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bone damage. 11βHSD2 is expressed primarily in macro-
phages and lymphocytes, and may be responsible for their 
survival, suggesting that it is critical in chronic inflammation. 
The situation in synovial tissue would allow 11βHSD2-
expressing cells to tap the energy resources of 11βHSD1-
expressing cells. The overall properties of this local glucocor-
ticoid interconversion system might limit therapeutic use of 
glucocorticoids in RA.  © 2014 S. Karger AG, Basel 

 Introduction 

 The sheer number of papers (almost 8,000), which can 
be found in a PubMed search using the search string ‘(glu-
cocorticoid OR cortisone OR cortisol OR prednisone OR 
prednisolone OR dexamethasone) AND rheumatoid ar-
thritis’, indicate that the introduction of glucocorticoids 
into the treatment of rheumatoid arthritis (RA) by Hench 
et al.  [1]  must be considered a success. In the late 1960s, a 
role for peripheral cortisone-cortisol interconversion in RA 
was described  [2]  and involvement of synovial tissue in this 
interconversion was shown  [3] . However, more detailed 
elucidation of the underlying mechanisms was possible 
only after the necessary techniques became available  [4] .
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 Abstract 

 The tissue availability of active glucocorticoids (cortisol in 
humans) depends on their rate of synthesis from cholesterol, 
downstream metabolism, excretion and interconversion. 
The latter is mediated by the 11β-hydroxysteroid dehydro-
genases (11βHSDs). In this review, we summarize the fea-
tures of the two isoenzymes, 11βHSD1 and 11βHSD2, and 
current available experimental data related to 11βHSDs, 
which are relevant in the context of synovial cells in rheuma-
toid arthritis (RA). We conclude that due to complex feed-
back mechanisms inherent to the hypothalamic-pituitary-
adrenal axis, currently available transgenic animal models 
cannot display the full potential otherwise inherent to the 
techniques. Studies with tissue explants, mixed synovial cell 
preparations, cell lines derived from synovial cells, and re-
lated primary cells or established cell lines indicate that there 
are relatively clear differences between the two isoenzymes. 
11βHSD1 is expressed primarily in fibroblasts and osteo-
blasts, and may be responsible for fibroblast survival and aid 
in the resolution of inflammation, but it is also involved in 
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  11β-Hydroxysteroid Dehydrogenases 

 The principle biochemical pathways involved in glucocor-
ticoid synthesis from cholesterol, their interconversion, 
their downstream metabolism and their excretion are 
known ( fig. 1 ) and have been described in excellent re-
views  [5, 6] . It is now evident that the effects of the endog-
enous glucocorticoids, as well as therapeutic drugs, de-
pend critically on the intra-tissue activities of the enzymes 
involved in their interconversion, the 11β-hydroxysteroid 
dehydrogenases (11βHSDs)  [7] . 

 In humans, there exist two 11βHSD isoenzymes (EC 
1.1.1.146), which are encoded by separate genes and cata-
lyze remarkably different reactions. The type 1 enzyme 
(11βHSD1) is encoded by the gene HSD11B1 and pre-
dominantly mediates the conversion of 11-oxosteroids to 
their corresponding 11β-hydroxysteroids using NADPH 
as a cofactor, but might work in a reverse mode under cer-
tain circumstances  [8, 9] . By contrast, the type 2 enzyme 
(11βHSD2) is encoded by the gene HSD11B2 and exclu-
sively mediates the conversion of 11β-hydroxysteroids to 
their corresponding 11-oxosteroids using NAD +  as a co-
factor  [10, 11] .

  Although their most prominent physiological roles are 
the reactivation of cortisone into the glucocorticoid recep-
tor (GR) agonist cortisol (11βHSD1) and the inactivation 
of cortisol into the biologically inactive cortisone 
(11βHSD2), both enzymes can metabolize various addi-
tional substrates with similar structures. Generally, these 
additional substrates are not prominent, but in principle 
all steroidal substances containing 11-keto/11-hydroxy 
functional groups can compete with the endogenous cor-
ticosteroids for the catalytically active sites of the 11βHSDs 
 [12] . Among these are prednisone or prednisolone, as well 
as some 7-keto/7-hydroxy cholesterol metabolites, which 
are sterically similar to normal 11βHSD substrates  [9, 13] . 
Moreover, these metabolites can compete with glucocor-
ticoids for the 11βHSDs active sites  [14] , which may result 
in alterations of net conversion rates of cortisol and corti-
sone, respectively, strongly depending on the concentra-
tions of alternative substrates within a given tissue.

  In line with their opposing catalytic activities, expres-
sion of both 11βHSD isoenzymes seems to follow simple 
rules. 11βHSD1 expression levels are highest in tissues 
where the GR signaling is important, e.g. in the liver  [7, 
8] . In contrast, 11βHSD2 expression is strong in tissues 
in which either GR activation should be avoided or glu-
cocorticoids would interfere with specific mineralocorti-
coid signaling, e.g. in the kidney  [7, 10, 11, 15] . This dual 
function of 11βHSD2 was shown in detail in a study in 

human fetal tissues by Condon et al.  [16] . In addition, 
overexpression of 11βHSD2 in pituitary tumors was 
shown to be at least in part responsible for cell prolifera-
tion  [17] .

  Lessons Learned and Not (Yet) Learned from Animal 

Models 

 Transgenic animal models can yield valuable informa-
tion to elucidate the roles of individual genes or proteins. 
Accordingly, available mice with targeted inactivation 
(knock-out) of 11βHSDs were soon analyzed for pheno-
typic alterations related to inflammatory diseases [re-
viewed in  18 ]: mice without 11βHSD1 exhibit a complex 
but subtle inflammatory phenotype. More recently, it was 
shown that lack of 11βHSD1 exaggerates inflammation in 
various mouse models of experimental arthritis  [19] . In a 
rat arthritis model, inhibition of local glucocorticoid re-
activation by 11βHSD1, as well as inhibition of GR signal-
ing by RU486, increased inflammatory paw volume (as 
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  Fig. 1.  Pathways involved in glucocorticoid metabolism. Gluco-
corticoid synthesis from cholesterol, downstream metabolism and 
excretion are summarized by arrows. The reactions catalyzed by 
the two 11βHSD isoforms are shown. The dashed arrow indicates 
the backward reaction seen only for purified 11βHSD1 in vitro. 
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readout for inflammation)  [20] . But generally the pheno-
types seen in these experiments are associated with adre-
nal hyperplasia and elevated systemic corticosterone lev-
els (the active glucocorticoid in rodents), which seem to 
compensate for the absence of local reactivation of gluco-
corticoids by 11βHSD1.

  This is mirrored in humans, in whom reduced 
11βHSD1 activity caused by various genetic defects lead-
ing to lower locally available concentrations of cortisol 
(with or without significant changes of cortisol concen-
trations in the circulation) alter the hypothalamic-pitu-
itary-adrenal (HPA) axis towards hyperandrogenism  [6, 
21] . This implies that presumably all experimental ap-
proaches using systemic manipulation of 11βHSD1 activ-
ity (both, transgenic and pharmacological) may trigger 
interfering systemic responses, i.e. dysregulation of the 
HPA axis and alterations of the ratio of glucocorticoids 
versus adrenal androgens ( fig.  2 ). Adrenal androgens 
themselves and their metabolites are important modula-
tors of inflammation in RA, as reviewed previously  [22] .

  From transgenic animal studies, much less evidence 
exists concerning the role of 11βHSD2 in arthritis. No 
clear effects were seen in the initial studies  [18] . More re-
cently, transgenic overexpression of 11βHSD2 in osteo-
blasts was used to reduce the local glucocorticoid signal-
ing. Indeed, it inhibited bone loss in the inflammatory 
model of K/BxN mouse serum-induced arthritis that usu-
ally leads to bone resorption, as demonstrated in the wild-
type controls  [23] . Moreover, this cell type-restricted al-
teration of glucocorticoid interconversion reduced local 
inflammatory activity, most likely via changes in the local 
levels of pro- and/or anti-inflammatory cytokines.

  Taken together, notwithstanding the conclusiveness 
transgenic animal approaches can provide, results with 

these models alone cannot at present clarify the exact 
roles of the two 11βHSDs in arthritis synovial cells. There 
obviously is a need for more mouse models with cell type-
specific knock-out (or overexpression) of 11βHSDs to de-
lineate clearly the effects of each isoenzyme on glucocor-
ticoid signaling in individual cell types and the systemic 
implications thereof – via paracrine or (neuro)endocrine 
(feedback) mechanisms  [21, 24] .

  Studies Involving Synovial Cells and Related Specific 

Cell Types 

 In recent years, a solid body of evidence from more 
‘classical’ experimental approaches appeared for the elu-
cidation of 11βHSD-mediated modulation of glucocorti-
coid signaling in synovial cells. Three types of cell prepa-
rations are used in most of the functional studies men-
tioned: (1) tissue explants, homogenates or freshly isolated 
mixed synovial cells – which may best represent the in 
vivo mRNA expression, enzyme activities or metabolite 
concentrations, but lack resolution as to the cell types re-
sponsible; (2) cells propagated in vitro from synovial cell 
preparations – mostly synovial fibroblasts, which can be 
expanded and cultured for a long time, or (3) cell types 
that are found in RA synovial tissue but are more easily 
accessible from other sources, e.g. from blood or bone, etc.

  As with the animal studies, more knowledge has ac-
cumulated concerning the function of 11βHSD1 than 
11βHSD2. Cooper et al.  [25]  found in an osteosarcoma cell 
line and in primary osteoblasts that interleukin (IL)-1β or 
tumor necrosis factor (TNF)-α induced 11βHSD1 gene ex-
pression and activity, which increased glucocorticoid sen-
sitivity of the cells. Expression of 11βHSD1 in tissue sec-
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  Fig. 2.  11βHSDs modulate the amount of 
cortisol and its effects. The amount of cor-
tisol (the active glucocorticoid) depends on 
the functional HPA axis and the activities 
of the two 11βHSD isoenzymes: 11βHSD1 
increases cortisol and 11βHSD2 reduces 
cortisol; too much cortisol inhibits the 
HPA axis and reduces the anti-inflamma-
tory androgens. This becomes critical in 
cells not responding to cortisol because of 
11βHSD2 expression. Arrows indicate syn-
thesis, induction or activation; blunted 
lines indicate degradation or inhibition. 
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tions from patients with osteoarthritis (OA) and RA was 
found in the lining and sublining area by immunohisto-
chemistry, and 11βHSD1 expression co-localized with the 
macrophage marker CD163 in double immunofluores-
cence  [26] . Indeed, 11βHSD1 is induced in human mono-
cytes upon differentiation to macrophages  [27] . 11βHSD1 
expression was induced by the anti-inflammatory IL-10 in 
synovial macrophages from control patients, but not in 
macrophages from RA patients  [28] . In addition, CD163– 
cells, typically activated macrophages, but not CD3+ lym-
phocytes or prolyl 4-hydroxylase-positive fibroblasts, ex-
pressed 11βHSD1  [26] . However, the enzyme is also ex-
pressed in CD90+ fibroblasts from OA and RA patients 
 [29] , which might suggest that there are two subpopulations 
of synovial fibroblasts. In this study, IL-1β or TNF-α in-
duced expression of 11βHSD1 and re-activation of corti-
sone by 11βHSD1 inhibited IL-6 production. Glucocorti-
coids also induce expression of 11βHSD1 and act synergis-
tically with IL-1β or TNF-α in synovial fibroblasts and 
osteoblasts  [30] . Cytokine-mediated induction of 11βHSD1 
involves NF-κB signaling  [31]  and is necessary for secretion 
of a Wnt-antagonist by synovial fibroblasts  [32] .

  Together with the cytokine signaling inhibitor studies 
in rats  [20]  and the knock-out mice work  [19] , a picture 
emerges in which initiation of inflammation by IL-1β/
TNF-α prepares (sensitizes) synovial fibroblasts via ex-
pression of 11βHSD1 for the anti-inflammatory activity 
of glucocorticoids. This should contribute to resolution 
of local inflammation  [4] .

  11βHSD2 entered the field of RA quietly, as it was found 
to be among 9 genes (from 4,300 analyzed) that were up-
regulated in peripheral blood mononuclear cells from pa-
tients with recent-onset RA at least 3-fold compared to 
healthy individuals  [33] . In synovial tissue of patients with 
RA and OA who underwent knee replacement surgery, we 
found expression of 11βHSD2 in CD163+ macrophages 
and CD163– cells by double immunofluorescence label-

ling  [26] . In this study, the ratio of cells positive for 
11βHSD2 versus cells positive for 11βHSD1 was higher in 
RA than in OA, and biochemical analysis had shown that 
in RA the reactivation of cortisone to cortisol is impaired.

  A subsequent study using samples from various ana-
tomical sites indicated 11βHSD2 expression in synovial 
macrophages but a net reduction of cortisone  [34] . An 
additional cell type of interest was found to express 
11βHSD2: in lymphoblastoid B cell lines from RA-discor-
dant twins, 11βHSD2 was the second most overexpressed 
gene in RA cases. Protein expression in synovial tissue of 
patients was correlated significantly with an inflamma-
tion score, suggesting a link between expression of 
11βHSD2 and the degree of inflammation  [35] . Interest-
ingly, a similar link was also found for 11βHSD1 activity 
and levels of erythrocyte sedimentation rate  [34] .

  The Inflamed Synovium – A Place for Two 11βHSDs 

 Thus, both 11βHSDs seem to be upregulated in RA 
(and possibly even in OA, when compared to non-in-
flamed tissue), albeit in different cell types. 11βHSD1 is 
most prominent in fibroblasts and osteoblasts, whereas 
11βHSD2 is more prominent in macrophages and B cells 
( fig.  2 ). 11βHSD2 is not found in mouse macrophages 
during acute inflammation  [36] . It is not expressed dur-
ing differentiation of isolated human monocytes to mac-
rophages, but it is found in the THP-1 macrophage cell 
line  [27] , consistent with the finding of an association of 
11βHSD2 with cell proliferation  [17] . In addition, 
11βHSD2 expression was downregulated in osteoblasts 
upon treatment with IL-1β or TNF-α  [25] . In combina-
tion, available experimental data suggest that 11βHSD2 is 
expressed: (1) in chronic inflammation, (2) in cells from 
the leukocyte lineage and (3) in cells that presumably seek 
to avoid glucocorticoid-induced apoptosis ( fig.  2 ). The 
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  Fig. 3.  Energy transfer by synovial gluco-
corticoid metabolism. 11βHSD2-express-
ing cells can generate NADH/H +  from oxi-
dation of cortisol, which can be further 
used in oxidative phosphorylation (OX-
PHOS) to provide ATP. Glucocorticoids 
are the diffusible intermediates. 11βHSD1 
regenerates cortisol using NADPH/H + , 
which is generated by the essential en-
zyme hexose-6-phosphate dehydrogenase 
(H6PD). 
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last appears to be quite reasonable, as glucocorticoids in-
duce apoptosis in monocytes and macrophages, etc., but 
prevent apoptosis in other cells, such as fibroblasts  [37] .

  However, there might be another pathway by which 
11βHSD2 and glucocorticoids could provide an advan-
tage to a cell surrounded by a growing fibroblast popula-
tion: 11βHSD2 would allow a cell to tap the biosynthetic/
energy resources of adjacent cells based on the shuttling 
of the diffusible glucocorticoids. Fibroblasts (or osteo-
blasts) reduce cortisone to cortisol, a reaction driven by 
their fuels. On the other side, a cortisol-avoiding macro-
phage or lymphocyte will inactivate cortisol in order to 
avoid apoptosis and gain some additional NADH/H + , 
which can be further used in oxidative phosphorylation 
to provide ATP ( fig. 3 ). That would provide a small but 
almost effortless energy income for macrophages/lym-
phocytes at the expense of fibroblasts.

  Conclusions 

 The characteristics of the 11βHSDs explain the tight-
rope walk of glucocorticoid therapy for RA and, possibly, 
other chronic inflammatory diseases. Inhibition of 
11βHSD1 may protect bone at the price of hindering res-
olution of inflammation. Inhibition of 11βHSD2 is ac-
companied by mineralocorticoid-like side effects, as does 
application of glucocorticoids in high doses. However, 
dosage should be high enough to hit the sensitive cells 
(and/or started before the 11βHSD2 even starts working 
in the synovial tissue). Combination therapies with bio-
logicals (anti-IL-1β or anti-TNF) should reduce the side 
effects on bone. Either a targeted delivery system or a tool 
for cell type-specific inhibition of 11βHSD2 expression 
seems necessary to affect macrophages and lymphocytes 
optimally.
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