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The SU(3) flavour symmetry breaking expansion in up, down and strange quark masses is extended from 
hadron masses to meson decay constants. This allows a determination of the ratio of kaon to pion 
decay constants in QCD. Furthermore when using partially quenched valence quarks the expansion is 
such that SU(2) isospin breaking effects can also be determined. It is found that the lowest order SU(3) 
flavour symmetry breaking expansion (or Gell-Mann–Okubo expansion) works very well. Simulations are 
performed for 2 + 1 flavours of clover fermions at four lattice spacings.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

One approach to determine the ratio |V us/V ud| of Cabibbo–
Kobayashi–Maskawa (CKM) matrix elements, as suggested in [1], 
is by using the ratio of the experimentally determined pion and 
kaon leptonic decay rates

�(K + → μ+νμ)

�(π+ → μ+νμ)

=
∣∣∣∣ V us

V ud

∣∣∣∣2 (
f K +

fπ+

)2 MK +

Mπ+

(
1 − m2

μ/M2
K +

1 − m2
μ/M2

π+

)2

(1 + δem) (1)

(where MK + , Mπ+ and mμ are the particle masses, and δem is an 
electromagnetic correction factor). This in turn requires the deter-
mination of the ratio of kaon to pion decays constants, f K +/ fπ+ , 
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a non-perturbative task, where the lattice approach to QCD may 
be of help. For some recent work see, for example, [2–10].

The QCD interaction is flavour-blind and so when neglecting 
electromagnetic and weak interactions, the only difference be-
tween the quark flavours comes from the mass matrix. In this 
article we want to examine how this constrains meson decay ma-
trix elements once full SU (3) flavour symmetry is broken, using 
the same methods as we used in [11,12] for hadron masses. In 
particular we shall consider pseudoscalar decay matrix elements 
and give an estimation for f K / fπ and f K +/ fπ+ (ignoring electro-
magnetic contributions).

2. Approach

In lattice simulations with three dynamical quarks there are 
many paths to approach the physical point where the quark 
masses take their physical values. The choice adopted here is to ex-
trapolate from a point on the SU (3) flavour symmetry line keeping 
the singlet quark mass m constant, as illustrated in the left panel of 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. LH panel: Sketch of the path for the case of two mass degenerate quarks, mu = md ≡ ml , from a point on the SU (3) flavour symmetric line (m0, m0) to the physical 
point denoted with a ∗: (m∗

l , m∗
s ). RH panel: The pseudoscalar octet meson.
Fig. 1, for the case of two mass degenerate quarks mu = md ≡ ml . 
This allows the development of an SU (3) flavour symmetry break-
ing expansion for hadron masses and matrix elements, i.e. an ex-
pansion in

δmq = mq − m , with m = 1
3 (mu + md + ms) (2)

(where numerically m = m0). From this definition we have the triv-
ial constraint

δmu + δmd + δms = 0 . (3)

The path to the physical quark masses is called the ‘unitary line’ 
as we expand in the same masses for the sea and valence quarks. 
Note also that the expansion coefficients are functions of m only, 
which provided we keep m = const. reduces the number of al-
lowed expansion coefficients considerably.

As an example of an SU (3) flavour symmetry breaking ex-
pansion, [12], we consider the pseudoscalar masses, and find to 
next-to-leading-order, NLO, (i.e. O ((δmq)

2))

M2(ab) = M2
0 + α(δma + δmb)

+ β0
1
6 (δm2

u + δm2
d + δm2

s )

+ β1(δm2
a + δm2

b) + β2(δma − δmb)
2

+ . . . , (4)

where ma , mb are quark masses with a, b = u, d, s. This describes 
the physical outer ring of the pseudoscalar meson octet (the right 
panel of Fig. 1). Numerically we can also in addition consider a fic-
titious particle, where a = b = s, which we call ηs . We have further 
extended the expansion to the next-to-next-to-leading or NNLO 
case, [13]. As the expressions start to become unwieldy, they have 
been relegated to Appendix A. (Octet baryons also have equivalent 
expansions, [13].)

The vacuum is a flavour singlet, so meson to vacuum matrix el-
ements 〈0|Ô|M〉 are proportional to 1 ⊗ 8 ⊗ 8 tensors, i.e. 8 ⊗ 8
matrices, where Ô is an octet operator. So the allowed mass de-
pendence of the outer ring octet decay constants is similar to the 
allowed dependence of the octet masses. Thus we have

f (ab) = F0 + G(δma + δmb)

+ H0
1
6 (δm2

u + δm2
d + δm2

s ) + H1(δm2
a + δm2

b)

+ H2(δma − δmb)
2 + . . . . (5)

The SU (3) flavour symmetric breaking expansion has the simple 
property that for any flavour singlet quantity, which we generically 
denote by X S ≡ X S(mu, md, ms) then
XS(m + δmu,m + δmd,m + δms) = XS(m,m,m) + O ((δmq)
2) .

(6)

This is already encoded in the above pseudoscalar SU (3) flavour 
symmetric breaking expansions, or more generally it can be shown, 
[11,12], that X S has a stationary point about the SU (3) flavour 
symmetric line.

Here we shall consider

X2
π = 1

6 (M2
K + + M2

K 0 + M2
π+ + M2

π− + M2
K 0 + M2

K −) ,

X fπ = 1
6 ( f K + + f K 0 + fπ+ + fπ− + f K 0 + f K −) . (7)

(The experimental value of Xπ is ∼ 410 MeV, which sets the uni-
tary range.) There are, of course, many other possibilities such as 
S = N , 	, 
∗ , �, ρ , r0, t0, w0, [11,12,14].

As a further check, it can be shown that this property also holds 
using chiral perturbation theory. For example for mass degenerate 
u and d quark masses and assuming χPT is valid in the region of 
the SU (3) flavour symmetric quark mass we find

X fπ = f0

[
1 + 8

f 2
0

(3L4 + L5)χ − 3L(χ)

]
+ O ((δχl)

2) , (8)

where the expansion parameter is given by δχl = χ −χl with χ =
1
3 (2χl + χs), χl = B0ml , χs = B0ms , f0 is the pion decay constant 
in the chiral limit, Li are chiral constants and L(χ) = χ/(4π f0)

2 ×
ln(χ/	2

χ ) is the chiral logarithm. In eq. (8), as expected, there is 
an absence of a linear term ∝ δχl .

The unitary range is rather small so we introduce PQ or par-
tially quenching (i.e. the valence quark masses can be different to 
the sea quark masses). This does not increase the number of ex-
pansion coefficients. Let us denote the valence quark masses by μq

and the expansion parameter as δμq = μq − m. Then we have

M̃2(ab) = 1 + α̃(δμa + δμb)

− ( 2
3 β̃1 + β̃2)(δm2

u + δm2
d + δm2

s )

+ β̃1(δμ
2
a + δμ2

b) + β̃2(δμa − δμb)
2

+ . . . , (9)

and

f̃ (ab) = 1 + G̃(δμa + δμb)

− ( 2
3 H̃1 + H̃2)(δm2

u + δm2
d + δm2

s )

+ H̃1(δμ
2
a + δμ2

b) + H̃2(δμa − δμb)
2

+ . . . , (10)
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Fig. 2. LH panel: X2
t0

, X2
w0

, X2
π , X2

ρ , X2
N ≈ X2

	 , X fπ for (β, κ0) = (5.50, 0.120900) along the m = const. line, together with constant fits. Open symbols have Mπ L � 4, where 
L is the spatial lattice size, and are not included in the fit. The vertical line is the physical point. RH panel: The same for (β, κ0) = (5.80, 0.122810).

Fig. 3. LH panel: (2M2
K − M2

π )/X2
S versus M2

π /X2
S , S = N , ρ , t0, w0 for (β, κ0) = (5.50, 0.120900). Stars represent the physical points, the dashed line is the SU (3) flavour 

symmetric line. RH panel: The same for (β, κ0) = (5.50, 0.120950).
where in addition to the PQ generalisation we have also formed 
the ratios M̃2 = M2/X2

π , α̃ = α/M2
0, . . . and f̃ = f /X fπ , G̃ = G/F0, 

. . . (see Appendix A for the NNLO expressions). This will later 
prove useful for the numerical results. We see that there are mixed 
sea/valence mass terms at NLO (and higher orders). The unitary 
limit is recovered by simply replacing δμq → δmq .

3. The lattice

We use an O (a) non-perturbatively improved clover action with 
tree level Symanzik glue and mildly stout smeared 2 + 1 clover 
fermions, [14,15], for β ≡ 10/g2

0 = 5.40, 5.50, 5.65, 5.80 (four lat-
tice spacings). We set

μq = 1

2

(
1

κval
q

− 1

κ0c

)
, (11)

giving

δμq = μq − m = 1

2

(
1

κval
q

− 1

κ0

)
. (12)

A κ value along the SU (3) symmetric line is denoted by κ0, while 
κ0c is the value in the chiral limit. Note that practically we do not 
have to determine κ0c , as it cancels in δμq . (For simplicity we have 
set the lattice spacing to unity.)
We first investigate the constancy of X S in the unitary region. 
In Fig. 2 we show various choices for X S . It is apparent that over 
a large range, starting from the SU (3) flavour symmetric line, 
reaching down and approaching the physical point, X S appears 
constant, with very little evidence of curvature. (Although not in-
cluded in the fits, the open symbols have Mπ L ∼ 3–4 and also 
do not show curvature.) Presently our available pion masses reach 
down to ∼ 220 MeV.

Based on this observation, we determine the path in the quark 
mass plane by considering M2

π/X2
S against (2M2

K − M2
π )/X2

S . If 
there is little curvature then we expect that

2M2
K − M2

π

X2
S

= 3
X2

π

X2
S

− 2
M2

π

X2
S

(13)

holds for S = N, ρ, t0, w0, . . . . In Fig. 3 we show this for (β, κ0) =
(5.50, 0.120900), (5.50, 0.120950). We see that this is indeed the 
case. In addition κ0 is adjusted so that the path goes through (or 
very close to) the physical value. For example we see that from 
the figure, β = 5.50, κ0 = 0.120950 is very much closer to this 
path than κ0 = 0.120900, [14].

The programme is thus first to determine κ0 and then find 
the expansion coefficients. Then use1 isospin symmetric ‘physical’ 

1 Masses are taken from FLAG3, [16].
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Fig. 4. LH panel: PQ (and unitary) pseudoscalar mass results for M̃2 = M2/X2
π with (β, κ0) = (5.50, 0.120950) against valence quarks δμa + δμb . The data is given by circles, 

while subtracting out the non-linear pieces (using the fit) gives the squares, together with the linear fit. The vertical dashed line is the symmetric point, while the horizontal 
dashed line represents the physical M̃2

π . RH panel: Similarly for (β, κ0) = (5.65, 0.122005).

Fig. 5. Similarly for the decay constant, f̃ = f /X fπ .
masses M∗
π , M∗

K to determine δm∗
l and δm∗

s . PQ results can help 
for the first task. As the range of PQ quark masses that can then 
be used is much larger than the unitary range, then the numerical 
determination of the relevant expansion coefficients is improved. 
PQ results were generated about κ0, a single sea background, so 
γ̃1 was not relevant. Also some coefficients (those ∝ (δμa − δμb)

2) 
often just contributed to noise, so were then ignored. In Fig. 4 we 
show M̃2

π against δμa + δμb . From the SU (3) flavour breaking ex-
pansions the leading-order or LO expansions are just a function 
of δμa + δμb; at higher orders, NLO etc., this is not the case (see 
eq. (9)). We see that there is linear behaviour (coincidence of the 
PQ data with the linear piece) in the masses at least for M̃2

π � 3
or Mπ �

√
3 × 410 MeV ∼ 700 MeV. In Fig. 5 we show the corre-

sponding results for f̃ . Again we see similar results for f̃ as for 
M̃2; while our fit is describing the data well, the deviations from 
linearity occur earlier.

Furthermore the use of PQ results allows for a possibly inter-
esting method for fine tuning of κ0 to be developed. If we slightly 
miss the starting point on the SU (3) flavour symmetric line, we 
can also tune κ0 using PQ results so that we get the physical val-
ues of (say) M∗

π , X∗
N and M∗

K correct. This gives κ0, δμ∗
l , δμ∗

s . The 
philosophy is that most change is due to a change in valence quark 
mass, rather than sea quark mass. Note that then 2δμ∗

l + δμ∗
s �= 0

necessarily (while 2δml + δms always vanishes). For our κ0 val-
Table 1
Results for δm∗

l .

β 5.40 5.50 5.65 5.80

δm∗
l −0.01041(11) −0.008493(33) −0.008348(33) −0.007094(11)

ues used here, namely (β, κ0) = (5.40, 0.119930), (5.50, 0.120950), 
(5.65, 0.122005), (5.80, 0.122810), [14] (on 243 × 48, 323 × 64, 
323 × 64 and 483 × 96 lattice volumes respectively) tests show this 
is a rather small correction and we shall use this as part of the 
systematic error, see Appendix C.

Of course the unitary range is much smaller, as can be seen 
from the horizontal lines in Fig. 4. In the LH panel of Fig. 6 we 
show this range as a function of δml for M̃2

π , M̃2
K and M̃2

ηs
, to-

gether with the previously found fits. The expressions are given 
from eq. (9), setting δμ → δmq and then a → u, b → d with 
mu = md ≡ ml for M̃2

π etc. . Here we clearly observe the typical ‘fan’ 
behaviour seen in the mass of other hadron mass multiplets [12]. 
As we have mass degeneracy at the symmetric point, the masses 
radiate out from this point to their physical values. For both M̃2

and f̃ the LO completely dominates.
As can be seen from the LH panel of Fig. 6 when M̃π takes its 

physical value, M̃∗
π , this determines the physical value δm∗

l . These 
are given in Table 1. Note that due to the constraint given in eq. (3)
then δm∗

s = −2δm∗ .
l
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Fig. 6. LH panel: Unitary results for M̃2 = M2/X2
π versus δml for (β,κ0) = (5.80,0.122810). RH panel: Equivalent unitary results for f̃ = f /X fπ .

Fig. 7. LH panel: Estimate of the c A improvement coefficient using the Schrödinger Functional, [15] as a function of g2
0 = 10/β . The vertical dashed lines denote the β range 

5.40–5.80. RH panel: The ratio f (1)/ f versus δμa + δμb for (β, κ0) = (5.80, 0.122810).
4. Decay constants

The renormalised and O (a) improved axial current is given by 
[17]

Aab;R
μ = Z AAab;IMP

μ , (14)

with

Aab;IMP
μ =

(
1 +

[
bAm + 1

2 bA(ma + mb)
])

Aab
μ ,

Aab
μ = Aab

μ + c A∂μ P ab , (15)

and

Aab
μ = qaγμγ5qb , P ab = qaγ5qb . (16)

Using the axial current we first define matrix elements

〈0| Â4|M〉 = M f , 〈0|∂̂4 P |M〉 = M f (1) , (17)

giving for the renormalised pseudoscalar constants

f R = Z A

(
1 + c A

f (1)

f

)(
1 + [

(bA + bA)m + 1
2 bA(δma + δmb)

])
f .

(18)

As indicated in Fig. 7, we note that c A is small (compared to unity) 
and that f (1)/ f is constant and ∼ O (1) in the unitary region. So 
for constant m we can absorb the c A f (1)/ f and (bA + bA)m terms 
to give a change in the first coefficient

f̃ R ≡ f R

X R
fπ

= 1 +
(

G̃ + 1
2 bA

)
(δma + δmb) + . . . . (19)

For bA (only defined up to terms of O (a)) we presently take the 
tree level value, bA = 1 + O (g2

0).

5. Results

5.1. f K / fπ

As demonstrated in the RH panel of Fig. 6, we again expect 
LO behaviour for SU (3) flavour symmetry breaking for f̃ to dom-
inate in the unitary region. Using the coefficients for the SU (3)

flavour breaking expansion for f̃ as previously determined, and 
then extrapolating to the physical quark masses gives the results 
in Table 2. Finally using these results, we perform the final con-
tinuum extrapolation, using the lattice spacings given in [14], as 
shown in Fig. 8. (The fits have χ2/dof ∼ 3.3/2 ∼ 1.6.) For compari-
son, the FLAG3 values, [16], are shown as stars. (Note that although 
fηs helps in determining the expansion coefficients, there is no fur-
ther information to be found from the various extrapolated values.) 
Continuum values are also given in Table 2. Converting f̃ R∗

K gives 
a result of

f K = 1.192(10)(13) (20)

fπ
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Table 2
Results for f̃ R∗

π , f̃ R∗
K , f̃ R∗

ηs
, together with the extrapolated continuum value.

β a [fm] f̃ R∗
π f̃ R∗

K f̃ R∗
ηs

5.40 0.0818(9) 0.8739(52) 1.0631(26) 1.2540(97)
5.50 0.0740(4) 0.8859(34) 1.0573(17) 1.2328(63)
5.65 0.0684(4) 0.8806(34) 1.0599(17) 1.2423(62)
5.80 0.0588(3) 0.8827(14) 1.0587(07) 1.2359(28)

∞ 0 0.8862(52) 1.0568(26) 1.2263(99)

Fig. 8. The continuum extrapolation of f̃ R∗ . The extrapolated values are again given 
as open circles. The converted FLAG3 values, [16], are given as stars.

(for simplicity now dropping the superscripts). The first error is 
statistical; the second is an estimate of the combined systematic 
error due to bA , SU (3) flavour breaking expansion, finite volume 
and our chosen path to the physical point as discussed in Ap-
pendix C.

5.2. Isospin breaking effects

Finally we briefly discuss SU (2) isospin breaking effects. Pro-
vided m is kept constant, then the SU (3) flavour breaking expan-
sion coefficients (α̃, G̃ , . . .) remain unaltered whether we consider 
1 + 1 + 1 or 2 + 1 flavours. So although our numerical results are 
for mass degenerate u and d quarks we can use them to discuss 
isospin breaking effects (ignoring electromagnetic corrections). We 
parameterise these2 effects by

f K +

fπ+
= f K

fπ

(
1 + 1

2 δSU (2)

)
,

and expanding in �m = (δmd − δmu)/2 about the average light 
quark mass δml = (δmu + δmd)/2 gives, using the LO expansions 
(which from Figs. 4, 5 or more particularly Fig. 6, have been shown 
to work well)

δSU (2) = 2

3

(
1 −

(
f K

fπ

)−1
)

�m

δml
, (21)

with

�m

δml
= 3

2

M2
K 0 − M2

K +

M2
π+ − 1

2

(
M2

K 0 + M2
K +

) . (22)

2 An alternative, but equivalent method is to first determine δm∗
u , δm∗

d directly.
At the physical point, using the FLAG3, [16], mass values gives 
�m∗/δm∗

l and hence using our determined value for f K +/ fπ+ , we 
find

δSU (2) = −0.0042(2)(2) . (23)

Alternatively, this gives

f K +

fπ+
= 1.190(10)(13) .

6. Conclusions

We have extended our programme of tuning the strange and 
light quark masses to their physical values simultaneously by keep-
ing the average quark mass constant from pseudoscalar meson 
masses to pseudoscalar decay constants. As for masses we find that 
the SU (3) flavour symmetry breaking expansion, or Gell-Mann–
Okubo expansion, works well even at leading order.

Further developments to reduce error bars could include an-
other finer lattice spacing, as the extrapolation lever arm in a2 is 
rather large and presently contributes substantially to the errors, 
and PQ results with sea quark masses not just at the symmetric 
point (κ0) but at other points on the m = const. line.
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Appendix A. Next-to-next-to leading order expansion

We give here the next-to-next-to leading order PQ expansion 
or NNLO PQ expansion for the octet pseudoscalars and decay con-
stants, which generalise the results of eqs. (4), (9) and eqs. (5), 
(10). For the pseudoscalar mesons we have

M2(ab) = M2
0 + α(δμa + δμb)

+ β0
1
6 (δm2

u + δm2
d + δm2

s ) + β1(δμ
2
a + δμ2

b)

+ β2(δμa − δμb)
2

+ γ0δmuδmdδms + γ1(δμa + δμb)(δm2
u + δm2

d + δm2
s )

+ γ2(δμa + δμb)
3 + γ3(δμa + δμb)(δμa − δμb)

2 ,

(24)

and

M̃2(ab) = 1 + α̃(δμa + δμb)

− ( 2
3 β̃1 + β̃2)(δm2

u + δm2
d + δm2

s )

+ β̃1(δμ
2
a + δμ2

b) + β̃2(δμa − δμb)
2

+ (2γ̃2 − 6γ̃3)δmuδmdδms

+ γ̃1(δμa + δμb)(δm2
u + δm2 + δm2

s )
d
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+ γ̃2(δμa + δμb)
3

+ γ̃3(δμa + δμb)(δμa − δμb)
2 , (25)

where M̃2(ab) = M2(ab)/X2
π and for an expansion coefficient α̃ =

α/M2
0, β̃i = βi/M2

0, i = 1, 2, and γ̃i = γi/M2
0, i = 1, 2, 3 and we 

have then redefined γ̃1 by γ̃1 − α̃( 1
6 β̃0 + 2

3 β̃1 + β̃2) → γ̃1.
The SU (3) flavour breaking expansion is identical for the decay 

constants, we just replace M2
0 → F0, α → G , βi → Hi , γi → Ii in 

eq. (24) and α̃ → G̃ , β̃i → H̃i , γ̃i → Ĩ i in eq. (25).

Appendix B. Correlation functions

On the lattice we extract the pseudoscalar decay constant from 
two-point correlation functions. For large times we expect that

C A4 P (t)

= 1

V S
〈
∑

�x
A4(�x, t)

∑
�y

P (�y, t)〉

= 1

2M

[
〈0| Â4|M〉〈0| P̂ |M〉∗e−Mt + 〈0| Â†

4|M〉∗〈0| P̂ †|M〉e−M(T −t)
]

= −A A4 P

[
e−Mt − e−M(T −t)

]
, (26)

and

C P P (t)

= 1

V S
〈
∑

�x
P (�x, t)

∑
�y

P (�y, t)〉

= 1

2M

[
〈0| P̂ |M〉〈0| P̂ |M〉∗e−Mt + 〈0| P̂ †|M〉∗〈0| P̂ †|M〉e−M(T −t)

]
= A P P

[
e−Mt + e−M(T −t)

]
, (27)

where A4 and P are given in eq. (16). We have suppressed the 
quark indices, so the equations with appropriate modification are 
valid for both the pion and kaon. V S is the spatial volume and T
is the temporal extent of the lattice. To increase the overlap of the 
operator with the state (where possible) the pseudoscalar operator 
has been smeared using Jacobi smearing, and denoted here with a 
superscript, S for Smeared. We now set

〈0| Â4|M〉 = M f

〈0|∂̂4 P |M〉 = − sinh M〈0| P̂ |M〉 = M f (1) , (28)

where f , f (1) are real and positive. By computing C A4 P S and 
C P S P S we find for the matrix element of Â4,

M f = √
2M × A A4 P S

A P S P S
×

√
A P S P S , (29)

and for the matrix element of ∂̂4 P we obtain from the ratio of the 
C P P S and C A4 P S correlation functions

f (1)

f
= sinh M × A P P S

A A4 P S
. (30)

Some further details and formulae for other decay constants are 
given in [20,21].
Appendix C. Systematic errors

We now consider in this Appendix possible sources of system-
atic errors.

Uncertainty in bA

Presently the improvement coefficient bA is only known pertur-
batively to leading order. We have estimated the uncertainty here 
by repeating the analysis with bA = 0 and bA = 2. This leads to a 
systematic error on f K / fπ of ∼ 0.008.

SU (3) flavour breaking expansion
We first note that for the unitary range as illustrated in Fig. 6, 

the ‘ruler test’ indicates there is very little curvature. This shows 
that the SU (3) flavour breaking expansion is highly convergent. 
(Each order in the expansion is multiplied by a further power of 
|δml| ∼ 0.01.) This is also indicated in Fig. 2, where our lowest pion 
mass there is ∼ 220 MeV. Such expansions are very good compared 
to most approaches available to QCD. Comparing the LO (linear) 
approximation with the non-linear fit gives an estimation of the 
systematic error. The comparison yields the estimate to be ∼ 0.004
for f K / fπ .

Finite lattice volume
All the results used in the analysis here have Mπ L � 4. We 

also have generated some PQ data for (β, κ0) = (5.80, 0.122810)

on a smaller lattice volume – 323 × 64. (This still has Mπ L > 4.) 
Performing the analysis leads to small changes in f̃ . Making a con-
tinuum extrapolation (which is most sensitive to just the β = 5.80
point) and comparing the result with that of eq. (20) results in a 
systematic error of ∼ 0.005.

Path to physical point
As discussed in section 3, we can further tune κ0 using PQ re-

sults to get the physical values M∗
π , X∗

N and M∗
K correct, to give κ0, 

δμ∗
l , δμ∗

s . Setting δμ∗ ≡ (2δμ∗
l + δμ∗

s )/3 then at LO this average is 
given by

δμ∗ = 1

2α̃

⎛⎝(
X lat 2

π

X lat 2
N

/
X∗2

π

X∗2
N

)−1

− 1

⎞⎠ (31)

(while 2δml + δms is always = 0). This gives for example for β =
5.80, δμ∗ ∼ −0.0001. Changing δm∗

l (or δm∗
s ) by this and making 

a continuum extrapolation (which is again most sensitive to this 
point) and comparing the result with that of eq. (20) results in a 
systematic error of ∼ 0.009.

Total systematic error
Including all these systematic errors in quadrature give a total 

systematic estimate in f K / fπ of ∼ 0.013.
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