
 

Unitarity violation in noninteger dimensional Gross-Neveu-Yukawa model
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We construct an explicit example of unitarity violation in fermionic quantum field theories in noninteger
dimensions. We study the two-point correlation function of four-fermion operators. We compute the one-
loop anomalous dimensions of these operators in the Gross-Neveu-Yukawa model. We find that at one-loop
order, the four-fermion operators split into three classes with one class having negative norms. This implies
that the theory violates unitarity, following the definition in Ref. [1].
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I. INTRODUCTION

Conformal field theories (CFTs) have always been an
area of active research due to their rich mathematical
structure and physical applications. In unitary theories
conformal symmetry imposes severe constraints on the
spectrum of operator dimensions. It is believed that these
dimensions can be determined with the help of the
conformal bootstrap technique [2,3]. This technique has
proved to be extremely useful for solving two-dimensional
CFTs. The effective numerical algorithms for solving the
bootstrap equations for higher-dimensional CFTs have
been proposed in Ref. [4] (see also Refs. [5–7], [8–13],
and [14–18] for more details and recent developments in
d ¼ 3, d ¼ 4, and d ¼ 5 dimensions, respectively). One of
the advantages of this approach is that it allows one to
obtain operator dimensions directly in various integer
dimensions.
The standard technique for the calculation of the operator

dimensions, the so-called ϵ-expansion [19,20], is based on
calculation of the scaling dimensions in d ¼ 4 − 2ϵ dimen-
sional theory and interpolation of the relevant critical
indices to the physical dimension. The critical indices
for many CFTs are known with high precision. One of the
recent achievements is the calculation of the six-loop β
function in the φ4 theory [21]. In order to get a better
understanding of the new conformal bootstrap technique it
was quite natural to apply it to theories in noninteger
dimensions, d ¼ 4 − 2ϵ (see Refs. [22,23]). At the same
time, one of the assumptions which most of the conformal

bootstrap relies on is the unitarity of the theory. One can
hardly expect that this assumption—unitarity—will be true
for theories in noninteger dimensions. This question was
raised in Refs. [1,24], where unitarity violation in φ4 theory
was demonstrated by constructing states (operators) with
negative norm. The first “negative norm” operator in φ4

theory has a rather high scaling dimension (Δ ¼ 23), and it
is expected that unitarity breaking effects will appear only
in high orders of ϵ expansion. Negative norm operators
necessarily have to be evanescent operators, i.e., operators
that are vanishing in integer dimensions. In scalar theories
the building blocks for the operators are fields, and their
derivatives and therefore evanescent operators are must
have a high dimension. The situation is quite different in
theories with fermions where there are evanescent (scalar)
operators of canonical dimension six [25].
The aim of this article is to demonstrate the existence of

the negative norm states in the d ¼ 4 − 2ϵ dimensional
Gross—Neveu—Yukawa (GNY) model [26]. It was argued
in [1] that unitarity implies the positiveness of the coef-
ficient C in the correlator

hO†ðxÞOð0Þi ¼ C=x2Δ; ð1Þ

whereO is a conformal operator with scaling dimension Δ.
In an integer dimensional CFT, violation of this condition
indicates the presence of negative norm states in the theory
[1]. We consider the renormalization of an infinite set of
scalar four-fermion operators in d ¼ 4 − 2ϵ dimensions
and show that the positiveness condition is broken for
infinitely many operators. Since the canonical dimension of
these operators is not large, Δcan ¼ 6, one can wonder
about the effect of negative norm operators to the conformal
bootstrap technique.
The article is organized as follows: In Sec. II we discuss

the two-point correlation function of scalar four-fermion
operators in free theory. We find that the theory contains
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evanescent operators which could generate negative norm
states.
In order to continue our discussion, we then compute in

Sec. III the anomalous dimension of the physical and
evanescent operators at one-loop order in the GNY model.
It turns out that all the evanescent operators split into two
classes of definite anomalous dimension. We show that the
negative norm states are generated by one of these two
classes, depending on the number of fermion flavors of the
theory.

II. FOUR-FERMION CORRELATION FUNCTION
IN NONINTEGER DIMENSIONS

The GNY model describes an interacting fermion-boson
system with the Lagrangian given by the following
expression [26,27]:

L ¼ 1

2
ð∂μσÞ2 þ Ψ̄i∂ Ψi þ g1σΨ̄iΨi þ

1

24
g2σ4; ð2Þ

where the index i ¼ 1;…; nf enumerates different fermion
flavors and σ is a scalar field.
The model has an infrared stable fixed point in

d ¼ 4 − 2ϵ dimensions [28]. At one loop the critical
couplings take the form

u� ¼
ðg�1Þ2
ð4πÞ2 ¼

ϵ

Nf þ 6
;

v� ¼
ðg�2Þ2
ð4πÞ2 ¼

6 − Nf þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

f þ 132Nf þ 36
q
6ðNf þ 6Þ ϵ; ð3Þ

where Nf ≡ nftrðIdÞ. The basic critical indices are now
known with four-loop accuracy and can be found
in Ref. [29].
Let us consider an infinite system of four-fermion local

operators in d ¼ 4 − 2ϵ dimensions

OðmÞ ¼ 1

m!
ðΨ̄ΓðmÞ

μ ΨÞðΨ̄Γμ
ðmÞΨÞ: ð4Þ

A summation over flavor index inside each bracket is

tacitly assumed. The notation ΓðmÞ
μ stands for an antisym-

metric product of m γ-matrices

ΓðmÞ
μ ¼ Γμ1…μm ≡ 1

m!

X
s∈Sm

ð−1ÞPγμs1…γμsm : ð5Þ

The sum goes over all permutations and P is the parity of a
permutation.
Before taking a closer look at correlators of the operators

(4), let us state a few things about the ΓðmÞ matrices. The
Dirac γ-matrices satisfy the basic anticommutation relation
in d-dimensional space

fγμ; γνg ¼ 2gμνId; gμνgμν ¼ d; ð6Þ

where gμν is the metric tensor. In integer dimensions there
are only d distinct gamma matrices γ0;…; γd−1. This
restricts the maximum number of different antisymmetrized
matrices ΓðmÞ.

1 Namely, 0 ≤ m ≤ dð≤d − 1Þ for even (odd)
dimensional spaces.
In noninteger dimensions, however, the situation is

different. There exists an infinite number of γ-matrices,
and therefore it is possible to construct infinitely many
nonvanishing and distinct ΓðmÞ. As a result, the parameterm
in Eq. (4) takes any positive integer values. However, in
d ¼ 4 − 2ϵ dimensional space the operators (4) withm ≥ 5
have to vanish in the limit ϵ → 0, and therefore they are
called evanescent operators.
The renormalized operators ½Om� satisfy the renormal-

ization group equation

ðM∂M þ βu∂u þ βv∂vÞ½Om� ¼ −γm;n
O ðu; vÞ½On�; ð7Þ

where M is the renormalization scale, βu;v are the corre-
sponding β-functions, βu ¼ du

d lnM, βv ¼ dv
d lnM, and γ

m;n
O is the

anomalous dimension matrix. The structure of the operator
mixing of the four-fermion operators was considered in
great detail in [25,30,31].
At the critical point βuðu�; v�Þ ¼ βvðu�; v�Þ ¼ 0, the

problem of constructing operators with autonomous scale
dependence is equivalent to the eigenproblem for the
matrix γm;n

O . This means that if cmγ is the left eigenvector
of the anomalous dimension matrix

cmγ γ
m;n
O ðu�; v�Þ ¼ γcnγ ; ð8Þ

then the operator Oγ ¼
P

mc
m
γ ½Om� has an autonomous

scale dependence

ðM∂M þ γÞOγ ¼ 0: ð9Þ

The operator Oγ transforms in a proper way under
conformal transformations, and according to a general
theory the correlators of operators with different scaling
dimensions (Δγ ¼ 6 − 4ϵþ γ) vanish, i.e.,

hO†
γðxÞOγ0 ð0Þi ¼ δγγ0Cγ=x2Δγ : ð10Þ

In an unitary theory the coefficients Cγ have to be positive
[1]. We calculate the one-loop anomalous dimension matrix
γm;n
O in the next section, while in the rest of this section we
study the correlator (10) in more detail.

1Note that in even dimensions, Γðm>dÞ vanishes because of the
antisymmetrization of gamma matrices. In odd dimension d, ΓðdÞ
is removed from the independent basis since ΓðdÞ ∝ Γð0Þ.
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Let us write the correlator (10) in the form

hO†
γðxÞOγ0 ð0Þi ¼

X
m;n

ðcmγ Þ†Cm;nðxÞcnγ0 ; ð11Þ

where Cm;n is the correlator of the basic operators defined
in Eq. (4) (note that ðOnÞ† ¼ On and d ¼ 4 − 2ϵ)

Cm;nðxÞ ¼ hOðmÞðxÞOðnÞð0Þi

¼ Cm;nðdÞ
jx2j2d−2 ð1þOðu�; v�ÞÞ. ð12Þ

In d ¼ 4 − 2ϵ dimensions, it is expected that for the
physical operators (m; n ≤ 4), Cm;nðdÞ ∼Oð1Þ and for
one of the indices m; n ≥ 5, Cm;nðdÞ ∼OðϵÞ. Thus one
gets the following expression for the constant Cγ at the
leading order

Cγ ¼
X
n;m

ðcmγ Þ†Cm;nðxÞcnγ ≡ ðcγ; CcγÞ: ð13Þ

At leading order only the two Feynman diagrams shown
in Fig. 1 contribute to Cm;nðdÞ. Using the expression for the
fermion propagator in Euclidean space

hΨðxÞΨ̄ð0Þi ¼ A
=x

jx2jd=2 ; A ¼ Γðd=2Þ
2πd=2

; ð14Þ

we find

Cm;nðxÞ ¼ Δm;nA4Nfjx2j2−2d; ð15Þ

where

Δm;n ¼ NfT
m;n
1 þ Tm;n

2 ;

Tm;n
1 ¼ δm;n

x4tr2ðIdÞðm!Þ2 ½trðΓ
ðmÞ
μ =xΓðmÞ

ν =xÞ�2;

Tm;n
2 ¼ −1

x4trðIdÞm!n!
trð=xΓðmÞ

μ =xΓðnÞ
ν =xΓμ

ðmÞ=xΓ
ν
ðnÞÞ: ð16Þ

The summation between upper and lower indices is here
implied. The calculation of the traces in (16) is discussed in

Appendixes B and C (see Ref. [32] for a general treatment
of contracting infinitely many antisymmetrized gamma
matrices); here we present the final result2

Tm;n
1 ¼ Γðdþ 1Þ

m!Γðd −mþ 1Þ δ
m;n; ð17Þ

Tm;n
2 ¼ −

1

2
imðmþ1Þþnðnþ1Þam;n: ð18Þ

Note that Tm;n
1 and Tm;n

2 are x-independent. The coefficients
am;n are encoded by the generating function

Fðx; yÞ ¼
X∞
m;n¼0

am;nxmyn

¼ ð1 − xþ yþ xyÞd þ ð1þ x − yþ xyÞd
− ð1þ xþ y − xyÞd þ ð1 − x − y − xyÞd: ð19Þ

We point out that Tm;n
1 and Tm;n

2 are symmetric regarding
the exchange ofm ↔ n and in contrast to the first diagram,
which is proportional to δm;n, am;n contributes to cases of
both m ¼ n and m ≠ n. Both diagrams are polynomials in
the spacetime dimension d and can become negative valued
in noninteger dimensions. Therefore the coefficient Δm;n is
negative valued in some regions (see Fig. 2). A detailed
analysis of am;n shows that jTm;m

2 j ≫ jTm;m
1 j for m ≫ 1 and

therefore gives the main contribution at large m for Δm;m.
The fact that Δm;m (∼Cm;m) can become negative valued
suggests the possibility of having conformal operators with
negative norms. For this reason we compute the one-loop
anomalous dimension of the operators OðmÞ in the next
section in order to classify them by their one-loop anoma-
lous dimensions.

FIG. 1. Feynman diagrams of leading order.

FIG. 2. Δm;mðdÞ, with Nf ¼ 4 as function of space dimension d
for m ¼ 3, 4, 5, 6 presented by dotted, dashed, dot-dashed, and
solid curves, respectively.

2A nontrivial relation in integer dimensions tr2ðIÞ½T1T−1
2 �2 ¼ I

serves as an additional check for our results of Tm;n
1 and Tm;n

2 .
This relation is obtained from considering the Fierz identities.
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III. ANOMALOUS DIMENSIONS AND
UNITARITY IN THE GNY MODEL

So far our calculations are rather general and can be
applied to any fermionic theory in noninteger dimensions.
In order to continue our study of norm states in a conformal
theory, according to Eq. (10), it is necessary to find
eigenstates with definite anomalous dimensions and study
correlation functions between them. It is therefore more
instructive to consider an explicit example, the GNY
model, and compute the one-loop anomalous dimensions
of the operators OðmÞ defined in Eq. (4) in this model. The
Feynman diagrams needed for this calculation are given in
Figs. 3 and 4. Note that diagrams in Fig. 4 contribute only
to the anomalous dimension of physical operators.
Then it is straightforward to compute these one-loop

diagrams and obtain the anomalous dimension matrix γm;n
O .

Interestingly, we find that the anomalous dimension matrix
has a simple block diagonal form (the calculation details
can be found in Appendix D),

γm;n
O ¼ 2u�diagðγ0; γ1; γ2;…Þm;n; ð20Þ

where γ0 is a 5 × 5 anomalous dimension matrix

γ0 ¼

0
BBBBBB@

Nf þ 2 0 0 0 0

−4 0 −2 0 0

6 −3 1 0 0

4 0 0 2 −4
−1 0 0 −1 −1

1
CCCCCCA

ð21Þ

involving only physical operators, while γk≥1 are 2 × 2

matrices

γk ¼
�
2kþ 2 −2k − 4

2k − 1 −2k − 1

�
ð22Þ

describing the mixing between evanescent operators
Oð2kþ3Þ and Oð2kþ4Þ at one-loop order.
It is clear from the explicit expression of the anomalous

dimension matrix that the physical and evanescent oper-
ators decouple at one-loop order. We can therefore study
them separately and find the conformal basis in each case.
Let us write the physical operators in conformal basis as

Õ. Then0
BBBBBBBB@

Õð0Þ
0

Õð1Þ
þ

Õð1Þ
−

Õð2Þ
þ

Õð2Þ
−

1
CCCCCCCCA

¼

0
BBBBBBBB@

1 0 0 0 0

10
1−Nf

−1 1 0 0

0 3=2 1 0 0

5
Nf−1

0 0 −1 1

0 0 0 1=4 1

1
CCCCCCCCA

0
BBBBBBBB@

Oð0Þ

Oð1Þ

Oð2Þ

Oð3Þ

Oð4Þ

1
CCCCCCCCA

ð23Þ

where the operators Õð0Þ
0 , ÕðkÞ

þ , and ÕðkÞ
− have anomalous

dimension γ0 ¼ 2ðNf þ 2Þu�, γþ ¼ 6u�, and γ− ¼ −4u� at
one-loop order, respectively. Note that we use the bold font
letters for anomalous dimension matrices and common
ones for the eigenvalues.
The conformal basis for evanescent operators, denoted as

ŌðkÞ
� , is  

ŌðkÞ
þ

ŌðkÞ
−

!
¼
 

−1 1
1−2k
2ðkþ2Þ 1

! 
Oð2kþ3Þ

Oð2kþ4Þ

!
; ð24Þ

with k ≥ 1 and ŌðkÞ
� having anomalous dimension 6u� and

−4u�, respectively. These results allow us to classify the
operators by their one-loop anomalous dimension. More
explicitly, the evanescent operators form two and the
physical operators form three classes (two for Nf ¼ 1).
At this point one should mention that the two-loop
anomalous dimensions of the operators OðmÞ probably
allow us to make further classifications. The anomalous
dimensions of the different operators are collected in
Table I.
In order to find the negative norm states of the theory, we

have to consider correlation functions between operators of
the same anomalous dimension. According to Eq. (10), this
corresponds to the study of the coefficient Cγ . We point out

FIG. 3. Feynman diagrams for calculating anomalous dimen-
sions of evanescent operators.

FIG. 4. Additional Feynman diagrams contributing to the
anomalous dimensions of physical operators.

TABLE I. Anomalous dimensions (AD) of the different physi-
cal and evanescent operators.

Õð0Þ
0 ÕðkÞ

þ ÕðkÞ
− ŌðkÞ

þ ŌðkÞ
−

AD γ0 γþ γ− γþ γ−
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that at one-loop accuracy, the orthogonality condition in
Eq. (10) is realized by the expressions

hðÕðk1Þ
0;� ðxÞÞ†Õðk2Þ∓ ð0Þi ¼ OðϵÞ;

hðÕðk1Þ
0;� ðxÞÞ†Ōðk2Þ∓ ð0Þi ¼ OðϵÞ;

hðŌðk1Þ
� ðxÞÞ†Ōðk2Þ∓ ð0Þi ¼ Oðϵ2Þ; ð25Þ

which is exactly what we find from Eqs. (15), (17),
and (18).
With the orthogonality condition checked at the one-loop

order, let us now focus on the evanescent operators in the
conformal basis. We write the correlator as

hðŌðk1Þ
� ðxÞÞ†Ōðk2Þ

� ð0Þi ¼ A4
Nf

jx2j2d−2 Δ̄
k1;k2
� þOðϵ2Þ;

Δ̄k1;k2
� ¼ NfT

k1;k2
1� þ Tk1;k2

2� : ð26Þ

Here both T1� and T2� are proportional to ϵ and corre-
spond to the first and second diagram in Fig. 1, respec-
tively. A is defined in Eq. (14).
The matrices T1� are diagonal matrices. It is easy to see

that all matrix elements of T1−ðT1þÞ are positive (negative)
numbers. This implies that ðf; T1−fÞ > 0 and ðf; T1þfÞ < 0
for arbitrary nonzero vectors f, i.e., T1− (T1þ) is a positive
(negative) definite matrix. The situation with the matrices
T2� is a bitmore complicated since they are not diagonal. But
we checked numerically3 to confirm that all truncated
matricesTN

2� ¼ ðT2�Þn;mwithn;m ≤ N are positive definite
(T2þ) and negative definite (T2−) matrices for N ≤ 80. The
definiteness of T1;2� implies
(1) In the large Nf limit, the matrices Δ̄� ∼

T1�ð1þOð1=NfÞÞ and therefore
Δ̄þ is negative definite, and
Δ̄− is positive definite.

(2) On the contrary, for small values of Nf (Nf ≲ 5),
jT2�j dominates over jT1�j and
Δ̄þ is positive definite, and
Δ̄− is negative definite.

As we have seen, the one-loop corrections are not enough to
resolve the operator mixing since infinitely many operators
have the same anomalous dimension at one loop.
Nevertheless, it allows one to argue that a general conformal
operator with anomalous dimension γþ ¼ 6u� þOðϵ2Þ has
the form4

Oγþ ¼
X

cþi Ō
ðiÞ
þ þ

X
c−j Ō

ðjÞ
− ; ð27Þ

where the coefficients cþi ∼Oð1Þ, while c−k ∼OðϵÞ. One can
easily see that the coefficient Cγþ , corresponding to the
correlator of such operators, is given by

Cγþ ¼ A4
Nf

jx2j2d−2 ðc
þ; Δ̄þcþÞ þOðϵ2Þ: ð28Þ

Similarly, for a conformal operator with anomalous dimen-
sion γ− ¼ −4u� þOðϵ2Þ, one gets

Cγ− ¼ A4
Nf

jx2j2d−2 ðc
−; Δ̄−c−Þ þOðϵ2Þ: ð29Þ

As we have shown, the coefficients Cγþ and Cγ− have
opposite signs at order OðϵÞ5 for either small Nf or
Nf → ∞. Therefore, one class of the operators inevitably
generates the negative norm states of the theory, according to
the criteria given in Ref. [1]. In particular, at the lower bound
of Nf ¼ 1, all negative norm states are generated by ŌðiÞ

− . In
this case, the fermion field has only one degree of freedom
and the GNY model may become supersymmetric as
suggested in Ref. [33].
We then conclude that the negative norm states are an

integral part of the GNY model in d ¼ 4 − 2ϵ dimensions.
At one-loop order, all negative norm states are generated by
operators with anomalous dimension γ− forNf ≲Oð1Þ. We
believe the negative norm states exist in other theories with
fermionic degrees of freedom in noninteger dimensions as
well because Eqs. (15), (17), and (18) are valid for any
fermionic theory with any number of flavors.

IV. CONCLUSION

We have demonstrated the existence of negative norm
states in the Gross-Neveu-Yukaw model in d ¼ 4 − 2ϵ
dimensions through the study of the two-point correlation
functions of four-fermion operators and their one-loop
anomalous dimension matrix. The negative norm states
we found are unavoidable, as the two-point correlation
functions are an integral part of the theory. They are
generated by evanescent operators with anomalous
dimension −4u� at one-loop order when the fermion flavor
number is small. We argue that the negative norm states
are a general feature of fermionic theories in noninteger
dimensions.
It is now clear that unitarity violation occurs in both the

scalar and fermionic case. In addition, a recent study also
reveals that unitarity is violated in noninteger dimensional
nonrelativistic conformal field theory [34], where unitarity
is defined by the notion of reflection positivity. Therefore, it
seems that unitarity violation is a general property of CFTs
in noninteger dimensions.

3It is possible to show that all the leading principal minors
of T2þ are positive, while the k-th order leading minor of T2−
is negative (positive) for odd (even) k.

4For the sake of clarity one should mention that the mixing
with physical operators is here neglected. But it can be shown that
the effect of the physical operators is at order Oðϵ2Þ by
considering the orthogonality condition of the conformal oper-
ators. More specifically, one finds that the coefficients in front of
the physical operators are at OðϵÞ order. 5This is because Δ̄� are order OðϵÞ.
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We can’t see any way to consistently remove these
negative norm states from the fermionic field theory in
noninteger dimensions. They have no effect, however, on
theories in integer dimensions where all the negative norm
states vanish.
One should mention, however, that although the loss

of unitarity prohibits imposing extra constraints while
applying the bootstrap technique, the “non-unitary boot-
strap” technique, which has no reliance on unitarity, still
works [35–37].
It would be a natural extension of our current study to

compute the two-loop anomalous dimension matrix and
investigate how the operators in the conformal basis at the
two-loop order further classify the negative and positive
norm states. It would be interesting to investigate the
appearance of negative norm states in other fermion/scalar
conformal field theories as well.
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APPENDIX A: GENERAL FORMULAE

We provide some key steps in our calculations. The
Feynman diagrams in Fig. 1 are translated into Tm;n

1 and
Tm;n
2 in Eq. (16) as

Tm;n
1 ¼ δm;n

x4tr2ðIdÞðm!Þ2 ½trðΓ
ðmÞ
μ =xΓðmÞ

ν =xÞ�2;

Tm;n
2 ¼ −1

x4trðIdÞm!n!
trð=xΓðmÞ

μ =xΓðnÞ
ν =xΓμ

ðmÞ=xΓ
ν
ðnÞÞ; ðA1Þ

where ΓðmÞ
μ and alike (e.g., ΓðnÞ

ν and etc.,) are given in Eq. (5)
with arbitary integer m; n and indices μ; ν. Two identities
which proved to be the most useful in our study are

γνΓμ1…μn ¼ Γνμ1…μn þ
Xn
i¼1

ð−1Þiþ1gνμiΓμ1…μ̂i…μn ; ðA2Þ

ð−1ÞnΓμ1…μnγν¼Γνμ1…μn þ
Xn
i¼1

ð−1ÞigνμiΓμ1…μ̂i…μn : ðA3Þ

Here μ̂i denotes that the index μi is omitted. These equations
are a consequence of the basic anticommutation relation
between gammamatrices and the antisymmetric structure of
Γμ
ðnÞ. By combining the latter two equations one finds

2Γνμ1…μn ¼ γνΓμ1…μn þ ð−1ÞnΓμ1…μnγν: ðA4Þ

The general formula for contracting the antisymmetrized
products of gamma matrices reads

Γν1…νmμn…μ1Γμ1…μn ¼
Yn−1
i¼0

ðd −m − iÞΓν1…νm: ðA5Þ

Finally, we have

xaxbΓμ1…a…b…νm ¼ 0; ðA6Þ

as a direct consequence of the definition of Γμ1…a…b…νm .
We then calculate Tm;n

1 and Tm;n
2 separately in the

following two sections.

APPENDIX B: Tm;n
1

The cyclic property of the trace together with the
anticommutation relation between gamma matrices allows
us to first conclude that Tm;n

1 ¼ 0 for m ≠ n. One thus
writes,

Tm;n
1 ¼ δm;n

x4tr2ðIdÞðm!Þ2 ½trðΓ
ðmÞ
μ =x ΓðmÞ

ν =xÞ�2;

¼ Bm
δm;n

ðm!Þ2 : ðB1Þ

Then we note

Bm ¼ 1

tr2ðIdÞ
trðΓðmÞ

μ ΓðmÞ
ν ÞtrðΓμ

ðmÞΓ
ν
ðmÞÞ; ðB2Þ

which can be proven by the cyclic property of the trace
together with Eqs. (A2) and (A6).
By setting the default ordering of Γm

μ and ΓðmÞ
ν to be

μ1;…; μm and ν1;…νm, while noting μi ≠ μj and νi ≠ νj
for i ≠ j, Bm can then be rewritten as

Bm ¼ 1

tr2ðIdÞ
trðγμ1…μmγν1…νmÞtrðγμ1…μmγν1…νmÞ

¼ Rμ1…νmR
μ1…νm: ðB3Þ

By moving γμ1 to the right of the product in Eq. (B3) and
using the cyclic property of the trace, one finds

Rμ1…νm ¼ ð−1Þm−1

trðIdÞ
Xm
i¼1

ð−1Þiþ1gμ1νi × trðγμ2…μmγν1…ν̂i…νmÞ;

ðB4Þ

where again ν̂i denotes the omitted index.
Here we have reduced a trace with 2m indices to a sum of

traces with 2ðm − 1Þ indices. By repeatedly applying
Eq. (B4) one can reduce the trace with 2m indices to
trðIdÞ with an appropriate combination of coefficients. It is
clear that each further reduction step produces one extra
summation and one extra set of gμikνjl with the appropriate
sign in front. To this end, we write,
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Rμ1…νm ¼ ð−1Þm2ðm−1ÞtrðIdÞ
�Xm

i1¼1

…
Xm
im¼1

gμ1νi1…

× gμmνimΩði1;…; imÞ
�
; ðB5Þ

where the overall factor ð−1Þm2ðm−1Þ is accumulated from the
repeated use of Eq. (B4) and Ωði1;…; imÞ ∈ f0;�1g. Since
each index νk appears only once in the trace, one straightfor-
wardly concludes thatΩði1;…; ik;…; ik;…; imÞ ¼ 0. Amore
detailed analysis also reveals that Ωði1;…;ik;ikþ1;…;imÞ¼
−Ωði1;…;ikþ1;ik;…;imÞ, which is a property inherited
from the antisymmetric nature of ΓðmÞ. Finally by noting
that Ωð1;…; mÞ ¼ 1, which corresponds to eliminate
γν1 ; γν2 ;…; γνm in order, one identifies

Ωði1;…; imÞ ¼ ϵi1…im :

Therefore, one finds

Bm ¼
Xm

i1 ;…;im¼1
j1 ;…;jm¼1

mg
μi1
μj1
…g

μim
μjm ϵi1…imϵ

j1…jm; ðB6Þ

with

Xm
i1 ;…;im¼1
j1 ;…;jm¼1

≡Xm
i1¼1

…
Xm
im¼1

Xm
j1¼1

…
Xm
jm¼1

: ðB7Þ

This summation can be worked out by dividing the general
case into two scenarios:

ik ¼ jk ¼ m; k ¼ 1;…m;

or ik ¼ jl ¼ m; k ≠ l; m; l ¼ 1;…m: ðB8Þ
The summation is then easily carried out and leads to a
recurrence relation for Bm,

Bm ¼ mðd −mþ 1ÞBm−1; ðB9Þ
form > 1.Combinedwith the initial conditionof the sequence
B0 ¼ 1, we obtain the final expression for Tm;n

1 ,

Tm;n
1 ¼ Γðdþ 1Þ

m!Γðd −mþ 1Þ δm;n: ðB10Þ

It is clear that Tm;n
1 vanishes for theories in even d

dimensions if m > d. This observation is in accordance
with the fact that there are d numbers of gamma matrices in
even d dimensions, and consequently, the antisymmetrized

product of m gamma matrices ΓðmÞ
μ vanishes if m > d. In

odd dimension d, ΓðdÞ is no longer an independent matrix
since ΓðdÞ ∝ Γð0Þ, and therefore this redundancy must be
removed “by hand.” If the dimension d is no longer an
integer, however, then Tm;n

1 never vanishes and can take
negative values.

APPENDIX C: Tm;n
2

We proceed to calculate Tm;n
2 next:

Tm;n
2 ¼ −1

x4trðIdÞm!n!
trð=xΓðmÞ

μ =xΓðnÞ
ν =xΓμ

ðmÞ=xΓ
ν
ðnÞÞ; ðC1Þ

which can be simplified using Eqs. (A2)–(A6) as

Tm;n
2 ¼ −1

trðIdÞm!n!
trðΓðmÞ

μ ΓðnÞ
ν Γμ

ðmÞΓ
ν
ðnÞÞ: ðC2Þ

Then again with Eqs. (A4) and (A5), one finds

Tm;n
2 ¼ −1

2trðIdÞm!n!
tr½Γν2…νnΓðmÞγðnÞΓðmÞγν1

þ ð−1Þmþn−1ðd − 2mÞΓðn−1ÞΓðmÞγðn−1ÞΓðmÞ�

¼ −1
2trðIdÞm!n!

ðs1 þ s2Þ; ðC3Þ

where γðn−kÞ ¼ γν1…νn−k ¼ γν1…γνn−k is a product of gamma
matrices of standard ordering. Then,

s1 ¼ tr
�
2
Xn−1
i¼1

ðd − nþ 2ÞΓðn−2ÞΓðmÞγðn−2ÞΓðmÞ

þ ð−1Þmþn−1ðd − 2mÞΓðn−1ÞΓðmÞγðn−1ÞΓðmÞ

�
: ðC4Þ

One then obtains a recursion relation for Tm;n
2 ,

Tm;n
2 ¼ ð−1Þmþn−1ðd − 2mÞTm;n−1

2

þ ðn − 1Þðd − nþ 2ÞTm;n−2
2 ; ðC5Þ

with boundary conditions

Tm;0
2 ¼ −

ð−1Þm2ðm−1Þ

m!

Γðdþ 1Þ
Γðd −mþ 1Þ ;

Tm;1
2 ¼ −

ð−1Þm2ðmþ1Þ

m!

ðd − 2mÞΓðdþ 1Þ
Γðd −mþ 1Þ : ðC6Þ

The recurrence relation can be expressed as

Tm;n
2 ¼ −

1

2
imðmþ1Þþnðnþ1Þam;n; ðC7Þ

where am;n are the coefficients of the generating function

Fðx; yÞ ¼
X∞
m;n¼0

am;nxmyn: ðC8Þ

Then the recursive behavior in Eq. (C5) is inherited by
am;n and combined with the boundary conditions Eq. (C6).
The generating function is found to be

Fðx;yÞ¼ ð1−xþyþxyÞdþð1þx−yþxyÞd
− ð1þxþy−xyÞdþð1−x−y−xyÞd: ðC9Þ
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APPENDIX D: ANOMALOUS DIMENSIONS

The Feynman diagrams in the first row of Fig. 3 have a
divergent part which reads

IðmÞ
1 ¼ ðg�1Þ2

m − 2

16π2ϵ
ð−1ÞmOðmÞ: ðD1Þ

The Feynman diagrams in the last row of Fig. 3 together
yield

IðmÞ
2 ¼div ðg�1Þ2

64π2m!ϵ
Ψ̄ðxÞ½ΓðmÞ; γμ�ΨðxÞ

× Ψ̄ðxÞ½ΓðmÞ; γμ�ΨðxÞ; ðD2Þ

which requires some algebra. For odd m, we get

Iðm¼oddÞ
2 ¼ ðg�1Þ2ðmþ 1Þ

16π2ϵ
Oðmþ1Þ; ðD3Þ

while for the even case, we have

Iðm¼evenÞ
2 ¼ ðg�1Þ2ð5 −mÞ

16π2ϵ
Oðm−1Þ: ðD4Þ

The Feynman diagrams in Fig. 4 yield a divergent piece
which reads

IðmÞ
3 ¼ðg�1Þ2Oð0Þ

16π2ϵ

�ð−1Þmðm−1Þ=2

m!

Ym−1

i¼0

ð4− iÞ−Nfδm;0

�
: ðD5Þ

Consequently, the operator renormalization matrix is found
to be

Zm;n
O ¼ I1 þ I2 þ I3

¼ ðg�1Þ2
16π2ϵ

�
ðn − 2Þð−1Þnδm;n þ nδm;n−1modðm; 2Þ

þ ð4 − nÞδm;nþ1modðn; 2Þ − Nfδm;0δn;0

þ 4!ð−1Þmðm−1Þ=2

m!ð4 −mÞ! δn;0

�
: ðD6Þ

The one-loop renormalization of the fermion self energy in
the GNY model reads

Zm;n
Ψ ¼ 1þ ðg�1Þ2

32π2ϵ
δm;n; ðD7Þ

and therefore one obtains the one-loop anomalous dimen-
sions matrix

γm;n
O ¼ dα1

d ln μ
∂
∂α1 lnðZOZ−2

Ψ Þ

¼ 2u�

�
ð1 − ð−1Þnðn − 2ÞÞδm;n − nδm;n−1modðm; 2Þ

þ ðn − 4Þδm;nþ1modðn; 2Þ þ Nfδm;0δn;0

−
4!ð−1Þmðm−1Þ=2

m!ð4 −mÞ! δn;0

�
: ðD8Þ
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