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Abstract: Findings of studies on the unique effects of reasoning and working memory regarding
complex problem solving are inconsistent. To find out if these inconsistencies are due to a lack of
symmetry between the studies, we reconsidered the findings of three published studies on this issue,
which resulted in conflicting conclusions regarding the inter-relations between reasoning, working
memory, and complex problem solving. This was achieved by analysing so far unpublished problem
solving data from the study of Bühner, Krumm, Ziegler, and Plücken (2006) (N= 124). One of the three
published studies indicated unique effects of working memory and reasoning on complex problem
solving using aggregated scores, a second study found no unique contribution of working memory
using only figural scores, and a third study reported a unique influence only for reasoning using only
numerical scores. Our data featured an evaluation of differences across content facets and levels of
aggregation of the working memory scores. Path models showed that the results of the first study
could not be replicated using content aggregated scores; the results of the second study could be
replicated if only figural scores were used, and the results of the third study could be obtained by
using only numerical scores. For verbal content, none of the published results could be replicated.
This leads to the assumption that not only symmetry is an issue when correlating non-symmetrical
data, but that content also has to be taken into account when comparing different studies on the
same topic.
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1. Introduction

Symmetry in the amount of aggregation is a concept that has a long history in scientific research
across many fields (see [1]). It was Egon Brunswik [2] who famously adopted the concept into
psychology using his lens model 2 (as cited by Wittmann and Süß [1]). The main proposition of this
concept is that psychological constructs differ regarding their level of aggregation (or generalization)
and that this has an impact on the interrelations between different constructs (see [3]). It is suggested
that two constructs need to be on a comparable level of generalization (i.e., be “symmetrical”) to obtain
a less biased empirical correlation. For example, Wittmann and Süss [1] could show that, when the
criterion comprises a lower level of generalization, prediction is better with predictors from that same
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level than with aggregated predictors, even though reliability might be higher for the aggregated
predictor. For example, in this study [1], spatial working memory capacity could not be predicted as
well by g-factor reasoning as by the spatial category of reasoning.

Apart from the issue of symmetry within one study (i.e., predictor and criterion have to be on
the same level of generalization to obtain less biased results), there is a second aspect of symmetry
that should not be neglected. Symmetry is also important when comparing different studies with each
other. As different levels of symmetry between studies can lead to different conclusions regarding
correlations between constructs being measured on different levels of aggregation across studies, the
results of studies investigating the same cognitive constructs on differing levels of symmetry are
prone to be contradictory—even if the constructs were measured symmetrically within each study.
This aspect of symmetry is central for the present article, and examples for studies using different
levels of aggregation are therefore described in detail further below.

Referring to the aspect of symmetry between studies, Wittmann [4] introduced the symmetry
principle as a “necessary prerequisite for successful validation“. He argued that, if the constructs
in one study are measured on a more generalized level than in another study, those studies are not
comparable. The aim of this study is to empirically investigate how issues regarding both aspects of
symmetry may explain contradictory results in the literature concerning the relation between working
memory, reasoning, and complex problem solving.

For answering this question, we utilized the data from the study of Bühner, Krumm, Ziegler,
and Plücken [5] and compared the results to those of Wittmann and Süss [1], Bühner, Kröner, and
Ziegler [6], and Greiff, Krkovic, and Hautamäki [7]. Note, however, that the present analyses of
the Bühner et al. [5] data are novel, as the previous publication based on these data did not include
the results of the problem solving scenario, due to a different research focus. The fact that different
reasoning and working memory tests were used in all of these studies enabled us to take a look at the
same question on different levels of aggregation.

1.1. Symmetry between Different Studies

The general problem of non-replicability in psychology has recently been broadly discussed
and has raised serious questions about the soundness of psychological results [8–10], and findings
about the relationship between working memory and reasoning might not be an exception, given
the contradictory results that are mentioned in Section 1.2. A possible lack of symmetry—within
or between studies—is, however, rarely mentioned in the literature. Rather, it is often just vaguely
described under the more general term “conceptual replications”, that is, a study based on an original
study uses different measures to assess the effect under consideration for a notable exception (see [11]).
To achieve unbiased estimates of correlations within one study and to compare results between different
studies, it is important that the constructs are measured on corresponding levels of generalization
within each study and that the studies being compared operate on the same level of generalization.

The level of generalization often coincides with a certain hierarchical position of a construct in
a theoretical model. For example, in the Cattell–Horn–Carroll theory of cognitive abilities (see [12]),
three levels (“strata”) of cognitive are assumed. The first stratum is depicted by so-called narrow
abilities such as deductive reasoning or memory span. On the second stratum, broad abilities such as
fluid reasoning (Gf) and short-term memory reside. They are usually measured as an aggregate of
different subtests. At the apex of the model, general intelligence (“g”) represents the aggregate of the
stratum II abilities. In this case, aggregation not only leads to a reduction of task-specific variance, but,
at the same time, creates factors that are on a higher level of generalization and are therefore better
suited to predict criteria that are on a higher level of generalization as well. This illustrates that, when
judging the level of generalization of an aggregated score, it is crucial to consider the heterogeneity of
contents among its constituents. For example, a score that has been derived from three different verbal
tasks would be on a lower level of generalization than a score derived from one verbal, one numerical
and one figural task. Of course, a score derived from several verbal, numerical, and figural tasks would
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be at an even higher level of generalization as it measures both the construct on a broad level and at
the same time controls for task-specific variance. Regarding scenarios measuring complex problem
solving, things are slightly different. Due to their complex nature, even single scenarios will involve
abilities from different areas. Thus, even an aggregated score of several runs of a single complex
problem solving scenario may result in problem solving scores that are on a level of generalization
comparable to fluid reasoning [13]. Of course, using several scenarios might nevertheless be the
preferable solution [7]. This is in line with the results reported by Wittmann and Hattrup [11] who also
extensively discussed the importance of symmetry in the analysis of complex tasks.

1.2. Contradictory Results on the Relation between Working Memory, Reasoning, and Complex
Problem Solving

We aimed at investigating the impact of symmetry both within and between studies on the issue
of the relation between working memory, reasoning, and complex problem solving. While there may
be other studies on the relationship of the three constructs under scrutiny (e.g., [14,15]), especially
regarding their construct validity (see [16]), we focused on the studies of Witmann and Süss [1] who
applied several older scenarios with known psychometric issues for measuring complex problem
solving, Bühner et al. [5] who applied MultiFlux, a scenario that aimed at overcoming the most
severe reliability and validity issues, and Greiff et al. [7] who applied MicroDYN, which is one of the
most recent developments in the realm of complex dynamic systems, featuring multiple exploration
trials and rational item construction. Thus, we selected studies that dealt with the relationship of
working memory, reasoning, and complex problem solving in quite different ways and came to quite
different conclusions.

While Wittmann and Süss [1] as well as Greiff et al. [7] found unique effects for both reasoning
and working memory when explaining variance in complex problem solving, Bühner et al. [6] found
no evidence for unique effects of reasoning above and beyond working memory.

These three studies differ concerning the level of generalization regarding the measurements of
the constructs. Wittmann and Süss [1] used content aggregated scores of working memory, reasoning,
and complex problem solving that were based on several different tasks, respectively. On the other
hand, Bühner et al. [6] used an aggregate of several figural tasks to measure reasoning and working
memory and several runs of one single scenario to measure complex problem solving. In one version of
their models, Greiff et al. [7] used numerical working memory tasks and reasoning tasks and measured
complex problem solving as an aggregate of different scenarios within MicroDYN.

To test the hypotheses that the seemingly contradictory results of these three studies are to be
explained by the different levels of symmetry within studies as well as varying levels of generalization
between studies, we reanalysed so far unpublished data on complex problem solving that had been
collected in the context of the study by Bühner et al. [5]. While in these data the criterion—complex
problem solving—was measured using several runs of one simulation only, these data allowed us to
estimate this criterion by working memory and reasoning on different levels of symmetry. We were
able to vary symmetry by assessing both working memory and reasoning in four different ways by
selecting different subsets from several figural, verbal and numerical tasks: (1) using all tasks for
content aggregated scores; (2) selecting only figural tasks for figural scores; (3) selecting only numerical
tasks for numerical scores; and (4) selecting only verbal tasks for verbal scores. Thus, our model
(2) was comparable to Bühner et al. [6] who also used several runs of one simulation for measuring
complex problem solving as well as several figural tasks to measure reasoning and working memory.
Our model (3) came as close as possible to Greiff et al. [7] as—in one version of their models—they had
the same approach in general using only numerical tasks to measure working memory and reasoning
and applied several different MicroDYN scenarios for complex problem solving. Regarding level of
generalization, the measurement for complex problem solving used by Greiff et al. [7] is on a slightly
higher level than MultiFlux, since their measure is an aggregation of nine different MicroDYN tasks,
while, in our model, only four MultiFlux simulations were conducted that only differed regarding
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the underlying model. As the MicroDYN tasks at least follow the same rationale, we argue that the
models are at least comparable.

Our model 1 is as close as possible to that of Wittmann and Süss [6]. However, they operated on a
completely symmetrical level as they measured both complex problem solving as well as intelligence
and working memory with an aggregate of several different tasks. Even if the aggregate for complex
problem solving is not balanced regarding its demands, it is still on a higher level of generalization
than MultiFlux as—in contrast to the four MultiFlux simulations—Wittmann and Süss used three tasks
with very different rationales. Since in our model (1) complex problem solving was measured with
several trials of the same task, these studies are not symmetrical to each other.

With regard to symmetry between studies, it is thus to be expected that our model (2) can replicate
those of Bühner et al. [6] and we find results similar Greiff et al. in our model (3) [7]. On the other
hand, we expect different results than Wittmann and Süss [1] for our model (1). This is due to the fact
that the model of Wittmann and Süss is symmetrical (predictors and criterion are on the same level of
generalization) while our model (1) is not (aggregated working memory and reasoning are on a higher
level of generalization than complex problem solving as measured with one task only). As there is
currently no comparable research on the prediction of verbal working memory and reasoning tasks on
complex problem solving, we make no specific assumptions for our model (4).

1.3. The Relation between Working Memory and Reasoning

To make research on the specific contributions of working memory and reasoning regarding
complex problem solving a meaningful venture, it is of utmost importance that both constructs are
not merely different labels for the same construct. There is a wealth of studies concerning the relation
between reasoning and working memory. Many of them report high correlations between the two
constructs (e.g., [17–20]). In these studies, several conjectured reasons for these high correlations can
be found, including the fact that measures for both constructs require participants to use short-term
memory for an overview (see [21]) and central executive components [22,23]. Although these results
led some researchers to the assumption that reasoning and working memory are, in fact, different
labels for the same construct [18,24–26], other researchers come to a different conclusion c.f. [21].
They point out the fact that, although the correlations are often very high, they are seldom perfect,
even after correcting for measurement error. For example, the meta-analysis of Ackerman et al. [21]
resulted in a mean estimated true score correlation of only .47, and even the studies showing the
strongest correlations between working memory and reasoning did not provide evidence for more
than 50 percent of shared variance between those constructs [27]. This, in turn, led to a multifaceted
debate regarding the statistical procedures for the meta-analysis and the strength of the relationship
as well as its adequate interpretation [27,28], eventually leading to the conclusion that the picture of
results indicates two (highly) correlated but distinct constructs.

1.4. Complex Problem Solving

“Complex problem solving takes place for reducing the barrier between a given state and an
intended goal state with the help of cognitive activities and behavior” [29] (p. 682). It differs from
simple problem solving as exact features of the problem are unknown at the beginning and may change
over time [29]. In contrast to reasoning, complex problem solving requires interaction with the task
environment in order to gain knowledge about the system [30].

Since the distribution of personal computers in the past decades, a widespread operationalization
of complex problem solving is performance in computer-simulated scenarios. These were constructed
to represent complex real-world scenarios, for example being the mayor of a small village or
managing a tailor shop [11,31]. Nevertheless, with early computer simulations, correlations of complex
problem solving scores with related psychological constructs seemed to be low [31]. This could
later be attributed to design flaws and the unsatisfying reliability of the early simulations [13,32].
After constructing scenarios that took these issues into account, the complex problem solving scores
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derived from them correlated moderately to large with other cognitive abilities [33,34]. Furthermore,
more recent investigations showed that a broader operationalization of intelligence results in higher
correlations with complex problem solving and left the latter without any incremental variance shared
with complex criteria of academic success [16,35], thereby further highlighting the importance of the
symmetry principle. In addition, the number of complex problem solving scenarios used in scientific
studies has been growing during the past years [36]. As stated above, in this study, we analyzed
data from Bühner et al. [5] including thus far unpublished data regarding complex problem solving
from MultiFlux, an abstract task with clearly specified goals as well as highly reliable scores for the
knowledge regarding the simulation model and its application in simulation-related tests that are
independent of domain-specific prior knowledge. Note that the task has been modified for the present
study to include multiple simulation runs and to provide a more efficient way of assessing simulation
knowledge based on an automatic evaluation of causal diagrams (“causal knowledge”) that replaces
the rule “knowledge tasks” used by Kröner et al. [13]. Further details on these measures are presented
in Section 2.

1.5. Hypotheses

Under the assumption that the seemingly contradictory results of Bühner et al. [6], Wittmann and
Süss [1], and Greiff et al. [7] could be explained by lacking symmetry between the studies and by the
differing contents that were used, we expected to be able to replicate the results of the three studies
used for comparison to a differing degree. This leads to the following four hypotheses: (1) effects of
reasoning and working memory on complex problem solving regarding MultiFlux differ depending
on the content category used; (2) the findings of Bühner et al. [6], namely, that figural reasoning
does not predict complex problem solving as measured with MultiFlux above and beyond figural
working memory, can be replicated when using figural predictors; (3) results similar to the findings of
Greiff et al. [7]—namely, that numerical working memory does not predict complex problem solving
above and beyond numerical reasoning—can be found when using numerical predictors. We do not
expect a direct replication, as Greiff et al. used a different measurement for complex problem solving
with different task-specific demands; and (4) when aggregated scores are used for measuring working
memory and reasoning but not complex problem solving, the findings of Wittmann and Süss [1], with
reasoning and working memory being distinguishable predictors of complex problem solving, will not
be found in that extent.

2. Materials and Methods

To answer our research questions, we reanalysed the data of a previous study [5] and included
results concerning complex problem solving that were not used in the original publication.

2.1. Participants

The sample consisted of n = 124 undergraduate psychology students—three students more than
in the subsample of Bühner et al. [5] because some variables for which missing values had led to the
exclusion of participants were irrelevant for the present study. The mean age was 21.7 years (SD = 3.2,
range = 18–46), and 80.5 percent of the participants were female. Due to the recruiting at the office
of admission and enrolment services, almost all (n = 115) of the subjects were studying in their first
semester. The participants received course credits and feedback on their test results.

2.2. Instruments and Procedure

The tests were administered in three sessions of about three hours each. The
Intelligence-Structure-Test 2000-R (Intelligenz-Struktur-Test 2000-R, IST [37]) was conducted during
the first session alongside two attention tests that were of no interest for this study. The participants
worked on the computer simulation MultiFlux [33] as a measurement for complex problem solving
during the second and on the working memory test battery [38] during the third session. All tests were
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conducted on personal computers in a laboratory and with a maximum of five participants per session.
For a detailed description of test measures, see Bühner et al. [5].

2.2.1. Multiflux

The scenario “MultiFlux” [33] was used to measure complex problem solving. MultiFlux is a
computer simulation of a fictitious machine with four controls and four displays that are related to
each other in a complex manner (Figure 1). All relations between controls and displays were of equal
strength. Setting a control to “+” caused an increase of one unit in all displays connected to this control,
setting it to “++” lead to an increase of two units, and so on. Participants first have to explore the
simulation. During the exploration phase, they have to experiment with the simulation to identify
relationships between controls and displays, which they will draw into a causal diagram that remains
on screen during further exploration trials. At the end of the exploration phase, they are presented
with the correct causal diagram and work on a simulation-based test with rule application items.
For these items, the displays of the simulation show deviations from the optimal (zero) level. It is
the participants’ task to find the pattern of the controls that would make the displays hit the zero
position in the next step (which is actually not presented to prevent violations of local stochastical
independence of the test items).
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Compared to Kröner et al. [13], an improved version was applied that already contained one of the
features that Greiff and Funke [39] would also implement in their Minimal Complex Systems approach:
(1) the participants did not only explore one single simulation, but rather repeatedly explored several
versions of MultiFlux; (2) the simulations differed in the underlying model to adapt difficulty to
the university student population; and (3) for the same reason, the rule knowledge items used in
previous studies [8,33,34] have been replaced by causal knowledge scores that were assessed from
a causal diagram that could be drawn on screen by the participants during work on the simulation.
Causal knowledge represents the sum of correctly identified existing relations plus the correctly
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non-identified non-existing relations between controls and displays at the end of each exploration
phase, summed up across all four simulation runs. Thus, causal knowledge scores represent the
cognitive process of knowledge acquisition, as described by Greiff, Wüstenberg, Holt, Goldhammer,
and Funke [40]. Moreover, rule application scores were assessed via simulation-based tests as described
in the literature, thus representing knowledge application [40]. These scores represent the sum of all 16
dichotomously scored rule-application items (four from each simulation run). Knowledge acquisition
and knowledge application have been found to be predictors of academic success above and beyond
reasoning compare [40], but this finding has been questioned by recent studies that applied a broader
operationalization of intelligence, as described above [16,35].

The simulation consisted of two phases: the exploration phase and the intervention phase.
During the exploration phase, the relations between controls and displays of the fictitious machine
(the simulation model) had to be identified in a maximum number of four steps by adjusting the
controls and observing the effects on the instruments. In each of the four exploration steps, these
effects could be observed as soon as participants had confirmed that all instruments had been finally
adjusted. From these observations, participants might conclude which controls were related to which
instruments and might draw arrows in a structural diagram accordingly. From the structural diagram
resulting from the exploration phase, causal knowledge (CausalKnow) was computed as the sum of
correctly identified existing and non-existing relations between controls and displays.

For answering each of four items in the intervention phase, participants were provided with the
correct simulation model as displayed in the upper right corner of Figure 1. For each item, the display
was set to a certain position and participants had to adjust the controls so that all the displays reach
the zero position, which had been defined as an optimum. The rule-application scores (RuleApp) were
calculated dichotomously. Participants received a point for each rule-application task that they solved
completely correctly during the intervention phase.

To increase both reliability and time-efficiency of the simulation as compared to that used by
Bühner et al. [6] and Kröner et al. [13], some changes were applied to the procedure: firstly, participants
had to deal with four simulation runs in which different models of increasing complexity had to be
explored and four accompanying intervention tasks had to be solved, respectively, as described above.
CausalKnow and RuleApp scores were then computed as aggregates of scores from all four simulation
runs. To enable this, the rule knowledge items used by Kröner et al. [13] and Bühner et al. [6] were
replaced by an analysis of the arrows drawn in the structural diagram. Both RuleApp and CausalKnow
were used as measurements of complex problem solving in all path analyses conducted in this study.

2.2.2. I-S-T 2000-R

The subtests of the basic module of the Intelligence-Structure-Test 2000-R
(Intelligenz-Struktur-Test 2000-R, IST [37]) were conducted. This test is a well validated and
frequently used intelligence test in Germany. It assesses reasoning in the figural, numerical, and verbal
content categories with three subtests each, resulting in nine subtests. For each subtest, the number of
correct tasks was assessed and summed up for the three subtests making up one category. For the
verbal models, the subtests’ sentence completion, analogies and similarities were used (referred to as
REAS_V). The numerical facet (referred to as REAS_N) was measured using the tasks’ arithmetic
problems, sequences of numbers and arithmetic operators. In addition, figural reasoning (referred
to as REAS_F) was measured via selecting figures, tasks with three-dimensional dice and matrices.
The reasoning score used in the aggregated models (referred to as REAS) was calculated as the sum of
all previously stated tasks.

2.2.3. Working Memory Tests

The working memory scores were measured using a shortened version of the test battery
programmed by Oberauer et al. [38], based on their working memory model. This model consists of
two facets, operation and content, comprising three operation categories and the two content categories
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(numerical/verbal and figural/spatial), respectively. The operation categories are supervision, storage
in the context of processing and relational integration. An aggregate of the three operation categories
was used in the analyses.

For the assessment of supervision, switching tasks were used. In the verbal condition, participants
had to decide whether a word had one or two syllables (if it appeared in one of the upper two cells) or
whether a word was a plant or an animal (if it appeared in one of the lower two cells), respectively.
Because the stimulus cell changed clockwise, the participants always had to use the same criterion
twice and then switch to the other criterion. In addition, tasks with numerical (odd vs. even; <500 vs.
>500) and figural (one connected vs. two separate patterns; symmetrical vs. non-symmetrical pattern)
content were used. General switching costs were calculated as the difference of the log-transformed
reaction times from no-switching trials and the corresponding baseline choice reaction tasks [38].

To assess storage in the context of processing, the choice reaction tasks that had already been used
for the supervision tasks were combined with short-term memory tasks from the same content domain.
First, the material that had to be memorized was presented. Afterwards, the choice reaction tasks had
to be solved for five seconds. For the figural scores, the pattern task as described by Oberauer et al. [38]
was used. The score used in the current study was derived from the number of correctly remembered
items [38].

Relational integration was measured using monitoring tasks [38]. Participants had to observe
words (verbal condition) or numbers (numerical condition) in a 4 × 4 matrix that were interchanged
randomly. The task was to press the ‘space’ key when a certain pattern was visible. For the verbal and
numerical condition, this was the case when three rhyming words or, respectively, three numbers with
the same final digit formed a horizontal, vertical or diagonal line on the screen. No memory capacity
was needed because all items were visible on the screen the whole time. The score was calculated
by subtracting the number of false reactions from the number of correct reactions. For the figural
condition, the flight control task was used [38]. Planes were represented by small triangles that moved
across the screen with different speeds and in different directions. In addition, there were mountains on
the screen that were represented by brown squares. The participants’ task was to keep the planes from
colliding with each other or with the mountains. They could do so by stopping and redirecting the
planes with the mouse. The participants had a limited credit that shrunk with every stop of the traffic
and with every crash. Each item took 12 s without pause times. The score used for further calculations
was the mean number of collisions per round. They were inverted to facilitate interpretation.

2.3. Statistical Analysis

2.3.1. Path Analysis

We conducted path analyses with AMOS 22 (IBM SPSS, Chicago, IL, USA) using
maximum-likelihood estimations. All coefficients reported are based on standardized solutions.
Cut-off values of the Root Mean Square Error of Approximation (RMSEA) ≤ .06 and the Standardized
Root Mean Square Residual (SRMR) ≤ .08 were applied to assess the global-fit between the tested
model and the data [41]. Additionally, the Comparative-Fit-Index (CFI) was inspected. According to
Hu and Bentler [41], a cut-off value of >.95 indicates appropriate global-fit. In addition, the χ2-model
test was used for model evaluation.

2.3.2. Models

Our models tested the interrelations between the categories of working memory, reasoning, and
complex problem solving with aggregated scores, comprising three content categories (model 1).
In addition, separate models for figural (model 2), numerical (model 3), and verbal (model 4) content
were tested. In version (a) of the four models, REAS predicts CausalKnow and RuleApp. Analogous
to Kröner et al. [13] and Greiff et al. [7], CausalKnow was specified as a predictor for RuleApp as
well. In version (b) of the models, paths from WM to CausalKnow and RuleApp were added to test
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the incremental predictive power that working memory could provide above and beyond reasoning.
We also calculated achieved power [42,43] to detect misspecified models assuming an RMSEA of .06 in
the population against the alternative of RMSEA = .08.

3. Results

Table 1 depicts the correlations between the facets of complex problem solving, working memory,
and reasoning. In Table 2, sample size, means, standard deviations, and reliability indices of the test
scores are provided. As we were not able to get hold of the original raw scores of the data, the reliability
scores for reasoning stem from the original publication of the data [5]. For the problem solving and
working memory scores, we were able to calculate McDonald’sω total, which is reported in Table 2.
McDonald’s ω total gives a reliability estimate of the overall variance in the data that is due to a
general factor and specific factors. ω hierarchical is a reliability estimate for the variance that is due to
the general factor only [44].

Table 1. Correlations between problem solving, working memory, and reasoning. Significant
correlations are marked in bold typefaces (α = .05).

Tests Scores 1 2 3 4 5 6 7 8 9

Problem Solving

(1) Causal Knowledge
(2) Rule Application .42

Working Memory

(3) Working Memory .39 .39
(4) Working Memory (Figural) .37 .40 .90
(5) Working Memory (Numerical) .23 .28 .76 .56
(6) Working Memory (Verbal) .41 .35 .83 .61 .53

Reasoning

(7) Reasoning .47 .46 .69 .66 .48 .58
(8) Figural Reasoning .30 .35 .51 .53 .38 .33 .79
(9) Numerical Reasoning .37 .39 .62 .59 .48 .50 .86 .52
(10) Verbal Reasoning .41 .29 .41 .35 .18 .52 .58 .21 .32

Table 2. Means, range, standard deviations, sample sizes, and reliabilities of the raw test scores.

Tests Scores M (Range) SD n rtt

Problem Solving

Causal Knowledge 53.16 (26–64) 9.17 124 ω = .80 b

Rule Application 5.86 (0–16) 4.37 124 ω = .72 b

Working memory

Working Memory 1.14 (0.23–1.75) 0.27 124 ω = .81 b

Working Memory (Figural) 0.59 (−0.53–1.19) 0.32 124 ω = .83 b

Working Memory (Numerical) 2.17 (1.38–2.82) 0.28 124 ω = .31 b

Working Memory (Verbal) 1.54 (−0.11–2.30) 0.37 124 ω = .45 b

Reasoning

Reasoning 114.47 * (73–154) 18.58 124 ω = .93 a

Reasoning (Figural) 33.75 * (14–55) 8.48 124 α = .88 a

Reasoning (Numerical) 40.08 * (21–58) 9.77 124 α = .94 a

Reasoning (Verbal) 40.64 * (11–52) 5.92 124 α = .74 a

a = Cronbach’s alpha; b = McDonald’sω total; * = equivalent to average scores concerning age and education.

Model fit statistics for all path analysis are provided in Table 3. Model (a) differs from model
(b) to the effect that, in model (a), no direct effects of working memory scores on complex problem
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solving are specified. Model fit statistics for model (b) are not provided since this model has 0 degrees
of freedom and is thus saturated.

Table 3. Model fit statistics for path analysis. Significant p-values are marked in bold typefaces (α = .05).

Tests Scores χ2 [df ] p RMSEA [CI90] Achieved Power
RMSEA a CFI SRMR

Model 1a (aggregated) 2.30 [2] .317 .035 [.000; .187] .09 .998 .031
Model 2a (figural) 13.10 [2] .001 .213 [.114; .330] .09 .879 .094

Model 3a (numerical) 1.62 [2] .443 .000 [.000; .169] .09 >.999 .033
Model 4a (verbal) 11.88 [2] .003 .201 [.102; .318] .09 .893 .089

RMSEA = Root Mean Square Error of Approximation, CFI = Comparative Fit Index, SRMR = Standardized Root
Mean Square Residual; a = for H0: RMSEA ≤ .06 against H1: RMSEA = .08, with α = .05.

3.1. Model 1 (Aggregated Predictors)

Model 1 is depicted in Figure 2.
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3.1.1. Model 1a (No Direct Effect of Working Memory Scores on Complex Problem Solving)

The data did not deviate significantly from the model (χ2 [2] = 2.30, p = .32) and the global model
fit was acceptable. The paths from REAS on RuleApp and CausalKnow reached statistical significance.
REAS explained 22 percent of CausalKnow variance and 26 percent of RuleApp variance.

3.1.2. Model 1b (Direct Effects of Working Memory Scores on Complex Problem Solving)

The two paths added from WM to the complex problem solving scores did not reach statistical
significance. The paths from REAS to CausalKnow and RuleApp remained significant. Explained
variance in the complex problem solving scores could not be improved (.26 vs. .27 and .22 vs. .22).

3.2. Model 2 (Figural Predictors)

Model 2 is depicted in Figure 3.
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3.2.1. Model 2a (No Direct Effect of Figural Working Memory Scores on Complex Problem Solving)

The data deviated significantly from the model and the global model fit was not acceptable.
Because parameter estimates from misspecified models can be seriously biased [45], leading to incorrect
conclusions, we do not interpret parameter estimates and multiple R2 of miss-fitting models.

3.2.2. Model 2b (Direct Effects of Figural Working Memory Scores on Complex Problem Solving)

The two added paths from WM_F to CausalKnow and RuleApp reached statistical significance.
REAS_F, in turn, did not explain incremental variance of CausalKnow and RuleApp above and
beyond working memory. Explained variance in CausalKnow and RuleApp improved to 15 and 26
percent, respectively.

3.3. Model 3 (Numerical Predictors)

Model 3 is depicted in Figure 4.
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3.3.1. Model 2a (No Direct Effect of Numerical Working Memory Scores on Complex Problem Solving)

Model 3a revealed an acceptable global model-fit and did not deviate significantly from the data.
All paths in this model reached statistical significance. Fourteen percent of CausalKnow and 24 percent
of RuleApp variance could be explained.

3.3.2. Model 3b (Direct Effects of Numerical Working Memory Scores on Complex Problem Solving)

Both paths added from WM_N to CausalKnow and RuleApp missed statistical significance while
the paths from REAS_N to CausalKnow and RuleApp remained significant. Explained variance did
not increase (.24 vs. .25 and .14 vs. .14).

3.4. Model 4 (Verbal Predictors)

Model 4 is depicted in Figure 5.
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3.4.1. Model 4a (No Direct Effect of Verbal Working Memory Scores on Complex Problem Solving)

The global fit of model 4a (see Figure 5) did not meet the criteria and the data deviated significantly
from the model. We therefore refrain from interpreting the parameter estimates and multiple R2 of this
non-fitting model.

3.4.2. Model 4b (Direct Effects of Verbal Working Memory Scores on Complex Problem Solving)

The added paths from WM_V to CausalKnow and RuleApp reached statistical significance.
The path coefficient from REAS_V to RuleApp stayed insignificant, whereas the coefficient from
REAS_V to CausalKnow decreased but remained significant. Twenty-three percent of CausalKnow
variance and 22 percent of RuleApp variance could be explained.
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4. Discussion

4.1. Main Results

The present data reconcile the seemingly contradictory findings of Wittmann and Süss [1],
Bühner et al. [6], and Greiff et al. [7] and suggest differences in symmetry levels as well as working
memory and reasoning content between the studies as presumable reasons for the discrepancies.
The study shows that the explanatory power of reasoning and working memory regarding complex
problem solving as measured with MultiFlux varies depending on the level of aggregation and the
content. In line with Bühner et al. [6], figural reasoning did not display a unique effect above and
beyond working memory on any of the complex problem solving measures used (see Figure 3).
For numerical content, in line with Greiff et al. [7], the exact opposite was the case (see Figure 4):
numerical reasoning predicted complex problem solving significantly while the numerical working
memory components had no additional effect for the prediction of MultiFlux complex problem solving.
The verbal model (see Figure 5) differentiated between causal knowledge and rule application. While,
for causal knowledge both verbal working memory and verbal reasoning had significant effects, for
rule application, verbal reasoning had no significant predictive power. As expected, the results of
Wittmann and Süss [1] could not be replicated when using content aggregated scores for reasoning
and working memory, as Wittmann and Süss [1] used a score for complex problem solving that was
aggregated as well, while, in this study, complex problem solving was measured by one task only. Since
Wittmann and Süss used three tasks that are very different, this leads to a higher level of generalization
(even if the demands are not balanced for content). Since, in our model, a complex problem was
measured using four versions of the MultiFlux task that all have the same rationale, the degree of task
specific variance in this study is higher. This results in lacking symmetry between both studies.

While, in the figural models, figural working memory was the only significant predictor of
complex problem solving when controlled for figural reasoning, in the numerical models, it was
the other way around. One might suspect that this finding could be related to differences in the
reliabilities of reasoning and working memory. However, these reliabilities were very similar in three
of the four models, making it possible to rule out distortions due to differential attenuation as an
explanation for these findings. Another possible explanation might be related to specific demands of
the MultiFlux tasks. In this particular simulation, participants might have made arithmetic operations
requiring numerical reasoning, while, at the same time, having to translate their results into visual
representations, thus requiring figural working memory. Since the operation has to be conducted in
one step, we suspect that this task does not require unique contributions of figural reasoning, even
though the bivariate correlations proved to be significant. This does not hold for numerical and verbal
reasoning, since they can both be processed verbally and processed in a more sequential manner
see [46]. Since Greiff et al. [7] used MicroDYN, a measurement for complex problem solving that
allows participants to make their decisions in several steps (as opposed to the one step approach used
in MultiFlux), we would hypothesize that with MicroDYN—despite a representation combined of
figural and numerical aspects that is similar to MultiFlux—figural working memory would not be a
predictor for complex problem solving above and beyond reasoning.

Thus, it would be interesting to replicate the study by Bühner et al. [6] using various simulations
including MicroDYN as operationalisations of complex problem solving and differentiating between
different contents used for the measurement of working memory and reasoning, as it was done
in this study. Moreover, a larger sample size would be preferable to be able to better compare
differences in effect sizes across the various content facets. These results are discussed in detail in the
subsequent paragraphs.

4.2. Symmetry as a Central Factor for the Comparability of Different Studies

The obtained results clearly show that symmetry within studies plays a central role in the
prediction of MultiFlux complex problem solving scores, as Wittmann [4] has suggested. Aggregating
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scores from different categories completely altered the implied relationships and lead to different
models. As Wittmann and Süss describe in their 1999 article [1], it can be a problem if two correlating
abilities are not measured comparably broadly [1]. In our case, symmetry in the aggregated model
was lower than in the content-specific models, since the criterion, complex problem solving, had not
been measured as broadly as the aggregated reasoning and working memory scores. Thus, in the
content-specific models, where both the predictors and the criterion were measured using only one
task for every construct, symmetry was higher than in the aggregated model, which compensated for
the lower reliability of the working memory measures as compared to the aggregated model when
explaining criterion variance. Still, the present study might not have met perfectly the criteria of
symmetry as outlined by Wittmann and Süss [1] due to the broader operationalization of reasoning
and working memory compared to complex problem solving. This topic is further discussed in the
Section 4.4.

Aside from the symmetry problems within the models used in this study, symmetry between
studies, i.e., similarity of aggregation levels, may be considered to be an important factor for the
comparison of different studies as well. The results of Bühner et al. [6] and Greiff et al. [7] cannot
be compared to those of Wittmann and Süss [1], even though the designs and the applied model are
comparable to each other, because they are not on the same level of aggregation.

4.3. Implications for the Discriminant Validity of Reasoning and Working Memory

Many earlier studies showed substantial effects of reasoning on complex problem
solving [1,6,7,11,13,47]. In line with these findings, reasoning was a statistically significant predictor
in all models where paths from working memory to causal knowledge were not estimated. Some of
the studies cited above did not control for working memory—and for those that did, an inconsistent
pattern of results was observed. The present study, however, shows that when predicting performance
in complex problem solving scenarios, models drawing on content aggregated scores for reasoning
and working memory may lead to different findings than models drawing on content-specific scores.
One reason for such effects is the variation of relative importance of working memory and reasoning
across content factors, depending on the scenario—or group of scenarios—under scrutiny. In the
present investigation, this variation has been demonstrated for the complex problem solving test
MultiFlux. This is an important result as it enabled us to provide support for differential discriminant
validity of working memory and reasoning (see [27,28] for an exhaustive discussion on this topic)
on a higher level of aggregation. It shows that studies operating on a lower level of the hierarchical
construct, whether symmetrically or asymmetrically, may draw a biased picture due to the influence of
task-specific variance. If one wants to draw conclusions about the relationships between actual (broad)
constructs, a high level of aggregation and high symmetry between the construct levels (as argued by
Süss and Wittmann [1] and Wittmann and Hattrup [11]) seems strongly warranted. This is in line with
previous research addressing symmetry issues, for example on the relation between intelligence and
academic success, e.g., [48]. However, further research needs to analyse if such evidence can also be
found in other criteria within and without the realm of cognition.

4.4. Limitations and Perspectives for Further Research

A reanalysis of our findings with a different criterion measure for complex problem solving
would be interesting. The scenario MultiFlux [13] used by Bühner et al. [6], like most problem
solving scenarios, has not been constructed with the aim of balanced task requirements across content
categories. Therefore, it might be that the relation between MultiFlux complex problem solving,
reasoning, and working memory differs depending on the content used to measure working memory
or reasoning. Nevertheless, in prior studies, MultiFlux showed quite strong correlations with reasoning
measures aggregated across all three content factors that are very improbable to be totally substituted
by aggregated measures of working memory [13]. As MultiFlux may have different demands than
MicroDYN, our model (3) is not a replication of Greiff et al. [7]. In addition, for a replication of
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Wittmann and Süss [1], it would be necessary to use an aggregated score of different tasks as a
measurement for complex problem solving to archive symmetry within the study as well as between
the studies. Further studies should also investigate potential effects of different operationalisations of
causal knowledge (as quality of causal diagrams drawn vs. scores in rule knowledge items requiring
the prediction of a simulation input-vector on a given simulation state) on correlations between
causal knowledge and rule application scores. The latter turned out to be rather low in the present
study—probably as an effect of less method variance shared by the operationalisations that were used
in the present study.

Moreover, Oberauer et al. [38,49] considered verbal and numerical working memory content as
a common category, which is divided in the present study, while reasoning is commonly divided
into three content categories, e.g., [50], as it was also done here. The strong connection of verbal
and numerical stimuli may have had a strong impact in this study, since the numerical MultiFlux
stimuli may be well be processed verbally, as discussed above (see also [46]). This may have also
led to the finding that—even though MultiFlux requires processing of numerical rather than verbal
stimuli—model 4 showed strong associations between CPS and verbal working memory as well as
verbal reasoning. This assumption is further supported by the results of Hilbert, Schwaighofer, Zech,
Sarubin, Arendasy, and Bühner [51], who found that training with verbal working memory tasks was
associated with superior performance in numerical working memory tasks and vice versa, while no
such connection was found for figural working memory tasks. Even though the correlational pattern
may therefore be biased, increasing the symmetry at least regarding the content facet has still shown its
impact and, as mentioned above, even the distinction between verbal and numerical working memory
content revealed interesting results.

Finally, we emphasize the need for direct replication studies using larger samples as in the present
study. As the power analysis on the achieved power for the RMSEA revealed [43], achieved power
for each model was very low, implying that the probability to detect misfitting models was below the
minimum required level of .80 [42]. Furthermore, the second version of the models was saturated
and thus their model fit could not be tested. The results and interpretations of the models and their
parameters must therefore be regarded as preliminary.

5. Conclusions

Taken together, symmetry turned out to be an important factor, not only when comparing
correlations within a single study but also for the comparison between different studies on the same
topic. Thus, as suggested by Wittmann and Süss [1] as well as Wittmann and Hattrup [11], the level
of aggregation seems to be decisive for the conclusions that may be drawn from an investigation
of cognitive constructs. Task-specific contents are prone to bias a given result, depending on the
content and the given level of aggregation of all constructs in question. In this sense, the present
investigation demonstrated how the replication of various studies could or could not be achieved,
depending not only on different contents on the same level of aggregation but also aggregation of the
content for at least two of the constructs in question and further showed that the replication of the
study conducted by Wittmann and Süss [1] could not be achieved, likely due to a lack of an aggregated
score for complex problem solving. This leads to the conclusion that, if one wants to explore the
relation between cognitive abilities, and not merely between different tasks or tests, aggregation across
different material categories is indispensable.

Acknowledgments: We thank the anonymous reviewers whose comments helped improve and clarify the
manuscript substantially during the peer-review process. In particular, comments by reviewer #1 regarding the
design of the path models proved to be very helpful.

Author Contributions: S.K. and M.B. conceived and designed the experiments; M.B. performed the experiments;
A.Z. and M.H. analyzed the data; S.K. contributed materials; and A.Z. and S.H. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.



J. Intell. 2017, 5, 22 16 of 18

References

1. Wittmann, W.W.; Süß, H.-M. Investigating the paths between working memory, intelligence, knowledge,
and complex problem solving performances via Brunswik symmetry. In Learning and Individual Differences:
Process, Trait, and Content Determinants; Ackerman, P.L., Kyllonen, P.C., Roberts, R.D., Eds.; American
Psychological Association: Washington, DC, USA, 1999; pp. 77–108.

2. Brunswik, E. The conceptual framework of psychology. Psychol. Bull. 1952, 49, 654–656.
3. Nesselroade, J.R.; McArdle, J.J. On the mismatching of levels of abstraction in mathematical-statistical model

fitting. In Biological and Neuropsychological Mechanisms: Life-Span Developmental Psychology; Reese, H.W.,
Franzen, M.D., Eds.; Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, USA, 1997; pp. 23–49.

4. Wittmann, W.W. Multivariate reliability theory: Principles of symmetry and successful validation strategies.
In Handbook of Multivariate Experimental Psychology, 2nd ed.; Perspectives on Individual Differences;
Nesselroade, J.R., Cattell, R.B., Eds.; Plenum Press: New York, NY, USA, 1988; pp. 505–560.

5. Bühner, M.; Krumm, S.; Ziegler, M.; Plücken, T. Cognitive Abilities and Their Interplay. J. Individ. Differ.
2006, 27, 57–72. [CrossRef]

6. Bühner, M.; Kröner, S.; Ziegler, M. Working memory, visual-spatial-intelligence and their relationship to
problem solving. Intelligence 2008, 36, 672–680. [CrossRef]

7. Greiff, S.; Krkovic, K.; Hautamäki, J. The Prediction of Problem Solving Assessed via Microworlds: A Study
on the Relative Relevance of Fluid Reasoning and Working Memory. Eur. J. Psychol. Assess. 2016, 32, 298–306.
[CrossRef]

8. Bakker, M.; van Dijk, A.; Wicherts, J.M. The rules of the game called psychological science.
Perspect. Psychol. Sci. 2012, 7, 543–554. [CrossRef] [PubMed]

9. Fanelli, D. Do pressures to publish increase scientists’ bias? An empirical support from US States Data.
PLoS ONE 2010, 5, e10271. [CrossRef] [PubMed]

10. Ferguson, C.J.; Heene, M. A Vast Graveyard of Undead Theories: Publication Bias and Psychological
Science’s Aversion to the Null. Perspect. Psychol. Sci. J. Assoc. Psychol. Sci. 2012, 7, 555–561. [CrossRef]
[PubMed]

11. Wittmann, W.W.; Hattrup, K. The relationship between performance in dynamic systems and intelligence.
Syst. Res. Behav. Sci. 2004, 21, 393–409. [CrossRef]

12. McGrew, K.S. CHC Theory and the Human Cognitive Abilities Project: Standing on the Shoulders of the Giants of
Psychometric Intelligence Research; Elsevier: San Diego, CA, USA, 2009.

13. Kröner, S.; Plass, J.L.; Leutner, D. Intelligence assessment with computer simulations. Intelligence 2005, 33,
347–368. [CrossRef]

14. Fung, W.; Swanson, H.L. Working memory components that predict word problem solving: Is it merely a
function of reading, calculation, and fluid intelligence? Mem. Cogniti. 2017. [CrossRef] [PubMed]

15. Meissner, A.; Greiff, S.; Frischkorn, G.T.; Steinmayr, R. Predicting Complex Problem Solving and school
grades with working memory and ability self-concept. Learn. Individ. Differ. 2016, 49, 323–331. [CrossRef]

16. Kretzschmar, A.; Neubert, J.C.; Wüstenberg, S.; Greiff, S. Construct validity of complex problem solving:
A comprehensive view on different facets of intelligence and school grades. Intelligence 2016, 54, 55–69.
[CrossRef]

17. Bühner, M.; Krumm, S.; Pick, M. Reasoning = working memory 6= attention. Intelligence 2005, 33, 251–272.
[CrossRef]

18. Kyllonen, P.C. g: Knowledge, speed, strategies, or working-memory capacity? A systems perspective. In The
General Factor of Intelligence: How General Is It; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA,
2002; pp. 415–445.

19. Schweizer, K.; Moosbrugger, H. Attention and working memory as predictors of intelligence. Intelligence
2004, 32, 329–347. [CrossRef]

20. Süß, H.-M.; Oberauer, K.; Wittmann, W.W.; Wilhelm, O.; Schulze, R. Working-memory capacity explains
reasoning ability—And a little bit more. Intelligence 2002, 30, 261–288. [CrossRef]

21. Ackerman, P.L.; Beier, M.E.; Boyle, M.O. Working Memory and Intelligence: The Same or Different
Constructs? Psychol. Bull. 2005, 131, 30–60. [CrossRef] [PubMed]

http://dx.doi.org/10.1027/1614-0001.27.2.57
http://dx.doi.org/10.1016/j.intell.2008.03.008
http://dx.doi.org/10.1027/1015-5759/a000263
http://dx.doi.org/10.1177/1745691612459060
http://www.ncbi.nlm.nih.gov/pubmed/26168111
http://dx.doi.org/10.1371/journal.pone.0010271
http://www.ncbi.nlm.nih.gov/pubmed/20422014
http://dx.doi.org/10.1177/1745691612459059
http://www.ncbi.nlm.nih.gov/pubmed/26168112
http://dx.doi.org/10.1002/sres.653
http://dx.doi.org/10.1016/j.intell.2005.03.002
http://dx.doi.org/10.3758/s13421-017-0697-0
http://www.ncbi.nlm.nih.gov/pubmed/28378297
http://dx.doi.org/10.1016/j.lindif.2016.04.006
http://dx.doi.org/10.1016/j.intell.2015.11.004
http://dx.doi.org/10.1016/j.intell.2005.01.002
http://dx.doi.org/10.1016/j.intell.2004.06.006
http://dx.doi.org/10.1016/S0160-2896(01)00100-3
http://dx.doi.org/10.1037/0033-2909.131.1.30
http://www.ncbi.nlm.nih.gov/pubmed/15631550


J. Intell. 2017, 5, 22 17 of 18

22. Engle, R.W.; Tuholski, S.W.; Laughlin, J.E.; Conway, A.R.A. Working memory, short-term memory, and
general fluid intelligence: A latent-variable approach. J. Exp. Psychol. Gen. 1999, 128, 309–331. [CrossRef]
[PubMed]

23. Schweizer, K. Investigating the relationship of working memory tasks and fluid intelligence tests by means
of the fixed-links model in considering the impurity problem. Intelligence 2007, 35, 591–604. [CrossRef]

24. Colom, R.; Rebollo, I.; Palacios, A.; Juan-Espinosa, M.; Kyllonen, P.C. Working memory is (almost) perfectly
predicted by g. Intelligence 2004, 32, 277–296. [CrossRef]

25. Kyllonen, P.C. Is working memory capacity Spearman’s g. In Human Abilities: Their Nature and Measurement;
Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, USA, 1996; pp. 49–75.

26. Kyllonen, P.C.; Christal, R.E. Reasoning ability is (little more than) working-memory capacity? Intelligence
1990, 14, 389–433. [CrossRef]

27. Kane, M.J.; Hambrick, D.Z.; Conway, A.R.A. Working memory capacity and fluid intelligence are strongly
related constructs: Comment on Ackerman, Beier, and Boyle (2005). Psychol. Bull. 2005, 131, 66–71. [CrossRef]
[PubMed]

28. Oberauer, K.; Schulze, R.; Wilhelm, O.; Süß, H.-M. Working memory and intelligence—Their correlation and
their relation: Comment on Ackerman, Beier, and Boyle (2005). Psychol. Bull. 2005, 131, 61–65. [CrossRef]
[PubMed]

29. Funke, J. Complex problem solving. In Encyclopedia of the Sciences of Learning; Seel, N.M., Ed.; Springer
Science & Business Media: Berlin, Germany, 2011.

30. Wüstenberg, S.; Greiff, S.; Funke, J. Complex problem solving: More than reasoning? Intelligence 2012, 40,
1–14. [CrossRef]

31. Dörner, D.; Bick, T. Lohhausen: Vom Umgang mit Unbestimmtheit und Komplexität. [Lohhausen: On dealing with
Uncertainty and Complexity]; Verlag Hans Huber: Bern, Switzerland, 1983.

32. Funke, J. Einige Bemerkungen zu Problemen der Problemlöseforschung oder: Ist Testintelligenz doch ein
Prädiktor? Diagnostica 1983, 29, 283–302.

33. Kröner, S. Intelligenzdiagnostik per Computersimulation [Intelligence Assessment with Computer Simulations];
Waxmann Verlag: Münster, Germany, 2001.

34. Süß, H.-M. Intelligenz, Wissen und Problemlösen: Kognitive Voraussetzungen für Erfolgreiches Handeln bei
Computersimulierten Problemen; Hogrefe: Göttingen, Germany, 1996.

35. Lotz, C.; Sparfeldt, J.R.; Greiff, S. Complex problem solving in educational contexts—Still something beyond
a “good g”? Intelligence 2016, 59, 127–138. [CrossRef]

36. Funke, J. Human Problem Solving in 2012. J. Probl. Solving 2013, 6, 3. [CrossRef]
37. Amthauer, R.; Brocke, B.; Liepmann, D.; Beauducel, A. IST 2000R; Hogrefe: Göttingen, Germany, 2001.
38. Oberauer, K.; Süß, H.-M.; Wilhelm, O.; Wittman, W.W. The multiple faces of working memory: Storage,

processing, supervision, and coordination. Intelligence 2003, 31, 167–193. [CrossRef]
39. Greiff, S.; Funke, J. Systematische Erforschung komplexer Problemlösefähigkeit anhand minimal komplexer

Systeme. Projekt Dynamisches Problemlösen. Z. Pädagogik 2010, 56, 216–227.
40. Greiff, S.; Wüstenberg, S.; Holt, D.V.; Goldhammer, F.; Funke, J. Computer-based assessment of Complex

Problem Solving: Concept, implementation, and application. Educ. Technol. Res. Dev. 2013, 61, 407–421.
[CrossRef]

41. Hu, L.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria
versus new alternatives. Struct. Equ. Model. Multidiscip. J. 1999, 6, 1–55. [CrossRef]

42. MacCallum, R.C.; Browne, M.W.; Sugawara, H.M. Power analysis and determination of sample size for
covariance structure modeling. Psychol. Methods 1996, 1, 130–149. [CrossRef]

43. Required Sample Size and Power for SEM|Timo Gnambs. Available online: http://timo.gnambs.at/en/
scripts/powerforsem (accessed on 10 March 2017).

44. Zinbarg, R.E.; Yovel, I.; Revelle, W.; McDonald, R.P. Estimating generalizability to a latent variable common
to all of a scale’s indicators: A comparison of estimators for ωh. Appl. Psychol. Meas. 2006, 30, 121–144.
[CrossRef]

45. Yuan, K.-H.; Marshall, L.L.; Bentler, P.M. Assessing the effect of model misspecifications on parameter
estimates in structural equation models. Sociol. Methodol. 2003, 33, 241–265. [CrossRef]

46. Hilbert, S.; Nakagawa, T.T.; Puci, P.; Zech, A.; Bühner, M. The Digit Span Backwards Task: Verbal and Visual
Cognitive Strategies in Working Memory Assessment. Eur. J. Psychol. Assess. 2015, 1, 1–7. [CrossRef]

http://dx.doi.org/10.1037/0096-3445.128.3.309
http://www.ncbi.nlm.nih.gov/pubmed/10513398
http://dx.doi.org/10.1016/j.intell.2006.11.004
http://dx.doi.org/10.1016/j.intell.2003.12.002
http://dx.doi.org/10.1016/S0160-2896(05)80012-1
http://dx.doi.org/10.1037/0033-2909.131.1.66
http://www.ncbi.nlm.nih.gov/pubmed/15631552
http://dx.doi.org/10.1037/0033-2909.131.1.61
http://www.ncbi.nlm.nih.gov/pubmed/15631551
http://dx.doi.org/10.1016/j.intell.2011.11.003
http://dx.doi.org/10.1016/j.intell.2016.09.001
http://dx.doi.org/10.7771/1932-6246.1156
http://dx.doi.org/10.1016/S0160-2896(02)00115-0
http://dx.doi.org/10.1007/s11423-013-9301-x
http://dx.doi.org/10.1080/10705519909540118
http://dx.doi.org/10.1037/1082-989X.1.2.130
http://timo.gnambs.at/en/scripts/powerforsem
http://timo.gnambs.at/en/scripts/powerforsem
http://dx.doi.org/10.1177/0146621605278814
http://dx.doi.org/10.1111/j.0081-1750.2003.00132.x
http://dx.doi.org/10.1027/1015-5759/a000223


J. Intell. 2017, 5, 22 18 of 18

47. Vickers, D.; Mayo, T.; Heitmann, M.; Lee, M.D.; Hughes, P. Intelligence and individual differences in
performance on three types of visually presented optimisation problems. Person. Individ. Differ. 2004, 36,
1059–1071. [CrossRef]

48. Wittmann, W.W.; Matt, G.E. Aggregation und Symmetrie. Grundlagen einer multivariaten Reliabilitäts-und
Validitätstheorie, dargestellt am Beispiel der differentiellen Validität des Berliner Intelligenzstrukturmodells.
Diagnostica 1986, 32, 309–329.

49. Oberauer, K.; Süß, H.-M.; Schulze, R.; Wittman, W.W. Working memory capacity: Facets of a cognitive ability
construct. Person. Individ. Differ. 2000, 29, 1045. [CrossRef]

50. Jäger, A.O. Mehrmodale Klassifikation von Intelligenzleistungen: Experimentell kontrollierte
Weiterentwicklung eines deskriptiven Intelligenzstrukturmodells. Diagnostica 1982, 28, 195–225.

51. Hilbert, S.; Schwaighofer, M.; Zech, A.; Sarubin, N.; Arendasy, M.; Bühner, M. Working memory tasks
train working memory but not reasoning: A material-and operation-specific investigation of transfer from
working memory practice. Intelligence 2017, 61, 102–114. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0191-8869(03)00200-9
http://dx.doi.org/10.1016/S0191-8869(99)00251-2
http://dx.doi.org/10.1016/j.intell.2017.01.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Symmetry between Different Studies 
	Contradictory Results on the Relation between Working Memory, Reasoning, and Complex Problem Solving 
	The Relation between Working Memory and Reasoning 
	Complex Problem Solving 
	Hypotheses 

	Materials and Methods 
	Participants 
	Instruments and Procedure 
	Multiflux 
	I-S-T 2000-R 
	Working Memory Tests 

	Statistical Analysis 
	Path Analysis 
	Models 


	Results 
	Model 1 (Aggregated Predictors) 
	Model 1a (No Direct Effect of Working Memory Scores on Complex Problem Solving) 
	Model 1b (Direct Effects of Working Memory Scores on Complex Problem Solving) 

	Model 2 (Figural Predictors) 
	Model 2a (No Direct Effect of Figural Working Memory Scores on Complex Problem Solving) 
	Model 2b (Direct Effects of Figural Working Memory Scores on Complex Problem Solving) 

	Model 3 (Numerical Predictors) 
	Model 2a (No Direct Effect of Numerical Working Memory Scores on Complex Problem Solving) 
	Model 3b (Direct Effects of Numerical Working Memory Scores on Complex Problem Solving) 

	Model 4 (Verbal Predictors) 
	Model 4a (No Direct Effect of Verbal Working Memory Scores on Complex Problem Solving) 
	Model 4b (Direct Effects of Verbal Working Memory Scores on Complex Problem Solving) 


	Discussion 
	Main Results 
	Symmetry as a Central Factor for the Comparability of Different Studies 
	Implications for the Discriminant Validity of Reasoning and Working Memory 
	Limitations and Perspectives for Further Research 

	Conclusions 

