT and have low values of SL1 and Delta. Furthermore, these patients are likely to have many 

SOREM episodes and have an increased probability of a history of cataplexy. Just as one would 

expect from patients suffering under cataplectic attacks, the REM latency in the PSG is also 

reduced. This description fits almost perfectly to the typical narcoleptic symptoms. On the other 

end of the PC1 axis one consequently finds more “IH like” patients showing less pathological 

MSLT results, high values of Delta and no sign of a REM sleep dysregulation (high REM latency, 

no cataplexy). 

PC 2: Vigilance test performance 

VigCorr PSG_AI VigRT VigFalse 

++ + - - 

 

This PC is essentially a summarizing score for the vigilance performance. The two extremes in this 

PC can be described in the following way: Patients having a high number of correct reactions, who 

were also rather quick, and, on the opposite end, patients showing few correct reactions, a high 

reaction and a lot of false reactions. Interestingly, PSG_AI also contributes to this PC, hence 

patients having a high positive score on this PC (and therefore showing a good vigilance test 

performance) are likely to have a high arousal index in the PSG.  

PC 3: Deep sleeper with good vigilance and low subjective sleepiness 

PSG_N3_TST PSG_SEI VigRT VigFalse ESS PSG_AI Delta 

++ + - - - - - 

 

Including the variables marked within brackets above, 10 of 14 variables contributed significantly 

to this PC, making it hard to find a reasonable interpretation. 

As the title of this PC indicates, patients with a high score regarding this PC are efficient sleepers 

who spend a lot time in sleep stage 3, which may be a consequence of their low arousal index. 

Furthermore, these patients score themselves low in the ESS, which indicates a low subjective 

sleepiness and show good reaction and few errors in the vigilance test. Interestingly, these patients 
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also have low Delta values, although none of the usual MSLT parameters (apart from a weak 

contribution by TST) contribute significantly to this PC.  

Negative values on this PC indicate disrupted sleep associated with a high subjective sleepiness 

and a bad vigilance test result. High Delta values hint at a slow transition to deeper sleep. 

Obviously, this PC does not correspond to any of the current diagnostic concepts. Nevertheless, an 

eigenvalue of 1,6 suggests that a considerable fraction of the total variance can be projected onto 

this axis, which does not include the usual MSLT parameters. 

PC4: High subjective sleepiness despite efficient sleep 

ESS PSG_SEI PSG_REML VigFalse 

++ + - - 

 

ESS is the dominant variable of PC4. Patients with a high positive score in PC4 have a high sleep 

efficiency despite their significant subjective sleepiness. Furthermore, their REM latency is 

decreased, which, however, is not associated with high frequencies of cataplexy ((-) loading for 

CATAP). PC3 and PC4 highlight the importance of the subjective sleepiness estimation using the 

ESS.  

PC 5: Many nocturnal arousals, low ESS 

PSG_AI CATAP ESS 

++ - - 

 

Only three variables contribute notably to this PC, which characterizes patients that show many 

arousals in their night sleep, but at the same time do not report elevated levels of sleepiness. 

PC 6 

VigFalse PSG_N3_TST PSG_REML SL1 #SOREM Delta PSG_SEI PSG_AI TST VigRT ESS 

++ + - (+) (+) (+) (+) (+) (-) (-) (-) 

 

In this case, the weak contributions have been listed as well, since PC6 has significant loadings 

from 11 out of 14 input variables. In general, interpretation of a PC gets more difficult if more 
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variable loadings have to be considered187. Therefore, no clear characterization could be found for 

this PC. 

PC6 is dominated by false reactions in the vigilance test. Regarding the other two vigilance test 

parameters, one finds only a low contribution by VigRT. A possible explanation for high positive 

scores in this PC6 would be the inability to fully grasp the vigilance test instructions, leading to a 

high number of false reactions. High scores in this PC are also associated with a long sleep time in 

N3 and a low REM latency. 

PC 7: Fast sleep onset, but high Delta values 

PSG_N3_TST Delta PSG_REML SL1 

++ + + - 

 

Like PC3, PC7 is dominated by PSG_N3_TST. Patients scoring high on PC7 are also likely to have 

high Delta values and a late REM sleep onset. Furthermore, their sleep latency is low. Hence, 

positive PC7 scores represent patients that fall asleep quickly but need some time to reach sustained 

sleep. REM sleep is reached comparatively late, but much time is spent in sleep stage III. Apart 

from the low SL1 values, this PC pronounces typical results for IH patients. The other end of the 

PC7 axis represents patients, whose Delta and PSG_REML values indicate a narcolepsy-like 

phenotype, which is however accompanied by an atypically high sleep latency 

 

Summarizing these interpretations, it becomes clear that most PCs of this dataset cannot easily be 

characterized from a clinical perspective. Nevertheless, the following observations can be made: 

PC1 comprises all the usual MSLT parameters SL1, SL2, #SOREM, TST and contrasts the typical 

narcolepsy phenotype against IH. These parameters are almost completely neglected in the 

following PCs, which however show significant contributions by Delta in the case of PC3 and PC7. 

This suggests that Delta inherits additional information that is not summarized in the usual MSLT 

parameters and therefore not completely comprised by PC1. 

For the emergence of PC1 as first and therefore most significant PC the following technical aspects 

should be noted, too. First, the occurrence of cataplexy, the MSLT SOREM count and the PSG 

REM latency are the three variables that are currently used for differential diagnosis between 
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narcolepsy subtypes and IH. As the dataset comprises a balanced selection of narcolepsy and IH 

cases, a lot of variance is to be expected along these variables. Second, by including the highly 

intercorrelated variables SL1, SL2 and TST (see table A.1 in the appendix) into the PCA, implicitly 

the sleep duration and, conversely, the sleep latency in the MSLT became a more pronounced 

aspect of the dataset, since it is directly or indirectly represented in three of 14 dataset dimensions. 

Therefore, the structure of PC1 is at least partially a consequence of the emphasis that was put on 

MSLT results in the 14 selected input variables. However, as the description of PC1 illustrates, 

variables regarding REM sleep characteristics also contribute significantly to the first PC. In the 

linear regression analyses, a certain correlation between SOREM count and sleep latencies 

highlighted the relationship between sleep duration/latency and REM sleep occurrence, which is 

most likely another important reason for the observed structure of PC1. 

In PC3 several markers for good sleep quality (a high sleep stage III fraction, a high sleep efficiency 

and a low arousal index) as well as low ESS scores are linked to low values of Delta, whereas PC7 

pronounces phenotypes where the MSLT hints at severe sleepiness that is combined with high 

Delta values. Therefore, no concise interpretation of the Delta values can be given at this point. 

The variable loadings of PC2 were not to be expected a priori. As vigilance tests are not included 

in the official diagnostic criteria, it is a remarkable finding that the overall vigilance test 

performance as encoded by PC2 represents the second most important axis along which the dataset 

variance can be projected. The correlation matrix of all input variables (see table A.1 in the 

appendix), based on which PCs are obtained as eigenvectors, reveals that all three vigilance test 

variables are moderately correlated to each other (all correlation coefficients have absolute values 

above 0,3), whereas only a weak correlation appears with respect to any other input variable 

(absolute R-values below 0,17). Consequently, PC2 essentially enbodies the variance caused by all 

vigilance parameters, with no significant effects from any other variable except PSG_AI. Whereas 

this result suggests the “independence” of vigilance test results from the other sleep medical 

parameters that have been considered, the usefulness of vigilance test parameters remains to be 

demonstrated by cluster analysis. One should also keep in mind that, similar to the situation of 

TST, SL1 and SL2 in PC1, the relative importance of PC2 can also be explained by the decision to 

include three at least moderately corelated variables which encode different aspects of the vigilance 
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test. If two or only one vigilance test variables would have been considered for the PCA, the 

corresponding PC would be less significant. 

6.6. Summary 

The mathematical method of principal component analysis yielded some insights regarding the 

relative importance of all variables that have been considered initially in the dataset (see chapter 

5). The principal components that have been obtained in this chapter are essentially coordinate axes 

along which the dataset can be described in the most sensible way. However, as it has been 

discussed for PC1 and PC2, the effect of the concrete choice of input variables should not be 

underestimated. The following core statements will serve as a brief recap of the main results of the 

PCA. 

1. According to the distinct structure of the most important PC, MSLT sleep latency, SOREM 

count, occurrence of cataplexy and PSG REM do indeed explain a large part of the dataset 

variance when they are used to distinguish the typical findings for IH and narcolepsy. This 

is a certain justification for the current diagnostic criteria that rely especially on MSLT 

findings.  

2. The second most important PC is essentially an overall vigilance test score. Although this 

PC (or score) also explains a considerable amount of the dataset variance, it is possible that 

this finding is just an artificial consequence of including vigilance test results into the PCA 

in the first place and therefore provides not much additional information regarding the 

remaining structure of the dataset. 

3. Regarding the Delta value that has been suggested by Pizza et al., one notices that Delta 

contributes significantly to PC3, which does not take into account any other MSLT variable 

to a relevant degree. This finding supports the suggestion that Delta might indeed comprise 

additional information regarding the transition from wakefulness to sleep 

4. For all but the first two PCs, it is very difficult to find a reasonable interpretation for their 

component structure. 

5. Using a certain cluster variable selection algorithm, the following variables have been 

chosen and will further be used in cluster analysis: ESS, PSG_AI, VigFalse, Delta, SL1, 

PSG_REML, PSG_SEI. As it has been pointed out above, this is probably a reasonable 
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selection, since it includes all important concepts for sleepiness that have been discussed 

above while avoiding unnecessary redundancy.  
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7. Finding groups in the dataset: Cluster analysis 

In this chapter the final statistical analyses will be performed, which will mainly address question 

III stated in section 3.4. Intuitively, cluster analysis summarizes several different methods which 

can detect groups in a dataset. The word “group” as well as “cluster” suggests that all members of 

a group (or equivalently, elements of a cluster) are closely related to each other. On the other hand, 

elements of separate groups should ideally be unrelated, dissimilar and distant to each other. 

These basic considerations reveal a central abstract concept that can be approached in various 

manners: Before groups in the dataset can be identified, one has to agree on what a group is. This, 

however, involves a certain definition of similarity/closeness or dissimilarity/distance between the 

groups for the concrete situation at hand. Three different algorithms will be presented in this thesis 

that represent different approaches on how a group should be defined and what distance means for 

elements in the given dataset. 

These three different algorithms will yield three different suggestions regarding the optimal 

subdivision of the dataset, which will be called cluster solutions. This leads directly to the question, 

how the different suggestions should be compared to each other and to the groups/diagnoses 

defined in the ICSD-3. The process of estimating the quality of a cluster will be referred to as 

cluster validation and will be addressed by statistical and visual measures. 

Eventually, the validation of the different cluster solutions as well as the detailed comparison 

between the solutions will justify a detailed discussion regarding the optimal classification of IH 

and narcolepsy patients and the implications on current diagnostic concepts. 

 

7.1. Introduction to Cluster analysis 

7.1.1. Principles of cluster analysis 

According to Tan cluster analysis divides data into several groups, which are also called clusters, 

that are meaningful or useful189. Schendera describes cluster analysis as an objective data 

classification method and points out that a fundamental implicit assumption is always made when 

cluster analysis is performed: The existence of meaningful or useful groups that can be discovered 

by the cluster analysis190. In present case of this thesis, the existence of several different reasonable 
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groups of patients is assumed. These groups are not necessarily identical to the diagnostic groups 

of the ICSD-3.  

Obviously, these assumptions can and should be subject of further discussions. Cluster analysis in 

general cannot decide whether the dataset structure actually allows reasonable clustering and will 

therefore always produce some clusters regardless of the properties of the dataset. Hence the user 

of the cluster analysis must investigate the cluster solutions and possibly refute the obtained clusters 

as mere mathematical artifacts that bear no meaning or usefulness. In this context cluster validation 

methods are valuable tools and will be discussed below in further detail. 

For the conduction of cluster analysis several technical decisions have to be made. The first 

decision involves the right notion of distance or similarity. Every definition of distance can in some 

way be inverted to obtain a notion of similarity and vice versa, as similar elements show a small 

distance between them and elements that have a large distance between them are expected to be 

dissimilar. Hence, it suffices to introduce a sensible notion of distance into the given sleep medical 

dataset. Here, the selection of cluster variables is crucial as they provide the fundamental 

information based on which the distances between each pair of elements can be calculated. Usually, 

at the start of a cluster analysis, the distance relations between all element pairs are listed in a 

distance matrix: The distance between the i-th element and the j-th element can then be found in 

the i-th row and j-th column. 

Having agreed on a distance measure, the actual cluster analysis methods differ greatly in the way 

how the information stored in the distance matrix is processed to determine the optimal clusters. 

Three different methods will be employed: k-means, OPTICS and spectral clustering. The k-means 

algorithm starts with predetermined suggestions for the cluster centers, which are then iteratively 

refined. Hereby, dataset elements are always assigned to the cluster whose center is closest to them. 

As a result k-means clusters tend to be ball-shaped and compact. In the OPTICS method, however, 

clusters are detected as regions with an increased density of elements. Therefore, outlier elements 

that are too far away from any other dataset point are unlikely to be assigned to any cluster. Because 

of that, OPTICS usually yields a set of “noise elements” that could not be assigned to any cluster. 

Finally, spectral clustering assigns elements, which can be connected via a path consisting of 

similar neighbors, to the same cluster. This approach allows the formation of more atypically 

shaped clusters. 
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One important cluster parameter will be crucial in all three cluster methods: The number of 

expected clusters. Here, the approach of Šonka et al. is followed, who stated as “null hypothesis” 

that there are as many clusters in the dataset as there are a priori known diagnostic groups163.  

Therefore, as the ICSD-3 diagnoses are challenged in this thesis, three clusters are expected to 

emerge. Hence, for all three cluster analyses, we state as a “null hypothesis”, that three clusters 

exist in the dataset, which are identical to the ICSD-3 diagnostic groups. 

The number of clusters will directly be specified in the k-means method, whereas in spectral 

clustering and OPTICS, no direct way of adjusting the cluster number exists. Hence, k-means will 

yield three clusters regardless of the true structure of the dataset, so only properties and sizes of the 

three clusters will provide evidence if the null hypothesis should be rejected.  

Depending on the concrete clustering algorithm several other parameters will have to specified. 

Often, the right choice of clustering parameters has enormous impact on the success of the cluster 

analysis, i.e. in the obtainment of reasonable groups. Usually, only heuristic approaches exist 

regarding the right parameter choices. Therefore, in this thesis sometimes a try-and-error approach 

had to be employed, but the final choice of cluster parameters will be justified as well as possible. 

 

7.1.2. Cluster evaluation methods 

A multitude of different cluster analysis algorithms are available, which usually provide highly 

differing cluster solutions when applied to the same dataset. A priori, it is often not possible to 

predict which algorithm yields the best results for the given task. Hence, tools for cluster evaluation 

are required which allow the estimation of the overall quality of a cluster solution and the 

comparison between different solutions. 

According to Tan et al., cluster evaluation (which is sometimes also referred to as cluster 

validation) can be divided into two different approaches: Internal validation uses the information 

that is encoded in the cluster variables and hence has been used in the clustering process. Therefore, 

no external measure of cluster quality is applied to the cluster solutions. External cluster validation 

introduces external information, that has not been used in the cluster analysis itself (such as 

predefined diagnostic groups, results from other cluster analysis, variables that have not been used 

in cluster analysis) to assign some measure of quality to each cluster solution189. 
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In this thesis two distinct kinds of external information are available: Variables that have not been 

used in cluster analysis and the preexisting ICSD-3 diagnoses. Both will be taken into account and 

will serve as measures for external cluster validity. The non-cluster variables will be included in 

an ANOVA analysis which – by design – checks if the obtained clusters differ regarding these 

variables. The finding of significant differences would provide a hint that the clustering has been 

successful and has yielded clusters that differ even in variables that did not enter the actual cluster 

analysis.  

Another external validation will implicitly be performed when, following the three cluster analyses, 

all solutions will be compared to each other and to the ICSD-3 diagnostic groups using the Rand 

coefficient. As it will be explained in more detail below, the comparison of an obtained cluster 

solution to the existing diagnostic groups is a process of external validation. However, using the 

diagnoses for external validation would in some way collide with the task of this thesis, which is 

the exploration of the dataset to challenge and possibly improve the current diagnostic groups. 

Therefore, the ICSD-3 diagnoses are certainly external information, but should not be treated as a 

measure for cluster validity in this situation. 

The most obvious approach for estimating the success and quality of a given cluster solution is 

describing differences between the obtained clusters regarding all 15 initially acquired variables. 

Assuming normal distribution for every variable in each cluster, ANOVA analysis is suitable for 

this task but must be interpreted with caution. The p-values for each variable, which reflect the 

significance of the differences between the clusters, cannot be treated in the standard way. Since 

all cluster methods are designed to find groups which differ with respect to the cluster variables, 

finding such differences in the cluster solution is not a surprising result. Hence, a highly significant 

p-value of a cluster variable does not by itself reflect a high quality of the cluster solution. P-values 

of cluster variables will only then be of any use if they show p-values above the significance level, 

therefore indicating no significant difference and consequently hinting at a failed clustering 

process. On the contrary, significant p-values regarding non-cluster variables serve as a measure 

of external validation and allow a certain insight into the quality of the cluster solution.  

However, ANOVA remains a procedure that essentially focuses on the mean values for each 

variable. For non-convex clusters, both mean values and standard deviations might not provide a 

suitable characterization of the cluster structure. In such situations, the cluster plots (diagram A.1 
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to A.3 in the appendix) and other validation methods are essential for a more thorough 

understanding of the cluster solution. 

ANOVA analysis is a parametric statistical test that is based on several assumptions regarding the 

input variables, with the most prominent one being the normal distribution for each cluster. For 

most input variables normal distribution is a reasonable assumption. However, VigFalse, VigCorr, 

ESS and CATAP are measured on discrete scales, rendering the assumption of approximate normal 

distribution harder to justify. Especially in case of atypical cluster shapes, the assumption of normal 

distribution might also be violated for other variables. As in this thesis all ANOVA analyses are 

only used for a first characterization of the cluster solutions and hence serve mostly descriptive 

purposes, these methodical weaknesses are accepted.  

However, for the binary variable CATAP the Fisher-Freeman-Test for independency will be 

employed. Essentially, the test measures if the frequency of cataplexy is independent from the 

cluster assignment. High values of the test statistic and corresponding low p-values therefore hint 

at a significant difference in cataplexy occurrence between the clusters.  

It will turn out that the OPTICS clustering procedure only yields two clusters and an additional set 

of noise points. In order to focus on the comparison between the “real” clusters, a t-test will be 

performed instead of an ANOVA. Correspondingly, the Fisher-Freeman-Test will also not consider 

the noise cluster. 

As mentioned above, good clusters are characterized by two properties: First, elements belonging 

to the same clusters are close to each other, and second, elements assigned to different clusters 

have a large distance between them. Mathematically, both attributes can be formalized and 

explicitly calculated for each point. These attributes are called cohesion and separation, 

respectively. For a sensible characterization of a cluster solution, it seems reasonable to employ a 

measure that incorporates both aspects. The silhouette coefficient is designed to take both cohesion 

and separation into account. It uses the distance matrix and cluster assignments as input and 

calculates a silhouette coefficient for each element of the dataset. The arithmetic average of all 

elements can then serve as an estimate for the overall quality of the cluster solution, whereas the 

mean of the coefficients restricted to a single cluster allows a comparison of the different clusters 

of a given cluster solution. 
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For a third measure of internal validation a recommendation by Tan et al was heeded which 

suggests plotting the distance matrix of the dataset after the elements have been sorted by their 

cluster assignment. Ideally, one would expect a matrix of block-diagonal shape with each cluster 

being represented by a square with clear cut borders189. These matrix visualizations allow a quick 

estimation of the quality of each cluster and are very suitable for comparison of different cluster 

solutions.  

Table 7.1 summarizes all employed measures of internal and external cluster evaluation. 

Table 7.1: Measures of internal and external cluster validation 

Internal  External 

ANOVA: cluster variables 

Silhouette coefficient 

Distance matrix plot 

ANOVA: non-cluster variables 

Rand coefficients: comparison to the ICSD-3 diagnoses 

 

7.2. K-means clustering  

7.2.1. K-means clustering: iterative center calculation 

K-means is one of the oldest and most widely used cluster algorithms. The term “k-means” dates 

back to MacQueen in 1967191, but the standard algorithm that will also be applied in this thesis has 

first been published by Lloyd in 1982192.   

Starting with k initial cluster centers, k-means assigns each element to the closest cluster center. 

After having assigned all elements in that way, the new cluster centers are calculated as centroids 

of the clusters that have emerged by the assignments. The centroids are defined as the arithmetical 

mean value of all elements of the given cluster. Then, the whole procedure is repeated using the 

newly obtained cluster centers. This algorithm leads to “slowly moving” cluster centers, whose 

movements tend to stagnate after some iterations. If all cluster centers cease to move further than 

a predefined threshold, the algorithm stops and the final clusters and cluster centers are reported189, 

190. 

One major issue with k-means clustering is the choice of the initial cluster centers, which might 

severely affect the final cluster solution. One way of minimizing this effect is running the k-means 

clustering multiple times on the same dataset, each time starting with different randomly selected 

cluster centers.  
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In this thesis, the centroids of the ICSD-3 diagnostic groups are supplied as initial cluster centers. 

This decision is consistent with the agreement on three expected clusters: The algorithm starts with 

the “null hypothesis” cluster centroids and has the chance to refine these centroids and 

consequently the initial diagnostic clusters. 

It should also be noted that k-means tends to produce clusters of comparable sizes and of convex 

shape (i.e. “ball-shaped”). If a priori clusters of atypical shape or very different sizes are to be 

expected, k-means might yield suboptimal results. Furthermore, k-means shows also some 

weaknesses in detecting clusters of different densities and in handling a dataset containing 

outliers189. 

7.2.2. Implementation and cluster parameters 

The k-means clustering was performed using the built-in implementation QUICK CLUSTER 

(method “KMEANS(NOUPDATE)”) in SPSS v.23.0.0.0. In order to prevent implicit weighing of 

the variables, a z-standardization of all cluster variables was performed. The cluster number was 

set to three, whereas as initial centroids the standardized centroids of the given three diagnostic 

groups were used. A maximum of 100 iterations was allowed, and 0,0001 was set as the threshold 

distance for the centroid refinement. For both the calculation of the centroids and the assignment 

of cases to the different centroids, a notion of distance must be prespecified. Here, the common 

Euclidean distance with respect to the selected cluster variables was used. 

Table 7.2: k-means: Standardized centroids of the diagnostic groups  

NC 1/2: Narcolepsy type 1/2 

 ESS PSG_AI VigFalse Delta SL1 PSG_REML PSG_SEI 

NC 2 -0,005 -0,025  0,063 -0,182  0,118 -0,082  0,311 

NC 1  0,174  0,154  0,140 -0,289 -0,780 -0,391 -0,443 

IH -0,164 -0,116 -0,224  0,533  0,600  0,496  0,003 

 

7.2.3. Results 

The cluster algorithm stopped after 12 iterations, producing three clusters of the size 76, 46 and 19, 

respectively. Table 7.3 shows the final cluster centers. 
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Table 7.3: k-means: Final cluster centers 

All variables have been z-standardized  

 ESS PSG_AI VigFalse Delta SL1 PSG_REML PSG_SEI 

I -0,226 -0,346 -0,274 -0,179  0,278  0,197  0,492 

II  0,346  0,204  0,546 -0,412 -0,765 -0,688 -0,577 

III  0,068  0,890 -0,228  1,714  0,739  0,880 -0,569 

 

Diagram A.1 in the appendix visualizes the obtained cluster along the axes of PC1 to PC3. 

7.2.4. Evaluation 

The ANOVA statistics for the cluster variables indicate significant differences between the clusters 

with respect to all cluster variables. As it has been mentioned before, this fact cannot be used to 

deduce good cluster quality. 

Table 7.4: ANOVA statistics of the k-means cluster solutions: Cluster 

variables     

 

Cluster 1 

(N=76) 

Cluster 2 

(N=46) 

Cluster 3 

(N=19) 

Statistics 

(df=140) 

Mean SD Mean SD Mean SD 

F-

value 

p-

value 

ESS 14,8 3,62 16,9 3,90 15,9 3,09 5,01 0,008 

PSG_AI 4,25 5,53 9,47 10,1 16,0 13,7 15,8 <0,001 

VigFalse 2,05 2,42 5,87 6,62 2,26 3,16 11,8 <0,001 

Delta 0,588 0,628 0,272 0,374 3,16 2,37 61,7 <0,001 

SL1 4,75 1,91 2,46 1,62 5,75 1,99 30,8 <0,001 

PSG_REML 79,9 40,9 33,2 41,3 116 65,6 27,0 <0,001 

PSG_SEI 92,9 4,39 85,8 6,93 85,8 7,03 27,5 <0,001 

 

Also, all non-cluster variables (as listed in table A.3 in the appendix) yield a significant F-value, 

except for VigRT and VigCorr. This finding resembles the comments regarding PC2, which 

summarized the vigilance test performance. The two-dimensional cluster plots indicate that PC2 is 

not helpful to distinguish between the k-means clusters, even though VigFalse was included as 

cluster variable. It can nevertheless be concluded that k-means was able to construct clusters which 

differ for all cluster variables and even for most of the non-cluster variables.   
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Next, the silhouette coefficient for each element was calculated. Diagram 7.1 shows all 

coefficients, where the elements have been sorted by cluster assignment and by the coefficient in 

descending order. Clearly cluster 1 shows the best overall quality, whereas half the elements of 

cluster three have negative silhouette coefficients, which indicates the residual character of cluster 

3. The total average silhouette coefficient was 0,18. Again, the cluster plots might give a hint for 

this poor overall silhouette coefficient: All three clusters do not seem to be well separated in 

diagram A.1. 

 

Diagram 7.1: Silhouette coefficients for the k-means cluster solution 

 

 

Finally, diagram 7.2 shows the distance matrix of all elements of the dataset, ordered by cluster 

assignments. The Euclidean distance with respect to the standardized cluster variables was used. 
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Diagram 7.2: Distance matrix plot for the k-means cluster 

solution 

 

 

Clusters 1 and 2 are easily identified as the darker squares along the diagonal, whereas the third 

cluster, which should appear at the lower right end of the diagram is very hard to detect. 

In conclusion the k-means cluster algorithm yielded two clusters of acceptable quality and size plus 

one residual cluster. Section 7.5 will offer a more in-depth interpretation of all cluster solutions. 

 

7.3. OPTICS: a density-based approach 

7.3.1. Introduction 

As the second cluster algorithm OPTICS will be employed, which is the abbreviation for “Ordering 

points to identify clustering structure”. OPTICS is a density-based algorithm, i.e. clusters are 

identified as regions showing a high density of elements. OPTICS has been introduced by Ankerst 

et al. in 1999193 and can be described as a refinement of the widely-used DBSCAN (Density-Based 

Spatial Clustering with the Application of Noise) algorithm. 

As the name indicates OPTICS does not produce a cluster solution directly, but a certain ordering 

of all elements in a reachability plot. Intuitively, reachability is the distance of an element to the 

“core region” of a cluster, i.e. a region showing a high element density. Therefore, low reachability 
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values suggest that the element at hand can easily be assigned to a cluster. The inspection of the 

reachability plot allows a quick insight into the general structure of the dataset.  

Diagram 7.3 shows an example of a reachability plot. Valleys in the plot indicate potential cluster 

structures, whereas points above the threshold cannot be assigned to a distinct cluster and are 

summarized as “noise”. It is important to acknowledge that only the reachability plot is a direct 

result of the OPTICS algorithm. Having obtained this plot, the user is obliged to determine the 

critical reachability level, depending on the dataset and the aims of the cluster analysis. 

 

Diagram 7.3: An example reachability plot 

The horizontal line indicates the critical reachability value 0,21. Other values will yield a different cluster structure. The example 

was generated by applying OPTICS to the dataset using the angular metric and the parameters eps=20, minPts=7 

 

 

 

Clusters may subdivide/merge if the critical reachability is lowered/raised. Too low levels of the 

critical reachability will mark most of the elements as noise, whereas choosing too high a threshold 

will comprise the whole dataset into one cluster.  

The existence of noise elements is an important characteristic of OPTICS. This means that several 

cases might lie outside of any cluster detected by OPTICS. From a clinical point of view this 

translates to the fact that OPTICS will detect “core phenotype groups” in the patient dataset, 

whereas atypical cases will probably be labeled as noise.  
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α 

For the sake of comparability to other clustering methods, all noise points of the OPTICS solution 

will be summarized as a residual cluster, but this artificial cluster should not be compared directly 

to other clusters in terms of clinical characteristics and cluster quality. 

7.3.2. The angular metric and the choice of minPts 

Applying the OPTICS method to the dataset, for which the distances between the elements were 

calculated using the standard Euclidean metric, yielded an ordering of the elements which showed 

no significant cluster structure, regardless of the chosen reachability threshold (see diagram A.4 in 

the appendix for the reachability plot).  

The reachability plot indicates that the dataset is essentially treated as one big cluster as the 

algorithm was unable to detect multiple “core regions”.  One can try to solve this problem by 

defining alternative measures of distance, which are more suitable for the treatment of this dataset. 

In this case it was decided to use the angular metric, which is a higher dimensional generalization 

of the angular metric that is used in astronomy. Repeating OPTICS with respect to this alternative 

distance function, the reachability plot showed robust signs of inherent cluster structure. 

 

 

7.3.3. Cluster parameters, implementation and results 

Two cluster parameters must be specified for OPTICS: minPts and eps. Both determine how “core 

regions” are detected as regions of increased density. The parameter eps serves as an upper bound 

in the calculation of “neighborhoods” of elements and does not significantly affect the result if it 

is not chosen too low193.  

Diagram 7.4: A change of the distance function 

Two-dimensional example. Instead of the Euclidean metric d, the angular 

metric α is used 

   

d 
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The more critical task is finding a suitable value for minPts, which determines the number of 

elements that have to be detected in a sufficiently small neighborhood in order to be recognized as 

a “core region” of a cluster. Hence, smaller minPts values tend to produce a more fragmented 

reachability plot, which becomes smoother if minPts increases. According to Ankerst et al. usually 

values between 10 and 20 yield reasonable results193. In this situation the reachability plots for 

minPts values between 5 and 20 were inspected.  Diagram 7.5 illustrates the varying shape of the 

reachability plots with increasing minPts.  

Choosing minPts as 14 leads to an optimal result, with the reachability plot showing two easily 

identifiable clusters. 

The OPTICS clustering was performed using the dbscan package194 for R (v.1.1-1)195. Since a 

different metric than the Euclidean distance was used, the distance matrix with respect to the 

angular metric had to be calculated first. The distance matrix was then used as input for the “optics” 

function of the dbscan package.  

 

The cluster parameters were defined as eps = 20 and minPts = 14. After inspecting the reachability 

plot, a cluster solution using 0,27 as critical reachability value was chosen. Hence, the OPTICS 

algorithm yielded two clusters with the sizes 43 and 33, respectively and 65 noise points. The 

projections of the cluster solutions on the first three PCs are depicted in the appendix (see diagram 

A.2). 

Diagram 7.5: OPTICS Reachability plots for different values of minPts 

All plots were calculated using the angular metric. 

The final choice minPts=14 is shown in the middle. (eps=20, eps_cl=0,27) 

minPts=10 minPts=14 minPts=16 
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7.3.4. Evaluation 

The t-test statistics for the cluster variable yielded significant t-values for every variable except 

VigFalse. 

In case of the non-cluster variables (see table A.5 in the appendix), significant t-values were also 

found except for VigCorr and VigRT. This finding is analogous to the evaluation results for the k-

means solutions, which also had no significant differences with respect to these variables. 

Concerning the silhouette coefficients, one subtlety must be considered. Just as the clustering 

process itself, the silhouette coefficient relies on the metric structure of the dataset. Hence two 

different silhouette coefficients can be calculated for each point, one based on the Euclidean metric 

(again, referring to the standardized cluster variables) and one based on the angular distance.  

Table 7.5: The t-test for the OPTICS cluster solution: Cluster variables 

Mean value and standard deviation for the noise cluster are only listed for the sake of descriptive comparison and not 

considered in the t-test. 

 

Noise cluster (N=65) Cluster 1 (N=43) Cluster 2 (N=33) Statistics (df=74) 

Mean SD Mean SD Mean SD t-value p-value 

ESS 15,5 3,45 13,8 3,83 18,3 2,63 -5,74 <0,001 

PSG_AI 9,61 11,3 2,77 3,46 9,68 8,96 -4,63 <0,001 

VigFalse 4,35 6,10 2,21 2,63 2,76 2,68 -0,893 0,375 

Delta 1,22 1,81 0,640 0,757 0,327 0,403 2,15 0,035 

SL1 4,27 1,88 5,59 1,88 1,97 1,24 9,57 <0,001 

PSG_REML 92,5 57,3 72,4 32,2 20,4 26,2 7,55 <0,001 

PSG_SEI 87,3 7,26 93,7 3,48 88,8 6,40 4,31 <0,001 

 

It should also be noted that since noise elements are summarized into one cluster, low or even 

negative silhouette coefficients are to be expected for this “artificial” cluster. Diagram 7.6 shows 

the silhouette coefficients regarding the Euclidean metric, which allows a direct comparison to the 

other cluster solutions. Additionally, the silhouette coefficient plot using the angular metric can be 

found in the appendix (see diagram A.5). 
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Diagram 7.6: Silhouette coefficients for the OPTICS cluster solution using the Euclidean metric. 

 

 

For both metrics, the “real clusters” both have comparable silhouette coefficients about 0,25. 

Obviously, due to the bad shaped noise cluster, the total silhouette coefficient average is much 

lower than in the k-means situation. Furthermore, despite the failure of reasonable clustering using 

the Euclidean metric, both variants of the silhouette coefficients do not significantly differ.  

Finally, Diagram 7.7 shows the plotted distance matrices of the OPTICS cluster solution. Here, the 

matrices with respect to both metrics are reported. 

Diagram 7.7: Distance matrix plots for the OPTICS cluster solution 

The noise cluster is depicted in the upper left of each diagram 

Euclidean distance Angular distance 
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As to be expected, the noise cluster is almost invisible, whereas both cluster 1 and 2 are reasonably 

easy to detect for both metrics. Outside the cluster rectangulars, the matrix for the angular distance 

is brighter, which indicates high distances between points not belonging to the same cluster (in 

comparison to distances between members of the same cluster). This highlights the finding that 

only the transformation to the angular distance allowed a successful clustering process.   

In conclusion OPTICS was able to detect two rather coherent and well separated clusters, but 

almost half of the dataset was labeled as noise. The evaluation of the two clusters yielded results 

that are qualitatively similar to the ones of the k-means cluster solution, but it remains to be 

discussed whether these good results “have been bought” by the introduction of the large set of 

noise points. 

 

7.4. Spectral clustering 

7.4.1. Spectral clustering: a graph theoretical approach 

After the iterative centroids refinements of the k-means method and the density-based cluster 

detection by OPTICS now the third and final cluster method, spectral clustering, will be introduced.  

The basic principle in spectral clustering is to reduce the dataset to a graph, i.e. a set of points (or 

vertices) and lines (or edges), which connect two different vertices. More precisely, a weighted 

graph will be used, which means that all edges are labeled with a value. The elements of the dataset 

will be interpreted as edges of a graph. Each element/vertex will only be connected to its closest 

neighbor and the corresponding edge weight will encode the distance between these two elements. 

Diagram 7.8: A simple example of a weighted graph 

The blue dots represent vertices, the green connecting lines are edges. Edges are weighed by the assigned numbers. 
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Clusters in the original dataset are translated into regions that are highly interconnected by many 

edges. Between different clusters one expects to find only a few if any edges. Therefore, one should 

apply mathematical techniques that are able to detect regions that are closely interconnected as 

clusters. For accomplishing this task, one can rely on the results of a branch of mathematics called 

graph theory, which served as foundation for the development of spectral clustering. 

Formally, spectral clustering aims to reduce the clustering process to the subspace that is generated 

by the last few eigenvectors of the Laplacian matrix of the adjacency matrix. Ideally, the 

transformed space is lower dimensional than the initial dataset and shows a structure that allows 

an easier clustering via conventional methods like k-means. 

As a rule of thumb, spectral clustering detects clusters in which two elements can always be 

connected by a chain of short edges. Therefore, it is possible that clusters of “atypical shape” 

emerge, being quite different from the convex k-means clusters. Considering this is important, as 

atypically shaped clusters cannot easily be characterized by mean values and standard deviations 

of the cluster variables. 

From a clinical perspective, two patient cases will be assigned to the same cluster if they can be 

connected by a chain consisting of other cases, where each case is very similar to the preceding 

and following case.  

 

7.4.2. Implementation and cluster parameters 

In general, spectral clustering consists of several different steps: 

- Starting with a given similarity matrix, which contains all similarity relations of elements 

in the dataset, the dataset is reduced to a suitable graph, which can be represented by its 

adjacency matrix 

- The corresponding Laplacian matrix is calculated, which contains the essential pieces of 

information regarding the weighed edges between the cases 

- In order to extract the clusters this information is reduced to the space constructed by the 

last eigenvectors of the Laplacian matrix 

- Using conventional cluster methods like k-means, clusters can easily be detected in this 

lower dimensional space 
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Several choices have to be made to adapt the spectral clustering algorithm to the given dataset.  

The first step is the reduction of the dataset to a suitable graph. Following the recommendation of 

Luxburg196 the k-nearest-neighbor method was used. This means that from each case/vertex, k 

edges are drawn to the k nearest vertices around. This approach ensures that each element is 

connected to at least k other elements. Implicitly, once again one has to agree on a measure of 

similarity which fits the dataset. In spectral clustering, a common choice is the Gauß similarity196: 

𝑠(𝑥1, 𝑥2) = 𝑒−𝛼∥𝑥1−𝑥2∥2
, 𝛼 > 0. 

Therefore, the two parameters α and k, have to be chosen in a sensible way. According to Luxburg, 

the obtained graph should be connected (i.e. any two vertices are connected via a chain of edges) 

without allowing too high a density of edges. After some initial testing, k was set to two, so each 

element was connected to its two closest neighbors. 

Apart from the choice of k, also finding the right value for 𝛼 is crucial for a successful clustering. 

No heuristics exist for this situation. Hence, spectral clustering was tested for different values for 𝛼 

and the size of the biggest cluster was plotted for each solution. 

Diagram 7.9: Size of the largest cluster of the spectral cluster solution for different values 

of 𝜶 in the Gauß similarity 

The clustering of the eigenvector space was done using the k-means algorithm (nstart=50). As 

the initial cluster centers were chosen randomly, this graph will slightly change if the algorithm 

is performed again. However, multiple repetitions all yielded very similar graphs. 
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A broad minimum can be observed in the diagram above, so some cluster structure could be 

detected in the data without being too vulnerable to the variation of 𝛼. It was decided to set 𝛼 =

0,39, according to the minimum in the plot. This choice ensures that the dominant cluster of the 

solution is as small as possible. 

The number of relevant eigenvectors is usually chosen to be equal to the number of expected 

clusters. Therefore, the last three eigenvectors were used. 

In spectral clustering the clustering of the eigenvector space is usually done using k-means. K-

means was also applied in this situation, but since no reasonable cluster centers were available, the 

nstart parameter of the kmeans function in R was used and set to 50 (library stats v.3.3.3.)195. This 

means that the k-means procedure was repeated 50 times and the best cluster solution was selected. 

The following diagrams show the clustering results in the eigenvector space. As these diagrams 

suggest, indeed three clusters can easily be identified in the eigenvector space. 

Diagram 7.10: The spectral clustering solution in the “eigenvector space” 

EV: Eigenvector; the labels indicate which eigenvector serves as X / Y -axis. 

EV1 / EV2 EV1 / EV3 EV2 / EV3 

   

 

Following the descriptions of Luxburg196, the R code was manually written to perform the spectral 

clustering and can be found in table A.9 in the appendix. 

Three clusters were obtained which contained 34, 12 and 95 elements, respectively. Diagram A.3 

in the appendix shows the clusters projected on the first three principal components. 

 

7.4.3. Evaluation  

Due to the special approach of spectral clustering no convex cluster shapes were to be expected. 

The three clusters have emerged by summarizing elements that are closely connected with respect 

to the graph simplification of the dataset, in which each element was only connected to its two 
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closest neighbors. As diagram A.3 demonstrates, the obtained clusters are far more difficult to 

visually separate than in the k-means or OPTICS solutions. 

 
Table 7.6: ANOVA statistics for the spectral clustering solution 

 

Cluster 1 

(N=34) 

Cluster 2 

(N=12) 

Cluster 3 

(N=95)  

Statistics 

(df=140) 

Mean SD Mean SD Mean SD F-value p-value 

ESS 16,9 3,53 13,5 3,78 15,5 3,71 3,99 0,021 

PSG_AI 9,33 8,21 20,3 17,6 5,28 6,88 17,4 <0,001 

VigFalse 1,94 1,87 11,3 9,68 2,82 3,33 26,6 <0,001 

Delta 0,274 0,403 0,425 0,367 1,08 1,58 5,33 0,006 

SL1 1,73 1,01 3,58 2,24 5,07 1,78 50,1 <0,001 

PSG_REML 27,4 31,6 40,0 47,9 88,3 49,2 25,1 <0,001 

PSG_SEI 89,7 6,59 84,6 5,20 90,2 6,70 3,92 0,022 

 

The ANOVA results regarding the cluster variables nevertheless showed significant differences for 

all cluster variables. Remarkably, the ANOVA statistics for the non-cluster variables (see tables 

A.7 and A.8) yielded a result which is closely related to the corresponding statistics for the other 

cluster solutions: Again, one notices significance for all non-cluster variables except VigCorr and 

VigRT.  

Next, the silhouette coefficients for every element in the dataset were calculated. The Euclidean 

metric was used as an underlying distance measure to allow a comparison between all three cluster 

solutions. Furthermore, in the appendix the silhouette coefficients of the elements in the 

eigenvector space are illustrated (in diagram A.6). 

Diagram A.6 in the appendix emphasizes how the spectral clustering approach reduced the high-

dimensional dataset to a three-dimensional space, in which three high quality clusters emerged. 

However, if one considers the silhouette coefficients regarding the Euclidean metric in the original 

space of the cluster variables, one notices that the spectral cluster solution seems to be of inferior 

quality compared to the k-means or OPTICS solution. Only cluster 1 shows silhouette coefficients 

similar to the best clusters in k-means or OPTICS, but the majority of elements is grouped in 

clusters 2 and 3, which have overall silhouette coefficients close to zero. 
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This finding can be explained by the graph theoretical concept of spectral clustering, which allows 

the formation of non-convex, possibly “intertwined” clusters that are usually characterized by 

suboptimal separation and cohesion values. 

The corresponding matrix plots yield similar results. Diagram 7.12 shows a direct comparison of 

the distance matrix plots in the eigenvector and cluster variable space. 

Diagram 7.12: Distance matrix plots for the spectral clustering solution 

Eigenvector space Euclidean metric 

  

 

For the comparison of the different cluster solutions, the right plot should be used. The left plot 

again highlights the effectiveness of the data transformation in spectral clustering, which leads to 

the formation of three clusters of seemingly very high quality. On the other hand, regarding the 

original variable space, spectral clustering has yielded a cluster solution that seems to be inferior 

to the k-means and OPTICS solution, as only cluster 1 emerges as a clearly visible rectangular. 

Diagram 7.11: Silhouette coefficients of the spectral clustering solutions with respect to the Euclidean metric 
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7.5. Discussion and cluster comparison 

7.5.1. The ICSD-3 diagnoses as null hypothesis cluster solution 

Before discussing the three different cluster solutions in further detail, the “null hypothesis” cluster 

solution that has been predefined by the ICSD-3 will be presented briefly. All validation techniques 

described above will be applied here, allowing a better estimation of the quality of the alternative 

clusters. The scatterplots of the ICSD-3 clusters projected on the first three PCs are already shown 

in the discussion of the PCs.  

Regarding the cluster variables there are significant differences between the diagnoses for the 

variables Delta, SL1, PSG_REML, PSG_SEI. In particular, one notices the significantly higher 

Delta values for IH and the typical hierarchy for the SL1 values with narcolepsy type 2 lying 

between narcolepsy type 1 and idiopathic hypersomnia, that has also been observed by other 

authors163, 172.  

Table 7.7: ANOVA statistics for the ICSD-3 Diagnoses: cluster variables 

 
narcolepsy type 2 narcolepsy type 1 idiopathic hypersomnia statistics (df=140) 

Mean SD Mean SD Mean SD F-Value p-value 

ESS 15,6 4,16 16,3 3,10 15,0 3,72 1,19 0,307 

PSG_AI 7,30 8,31 9,00 12,5 6,43 7,47 0,785 0,458 

VigFalse 3,62 4,94 3,98 5,57 2,29 2,85 1,58 0,210 

Delta 0,585 0,723 0,439 0,974 1,56 1,97 9,72 <0,001 

SL1 4,39 2,21 2,43 1,42 5,45 1,67 28,5 <0,001 

PSG_REML 65,2 40,4 48,9 56,6 95,6 54,4 9,53 <0,001 

PSG_SEI 91,7 5,57 86,7 7,31 89,6 6,56 7,47 0,001 

 

The ANOVA statistics of the non-cluster variables (see table A.10 in the appendix) show 

significant differences for SL2, TST, susSL and #SOREM. For the SOREM count, this is obviously 

due to the diagnostic criteria for IH and narcolepsy. Just like for all cluster solutions, no significant 

F-value was reported for VigCorr and VigRT. 
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Diagram 7.13: Silhouette coefficients of the ICSD-3 clusters (diagnoses) 

 

 

The silhouette coefficients as well as the distance matrix plot suggest, that if one follows the ICSD-

3 diagnoses, no clusters of high quality are obtained.  However, in contrast to the cluster solutions, 

the ICSD-3 diagnoses have not been designed to yield significant differences regarding the seven 

cluster variables (that are considered for the calculation of the silhouette coefficient and the 

distance matrix). Hence, although the diagnostic clusters appear to be inferior to the three obtained 

cluster solutions, direct comparison is of limited use due to this fact. But if one agrees on the 

importance of all seven cluster variables, the ICSD-3 diagnoses offer only a suboptimal 

classification of the dataset. 

Diagram 7.14: Distance matrix plot for the ICSD-3 diagnoses 

Here, the Euclidean distance with respect to the cluster variables 

was used. 
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7.5.2. Rand indices: A first comparison of the cluster solutions 

For a first impression of the similarity of the different cluster solutions, the Rand coefficients were 

calculated. Given two cluster solutions A and B, the Rand coefficient checks if any two elements 

that share a common cluster/lie in different clusters in cluster solution A also share a common 

cluster/lie in different clusters in cluster solution B. The more similar two different partitions are, 

the closer the Rand coefficient will be to 1189. 

Table 7.8: Cluster comparison using Rand coefficients 

SPECC: Spectral clustering 

 Diagnoses kmeans OPTICS SPECC 

Diagnoses 1 0,57 0,56 0,55 

kmeans 0,57 1 0,62 0,62 

OPTICS 0,56 0,62 1 0,6 

SPECC 0,55 0,62 0,6 1 

 

As the Rand indices in table 7.8 suggest, the cluster analyses did not reproduce the diagnostic 

partition of the dataset, but the three cluster solutions are almost as different from each other as 

they are different from the diagnostic clusters. Hence, the “null hypothesis” clustering by the ICSD-

3 diagnoses cannot be accepted from the perspective of cluster analysis. However, the considerable 

differences between the three cluster solutions do not support the suggestion of a universally 

superior partition of the dataset.  

7.5.3. Cluster validation results 

In matters of the cluster variables, the ANOVA/t-test statistics yielded significant F-values for all 

variables in all cluster solutions, with the only exception being VigFalse in the OPTICS clustering. 

As it has been discussed earlier, only the lack of significance would be of real use for the cluster 

validation, since it would indicate the failure of the corresponding clustering method. 

Regarding the non-cluster variables, VigRT and VigCorr never showed significant between-group 

differences, but these could not be observed between the ICSD-3 diagnoses either (see table A.10 

in the appendix). The remaining non-cluster variables significantly differed between the clusters 

of every cluster solution.  
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Table 7.9: Cluster size and silhouette coefficients for all cluster solutions 

All silhouette coefficients have been calculated using the Euclidean distance measure with respect to the z-standardized cluster 

variables. “Cluster 3” of the OPTICS solution is the collection of all noise points 

 k-means OPTICS Spectral clustering 

 N Silhouette N Silhouette N Silhouette 

Cluster 1 76 0,290 43 0,22 34 0,28 

Cluster 2 46 0,062 33 0,32 12 -0,037 

Cluster 3 19 -0,0076 65 (Noise) -0,043 95 0,070 

Total average 141 0,178 141 0,12 141 0,11 

 

In total, the highest average silhouette coefficient can be found in the k-means cluster solution. 

This could hint at a slight superiority of the k-means cluster solution compared to OPTICS and 

spectral clustering. Another explanation for this finding is the inherent tendency of k-means to 

report convex-shaped clusters which are more optimal regarding cohesion and separation than the 

possibly more atypical cluster shapes in OPTICS and spectral clustering. OPTICS was able to 

produce two clusters of relatively high quality, but the overall silhouette average is deteriorated by 

the artificial “noise cluster”. Spectral clustering detected the largest single cluster of all cluster 

solutions, which, however, is characterized by a silhouette coefficient close to zero. Furthermore, 

only in spectral clustering less than half of all cases were assigned to a cluster with an acceptable 

overall silhouette coefficient above 0,2. As it has been mentioned above, this is no indication of 

the principal inferiority of spectral clustering but a consequence of the distinct mathematical 

approach of this method.  

7.6. Characterization and Comparison  

Now every cluster solution will be inspected more closely and discussed regarding the core 

characteristics of each of its clusters. Apart from size and cluster variable values, also the frequency 

of the different ICSD-3 diagnoses will be taken into account. By doing this, one gets not only a 

quick impression of the cluster characteristics but may also gain insights into the relationship 

between IH and narcolepsy type 2. For each considered variable, the average values for every 

cluster are listed below. 

It should be noted that comparing clusters with respect to mean values of their respective elements, 

implicitly a convex, ball-like shape of the clusters is assumed. Especially for spectral clustering, 
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such an assumption would be highly unjustified, hence caution is needed for the interpretation of 

apparent differences.  

Diagram 7.15: Comparison of the k-means solution clusters 

 N ESS PSG_AI VigFalse Delta SL1 PSG_REML PSG_SEI SL2 TST susSL #SOREM VigCorr VigRT PSG_N3_TST CATAP 

1 76 14,8 4,25 2,05 0,59 4,75 79,9 92,9 8,79 119 5,33 2,03 86,3 0,547 16,9 13/76 

2 46 16,9 9,47 5,87 0,27 2,46 33,2 85,8 5,26 132 2,73 3,54 83,3 0,586 11,2 25/46 

3 19 15,9 16,0 2,26 3,16 5,75 115,9 85,8 12,2 95 8,91 0,789 88,6 0,572 10,7 3/19 

 

 

 

Diagram 7.15. depicts the frequency of the ICSD-3 diagnoses and mean values of all considered 

variables in the clusters of the k-means solution. Both the silhouette coefficients and the distance 

matrix plots hint at the residual character of cluster 3. Hence, k-means effectively yielded two 

clusters and cluster 3 apparently only emerged because the cluster number was prespecified as 3. 

Therefore, the focus will lie on the descriptions of the clusters 1 and 2. However, one notices that 

cluster 3 seems to summarize patients showing the highest values of Delta. 

• Cluster 1: Efficient, deep sleepers; IH/narcolepsy type 2: From the perspective of the 

ICSD-3 diagnoses, this cluster shows a structure that will also reappear in the other cluster 

solutions. It summarizes more than half of the total number of both IH and narcolepsy type 

2 cases. Delta values are higher than in cluster 2 but much lower than in the residual cluster. 

Also regarding the SOREM count, the sleep latency and the REM latency, cluster 1 lies in 

between the clusters 2 and 3. Cluster 1 has the highest average sleep efficiency and the 

fraction of N3 sleep is significantly higher than in the other clusters, whereas the arousal 

indices in cluster 1 are – on average – lower than in cluster 2 or 3. Compared to cluster 2 

patients of this cluster have slightly better results in the vigilance test. 
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• Cluster 2: Typical narcolepsy phenotypes: Most of the narcolepsy type 1 and almost no 

IH cases can be found in this cluster. It is characterized by extremely low sleep latencies, 

more than three SOREMs on average in the MSLT and the shortest REM latencies. Both 

the high SOREM count and the short REM latencies indicate a dysregulation of REM sleep. 

These patients also report the highest subjective sleepiness in the ESS and have the poorest 

performances in the vigilance test.  

In conclusion, two third of narcolepsy type 2 and one third of narcolepsy type 1 patients have been 

assigned to cluster 1, which is characterized by higher sleep efficiency, two SOREMS on average 

in the MSLT, and higher Delta values. Also, the majority of IH cases has been assigned to this 

cluster. The remaining cases, if one neglects the residual cluster 3, are comprised in cluster 2, which 

describes a pronounced narcolepsy phenotype. 

Hence, k-means was not capable to distinguish the narcolepsy subtypes from each other, nor the 

narcolepsy subtypes from IH. Narcolepsy patients seem to be distributed along a continuum 

ranging from the typical presentation of severe narcolepsy (short sleep latencies, many SOREM 

episodes, low Delta, etc.) to individuals showing higher sleep efficiencies, higher sleep latencies, 

less SOREMs and a significantly higher REM latency. Narcolepsy type 1 patients tend to appear 

closer to the former prototype, whereas most of the narcolepsy type 2 patients can be described by 

the latter characterization and are therefore very difficult to distinguish from IH patients. 

It should also be noted, that for the initial cluster centroids, the “centers” of narcolepsy type 2, 

narcolepsy type 1 and IH were used, respectively. During the k-means procedure, the initial 

narcolepsy subtypes clusters exchanged about a third of their cases, whereas almost all IH cases 

were integrated in the initial narcolepsy type 2 cluster. Thus, only a small residual cluster 3 

remained. 
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Diagram 7.16: Comparison of the OPTICS solution clusters 

 N ESS PSG_AI VigFalse Delta SL1 PSG_REML PSG_SEI SL2 TST susSL #SOREM VigCorr VigRT PSG_N3_TST CATAP 

0 65 15,5 9,61 4,35 1,22 4,27 92,5 87,3 8,91 116 5,49 2,02 84,1 0,576 13,1 19/65 

1 43 13,8 2,77 2,21 0,640 5,59 72,4 93,7 9,52 114 6,23 1,81 86,1 0,552 18,5 5/43 

2 33 18,3 9,68 2,76 0,327 1,97 20,4 88,8 4,63 134 2,30 3,73 86,6 0,552 10,9 17/33 

 

 

 

The main issue of the OPTICS cluster solution is the noise cluster 0, which comprises almost half 

of the dataset. In a strict sense, these elements have not been recognized as members of any cluster, 

but are formally treated as “cluster 0”. As the cluster solution plot in the appendix indicates, many 

outlying elements contribute to this widespread collection of cases. Therefore, it is not possible to 

discuss cluster 0 in the standard way. One notices on first sight that all three ICSD-3 diagnoses 

appear in a similar frequency in cluster 0, which also shows the worst vigilance test results, highest 

Delta values and highest REM latencies on average. 

If one neglects the “noise cluster”, again two clusters are obtained, so both k-means and OPTICS 

suggest the rejection of the null hypothesis assumption of three clusters in the dataset. 

• Cluster 1: The IH/narcolepsy type 2 cluster: high efficient sleepers without significant 

REM disorder: This cluster summarizes the cases showing the highest sleep efficiency 

and N3 fraction. Due to the contributions by narcolepsy type 2 and IH cases, an average 

SOREM count of 1,8 is obtained. The average sleep latency lies well under the 8-minute 

threshold but is significantly higher than in cluster 2. Compared to the noise cluster and 

cluster 2, individuals assigned to cluster 1 show the lowest subjective sleepiness as it has 
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been measured by the ESS (13,8 points on average). Additionally, cluster 1 shows a lower 

average value for the REM latency and the arousal index. 

• Cluster 2:  The narcolepsy phenotype: Just like cluster 2 in the k-means solution, the 

most severe cases in terms of sleep latency, SOREM count and REM latency can be found 

in this cluster. Neglecting cluster 0, this cluster is formed by about a third of all narcolepsy 

type 2 cases combined with almost all narcolepsy type 1 cases. The average SOREM count 

is almost four, whereas the average sleep latency is about 2 minutes. Furthermore, one 

notices that on average, cluster 2 has Delta values about half of those in cluster 1. The 

individuals assigned to this cluster rated their EDS as 18 points on the ESS on average and 

show significantly more arousals than cases in cluster 1 did. 

The comparison to the k-means cluster solution reveals the close similarity of the respective 

clusters. In both cases, cluster 1 includes most narcolepsy type 2 and IH cases, which are 

characterized by high sleep efficiency, relatively high values of Delta and REM latencies 

significantly above the average of cluster 2. Both in k-means and in OPTICS, the latter consists 

almost exclusively of narcolepsy cases, with narcolepsy type 1 being the dominating subtype. 

 

Diagram 7.17: Comparison of the clusters of the spectral clustering solution 

 N ESS PSG_AI VigFalse Delta SL1 PSG_REML PSG_SEI SL2 TST susSL #SOREM VigCorr VigRT PSG_N3_TST CATAP 

1 34 16,9 9,33 1,94 0,274 1,73 27,4 89,7 4,74 135 2,01 3,79 87,3 0,557 11,6 20/34 

2 12 13,5 20,3 11,3 0,425 3,58 40,0 84,6 7,44 124 4,01 3,42 84,1 0,583 11,2 8/12 

3 95 15,5 5,28 2,82 1,08 5,07 88,3 90,2 9,37 113 6,15 1,71 84,7 0,563 15,5 13/95 
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Regarding the distance matrix plots and silhouette coefficients, the spectral clustering procedure 

has found slightly inferior clusters to those of k-means and OPTICS. Cluster 3 comprises about 

two third of the dataset, and Cluster 2 is very small and shows poor silhouette coefficients. 

Therefore, the latter will be treated as a residual cluster and the further descriptions will concentrate 

on clusters 1 and 3. As a main feature, the residual cluster comprises individuals with a poor 

performance in the vigilance test. On average, more than 10 false reactions were measured in these 

cases. 

• Cluster 1: Typical narcolepsy phenotype: Like cluster 2 in k-means and OPTICS, this 

cluster mainly consists of narcolepsy type 1 and a fraction of narcolepsy type 2 cases. With 

respect to cluster and non-cluster variables, one finds values that are comparable to those 

of cluster 2 in k-means and OPTICS. 

• Cluster 3: Deep, efficient IH/narcolepsy type 2 sleepers: Again, a cluster has emerged 

that summarizes the cases showing the highest sleep efficiency and N3 fraction. The 

average Delta value is about three times the value of cluster 1. Cluster 3 may be larger than 

the corresponding clusters 1 in k-means and OPTICS but is still very closely related to them 

in terms of SOREM count, REM latencies and MSLT sleep latencies. 

Again, one notices the characteristic compositions of the two relevant clusters that bear close 

resemblance to the corresponding clusters obtained by k-means and OPTICS. The calculation of 

the three cluster solutions was based on very different mathematical techniques, but nevertheless a 

common pattern is shared by all solutions. Each clustering procedure yielded one cluster that is 

dominated by narcolepsy type 1 patients and characterized by diagnostic findings that are typical 

for severe cases of narcolepsy. Almost no IH patients can be found in these clusters. Furthermore, 

every cluster analysis found a second cluster, in which IH and narcolepsy type 2 appear in similar 

frequencies, accompanied by only a few narcolepsy type 1 cases. 

The consistent emergence of two relevant clusters supports the rejection of the null hypothesis, 

which stated the existence of three important clusters in analogy to the ICSD-3 diagnoses. 

7.7. The narcolepsy subtypes: A critical remark based on the cluster results 

From the perspective of the null hypothesis, three clusters were expected to emerge, reflecting the 

three ICSD-3 diagnoses. As it has become apparent in section 7.6., all three diagnoses are split up 
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in the process of cluster analysis. Regardless of the chosen method, cases sharing the same 

diagnoses end up in different clusters. Table 7.10. shows, in what ratio each diagnosis was 

distributed among the two major clusters of the different cluster solutions. 

Table 7.10: Separation of the diagnostic groups in the cluster solutions 

The residual/noise cluster is not considered; all values are in percentage 

 k-means OPTICS Spectral clustering Average 

Narcolepsy type 1 65,8 – 34,2 77,3 – 22,7 60,6 – 39,4 67,9 – 32,1 

Narcolepsy type 2 68,5 – 31,5 60,0 – 40,0 79,6 – 20,4 69,4 – 30,6 

IH 86,7 – 13,3 89,5 – 10,5 92,9 – 7,1 89,7 – 10,3 

 

Neglecting the cases that are comprised in the residual/noise clusters, every cluster analysis 

assigned more than 85 % of the IH cases to the same cluster. In comparison, this is only true for 

about two third of the narcolepsy type 1 or type 2 cases. 

Hence, despite the lack of a concise pathophysiological concept, IH was separated the least by the 

cluster algorithms. Narcolepsy type 1 is far less consistently kept in a single cluster, but this is at 

least partially a consequence of the omission of cataplexy in the cluster variable selection process. 

Additionally, the diagnosis of narcolepsy type 1 could be consolidated by the measurement of CSF 

hypocretin. 

These considerations highlight narcolepsy type 2 as the most questionable diagnostic group, which 

also shows intermediate values regarding most variables (see table 7.7). Of course, the simplest 

explanation for the cluster results is assuming that narcolepsy type 2 indeed exists as a reasonable 

diagnostic group, which – due to its intermediate position between narcolepsy type 1 and IH – 

tends to be assigned to the former or latter by cluster algorithms. 

However, two important factors could also contribute to the perceived heterogeneity of narcolepsy 

type 2.  One aspect might be the poor test-retest reliability of the MSLT40. There is a study by Trotti 

et al., that focuses on the specific situation of distinguishing between narcolepsy type 2 (without 

cataplexy) and IH. In a dataset of 36 patients with narcolepsy type 2 and IH, performing a second 

MSLT led to a change of diagnosis due to a changed SOREM count in 31 % of all cases39. Hence, 

at least some cases of narcolepsy type 2 should probably diagnosed as IH, but showed two or more 

SOREMs in the MSLT “by chance”. On the other hand, the differentiation of narcolepsy type 2 

from type 1 still depends mostly on the occurrence of cataplexy, since the invasive measurement 
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of CSF hypocretin are usually avoided. Sturzenegger et al. report that cataplexy may have its onset 

some years after the onset of hypersomnolence87, whereas Rye et al. have identified the late onset 

of cataplexy as an important factor that might cause a delayed diagnosis of narcolepsy with 

cataplexy197. Therefore, narcolepsy type 1 patients will in many cases be labeled as narcolepsy type 

2 until their first episode of cataplexy. 

In conclusion, due to its intermediate position between narcolepsy type 1 and IH, narcolepsy type 

2 poses many problems in diagnosis and differential diagnosis. A poor test-retest-reliability of the 

MSLT as well as a delayed cataplexy onset in narcolepsy type 1 can at least partially explain why 

narcolepsy type 2 was grouped together with IH or narcolepsy type 1 by the cluster algorithms 

instead of forming its own cluster. In the end, it cannot be decided whether narcolepsy type 2 is 

indeed a reasonable diagnostic concept or if it is merely a consequence of the shortcomings of the 

current diagnostic tools and concepts as it has been suggested by Mayer et al.45. 

 

7.8. Conclusion 

In this chapter, cluster analyses were performed to identify groups in the given dataset that agree 

with respect to the selected cluster variables. Three different approaches for detecting clusters were 

considered. The k-means algorithm defined clusters as a set of elements that are closer to their 

cluster center than to the centers of the other clusters. OPTICS detected core regions of cluster as 

regions showing an increased density of elements. Finally, spectral clustering assigned elements, 

which could be connected by a “path” consisting of sequentially similar elements, to the same 

cluster. 

The different concepts behind the cluster analyses eventually led to clusters, which significantly 

differ from the “diagnostic clusters” suggested by the ICSD-3, but which are also not closely related 

to each other. Nevertheless, all three cluster solutions turned out to be superior to the ICSD-3 

diagnostic groups (regarding the detection of differences in the cluster variables), although no 

cluster solution emerged as a clear, optimal solution. 

Despite their dissimilarity all three cluster solutions agree in several important properties.  

• K-means, OPTICS and spectral clustering all yielded two significant clusters, thereby 

discouraging the acceptance of the previously stated null hypothesis (i.e., the existence of 
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three important clusters in the dataset). However, it should be considered that whereas k-

means and spectral clustering found only a small residual third cluster, almost half of all 

cases were assigned to the noise cluster by OPTICS. 

• The three corresponding pairs of relevant clusters, regardless of their differences in absolute 

size, were remarkably similar with respect to the following aspects: 

o One cluster of each pair always summarizes at least 85 % of the IH cases (cases in 

the residual/noise cluster are neglected) together with more than half of all 

narcolepsy type 2 cases. These cases are always characterized by a higher sleep 

efficiency, higher values of Delta, higher latencies to REM sleep and lower ESS 

scores than those that occur in the other non-residual cluster. 

o The other cluster of each pair consists of the majority of narcolepsy type 1 cases 

and a considerable fraction of narcolepsy type 2 cases. Only very few IH cases are 

found in these clusters. A significant REM sleep dysfunction of their members 

seems to be present as on average more than three SOREMs occur in these patients. 

Additionally, members of these clusters rate their subjective sleepiness highest in 

the ESS, show the lowest sleep latencies and have more fragmented night sleep than 

cases from the other cluster. 

 

In conclusion, the consistent finding of the two clusters challenge the diagnostic groups defined by 

the ICSD-3. Instead of the three diagnoses narcolepsy type 1, narcolepsy type 2 and IH, the concept 

of only two subgroups might be more appropriate. In particular, the results of this chapter suggest 

that whereas IH and narcolepsy type 1 can be easily distinguished from each other, narcolepsy type 

2 cases could not be efficiently separated from cases of the other diagnostic groups. 

Section 7.6 further addresses this perceived heterogeneity of narcolepsy type 2. One explanation 

for this finding would be that at least some narcolepsy type 2 cases are actually patients suffering 

from IH, but whose MSLT showed two or more SOREMS “by chance”. Another subgroup of 

narcolepsy type 2 patients might suffer from (probably hypocretin deficient) narcolepsy type 1 but 

are misdiagnosed as narcolepsy type 2 due to a delayed onset of cataplexy. It cannot be decided 

with certainty whether narcolepsy type 2 is indeed an “intermediate” condition between narcolepsy 
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type 1 and IH or an artificial collection of cases that should actually be labeled as IH or narcolepsy 

type 1. 

Addressing question III that has been stated in section 3.4., one can conclude that all three cluster 

analyses yielded two “essential” clusters, that mostly agree in their basis properties. The 

frequencies of the ICSD-3 diagnoses in the clusters revealed a close similarity to IH for some 

narcolepsy type 2 cases, whereas other narcolepsy type 2 cases were assigned to the cluster 

dominated by narcolepsy type 1 cases. Regarding question IV, this indicates that the current 

diagnostic groups might not be a reasonable reflection of the true dataset structure. In chapter 8, it 

will further be discussed, if and to what degree the algorithmically obtained clusters might justify 

alternative classifications. 
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8. General Discussion 

Having performed all statistical analyses, it is now time to revisit the major topics of this thesis 

considering all results that have been obtained. First, MSLT parameters will briefly be discussed 

again, taking into account the PCA and cluster analysis results. After that, the observations 

regarding vigilance test results will be summarized. Motivated by the consistent findings of two 

relevant clusters, a conclusion will be reached regarding the optimal classification of the cases in 

the dataset at hand with the critical question being whether a certain subdivision into two groups 

might be more suitable than the ICSD-3 diagnoses.   

8.1. Sleep latencies, SOREMs and Delta 

The MSLT sleep latencies as well as the SOREM count are essential for diagnosing IH and 

narcolepsy. This fact is well reflected by the components of the dominant principal component, 

which comprises the sleep latencies and SOREM count in the expected way. 

The occurrence of the SOREM count in the principal component should not be surprising, as it is 

the main criterion for the differential diagnosis between IH and the narcolepsy subtypes. The 

SOREM count ranges from 0 in IH patients to 5 in very severe narcolepsy cases. Furthermore, a 

solid correlation between the SOREM count and SL1 has been shown for both narcolepsy 

subgroups in linear regression analysis. This correlation between SL1 and the SOREM count serves 

also as an explanation for the appearance of SL1 in the dominant principal component. As the 8-

minute-threshold applies for all diagnoses that are considered in this thesis, it was not clear a priori 

that SL1 would account for much variance in the dataset.  

Apart from the correlation between the SOREM count and SL1, differences in SL1 between the 

diagnoses (also between the narcolepsy subtypes) should be considered. The ANOVA analysis of 

the ICSD-3 groups as well as several other authors showed that there is a typical hierarchy 

regarding the sleep latencies163, 172. Compared to narcolepsy, IH patients tend to have slightly 

higher sleep latencies, and narcolepsy type 2 patients usually show sleep latencies ranging between 

those of IH and narcolepsy type 1 patients.  

Also, the Delta parameter is a significant contributor to the dominant PC. This observation may at 

least partially be explained by the positive correlation between Delta and the sleep latencies. The 

𝑅2-value of the corresponding linear regression analysis was 0,147, hence more than 85% of the 
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variance in the Delta variable cannot be explained by a (linear) dependence from the sleep latency 

and by differences between the diagnoses (that are represented by the dummy variables). This is 

well reflected by the fact that Delta also significantly contributes to PC3 and PC7. The former 

shows no important contributions by other MSLT parameters, indicating that Delta indeed holds 

some additional diagnostic information. However, the low fraction of explained variance in linear 

regression analysis raises doubts if Delta can indeed be of differential diagnostic use, as most of its 

variance cannot be tracked back to varying diagnoses. 

Indirectly, SL1 was chosen as a cluster variable representing PC1 by the variable selection 

algorithm. Being one of the dominant variables of PC1, the inclusion of SL1 in the cluster analysis 

ensured that most of the information encoded in PC1 was considered by the cluster algorithms. 

This leads to a successful clustering process with respect to the axis spanned by PC1, which can 

best be observed in the k-means cluster plots in the appendix (diagram A.1). Consistently, for each 

cluster analysis the two important clusters are arranged along the PC1 axis, which essentially means 

that they contrast cases showing low sleep latency, high SOREM counts, low REM latencies and 

likely cataplectic episodes with cases presenting the opposite phenotype. 

In general, the emergence of PC1 as a principal component summarizing essential and commonly 

used MSLT parameters suggest a key role of these parameters in the differential diagnosis of IH 

and the narcolepsy subtypes. In the current diagnostic criteria, which do not consider sleep latency 

for the purpose of differential diagnosis, this finding is only reflected by the role of the SOREM 

count in differentiating narcolepsy from IH. Here, a major limitation of the results obtained in this 

thesis becomes apparent. As no healthy controls could be considered in the PCA and cluster 

analysis, the interpretations above are limited to differential diagnostic considerations. 

Nevertheless, the conclusion can be reached that the commonly used MSLT parameters are 

important tools to characterize cases of IH and narcolepsy. This fact is supported by the significant 

differences between the ICSD-3 diagnoses and by the consistent patterns regarding these variables, 

that have been observed in all cluster solutions. 

All cluster algorithms proved also to be successful with respect to Delta. The descriptive statistics 

regarding the ICSD-3 diagnostic groups revealed that on average, narcolepsy patients show Delta 

values about 0,5 minutes, whereas for IH patients, a mean Delta of 1,5 minutes was found. On the 

other hand, the corresponding 𝑅2-value indicated that more than 85 % of the variance in Delta 
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cannot be explained by sleep latency or – more importantly – by the different diagnoses. The 

following diagram may help to solve this apparent contradiction. 

Diagram 8.1: Frequency of different Delta values for the ICSD-3 diagnoses 

 

 

As the diagram indicates, most patients have Delta values below one minute. The significant 

differences in the mean Delta values are caused by the differing frequencies of outlier cases with 

extreme high values of Delta. Diagram 8.1 clearly illustrates that most of these outlying cases can 

be found in the IH group.  

Similarly, in the k-means cluster solution, both the members of the narcolepsy-dominated and the 

“IH-narcolepsy type 2” cluster show low Delta values in most cases. But since more outliers have 

been assigned to the latter, there is a significant difference in the mean values between the clusters 

(see diagram A.7 in the appendix). 

In conclusion, these diagrams demonstrate that for most cases the Delta parameter is not of 

differential diagnostic use. However, for increasing Delta values, the diagnosis of narcolepsy 

becomes less and less likely. Diagram 8.2 depicts the odds ratio for an IH diagnosis for Delta values 

above a certain threshold. Clearly, the finding of a Delta value above three minutes renders IH as 

a far more likely diagnosis than narcolepsy. 
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Diagram 8.2: Odds ratios for the diagnosis of IH versus diagnosis of narcolepsy  

Odds ratio for the diagnosis of IH against the diagnosis of narcolepsy of any subtype 

 

 

8.2. Vigilance test results 

It has been described above that the impairment of vigilance is another aspect of sleepiness that is 

not covered by the MSLT. By including the results of the Quatember-Maly vigilance test into the 

PCA and consequently into the cluster analysis, the former was taken into consideration for the 

detection of clusters. Two essential observations regarding the vigilance test results could be made. 

First, the second principle component, PC2, is essentially a score for the overall performance in 

the Quatember-Maly test. It contrasts patients showing a higher than average number of right 

reactions, a lower than average number of false reactions and relatively low reaction times with 

cases in which a poor overall performance was observed. Interestingly, this principal component 

shows only one additional significant contribution and associates a good test performance with an 

increased nocturnal arousal index.  

The visual impression of the ICSD-3 groups plotted along the first three principal components 

suggested that whereas some order of the diagnostic groups along PC1 became apparent, the 

different diagnoses could not be distinguished along PC2, as all three groups show comparable 

scores on PC2.  
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Diagram 8.3: Frequency distributions for the two first principal components 

PC 1 PC 2 

  

 

VigFalse was chosen as cluster variable by the selection algorithms, therefore representing a 

significant fraction of PC2 in the cluster analysis. This leads to the second important observation: 

No clustering algorithm yielded significant differences with respect to the non-cluster variables 

VigRT and VigCorr, and the OPTICS algorithm even failed to produce clusters which significantly 

differ regarding VigFalse. 

Hence, despite forming the second most important principal component, the vigilance test results 

were not considered accordingly by the cluster algorithms. Especially the failure of successful 

clustering with respect to VigFalse in OPTICS highlights this fact. This raises the question why 

VigFalse has been selected as a cluster variable despite its apparent uselessness for cluster analysis. 

From a methodical point of view, a reasonable explanation can be offered. Three of 14 input 

variables for the PCA were vigilance test parameters, which show a moderate correlation between 

each other and significantly less correlation with respect to the other variables. Therefore, PCA 

identified an overall vigilance test score as an important principle component, which could explain 

a reasonable amount of variance in the vigilance test results. Indirectly, this leads to the selection 

of VigFalse as a cluster variable. 
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Diagram 8.4: Frequency distribution of PC 1 and 2 

All IH and narcolepsy cases are considered, the diagnoses are not differentiated 

PC1 PC2 

  

 

Diagram 8.4 offers distribution plots for the first two principal components. Whereas PC1 indicates 

a certain possibility for reasonable clustering as more than one peak can be observed, PC2 seems 

to be almost normally distributed. If there are any reasonable subgroups to be identified in the 

dataset, no apparent separation of these groups can be observed regarding PC2. The low correlation 

coefficients regarding variables that are unrelated to the vigilance test indicate that by considering 

vigilance test results as useful variables for the PCA, three additional dimensions have been added 

to the dataset that appear to be more or less unrelated to the “remaining structure” of the dataset. 

According to this interpretation, the emergence of PC2 as an overall vigilance score as well as the 

selection of VigFalse for the purpose of clustering is merely a mathematical consequence of 

including these variables in the first place. 

Referring to the introductory section for vigilance tests, the argument can be concluded as follows: 

Despite being an important dimension of sleepiness, impairment of vigilance as measured by the 

Quatember-Maly test yields no additional information regarding the classification of the dataset at 

hand. As the results of this thesis suggest, vigilance test results are too unrelated to the established 

diagnostic parameters and mainly acted as “additional layer of statistical noise” which subsequently 

leads to the inclusion of VigFalse as a cluster variable. According to the cluster results, the 

Quatember-Maly vigilance test does not distinguish properly between IH and narcolepsy subtypes 

and does not provide variables along which clusters could effectively be identified and 

distinguished from each other. 
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8.3. Groups in the dataset: How many are there?  

As null hypothesis for the cluster analyses, the existence of three reasonable clusters which 

correspond with the ICSD-3 diagnoses has been postulated. Consistently, despite considerable 

differences between the algorithms, every cluster solution showed two sensible clusters 

accompanied by a residual or noise cluster. A closer look at the cluster solutions revealed, that in 

every case the narcolepsy type 2 cases had been split up in a similar manner. One considerable 

fraction was assigned to an IH dominated cluster, whereas most of the remaining cases where 

summarized together with the majority of narcolepsy type 1 cases. 

Hence, all cluster solutions hint at a two-group classification of the dataset instead of the three 

diagnostic groups described in the ICSD-3. The described structure of each cluster pair suggests 

that the narcolepsy type 2 cases in the dataset form a heterogenous group, which is therefore easily 

split up during the clustering process. 

In this section, the properties of the narcolepsy type 2 subgroup will be investigated in further 

detail. As it has been discussed above, IH and narcolepsy type 1 are far more easily distinguishable 

from each other. Because of that, reaching a conclusion regarding the narcolepsy type 2 subgroups 

will allow a final statement addressing the structure of the whole dataset: If indeed narcolepsy type 

2 is a reasonable diagnostic concept despite its apparent heterogeneity, the ICSD-3 groups with 

narcolepsy type 2 being the “intermediate” group between IH and narcolepsy type 1 should be 

regarded as reasonable concepts. However, if one agrees that the results of this thesis do not support 

treating all narcolepsy type 2 cases as one diagnostic entity, a subdivision of the dataset into two 

diagnostic groups as suggested by all cluster solutions might be the more appropriate approach. 

Each cluster analysis divided the narcolepsy type 2 group in a similar fashion. The larger group 

was always assigned to the majority of IH cases, whereas the remaining cases were summarized 

together with most narcolepsy type 1 patients. Hence, if one neglects the residual/noise clusters, 

each cluster analysis offered a different subdivision of the narcolepsy type 2 cases into two 

subgroups. 

In order to investigate how the different pairs of narcolepsy type 2 subdivisions are related to each 

other, the Rand index was used again. For each pairwise comparison, cases that had been assigned 

to a residual or the noise cluster were omitted. 
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Table 8.1: Comparison of the different narcolepsy type 2 subdivisions using the adjusted Rand index 

The number of compared cases are shown in brackets 

 k-means OPTICS spectral clustering 

k-means 1  (54) 0,84  (35) 0,76 (51) 

OPTICS 0,84  (35) 1  (35) 0,71 (35) 

Spectral clustering 0,76 (51) 0,71 (35) 1 (54) 

 

Table 8.1 reveals that the three subdivisions of narcolepsy type 2 are closely related to each other: 

For most pairs of narcolepsy type 2 cases, the cluster algorithms agree on whether they should be 

assigned to the same cluster or to two different clusters. This observation justifies that the further 

analysis is conducted using only the k-means solution.  

K-means assigned 37 cases of narcolepsy type 2 to the IH dominated clusters. This subgroup of 

cases will be referred to as “Narcolepsy type 2 I”, whereas the 17 cases that were grouped together 

with narcolepsy type 1 will be called “narcolepsy type 2 N”. 

Diagram 8.5: The frequency distribution along PC1 and the scatterplot of the ICSD-3 diagnoses considering the 

narcolepsy type 2 subgroups 

Distribution along PC1 Scatterplot 

 

 

 

The scatterplots indicate that the narcolepsy type 2 subgroups are indeed embedded in surrounding 

cases of IH and narcolepsy type 1, respectively. The distribution plot reveals that when it comes to 

PC1, the subgroups are well separated from each other, but hard to distinguish from the dominant 
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condition in their respective cluster. This observation is confirmed by the descriptive statistics 

below. It should be noted that although a t-test has been performed, it should be interpreted in a 

descriptive manner, analogous to the cluster solutions. 

Table 8.2: Descriptive statistics for cluster variables considering the proposed narcolepsy type 2 subgroups 

The t-test found significant differences between the narcolepsy type 2 subgroups for all variables except ESS (at significance level 0,05). Between 

NC1 (narcolepsy type 1) and narcolepsy type 2 N, no significant differences were found. Regarding IH and narcolepsy type 2 I, significant 

differences were only detected for Delta and PSG_SEI. 

Diagnosis NC1 narcolepsy type 2 N narcolepsy type 2 I IH 

Number of cases 41 17 37 42 

 Mean Mean SD Mean SD Mean 

ESS 16,3 17,1 4,75 14,9 3,81 15,0 

PSG_AI 9,00 11,3 10,4 4,44 5,07 6,43 

VigFalse 3,98 7,12 7,36 2,16 2,43 2,29 

Delta 0,439 0,200 0,324 0,643 0,726 1,56 

SL1 2,43 2,63 2,14 4,93 1,78 5,45 

PSG_REML 48,9 33,2 38,5 78,2 32,7 95,6 

PSG_SEI 86,7 88,3 6,18 94,0 4,02 89,6 

 

Table 8.2. and A.11 in the appendix provide the mean and standard deviation values for cluster and 

non- cluster variables, respectively. 

Apart from the ESS-score, the two narcolepsy type 2 subgroups show significant differences for 

every cluster variable. Narcolepsy type 2 N does not significantly differ from narcolepsy type 1 for 

any cluster variable. Apart from Delta, significant differences between narcolepsy type 2 I and IH 

exist only for the sleep efficiency index, which has the highest average value for narcolepsy type 

2 I cases. 

Narcolepsy type 1 and narcolepsy type 2 N both show average sleep latencies below three minutes 

in contrast to mean sleep latencies about 5 minutes for IH and narcolepsy type 2 I. Regarding the 

REM latencies in the PSG, narcolepsy type 2 N and narcolepsy type 1 have comparably low mean 

values, whereas narcolepsy type 2 I and IH both have average values above 70 minutes. 

In conclusion, the way narcolepsy type 2 has been split up by the k-means algorithm appears 

reasonable. Narcolepsy type 2 shows considerable overlap with both narcolepsy type 1 and IH in 

the PC scatterplots. This unsatisfactory situation can be resolved by accepting the existence of two 

subgroups of narcolepsy type 2, that are closely related to narcolepsy type 1 and IH, respectively. 
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On the same time, the introduced subgroups show considerable differences between each other, 

which resemble the typical reported differences between IH and narcolepsy type 1/with cataplexy. 

Again, caution is necessary for the interpretation of these findings. The narcolepsy type 2 

subgroups have been defined based on their assignment to different clusters of the k-means 

solution. Being a cluster analysis procedure, k-means yielded clusters that differ with respect to the 

provided cluster variables. Therefore, the characteristics of these subgroups and in particular their 

differences to each other as reported in table 8.2 can also be explained purely as a consequence of 

their very definition. 

Only by identifying pathophysiological pathways and biomarkers for narcolepsy type 2 and IH, the 

true relationship between these conditions can be explored. Whereas almost all narcolepsy type 1 

patients show significantly lowered levels of CSF hypocretin, this has been reported to be true only 

for a minor fraction of narcolepsy type 2 patients152. Therefore, if another common 

pathophysiology other than hypocretin deficiency were found for IH as well as for the remaining 

cases of narcolepsy type 2, this would strongly support a “two groups solution” instead of the 

current 3 diagnoses.  

Until then, the fact that all cluster algorithms have split up narcolepsy type 2 in a comparable 

manner can be interpreted by two different approaches.  

First, one could agree with the assumption that narcolepsy type 2 is a unique nosologic entitiy that 

shows a considerable heterogeneity. Using the current diagnostic criteria for IH and narcolepsy 

type 1, the existence of a considerable number of cases that are located “in between” is undebatable. 

At the current stage, these cases are mostly comprised by the label narcolepsy type 2. For many 

members of this group, diagnosis can easily change as it is indicated by diagram 8.6 if a second 

MSLT reveals a different SOREM number or if cataplexy has a delayed onset. Both phenomena 

have been described in clinical studies and are directly reflected by the two subgroups of narcolepsy 

type 2 that have been investigated above and which show a close relationship to either IH or 

narcolepsy type 1.  
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Diagram 8.6: The ICSD-3 diagnoses and the narcolepsy type 2 subgroups 

The blue arrows indicate differential diagnostic uncertainties 

 

 

A more speculative approach would lead to the conclusion that the perceived heterogeneity of 

narcolepsy type 2 is an artificial one, as narcolepsy type 2 is no distinct diagnostic group but 

consists of cases that should better be diagnosed with “narcolepsy” (as an undivided diagnostic 

group) or IH. Continuing this line of thought, these misdiagnoses have led to the impression that 

narcolepsy type 2 exists, although the heterogeneity of this group suggests the opposite. 

Diagram 8.7: The two-clusters classification that is suggested by the cluster solutions 

The blue arrows indicate differential diagnostic uncertainties 

 

 

 

These considerations correspond well to a study by Andlauer et al.70, which solely focuses on 

patients diagnosed with narcolepsy without cataplexy. In this paper, three subgroups of narcolepsy 

without cataplexy were distinguished by the differing CSF hypocretin concentrations of their 

members. In the subgroup of low CSF levels, all patients were HLA positive, indicating a close 

relationship to narcolepsy with cataplexy / type 1. Furthermore, hypocretin deficient patients were 

far more likely to develop cataplexy than patients with intermediate or normal CSF hypocretin 

levels. About one fourth of patients in this study were hypocretin deficient, a fraction that is 

comparable to the 17 of 58 narcolepsy type 2 patients that have been assigned to the N subtype 

which also showed a high similarity to narcolepsy type 1. In conclusion, the results of Andlauer et 
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al. suggest a subclassification of narcolepsy type 2 / without cataplexy derived from 

pathophysiological considerations that matches the algorithmically motivated subdivision 

proposed above surprisingly well. 

8.4. IH or narcolepsy (type 2): differential diagnosis 

In the introduction of this thesis, the problem of the differential diagnosis between IH and 

narcolepsy type 2 was discussed. The last section contributed some insights into the nature of this 

problem: The narcolepsy type 2 I subgroup shows a high similarity to IH, such that only the MSLT 

SOREM count can distinguish the otherwise very closely related cases of IH and narcolepsy type 

2 I.  

If one follows the second approach that has been discussed above and illustrated by Diagram 8.7, 

this problem might be ill-posed, as a separation of cases that should be diagnosed with the same 

condition is tried. Nevertheless, for the moment, the validity of the three ICSD-3 diagnoses will be 

assumed, whereas at the end of this section, the alternative diagnostic groups will be considered. 

Hence, all results of this thesis that are related to the issue of differential diagnosis will be 

summarized at this point. Pizza et al. suggested using Delta as an additional MSLT parameter to 

improve differential diagnosis between IH and narcolepsy4. From the perspective of the mean 

values, both narcolepsy subtypes have significantly lower values than IH. However, as section 8.1 

illustrated, this is merely a consequence of the higher number of outliers in IH. Most cases in the 

dataset have Delta values below one minute. Only high Delta values, which make the diagnosis IH 

far more likely than narcolepsy, are of limited differential diagnostic use. 

Furthermore, the night sleep of IH and narcolepsy has been reported to show some significant 

differences. According to Martinez-Rodríguez et al., the night sleep of narcolepsy patients is more 

fragmented than for IH patients92. Another look at the descriptive statistics in table 8.2 reveals that 

the – on average – lowest arousal indices occurred for the patients labeled with narcolepsy type 2 

I, which were not significantly different from IH patients. Hence, more variability seems to exist 

between different narcolepsy type 2 patients than there is between narcolepsy type 2 I and IH 

patients.  

A similar observation can be made for the fraction of N3 sleep. PSG_N3_TST yielded the highest 

average value for narcolepsy type 2 I, that does, however, not significantly differ from the mean 
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value for IH. On the other hand, significantly lower values were found for narcolepsy type 1 and 

type 2 N. 

The t-test found significant differences regarding the average values for SL2 and TST, but as the 

distribution plots in the appendix indicate, a substantial overlap discourages their use for 

differential diagnostic purposes (see diagram A.8 in the appendix). 

Hence one remains with the SOREM count as remaining and current diagnostic criterion, whose 

shortcomings have already been discussed above. In conclusion, the analyses performed in this 

thesis did not yield results that could help to improve differential diagnosis between IH and 

narcolepsy (type 2). 

As the results of this thesis did not reveal any suggestions for the refinement of the differential 

diagnostic process in the situation of the conventional diagnostic groups, another perspective will 

be employed from now on. Hence, for the remaining discussion, the narcolepsy type 2 N subgroup 

and narcolepsy type 1 will be summarized as “narcolepsy +”, whereas narcolepsy type 2 I will be 

merged with IH, forming the” idiopathic hypersomnia +” group. 

Diagram 8.8 indicates that narcolepsy + and IH + are well separated along the PC1 axis. Regarding 

PC2 and PC3, no such clear separation becomes visible (see diagrams A.9 and A.10 in the 

appendix). Hence, the essential information necessary to distinguish between narcolepsy + and 

idiopathic hypersomnia + is encoded in PC1. This insight allows the suggestion of a diagnostic 

score that considers all relevant components of PC1.  
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Diagram 8.8: Frequency distribution along the PC1 axis 

ICSD-3 diagnoses 

 

Narcolepsy + vs. idiopathic hypersomnia + 

 

 

As it has been explained above, principal components are linear combinations of the input 

variables. Table A.2 in the appendix lists all coefficients for all principal components, but with 

respect to the z-standardized variables. 

Hence, by the following calculation, the derivation of a diagnostic score for the unstandardized 

variables is possible. Assuming that 𝑉𝑖 denotes the i-th unstandardized input variable with the mean 

value 𝜇𝑖 and standard deviation 𝜎𝑖, 𝑍𝑉𝑖 its z-standardized version and ∝𝑖 its coefficient for PC1, 

one obtains: 
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where 𝐶 is a constant that does not depend on any variable. The corresponding coefficients for the 

unstandardized variables are therefore obtained by dividing the coefficients in table A.1 by the 

standard deviation of the corresponding variable. 

For the diagnostic score, only the seven variables that made significant contributions to PC1 were 

considered. Furthermore, the coefficients were multiplied by 100 to obtain more practical values.  

Eventually, the following linear score 𝑁 was obtained:  

𝑁 = 11,4 #𝑆𝑂𝑅𝐸𝑀 − 10,5 𝐷𝑒𝑙𝑡𝑎 − 0,26 𝑃𝑆𝐺_𝑅𝐸𝑀𝐿 − 9,48 𝑆𝐿1 − 5,42 𝑆𝐿2 + 1,3 𝑇𝑆𝑇 + 34,6 𝐶𝐴𝑇𝐴𝑃 

Similar to PC1, the score contrasts cases showing many SOREM episode, short sleep latencies, 

short REM latencies and low Delta values. Therefore, high score-values are expected to indicate 

that the given case should be assigned to narcolepsy +. 

Effectively, the occurrence of cataplexy adds 34,6 points to the score, which could be 

counterbalanced by 12 minutes less in the TST or a sleep latency that is prolonged by 4 minutes. 

Therefore, regardless of the optimal cut-off value, cataplexy does not directly lead to the diagnosis 

of narcolepsy (+). However, due to the typical results of narcolepsy patients regarding the sleep 

latencies, PSG REM latencies and Delta, cataplectic patients are expected to score a high total 

value in the N-score. Furthermore, the occurrence of cataplexy-like symptoms in IH has to be 

considered. IH patients, whose symptoms might inaccurately be labeled as cataplexy would usually 

still yield a low N-score. Essentially, the N-score averages all results regarding the considered 

variables in a balanced way, thereby reducing the risk of a misdiagnosis caused by an atypical 

result in a single variable. Also, taking into account the possibility of a delayed cataplexy onset, 

the relative impact of cataplexy in the total score result should not be too high.  

For finding the right cut-off values that are suitable for distinguishing narcolepsy + from IH +, the 

ROC curve was calculated.  
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Diagram 8.9: ROC curve for distinguishing narcolepsy + from idiopathic hypersomnia + 

Values above the cut-off were treated as positive for Narcolepsy +; the dotted line indicates the diagonal 

 

 

By introducing the alternative diagnostic groups narcolepsy+ and idiopathic hypersomnia+, the 

differential diagnostic challenge shifted from distinguishing narcolepsy type 2 from IH to the 

differentiating the new groups from each other. Hence, to allow direct comparison, Diagram A.11 

in the appendix depicts the corresponding ROC curve for the latter case. Furthermore, table 8.3 

enlists critical cut-off values for the N-score for both situations. 

Table 8.3: Critical cut-off values for the N-score  

Values above the cut-off are treated as positive for narcolepsy+ / narcolepsy type 2 

 narcolepsy+ vs idiopathic hypersomnia + narcolepsy type 2 vs. idiopathic hypersomnia 

Sensitivity  Cut-off value Specifity Cut-off value Specifity 

95 % ≥ 51,0 62 % ≥ -15,1  40,5 % 

90 % ≥ 77,4 81 % ≥ 14,1 57,1 % 

80 % ≥ 110,5 91,1 % ≥ 29,7 66,7 % 

 

It becomes apparent that the N-score performs better in differentiating narcolepsy+ from idiopathic 

hypersomnia+ compared to the conventional task of differential diagnosis between narcolepsy type 

2 and IH. The N-score was derived from the dominant principal component, but nevertheless fails 

to allow a clear separation between the latter two conditions. This highlights once more the existing 

differential diagnostic problem, even if the major characteristics of the dataset are considered. 
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As a critical remark, it should be remembered that the N-score has been directly derived from the 

properties of PC1. It has been discussed above that the structure of PC1 is also a consequence of 

including several closely related variables like SL1, SL2 and TST. Indirectly, this has also affected 

the coefficients of the N-score, so an overestimation of the importance of several MSLT variables 

cannot be ruled out. Furthermore, it should be considered that all cluster solutions emerged in an 

algorithmical way, with the cluster variables determined by the principal component analysis being 

the only input parameters. Hence, all cluster solutions and consequently also the constructs 

narcolepsy + and idiopathic hypersomnia + are mathematically designed to contrast the differences 

with respect to the most significant variables.  

By considering additional parameters apart from the usual sleep latency, the SOREM count and 

the occurrence of cataplexy, diagnosis becomes less prone to measurement issues like the test-

retest variance regarding the MSLT SOREM count. The linear coefficients in the N-score 

guarantee, that all included variables are considered in a balanced way, allowing more stable 

diagnostic estimates. For an example, a narcolepsy patient could, by chance, show only one 

SOREM in the MSLT, but since the other parameters would probably still yield values that are 

characteristic for narcolepsy, a diagnosis based on the N-score could remain valid. However, 

further clinical tests would be necessary to assess the potential of linear scores like the N-score. 
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9. Conclusion 

Three different methodical approaches were chosen for this thesis. First, linear regression analysis 

demonstrated a considerable correlation between sleep latency and SOREM frequency. This 

correlation was also reflected in the dominant principal component found by PCA, which allowed 

an objective choice of variables suitable for cluster analysis. The different cluster solutions did not 

show any clear similarity to each other. Nevertheless, several cluster features could be observed 

consistently regardless of the employed cluster method. A summarizing consideration of these 

results eventually led to the suggestion of alternative diagnostic groups and of a linear score that 

might prove to be suitable for their differential diagnosis.  

Several parts of this thesis are speculative, as it is to be expected by its explorative design. For the 

most part, no significance levels could be provided to back the interpretations of the results, 

especially regarding those in the general discussion. As it has briefly been mentioned above, the 

final judgement of the problems discussed in this thesis is to be expected from future 

pathophysiological insights. The central interpretations of this thesis could easily be refuted if a 

common pathophysiological pathway for all narcolepsy type 2 patients would be discovered, 

thereby rendering the suggested subgroups I and N as well as the suggested diagnostic labels 

narcolepsy + and idiopathic hypersomnia + irrational. 

Diagnostic considerations should have therapeutic consequences. Until today, treatment of both 

narcolepsy and IH is symptomatic and the most essential substances, stimulants, have been proven 

to be effective for both conditions. Therefore, even if results like the ones of this thesis eventually 

led to another refinement of diagnostic entities and criteria, no direct clinical benefit would arise 

from this.  

This situation would drastically change if treatment options based on proven pathophysiological 

knowledge would enter clinical practice, for example drugs for the substitution of hypocretin. If, 

according to the interpretations in this thesis, indeed only a fraction of narcolepsy type 2 patients 

should be labeled as narcolepsy, clinical scores like the N-score could become highly relevant for 

determining without invasive diagnostics which patients suffering from hypersomnia could benefit 

from a condition-specific treatment. 



 

128 

 

Finally, several limitations of this thesis should be considered. First, only 141 cases of narcolepsy 

and IH could be included. Consequently, different subgroups of this dataset became insufficiently 

small. This especially affects the suggested narcolepsy type 2 subgroups, with the smaller one only 

comprising 17 cases. Several patients of the dataset had also a diagnosis for a sleep related 

breathing disorder. Although each case was only included after reaching a stable, sufficient 

treatment, the analyses above could have been adjusted to control for possible confounding effects 

of these conditions. Another issue is the lack of a control group for the PCA and cluster analysis. 

Considering a group of healthy individuals for both would have allowed to also consider purely 

diagnostic issues, i.e. distinguishing healthy individuals from IH and narcolepsy. Based on the 

results of this thesis, two interesting topics would be the following: 1) Does the inclusion of a 

healthy control group change the basic characteristics of the dominant principal component? 2) 

Which values of the N-score are to be expected for healthy controls and are they well separated 

from value regimes typical for IH or narcolepsy? 

As a final limitation, the speculative nature of this explorative thesis should be pointed out once 

more. Several interesting hypotheses can be deduced from the results of this thesis, which could be 

tested using well established methods of inferential statistics, for example regarding the CSF 

hypocretin levels in the proposed narcolepsy type 2 subtypes or regarding N-score values in another 

dataset of narcolepsy or IH patients. 

 

 

 

 

 

 

 

 

 



 

129 

 

Appendix 

1. Tables 

Table A.1: Correlation matrix of the PCA input variables 

 SL1 SL2 TST Delta #SOREM ESS VigCorr VigFalse VigRT PSG_SEI PSG_N3_TST PSG_REML PSG_AI CATAP 

SL1 1,00 0,76 -0,81 0,28 -0,53 -0,12 -0,02 -0,05 0,00 0,09 0,19 0,37 -0,15 -0,50 

SL2 0,76 1,00 -0,76 0,46 -0,57 -0,15 0,14 -0,17 -0,08 0,00 -0,01 0,38 0,04 -0,40 

TST -0,81 -0,76 1,00 -0,67 0,57 0,11 -0,06 0,09 0,05 0,02 -0,09 -0,39 -0,04 0,41 

Delta 0,28 0,46 -0,67 1,00 -0,40 0,07 0,09 -0,10 -0,03 0,01 -0,07 0,19 0,14 -0,19 

#SOREM -0,53 -0,57 0,57 -0,40 1,00 0,18 -0,06 0,17 -0,04 -0,01 -0,13 -0,45 0,05 0,60 

ESS -0,12 -0,15 0,11 0,07 0,18 1,00 -0,17 -0,01 0,18 0,05 -0,16 -0,21 -0,02 0,11 

VigCorr -0,02 0,14 -0,06 0,09 -0,06 -0,17 1,00 -0,33 -0,49 -0,13 -0,03 -0,04 0,17 0,08 

VigFalse -0,05 -0,17 0,09 -0,10 0,17 -0,01 -0,33 1,00 0,32 -0,12 0,00 -0,10 -0,09 0,09 

VigRT 0,00 -0,08 0,05 -0,03 -0,04 0,18 -0,49 0,32 1,00 -0,02 -0,05 0,00 0,00 -0,03 

PSG_SEI 0,09 0,00 0,02 0,01 -0,01 0,05 -0,13 -0,12 -0,02 1,00 0,25 -0,07 -0,18 -0,28 

PSG_N3_TST 0,19 -0,01 -0,09 -0,07 -0,13 -0,16 -0,03 0,00 -0,05 0,25 1,00 0,14 -0,29 -0,18 

PSG_REML 0,37 0,38 -0,39 0,19 -0,45 -0,21 -0,04 -0,10 0,00 -0,07 0,14 1,00 -0,14 -0,25 

PSG_AI -0,15 0,04 -0,04 0,14 0,05 -0,02 0,17 -0,09 0,00 -0,18 -0,29 -0,14 1,00 0,10 

CATAP -0,50 -0,40 0,41 -0,19 0,60 0,11 0,08 0,09 -0,03 -0,28 -0,18 -0,25 0,10 1,00 

 

Table A.2: Coefficients of the principal components 

The bold line separates the first seven PCs from the remaining PCs, see section 6.2 . 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

SL1 0,207 0,084 0,002 -0,021 0,133 0,193 -0,403 0,139 0,463 0,031 0,041 0,159 -0,845 2,394 

SL2 0,210 -0,066 0,092 0,005 0,066 0,098 -0,281 -0,063 0,328 -0,140 0,209 -0,534 1,646 -0,400 

TST -0,220 0,025 -0,139 -0,026 -0,170 -0,251 -0,053 0,045 -0,162 -0,002 0,171 -0,357 0,802 2,835 

Delta 0,143 -0,097 0,238 0,220 0,186 0,213 0,590 -0,329 -0,472 -0,234 -0,216 0,303 0,271 1,472 

#SOREM -0,195 -0,030 -0,002 0,039 0,212 0,280 -0,080 -0,295 0,493 0,137 0,021 10,239 0,605 0,026 

ESS -0,054 0,086 0,214 0,536 0,473 -0,234 -0,039 0,438 -0,018 0,531 0,265 -0,157 0,035 -0,126 

VigCorr 0,024 -0,410 -0,161 -0,023 0,069 0,137 -0,037 0,365 -0,282 -0,232 0,958 0,353 -0,163 -0,042 

VigFalse -0,051 0,268 0,198 -0,321 0,041 0,586 -0,113 -0,069 -0,459 0,482 0,465 -0,232 0,050 -0,040 

VigRT -0,020 0,337 0,300 -0,019 -0,224 -0,166 0,211 0,279 0,212 -0,763 0,527 0,374 0,020 -0,126 

PSG_SEI 0,022 0,166 -0,296 0,500 -0,275 0,194 0,075 -0,587 0,113 0,002 0,546 -0,286 -0,269 -0,211 

PSG_N3_TST 0,046 0,169 -0,386 -0,074 0,132 0,295 0,642 0,589 0,248 0,126 -0,132 -0,078 0,371 0,019 

PSG_REML 0,137 0,049 -0,045 -0,324 0,135 -0,575 0,342 -0,396 0,125 0,552 0,514 0,286 0,015 0,123 

PSG_AI -0,015 -0,249 0,293 0,057 -0,619 0,148 0,314 0,179 0,426 0,562 0,052 -0,135 -0,093 0,279 

CATAP -0,158 -0,143 0,117 -0,154 0,445 0,112 0,286 -0,280 0,474 -0,336 0,188 -0,929 -0,505 0,091 
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Table A.3: ANOVA statistics of the k-means cluster solution: Non-cluster variables 

 
Cluster 1 (N=76) Cluster 2 (N=46) Cluster 3 (N=19) Statistics 

Mean SD Mean SD Mean SD F-value (df=140) p-value 

SL2 8,79 3,25 5,26 2,71 12,2 3,74 36,2 <0,001 

TST 119 11,7 132 10,4 94,6 18,7 59,9 <0,001 

susSL 5,33 2,07 2,73 1,78 8,92 3,03 58,8 <0,001 

#SOREM 2,03 1,51 3,54 1,52 0,789 0,976 28,4 <0,001 

VigCorr 86,3 17,6 82,3 20,7 88,6 17,6 0,986 0,376 

VigRT 0,547 0,108 0,586 0,129 0,572 0,125 1,64 0,197 

PSG_N3_TST 16,9 9,10 11,2 8,54 10,7 8,10 7,66 0,001 

 

Table A.4: Frequency of cataplexy for the k-means clusters 

Fisher-Freeman-Halton statistic: 19,908 (p<0,001) 

Cluster 1 2 3 

No cataplexy 63 21 16 

Cataplexy 13 25 3 

 

Table A.5: The t-test for the OPTICS cluster solution: Non-cluster variables 

Mean value and standard deviation for the noise cluster are only listed for the sake of descriptive 

comparison and not considered in the t-test. 

 

Noise cluster  

(N=65) 

Cluster 1  

(N=43) 

Cluster 2  

(N=33) 

Statistics  

(df=74) 

Mean SD Mean SD Mean SD t-value p-value 

SL2 8,91 3,87 9,52 3,39 4,63 1,99 7,37 <0,001 

TST 116 18,5 114 12,5 134 8,98 -7,82 <0,001 

susSL 5,49 2,96 6,23 2,28 2,30 1,41 8,68 <0,001 

#SOREM 2,02 1,60 1,81 1,53 3,73 1,44 -5,54 <0,001 

VigCorr 84,1 19,3 86,1 18,9 86,6 17,5 -0,139 0,89 

VigRT 0,576 0,132 0,552 0,115 0,552 0,0887 0,009 0,993 

PSG_N3_TST 13,1 8,97 18,5 8,77 10,9 8,35 3,84 <0,001 

 

Table A.6: Frequency of cataplexy for the OPTICS clusters 

Chi-square statistic: 14,4 (p<0,001) 

Cluster 1 2 

No cataplexy 38 16 

Cataplexy 5 17 
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Table A.7: ANOVA statistics of the spectral clustering solution: Non-cluster variables 

 

Cluster 1  

(N=34) 

Cluster 2 

 (N=12) 

Cluster 3  

(N=95) 

Statistics 

Mean SD Mean SD Mean SD F-value p-value 

SL2 4,74 2,62 7,44 4,22 9,37 3,47 24,1 <0,001 

TST 135 8,91 124 16,0 113 15,5 30,1 <0,001 

susSL 2,01 1,25 4,01 2,40 6,15 2,54 42,2 <0,001 

#SOREM 3,79 1,49 3,42 1,08 1,71 1,46 29,9 <0,001 

VigCorr 87,3 17,4 84,1 15,8 84,7 19,6 0,261 0,771 

VigRT 0,557 0,102 0,583 0,126 0,563 0,123 0,211 0,810 

PSG_N3_TST 11,6 9,06 11,2 6,77 15,4 9,30 3,10 0,048 

 

Table A.8: Frequency of cataplexy in the spectral cluster solution 

Fisher-Freeman-Halton statistics: 32,562 (p<0,001) 

 1 2 3 

No cataplexy 14 4 82 

Cataplexy 20 8 13 

 

Table A.9: R-code for spectral clustering 

The Gauß similarity function 

# X1, X2, ARE VECTORS THAT REPRESENT DIFFERENT PATIENT CASES IN THE SEVEN-DIMENSIONAL SPACE SPANNED BY THE CLUSTER 

VARIABLES 

GAUSSSIMILARITY <- FUNCTION(X1, X2, ALPHA) { 

   EXP(- ALPHA * NORM(AS.MATRIX(X1-X2), TYPE="F")^2) 

} 

Calculation of the similarity matrix 

# AS A SIMILARITY FUNCTION, GAUSSSIMILARITY WITH RESPECT TO THE STANDARDIZED CLUSTER VARIABLES IS USED. 

SIMILARITY_MATRIX <- FUNCTION(DATA, SIMILARITY)  

{ 

 N <- NROW(DATA) 

   S <- MATRIX(REP(NA,N^2), NCOL=N) 

    FOR(I IN 1:N)  { 

       FOR(J IN 1:N)  { 

          S[I,J] <- SIMILARITY(DATA[I,], DATA[J,]) 

         } 

      } 

   S 

} 
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Calculation of the adjacency matrix (k-nearest neighbor) 

ADJACENCY_MATRIX_KNN <- FUNCTION(SIM_MATRIX, N.NEIGHBORS=2) { 

   N <- LENGTH(SIM_MATRIX [,1]) 

   

   IF (N.NEIGHBORS >= N)  

 {   

      # FULLY CONNECTED 

      A <- S 

   } ELSE  

 { 

      A <- MATRIX(REP(0,N^2), NCOL=N) 

      FOR(I IN 1:N)  

   {  # FOR EACH LINE 

          # ONLY CONNECT TO THOSE POINTS WITH HIGH SIMILARITY  

          # EACH VERTEX IS MOST SIMILAR TO HIMSELF, HENCE START AT SECOND BEST! 

          BEST.SIMILARITIES <- SORT(SIM_MATRIX [I,],     

    DECREASING=TRUE)[2:(N.NEIGHBOORS+1)] 

          FOR (S IN BEST.SIMILARITIES)  

    { 

            J <- WHICH(SIM_MATRIX [I,] == S) 

            A[I,J] <- S[I,J] 

            A[J,I] <- S[I,J]  # TO MAKE AN UNDIRECTED GRAPH, IE, THE MATRIX BECOMES 

       # SYMMETRIC 

          } 

       } 

   } 

  A   

} 

The spectral clustering process 

# PRELIMINARY CALCULATION: SUPPOSE “CASES” IS THE MATRIX WHERE EACH ROW REPRESENTS A CASE AND EACH COLUMN A CLUSTER 

VARIABLE 

SIM<- SIMILARITY_MATRIX(CASES, GAUSSSIMILARITY) 

ADJ_MAT<- ADJACENCY_MATRIX_KNN(SIM, 2) 

 

# CALCULATE THE (NORMALIZED) LAPLACIAN MATRIX L 

 D<- DIAG(APPLY(ADJ_MAT, 1, SUM)) 

 L<- DIAG(1,LENGTH(ADJ_MAT[,1])-SOLVE(D)%*%A   

# CALCULATE EIGENVECTORS OF THE LAPLACIAN MATRIX 

 EIGVEC<-EIGEN(L) 

#OBTAIN SPECTRAL SPACE, I.E. THE LAST THREE EIGENVECTORS 

   Z<- EIGVEC$VECTORS[,(NCOL(EIGVEC $VECTORS)-2):NCOL(EIGVEC$VECTORS)] 
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#PERFORM K-MEANS CLUSTERING ON Z 

 KM<-KMEANS(Z, CENTERS=3,NSTART=50) 

 

Table A.10: ANOVA statistics for the ICSD-3 diagnoses: Non-cluster variables 

SD: Standard deviation 

 

narcolepsy type 2 narcolepsy type 1 idiopathic hypersomnia Statistics 

Mean SD Mean SD Mean SD F-value p-value 

SL2 7,89 3,34 5,69 3,25 10,7 3,52 23,4 <0,001 

TST 120 14,9 131 11,0 108 17,3 24,3 <0,001 

susSL 4,98 2,49 2,87 1,69 7,01 2,89 30,3 <0,001 

#SOREM 2,79 ,932 3,95 1,02 0,190 0,397 220 <0,001 

VigCorr 83,8 22,2 87,7 14,6 85,0 17,1 0,512 0,600 

VigRT 0,560 0,124 0,557 0,111 0,573 0,118 0,215 0,807 

PSG_N3_TST 15,2 9,58 11,7 8,39 15,3 9,17 2,19 0,116 

 

Table A.11: Descriptive statistics for non-cluster variables considering the proposed narcolepsy type 2 subgroups 

The t-test showed significant differences between the narcolepsy type 2 subgroups for all variables except VigCorr and 

VigRT, 

Compared to narcolepsy type 1, narcolepsy type 2 N differed only significantly regarding #SOREM 

A significant difference between narcolepsy type 2 I and IH was found for: SL2, TST, susSL and #SOREM 

SD: Standard deviation 

 NC1 Narcolepsy type 2 N Narcolepsy type 2 I IH 

 Mean Mean SD Mean SD Mean 

SL2 5,69 5,67 3,82 8,50 2,34 10,7 

TST 131 132 12,8 117 11,4 108 

susSL 2,87 2,83 2,28 5,58 1,84 7,01 

#SOREM 3,95 3,29 1,10 2,65 0,789 0,190 

VigCorr 87,7 81,4 25,6 86,1 19,6 85,0 

VigRT 0,557 0,597 0,147 0,540 0,112 0,573 

PSG_N3_TST 11,7 10,4 8,15 18,2 9,43 15,3 
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2. Diagrams 

Diagram A.1: The k-means cluster solution, projected onto the first principal components 
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Diagram A.2: The OPTICS cluster solution, projected onto the first principal components 
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Diagram A.3: The spectral clustering solution, projected onto the first principal components 
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Diagram A.4: No cluster structure detectable by OPTICS using the standard Euclidean metric 

 

 

Diagram A.5: Silhouette coefficients for the OPTICS cluster solution using the angular 

distance 
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Diagram A.6: Silhouette coefficients of the spectral clustering solutions in the eigenvector 

space 

 

 

Diagram A.7: Frequency of different Delta values in the k-means clusters 1 and 2 
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Diagram A.8: Frequency distributions for SL2 and TST 

For narcolepsy type 2, the two subgroups proposed in chapter 8 are considered 

SL2 

 

TST 

 

 

Diagram A.9: Distribution plot of narcolepsy + and idiopathic hypersomnia + along PC2 
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Diagram A.10: Distribution plot of narcolepsy + and idiopathic hypersomnia + along PC3 

 

 

Diagram A.11: ROC curve for distinguishing narcolepsy type 2 from idiopathic hypersomnia using 

the N-score 

Values above the cut-off were treated as positive for Narcolepsy type; the dotted line indicates the diagonal 
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#SOREM   number of SOREM episodes in the MSLT 

CATAP   occurrence of cataplexy, encoded as binary variable 

CNS    central nervous system 
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Delta    susSL – SL1 

EDS    Excessive Daytime Sleepiness 

ESS    Epworth Sleepiness Scale  

ICSD    International Classification of Sleep Disorders 

IH    idiopathic hypersomnia 

MSLT    Multiple Sleep Latency Test 

MWT    maintenance of wakefulness test 
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PC    principal component 
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PLMS    periodic limb movement in sleep 

PSG    polysomnography 
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REM    rapid eye movement 
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RLS    restless legs syndrome 

SD    standard deviation 

SL1    MSLT: sleep latency to sleep stage N1 
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SOREM   sleep onset REM episode 

susSL    sustained sleep latency: Timespan until three consecutive periods of 

    sleep stage N1 or at least one episode of another sleep stage is  
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TST    MSLT: Total sleep time 

VigFalse   Quatember-Maly vigilance test: False reactions 

VigCorr   Quatember-Maly vigilance test: Correct reaction 

VigRT    Quatember-Maly vigilance test: Mean reaction time in correct  

    reactions 
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