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Out-of-time-order correlators (OTOCs) have been proposed as sensitive probes for chaos in inter-
acting quantum systems. They exhibit a characteristic classical exponential growth, but saturate
beyond the so-called scrambling or Ehrenfest time 7g in the quantum correlated regime. Here we
present a path-integral approach for the entire time evolution of OTOCs for bosonic N-particle
systems. We first show how the growth of OTOCs up to 7e =(1/X) log N is related to the Lyapunov
exponent A of the corresponding chaotic mean-field dynamics in the semiclassical large-IN limit.
Beyond 7, where simple mean-field approaches break down, we identify the underlying quantum
mechanism responsible for the saturation. To this end we express OTOCs by coherent sums over
contributions from different mean-field solutions and compute the dominant many-body interference
term amongst them. Our method further applies to the complementary semiclassical limit A— 0 for
fixed N, including quantum-chaotic single- and few-particle systems.
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The study of signatures of unstable classical dynamics
in the spectral and dynamical properties of correspond-
ing quantum systems, known as quantum chaos [1], has
recently received particular attention after the proposal
of Kitaev [2] and related works [3H5] that address the
mechanisms for spreading or ”scrambling” quantum in-
formation across the many degrees of freedom of inter-
acting many-body (MB) systems. With regard to such
a MB quantum-to-classical correspondence, out-of-time-
order correlators (OTOCs) [3] [6], such as

cw=([v.wo) [Fo.re]). o

are measures of choice (with several experimental proto-
cols already available [7HIT]): The squared commutator
of a suitable (local) operator V() with another (local)
perturbation W(O) probes the temporal growth of V,
including its growing complexity. Hence, due to their
unusual time ordering, OTOCs represent MB quantum
analogues of classical measures for instability of chaotic
MB dynamics. Indeed, invoking a heuristic classical-to-
quantum correspondence for small i and replacing the
commutator in Eq. for short times by Poisson brack-
ets one obtains, e.g. for W=p;, V:qj [ 6l 8],
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Here the averages (...) are taken over the initial phase-
space points (q, p) weighted by the corresponding quasi-
distribution. The exponential growth on the r.h.s. follows

from the relation |8q§f) / 8q§1)| oc eM for chaotic systems
with average single-particle (SP) Lyapunov exponent A,
see also Ref. [12] for another semiclassical derivation. In-
triguingly, in view of Eq. , the genuinely quantum-
mechanical OTOC C(t) provides a direct measure of clas-
sical chaos in the corresponding quantum system, similar

to the Loschmidt echo [I3]. This close correspondence
has been unambiguously observed in numerical studies
for SP systems [I4]. For MB problems analytical works
have focused on SYK models [15] [16] or used random ma-
trix theory (where A — oo) [I7-19], while the numerical
identification of a MB Lyapunov exponent from Eq. (1)

remains a challenge [20H22].

Moreover, Eq. predicts unbounded classical growth
while C(t) is eventually bounded due to quantum me-
chanical unitarity. Indeed, C(t) is numerically found
[14, 20] to saturate beyond a characteristic time scale,
known as Ehrenfest time 75 [23] 24] and dubbed scram-
bling time [B, 25] in the MB context. 7 separates ini-
tial quantum evolution following essentially classical mo-
tion from dynamics dominated by interference effects.
Accordingly, quantum interference has been assumed to
cause saturation of OTOCs in some way [3| 14}, 15, 22],
but to date the precise underlying dynamical mechanism
has yet been unknown for chaotic SP and MB systems.

This classical-to-quantum crossover happens at 7 =
(1/X)log(1/her) where “heg — 0” can denote complemen-
tary semiclassical limits: For fixed N, fiegf ~h and A is the
characteristic Lyapunov exponent of the limiting classi-
cal particle dynamics (see Eq. for N =1). For MB
systems with a complementary classical, large-N mean-
field limit, Aes ~1/N and A characterizes the instability
of the corresponding non-linear mean-field solutions.

The notable interference-based saturation of OTOCs
beyond 7 is not captured by a Moyal expansion [16, 18]
of commutators (such as Eq. (1)) in powers of heg as
implicit in Eq. . However, as originally developed for
SP [26H33] and recently extended to MB systems [34H39],
there exist semiclassical techniques that adequately de-
scribe post-Ehrenfest quantum phenomena. By extend-
ing these approaches to MB commutator norms, here
we develop a unifying semiclassical theory for OTOCs
which bridges classical mean-field and quantum MB con-
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cepts for bosonic large-N systems [40]. We express
OTOCs through semiclassical propagators in Fock space
[34] leading to sums over amplitudes from unstable classi-
cal paths, i.e. mean-field solutions. By considering subtle
classical correlations amongst them we identify and com-
pute the dominant contributions involving correlated MB
dynamics swapping forth and back between mean-field
paths (see Fig. . They proof responsible for the initial
exponential growth and the saturation of OTOCs.
Specifically, we consider Bose-Hubbard systems with n
sites describing N interacting bosons with Hamiltonian
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where b! (b;) are creation (annihilation) operators at sites
i=1,...,n. The parameters h;; define on-site energies
and hopping terms, and Vj;i; denote interactions.

We evaluate the OTOC for position and momen-
tum quadrature operators [41] ¢; = (IA)z—i—IA)j)/\/W, pi =
(I;i — EI)/(\/WI), related to occupation operators 7,
through (G2 +p?)/2 = hegt(R; +1/2). Using the MB time
evolution operator U(t)=exp(—iHt/h) Eq. reads

o= (¥ |[p 003, 00)] [0 03,00).5) | v). @

We take the expectation value for an initial wave packet
|¥) localized in both quadratures (like a MB coherent
state, generalizations are discussed later).

Our semiclassical method is based on approximating
the path-integral representation of U(t) in Fock space by
its asymptotic form for large N, the MB version [34] of
the Van Vleck-Gutzwiller propagator [I],

qV;t) = <q(f) ) t)’q(”> (5)
S (0,5 )
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The sum runs over all (mean-field) solutions « of the
classical equations of motion i0® /9t = OH/0®* of the
classical Hamilton function that denotes the mean-field
limit of H, Eq. , for heg=1/N < 1:
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The initial and final real parts of the complex fields
® =(q +ip)/v?2 are fixed by ) and q®, but not their
imaginary parts, thus generally admitting many time-
dependent mean-field solutions or ’trajectories’ ~ that
enter the coherent sum in Eq. and are ultimately
responsible for MB interference effects In Eq. D the
phases are given by classical actions R q(f) q'¥;

Jo A (1), (t)) =H (ar (¢'), P (1)) alongv and the
weights A, reflect their classical stability (see Eq. .

in the Suppl. Mat. [42]). We assume that the mean-
field limit exhibits uniformly hyperbolic, chaotic dynam-
ics where the exponential growth has the same Lyapunov
exponent A at any phase space point [43]. Inserting
unit operators in position quadrature representation into
Eq. and using Eq. for K we get a general semi-
classical representation of the OTOC. To leading order in
her, derivatives p; = —ihegd/0q; only act on the phases
in K and thus, using the relations OR,, /0qH) = pg), we
obtain for the OTOC
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The four time evolution operators in Eq. have been
transformed to fourfold sums over trajectories of tem-
poral length ¢ linking different initial and final position
quadratures. The geometric connections amongst the
trajectories quadruples involved can be represented as

q v o q2
s (@]
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g
q;3 ﬁ/ qq

Black (orange) arrows refer to contributions to K (K*),
and the gray shaded spot mimics the (localized) state
|¥). The semiclassical approximation in Eq. (7)) amounts
to substitute p;, ¢; in Eq. by their classical counter-
parts pg)l and qgf)] for ye{a, B,a’, 8'}. The commutators
themselves translate into differences of initial momenta
of trajectories not restricted to start at nearby positions.

Since R, (q®,q®;t) > heg in the semiclassical limit,
the phase factors in Eq. are generally highly oscil-
latory when integrating over initial or final positions.
Hence contributions from arbitrary trajectory quadruples
are suppressed, while correlated quadruples with action
differences such that R, —Ro+Rg—Rp =~ O(heg) will
dominantly contribute to C(t). These are constellations
where most of the time trajectories are pairwise nearly
identical, except in so-called encounter regions in phase
space where trajectory pairs approach each other, follow
a correlated evolution and exchange their partners.

For OTOC:Ss the relevant quadruples involve a single en-
counter and can be subdivided into four classes depicted
in Fig. [l Diagram (a) represents a bundle of four trajec-
tories staying in close vicinity to each other, i.e. forming
an encounter, during the whole time ¢. Panels (b) and
(c) display “two-leg” diagrams with an encounter at the
beginning or end, and with uncorrelated dynamics of the



di o q2
qs! e
! 8
qdi 6’ a4
(a)
q:
qs «
B
>< q2
q4
«
B
a3
(c)
FIG. 1. Trajectory configurations representing interfering

mean-field solutions that dominantly contribute to the OTOC
C(t), Eq. (7). The trajectory quadruples reside (a) inside an
encounter (marked by dashed box), form a ”two-leg”-diagram
with an encounter (b) at the beginning or (c) at the end, or
(d) build a “four-leg”-diagram with the encounter in between.

two trajectory pairs (“legs”) outside the encounter. The
“four-leg” diagrams in (d) are characterized by uncorre-
lated motion before and after the encounter [44].

Inside an encounter (boxes in Fig.|l) the hyperbolic dy-
namics essentially follows a common mean-field solution,
i.e. linearization around one reference trajectory allows
for expressing the remaining three trajectories. If their
action differences are of order h.g the time scale related
to an encounter just corresponds to g (Egs. and
(48) in [42]). Due to exponential growth of distances
in chaotic phase space the dynamics merges at the en-
counter boundary into uncorrelated time evolution of two
trajectory legs (see, e.g. trajectories o and § in Fig.
(b)). Notably, Hamilton dynamics implies that this ex-
ponential separation along unstable manifolds in phase
space is complemented by motion near stable manifolds,
leading to the formation of (pairs of) exponentially close
trajectories [29]. This mechanism gets quantum mechan-
ically relevant for times beyond g (see, e.g., paths o’ and
aor B and B’ in Figs.[1|(b) and (d)) and will prove crucial
for semiclassically restoring unitarity and for explaining
OTOC saturation.

The evaluation of Eq. @ requires a thorough consid-
eration of the dynamics in and around the encounter
regions and the calculation of corresponding encounter
integrals based on statistical averages invoking ergodic
properties of chaotic systems. The detailed evaluation
of the diagrams (a) to (d) in Fig. [l as a function of
7R for heg < 1 is provided in [42]. The 7g-dependence
of related objects has been considered for a variety of
spectral, scattering and transport properties of chaotic
SP systems [31H33| [45H47]. Conceptually, our derivation
follows along the lines of these works [48], but requires
the generalization to high-dimensional MB phase space.
Moreover, the encounter integrals involve additional am-

plitudes related to the operators in the OTOC that de-
mand special treatment, depending on whether the initial
or final position quadratures are inside an encounter.

Using furthermore the A, in Eq. @ to convert in-
tegrations over final positions into initial momenta, the
OTOC contribution from each diagram is conveniently
represented as phase-space average

C(t) ~ / ag / TpW(ap)(apt).  (9)

Here, W(q,p) = [d"y/(2nhe)"¥*(q+y/2) ¥ (q—y/2)
exp[(i/hes)yp] is the Wigner function [49] of the initial
state W, and I(q, p;t) comprises all encounter integrals.
As shown in [42] and sketched in Fig. [2] for times ¢ <7p
the only non-negligible contribution I. originates from
diagram (a), whereas a combination of diagrams (c¢) and
(d) yields the contribution /s non-vanishing for ¢ > 7g.
Using x(® (x;t) as the final phase space point of a tra-
jectory originating from x = (q, p), these terms read

n—2
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Here (f(x')), denotes the average of a phase-space func-
tion f over the manifold defined through x by constant
energy and particle density (Eq. in [42]). In Eq.

the vectors eil/)u(x) denote the n—2 directions towards the

Pi

stable/unstable manifolds at x, and the labels g¢;, p; in-
dicate components of those. Finally, in Eqs.

F_(t) = eP\t=7®) <72r>n2 {Si (e/\(rE—t))r—4
X [Si (e)‘(TE*t)) — gin (e)\(-rEft))} 2 7 (12)

n—2
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with Si(z) = [, (sin(2’)/2")dz’. In the semiclassical limit
follows Atg = log(1/heg) > 1 such that F(t > 7g) is
strongly suppressed (reflecting vanishing phase space vol-
ume of quadruples of trajectories remaining close to each
other over longer times) and can be expressed by a Heav-
iside step function,

Fo(t) = et Q(rg — t) = h2qeMO(15 — 1) . (14)

As a result the contribution to C(t) in Eq. (9], associated
with I and F<(t), is responsible for the initial exponen-
tial growth exp[2A(¢ — 7g)] of the OTOC for ¢ < 7, as
also depicted in Fig. It reflects unstable mean-field
behavior. Note that for t>A~! (the ergodic time) [50]

a3 [elle] [elx )] e, (19

a5
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FIG. 2. Universal contributions to the time evolution of the
OTOC C(t) for classically chaotic many-body quantum sys-

tems before (F<(t), Eq. (I4)) and after (F-(t), Eq. (16))
the Ehrenfest time 7 = (1/A)log(N) marked by the verti-
cal dashed line. The insets show diagrams (a), (d) and (c)
from Fig. [I} representing interfering mean-field solutions.

implying that our result reduces to the short-time
limit of the commutator, but moreover additionally
contains the missing cutoff through (g — ¢).

On the contrary, F- (¢) in Eq. is suppressed for ¢t <
Tg, but is indeed responsible for post-Ehrenfest OTOC
saturation, as for A7g>1 it can be approximated by

F.(t)= Ot —1R). (16)

The underlying diagrams (c¢) and (d) represent dynam-
ics swapping forth and back along distinctly different
encounter-coupled mean-field solutions. This mechanism
that emerges evidently in a regime where mean-field ap-
proaches fail [5I] creates quantum correlations and en-
tanglement, respectively [52]. The underlying MB inter-
ference, accounted for in the encounter integrals, is at the
heart of F. (t) entering I+ (x;t) in Eq. (LI).

The latter further contains classical quantities that
determine its saturation value: the variance of the j-
th final position quadrature (Ag})? = <q;2>x— <q§>i and
((pi—p})?),. A straightforward calculation of the ergodic
averages, exploiting the connection between p;2 and g;
with the particle density (see Eq. in [42]) yields
I (x;t) ~ 0(t — 8)(p? + 1/n) x (1/n).

For an initial state |¥) with a Wigner function sharply
localized in phase space, the average Eq. @[) then gives

2
Ct) =~ 3 for t > g, (17)

with corrections of O(hegr) due to the finite width. In-
terestingly, the same result, Eq. , holds if |¥) is an
extended chaotic MB state with fixed energy and particle
density.

We finally discuss several implications and conclusions:

(i) Generalization to OTOCs with other operators:
The entire line of reasoning can be generalized to OTOCs
involving operators that are smooth functions of position
and momentum quadratures for which a corresponding
classical symbol exists [42].

(ii) Time-reversal (TR) invariance and higher-order
quantum corrections: Remarkably, the leading quantum
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correction (Fig. d)) is of the same order as the classical
mean-field contribution at 7g. Moreover, the absence of
trajectory loops in the diagrams in Fig. [I} usually associ-
ated with weak localization-like corrections, implies that
our results hold true for systems with and without TR
symmetry. Diagrams involving more than one trajectory
encounter generally yield further sub-leading contribu-
tions that can be susceptible to TR symmetry breaking.
Their evaluation for OTOCs requires further research.

(iii) Small-k limit and SP systems: Our semiclassical
calculation of OTOCs in the large-N limit can be readily
generalized to systems of N particles in d spatial dimen-
sions in the complementary limit of small £, including
the quantum chaotic SP case N =1. There, fieg=h/S ~
L/Aqs where A\gg is the de Broglie wave length, and S
and L are typical actions and length scales of the chaotic
classical limit. Invoking the Gutzwiller propagator [I]
in n = d- N dimensions in Eq. the exponential in-
crease of the OTOC Cy(t) is then determined by the
leading Lyapunov exponent Ay of the corresponding clas-
sical N-particle system (see e.g. Refs. [12, [14] for N=1).
Our derivation shows that saturation sets in at the cor-
responding Ehrenfest time 75™) ~ (1/\y) log(h; ). We
can again evaluate Cy(t) for t > 75V). E.g. for chaotic
billiards ((p; — p;)?) = p? +p?/n. Since L corresponds
to the overall system size £, (Agj)* o< (£)*> = L?. Thus
Cn(t) < S?/n, where the typical action S=h/heg arises
here since [}, p;] =10;;i=10;; S e

Interestingly, for many systems we can have L < L,
such as for the famous Lorentz gas [50]. It is composed
of scattering disks or spheres for d = 2 or 3 [53] with
diameters setting the scale L. Then the dynamics is hy-
perbolic up to 75(!) before it becomes diffusive. This
implies that (Aq;)2 in Eq. scales linearly with time,
(Aq})2 ~ Dt, with diffusion constant D. Thus, beyond

Tg) we expect Ci(t) to first linearly increase before it
saturates at the ergodic (Thouless) time £2/D. In SP
systems with diffusive dynamics arising from quantum
scattering at impurities, the transport time ¢, takes the
role of Tg). This implies a sharp increase of Cy(t) for
t < ti, as already predicted in Ref. [6], followed by the
diffusive behavior discussed above.

(iv) Non-ergodic many-body dynamics: The nonlinear
mean-field dynamics associated with the classical limit of
MB Fock space is much less understood [39] 54} [55] than
its SP counterpart. If the MB dynamics is diffusive for
t > 7, we expect a similar time dependence for C(t) as
discussed in (iii). The propagator is not restricted
to chaotic dynamics, but also allows for investigating
the imprint of more complex, e.g. mixed regular-chaotic,
phase space dynamics on OTOCs or, more generally, on
the stability of MB quantum evolution per se.

To conclude, we considered the time evolution of
OTOCs by developing a general semiclassical approach
for interacting large-N systems. It links chaotic mo-



tion in the classical mean-field limit to the correlated
quantum many-body dynamics in terms of interference
between mean-field solutions giving rise to scrambling
and entanglement. We uncovered the relevant many-
body quantum interference mechanism that is respon-
sible for the commonly observed saturation of OTOCs at
the scrambling or Ehrenfest time. While we explicitly de-
rived OTOCs for bosonic systems, similar considerations
should be possible for fermionic many-body systems [56]
posing an interesting problem for future research.

We thank T. Engl, B. Geiger, S. Tomsovic, D. Ullmo
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Here we provide detailed calculations of the contribu-
tions of the diagram classes (a) to (d) (in Fig. [I] of the
main text) to the out-of-time-order correlator (OTOC).

PHASE SPACE STRUCTURE OF THE
CLASSICAL LIMIT OF THE GENERALIZED
BOSE-HUBBARD SYSTEM

The classical limit of the Bose-Hubbard model de-
scribed by Hamiltonian of the main text is found to
be H given in Eq. @ Generically, this Hamiltonian
has at least two constants of motion (CoM), the energy,
represented by the value of H¢!, and the conservation of
particle density, represented by

n

N(a,p) = ZI@IQ = %Z (a7 +97) . (18

i=1

We assume that the system does not have any other
CoMs and displays fully chaotic motion on the (2n — 2)-
dimensional submanifold defined by the CoMs. Locally
at any phase-space (PS) point x = (q, p), the coordinate
system of the tangent space can be defined in such a way
that for each CoM one can associate 2 axes (parallel and
perpendicular to the flow defined by them), and the re-
maining 2(n — 2) axis point along the stable or unstable
directions responsible for the fully hyperbolic dynamics,
see e.g. [B0]. In the following, we denote the latter direc-
tions with eél)(x)7 e,(ll)(x), l=1,...n — 2. Physically, if
the difference of the initial conditions of two trajectories
lies in the direction egl)(x) (el(ll)(x))7 the hyperbolic dy-
namics of the chaotic system will exponentially increase
(decrease) this difference, with a rate given by the as-
sociated classical Lyapunov exponent \;. For simplicity,
we will assume that the chaotic dynamics is uniformly
hyperbolic, ¢.e. all stable and unstable directions share
the same Lyapunov exponent \.

GEOMETRY OF ENCOUNTERS IN PHASE
SPACE

For our calculations it is necessary to understand how
to quantify constellations of two trajectories which en-
counter each other in a PS region, as displayed in Fig.
For a detailed analysis of the single-particle case, there is
a broad literature available [30] B3], 63H65]. For the ease

of the reader, and also to be able to explain some OTOC-
related special aspects in the next section, we summarize
the key steps here.

The main idea is that during an encounter of two tra-
jectories in PS the dynamics of their relative motion is
well described by linearizing Hamilton’s equations of mo-
tion around one of the trajectories. In this linearized
regime, the relative difference of the trajectories in PS
can be expressed in the local coordinate system spanned
by the directions towards the stable and unstable man-
ifolds, as well as the manifolds given by the CoMs, see
the previous section. However, we have to demand that
both trajectories have (within a window of O(heg)) the
same values for their CoMs, since later we will construct
partner trajectories partially following both trajectories.
Thus, the relative difference vector is expressed solely in
terms of the 2(n—2) stable and unstable directions.

To quantitatively describe two trajectories «, [ en-
countering each other in PS, we first choose one of the
trajectories as a reference trajectory, say 3, and then take
a time ¢’ at which we assume S to be close to a. At the
PS point of 5 at ', denoted by xz(t"), we place the ori-
gin of a 2(n—2) dimensional coordinate system, which
is spanned by the local stable and unstable directions
ef () =ellx5(t")), e} (') =el(x5(t')). In this frame,
an encountering trajectory «, which takes the same val-
ues of the CoMs as 3, is uniquely defined by vectors s,
u, as

xalt') = x5(t") + [sleg}s(t') n uleg}u(t')] (19)

uniquely defines the trajectory’s PS point at time ¢'. In
the linearizable regime of the relative Hamiltonian dy-
namics, i.e. as long as the components of the vectors s, u
do not reach a given critical (classical) value +¢, this sin-
gle PS point is well defined and, for a time-independent
Hamilton function, is sufficient to define the trajectory a.
In the main text, this cutoff ¢ has been set to 1 for the
ease of readability. The only assumption is that ¢? is a
typical classical action scale, i.e. large compared to A .
Its exact value is not of importance as diagrams with ac-
tion differences much larger than heg do not contribute
to the results of semiclassical calculations, and reliable
quantitative results do not depend on it.

Note that in Eq. the temporal parametrization of
« is such, that «a enters the encounter region simultane-
ously with 8. As seen from Eq. @, « and [ need the



same time to get from the initial to the final point. A
mismatch in times of the encounter event of the trajec-
tories o and 8 would lead to partner trajectories o/, 3’
with times different to ¢t. But those are not available in
the sums over trajectories o, 8’ in Eq. (7).

Subject to the hyperbolic dynamics, the vectors s and
u in the co-traveling coordinate system will change when
varying t'. For instance for t', ¢ inside the encounter,
the PS points given by (#,s,u) and (t”,sexp[—A(t" —
t')], uexp[A(t”—t')]) are describing the very same trajec-
tory a.. To avoid overcounting, it is necessary to later di-
vide the contributions by the time the trajectories spend
inside the encounter region. The limits of the encounter
regions are reached, when the first components of s and
u have grown to a classical scale +c at which the lin-
earization breaks down. This introduces two time scales,

L ( c )
O b
S maxi—1,...n—2(|si|)

A
1 c
tu(u) = < lo ,
=3 g<}naquwwn_zuuA>>

and the time for a fully developed encounter, as seen in
Fig. [1] (d), is defined as the sum

(8) + tu(u). (21)

Note that if the trajectories start and/or end inside the
encounter region, as in Fig. (1] (a) to (c), the encounter
time has to be reduced accordingly.

Suitable partner trajectories following the original tra-
jectories outside the encounter region, while interchang-
ing partners inside it, are found by the PS points

(20)

tenc (57 u) =t

n—2
xp (V') =x5(t") + Z slegfs(t’) ,

=1 (22)

According to their definition, trajectory 3’ exponentially
approaches f3 for times larger than t’, as their difference is
solely along stable directions. For times smaller than ¢/,
we have to consider time-reversed dynamics, and the sta-
ble and unstable manifolds interchange their roles. Thus,
for times smaller than ¢', 3’ exponentially separates from
B, and exponentially approaches « in the same fashion,
since

Xo (') = x4 (t')

n—2
= wel (). (23)
=1

The same reasoning can be applied to a’.

To summarize, a constellation of trajectories with a
single encounter is described by choosing one of the tra-
jectories as a reference trajectory, a time ¢’ as time of the

encounter, and vectors s, u to quantify the respective
distances towards the other trajectories.

Regarding encounter contributions to OTOCs, there is
a further subtlety to consider. If the initial points of the
trajectories are contained inside the encounter region, we
have to treat classical quantities related to initial points
of trajectories in a correlated way, and also use the local
coordinates s, u to describe them. In Fig. (1] (a) and (b),
the beginning of the trajectories is inside the encounter
region. This requires to treat the difference of initial
momenta in Eq. @ through

n—2
! l
P =Pl == me [e,(g,)s(o)}p_ :
=1

7

(24)
n—2
T
il == S o [eho)]
=1 '

Similarly, if the final points enter the encounter region,
as in Fig. |l| (a) and (c), we use

o ©® _Lro2 o2y 1o  ©)?
i85 = 5 (qa,j +q57j> §(qau qﬁ,j)

n—2 2
2 I
~ g2 <§£:1qu@t [egl()}q‘> . (25)
=1 ’

Here [ ], and [] = denote the i-th component of the mo-
mentum sector, and the j-th component of the coordinate
sector of the PS vector e(ﬁl) (t). As we will later approx-
imate the square of the final points in Eq. . by its

ergodlc average, we already approximate them here by

() 2

4 to simplify the expressions.

DENSITY AND ACTION DIFFERENCE OF
DIAGRAMS WITH ENCOUNTERS

To obtain all possible contributions to Eq. (7) from
trajectory constellations with an encounter, we first in-
troduce integrations over the relative differences s, u and
time ¢’ at which these differences are employed. The four-
fold sum over trajectories is then reduced to a two-fold
sum, as the partner trajectories o’ and ' are uniquely
given by the Egs. (22). Furthermore, we correlate the
remaining sums over « and 8 by introducing the density
distribution

P s t) = P22 e () % (1), 5.0
(26)
where
n—2
% (x,5,0) =x+ Y [slegn(x) + ulegp(x)] .@n
=1
The normalization (27hegz)? in Eq. (26) is inde-

pendently determined by performing subsequent cal-
culations imposing unitarity for the object 1 =



(Ut )T @)UT ()T ()| W). It reflects that the paired
trajectories should all stay in the window of a Planck
cell near the submanifold defined by the reference trajec-
tory’s values for the CoMs energy and particle density.

The action difference of this system of four trajectories
is found to be [30, [64]

Ra—Ra/Jng—Rg/ms~u+p§)(Q1—Q5)7 (28)

where the latter term related to the initial momentum
and the relative distance y =q; —qs is introduced as we

J

substitute the trajectories a, o,
by nearby trajectories starting at q=

starting at q; and gs,
3(d14as).

CONTRIBUTIONS OF ENCOUNTER
DIAGRAMS TO THE OTOC

Contributions of 4-leg-encounters

We start with the contributions of the 4-leg-encounters
displayed in Fig. [1] (d). This term is given by

ce /d” /d" /d Q2/d qg/d q4\1'* q+ )\I/(q— %) DA \Aﬂ\z( pg)z) gD emerPey

c c t—ty(u) i
X / d"?s / d" 2y / dt'eTer "1 O [t —
—c —c ts(s)

Most of the ingredients for this integral have been already
discussed in the previous two sections. The special fea-
tures of Fig. [1] (d) are represented by the boundaries of
the integration over ¢/, which require that the encounter
region does neither contain the beginning nor the end of
the trajectories. The Heaviside step function © finally
ensures that encounter regions longer than the available
time ¢ are excluded.

In a first step we use the fact that the squared ampli-
tudes |A,|? can be interpreted as Jacobian for a variable
transformation from final coordinates to initial momenta
along a classical trajectory,

_
(27Theff)”

opY)

2 _

(30)

Together with the sum over trajectories o, we can trans-
form the integrations over qs = q((l) to an integration
over initial momenta ps. Trajectory-related quantities
labeled by « become then functions of trajectories with

initial conditions x3=(qs, p3), €.g.
(b0 a0) -

In the same spirit we use the sum over 3 with |43]? to
transform the integration over q4 to p, and [-labeled
quantities become functions of x=(q, p).

The d-function in the density of encounters (26)) can
be interpreted as classical probability density for a tra-
jectory starting at (qs,ps) to be at time t' at a certain
phase space point which depends on q, p, s, uand ¢'. As
the initial points (qs, p3) are not located within the en-
counter region, it is justified to utilize the ergodic prop-

(ps, q" (a3, p3; t)) : (31)

a:qz5qz
Bra—raa

tenc(S, )] pas (s,u,t’). (29)

(

erty of the chaotic system, which states that every ac-
cessible PS point is equally likely to be reached by the
classical dynamics. We can thus approximate p, g by

( >*Cﬁﬂ‘ﬁ@)
27 hesr)? x3) — M(x
Pah =t o) S0 , o (32)

where ¥(x) is the volume of the chaotic PS submanifold,

Hcl(x/) _ 'HCI(X)

_ 2n, ./ $2

Y(x) = /d x' 0 < NE) - Nx) ) (33)
Together with the integration over initial PS points xs,

ergodic PS averages are introduced, which lead to the fol-
lowing substitution of initial momenta and final position:

f 2 (f
(o = pi)* ) (xait) = (0 —p)* g (x'30))  (34)
where the ergodic PS average is defined as

2n, .1 £2 Hd(X/) _HCI(X) ’
[ d?a’ s (N(x’)—/\/(x) )f(x)

(£ = S0

(35)

For times longer than the ergodic time A\~! we can fur-
ther assume that the final position is independent of its
starting point, and the average factorizes,

2 (f 2
<(p2 - )’ d} )(X’;t)>x = <(p§ - pi) >x (4), - (36)
With the same reasoning, we can also approximate the

remaining factor q( )(x;t) by its ergodic average (g;)_ .
After introducing the Wigner function,

o=t (10 ) ola- o
37)



we see that the contribution of four-leg encounters can
be written in terms of a PS average weighted with the
Wigner function,

c) (g) / & / d"pW (q,p) 14 (q,pit) . (38)

Here the PS function
(39)

149 (q, pst) = <(p2—pi) > (¢))2 FUo (1)

contains the ergodic PS averages and the encounter
J

1 ¢ €t —tenc(siuy)
F(4le) n /d Z/ dus enc\S:Uj
¥ ( ) (27Th 1:f)n 2 —e s . u] tenc(siuj)

(1/X) log(c?/lsiuj1),

with the encounter time teno(s;uj)=
see Eq. .

One has to distinguish the cases i # j from i = j in
order to correctly interpret the product over k, k’. The
integrations over s; and uys are easily performed, either
by a simple integration of an exponential for k=7, k' =1,
i # j, or by sorting the products such that k = &’ and
using Eq. (97)). For the integration over s;, u;, one first
transforms the integration over the subinterval [—c,0] t
[0, c] by inverting the sign of the integration variables.
For the resulting integrations over positive s;, u; we then
use the variable transformation [31]

siu; ¢ i 0(s4,u;) c?
1y Wy 9 = y | th | 75— = —
(si,u;) = (S,0) ( =2 uj) wi ’ 9(5.0) .
1
and0<S<l,1<o<—. (43)

S

The integration over o leads to the cancellation of
tenc(siuj) in the denominator. The argument of the
Heaviside step function © demands ¢ > (1/))log(S~1),
which is equivalent to S > exp(—At), thus raising the
lower integration limit for S. We get as result for i=j

9 n—2 1 1
FH (1) = () / ds </\t — log ())
™ e—At S
2 2 2
a3 (S (SN ¢
xS (hﬁ) o <hff> et

(44)

ot —

10

integral
4le n—2 n—2 su
F( )() 271_hﬂn2/d /7d ueeff
tenc(s 11)
_ ne(s, . 4
L‘enc(s,ll) O [t — tenc(s,u)] (40)

In order to resolve the max-function in the definition of
tenc, we split the integrations over s, u. This leads to the
summation

F(41e) Z F 4le) (41)
4,j=1
where
[s:] [
tenc<5iu] / dSk/ dugs eﬁcff su (42)
k,k'=1 Isil s
ki, k' #j
[
and for i#j

(41e) 9 n—2 1 1
= (2) [ as (e (1)
-2 (28
N 29\ sin (hcff>
heﬁ

S )

(45)

where Si(z) = [ d2/(sin(z") /") denotes the sine integral.
We can now perform the summation over indices ¢, j
to obtain an integral expression for F(4¢). Note that

2 (28
26\ sin <h—ff>
— N —3) s (2 )\
(=20 -5 (£5)
28 S\ 2
_2 n—3 c
+(n ) Si (heﬁ> cos <heﬁ> o

d . d ., o(c3S
= a5 as (n)

and thus

2\"? ! 1
FAe) () = () / ds <>\t —log <)>
o e—kt S
2
d o d (e S
XdSSdSS <hﬁ> '
The outer derivative in the second line is shifted to the
first factor in the integrand. As d/dS (t—log(S—1)) =

1/8 cancels the factor S, the remaining integral is easily
performed. To obtain more physical insight at this stage,

(47)



it is worth to introduce the Ehrenfest time,

1 c? 2
=21 =N = eME | 48
Y °g<heﬂ) het (48)

It is the time scale for which under hyperbolic dynamics
details of the order of A.g can grow to the typical classical
action 2. Using this, we obtain as final result

FO) (1) — (i)n_;t(n

- (i)nQ [Si”*2 (X)) — gin 2 (e*“ﬁ))} . (49)

In the semiclassical limit heg < ¢, T in Eq. is large
compared to the ergodic time A~! implying a separation
of time scales for the OTOC. Thus, exp(Atg) > 1, and
this has several consequences:

2) Si" ™% (e*™) sin (e}™)

e sinfexp(A7g)] is highly oscillatory and can be ne-
glected in the phase space average .

e Silexp(A7g)] is well approximated by the asymp-
totic limit of the sine integral for large, positive
arguments, Sifexp(Amg)]~ 5

e For t < 75 Taylor-expansion around t/7g =0 yields

Sin—2 (eATE) _ Si"‘Q (eA(TE_t))
~ (n—2)8i" 7% () sin (M) M, (50)

where the term linear in ¢ is the same highly oscilla-
tory term as in the first item and can be neglected.
(Alternatively, if not neglected, it would exactly
cancel the oscillatory term for small ¢.)

e For t > 7 we have exp[A(7g —t)] < 1, and thus, by
Taylor-expanding Si(y) around y=0, we get

gjn—2 (eA(m—t)> ~ e DAMTe 1) (51)

which is exponentially fast decaying for ¢ > g and
can be neglected for ¢>7g.

Combining the above considerations, we can well approx-

imate
(4le) - 0 iftgg — _
F (t) =~ {_1 TR Ot—m). (52)

Hence the diagram class of the 4-leg-encounters only con-
tributes after a certain minimal time, the Ehrenfest time
Tg. It is after this time that a description solely based on
classical dynamics breaks down, as interference contri-
butions due to trajectory constellations with encounter
regions with an action difference of the order h.g start to
exist.

11
Contributions of 2-leg-encounters

2-leg encounter diagrams are characterized by an en-
counter region that contains either the starting or the
end points of the quadruplet of trajectories, see Fig.
(b) and (c).

Encounter at the beginning

We start with diagram (b). Its contribution C'(21e:(P)
is calculated from a similar expression as C'41®), Eq. ,
however with three major differences:

e As the encounter region is at the beginning, the
integration over ¢’ is over the interval [0, t5(s)].

e The time of the encounter is reduced to ten.(t', )=
'+, (u).

e The difference of initial momenta is expressed
through Eq. and has to be considered in the
integration over s.

Apart from a different treatment of the density pq g,
which here can be directly used to cancel the integration
over x3, we apply the same steps which led to Eq. for
the 4-leg encounter. Formally we arrive at the same PS
average as in Eq. . However, in this case the average
is taken over the PS function

120 (g, p; t)

n—2

= (@) 2 [el0)] [el 0] FE) (53

LI'=1 i

where the encounter integral reads

F(21e (b))(t) 27Thﬂ — 2/d7L 2 [dn 2’U,eheff sysp

=(8) [t — tenc(t',0)] oy
X/o dt’ T ae(tw) e“ . (54)

For [ # I’ we immediately get F(Zle’(b))( t) =0, as the

variable transformation (s;,u;) — —(s;,u;) results in
Fl(ﬁle’(b))( t) = Fl(ﬁle’(b))(t). Thus only the case [ =1’
needs to be considered.

We again split

F 21e,(b)) Z F j]lm(b)) (55)

1,0=1

where
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ts(si) Oft—t t o w. [sil |y
(2le, (b)) [ enc(t's uy)] su_2\t’
Fi (t) = 27Thff — 2/d3@[ duj/ dt’ Fone (1)) kk, \sl|d5k lujlduk/ sleh ot S , (56)
ki, k' 7’5]
[
with #5(s;) = (1/A)log(e/|s;]) and the encounter time o for i£7j, j=1I:

tenc(t',uj)=t"+(1/X)log(c/|u;|). For correctly resolving
the products, we must again distinguish the cases i = j
from i# j, and moreover the cases, when [ happens to be
one of the indices i, j. Using Eqs. @ , the integra-
tions over sy, uy for k#1, k' # j are readily performed.
For the last integrals we use the transformation [31]

(siyuj,t') = (T, 5,0) = G+mwm&?fﬁv
C Uj
3(si,uj,t’) 2

a(T, S, o)

and0§T<oo,0§S§e_’\T,1§U§%. (57)

with ' <
o

The integration over o leads to a cancellation of the en-
counter time in the denominator. The Heaviside step
function transforms to ©(¢—1T'), which introduces an up-
per bound in the integration over T

The results have the common structure

2 n—2 t e—)\T
Fe0) (1) = (F) 2\ / AT T / S fii;(S)s (58)
0 0
and we must distinguish the following five cases:

o fori=j5=1I:
2 2 2
-3 (¢ S (S o cC
fru(S) = (hefT)COb(hefT> S hon (59)
o for i=j#1:
2 2
iy e (€8 ¢S
f1.::(S) = Si (heff)cos(heﬂ)
het . (*S 9
X<62 (heff>_SCOS<heff>> , (60)
o for i#j, i,j#L:

2 Sln2 ( ¢
B _am—5[C S Pegt
) =57 (52) =

X hew (Dot sin i — Scos i)
c? c? > Fofr hest ’

o for i#£j, i=l:

2 2
fr;(8) = sin* ¢S Ssin? < 5 , (62)
heff heff

9]
N———
—
D
—
S—

2 sin C2S> 2
_gnt (€8 ﬂ hett S
Jra(S) = <heﬁ> g (2 2 S cos <heﬂ
heff 2 . 025
+ (SQ_Q(Cz ) )sm(heff)) . (63)

The sum, Eq. , over all indices to obtain F(2IC (b))(t)
directly translates to a summation of f; ;;(x) via Eq. .
The latter sum can be conveniently rewritten as

n—2 2 D)
- o d g d s S\ .., [c°S
;:21 f5) = dSS ds ¥ (heﬂ) o (heff) '
(64)

This identity allows one to easily perform the remaining
integrals over S and T. We obtain

n—2
Fl(lzle)(b))(t) — _ <2> 02 |:Si’n,—3 (e)\TE) Si// (e)\TE)

. Si”’3< ATe— t>) Sl”( TE*”)} . (65)

The result contains the second derivative of Si, Si”(z)=
cos(z)/z—sin(z) /2%, which contains oscillatory functions.
We consider again the limiting cases:

e For ¢t < 15 we get exp[\(7g —1)] =~ exp(A7g), and
Si”[exp(ATg)] only contains highly oscillatory fac-
tors, which we can neglect in the semiclassical limit
Bt < 2.

e For t>> 5 we expand around exp[\(tg—t)] =0

gin—3 (e)\(TEft)> S (e)\(‘rEft))

~ Si///(o)e(’n—Q))\(TE—t)’ (66)

where Si"”’(0) = —5/3. As for the 4-leg encounter,
this contribution is exponentially small.

For times ¢t < 7g and ¢t > 7 the diagrams in Fig. [1] (b)
are negligible in the semiclassical limit. Only for ¢t~ g,
the above terms can, in principle, produce non-negligible
contributions. However, for these times the results de-
pend on the (sharp) cutoff value ¢ of the encounter in-
tegrations, indicating that the quantitative result of the
encounter integration is not very meaningful. However,
qualitatively, our results indicate that the interference
mechanism behind diagram (b) accounts, together with
other diagrams, for the smooth crossover between the
pre- and post-Ehrenfest time behavior of OTOCs.



FEncounter at the end

We now turn to the related 2-leg encounter class of di-
agram (c) in Fig. |1} where the final points of the quadru-
plet of trajectories is contained inside the encounter. In
this case, the following modifications to Eq. are re-
quired:

e The integration interval for ¢’ is [t—t,(u),t].
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e The encounter time is tenc(t',s) = ts(s)+(t—t').

e The product of final positions is expressed through
Eq. 1) This leads to correlated final points <q}2>x
in the ergodic average, and to a corresponding mod-
ification in the integration over u.

The contributions are calculated by

n—2
e 2 e 1 ’ e,(c
10 (g, pi1) = (0 = pi)?),, | (657) FO0) =5 3 [ellx 6] [el O] B O0)] . (67)
LI'=1 7 7
where
F(21c,(c))(t) — 1 /Cdn—QS Cdn—QUGﬁsu ! da¢ S [t - tenc(tlv S)} , (68)
(27Theff)n72 —c —c t—t,(u) tenc(t/7s)
t _ ! ,
F2e) () = /dn 2 /dn 2, o ® Ulul’/ gy Ol — tenct',8)] ore-vy (69)
27'('77, ff n 2 _ t—t,(u) tenc(t/,S)
[
In a first step, we interchange the variable names for e for i#£j:
stable and unstable coordinates, s <+ u, which formally )
interchanges t5(s) <> t,(u). Then we perform a vari- (2le.(e)) a (38 sin® (%ei)
able transformation ' — ¢t —t’, which inverts the arrow fi () = Sit ( 3 H) — g (74)

of time. These steps transform the calculations for an
encounter at the end to those for an encounter at the
beginning of the trajectories, and we immediately obtain
Fliﬁle’(c))(t) = Fl(l?le’(b))(t). It thus remains to calculate
F21e:(©)(#) which in the transformed version reads

FEe©)(4) = (727%& — / d" s

ts(s) t
></ dt'G[
0

— tenc(t’,u)]
tenc(t/;u)

In the same spirit as for 4-leg encounter diagrams in the

previous section, we write

(& .
. .
d" 2y eTer 5"

—C

(70)

21c ,(c)) (71)

Z F(ZIe c))

3,7=1

to resolve the max-functions inherent in t4(s) and ¢,(u)
in Egs. , and finally use Eq. to transform the

last integrals. We obtain
FEO (1) = / aT / dS @e©@)(g),

27Theﬂ‘
(72)
where
e for i=j:
2 2 2
(2le, c)) n—3 [ C S c*S c
fii (S) =si (heﬂ> cos (heﬂ> P (73)

After summation over indices, we find

2
(21e (c)) a4 44 qn—a2 (€ S
Z dSSdS S <hff> - (@)

7,7=1
which allows us to easily evaluate the final integrals. We
eventually obtain

FIe) () = (Q)H_Q[Sin—z (X — si2 (e)\(TE—t)} .

7r

(76)
Following the same arguments as in the section about
the 4-leg-encounter, this term is only contributing for
times larger than the Ehrenfest time 75 and can be ap-
proximated by F(21(©) () ~©(t—7g) in the semiclassical
limit. Both, the diagram (c) and (d) in Fig. [1| contribute
to the OTOC for t>1g.

Contributions of 0-leg-encounters

In this section we calculate the contribution C(°1¢)(¢)
shown in Fig. 1] (a), where the quadruplet of trajectories
is fully contained within an encounter, i.e. the trajec-
tories stay close to each other for the whole time. The
starting point for the calculation of C(°1¢)(¢) differs from



the one of C*1®) Eq. , in the following items (see
also [66], [67])

e As the encounter stretches over the full time ¢, the
integration interval for ¢’ is [0, ¢] and the encounter
time is tene =t. There is no Heaviside step function
O in time involved any more.

e As the encounter time is fixed, the integration
interval for the components of s is reduced to
[—cexp(—=At'), cexp(—At')] to ensure none of the
stable components grows larger than the maximal
value ¢ in the available time ¢'. With the same rea-

J

n—2
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soning, the integration intervals for the components
of u become [—cexp[—A(t—t')], cexp[—A(t—t)]].

e Both, the initial momenta difference and the prod-
uct of final positions, have to be interpreted in view
of Egs. and be respected in the integrations
over s, u and when using ergodicity arguments.

e The J-function in the density pa, g of partner tra-
jectories can again be directly used for canceling
the integration over x3.

After the initial transformations, which convert the con-
tribution into a PS average, we arrive at

n—2
! e ]. ’
109(q,p;t) = Y [elo0)] (el 0] (g®) BV =5 Y |ef @) (el IxPit)] Fi@)] .
l’llzl Ppi i x m,m’:l & I

(77)

with encounter integrals

—at’ —A(t—t") i
F(Ole,l) ; 1 tdt/ oAy ce dn—2 ce dn—2 e.heffsu -
w ( ) - (Qﬂ_hieﬁ)n_2 /0 € /;Ceikt/ S/ﬁce?x(tit/) u S8, ( )
t -t/ —X(t—t") i

F(Ole,?) t 1 dt/ 2t « dn—2 Ce dn—2 € et 79
ll’mm’( ) = (27]’heﬁ)n_2 . e ot 3‘/7667>\(67t/) u ¢ SIS Um U - ( )

With the same reasoning as for 2-leg encounters, the inte-
gral Fl(l(,ne’l)(t) does not vanish for [=1". Using Eqgs.
we calculate

—2

<721_)n¢:2 Sin—3 (e)‘(TE*t)) Si” (e)‘(TE*t)) .

0le,1
FeD (1)

(

As has been argued after Eq. , this term neither con-
tributes in the case t < g nor for ¢ > 1w, but qualita-
tively, the underlying interference mechanism is involved
in the crossover regime at t~7g.

For Fl(l(,)iz;i), four indices are involved, and we find three

classes of non-vanishing integrals, which are treated using

(80)  all the Eqgs. (97HL00).
J
(a) For I=0', m=m', l#m we get
(Ole,2) 2\"} 2
€, 4 q:n—4 A - N ANTE—
R0 = (2) st (o) [sir (o))" 31)
(b) If the set of indices {I,1'} ={m,m’} are equal without being all the same, i.e. [#l’, we get
n—2
2 2
ﬂ(l(,):,i;i)/ t)=- () csin? (e)‘(TE_t)) eAt=7e) {Si (e’\(TE_t)) — sin (e/\(m_t))} . (82)
0

(c) If all indices are the same, we get

)

s

n—2
0le,2 e
Fl(me ) ctsint

(t)

(2(=0) gm0 lz i (Xm0 —sin (X))

+ sin (e)‘(TE_t)) Si (eA(TE_t)) — 2sin? (e)‘(TE_t)> + cos (eA(TE_tU Si (e’\(TE_t)) eA(TE_t)] (83)



Case (a) is multiplied with Si”[exp[A(rg —t)]] and thus,
like Fl(lme’l)(t), can be neglected for t < 75 and ¢t > 7g.
For case (b) we have for t < 7g:

Si (eA(TE_t)) —sin (e)‘(TE_t)> ~ Si (eATE) ~ g ,  (84)
i.e. the highly oscillatory term sin[exp[A(7g —t]] is ne-
glected and we use the asymptotic value for Si. For

t > 7, we obtain from a Taylor expansion around
exp[A(tg—1)]=~0

1
3 A(TE—t) ot A(TE—t) ~ = 3A(TE—2§)
Si (e ) sin (e ) 5¢ ,  (8h)
and thus, as Si[exp[\(Tg —1)]] =exp[A (T —1)],
n—2
i g 4 nA(TE— t)
o1 (w) c'e (86)

i.e. the contribution becomes exponentially suppressed
after the Ehrenfest time. We can thus approximate

F(Ole 2)( ) ~

U'mm/

F(Ole,Q)/ (t) ~ —C4

W'mm

eQA(t_TE)@(TE —t)
= e MO (1p — ). (87)

Note that since we have {l,l'} ={m, m’} we get an addi-
tional combinatorial factor 2 when reducing the fourfold
sum over [,I’,m,m’ in Eq. to a twofold one over [, 1’
with [ #1’. The case of equal indices [ =1’ is still ex-
cluded from this summation, but using case (c), which
also contains the same contribution as case (b) (includ-
ing the prefactor 2), we can complete the summation. It
remains to discuss the additional terms in the last line of
Eq. . Those can be neglected for t < 7 as they all
contain highly oscillatory factors. For ¢>>7g we find

sin (e’\(TE*t)) Si (e’\(TE’t)> — 2gin? (e’\(TE’t)>

-+ cos (e’\(TE—t)) Si (e/\(TE—t)) eAMTE—1)

~ %ewm . (88)

This leads to a suppression of Fl(l(l)lle 2)( t) for t>> g, which
is less strong than the one for Fi0e2) (t) in Eq. , but

wmm'
still exponential. Thus, the overall exponential suppres-

sion reads

0le,2 1 oy (e
Fl(lll )(t) ~ ge( A=) (89)

Summary

In the previous subsections we found that diagram
(a) in Fig. [If fully describes, via Eq. together with
Eqgs. 83)), the dynamics of the OTOCs for t < 7. The
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PS function I(<Ole) (q,p;t) corresponding to these results
and used in the PS average, Eq. @, is found to be

2

1<<q,p;t>z(f[eg><x>}pi[e,p<x<f><x;t»}% F(t)
- (90)

where the early-time exponential growth of OTOCs is
contained in the function

-2
2
F<(t) _ () ¢ eQA(t ) Sln 4( )\(TE—t))

T
X [Si (e’\(TE_t)) — sin (e’\(”‘:_t)ﬂ ’
~ hZgeMO(T —t). (91)

For ¢ > TE, the sum of contributions from diagrams (c)
and (d) produces the long-tlme saturation of OTOCs.

As seen from Eqs 1. , with their temporal behavior
given in Egs. thelr combined contribution reads

L. (a,p51) = <<p; -0)%)_((7)_—(a)2) B,

(92)
where
Fu(t) = (i)nQ {Si"*2 (e*®) —si"2 (@(rrt))}
~ @(t — TE) . (93)

GENERALIZATION TO OTHER OPERATORS

The key ingredient for our method to understand
OTOC:s is to use semiclassical techniques, which translate
the quantum operators p; and §; to their corresponding
classical partners while keeping the quantum mechanical
phase information. In the classical PS, we used the local
linearization of Hamilton’s equations of motion to con-
nect these classical functions to the hyperbolic property
of the chaotic system. Furthermore, the ergodic property
produced variances of these PS functions.

In view of these points, a generalization of OTOCs
to other operators, (¥||[A,B(t)]|?|¥), appears to be
straightforward, if the following assumptions are fulfilled:

e The operators A, B are smooth functions of the
operators ¢;, p;, 1 =1,...,n, in the sense that we
can write A, B as a sum of products of powers of
position and momentum quadrature operators.

e To avoid additional contributions to the overall
action difference in the phase factor in Eq. .
the operators A B are not allowed to depend
on heﬁ. Hence, for instance, displacement opera-
tors exp(—(i/hesr)yp;) would require a refined treat-
ment.



With these assumptions, we expect our methods to ap-
ply. The classical functions corresponding to the quan-
tum operators are constructed by replacing operators ¢;,
p; in the expansion by the corresponding trajectory-based
equivalents, i.e. initial position and momentum quadra-
tures in A, and final ones in B. Any dependence on
powers of heg of single terms in these expansion must be
dropped as we are working in the leading order semiclas-
sical limit Az < ¢®. These terms are expected to arise
from different ordering of the quantum operators ¢;, p;
and can be avoided from the beginning by using operators
and classical functions which are linked to each other by
the classical-quantum correspondence principle of Weyl-
symbols and Wigner transformations [68].

Denoting the classical functions by A(q, p) = A(x) and
B(x) it is straightforward to see that in the integrand of
Eq. we substitute

(pf])l pg)z) 0 (pé,)i -, )qg)] (94)

o) (s0)] ()
X {A (xg)) —A (xg/))l B (xg)) . (95)
For diagrams (b), (c¢) and (d) of Fig. [ the beginning
and/or the ends of the trajectories are not contained in-
side an encounter region, and we approximate parts of the
above expression by their ergodic averages. Note that as
o, (8 start at PS points which are associated with the
Wigner function in Eq , A(XS/)), A(x ()) turn into
A(x). Like p; in Eq. (11)) they are treated as constants
in the ergodic average Eq . but are later averaged in
the PS average, Eq. @, involving the Wigner function.
For diagrams (a), (b) and (c) in Fig. the ini-
tial and/or final points of the trajectories are contained
within an encounter, and thus we have to express the cor-

responding functions through the local hyperbolic vari-
ables. Equations are thus modified to

A ()= () = =[5 ()] - oo
=1

A () =4 (x5)) = = [ 5 ()] - 2o el
=1
)

-2 (58) - ({32 ()] S i)

(96)
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In view of our methods used, we note that this changes

the PS function I(q,p;t), Egs. , by us-
ing different ergodic averages and adjusting the terms
involving the stable and unstable directions However,

the encounter integrals F'(¢) in Egs. .
remain the same. The OTOC S result for operators

fulﬁlling the above assumptions is thus obtained by ad-
justing the classical information in the PS functions I

and I- in Egs. .

FREQUENTLY USED INTEGRALS IN THE
CALCULATIONS OF ENCOUNTERS

The following integrals are frequently obtained dur-
ing the calculations of encounter diagrams. Let a,b
be positive and dimensionless real parameters. Si(z) =
Jo d2/(sin(z")/z") defines the sine integral. Then

‘ ’ ——su ab
0/ ClS/ du e Pett :4hcff Sl (h ) ’ (97)
e —b eff
a b
——su . b
./ dS/ du S2eheff — _4heffa2 Slll (a)
heff
ab

ab ab
= 4heff 02 sin (heﬂ) 4heﬁ» 5, €O <heff> , (98)
a b .
#Sﬂ, . d S
'/ ds/ du suelett *" = —4h§ffi <y2l(y)>
—a —b Cly Yy y=2b
Leff

= 42 [Sl (;Z) — sin (hai;)l , (99)

4 Si(y))

a b .
. / ds du s*u?eer " = —4h3; <y3
a

—a oy dy? y )]y a
b ab ab ab
— —4n3. | 22 —3si 28i .
hog [hCH Cos (hcﬁ> 3sin (hcﬁ )—l— Si (hcﬁj
(100)



	Many-Body Quantum Interference and the Saturation of Out-of-Time-Order Correlators
	Abstract
	 Acknowledgments
	 References
	 Phase space structure of the classical limit of the generalized Bose-Hubbard system
	 Geometry of encounters in phase space
	 Density and action difference of diagrams with encounters
	 Contributions of encounter diagrams to the OTOC
	 Contributions of 4-leg-encounters
	 Contributions of 2-leg-encounters
	 Encounter at the beginning
	 Encounter at the end

	 Contributions of 0-leg-encounters
	 Summary

	 Generalization to other operators
	 Frequently used integrals in the calculations of encounters


